

General Description

The MAX9928/MAX9929 low-cost, uni-/bidirectional, high-side, current-sense amplifiers are ideal for monitoring battery charge and discharge currents in notebooks, cell phones, and other portable equipment. These devices feature a wide -0.1V to +28V input common-mode voltage range, low 20µA supply current with Vos less than 0.4mV, and a gain accuracy better than 1.0%. The input common-mode range is independent of the supply voltage, ensuring that the current-sense information remains accurate even when the measurement rail is shorted to ground.

The MAX9928F features a current output with a transconductance ratio of 5µA/mV. An external resistor converts the output current to a voltage, allowing adjustable gain so that the input sense voltage can be matched to the maximum ADC input swing. The MAX9929F has a voltage output and integrates a $10k\Omega$ output resistor for a fixed voltage gain of 50V/V.

A digital SIGN output indicates direction of current flow, so the user can utilize the full ADC input range for measuring both charging and discharging currents.

The MAX9928/MAX9929 are fully specified over the -40°C to +125°C automotive temperature range, and available in 6-bump UCSP™ (1mm x 1.5mm) and 8-pin µMAX® packages. The UCSP package is bump-to-bump compatible with the MAX4372_EBT.

UCSP is a trademark and µMAX is a registered trademark of Maxim Integrated Products, Inc.

Pin Configurations and Typical Operating Circuit appear at end of data sheet.

Features

- ♦ Wide -0.1V to +28V Common-Mode Range, Independent of Supply Voltage
- ♦ 2.5V to 5.5V Operating Supply Voltage
- ♦ 20µA Quiescent Supply Current
- ♦ 0.4mV (max) Input Offset Voltage
- ♦ Gain Accuracy Better than 1% (max)
- **♦ SIGN Output Indicates Current Polarity**
- **♦** Transconductance and Gain Versions Available 5µA/mV (MAX9928F) 50V/V (MAX9929F)
- ♦ Pin Compatible with the MAX4372 in UCSP
- ♦ Available in Ultra-Small, 3x2 UCSP (1mm x 1.5mm) and 8-Pin µMAX Packages

Applications

Monitoring Charge/Discharge Currents in Portable/Battery-Powered Systems

Notebook Computers

General-System/Board-Level Current Monitoring

Smart-Battery Packs/Chargers

Precision Current Sources

Smart Cell Phones

Super Capacitor Charge/Discharge

Ordering Information

PART	OUTPUT TYPE	GAIN	PIN-PACKAGE	TOP MARK
MAX9928FAUA+	Current	$G_m = 5\mu A/mV$	8 µMAX	_
MAX9928FABT+T	Current	$G_m = 5\mu A/mV$	3x2 UCSP	+AAF
MAX9929FAUA+	Voltage	A _V = 50V/V	8 µMAX	_
MAX9929FABT+T	Voltage	A _V = 50V/V	3x2 UCSP	+ADI

Note: All devices are specified over the -40°C to +125°C operating temperature range.

+Denotes a lead-free/RoHS-compliant package.

T = Tape and reel.

ABSOLUTE MAXIMUM RATINGS

V _{CC} , SIGN to GNDRS+, RS- to GND	
OUT to GND0	
Differential Input Voltage (V _{RS+} - V _{RS-})	
OUT, SIGN Short Circuit to VCC or GND	Continuous
Current into Any Pin	±20mA
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
6-Bump 1mm x 1.5mm UCSP	
(derate 3.9mW/°C above +70°C)	
8-Pin µMAX (derate 4.8mW/°C above +70°	°C)388mW

Operating Temperature Range	40°C to +125°C
Storage Temperature Range	65°C to +150°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{RS+} = -0.1V \text{ to } +28V, V_{CC} = 3.3V, V_{SENSE} = (V_{RS+} - V_{RS-}) = 0V, R_{OUT} = 10k\Omega \text{ for MAX9928F, T}_{A} = -40^{\circ}\text{C to } +125^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at T}_{A} = +25^{\circ}\text{C}.)$ (Note 1)

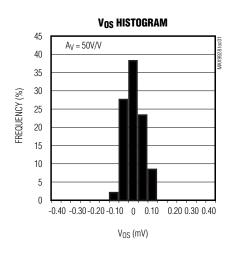
PARAMETER	SYMBOL	C	ONDITIONS	MIN	TYP	MAX	UNITS	
AMPLIFIER DC ELECTRICAL CHARACTERISTICS								
		\/pa 2.6\/	T _A = +25°C		±0.1	±0.4	mV	
lanut Offeet Velterie (Nete O)	\/	$V_{RS+} = 3.6V$	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			±0.8		
Input Offset Voltage (Note 2)	Vos	V _{RS+} = -0.1V	$T_A = +25^{\circ}C$		±0.6	±1.0		
		VRS+ = -0.1V	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			±3.0		
Common-Mode Input Range	VCMR	(Note 3)		-0.1		+28	V	
		2V ≤ V _{RS+} ≤ 28V	T _A = +25°C	93	104			
Common Mada Daigation Datia	CMDD	$2V \ge VRS + \ge 20V$	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	87			٩D	
Common-Mode Rejection Ratio	CMRR	-0.1V ≤ V _{RS+} ≤	$T_A = +25^{\circ}C$	60	72		dB -	
		+2V	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$	54				
Full-Scale Sense Voltage (Note 2)	VSENSE	MAX992_F			±50		mV	
Gain (Note 2)	Av	MAX9929F			50		V/V	
	MAX9929I	MAX9929F,	T _A = +25°C		±0.3	±1.0	- %	
(Alata - 0, 6)		$V_{RS+} = 3.6V$	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$			±2.5		
Gain Accuracy (Notes 2, 6)		MAX9929F,	T _A = +25°C		±0.3	±1.0	%	
		$V_{RS+} = -0.1V$	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$			±2.8		
Transconductance (Note 2)	G _M	MAX9928F			5		μΑ/mV	
		MAX9928F,	T _A = +25°C		±0.3	±1.0		
Transconductance Accuracy		$V_{RS+} = 3.6V$	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			±2.5	%	
(Note 2)		MAX9928F,	T _A = +25°C		±0.3	±1.0	70	
		$V_{RS+} = -0.1V$	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			±2.8		
Input Bias Current (Note 4)	I _{RS+} , I _{RS-}	$2V \le V_{RS+} \le 28V$		0	1.6	6	μA	
input Bias Current (Note 4)	'HS+, 'HS-	$-0.1V \le V_{RS+} \le +2$	<u>2</u> V	-80		+6	μΑ	
Input Offset Bias Current (Note 4)	los	$2V \le V_{RS+} \le 28V$			±0.05	±1	μΑ	
input Onset bias Current (Note 4)	108	$-0.1V \le V_{RS+} \le +2$	<u>2</u> V		±0.2	±2	μΑ	
Input Leakage Current	I _{RS+} , I _{RS-}	V _{CC} = 0V, V _{RS+} =	= V _{RS-} = 28V (Note 5)		0.05	1.0	μΑ	

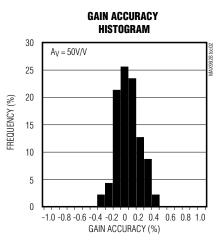
ELECTRICAL CHARACTERISTICS (continued)

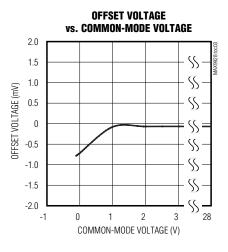
 $(V_{RS+}=\text{-0.1V to } +28\text{V}, V_{CC}=3.3\text{V}, V_{SENSE}=(V_{RS+}-V_{RS-})=0\text{V}, R_{OUT}=10\text{k}\Omega \text{ for MAX9928F}, T_{A}=\text{-40}^{\circ}\text{C to } +125^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $T_{A}=+25^{\circ}\text{C}.)$ (Note 1)

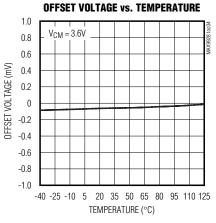
PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS	
Output Basistanas	D	MAX9928F			5		МΩ	
Output Resistance	Rout	MAX9929F		6.4	10	13.6	kΩ	
Output High Voltage (Note 6)	M	MAX9928F, R _{OUT} = 10k Ω			(V _{CC} - 0.1)	(V _{CC} - 0.45)	V	
Output riigit voitage (Note 6)	Voн	MAX9929F			(V _{CC} - 0.1)	(V _{CC} - 0.45)	V	
Minimum Output Voltage (Note 7)	Vol	MAX9929F	T _A = +25°C		0.25	2.0	mV	
William Galpat Voltage (Note 1)	VOL	1017 0(33231	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			15	111.0	
Minimum Output Current (Note 7)	loL	MAX9928F	$T_A = +25^{\circ}C$		0.025	0.2	μA	
			$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			1.5	μ, τ	
SIGN COMPARATOR DC ELECT	RICAL CHA	RACTERISTICS	1					
		$V_{RS+} = 3.6V$	$T_A = +25^{\circ}C$	-1.6	-1.2	-0.5		
Discharge to Charge Trip Point	V _{TDC}	VN3+ - 0.0 V	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	-2.15		-0.15	mV	
(Note 8)	VIDC	$V_{RS+} = -0.1V$	$T_A = +25^{\circ}C$	-2.5	-1.2	+0.25	mv	
		VH5+ - 0.1V	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	-4.6		+2.3		
Charge to Discharge Trip Point	V _{TCD}	$V_{RS+} = 3.6V$	$T_A = +25^{\circ}C$		-1.8		mV	
(Note 8)	VICD	$V_{RS+} = -0.1V$	T _A = +25°C		-1.8		1110	
Hysteresis Width	V _{HYS}	$V_{RS+} = 3.6V,$ -0.1V	T _A = +25°C		0.6		mV	
Common-Mode Input Range (Note 9)	V _{CMR}			-0.1		+28	V	
Common-Mode Rejection Ratio	OMBB	2V ≤ V _{RS+} ≤ 28V			102		ū	
(Note 9)	CMRR	-0.1V ≤ V _{RS+} ≤	+2V		74		dB	
Output Low Voltage	Vol	I _{SINK} = 100µA			0.03	0.1	V	
Output High Voltage	V _{OH}				(V _{CC} - 0.01)	(V _{CC} - 0.04)	V	
Internal Pullup Resistor	R _{PULL-UP}				1		ΜΩ	
POWER SUPPLY	. 022 01	<u> </u>		I				
		T _A = +25°C		2.5		5.5		
Supply Voltage Range (Note 10)	VCC	$T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}$		2.8		5.5	V	
Amplifier Power-Supply Rejection		$V_{RS+} = 3.6V$		72	90			
Ratio (Note 10)	PSRRA	$V_{RS+} = -0.1V$		66	86		dB	
Comparator Power-Supply		$V_{RS+} = 3.6V$			90			
Rejection Ratio	PSRRC	$V_{RS+} = -0.1V$			86		dB	
•		$2V \le V_{RS+} \le 28V$			20	30		
Quiescent Supply Current	Icc	-0.1V ≤ V _{RS+} <			115	200	μΑ	

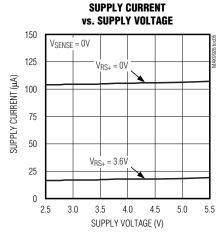
ELECTRICAL CHARACTERISTICS (continued)

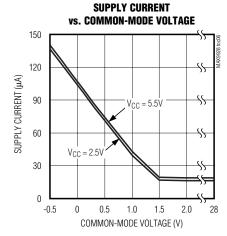

 $(V_{RS+} = -0.1V \text{ to } +28V, V_{CC} = 3.3V, V_{SENSE} = (V_{RS+} - V_{RS-}) = 0V, R_{OUT} = 10k\Omega$ for MAX9928F, $T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

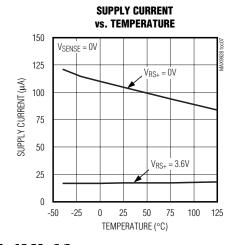

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
AC ELECTRICAL CHARACTERISTICS								
-3dB Bandwidth	BW	MAX992_F, V _{SEN}	SE = 50mV		150		kHz	
OUT Sattling to 1% of Final Value	torr	$V_{RS+} = 3.6V$, $C_{LOAD} = 10pF$,	MAX992_F, V _{SENSE} = 5mV to 50mV step		6		110	
OUT Settling to 1% of Final Value	tset	$R_{OUT} = 10k\Omega$ for MAX9928F	MAX992_F, VSENSE = 50mV to 5mV step		15		μs	
SIGN Comparator Propagation	tnnon	Overdrive = 1mV		80		μs		
Delay (Low to High)	tPROP_LH	Overdrive = 5mV		30				
SIGN Comparator Propagation	ton on	Overdrive = 1mV			50			
Delay (High to Low)	tprop_hl	Overdrive = 5mV			13		μs	
Power-Up Time to 1% of Final Value		V _{SENSE} = 50mV for MAX992_F, V _{RS+} = 3.6V, C _{LOAD} = 10pF			50		μs	
Saturation Recovery Time		100mV ≤ V _{SENSE} ≤ 50mV for MAX992_F, V _{RS+} = 3.6V, C _{LOAD} = 10pF			4		ms	

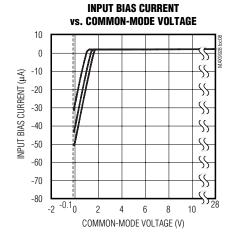

- **Note 1:** All devices are 100% production tested at $T_A = +25^{\circ}$ C. All temperature limits are guaranteed by design.
- Note 2: V_{OS} is extrapolated from two point transconductance and gain accuracy tests. Measurements are made at V_{SENSE} = +5mV and V_{SENSE} = +50mV for MAX992_F. These measurements are also used to test the full-scale sense voltage, transconductance, and gain. These V_{OS} specifications are for the trimmed direction only (V_{RS+} > V_{RS-}). For current flowing in the opposite direction (V_{RS-} > V_{RS+}), V_{OS} is ±1mV (max) at +25°C and ±1.8mV (max) over temperature, when V_{RS+} is at 3.6V. See the *Detailed Description* for more information.
- **Note 3:** Guaranteed by common-mode rejection ratio. Extrapolated V_{OS} as described in Note 2 is used to calculate common-mode rejection ratio.
- Note 4: Includes input bias current of SIGN comparator.
- Note 5: Leakage in to RS+ or RS- when V_{CC} = 0V. Includes input leakage current of SIGN comparator. This specification does not add to the bias current.
- **Note 6:** Output voltage should be 650mV below V_{CC} to achieve full accuracy.
- Note 7: I_{OL} is the minimum output current in the V_{SENSE} I_{OUT} transfer characteristics. V_{OL} is the minimum output voltage in the V_{SENSE} V_{OUT} transfer characteristic.
- **Note 8:** V_{SENSE} voltage required to switch comparator.
- **Note 9:** Discharge to charge trip point is functionally tested at $V_{CM} = -0.1V$, +3.6V, and +28V.
- **Note 10:** Guaranteed by PSRR test. Extrapolated V_{OS} as described in Note 2 is used to calculate the power-supply rejection ratio. V_{SENSE} has to be such that the output voltage is 650mV below V_{CC} to achieve full accuracy.

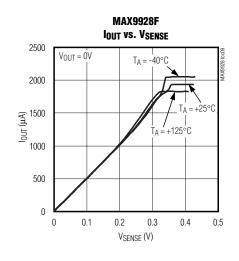

Typical Operating Characteristics

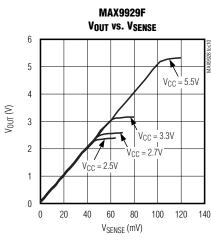

($V_{CC} = 3.3V$, $V_{RS+} = 12V$, $T_A = +25$ °C, unless otherwise noted.)

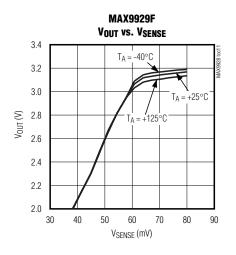


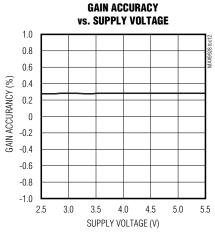


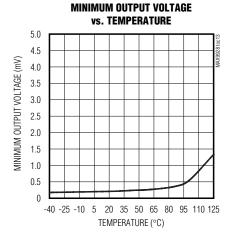


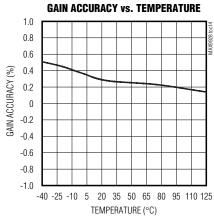


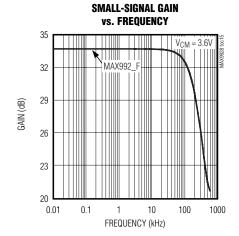


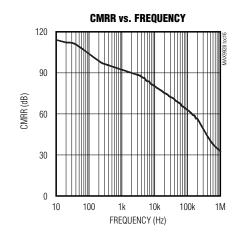


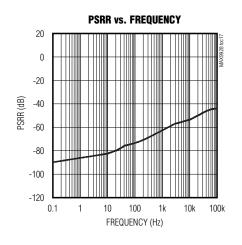

Typical Operating Characteristics (continued)

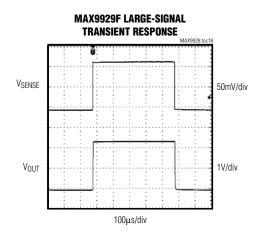

($V_{CC} = 3.3V$, $V_{RS+} = 12V$, $T_A = +25$ °C, unless otherwise noted.)

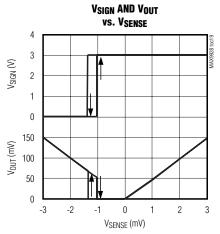


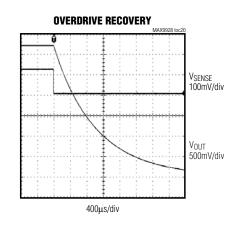


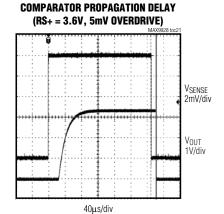


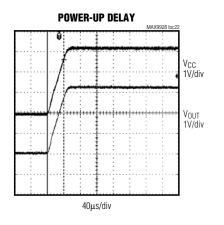







Typical Operating Characteristics (continued)


(V_{CC} = 3.3V, V_{RS+} = 12V, T_A = +25°C, unless otherwise noted.)



Pin/Bump Description

PIN	BUMP	NAME	FUNCTION
μMAX	UCSP	INAME	FUNCTION
1	В3	RS-	Negative Current-Sense Input. Load-side connection for the external sense resistor.
2	B2	SIGN	SIGN Output. Indicates polarity of V _{SENSE} . SIGN = H indicates V _{RS+} > V _{RS-} SIGN = L indicates V _{RS+} < V _{RS-}
3	B1	RS+	Positive Current-Sense Input. Power-side connection to the external sense resistor.
4, 5	_	N.C.	No Connection. Not internally connected.
6	A1	Vcc	Supply Voltage Input. Bypass to GND with a 0.1µF capacitor.
7	A2	GND	Circuit Ground
8	А3	OUT	Current-Sense Output. MAX9928: Current output (I _{OUT} is proportional to IV _{SENSE} I). MAX9929: Voltage output (V _{OUT} is proportional to IV _{SENSE} I).

Detailed Description

The MAX9928F/MAX9929F micropower uni-/bidirectional, current-sense amplifiers feature -0.1V to +28V input common-mode range that is independent of the supply voltage. This wide input voltage range feature allows the monitoring of the current flow out of a power supply during short-circuit/fault conditions, and also enables high-side current sensing at voltages far in excess of the supply voltage (VCC). The MAX9928F/MAX9929F operate from a 2.5V to 5.5V single supply and draw a low $20\mu A$ quiescent supply current.

Current flows through the sense resistor, generating a sense voltage VSENSE (Figure 1). The comparator senses the direction of the sense voltage and configures the amplifier for either positive or negative sense voltages by controlling the S1 and S2 switches.

For positive V_{SENSE} voltage, the amplifier's inverting input is high impedance and equals V_{IN} - V_{SENSE}. The amplifier's output drives the base of Q1, forcing its non-inverting input terminal to (V_{IN} - V_{SENSE}); this causes a current to flow through R_{G1} equal to IV_{SENSE}I/R_{G1}. Transistor Q2 and the current mirror amplify the current by a factor of M.

For negative V_{SENSE} voltage, the amplifier's noninverting input is high impedance and the voltage on RS- terminal equals V_{IN} + V_{SENSE}. The amplifier's output drives the base of Q1 forcing its inverting input terminal to match the voltage at the noninverting input terminal; this causes a current to flow through R_{G2} equal to IV_{SENSE}I/R_{G2}. Again, transistor Q2 and the current mirror amplify the current by a factor of M.

+VSENSE vs. -VSENSE

The amplifier is configured for either positive VSENSE or negative VSENSE by the SIGN comparator. The comparator has a built-in offset skew of -1.2mV so that random offsets in the comparator do not affect the precision of IOUT (VOUT) with positive VSENSE. The comparator has a small amount of hysteresis (typically 0.6mV) to prevent its output from oscillating at the crossover sense voltage. The ideal transfer characteristic of IOUT (VOUT) and the output of the comparator (SIGN) is shown in Figure 2.

The amplifier Vos is only trimmed for the positive Vsense voltages (VRS+ > VRS-). The SIGN comparator reconfigures the internal structure of the amplifier to work with negative Vsense voltages (VRS- > VRS+) and the precision Vos trim is no longer effective and the resulting Vos is slightly impacted. See details in the *Electrical Characteristics* Note 2. The user can choose the direction that needs the best precision to be the direction where VRS+ > VRS-. For example, when monitoring Li+battery currents, the discharge current should be VRS+ > VRS- to give the best accuracy over the largest dynamic range. When the battery charger is plugged in, the charge current flows in the opposite direction and is usually much larger, and a higher Vos error can be tolerated. See the *Typical Operating Circuit*.

For applications with unidirectional currents (e.g., battery discharge only), the SIGN output can be ignored.

Note that as V_{SENSE} increases, the output current (I_{OUT} for the MAX9928 or V_{OUT}/10k Ω for the MAX9929) also increases. This additional current is supplied from V_{CC}.

______ /N/1XI/M

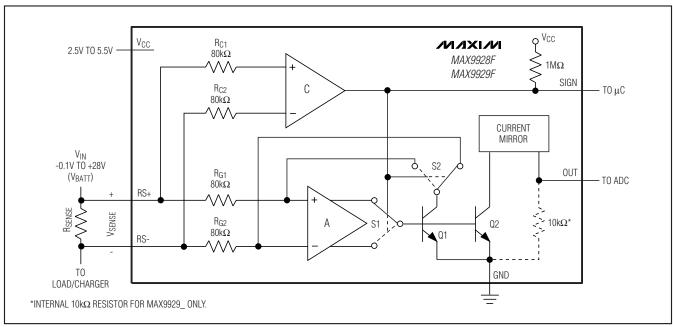


Figure 1. Functional Diagram

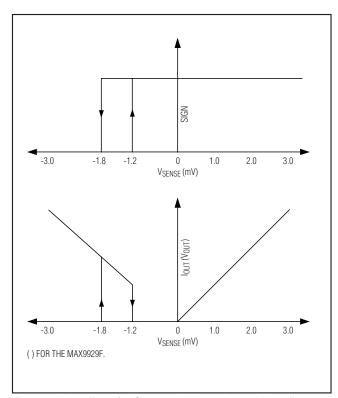


Figure 2. Ideal Transfer Characteristics with 0mV Amplifier Input Offset Voltage and -1mV Comparator Input Offset Voltage

For both positive and negative V_{SENSE} voltages, the current flowing out of the current mirror is equal to:

For the MAX9928F, the transconductance of the device is trimmed so that $I_{OUT}/IV_{SENSE}I = 5\mu A/mV$. For the MAX9929F, the voltage gain of the device is trimmed so that $V_{OUT}/IV_{SENSE}I = 50V/V$. The SIGN output from the comparator indicates the polarity of $V_{SENSE}I$.

Current Output (MAX9928F)

The output voltage equation for the MAX9928_ is given below:

where V_{OUT} = the desired full-scale output voltage, I_{LOAD} = the full-scale current being sensed, R_{SENSE} = the current-sense resistor, R_{OUT} = the voltage-setting resistor, and G_m = MAX9928F transconductance (5µA/mV).

The full-scale output voltage range can be set by changing the ROUT resistor value. The above equation can be modified to determine the ROUT required for a particular full-scale range:

OUT is a high-impedance current source and can drive an unlimited amount of capacitance.

Voltage Output (MAX9929F)

The output voltage equation for the MAX9929_ is given below:

Vout = (Rsense x ILOAD) x (Av)

where V_{OUT} = the desired full-scale output voltage, I_{LOAD} = the full-scale current being sensed, RSENSE = the current-sense resistor, $A_V = MAX9929F$ voltage gain (50V/V).

SIGN Output

The current/voltage at OUT indicates magnitude. The SIGN output indicates the current's direction. The SIGN comparator compares RS+ to RS-. The sign output is high when RS+ is greater than RS- indicating positive current flow. The sign output is low when RS- is greater than RS+ indicating negative current flow. In battery-operated systems, this is useful for determining whether the battery is charging or discharging. The SIGN output might not correctly indicate the direction of load current when VSENSE is between -1.8mV to -1.2mV (see Figure 2). Comparator hysteresis of 0.6mV prevents oscillation of SIGN output. If current direction is not needed, leave SIGN unconnected.

Applications Information

Choosing RSENSE

The MAX9928F/MAX9929F operate over a wide variety of current ranges with different sense resistors. Adjust the RSENSE value to monitor higher or lower current levels. Select RSENSE using these guidelines:

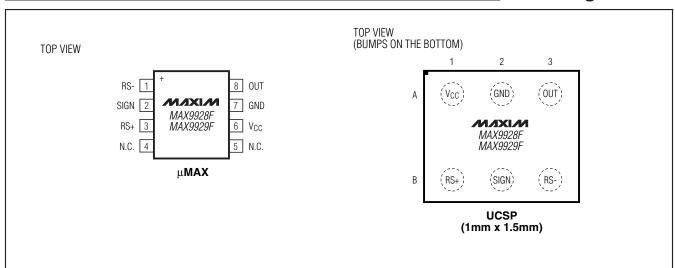
- Voltage Loss: A high RSENSE value causes the power-source voltage to drop due to IR loss. For least voltage loss, use the lowest RSENSE value.
- Accuracy: A high RSENSE value allows lower currents to be measured more accurately. This is because offsets become less significant when the sense voltage is larger.
- Efficiency and Power Dissipation: At high current levels, the I²R losses in R_{SENSE} might be significant. Take this into consideration when choosing the resis-

tor value and power dissipation (wattage) rating. Also, if the sense resistor is allowed to heat up excessively, its value could drift.

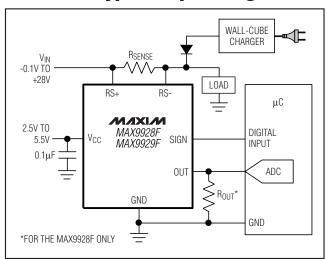
• Inductance: If there is a large high-frequency component to ISENSE, keep inductance low. Wire-wound resistors have the highest inductance, while metal film is somewhat better. Low-inductance metal-film resistors are available. Instead of being spiral wrapped around a core, as in metal film or wirewound resistors, these are a straight band of metal. They are made in values under 1Ω .

Use in Systems with Super Capacitors

Since the input common-mode voltage range of the MAX9928/MAX9929 extends all the way from -0.1V to 28V, they are ideal to use in applications that require use of super capacitors for temporary or emergency energy storage systems. Some modern industrial and automotive systems use multifarad (1F–50F) capacitor banks to supply enough energy to keep critical systems alive even if the primary power source is removed or temporarily disabled. Unlike batteries, these capacitors can discharge all the way down to 0V. The MAX9928/MAX9929 can continuously help monitor their health and state of charge/discharge.

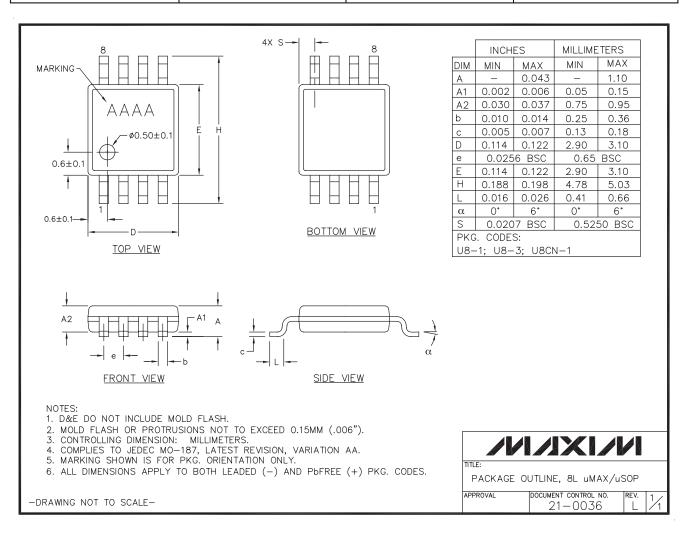

_UCSP Applications Information

For the latest application details on UCSP construction, dimensions, tape carrier information, PCB techniques, bump-pad layout, and recommended reflow temperature profile, as well as the latest information on reliability testing results, go to Maxim's website at www.maximic.com/ucsp to find Application Note 1891: Understanding the Basics of the Wafer-Level Chip-Scale Package (WL-CSP).

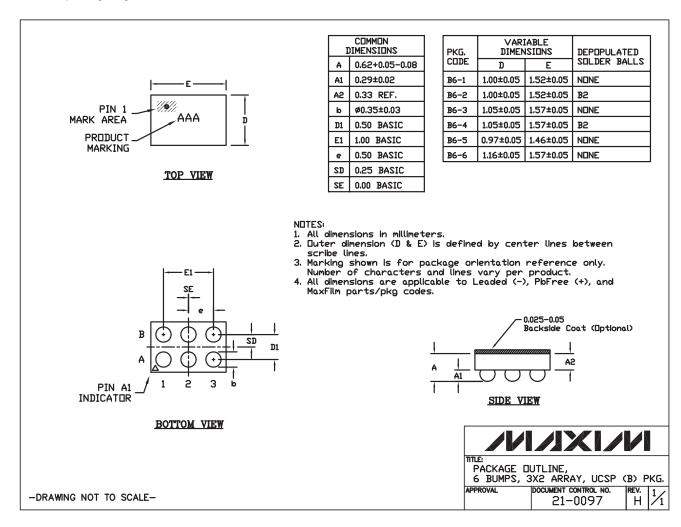

Chip Information

PROCESS: BiCMOS

Pin Configurations


Typical Operating Circuit

Package Information


For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
8 μMAX	U8+1	<u>21-0036</u>	<u>90-0092</u>
6 UCSP	B6+1	<u>21-0097</u>	_

Package Information (continued)

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	12/08	Initial release	_
1	8/09	Removed MAX9928T and MAX9929T from data sheet	1–5, 7–12
2	4/11	Updated top marks	1
3	4/12	Removed the R61A1+1 package code note and references	1

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.