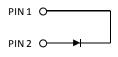


GAP3SLT33-214

Silicon Carbide Power Schottky Diode

 V_{RRM} = 3300 V V_{F} = 1.7 V I_{F} = 0.3 A Q_{C} = 52 nC


Features

- 3300 V Schottky rectifier
- 175 °C maximum operating temperature
- Electrically isolated base-plate
- Positive temperature coefficient of V_F
- · Fast switching speeds
- Superior figure of merit Q_C/I_F

Package

RoHS Compliant

SMB / DO - 214AA

Applications

- Down Hole Oil Drilling, Geothermal Instrumentation
- High Voltage Multipliers
- Military Power Supplies

Advantages

- Improved circuit efficiency (Lower overall cost)
- Significantly reduced switching losses compare to Si PiN diodes
- Ease of paralleling devices without thermal runaway
- Smaller heat sink requirements
- Low reverse recovery current
- · Low device capacitance

Maximum Ratings at T_j = 175 °C, unless otherwise specified

Parameter	Symbol	Conditions	Values	Unit	
Repetitive peak reverse voltage	V_{RRM}		3300	V	
Continuous forward current	I _F	T _C ≤ 125 °C	0.3	Α	
RMS forward current	I _{F(RMS)}	T _C ≤ 125 °C	0.35	Α	
Surge non-repetitive forward current, Half Sine	1	T_C = 25 °C, t_P = 10 ms	2	۸	
Wave	I _{F,SM}	$T_{\rm C}$ = 125 °C, $t_{\rm P}$ = 10 ms	1	А	
Non-repetitive peak forward current	$I_{F,max}$	T_{C} = 25 °C, t_{P} = 10 μ s	10	Α	
l ² t value	∫i² dt	T_C = 25 °C, t_P = 10 ms	0.1	A^2S	
Power dissipation	P _{tot}	T _C = 25 °C	25	W	
Operating and storage temperature	T _j , T _{stg}		-55 to 175	°C	

Electrical Characteristics at T_j = 175 °C, unless otherwise specified

Parameter	Symbol	Conditions min.		Values		Unit	
Parameter	Зушьог			typ.	max.	Onit	
Diado forward voltago	V _F	I _F = 0.3 A, T _j = 25 °C		1.7	2.2	V	
Diode forward voltage	VF	$I_F = 0.3 \text{ A}, T_j = 175 ^{\circ}\text{C}$		4.0	5.0		
Reverse current	I _R	$V_R = 3300 \text{ V}, T_j = 25 ^{\circ}\text{C}$		1	10	μΑ	
		$V_R = 3300 \text{ V}, T_j = 175 ^{\circ}\text{C}$		10	100		
Total capacitive charge	Q_{C}	$I_F \le I_{F,MAX}$ $dI_F/dt = 35 \text{ A/µs}$	V _R = 1500 V		52		nC
Switching time	t _s	$T_i = 175 ^{\circ}\text{C}$	V _R = 1500 V		< 60		ns
		V _R = 1 V, f = 1 MHz,	T _j = 25 °C		42		
Total capacitance	С	$V_R = 400 \text{ V}, f = 1 \text{ MHz}, T_j = 25 ^{\circ}\text{C}$		8		pF	
		$V_R = 1000 \text{ V}, f = 1 \text{ MHz}, T_j = 25 ^{\circ}\text{C}$		7			

Thermal Characteristics

Thermal resistance, junction – Cu lead frame	R _{thJC}	1.42	°C/W

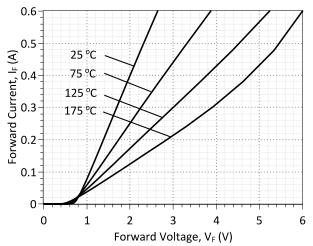


Figure 1: Typical Forward Characteristics

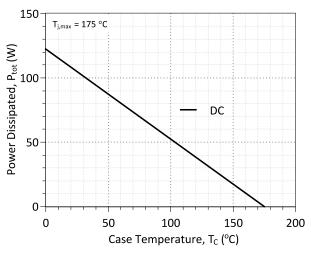


Figure 3: Power Derating Curve

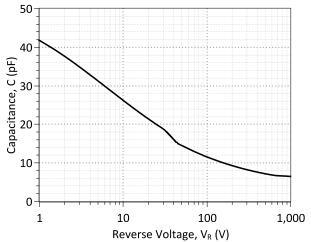


Figure 5: Typical Junction Capacitance vs Reverse Voltage Characteristics

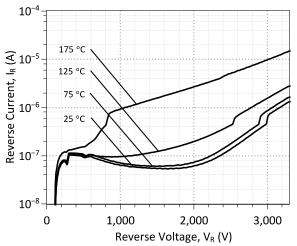


Figure 2: Typical Reverse Characteristics

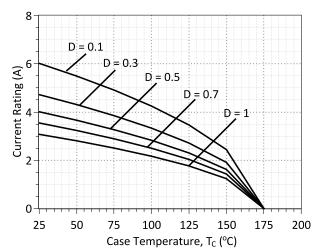


Figure 4: Current Derating Curves (D = t_p/T , t_p = 400 μ s) (Considering worst case Zth conditions)

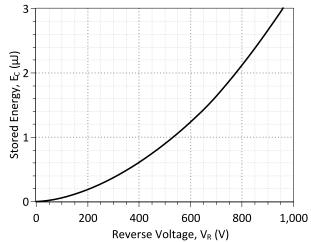


Figure 6: Typical Switching Energy vs Reverse Voltage Characteristics

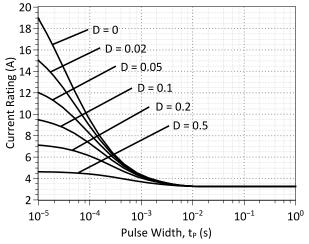


Figure 7: Current vs Pulse Duration Curves at T_C = 150 °C

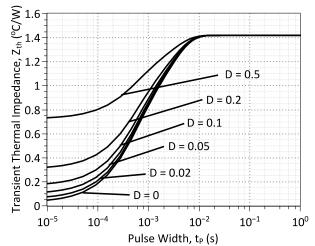
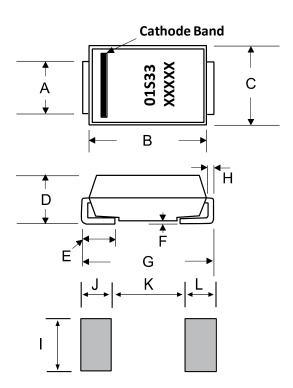



Figure 8: Transient Thermal Impedance

Package Dimensions:

SMB / DO-214AA

PACKAGE OUTLINE

Dimensions	Inches		Millimeters		
Difficusions	Min	Max	Min	Max	
А	0.077	0.086	1.950	2.200	
В	0.160	0.180	4.060	4.570	
С	0.130	0.155	3.300	3.940	
D	0.084	0.096	2.130	2.440	
E	0.030	0.060	0.760	1.520	
F	-	0.008	-	0.203	
G	0.205	0.220	5.210	5.590	
Н	0.006	0.012	0.152	0.305	
1	0.089	-	2.260	-	
J	0.085	-	2.160	-	
K	-	0.107	-	2.740	
L	0.085	-	2.160	-	

NOTE

- 1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.
- 2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS
- 3. CONTROLLED LEAD COPLANARITY <D> 0.004 INCH MAXIMUM

Revision History					
Date	Revision	Comments	Supersedes		
2013/11/12	1	Updated Electrical Characteristics			
2013/09/09	0	Initial Release			

Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155 Dulles, VA 20166

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.

SPICE Model Parameters

Copy the following code into a SPICE software program for simulation of the GAP3SLT33-214 device.

```
MODEL OF GeneSiC Semiconductor Inc.
                               $
     $Revision: 1.0
     $Date: 09-SEP-2013
                               Ś
    GeneSiC Semiconductor Inc.
    43670 Trade Center Place Ste. 155
    Dulles, VA 20166
    http://www.genesicsemi.com/index.php/sic-products/schottky
    COPYRIGHT (C) 2013 GeneSiC Semiconductor Inc.
     ALL RIGHTS RESERVED
* These models are provided "AS IS, WHERE IS, AND WITH NO WARRANTY
* OF ANY KIND EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED
* TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE."
* Models accurate up to 2 times rated drain current.
* Start of GAP3SLT33-214 SPICE Model
.SUBCKT GAP3SLT33 ANODE KATHODE
R1 ANODE INT R=((TEMP-24)*0.0535); Temperature Dependant Resistor
D1 INT KATHODE GAP3SLT33 25C; Call the 25C Diode Model
D2 ANODE KATHODE GAP3SLT33 PIN; Call the PiN Diode Model
.MODEL GAP3SLT33 25C D
+ IS 1.39E-14
                                    2.88
                         RS
         1.0120127
+ N
                                     36.05007504
                        IKF
+ EG
         1.2
                                    -3
                         XTI
+ CJO
         6.01E-11
                         VJ
                                    0.924257443
         0.3084545
                         FC
                                    0.5
+ TT
         1.00E-10
                         BV
                                    3300
+ IBV
         1.00E-03
                                    3300
                         VPK
+ IAVE 3.00E-01 TYPE
+ MFG GeneSiC_Semiconductor
                          TYPE
                                   SiC Schottky
.MODEL GAP3SLT33 PIN D
+ IS 178.99E-18
                         RS
                                    1.5
+ N
                         EG
                                    3.23
        50
+ XTI
                          FC
                                    0.5
+ TT
         0
                         BV
                                    3300
+ IBV
         1.00E-03
                         VPK
                                    3300
+ IAVE
                          TYPE
          3.00E-01
                                    SiC PiN
.ENDS
* End of GAP3SLT33-214 SPICE Model
```