

NE3513M04

Data Sheet R09DS0028EJ0100 Rev.1.00 Oct 18, 2011

N-Channel GaAs HJ-FET, X to Ku Band Low Noise and High-Gain

FEATURES

• Low noise figure and high associated gain:

NF = 0.45 dB TYP., G_a = 13 dB TYP. $@V_{DS}$ = 2 V, I_D = 10 mA, f = 12 GHz NF = 0.5 dB TYP., G_a = 12 dB TYP. $@V_{DS}$ = 2 V, I_D = 6 mA, f = 12 GHz (Reference Value)

• Flat-lead 4-pin thin-type super minimold (M04) package

APPLICATIONS

- DBS LNB gain-stage, Mix-stage
- Low noise amplifier for microwave communication system

ORDERING INFORMATION

Embossed tape 8 mm wide
Linbossed tape o min wide
• Pin 1 (Source), Pin 2 (Drain) face the perforation side of the
tape

Remark To order evaluation samples, please contact your nearby sales office.

Part number for sample order: NE3513M04-A

ABSOLUTE MAXIMUM RATINGS ($T_A = +25^{\circ}C$, unless otherwise specified)

Parameter	Symbol	Ratings	Unit
Drain to Source Voltage	V _{DS}	4.0	V
Gate to Source Voltage	V_{GS}	-3.0	V
Drain Current	I _D	I _{DSS}	mA
Gate Current	I _G	80	μΑ
Total Power Dissipation Note	P _{tot}	125	mW
Channel Temperature	T _{ch}	+125	°C
Storage Temperature	T _{stg}	-65 to +125	°C

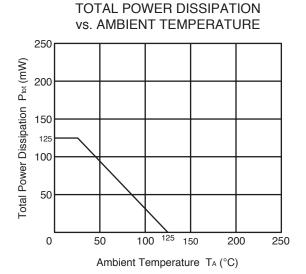
Note: Mounted on 1.08 cm² × 1.0 mm (t) glass epoxy PWB

CAUTION

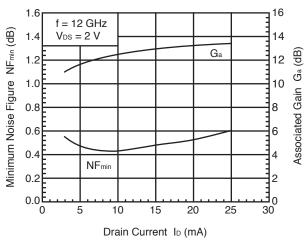
Observe precautions when handling because these devices are sensitive to electrostatic discharge.

RECOMMENDED OPERATING RANGE ($T_A = +25^{\circ}C$, unless otherwise specified)

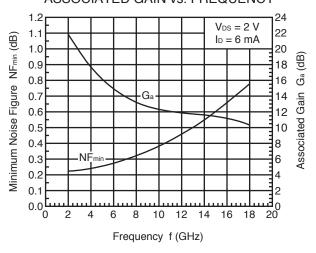
Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Drain to Source Voltage	V _{DS}	+1	+2	+3	V
Drain Current	I _D	3	10	15	mA
Input Power	P _{in}	_	_	0	dBm

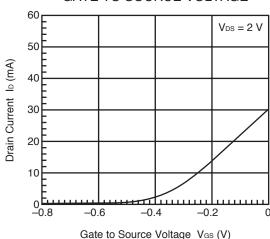

ELECTRICAL CHARACTERISTICS ($T_A = +25$ °C, unless otherwise specified)

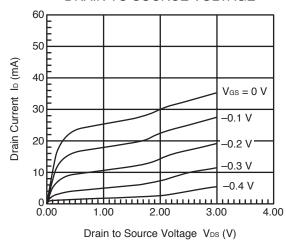
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Gate to Source Leak Current	I _{GSO}	V _{GS} = -3.0 V	ı	0.5	10	μ A
Saturated Drain Current	I _{DSS}	$V_{DS} = 2 \text{ V}, V_{GS} = 0 \text{ V}$	15	30	60	mA
Gate to Source Cut-off Voltage	V _{GS (off)}	$V_{DS} = 2 \text{ V}, I_D = 100 \ \mu\text{A}$	-0.2	-0.5	-1.3	V
Transconductance	gm	$V_{DS} = 2 \text{ V}, I_D = 10 \text{ mA}$	50	65	_	mS
Noise Figure	NF	$V_{DS} = 2 \text{ V}, I_D = 10 \text{ mA}, f = 12 \text{ GHz}$	_	0.45	0.65	dB
Associated Gain	Ga		11.5	13	_	dB

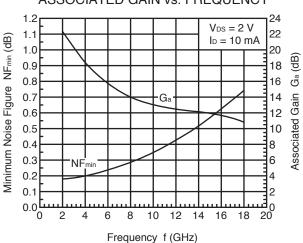

STANDARD CHARACTERISTICS FOR REFERENCE $(T_A = +25^{\circ}C, unless otherwise specified)$

Parameter	Symbol	Test Conditions	Reference Value	Unit
Noise Figure	NF	$V_{DS} = 2 \text{ V}, I_{D} = 6 \text{ mA}, f = 12 \text{ GHz}$	0.5	dB
Associated Gain	Ga		12	dB


TYPICAL CHARACTERISTICS (T_A = +25°C, unless otherwise specified)


MINIMUM NOISE FIGURE, ASSOCIATED GAIN vs. DRAIN CURRENT


MINIMUM NOISE FIGURE, ASSOCIATED GAIN vs. FREQUENCY


DRAIN CURRENT vs. GATE TO SOURCE VOLTAGE

DRAIN CURRENT vs. DRAIN TO SOURCE VOLTAGE

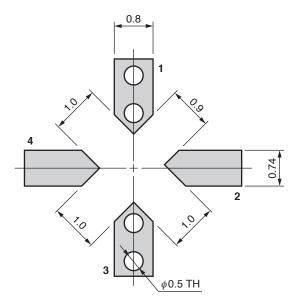
MINIMUM NOISE FIGURE, ASSOCIATED GAIN vs. FREQUENCY

Remark The graphs indicate nominal characteristics.

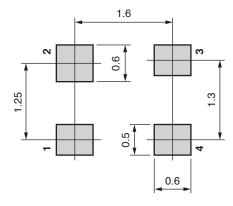
S-PARAMETERS

S-parameters/Noise-parameters are provided on our web site in a form (S2P) that enables direct import to a microwave circuit simulator without keyboard input.

Click here to download S-parameters.

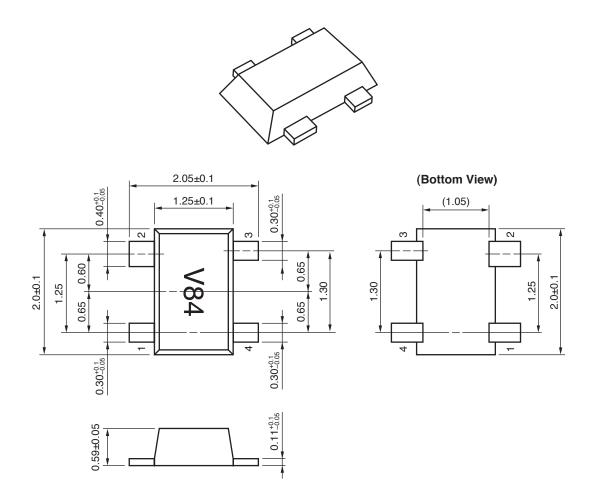

[RF and Microwave] [Device Parameters]

URL http://www2.renesas.com/microwave/


MOUNTING PAD DIMENSIONS

FLAT-LEAD 4-PIN THIN-TYPE SUPER MINIMOLD (M04) (UNIT: mm)

-Reference 1-


-Reference 2-

Remark The mounting pad layout in this document is for reference only.

PACKAGE DIMENSIONS

FLAT-LEAD 4-PIN THIN-TYPE SUPER MINIMOLD (M04) (UNIT: mm)

PIN CONNECTIONS

- 1. Source
- 2. Drain
- 3. Source
- 4. Gate

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions	Condition Symbol	
Infrared Reflow	Peak temperature (package surface temperature)	IR260	
	Time at peak temperature	: 10 seconds or less	
	Time at temperature of 220°C or higher	: 60 seconds or less	
	Preheating time at 120 to 180°C	: 120±30 seconds	
	Maximum number of reflow processes	: 3 times	
	Maximum chlorine content of rosin flux (% mass)	: 0.2% (Wt.) or below	
Partial Heating	Peak temperature (terminal temperature)	: 350°C or below	HS350
	Soldering time (per side of device)	: 3 seconds or less	
	Maximum chlorine content of rosin flux (% mass)	: 0.2% (Wt.) or below	

CA	J/	JT	IC)N

Do not use different soldering methods together (except for partial heating).

Caution

GaAs Products

This product uses gallium arsenide (GaAs).

GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.

- Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
 - Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
- 2. Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
- Do not burn, destroy, cut, crush, or chemically dissolve the product.
- Do not lick the product or in any way allow it to enter the mouth.

Revision History

NE3513M04 Data Sheet

		Description		
Rev.	Date	Page Summary		
1.00	Oct 18, 2011	-	First edition issued	