MC14572UB

Hex Gate

The MC14572UB hex functional gate is constructed with MOS P -channel and N -channel enhancement mode devices in a single monolithic structure. These complementary MOS logic gates find primary use where low power dissipation and/or high noise immunity is desired. The chip contains four inverters, one NOR gate and one NAND gate.

Features

- Diode Protection on All Inputs
- Single Supply Operation
- Supply Voltage Range $=3.0 \mathrm{Vdc}$ to 18 Vdc
- NOR Input Pin Adjacent to $\mathrm{V}_{\text {SS }}$ Pin to Simplify Use As An Inverter
- NAND Input Pin Adjacent to $V_{D D}$ Pin to Simplify Use As An Inverter
- NOR Output Pin Adjacent to Inverter Input Pin For OR Application
- NAND Output Pin Adjacent to Inverter Input Pin For AND Application
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load over the Rated Temperature Range
- These Devices are Pb -Free and are RoHS Compliant
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable*

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Parameter	Symbol	Value	Unit
DC Supply Voltage Range	V_{DD}	-0.5 to +18.0	V
Input or Output Voltage Range (DC or Transient)	$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-0.5 to V_{DD} +0.5	V
Input or Output Current (DC or Transient) per Pin	$\mathrm{I}_{\text {in }}, \mathrm{I}_{\text {out }}$	± 10	mA
Power Dissipation, per Package (Note 1)	P_{D}	500	mW
Ambient Temperature Range	T_{A}	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead Temperature (8-Second Soldering)	T_{L}	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Temperature Derating: Plastic " P and D/DW"

Packages: - $7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$
This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com
MARKING
DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping †
MC14572UBDG	SOIC-16 (Pb-Free)	48 Units / Rail
MC14572UBDR2G	SOIC-16 (Pb-Free)	2500/Tape \& Reel
NLV14572UBDR2G*	SOIC-16 (Pb-Free)	2500/Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PIN ASSIGNMENT			
$\mathrm{OUT}_{\text {A }}$	$1 \bullet$	16	V_{DD}
$1 \mathrm{~N}_{\text {A }}$	2	15	IN 2_{F}
$\mathrm{OUT}_{\mathrm{B}} \mathrm{C}$	3	14	1_{F}
$\mathrm{N}_{\text {B }}$	4	13	$\mathrm{OUT}_{\mathrm{F}}$
$\mathrm{OUT}_{\mathrm{C}}$ [5	12	IN_{E}
IN 1_{C}	6	11	OUTE
IN 2c	7	10	IN_{D}
$\mathrm{v}_{\text {S }}$	8	9	OUTD

CIRCUIT SCHEMATIC

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Characteristic	Symbol	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{Vdc} \end{aligned}$	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	$\begin{aligned} & \text { Typ } \\ & \text { (Note 2) } \end{aligned}$	Max	Min	Max	
Output Voltage "0" Level $V_{\text {in }}=V_{D D} \text { or } 0$	V_{OL}	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
$\mathrm{V}_{\text {in }}=0$ or V_{DD} " "1" Level	V_{OH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
$\begin{aligned} & \hline \text { Input Voltage "0" Level } \\ & \left(\mathrm{V}_{\mathrm{O}}=4.5 \text { or } 0.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=9.0 \text { or } 1.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) \end{aligned}$	$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 2.5 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 2.5 \end{aligned}$	-	$\begin{aligned} & 1.0 \\ & 2.0 \\ & 2.5 \end{aligned}$	Vdc
$\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{aligned}$	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 4.0 \\ 8.0 \\ 12.5 \end{gathered}$	-	$\begin{gathered} 4.0 \\ 8.0 \\ 12.5 \end{gathered}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{gathered} 4.0 \\ 8.0 \\ 12.5 \end{gathered}$	-	Vdc
Output Drive Current ($\left.\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right)$ $\left(\mathrm{VOH}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$ 	${ }^{\text {IOH }}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -1.2 \\ -0.25 \\ -0.62 \\ -1.8 \end{gathered}$	-	$\begin{aligned} & -1.0 \\ & -0.2 \\ & -0.5 \\ & -1.5 \end{aligned}$	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -3.5 \end{gathered}$	-	$\begin{gathered} -0.7 \\ -0.14 \\ -0.35 \\ -1.1 \end{gathered}$	-	mAdc
$\begin{array}{ll} (\mathrm{V} \text { OL }=0.4 \mathrm{Vdc}) & \text { Sink } \\ (\mathrm{VOL}=0.5 \mathrm{Vdc}) & \\ \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) & \end{array}$	${ }^{\text {IOL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ 4.2 \end{gathered}$	-	$\begin{gathered} \hline 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} 0.88 \\ 2.25 \\ 8.8 \end{gathered}$	-	$\begin{gathered} \hline 0.36 \\ 0.9 \\ 2.4 \end{gathered}$	-	mAdc
Input Current	$\mathrm{l}_{\text {in }}$	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance ($\mathrm{V}_{\text {in }}=0$)	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)	IDD	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} \hline 0.25 \\ 0.5 \\ 1.0 \end{gathered}$	-	0.0005 0.0010 0.0015	$\begin{gathered} \hline 0.25 \\ 0.5 \\ 1.0 \end{gathered}$	-	$\begin{aligned} & 7.5 \\ & 15 \\ & 30 \end{aligned}$	$\mu \mathrm{Adc}$
Total Supply Current (Notes 3, 4) (Dynamic plus Quiescent, Per Package) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ on all outputs, all buffers switching)	I_{T}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=(1.89 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(3.80 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(5.68 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \end{aligned}$							$\mu \mathrm{Adc}$

2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
3. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
4. To calculate total supply current at loads other than 50 pF : $\mathrm{I}_{T}\left(C_{L}\right)=I_{T}(50 \mathrm{pF})+\left(C_{L}-50\right)$ Vfk where: I_{T} is in $\mu \mathrm{A}$ (per package), C_{L} in pF , $\mathrm{V}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)$ in volts, f in kHz is input frequency, and $\mathrm{k}=0.006$.

SWITCHING CHARACTERISTICS (Type 5) $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	V ${ }_{\text {D }}$	Min	$\begin{aligned} & \text { Typ } \\ & \text { (Note 6) } \end{aligned}$	Max	Unit
$\begin{aligned} & \text { Output Rise Time } \\ & \mathrm{t}_{\mathrm{LLH}}=(3.0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+30 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+15 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}=(1.1 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+10 \mathrm{~ns} \end{aligned}$	${ }_{\text {t }}^{\text {tLH }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 180 \\ 90 \\ 65 \end{gathered}$	$\begin{aligned} & 360 \\ & 180 \\ & 130 \end{aligned}$	ns
$\begin{aligned} & \text { Output Fall Time } \\ & \mathrm{t}_{\mathrm{THL}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+9.5 \mathrm{~ns} \end{aligned}$	${ }_{\text {t }}^{\text {HL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \\ & 80 \end{aligned}$	ns
Propagation Delay Time $\begin{aligned} & t_{\text {PLH }} \mathrm{t}_{\mathrm{PHL}}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+5 \mathrm{~ns} \\ & t_{\mathrm{PLL}}, \mathrm{t}_{\mathrm{PHL}}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+17 \mathrm{~ns} \\ & t_{\mathrm{PLL}}, \mathrm{t}_{\mathrm{PHLL}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+15 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \mathrm{t}_{\text {tLH, }}, \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 90 \\ & 50 \\ & 40 \end{aligned}$	$\begin{gathered} 180 \\ 100 \\ 80 \end{gathered}$	ns

5. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

Figure 1. Switching Time Test Circuits and Waveforms

PACKAGE DIMENSIONS

SOIC-16
CASE 751B-05
ISSUE K

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PIMENSIONS
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 . (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

DIM	MILLIMETERS		INCHES	
	MIN		MAX	MIN
A	9.80	10.00	0.386	0.393
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	
G	1.27 BSC		0.050 BSC	
J	0.19	0.25	0.008	
	0.009			
K	0.10	0.25	0.004	0.009
M	0	7°	0°	7°
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

SOLDERING FOOTPRINT

DIMENSIONS: MILLIMETERS

ON Semiconductor and (UiN are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca Sales Representative

