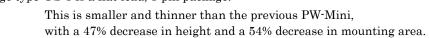
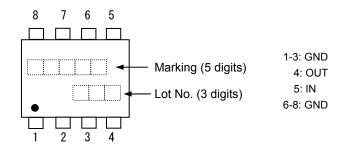
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

TA78L05PF,TA78L06PF,TA78L07PF,TA78L08PF, TA78L09PF,TA78L10PF,TA78L12PF,TA78L15PF


5 V, 6 V, 7V, 8 V, 9 V, 10 V, 12 V, 15V

3-Terminal Positive Voltage Regulators

Housed in a very small and thin PS-8 package, the TA78L**PF series of fixed-voltage monolithic integrated circuit voltage regulators is designed for a wide range of applications. One of these regulators can drive up to 0.15 A of output current. The series offers devices with low-output voltages: 5 V, 6 V, 7 V, 8 V, 9 V, 10 V, 12 V, and 15 V.

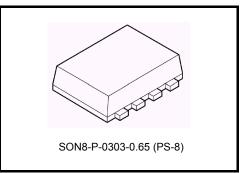

Features

- Maximum output current: 0.15 A
- Output voltage accuracy: $V_{OUT} \pm 4\%$ (@T_j = 25°C)
- Protection function: overheating/overcurrent
- Package type: PS-8 is a flat lead, 8-pin package.

Pin Assignment/Marking

Product No.	Marking (5 digits)
TA78L05PF	78L05
TA78L06PF	78L06
TA78L07PF	78L07
TA78L08PF	78L08
TA78L09PF	78L09
TA78L10PF	78L10
TA78L12PF	78L12
TA78L15PF	78L15

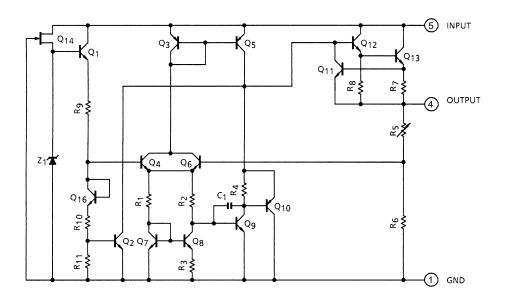
 (\bullet) on the lower left of the marking indicates Pin 1.


* Weekly code: (Three digits)

Week of manufacture (01 for the first week of the year, continuing up to 52 or 53) Year of manufacture

(Lowest-order digit of the calendar year)

The product(s) in this document ("Product") contain functions intended to protect the Product from temporary small overloads such as minor short-term overcurrent or overheating. The protective functions do not necessarily protect Product under all circumstances. When incorporating Product into your system, please design the system (1) to avoid such overloads upon the Product, and (2) to shut down or otherwise relieve the Product of such overload conditions immediately upon occurrence. For details, please refer to the notes appearing below in this document and other documents referenced in this document.


Weight: 0.08 g (typ.)

How to Order

Product No.	Packing Type and Unit for Orders
TA78L**PF (TE85L,F)	Embossed-tape packing: 3000 (1 tape)

Note 1: In the actual product number, "**" is replaced by the output voltage of the product.

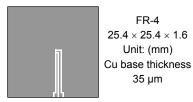
Block Diagram

Absolute Maximum Ratings (Ta = 25°C)

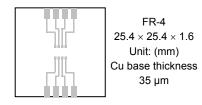
Characteris	tics	Symbol	Rating	Unit
Input voltage		V _{IN}	35	V
Output current		IOUT	0.15	А
Operating temperature		T _{opr}	-30 to 85	°C
Junction temperature		Тј	150	°C
Storage temperature		T _{stg}	–55 to 150	°C
Power dissipation	(Note 4a)	PD	1.3	W
Power dissipation	(Note 4b)	PD	0.62	W

Note 2: Do not apply external current and voltage (including negative voltage) to pins other than those specified.

Note 3: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.


Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Thermal resistance


Characteristics	Symbol	Rating	Unit
Thermal resistance (junction to ambient) (Note 4a)	R _{th(j-a)}	97	°C/W
Thermal resistance (junction to ambient) (Note 4b)	R _{th(j-a)}	202	°C/W

Note 4:

(a) Device mounted on a glass-epoxy board

(b) Device mounted on a glass-epoxy board

TA78L05PF

Electrical Characteristics

(V_{IN} = 10 V, I_{OUT} = 40 mA, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, 0°C \leq T_j \leq 125°C, unless otherwise specified)

Characteristics	Symbol	Test Circuit		Test Condition	Min	Тур.	Max	Unit
Output voltage	V _{OUT}	1	T _j = 25°C		4.8	5.0	5.2	V
Line regulation	Degline	1	$T_{\rm c} = 25^{\circ}$ C	7.0 V ≤ V _{IN} ≤ 20 V	_	55	150	
Line regulation	Reg·line	1	T _j = 25°C	8.0 V ≤ V _{IN} ≤ 20 V	_	45	100	mV
Lood regulation	Paglood	1	T - 25°0	1.0 mA ≤ I _{OUT} ≤ 100 mA	_	11	60	mV
Load regulation	Reg·load	1	T _j = 25°C	1.0 mA ≤ I _{OUT} ≤ 40 mA	_	5.0	30	mv
Output voltage	Vout	1	1	7.0 V ≤ V _{IN} ≤ 20 V, 1.0 mA ≤ I _{OUT} ≤ 40 mA	4.75	_	5.25	v
			1.0 mA ≤ I _{OUT} ≤ 70 mA	4.75	_	5.25		
Quiescent current	1-	1	T _j = 25°C		_	3.1	6.0	mA
	IB	1	T _j = 125°C		_	_	5.5	ma
Quisseent surrent shange	A1-	1	T - 25°0	8.0 V ≤ V _{IN} ≤ 20 V	_	_	1.5	
Quiescent current change	ΔI _B	1	T _j = 25°C	1.0 mA ≤ I _{OUT} ≤ 40 mA	_	_	0.1	mA
Output noise voltage	V _{NO}	2	Ta = 25°C,	10 Hz ≤ f ≤ 100 kHz	_	40	_	μV _{rms}
Ripple rejection ratio	R.R.	3	f = 120 Hz, 8.0 V ≤ V _{IN}	f = 120 Hz, 8.0 V ≤ V _{IN} ≤ 18 V, T _I = 25°C		49	_	dB
Dropout voltage	VD	1	T _j = 25°C, I _{OUT} = 150 mA		_	2.0	—	V
Average temperature coefficient of output voltage	T _{CVO}	1	I _{OUT} = 5 m.	A	_	-0.6	_	mV/°C

TA78L06PF

Electrical Characteristics

(V_{IN} = 11 V, I_{OUT} = 40 mA, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, 0°C \leq T_j \leq 125°C, unless otherwise specified)

Characteristics	Symbol	Test Circuit		Test Condition	Min	Тур.	Max	Unit
Output voltage	V _{OUT}	1	T _j = 25°C		5.76	6.0	6.24	V
Line regulation	Degline	1	$T_{\rm c} = 25^{\circ}$ C	8.1 V ≤ V _{IN} ≤ 21 V		50	150	mV
Line regulation	Reg·line	1	T _j = 25°C	9.0 V ≤ V _{IN} ≤ 21 V		45	110	mv
Lood regulation	Pagelaad	1	T _i = 25°C	1.0 mA ≤ I _{OUT} ≤ 100 mA		12	70	mV
Load regulation	Reg·load	1	· 1.	1.0 mA ≤ I _{OUT} ≤ 40 mA	_	5.5	35	
Output voltage	Vout	1	4	8.1 V ≤ V _{IN} ≤ 21 V, 1.0 mA ≤ I _{OUT} ≤ 40 mA	5.7	_	6.3	v
		1.	1.0 mA ≤ I _{OUT} ≤ 70 mA	5.7	_	6.3		
Quiescent current	1-	1	T _j = 25°C		_	3.1	6.0	mA
	IB	1	T _j = 125°C		_	_	5.5	ma
Quiassant aurrant abanga	A1-	1	1 T _i = 25°C	9.0 V ≤ V _{IN} ≤ 20 V	_	_	1.5	mA
Quiescent current change	ΔI _B	1	1j = 25 C	1.0 mA ≤ I _{OUT} ≤ 40 mA	_	_	0.1	IIIA
Output noise voltage	V _{NO}	2	Ta = 25°C,	10 Hz ≤ f ≤ 100 kHz	_	40	_	μV _{rms}
Ripple rejection ratio	R.R.	3	f = 120 Hz, 9.0 V ≤ V _{IN}	≤ 19 V, T _j = 25°C	39	47	_	dB
Dropout voltage	VD	1	T _j = 25°C, I _{OUT} = 150 mA			2.0	—	V
Average temperature coefficient of output voltage	T _{CVO}	1	I _{OUT} = 5 m.	A	_	-0.7	_	mV/°C

TA78L07PF

Electrical Characteristics

(V_{IN} = 12 V, I_{OUT} = 40 mA, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, 0°C \leq T_j \leq 125°C, unless otherwise specified)

Characteristics	Symbol	Test Circuit		Test Condition	Min	Тур.	Max	Unit
Output voltage	V _{OUT}	1	T _j = 25°C		6.72	7.0	7.28	V
Line regulation	Degline	1	$T_{\rm c} = 25^{\circ}$ C	9.2 V ≤ V _{IN} ≤ 22 V	_	50	160	
Line regulation	Reg·line	'	T _j = 25°C	10 V ≤ V _{IN} ≤ 22 V	-	45	115	mV
Lood regulation	Boglood	1	T _i = 25°C	1.0 mA ≤ I _{OUT} ≤ 100 mA	_	13	75	mV
Load regulation	Reg·load	1	1j = 25 C	1.0 mA ≤ I _{OUT} ≤ 40 mA	_	6.0	40	mv
Output voltage	VOUT	1	1	9.2 V ≤ V _{IN} ≤ 22 V, 1.0 mA ≤ I _{OUT} ≤ 40 mA	6.65	_	7.35	v
		1.	1.0 mA ≤ I _{OUT} ≤ 70 mA	6.65	_	7.35		
Ouissesst summert	1-	1	T _j = 25°C	T _j = 25°C		3.1	6.5	mA
Quiescent current	Ι _Β	1	T _j = 125°C		_	_	6.0	mA
Quisseent surrent shange	A1-	1	T - 25°0	10 V ≤ V _{IN} ≤ 22 V	_	_	1.5	
Quiescent current change	ΔI _B	1	T _j = 25°C	1.0 mA ≤ I _{OUT} ≤ 40 mA	_	_	0.1	mA
Output noise voltage	V _{NO}	2	Ta = 25°C,	10 Hz ≤ f ≤ 100 kHz		50	_	μV _{rms}
Ripple rejection ratio	R.R.	3	f = 120 Hz, 10 V ≤ V _{IN}	f = 120 Hz, 10 V ≤ V _{IN} ≤ 20 V, T _i = 25°C		46	_	dB
Dropout voltage	VD	1	T _j = 25°C, I _{OUT} = 150 mA		_	2.0	—	V
Average temperature coefficient of output voltage	T _{CVO}	1	I _{OUT} = 5 m.	A	_	-0.75	_	mV/°C

TA78L08PF

Electrical Characteristics

(V_{IN} = 14 V, I_{OUT} = 40 mA, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, 0°C \leq T_j \leq 125°C, unless otherwise specified)

Characteristics	Symbol	Test Circuit		Test Condition	Min	Тур.	Max	Unit
Output voltage	V _{OUT}	1	T _j = 25°C		7.7	8.0	8.3	V
Line regulation	Degline	1	$T_{\rm c} = 25^{\circ}$ C	10.5 V ≤ V _{IN} ≤ 23 V	_	20	175	mV
Line regulation	Reg·line	1	T _j = 25°C	11 V ≤ V _{IN} ≤ 23 V	_	12	125	mv
Lood regulation	Poglad	1	T _i = 25°C	1.0 mA ≤ I _{OUT} ≤ 100 mA		15	80	mV
Load regulation	Reg·load	1	$1_{j} = 25 \text{ C}$	1.0 mA ≤ I _{OUT} ≤ 40 mA		7.0	40	mv
Output voltage	Vout	1	1 T _j = 25°C 1	10.5 V ≤ V _{IN} ≤ 23 V, 1.0 mA ≤ I _{OUT} ≤ 40 mA	7.6	_	8.4	v
				1.0 mA ≤ I _{OUT} ≤ 70 mA	7.6	_	8.4	
Quiescent current	1-	1	T _j = 25°C			3.1	6.5	mA
	Ι _Β		T _j = 125°C			_	6.0	ШA
Quiagaant ourrent change	A1-	1	1 T = 25°0	11 V ≤ V _{IN} ≤ 23 V		_	1.5	mA
Quiescent current change	ΔI _B		T _j = 25°C	1.0 mA ≤ I _{OUT} ≤ 40 mA		_	0.1	ШA
Output noise voltage	V _{NO}	2	Ta = 25°C,	10 Hz ≤ f ≤ 100 kHz	_	60	_	μV _{rms}
Ripple rejection ratio	R.R.	3	f = 120 Hz, 12 V ≤ V _{IN}	≤ 23 V, T _j = 25°C	37	45	_	dB
Dropout voltage	VD	1	T _j = 25°C, I _{OUT} = 150 mA			2.0	—	V
Average temperature coefficient of output voltage	T _{CVO}	1	I _{OUT} = 5 m.	A	_	-0.8	_	mV/°C

TA78L09PF

Electrical Characteristics

(V_{IN} = 15 V, I_{OUT} = 40 mA, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, 0°C \leq T_j \leq 125°C, unless otherwise specified)

Characteristics	Symbol	Test Circuit		Test Condition	Min	Тур.	Max	Unit
Output voltage	V _{OUT}	1	T _j = 25°C		8.64	9.0	9.36	V
Line regulation	Degline	1	$T_{\rm c} = 25^{\circ}$ C	11.4 V ≤ V _{IN} ≤ 24 V	_	80	200	mV
Line regulation	Reg·line	1	T _j = 25°C	12 V ≤ V _{IN} ≤ 24 V	_	20	160	mv
Lood regulation	Declard	1	T _i = 25°C –	1.0 mA ≤ I _{OUT} ≤ 100 mA		17	90	mV
Load regulation	Reg·load	1		1.0 mA ≤ I _{OUT} ≤ 40 mA	_	8.0	45	mv
Output voltage	Vout	1	1	11.4 V ≤ V _{IN} ≤ 24 V, 1.0 mA ≤ I _{OUT} ≤ 40 mA	8.55	_	9.45	v
			,	1.0 mA ≤ I _{OUT} ≤ 70 mA	8.55	_	9.45	
			T _j = 25°C		_	3.2	6.5	
Quiescent current	IB	1	T _j = 125°C			_	6.0	mA
Quicesent surrent shange	A1-	4	T 05%0	12 V ≤ V _{IN} ≤ 24 V		_	1.5	
Quiescent current change	ΔI _B	1	T _j = 25°C	1.0 mA ≤ I _{OUT} ≤ 40 mA		_	0.1	mA
Output noise voltage	V _{NO}	2	Ta = 25°C,	10 Hz ≤ f ≤ 100 kHz		65		μV _{rms}
Ripple rejection ratio	R.R.	3	f = 120 Hz, 12 V ≤ V _{IN}	≤ 24 V, T _j = 25°C	36	44	_	dB
Dropout voltage	VD	1	T _j = 25°C, I _{OUT} = 150 mA		_	2.0	_	V
Average temperature coefficient of output voltage	T _{CVO}	1	I _{OUT} = 5 m/	Ą		-0.85		mV/°C

TA78L10PF Electrical Characteristics

(V_{IN}=16 V, I_{OUT}=40 mA, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, 0°C \leq T_j \leq 125°C, unless otherwise specified)

Characteristics	Symbol	Test Circuit		Test Condition	Min	Тур.	Max	Unit
Output voltage	V _{OUT}	1	T _j = 25°C		9.6	10	10.4	V
Line regulation	Degline	1	$T_{\rm c} = 25^{\circ}$ C	12.5 V ≤ V _{IN} ≤ 25 V		80	230	mV
Line regulation	Reg·line	1	T _j = 25°C	13 V ≤ V _{IN} ≤ 25 V		30	170	mv
Lood regulation	Reg·load	1	T _i = 25°C	1.0 mA ≤ I _{OUT} ≤ 100 mA		18	90	mV
Load regulation	Regiload	1	- 1	1.0 mA ≤ I _{OUT} ≤ 40 mA		8.5	45	mv
Output voltage	Vout	1 T _j = 25°C 1	12.5 V ≤ V _{IN} ≤ 25 V, 1.0 mA ≤ I _{OUT} ≤ 40 mA	9.5	_	10.5	v	
			,	1.0 mA ≤ I _{OUT} ≤ 70 mA	9.5	_	10.5	5
Quiescent current	la.	1	T _j = 25°C	T _j = 25°C		3.2	6.5	mA
Quiescent current	Ι _Β		T _j = 125°C		_	_	6.0	IIIA
Quieseent ourrent change	A1-	1	T - 25°0	13 V ≤ V _{IN} ≤ 25 V	_	_	1.5	mA
Quiescent current change	ΔI _B		T _j = 25°C	1.0 mA ≤ I _{OUT} ≤ 40 mA	_	_	0.1	IIIA
Output noise voltage	V _{NO}	2	Ta = 25°C,	10 Hz ≤ f ≤ 100 kHz	_	70	_	μV _{rms}
Ripple rejection ratio	R.R.	3	f = 120 Hz, 13 V ≤ V _{IN}	≤ 24 V, T _j = 25°C	36	43	_	dB
Dropout voltage	VD	1	T _j = 25°C, I _{OUT} = 150 mA			2.0	_	V
Average temperature coefficient of output voltage	Тсуо	1	I _{OUT} = 5 m	A	_	-0.9	_	mV/°C

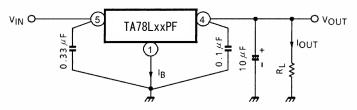
TA78L12PF Electrical Characteristics

(V_{IN} = 19 V, I_{OUT} = 40 mA, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, 0°C \leq T_j \leq 125°C, unless otherwise specified)

Characteristics	Symbol	Test Circuit		Test Condition	Min	Тур.	Max	Unit
Output voltage	V _{OUT}	1	T _j = 25°C		11.52	12	12.48	V
Line regulation	Degline	1	T _i = 25°C	14.5 V ≤ V _{IN} ≤ 27 V	_	120	250	mV
Line regulation	Reg·line	1	1 _j = 25 C	16 V ≤ V _{IN} ≤ 27 V	_	100	200	mv
Lood regulation	Declard	1	T _i = 25°C	1.0 mA ≤ I _{OUT} ≤ 100 mA	_	20	100	mV
Load regulation	Reg·load	1	1j = 25 C	1.0 mA ≤ I _{OUT} ≤ 40 mA	_	10	50	mv
Output voltage	Vout	1	1 T _j = 25°C	14.5 V ≤ V _{IN} ≤ 27 V, 1.0 mA ≤ I _{OUT} ≤ 40 mA	11.4	_	12.6	V
				1.0 mA ≤ I _{OUT} ≤ 70 mA	11.4	_	12.6	
Quiescent current	1	T _j = 25°C	T _j = 25°C		3.2	6.5	mA	
	IB		T _j = 125°C		_	_	6.0	ШA
Quiescent current change	Δl _B	1	T _i = 25°C	16 V ≤ V _{IN} ≤ 27 V	_	_	1.5	mA
Quescent current change	ΔIB		1 - 25 0	1.0 mA ≤ I _{OUT} ≤ 40 mA	—	—	0.1	ША
Output noise voltage	V _{NO}	2	Ta = 25°C,	10 Hz ≤ f ≤ 100 kHz	—	80	—	μV _{rms}
Ripple rejection ratio	R.R.	3	f = 120 Hz, 15 V ≤ V _{IN}	f = 120 Hz, 15 V ≤ V _{IN} ≤ 25 V, T _j = 25°C		41	_	dB
Dropout voltage	VD	1	T _j = 25°C, I _{OUT} = 150 mA		_	2.0	_	V
Average temperature coefficient of output voltage	T _{CVO}	1	I _{OUT} = 5 m.	A	_	-1.0	_	mV/°C

TA78L15PF

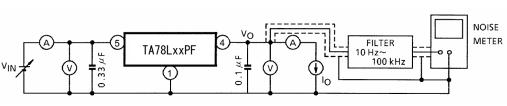
Electrical Characteristics


(V_{IN} = 23 V, I_{OUT} = 40 mA, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F, 0°C \leq T_j \leq 125°C, unless otherwise specified)

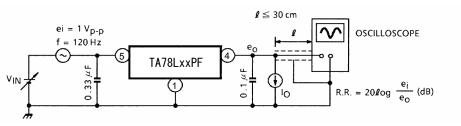
Characteristics	Symbol	Test Circu it		Test Condition	Min	Тур.	Max	Unit
Output voltage	V _{OUT}	1	T _j = 25°C		14.4	15	15.6	V
Line regulation	Pogulino	1	T _i = 25°C	17.5 V ≤ V _{IN} ≤ 30 V	-	130	300	mV
	Reg·line		1 _j = 25 C	20 V ≤ V _{IN} ≤ 30 V	_	110	250	IIIV
Load regulation	Reg·load	1	T _i = 25°C	1.0 mA ≤ I _{OUT} ≤ 100 mA	-	25	150	mV
	Regiloau		1 1 1 25 0	1.0 mA ≤ I _{OUT} ≤ 40 mA	-	12	75	IIIV
Output voltage V _{OL}	Vout	1	T _j = 25°C	17.5 V ≤ V _{IN} ≤ 30 V, 1.0 mA ≤ I _{OUT} ≤ 40 mA	14.25	-	15.75	V
				1.0 mA ≤ I _{OUT} ≤ 70 mA	14.25	-	15.75	
Quiescent current	1-	$T_j = 25$	T _j = 25°C		_	3.3	6.5	mA
	Ι _Β		T _j = 125°C	;	_	_	6.0	ma
Quieseent eurrent change	A1-	1	T _i = 25°C	20 V ≤ V _{IN} ≤ 30 V	_	_	1.5	mA
Quiescent current change	ΔI _B		$1_j = 25 C$	1.0 mA ≤ I _{OUT} ≤ 40 mA	_	_	0.1	ma
Output noise voltage	V _{NO}	2	Ta = 25°C	, 10 Hz ≤ f ≤ 100 kHz	_	90	_	μV _{rms}
Ripple rejection ratio	R.R.	3		f = 120 Hz, 18.5 V ≤ V _{IN} ≤ 28.5 V, T _I = 25°C		40	_	dB
Dropout voltage	VD	1	T _j = 25°C,	T _j = 25°C, I _{OUT} = 150 mA		2.0		V
Average temperature coefficient of output voltage	T _{CVO}	1	I _{OUT} = 5 n	nA	_	-1.3	_	mV/°C

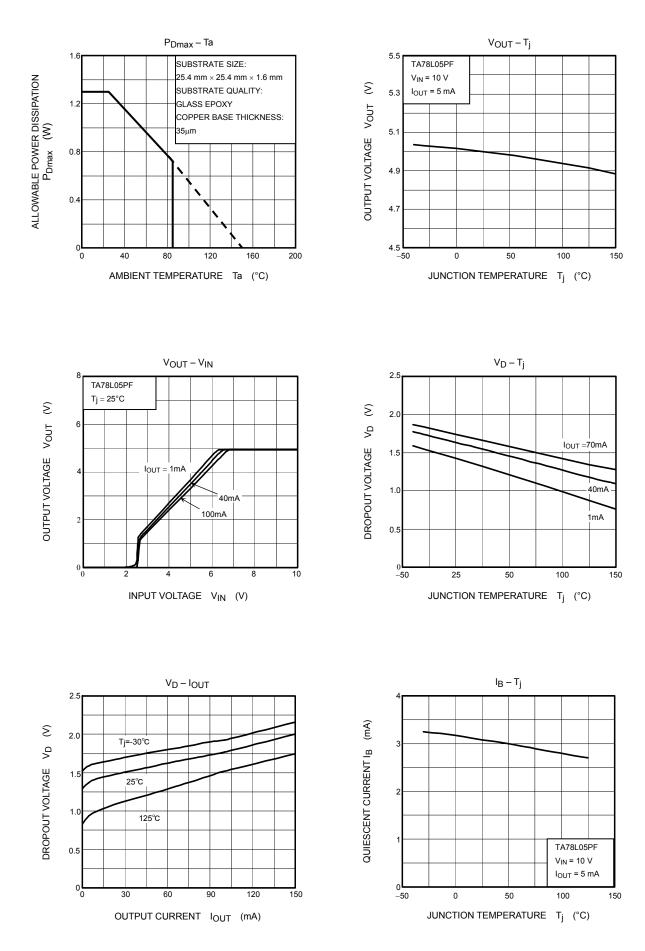
Electrical Characteristics for All Products

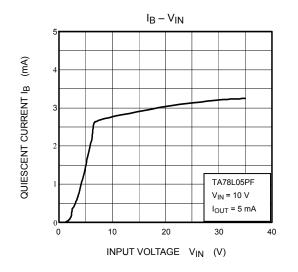
Generally, the characteristics of power supply ICs change according to temperature fluctuations. The specification $T_j = 25^{\circ}C$ is based on a state where temperature increase has no effect (assuming no fluctuation in the characteristics) as ascertained by pulse tests.


Test Circuit 1/Standard Application

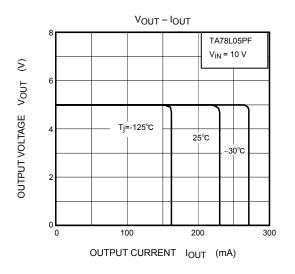
Use capacitors to connect the input terminal and GND and the output terminal and GND. The capacitances should be determined experimentally. In particular, adequate investigation should be made to ensure there is no problem even in high or low temperatures.

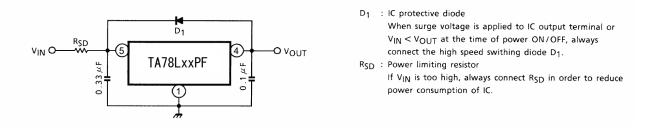

Test Circuit 2





Test Circuit 3





Usage Precautions

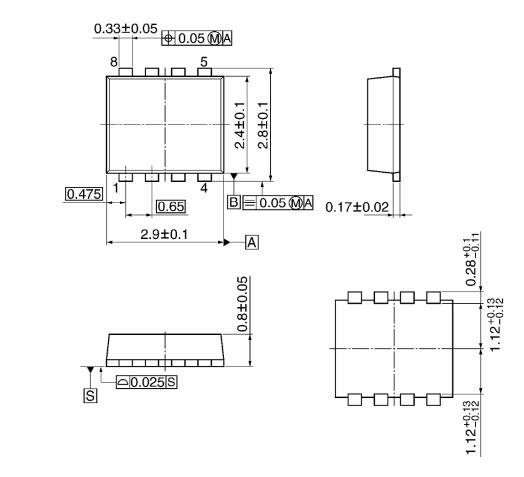
If a high voltage in excess of the output voltage (typ. value) of the IC is applied to the output terminal of the IC, the IC may be destroyed. To prevent such application of excessive voltage, connect a Zener diode between the output terminal and GND.

• Low voltage

Do not apply voltage to the Product that is lower than the minimum operating voltage, or the Product's protective functions will not operate properly and the Product may be permanently damaged.

Overcurrent Protection

The overcurrent protection circuits in the Product are designed to temporarily protect Product from minor overcurrent of brief duration. When the overcurrent protective function in the Product activates, immediately cease application of overcurrent to Product. Improper usage of Product, such as application of current to Product exceeding the absolute maximum ratings, could cause the overcurrent protection circuit not to operate properly and/or damage Product permanently even before the protection circuit starts to operate.


• Overheating Protection

The thermal shutdown circuits in the Product are designed to temporarily protect Product from minor overheating of brief duration. When the overheating protective function in the Product activates, immediately correct the overheating situation. Improper usage of Product, such as the application of heat to Product exceeding the absolute maximum ratings, could cause the overheating protection circuit not to operate properly and/or damage Product permanently even before the protection circuit starts to operate.

Package Dimensions

SON8-P-0303-0.65 (PS-8)

Unit: mm

Weight: 0.08 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.