

August 2013

LM78XX / LM78XXA 3-Terminal 1 A Positive Voltage Regulator

Features

- Output Current up to 1 A
- Output Voltages: 5, 6, 8, 9, 10, 12, 15, 18, 24 V
- Thermal Overload Protection
- Short-Circuit Protection
- Output Transistor Safe Operating Area Protection

Description

The LM78XX series of three-terminal positive regulators is available in the TO-220 package and with several fixed output voltages, making them useful in a wide range of applications. Each type employs internal current limiting, thermal shut-down, and safe operating area protection. If adequate heat sinking is provided, they can deliver over 1 A output current. Although designed primarily as fixed-voltage regulators, these devices can be used with external components for adjustable voltages and currents.

Ordering Information(1)

Product Number	Output Voltage Tolerance	Package	Operating Temperature	Packing Method
LM7805CT				
LM7806CT				
LM7808CT				
LM7809CT				
LM7810CT	±4%		-40°C to +125°C	
LM7812CT		92		
LM7815CT		TO-220		Rail
LM7818CT		(Single Gauge)		Naii
LM7824CT				
LM7805ACT				
LM7809ACT				
LM7810ACT	±2%		0°C to +125°C	
LM7812ACT				
LM7815ACT				

1

Note:

1. Above output voltage tolerance is available at 25°C.

Block Diagram

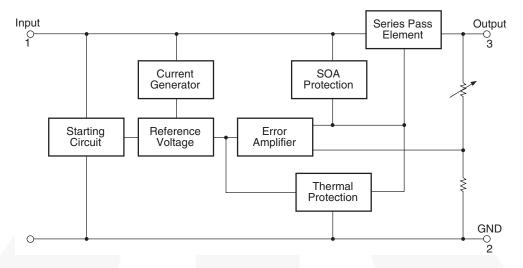


Figure 1. Block Diagram

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}\text{C}$ unless otherwise noted.

Symbol	Paramete	er	Value	Unit
V	Input Voltage	V _O = 5 V to 18 V	35	V
V _I		V _O = 24 V	40	V
$R_{\theta JC}$	Thermal Resistance, Junction-Case (TO-220)	5	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-Air (TC)-220)	65	°C/W
т	Operating Temperature Benge	LM78xx	-40 to +125	°C
T _{OPR}	Operating Temperature Range	LM78xxA	0 to +125	
T _{STG}	Storage Temperature Range	·	- 65 to +150	°C

Electrical Characteristics (LM7805)

Refer to the test circuit, -40°C < T_J < 125°C, I_O = 500 mA, V_I = 10 V, C_I = 0.1 μF , unless otherwise specified.

Symbol	Parameter	C	Conditions	Min.	Тур.	Max.	Unit
		T _J = +25°C		4.80	5.00	5.20	
V _O	Output Voltage	$I_0 = 5 \text{ mA to}$ $V_1 = 7 \text{ V to } 20$	1 A, P _O ≤ 15 W,	4.75	5.00	5.25	V
Regline	Line Regulation ⁽²⁾	T _{.1} = +25°C	V _I = 7 V to 25 V		4.0	100.0	mV
Regilile	Line Regulation	1j = +25 C	V _I = 8 V to 12 V		1.6	50.0	1117
Regload	Load Regulation ⁽²⁾	T _{.1} = +25°C	I _O = 5 mA to 1.5 A		9.0	100.0	mV
rtegioau	Load Negulation	11 = +25 C	$I_{O} = 250 \text{ mA to } 750 \text{ mA}$		4.0	50.0	1117
IQ	Quiescent Current	T _J =+25°C	T _J =+25°C		5.0	8.0	mA
Al	Quiescent Current I _O = 5 mA to 1 A	I _O = 5 mA to 1 A		0.03	0.50	mA	
ΔI_{Q}	Change	V _I = 7 V to 25	V		0.30	1.30	IIIA
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽³⁾	$I_O = 5 \text{ mA}$			-0.8		mV/°C
V _N	Output Noise Voltage	f = 10 Hz to 1	00 kHz, $T_A = +25^{\circ}C$		42.0		μV/V _O
RR	Ripple Rejection ⁽³⁾	f = 120 Hz, V	= 8 V to 18 V	62.0	73.0		dB
V_{DROP}	Dropout Voltage	$T_J = +25^{\circ}C, I_0$	_O = 1 A		2.0		V
R _O	Output Resistance ⁽³⁾	f = 1 kHz			15.0		mΩ
I _{SC}	Short-Circuit Current	$T_{J} = +25^{\circ}C, V$	_I = 35 V	·	230		mA
I _{PK}	Peak Current ⁽³⁾	$T_J = +25^{\circ}C$			2.2		Α

- 2. Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 3. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7806)

Refer to the test circuit, -40°C < T_J < 125°C, I_O = 500 mA, V_I = 11 V, C_I = 0.33 μ F,C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	C	Conditions	Min.	Тур.	Max.	Unit
		$T_J = +25^{\circ}C$		5.75	6.00	6.25	
V _O	Output Voltage	$I_O = 5 \text{ mA to } 2000 \text{ M}$ $V_I = 8.0 \text{ V to } 2000 \text{ M}$	1 A, P _O ≤ 15 W, 21 V	5.70	6.00	6.30	V
Poglino	Line Regulation ⁽⁴⁾	T _{.1} = +25°C	V _I = 8 V to 25 V		5.0	120	mV
Regline	Line Regulation	1j= +25 C	V _I = 9 V to 13 V		1.5	60.0	IIIV
Regload	Load Regulation ⁽⁴⁾	T _{.1} = +25°C	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$		9.0	120.0	mV
ixegioau	Load Regulation	1j = +25 C	$I_{O} = 250 \text{ mA to } 750 \text{ mA}$		3.0	60.0	1110
IQ	Quiescent Current	T _J =+25°C	T _J =+25°C		5.0	8.0	mA
Al-	Quiescent Current	$I_O = 5 \text{ mA to } 1$	I _O = 5 mA to 1 A			0.5	mA
ΔI_{Q}	Change	$V_{I} = 8 \text{ V to } 25$	V			1.3	ША
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽⁵⁾	$I_O = 5 \text{ mA}$			-0.8		mV/°C
V _N	Output Noise Voltage	f = 10 Hz to 1	00 kHz, T _A = +25°C		45.0		μV/V _O
RR	Ripple Rejection ⁽⁵⁾	f = 120 Hz, V _I	= 8 V to 18 V	62.0	73.0		dB
V_{DROP}	Dropout Voltage	$T_J = +25^{\circ}C, I_C$	_O = 1 A		2.0		V
R _O	Output Resistance ⁽⁵⁾	f = 1 kHz		_	19.0		mΩ
I _{SC}	Short-Circuit Current	$T_J = +25^{\circ}C, V$	' _I = 35 V		250		mA
I _{PK}	Peak Current ⁽⁵⁾	$T_J = +25^{\circ}C$			2.2		Α

- 4. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 5. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7808)

Refer to the test circuit, -40°C < T_J < 125°C, I_O = 500 mA, V_I = 14 V, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	C	Conditions	Min.	Тур.	Max.	Unit
		T _J = +25°C		7.7	8.0	8.3	
V _O	Output Voltage	$I_{O} = 5 \text{ mA to}$ $V_{I} = 10.5 \text{ V to}$	1 A, P _O ≤ 15 W, 23 V	7.6	8.0	8.4	V
Regline	Line Regulation ⁽⁶⁾	T _{.1} = +25°C	V _I = 10.5 V to 25 V		5.0	160.0	mV
Regilile	Line Regulation 7	1j = +25 C	V _I = 11.5 V to 17 V		2.0	80.0	1110
Regload	Load Regulation ⁽⁶⁾	T _{.1} = +25°C	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$		10.0	160.0	- mV
rtegioad	Load Regulation	11 = +25 0	$I_{O} = 250 \text{ mA to } 750 \text{ mA}$		5.0	80.0	
IQ	Quiescent Current	T _J =+25°C	T _J =+25°C		5.0	8.0	mA
Al	Quiescent Current	$I_O = 5 \text{ mA to}$	I _O = 5 mA to 1 A		0.05	0.50	mΛ
ΔI_{Q}	Change	$V_{I} = 10.5 \text{ V to}$	25 V		0.5	1.0 mA	IIIA
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽⁷⁾	$I_O = 5 \text{ mA}$			-0.8		mV/°C
V _N	Output Noise Voltage	f = 10 Hz to 1	00 kHz, T _A = +25°C		52.0		μV/V _O
RR	Ripple Rejection ⁽⁷⁾	f = 120 Hz, V	= 11.5 V to 21.5 V	56.0	73.0		dB
V_{DROP}	Dropout Voltage	$I_{O} = 1 A, T_{J} =$	+25°C		2.0		V
R _O	Output Resistance ⁽⁷⁾	f = 1 kHz			17.0		mΩ
I _{SC}	Short-Circuit Current	$V_{I} = 35 \text{ V}, T_{J}$	= +25°C		230		mA
I _{PK}	Peak Current ⁽⁷⁾	$T_J = +25^{\circ}C$		•	2.2		Α

- 6. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 7. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7809)

Refer to the test circuit, -40°C < T_J < 125°C, I_O = 500 mA, V_I = 15 V, C_I = 0.33 μ F,C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	C	Conditions	Min.	Тур.	Max.	Unit
		$T_J = +25^{\circ}C$		8.65	9.00	9.35	
V _O	Output Voltage	$I_O = 5 \text{ mA to } T_O = 11.5 \text{ V to } T_O = 11.$	1 A, P _O ≤ 15 W, 24 V	8.60	9.00	9.40	V
Poglino	Line Regulation ⁽⁸⁾	T _{.J} = +25°C	V _I = 11.5 V to 25 V		6.0	180.0	m\/
Regline	Line Regulation 7	1j = +25 C	V _I = 12 V to 17 V		2.0	90.0	mV
Regload	Load Regulation ⁽⁸⁾	T _{.J} = +25°C	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$		12.0	180.0	mV
rtegioad	Load Regulation	11 = +25 0	$I_{O} = 250 \text{ mA to } 750 \text{ mA}$		4.0	90.0	1110
IQ	Quiescent Current	T _J =+25°C	T _J =+25°C		5.0	8.0	mA
Al	Quiescent Current	$I_O = 5 \text{ mA to } 1$	I _O = 5 mA to 1 A			0.5	mA
ΔI_{Q}	Change	V _I = 11.5 V to	V _I = 11.5 V to 26 V			1.3	IIIA
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽⁹⁾	$I_O = 5 \text{ mA}$			-1.0		mV/°C
V _N	Output Noise Voltage	f = 10 Hz to 1	00 kHz, T _A = +25°C		58.0		μV/V _O
RR	Ripple Rejection ⁽⁹⁾	f = 120 Hz, V _I	= 13 V to 23 V	56.0	71.0		dB
V _{DROP}	Dropout Voltage	$I_{O} = 1 A, T_{J} =$	+25°C		2.0		V
R _O	Output Resistance ⁽⁹⁾	f = 1 kHz			17.0		mΩ
I _{SC}	Short-Circuit Current	$V_{I} = 35 \text{ V}, T_{J} = 35 \text{ V}$	= +25°C		250		mA
I _{PK}	Peak Current ⁽⁹⁾	$T_J = +25^{\circ}C$			2.2		Α

- 8. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 9. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7810)

Refer to the test circuit, -40°C < T_J < 125°C, I_O = 500 mA, V_I = 16 V, C_I = 0.33 μ F,C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	C	Conditions	Min.	Тур.	Max.	Unit
		$T_J = +25^{\circ}C$		9.6	10.0	10.4	
V _O	Output Voltage	$I_O = 5 \text{ mA to } 2000 \text{ M}$ $V_I = 12.5 \text{ V to } 2000 \text{ M}$	1 A, P _O ≤ 15 W, 25 V	9.5	10.0	10.5	V
Poglino	Line Regulation ⁽¹⁰⁾	T _{.l} = +25°C	V _I = 12.5 V to 25 V		10	200	mV
Regline	Line Regulation	1j = +25 C	V _I = 13 V to 25 V		3	100	IIIV
Regload	Load Regulation ⁽¹⁰⁾	T _{.J} = +25°C	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$		12	200	mV
ixegioau	Load Regulation	1 1 - +25 0	$I_{O} = 250 \text{ mA to } 750 \text{ mA}$		4	400	1110
IQ	Quiescent Current	T _J =+25°C	T _J =+25°C		5.1	8.0	mA
Al	Quiescent Current	$I_O = 5 \text{ mA to } $	I _O = 5 mA to 1 A			0.5	mA
ΔI_{Q}	Change	$V_{I} = 12.5 \text{ V to}$	29 V			1.0	ША
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽¹¹⁾	$I_O = 5 \text{ mA}$			-1.0		mV/°C
V _N	Output Noise Voltage	f = 10 Hz to 1	00 kHz, T _A = +25°C		58.0		μV/V _O
RR	Ripple Rejection ⁽¹¹⁾	f = 120 Hz, V _I	= 13 V to 23 V	56.0	71.0		dB
V_{DROP}	Dropout Voltage	$I_{O} = 1 A, T_{J} =$	+25°C		2.0		V
R _O	Output Resistance ⁽¹¹⁾	f = 1 kHz			17.0	_	mΩ
I _{SC}	Short-Circuit Current	V _I = 35 V, T _J	= +25°C		250		mA
I _{PK}	Peak Current ⁽¹¹⁾	$T_J = +25^{\circ}C$			2.2		Α

- 10. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 11. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7812)

Refer to the test circuit, -40°C < T_J < 125°C, I_O = 500 mA, V_I = 19 V, C_I = 0.33 μ F,C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	C	Conditions	Min.	Тур.	Max.	Unit
		$T_J = +25^{\circ}C$		11.5	12.0	12.5	
V _O	Output Voltage	$I_O = 5 \text{ mA to}$ $V_I = 14.5 \text{ V to}$	1 A, P _O ≤ 15 W, 27 V	11.4	12.0	12.6	V
Poglino	Line Regulation ⁽¹²⁾	T _{.1} = +25°C	V _I = 14.5 V to 30 V		10	240	mV
Regline	Line Regulation	1j = +25 C	V _I = 16 V to 22 V		3	120	IIIV
Regload	Load Regulation ⁽¹²⁾	T _{.1} = +25°C	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$		11	240	mV
Negload	Load Regulation	1 1 - +23 0	$I_{O} = 250 \text{ mA to } 750 \text{ mA}$		5	120	1110
IQ	Quiescent Current	T _J =+25°C	T _J =+25°C		5.1	8.0	mA
Al	Quiescent Current I _O = 5 mA to 1 A		I _O = 5 mA to 1 A		0.1	0.5	mA
ΔI_{Q}	Change	$V_{I} = 14.5 \text{ V to}$	30 V		0.5	1.0	ША
$\Delta V_O/\Delta T$	Output Voltage Drift ⁽¹³⁾	$I_O = 5 \text{ mA}$			-1.0		mV/°C
V _N	Output Noise Voltage	f = 10 Hz to 1	00 kHz, T _A = +25°C		76.0		μV/V _O
RR	Ripple Rejection ⁽¹³⁾	f = 120 Hz, V	= 15 V to 25 V	55.0	71.0		dB
V _{DROP}	Dropout Voltage	$I_{O} = 1 A, T_{J} =$	+25°C		2.0		V
R _O	Output Resistance ⁽¹³⁾	f = 1 kHz			18.0	_	mΩ
I _{SC}	Short-Circuit Current	$V_{I} = 35 \text{ V}, T_{J}$	= +25°C		230		mA
I _{PK}	Peak Current ⁽¹³⁾	$T_J = +25^{\circ}C$			2.2		Α

- 12. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 13. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7815)

Refer to the test circuit, -40°C < T_J < 125°C, I_O = 500 mA, V_I = 23 V, C_I = 0.33 μ F,C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	C	Conditions	Min.	Тур.	Max.	Unit
		$T_J = +25^{\circ}C$		14.40	15.00	15.60	
V _O	Output Voltage	$I_O = 5 \text{ mA to } 2000 \text{ M}$ $V_I = 17.5 \text{ V to } 2000 \text{ M}$	1 A, P _O ≤ 15 W, 30 V	14.25	15.00	15.75	V
Dogling	Line Regulation ⁽¹⁴⁾	T _J = +25°C	V _I = 17.5 V to 30 V		11	300	mV
Regline	Line Regulation	1j = +25 C	V _I = 20 V to 26 V		3	150	IIIV
Regload	Load Regulation ⁽¹⁴⁾	T _{.J} = +25°C	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$		12	300	mV
ixegioad	Load Regulation	11 = +25 0	$I_{O} = 250 \text{ mA to } 750 \text{ mA}$		4	150	1110
IQ	Quiescent Current	T _J =+25°C	T _J =+25°C		5.2	8.0	mA
Al-	Quiescent Current	$I_O = 5 \text{ mA to } 1$	I _O = 5 mA to 1 A			0.5	mA
ΔI_{Q}	Change	V _I = 17.5 V to 30 V				1.0	IIIA
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽¹⁵⁾	I _O = 5 mA			-1.0		mV/°C
V_N	Output Noise Voltage	f = 10 Hz to 1	00 kHz, T _A = +25°C		90.0		μV/V _O
RR	Ripple Rejection ⁽¹⁵⁾	f = 120 Hz, V _I	= 18.5 V to 28.5 V	54.0	70.0		dB
V _{DROP}	Dropout Voltage	I _O = 1 A, T _J =	+25°C		2.0		V
R _O	Output Resistance ⁽¹⁵⁾	f = 1 kHz			19.0		mΩ
I _{SC}	Short-Circuit Current	V _I = 35 V, T _J :	= +25°C		250		mA
I _{PK}	Peak Current ⁽¹⁵⁾	$T_J = +25^{\circ}C$		-	2.2		Α

- 14. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 15. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7818)

Refer to the test circuit, -40°C < T_J < 125°C, I_O = 500 mA, V_I = 27 V, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	C	Conditions	Min.	Тур.	Max.	Unit
		$T_J = +25^{\circ}C$	$T_J = +25^{\circ}C$		18.0	18.7	
V _O	Output Voltage	$I_O = 5 \text{ mA to}$ $V_I = 21 \text{ V to } 3$	1 A, P _O ≤ 15 W, 3 V	17.1	18.0	18.9	V
Poglino	Line Regulation ⁽¹⁶⁾	T _{.1} = +25°C	V _I = 21 V to 33 V		15	360	mV
Regline	Line Regulation	1j=+25 C	V _I = 24 V to 30 V		5	180	IIIV
Regload	Load Regulation ⁽¹⁶⁾	T _{.J} = +25°C	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$		15	360 mV	m\/
ixegioad	Load Regulation	1 1 - +23 0	$I_{O} = 250 \text{ mA to } 750 \text{ mA}$		5	180	IIIV
IQ	Quiescent Current	T _J =+25°C	T _J =+25°C		5.2	8.0	mA
Al	Quiescent Current	$I_O = 5 \text{ mA to}$	I _O = 5 mA to 1 A			0.5	mA
ΔI_{Q}	Change	$V_{I} = 21 \text{ V to } 3$	3 V			1.0	IIIA
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽¹⁷⁾	$I_O = 5 \text{ mA}$			-1.0		mV/°C
V_N	Output Noise Voltage	f = 10 Hz to 1	00 kHz, $T_A = +25^{\circ}C$		110		μV/V _O
RR	Ripple Rejection ⁽¹⁷⁾	f = 120 Hz, V	= 22 V to 32 V	53.0	69.0		dB
V_{DROP}	Dropout Voltage	$I_{O} = 1 A, T_{J} =$	+25°C		2.0		V
R _O	Output Resistance ⁽¹⁷⁾	f = 1 kHz			22.0		mΩ
I _{SC}	Short-Circuit Current	$V_{I} = 35 \text{ V}, T_{J}$	=+25°C	•	250		mA
I _{PK}	Peak Current ⁽¹⁷⁾	T _J =+25°C			2.2		Α

- 16. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 17. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7824)

Refer to the test circuit, -40°C < T_J < 125°C, I_O = 500 mA, V_I = 33 V, C_I = 0.33 μF , C_O = 0.1 μF , unless otherwise specified.

Symbol	Parameter	C	Conditions	Min.	Тур.	Max.	Unit
		$T_J = +25^{\circ}C$		23.00	24.00	25.00	
V _O	Output Voltage	$I_0 = 5 \text{ mA to } 2000 \text{ mA to } 3000 \text{ mA to } 30000 \text{ mA to } 30000 \text{ mA to } 30000 \text$	1 A, P _O ≤ 15 W, 8 V	22.80	24.00	25.25	V
Poglino	Line Regulation ⁽¹⁸⁾	T _{.l} = +25°C	V _I = 27 V to 38 V		17	480	mV
Regline	Line Regulation	1j = +25 C	V _I = 30 V to 36 V		6	240	IIIV
Regload	Load Regulation ⁽¹⁸⁾	T _{.J} = +25°C	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}$		15	480	mV
rtegioad	Load Regulation	11 = +25 0	$I_{O} = 250 \text{ mA to } 750 \text{ mA}$		5	240	1110
IQ	Quiescent Current	T _J =+25°C	T _J =+25°C		5.2	8.0	mA
Al-	Quiescent Current	$I_O = 5 \text{ mA to } 1$	I _O = 5 mA to 1 A		0.1	0.5	mA
ΔI_{Q}	Change	$V_{I} = 27 \text{ V to } 3$	8 V		0.5	1.0	ША
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽¹⁹⁾	$I_O = 5 \text{ mA}$			-1.5		mV/°C
V_N	Output Noise Voltage	f = 10 Hz to 1	00 kHz, $T_A = +25^{\circ}C$		6.0		μV/V _O
RR	Ripple Rejection ⁽¹⁹⁾	f = 120 Hz, V _I	= 28 V to 38 V	50.0	67.0		dB
V_{DROP}	Dropout Voltage	$I_{O} = 1 A, T_{J} =$	+25°C		2.0		V
R _O	Output Resistance ⁽¹⁹⁾	f = 1 kHz		_	28.0	_	mΩ
I _{SC}	Short-Circuit Current	V _I = 35 V, T _J	= +25°C		230		mA
I _{PK}	Peak Current ⁽¹⁹⁾	$T_J = +25^{\circ}C$			2.2		Α

- 18. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 19. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7805A)

Refer to the test circuit, 0°C < T_J < 125°C, I_O = 1 A, V_I = 10 V, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter		Conditions	Min.	Тур.	Max.	Unit
		T _J = +25°C		4.9	5.0	5.1	
V _O	Output Voltage	$I_{O} = 5 \text{ mA to}$ $V_{I} = 7.5 \text{ V to}$	1 A, P _O ≤ 15 W, 20 V	4.8	5.0	5.2	V
		$V_1 = 7.5 \text{ V to } 2$	25 V, I _O = 500 mA		5.0	50.0	
Doglino	Line Regulation ⁽²⁰⁾	V _I = 8 V to 12	. V		3.0	50.0	mV
Regline	Line Regulation	T .25°C	$V_1 = 7.3 \text{ V to } 20 \text{ V}$ $V_1 = 8 \text{ V to } 12 \text{ V}$		5.0	50.0	IIIV
		1j = +25 C	V _I = 8 V to 12 V		1.5	25.0	
		$T_{J} = +25^{\circ}C, I_{c}$	_O = 5 mA to 1.5 A		9.0 100.0		
Regload	Load Regulation ⁽²⁰⁾	$I_O = 5 \text{ mA to}$	1 A		9.0	100.0	mV
			I _O = 250 mA to 750 mA		4.0	50.0	
IQ	Quiescent Current	T _J =+25°C	T _J =+25°C		5.0	6.0	mA
		I _O = 5 mA to 1 A				0.5	
ΔI_{Q}	Quiescent Current Change	V _I = 8 V to 25 V, I _O = 500 mA				0.8	mA
	Onlango	$V_{I} = 7.5 \text{ V to } 2$	20 V, T _J = +25°C			0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽²¹⁾	$I_O = 5 \text{ mA}$			-0.8		mV/°C
V _N	Output Noise Voltage	f = 10 Hz to 1	00 kHz, T _A = +25°C		10.0		μV/V _O
RR	Ripple Rejection ⁽²¹⁾		f = 120 Hz, V _O = 500 mA, V _I =8 V to 18 V		68.0		dB
V _{DROP}	Dropout Voltage	I _O = 1 A, T _J =+25°C			2.0		V
R _O	Output Resistance ⁽²¹⁾	f = 1 kHz			17.0		mΩ
I _{SC}	Short-Circuit Current	$V_{I} = 35 \text{ V}, T_{J}$	=+25°C		250		mA
I _{PK}	Peak Current ⁽²¹⁾	T _J =+25°C			2.2		Α

- 20. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 21. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7809A)

Refer to the test circuit, $0^{\circ}C < T_J < 125^{\circ}C$, $I_O = 1$ A, $V_I = 15$ V, $C_I = 0.33$ μ F, $C_O = 0.1$ μ F, unless otherwise specified.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
Vo		T _J = +25°C		8.82	9.00	9.16	V
	Output Voltage	$I_O = 5 \text{ mA to 1 A}, P_O \le 15 \text{ W}, V_I = 11.2 \text{ V to 24 V}$		8.65	9.00	9.35	
	Line Regulation ⁽²²⁾	V _I = 11.7 V to 25 V, I _O = 500 mA			6.0	90.0	m\/
Regline		V _I = 12.5 V to 19 V			4.0	45.0	
Regilile		T .0500	$V_I = 11.5 \text{ V to } 24 \text{ V}$ $V_I = 12.5 \text{ V to } 19 \text{ V}$		6.0	90.0	mV
		$T_J = +25^{\circ}C$	V _I = 12.5 V to 19 V		2.0	45.0	
		$T_J = +25^{\circ}\text{C}, I_O = 5 \text{ mA to } 1.5 \text{ A}$			12.0	100.0	mV
Regload	Load Regulation ⁽²²⁾	I _O = 5 mA to 1 A			12.0	100.0	
		I _O = 250 mA to 750 mA			5.0	50.0	
IQ	Quiescent Current	$T_J = +25^{\circ}C$			5.0	6.0	mA
	Quiescent Current Change	$I_0 = 5 \text{ mA to } 1$	Α			0.5	
ΔI_{Q}		V _I = 12 V to 25 V, I _O = 500 mA				0.8	mA
		V _I = 11.7 V to 25 V, T _J = +25°C				0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽²³⁾	I _O = 5 mA			-1.0		mV/°C
V _N	Output Noise Voltage	f = 10 Hz to 100 kHz, T _A = +25°C			10.0		μV/V _O
RR	Ripple Rejection ⁽²³⁾	$f = 120 \text{ Hz}, V_O = 500 \text{ mA}, V_I = 12 \text{ V to } 22 \text{ V}$			62.0		dB
V _{DROP}	Dropout Voltage	I _O = 1 A, T _J = +25°C			2.0		V
R _O	Output Resistance ⁽²³⁾	f = 1 kHz			17.0		mΩ
I _{SC}	Short-Circuit Current	$V_{I} = 35 \text{ V}, T_{J} = +25^{\circ}\text{C}$			250		mA
I _{PK}	Peak Current ⁽²³⁾	T _J = +25°C			2.2		Α

- 22. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 23. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7810A)

Refer to the test circuit, 0° C < T_J < 125 $^{\circ}$ C, I_O = 1 A, V_I = 16 V, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
Vo		T _J = +25°C		9.8	10.0	10.2	V
	Output Voltage	$I_O = 5 \text{ mA to 1 A}, P_O \le 15 \text{ W},$ $V_I = 12.8 \text{ V to 25 V}$		9.6	10.0	10.4	
	Line Regulation ⁽²⁴⁾	V _I = 12.8 V to 26 V, I _O = 500 mA			8.0	100.0	m)/
Regline		V _I = 13 V to 20 V			4.0	50.0	
Regilile		T .0500	V _I = 12.5 V to 25 V		8.0	100.0	mV
		$T_J = +25^{\circ}C$	V _I = 13 V to 20 V		3.0	50.0	
		$T_J = +25^{\circ}\text{C}$, $I_O = 5 \text{ mA to } 1.5 \text{ A}$			12.0	100.0	mV
Regload	Load Regulation ⁽²⁴⁾	I _O = 5 mA to 1 A			12.0	100.0	
		I _O = 250 mA to 750 mA			5.0	50.0	
IQ	Quiescent Current	T _J =+25°C			5.0	6.0	mA
	Quiescent Current Change	$I_O = 5 \text{ mA to } 1$	1 A			0.5	
ΔI_{Q}		V _I = 12.8 V to 25 V, I _O = 500 mA				0.8	mA
		V _I = 13 V to 26 V, T _J = +25°C				0.5	
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽²⁵⁾	I _O = 5 mA			-1.0		mV/°C
V_N	Output Noise Voltage	f = 10 Hz to 100 kHz, T _A = +25°C		1	10.0		μV/V _O
RR	Ripple Rejection ⁽²⁵⁾	$f = 120 \text{ Hz}, V_O = 500 \text{ mA}, V_I = 14 \text{ V to } 24 \text{ V}$			62.0		dB
V _{DROP}	Dropout Voltage	I _O = 1 A, T _J =+25°C			2.0		V
R _O	Output Resistance ⁽²⁵⁾	f = 1 kHz			17.0		mΩ
I _{SC}	Short-Circuit Current	V _I = 35 V, T _J =+25°C			250		mA
I _{PK}	Peak Current ⁽²⁵⁾	T _J =+25°C			2.2		Α

- 24. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 25. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7812A)

Refer to the test circuit, 0°C < T_J < 125°C, I_O = 1 A, V_I = 19 V, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
		T _J = +25°C		11.75	12.00	12.25	
V _O Output Voltage		$I_O = 5 \text{ mA to 1 A}, P_O \le 15 \text{ W},$ $V_I = 14.8 \text{ V to 27 V}$		11.50	12.00	12.50	V
		V _I = 14.8 V to 30 V, I _O = 500 mA			10.0	120.0	m)/
Poglino	Line Regulation ⁽²⁶⁾		V _I = 16 V to 22 V		4.0	120.0	
Regline	Line Regulation (= 9)	T 0500	V _I = 14.5 V to 27 V		10.0	120.0	- mV
		T _J = +25°C	V _I = 16 V to 22 V		3.0	60.0	
	Load Regulation ⁽²⁶⁾	$T_J = +25^{\circ}\text{C}$, $I_O = 5 \text{ mA to } 1.5 \text{ A}$			12.0	100.0	mV
Regload		I _O = 5 mA to 1 A			12.0	100.0	
		I _O = 250 mA to 750 mA			5.0	50.0	
IQ	Quiescent Current	$T_J = +25^{\circ}C$			5.0	6.0	mA
Δl_{Q}	Quiescent Current Change	I _O = 5 mA to 1 A				0.5	
		V _I = 14 V to 27 V, I _O = 500 mA				0.8	mA
		V _I = 15 V to 30 V, T _J = +25°C				0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽²⁷⁾	I _O = 5 mA			-1.0		mV/°C
V_N	Output Noise Voltage	f = 10 Hz to 100 kHz, T _A = +25°C			10.0		μV/V _O
RR	Ripple Rejection ⁽²⁷⁾	f = 120 Hz, V _O = 500 mA, V _I =14 V to 24 V			60.0		dB
V _{DROP}	Dropout Voltage	I _O = 1 A, T _J = +25°C			2.0		V
R _O	Output Resistance ⁽²⁷⁾	f = 1 kHz			18.0		mΩ
I _{SC}	Short-Circuit Current	V _I = 35 V, T _J = +25°C			250		mA
I _{PK}	Peak Current ⁽²⁷⁾	T _J = +25°C			2.2		Α

^{26.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{27.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (LM7815A)

Refer to the test circuit, 0°C < T_J < 125°C, I_O = 1 A, V_I = 23 V, C_I = 0.33 μ F, C_O = 0.1 μ F, unless otherwise specified.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
		T _J = +25°C		14.75	15.00	15.30	
V _O Output Voltage		$I_O = 5 \text{ mA to 1 A}, P_O \le 15 \text{ W},$ $V_I = 17.7 \text{ V to 30 V}$		14.40	15.00	15.60	V
		V _I = 17.4 V to 30 V, I _O = 500 mA			10.0	150.0	
Poglino	Line Regulation(28)	V _I = 20 V to 2	6 V		5.0	150.0	m\/
Regline	Line Regulation ⁽²⁸⁾	T 0500	V _I = 17.5 V to 30 V		11.0	150.0	- mV
		T _J = +25°C	V _I = 20 V to 26 V		3.0	75.0	
	Load Regulation ⁽²⁸⁾	$T_J = +25^{\circ}\text{C}$, $I_O = 5 \text{ mA to } 1.5 \text{ A}$			12.0	100.0	mV
Regload		I _O = 5 mA to 1 A			12.0	100.0	
		I _O = 250 mA to 750 mA			5.0	50.0	
IQ	Quiescent Current	T _J =+25°C			5.2	6.0	mA
Δl_{Q}	Quiescent Current Change	I _O = 5 mA to 1 A				0.5	
		V _I = 17.5 V to 30 V, I _O = 500 mA				0.8	mA
		V _I = 17.5 V to 30 V, T _J = +25°C				0.8	
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽²⁹⁾	I _O = 5 mA			-1.0		mV/°C
V_N	Output Noise Voltage	f = 10 Hz to 100 kHz, T _A = +25°C		7	10.0		μV/V _O
RR	Ripple Rejection ⁽²⁹⁾	$f = 120 \text{ Hz}, V_O = 500 \text{ mA}, V_I = 18.5 \text{ V to } 28.5 \text{ V}$			58.0		dB
V _{DROP}	Dropout Voltage	I _O = 1 A, T _J =+25°C			2.0		V
R _O	Output Resistance ⁽²⁹⁾	f = 1 kHz			19.0		mΩ
I _{SC}	Short-Circuit Current	V _I = 35 V, T _J =+25°C			250		mA
I _{PK}	Peak Current ⁽²⁹⁾	T _J =+25°C			2.2		Α

^{28.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{29.} These parameters, although guaranteed, are not 100% tested in production.

Typical Performance Characteristics

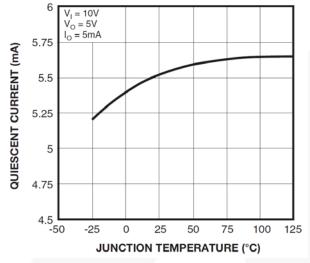


Figure 2. Quiescent Current

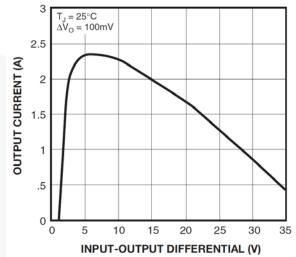


Figure 3. Peak Output Current

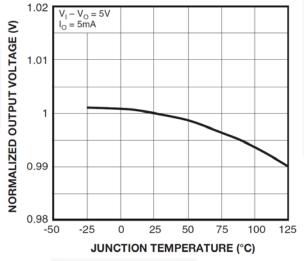


Figure 4. Output Voltage

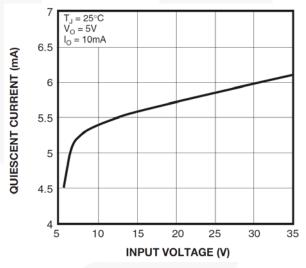


Figure 5. Quiescent Current

Typical Applications

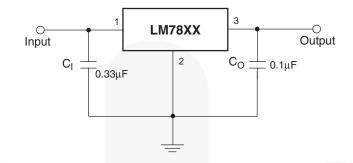


Figure 6. DC Parameters

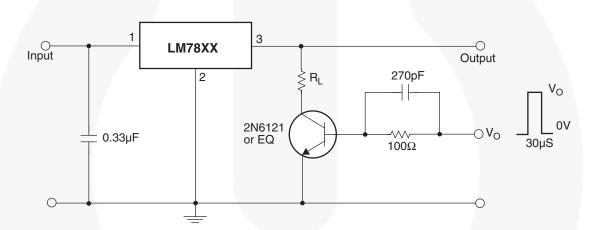


Figure 7. Load Regulation

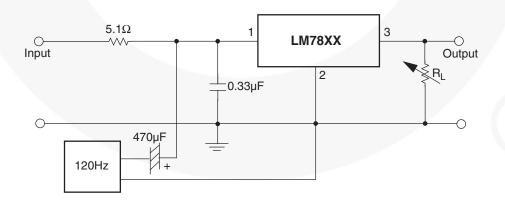


Figure 8. Ripple Rejection

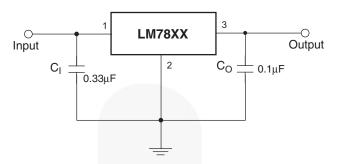
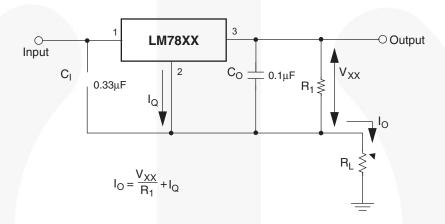



Figure 9. Fixed-Output Regulator

- 29. To specify an output voltage, substitute voltage value for "XX". A common ground is required between the input and the output voltage. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.
- 30. C_I is required if regulator is located an appreciable distance from power supply filter.
- 31. C_{O} improves stability and transient response.

Figure 10.

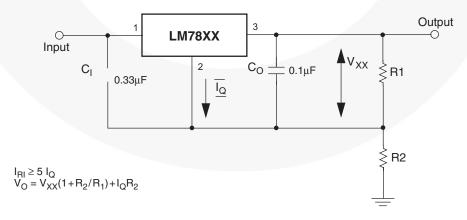


Figure 11. Circuit for Increasing Output Voltage

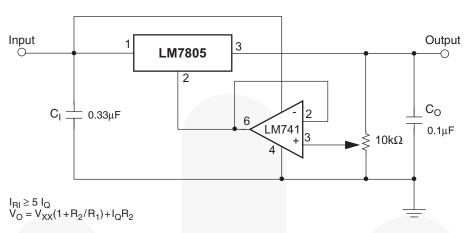


Figure 12. Adjustable Output Regulator (7 V to 30 V)

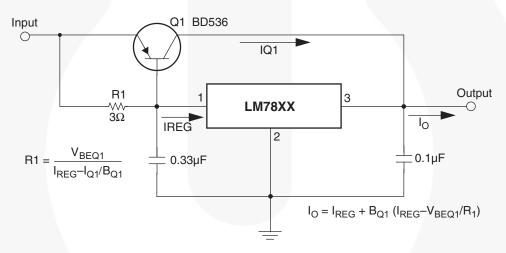


Figure 13. High-Current Voltage Regulator

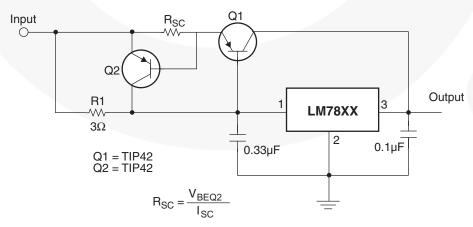


Figure 14. High Output Current with Short-Circuit Protection

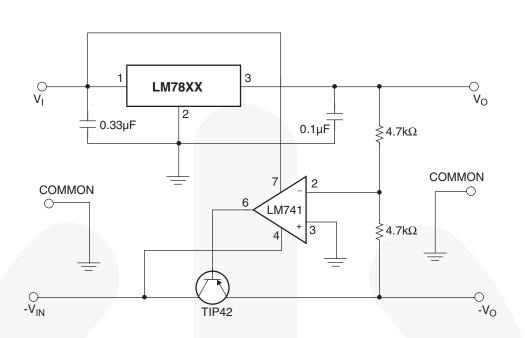


Figure 15. Tracking Voltage Regulator

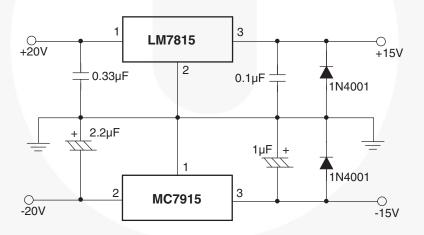


Figure 16. Split Power Supply (±15 V - 1 A)

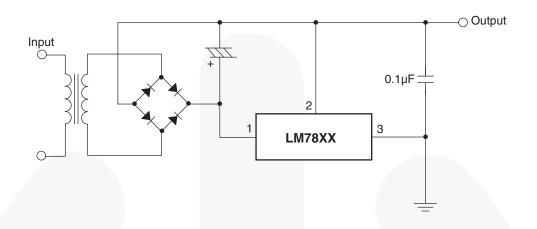


Figure 17. Negative Output Voltage Circuit

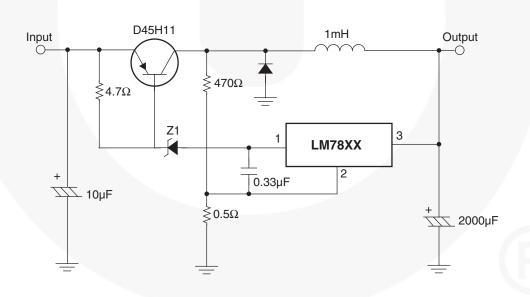


Figure 18. Switching Regulator

Physical Dimensions

TO-220 (SINGLE GAUGE)

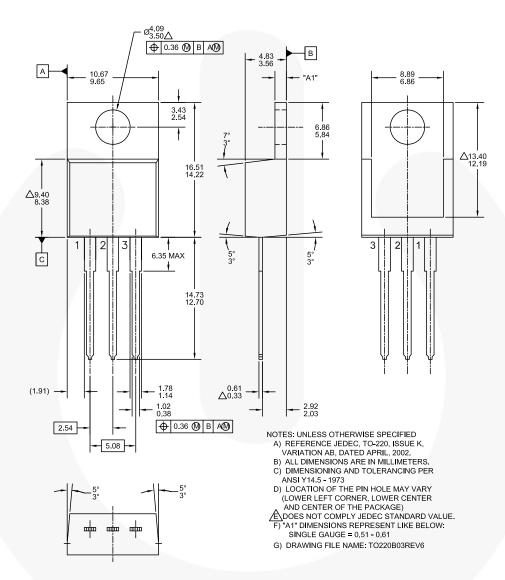


Figure 19. TO-220, MOLDED, 3-LEAD, JEDEC VARIATION AB (ACTIVE)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/dwg/TO/TO220B03.pdf.

For current tape and reel specifications, visit Fairchild Semiconductor's online packaging area: http://www.fairchildsemi.com/packing_dwg/PKG-TO220B03_TC.pdf.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

FPS™ AccuPower™ F-PFS™ AX-CAP® **FRFET®** BitSiC™ Global Power ResourceSM GreenBridge™ Build it Now™ CorePLUS™ Green FPS™ CorePOWER™ Green FPS™ e-Series™ Gmax™ CROSSVOLT™

GTO™ CTI ™ Current Transfer Logic™ IntelliMAX™ ISOPLANAR™ DEUXPEED[®]

Making Small Speakers Sound Louder Dual Cool™

EcoSPARK® and Better™ EfficientMax™ MegaBuck™ ESBC™ MICROCOUPLER™ MicroFET™ MicroPak™ Fairchild®

MicroPak2™ Fairchild Semiconductor® MillerDrive™ FACT Quiet Series™ MotionMax™ FACT[®] mWSaver[©] FAST® OptoHiT™ FastvCore™ OPTOLOGIC® FETBench™ OPTOPLANAR® PowerTrench® PowerXS™

Programmable Active Droop™

OFET' QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM® STEAL TH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™

SYSTEM SYSTEM TinyBoost®

TinyBuck[®] TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinvPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®*

μSerDes™ UHC Ultra FRFET™ UniFFT™ VCX^{TM} VisualMax™ VoltagePlus™

XSTN

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com,

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors

PRODUCT STATUS DEFINITIONS

Definition of Terms						
Datasheet Identification		Definition				
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.				
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.				

Rev. 165

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.