Power MOSFET 32 Amps, 60 Volts

Logic Level, N-Channel DPAK

Designed for low voltage, high speed switching applications in power supplies, converters and power motor controls and bridge circuits.

Features

- Smaller Package than MTB30N06VL
- Lower R_{DS(on)}, V_{DS(on)}, and Total Gate Charge
- Lower and Tighter V_{SD}
- Lower Diode Reverse Recovery Time
- Lower Reverse Recovery Stored Charge
- Pb-Free Packages are Available

Typical Applications

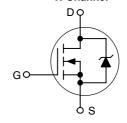
- Power Supplies
- Converters
- Power Motor Controls
- Bridge Circuits

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	60	Vdc
Drain-to-Gate Voltage ($R_{GS} = 10 \text{ M}\Omega$)	V_{DGR}	60	Vdc
$ \begin{array}{c cccc} Gate\text{-to-Source} & Voltage & - Continuous \\ & - Non\text{-Repetitive} & (t_p \! \leq \! 10 \text{ ms}) \end{array} $	V_{GS}	±20 ±30	Vdc
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		32 22 90	Adc Apk
Total Power Dissipation @ T_A = 25°C Derate above 25°C Total Power Dissipation @ T_A = 25°C (Note 1) Total Power Dissipation @ T_A = 25°C (Note 2)	P_{D}	93.75 0.625 2.88 1.5	W W/°C W W
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +175	°C
Single Pulse Drain-to-Source Avalanche Energy - Starting $T_J = 25^{\circ}C$ (Note 3) ($V_{DD} = 50$ Vdc, $V_{GS} = 5$ Vdc, $L = 1.0$ mH, $I_{L(pk)} = 25$ A, $V_{DS} = 60$ Vdc, $R_G = 25$ Ω)	E _{AS}	313	mJ
Thermal Resistance - Junction-to-Case - Junction-to-Ambient (Note 1) - Junction-to-Ambient (Note 2)	$egin{array}{l} R_{ hetaJC} \ R_{ hetaJA} \ R_{ hetaJA} \end{array}$	1.6 52 100	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8 in from case for 10 seconds	TL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

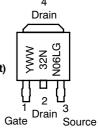
- 1. When surface mounted to FR4 board using 0.5 in pad size.
- 2. When surface mounted to FR4 board using minimum recommended pad size.
- 3. Repetitive rating; pulse width limited by maximum junction temperature.



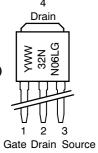
ON Semiconductor®

http://onsemi.com

V _{DSS}	R _{DS(ON)} TYP	I _D MAX
60 V	23.7 m Ω	32 A


N-Channel

MARKING DIAGRAMS & PIN ASSIGNMENTS



DPAK CASE 369C (Surface Mount) STYLE 2

DPAK CASE 369D (Straight Lead) STYLE 2

Y = Year
WW = Work Week
32N06L = Device Code
G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise noted)

Drain-to-Source Breakdown Voltage (Note 4) V(gs) = 0 Vdc, b = 250 μAdc) Vdc	C	Symbol	Min	Тур	Max	Unit	
Drain-to-Source Breakdown Voltage (Note 4) V(BR)DSS 60 70 - Vdc Vdc VGS = 0 Vdc, - 250 μAdc) Famperature Coefficient (Positive) Famperature Coefficient (Negative) Famperatur	OFF CHARACTERISTICS		1	l	, ,,		
(V _{DS} = 60 Vdc, V _{QS} = 0 Vdc, V _{QS} = 0 Vdc, V _{DS} = 0 Vdc) 1.0	Drain-to-Source Breakdown Vol (V _{GS} = 0 Vdc, I _D = 250 μAdc)	V _{(BR)DSS}	60 -	-	- -		
On CHARACTERISTICS (Note 4)	$(V_{DS} = 60 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$		I _{DSS}	- -		-	μAdc
	Gate-Body Leakage Current (Vo	$_{\rm GS}$ = ±20 Vdc, $V_{\rm DS}$ = 0 Vdc)	I _{GSS}	-	-	±100	nAdc
(V _{DS} = V _{GS} , I _D = 250 µAdc) 1.0 1.7 4.8 - mV/°C Static Drain-to-Source On-Resistance (Note 4) RDS(on) - 23.7 28 MΩ Static Drain-to-Source On-Resistance (Note 4) VDS(on) - 0.48 0.67 Vdc VGS = 5 Vdc, I _D = 20 Adc) - 0.48 0.67 - 0.61 - - VGS = 5 Vdc, I _D = 28 Adc) - 0.61 - 0.61 - - - - 0.61 - - - - - 0.61 -	ON CHARACTERISTICS (Note	4)					
V _{OS} = 5 Vdc, I _D = 16 Adc V _{DS} (n) C _{OS} = 0 Vdc, I _D = 20 Adc (V _{OS} = 5 Vdc, I _D = 20 Adc) (V _{OS} = 5 Vdc, I _D = 16 Adc) V _{DS} (n) C _{OS} = 5 Vdc, I _D = 16 Adc (V _{OS} = 5 Vdc, I _D = 16 Adc) V _{DS} (n) C _{OS} = 0 Vdc (V _{OS} = 5 Vdc, I _D = 16 Adc (V _{OS} = 6 Vdc, I _D = 16 Adc (V _{OS} = 6 Vdc, I _D = 16 Adc (V _{OS} = 6 Vdc, I _D = 16 Adc (V _{OS} = 6 Vdc, I _D = 16 Adc (V _{OS} = 0 Vdc (V _{OS} = 0 Vdc	$(V_{DS} = V_{GS}, I_{D} = 250 \mu\text{Adc})$		V _{GS(th)}	1.0		2.0	
		stance (Note 4)	R _{DS(on)}	-	23.7	28	mΩ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(V_{GS} = 5 \text{ Vdc}, I_D = 20 \text{ Adc})$ $(V_{GS} = 5 \text{ Vdc}, I_D = 32 \text{ Adc})$	V _{DS(on)}	- - -	0.78	-	Vdc	
$ \begin{array}{ c c c c c } \hline \text{Input Capacitance} & & & & & & & & & & & & & & & & & & &$	Forward Transconductance (Not	e 4) (V _{DS} = 6 Vdc, I _D = 16 Adc)	9FS	-	27	-	mhos
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DYNAMIC CHARACTERISTICS	•	•	-	•		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Capacitance		C _{iss}	-	1214	1700	pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Capacitance			-	343	480	
	Transfer Capacitance	- 1.0 Wil 12)		-	87	180	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWITCHING CHARACTERISTIC	CS (Note 5)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time		t _{d(on)}	-	12.8	30	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time	$(V_{DD} = 30 \text{ Vdc}, I_D = 32 \text{ Adc},$	t _r	-	221	450	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-Off Delay Time		t _{d(off)}	-	37	80	
$ (V_{DS} = 48 \text{ Vdc}, I_D = 32 \text{ Adc}, \\ V_{GS} = 5 \text{ Vdc}) \text{ (Note 4)} $ $ \frac{Q_1}{Q_2} - \frac{4.5}{14} - \frac{3}{14} - \frac$	Fall Time] , , , ,		-	128	260	
$V_{GS} = 5 \ \text{Vdc}) \ (\text{Note 4}) \\ \hline Q_2 & - & 14 & - \\ \hline \textbf{SOURCE-DRAIN DIODE CHARACTERISTICS} \\ \hline \text{Forward On-Voltage} & (I_S = 20 \ \text{Adc}, V_{GS} = 0 \ \text{Vdc}) \ (\text{Note 4}) \\ (I_S = 32 \ \text{Adc}, V_{GS} = 0 \ \text{Vdc}) \ (\text{Note 4}) \\ (I_S = 20 \ \text{Adc}, V_{GS} = 0 \ \text{Vdc}) \ (\text{Note 4}) \\ (I_S = 20 \ \text{Adc}, V_{GS} = 0 \ \text{Vdc}) \ (\text{Note 4}) \\ (I_S = 32 \ \text{Adc}, V_{GS} = 0 \ \text{Vdc}, \\ dI_S / dt = 100 \ \text{A} / \mu \text{s}) \ (\text{Note 4}) \\ \hline \hline \textbf{t}_{rr} & - & 56 & - \\ \hline \textbf{t}_{a} & - & 31 & - \\ \hline \textbf{t}_{b} & - & 25 & - \\ \hline \hline \end{tabular}$	Gate Charge		Q _T	-	23	50	nC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Q ₁	-	4.5	-	
		VGS = 3 Vdc) (Note 4)	Q ₂	-	14	-	
	SOURCE-DRAIN DIODE CHAR	RACTERISTICS					
	Forward On-Voltage	$(I_S = 32 \text{ Adc}, V_{GS} = 0 \text{ Vdc}) \text{ (Note 4)}$	V _{SD}	-	0.95	-	Vdc
$dI_S/dt = 100 \text{ A/}\mu\text{s}) \text{ (Note 4)}$ t_b - 25 -	Reverse Recovery Time		t _{rr}	-	56	-	mV/°C μAdc nAdc Vdc mV/°C mΩ Vdc Thos pF ns vdc ns
t _b - 25 -		$(I_S = 32 \text{ Adc}, V_{GS} = 0 \text{ Vdc},$	t _a	-	31	-	
Reverse Recovery Stored Charge Q _{RR} - 0.093 - μC		αιζιαι – 100 Αγμο) (11016 4)	t _b	-	25	-	
	Reverse Recovery Stored Charge		Q _{RR}	-	0.093	-	μC

^{4.} Pulse Test: Pulse Width $\leq 300~\mu s,~Duty~Cycle \leq 2\%.$

ORDERING INFORMATION

Device	Package	Shipping [†]
NTD32N06L	DPAK	75 Units / Rail
NTD32N06LG	DPAK (Pb-Free)	75 Units / Rail
NTD32N06L-1	DPAK (Straight Lead)	75 Units / Rail
NTD32N06L-1G	DPAK (Straight Lead) (Pb-Free)	75 Units / Rail
NTD32N06LT4	DPAK	2500 Units / Tape & Reel
NTD32N06LT4G	DPAK (Pb-Free)	2500 Units / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{5.} Switching characteristics are independent of operating junction temperatures.

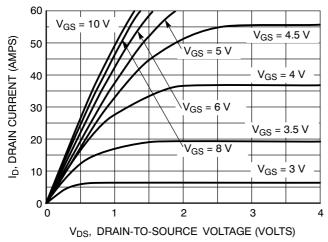


Figure 1. On-Region Characteristics

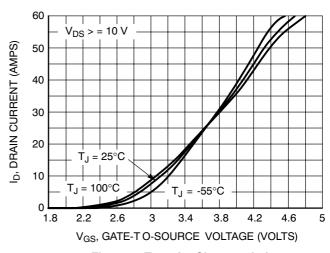


Figure 2. Transfer Characteristics

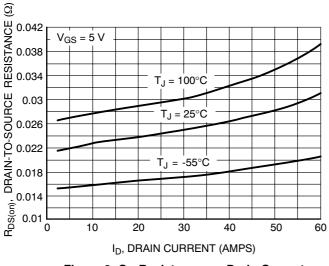


Figure 3. On-Resistance vs. Drain Current

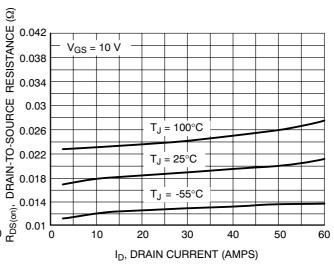


Figure 4. On-Resistance vs. Drain Current

Figure 5. On-Resistance Variation with Temperature

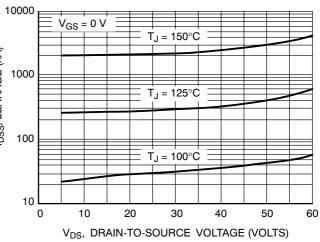


Figure 6. Drain-to-Source Leakage Current vs. Voltage

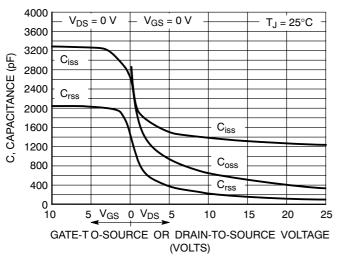


Figure 7. Capacitance Variation

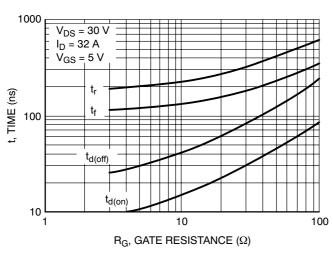


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

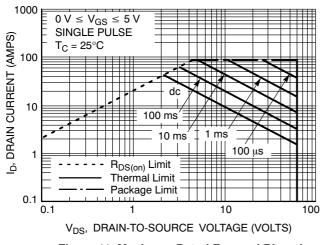


Figure 11. Maximum Rated Forward Biased Safe Operating Area

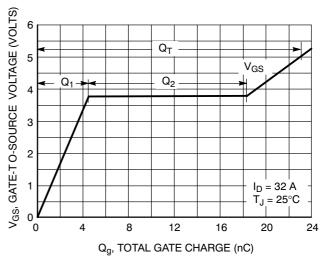


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

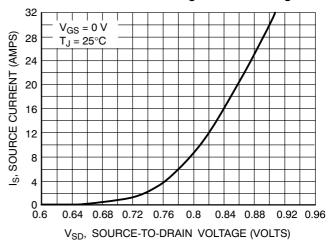


Figure 10. Diode Forward Voltage vs. Current

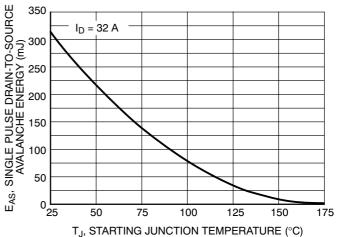


Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature

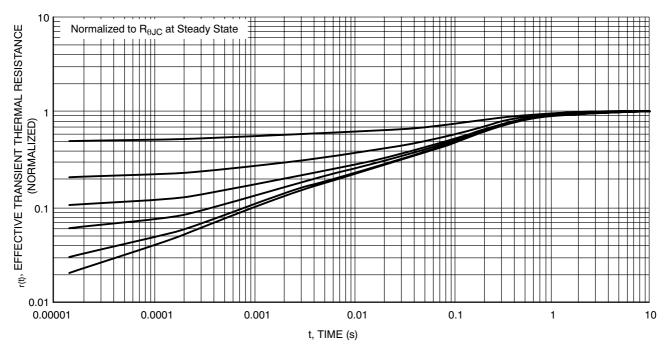


Figure 13. Thermal Response

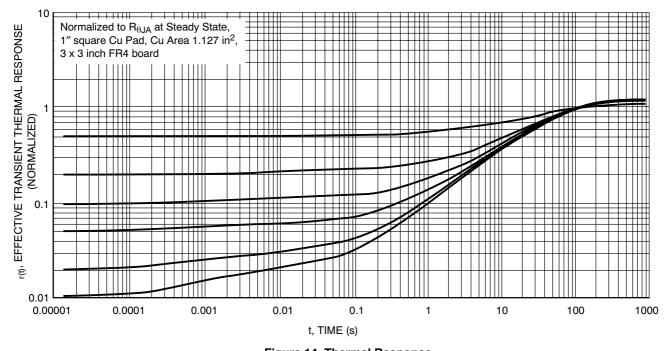
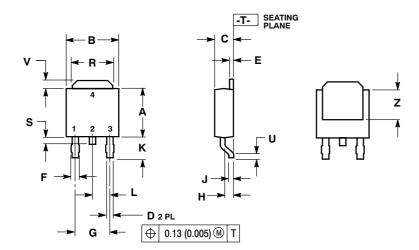
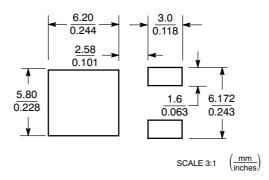



Figure 14. Thermal Response

PACKAGE DIMENSIONS

DPAK

CASE 369C-01 ISSUE O

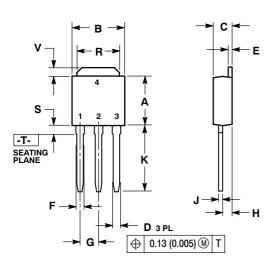


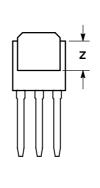
- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.22
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
E	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.180	BSC	4.58 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.102	0.114	2.60	2.89
L	0.090 BSC		2.29	BSC
R	0.180	0.215	4.57	5.45
S	0.025	0.040	0.63	1.01
U	0.020		0.51	
V	0.035	0.050	0.89	1.27
Z	0.155		3.93	

- STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

SOLDERING FOOTPRINT*




*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

DPAK

CASE 369D-01 **ISSUE B**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INCHES		NCHES MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090 BSC		2.29	BSC
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
Κ	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
٧	0.035	0.050	0.89	1.27
Z	0.155		3.93	

STYLE 2:

PIN 1. GATE

- 2. DRAIN
- 3. SOURCE
- DRAIN

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Itc. Science (science). Science serves the right to make changes without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada **Fax**: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative