

LD2982BXX18

Very low drop and low noise voltage regulator with inhibit function, low ESR capacitors compatible

Features

- Very low dropout voltage (120 mV at 50 mA and 7 mV at 1 mA load)
- Very low quiescent current (375 mA typ. at 50 mA load and 75 mA at 1 mA)
- Output current up to 50 mA
- Logic controlled electronic shutdown
- Output voltage of 1.8 V
- Internal current and thermal limit
- Available in ± 1 % tolerance (at 25 °C, A version)
- Supply voltage rejection: 45 dB (typ)
- Only 1 µF for stability
- Low output noise voltage 30 µVrms
- Smallest package SOT23-5L
- Temperature range: -40 °C to 125 °C

Description

Table 1.

The LD2982 is a 50 mA fixed output vo tage regulator. The ultra low drop voltage and the low quiescent current make them particularly suitable for low noise, low power applications, and in battery powered systems. In sieep mode quiescent current is less than 1 µA when INHIBIT pin is pulled low. Shuldown logic control function is available or, pin 3 (TTL compatible). This means that when the device is used as local regulator, it is possible to put a part of the board in standoy, decreasing the total power consumption.

An external capacitor C_{BYP} = 10 nF connected between bypass pin and GND reduce the noise to 30 μ Vrms.

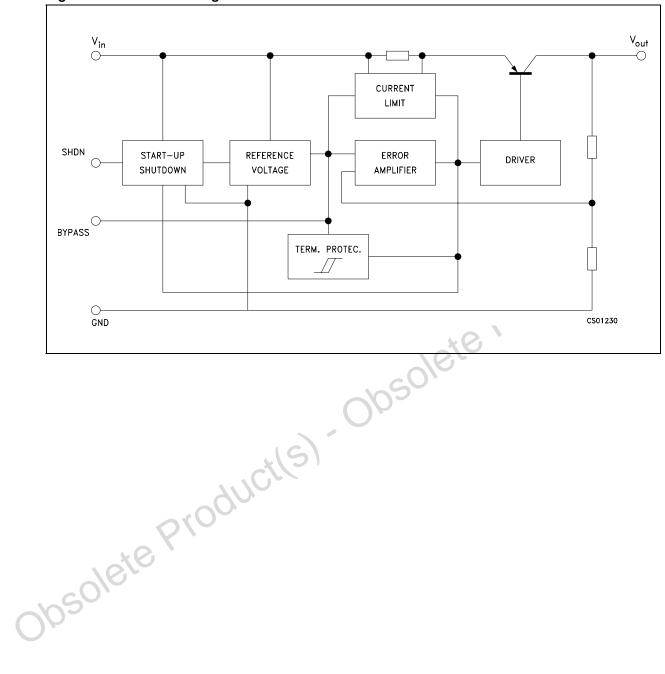
Device summary

Order code	Output voltage	
LD2982BM18R	1.8 V	

Typical application are in cellular phone, palmtop/laptop computer, personal hightal assistant (PDA), personal states, camcorder and camera.

Contents LD2982BXX18

Contents


1	Diagram 3
2	Pin configuration4
3	Maximum ratings
4	Electrical characteristics
5	Typical characteristics 8
6	Application notes
	6.1 External capacitors
	6.2 Input capacitor
	6.3 Output capacitor
	6.3 Output capacitor
	6.5 Inhibit input operation
	6.6 Reverse current
7	6.5 Inhibit input operation
0050	Revision history

LD2982BXX18 Diagram

1 Diagram

Figure 1. Schematic diagram

Pin configuration LD2982BXX18

2 Pin configuration

Figure 2. Pin connections (top view)

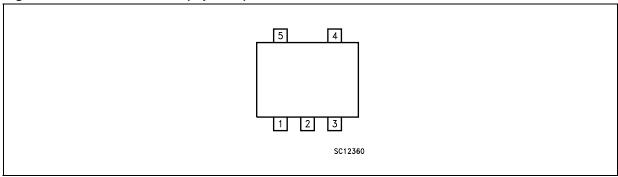


Table 2. Pin description

Pin n°	Symbol	Name and function
1	IN	Input port
2	GND	Ground pin
3	INHIBIT	Control switch ON/OFF. Inhibit is not internally pulled-up; it cannot be left floating. Disable the device when connected to GND or to a positive voltage less than 0.18V
4	Bypass	Bypass Pin: Capacitor to be connected to GND in order to improve the thermal noise performances
5	OUT	Output port

Table 3. Thermal data

	Symbol	Parameter	SOT23-5L	Unit
	R _{thJC}	Thermal resistance junction-case	81	°C/W
	R _{thJA}	Thermal resistance junction-ambient	255	°C/W
0	osolet	ePi		

LD2982BXX18 Maximum ratings

3 Maximum ratings

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _I	DC input voltage	16	V
V _{INH}	INHIBIT input voltage	16	V
I _O	Output current	Internally limited	
P _D	Power dissipation	Internally limited	
T _{STG}	Storage temperature range	-65 to 150	°C
T _{OP}	Operating junction temperature range	-40 to 125	°C

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Electrical characteristics LD2982BXX18

4 Electrical characteristics

 T_J = 25 °C, V_I = V_O + 1 V, I_O = 1 mA, V_{SHDN} = 2 V, C_I = C_O = 1 $\mu F\!_{,}$ unless otherwise specified.

Table 5. Electrical characteristics for LD2982BXX18

Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit
V _{OP}	Operating input voltage		2.5		16	V
		V _I = 2.5V	1.477	1.5	1.523	
V_{O}	V _O Output voltage	I _O = 1 to 50mA	1.470		1.530	V
		I_{O} = 1 to 50mA, T_{J} = -40 to 125°C	1.447		1.553	
		V _I = 2.8V	1.773	1.8	1.827	
V_{O}	Output voltage	I _O = 1 to 50mA	1.764		1.836	V
		I_{O} = 1 to 50mA, T_{J} = -40 to 125°C	1.737		1.863	
		V _I = 3.5V	2.462	2.5	2.537	
V_{O}	Output voltage	I _O = 1 to 50mA	2.45		2.55	V
		$I_{O} = 1$ to 50mA, $T_{J} = -40$ to 125°C	2.412		2.587	
		V _I = 3.8V	2.758	2.8	2.842	
V_{O}	Output voltage	I _O = 1 to 50mA	2.744	O	2.856	V
		I _O = 1 to 50mA, T _J = -40 to 125°C	2.702		2.898	
		V _I = 3.85V	2.807	2.85	2.893	
V_{O}	V _O Output voltage	I _O = 1 to 50mA	2.793		2.907	V
		$I_{O} = 1$ to 50mA, $T_{J} = -40$ to 125°C	2.750		2.950	
		V _I = 4.0V	2.955	3.0	3.045	
V_{O}	Output voltage	I _O = 1 to 50mA	2.94		3.06	V
		$I_{O} = 1$ to 50mA, $T_{J} = -40$ to 125°C	2.895		3.105	
		V ₁ = 4.1V	3.053	3.1	3.146	
V_{O}	Output voltage	I _O = 1 to 50mA	3.038		3.162	V
	100,	I_{O} = 1 to 50mA, T_{J} = -40 to 125°C	2.991		3.208	
	010	V _I = 4.2V	3.152	3.2	3.248	
V_{O}	Output voltage	I _O = 1 to 50mA	3.136		3.264	V
	2/0	I _O = 1 to 50mA, T _J = -40 to 125°C	3.088		3.312	
-0		V _I = 4.3V	3.250	3.3	3.349	
V_{O}	Output voltage	I _O = 1 to 50mA	3.234		3.366	V
		I _O = 1 to 50mA, T _J = -40 to 125°C	3.184		3.415	
		V _I = 4.5V	3.447	3.5	3.552	
Vo	Output voltage	I _O = 1 to 50mA	3.430		3.370	V
		$I_{O} = 1$ to 50mA, $T_{J} = -40$ to 125°C	3.377		3.662	
		V _I = 4.6V	3.546	3.6	3.654	
V_{O}	Output voltage	I _O = 1 to 50mA	3.528		3.672	V
		I _O = 1 to 50mA, T _J = -40 to 125°C	3.474		3.726	

Table 5. Electrical characteristics for LD2982BXX18 (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
	Output voltage	V _I = 4.8V	3.743	3.8	3.857		
V_{O}		I _O = 1 to 50mA	3.724		3.876	V	
		$I_{O} = 1$ to 50mA, $T_{J} = -40$ to 125°C	3.667		3.933		
		V _I = 5.0V	3.94	4	4.06		
Vo	Output voltage	I _O = 1 to 50mA	3.92		4.08	V	
		$I_{O} = 1$ to 50mA, $T_{J} = -40$ to 125°C	3.86		4.14		
		V _I = 5.7V	4.629	4.7	4.77		
Vo	Output voltage	I _O = 1 to 50mA	4.606		4.794	V	
		$I_{O} = 1$ to 50mA, $T_{J} = -40$ to 125°C	4.535		4.864		
		V _I = 6.0V	4.925	5	5.075		
Vo	Output voltage	I _O = 1 to 50mA	4.9		5.1	V	
		I _O = 1 to 100 mA, T _J = -40 to 125°C	4.825		5.175		
I _{SC}	Short circuit current	$R_L = 0$		400		mA	
		$V_1 = V_O + 1V$ to 16V, $I_O = 1$ mA		0.003	0.014	91	
$\Delta V_{O}/\Delta V_{I}$	Line regulation	$V_I = V_O + 1V \text{ to } 16V, I_O = 1 \text{ mA},$ $T_{J^{=}} -40 \text{ to } 125^{\circ}\text{C}$		AI	0.032	%/V _I	
	Dropout voltage	$I_{O} = 0$	- 5	Oi	3		
		$I_{O} = 0$, $T_{J} = -40$ to 125° C	01		5	mV	
		I _O = 1mA		7	10		
.,		I _O = 1mA, T _J = -40 to 125°C			15		
V _{DROP}		I _O = 10mA		40	60		
		$I_O = 10$ mA, $T_J = -40$ to 125 °C			90		
		I _O = 50mA		120	150		
		$I_O = 50$ mA, $T_J = -40$ to 125 °C			225		
		I _O = 0		80	100		
		$I_{O} = 0$, $T_{J} = -40$ to 125°C			150		
		I _O = 1mA		100	150		
	Quiescent current	I _O = 1mA, T _J = -40 to 125°C			200		
1.	ON MODE	I _O = 10mA		200	300	μΑ	
10 GO	40	$I_O = 10$ mA, $T_J = -40$ to 125 °C			400	μΑ	
	0	I _O = 50mA		600	900		
20°		$I_{O} = 50$ mA, $T_{J} = -40$ to 125 °C			1200		
Ö	OFF MODE	V _{INH} <0.18V		0			
	OFF MODE	V _{INH} <0.18V, T _J = -40 to 125°C			1		
SVR	Supply voltage rejection	$C_{BYP} = 0.01 \mu F, C_O = 10 \mu F, f = 1 kHz$		45		dB	
V _{IL}	Inhibit input logic low	T _J = -40 to 125°C			0.15	V	
V _{IH}	Inhibit input logic high	T _J = -40 to 125°C	2			V	
_	Indicate in a second account	V _{INH} = 0V, T _J = -40 to 125°C		5	15		
I _{INH}	Inhibit input current	V _{INH} = 5V, T _J = -40 to 125°C		0	-1	μA	
e _N	Output noise voltage	B = 300 Hz to 50 kHz, C_{BYP} = 0.01 μ F, C_{O} = 10 μ F		30		μV	

 $V_d(mV)$

125

100

75

50

5 **Typical characteristics**

(T_J = 25 °C, V_I = V_{O(NOM)} +1 V, C_I = 1 μ F (X7R), C_O = 2.2 μ F (X7R), V_{INH} = 2 V, unless otherwise specified).

Figure 3. Output voltage vs. temperature

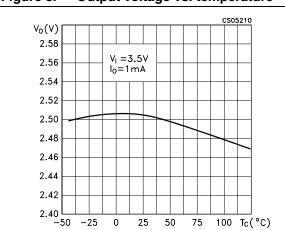


Figure 4. Dropout voltage vs. temperature

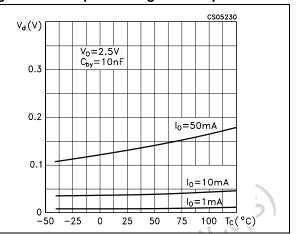
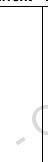
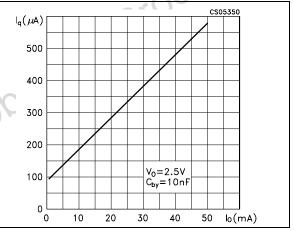



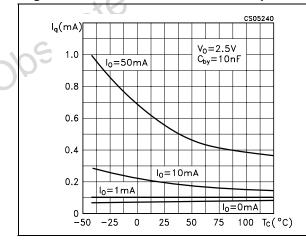
Figure 5. Dropout voltage vs. output current Figure 6.

lo(mA)

50

Quiescent current vs. load current




Figure 7. Quiescent current vs. temperature

10

 $V_0 = 2.5V$

Supply voltage rejection vs. temp.

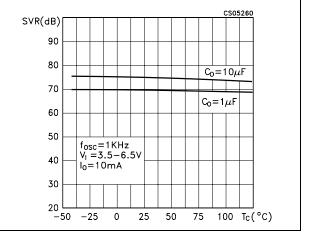
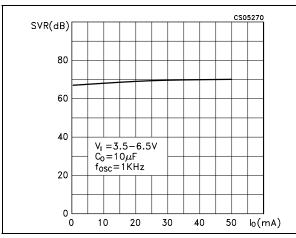



Figure 9. Supply voltage rejection vs. output Figure 10. Supply voltage rejection vs. output current

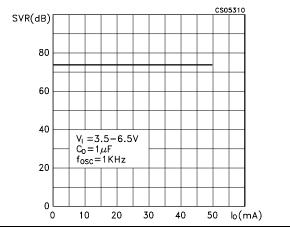
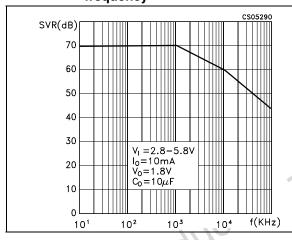



Figure 11. Supply voltage rejection vs. frequency

Figure 12. Supply voltage rejection vs. frequency

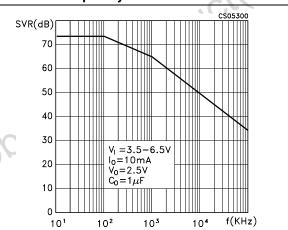
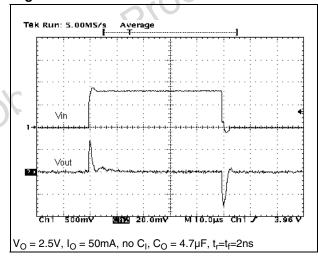
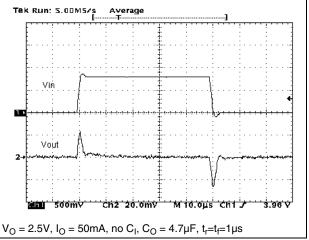
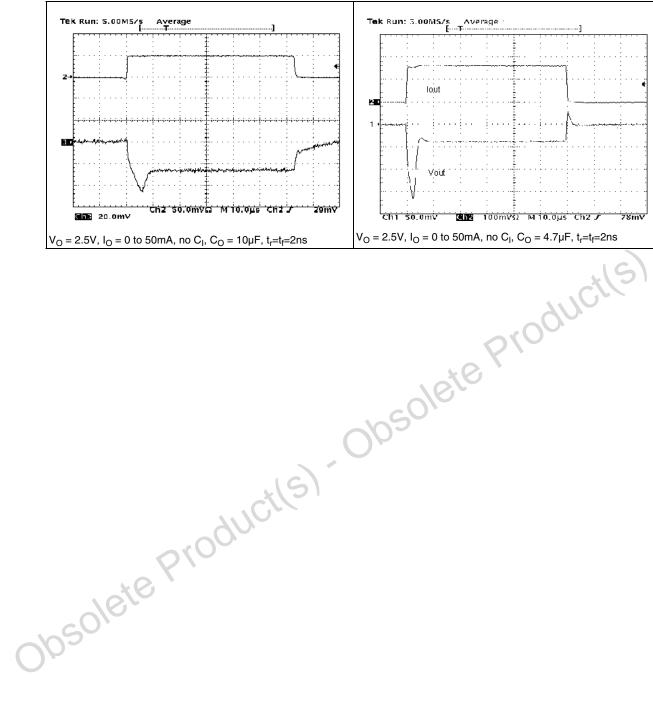
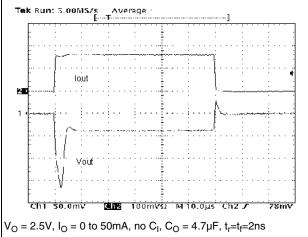




Figure 13. Line transient

Figure 14. Line transient





577

Figure 15. Load transient

Figure 16. Load transient

57

LD2982BXX18 Application notes

6 Application notes

6.1 External capacitors

Like any low-dropout regulator, the LD2982 requires external capacitors for regulator stability. This capacitor must be selected to meet the requirements of minimum capacitance and equivalent series resistance. We suggest to solder input and output capacitors as close as possible to the relative pins.

6.2 Input capacitor

An input capacitor whose value is 1 μ F is required with the LD2982 (amount of capacitance can be increased without limit). This capacitor must be located a distance of not more than 0.5" from the input pin of the device and returned to a clean analog ground. Any good quality ceramic, tantalum or film capacitors can be used for this capacitor.

6.3 Output capacitor

The LD2982 is designed specifically to work with ceramic output capacitors. It may also be possible to use tantalum capacitors, but these are not as attractive for reasons of size and cost. By the way, the output capacitor must meet both the requirement for minimum amount of capacitance and ESR (equivalent series resistance) value. Due to the different loop gain, the stability improves for higher output versions and so the suggested minimum output capacitor value, if low ESR ceramic type is used, is 1 μ F for output voltages equal or major than 3.8 V, 2.2 μ F for V_O going from 1.8 to 3.3 V, and 3.3 μ F for the other versions. However, if an output capacitor lower than the suggested one is used, it's possible to make stable the regulator adding a resistor in series to the capacitor.

6.4 Important

The output capacitor must maintain its ESR in the stable region over the full operating temperature to assure stability. Also, capacitor tolerance and variation with temperature must be considered to assure the minimum amount of capacitance is provided at all times. This capacitor should be located not more than 0.5" from the output pin of the device and returned to a clean analog ground.

6.5 Inhibit input operation


The inhibit pin can be used to turn OFF the regulator when pulled low, so drastically reducing the current consumption down to less than 1 μ A. When the inhibit feature is not used, this pin must be tied to V_I to keep the regulator output ON at all times. To assure proper operation, the signal source used to drive the inhibit pin must be able to swing above and below the specified thresholds listed in the electrical characteristics section under V_{IH} V_{II}. Any slew rate can be used to drive the inhibit.

Application notes LD2982BXX18

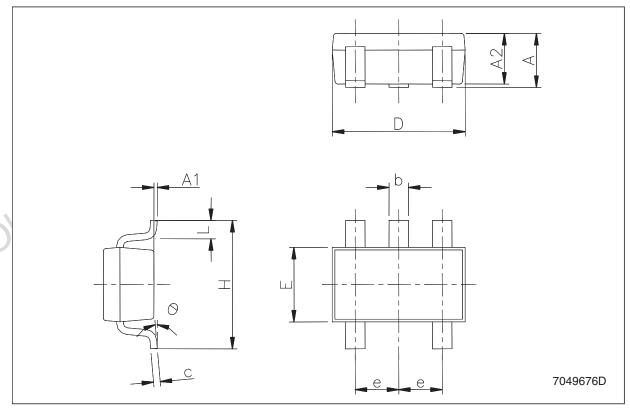
6.6 Reverse current

The power transistor used in the LD2982 has not an inherent diode connected between the regulator input and output. If the output is forced above the input, no current will flow from the output to the input across the series pass transistor. When a V_{REV} voltage is applied on the output, the reverse current measured flows to the GND across the two feedback resistors. This current typical value is 160 μA . R_1 and R_2 resistors are implanted type; typical values are, respectively, 42.6 $k\Omega$ and 51.150 $k\Omega$.

Figure 17. Reverse current test circuit

7 Package mechanical data

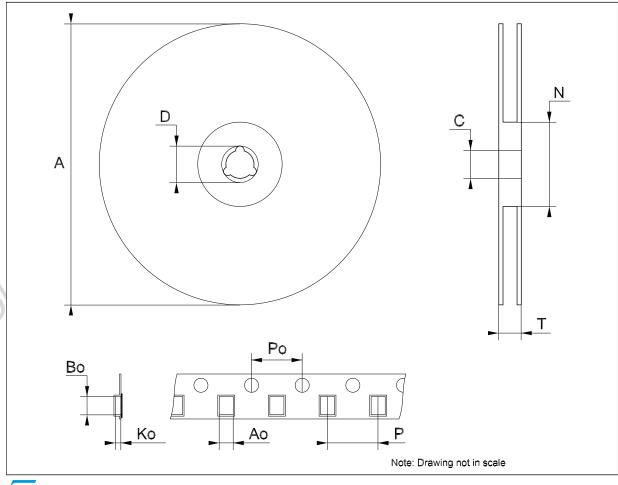
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.



Doc ID 8188 Rev 7

Obsolete Product(s). Obsolete Product(s)

SOT23-5L mechanical data


Dim.	mm.			mils.		
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.
А	0.90		1.45	35.4		57.1
A1	0.00		0.10	0.0		3.9
A2	0.90		1.30	35.4		51.2
b	0.35		0.50	13.7		19.7
С	0.09		0.20	3.5		7.8
D	2.80		3.00	110.2		118.1
E	1.50		1.75	59.0		68.8
е		0.95			37.4	
Н	2.60		3.00	102.3		118.1
L	0.10		0.60	3.9		23.6

5//

Tape & reel SOT23-xL mech	nanical	data
---------------------------	---------	------

Dim		mm.			inch.	
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
А			180			7.086
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
N	60			2.362		
Т			14.4			0.567
Ao	3.13	3.23	3.33	0.123	0.127	0.131
Во	3.07	3.17	3.27	0.120	0.124	0.128
Ko	1.27	1.37	1.47	0.050	0.054	0.0.58
Po	3.9	4.0	4.1	0.153	0.157	0.161
Р	3.9	4.0	4.1	0.153	0.157	0.161

Revision history LD2982BXX18

8 Revision history

Table 6. Document revision history

Date	Revision	on Changes	
25-Jul-2006	4	Order codes updated.	
14-Feb-2008	5	Added: Table 1 on page 1.	
10-Jul-2008	6	Modified: Table 1 on page 1 and Table 5 on page 6.	
29-Jul-2009	7	Modified: Table 1 on page 1.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 8188 Rev 7 17/17