

SMP80MC

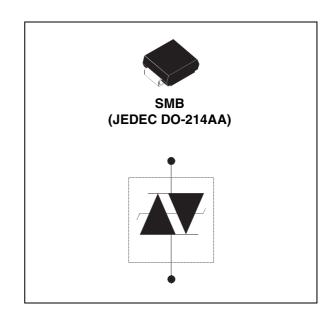
Trisil™ for telecom equipment protection

Features

- Bidirectional crowbar protection
- Voltage: range from 120 V to 320 V
- Low V_{BO} / V_R ratio
- Micro capacitance equal to 12 pF @ 50 V
- Low leakage current: I_B = 2 µA max
- Holding current: I_H = 150 mA min.
- Repetitive peak pulse current: $I_{PP} = 80 \text{ A} (10/1000 \mu\text{s})$

Benefits

- Trisils are not subject to ageing and provide a fail safe mode in short circuit for better protection.
- Helps equipment meet main standards such as UL60950, IEC 950 / CSA C22.2 and UL1459.
- Epoxy meets UL94, V0.
- Package is JEDEC registered (DO-214AA).


Complies with the following standards

- GR-1089 Core
- ITU-T-K20/K21
- IEC 61000-4-5
- TIA/EIA IS-968
- UL497B recognized, UL file E136224

Applications

Any sensitive equipment requiring protection against lightning strikes and power crossing:

Terminals (phone, fax, modem...) and central office equipment

Description

The SMP80MC is a series of micro capacitance transient surge arrestors designed for the protection of high debit rate communication equipment. Its micro capacitance avoids any distortion of the signal and is compatible with digital transmission like ADSL2 and ADSL2+.

TM: Trisil is a trademark of STMicroelectronics.

Characteristics SMP80MC

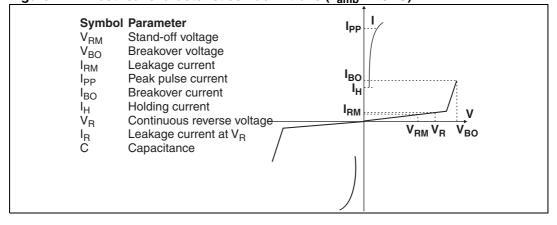
1 Characteristics

Table 1. In compliance with the following standards

Standard	Peak surge voltage (V)	Waveform voltage	neak current		Minimum serial resistor to meet standard (Ω)	
GR-1089 Core First level	2500 1000	2/10 μs 10/1000 μs	500 100	2/10 μs 10/1000 μs	5 2.5	
GR-1089 Core Second level	5000	2/10 µs	10 μs 500		10	
GR-1089 Core Intra-building	1500	2/10 µs	100	2/10 µs	0	
ITU-T-K20/K21	6000 1500	10/700 μs	150 37.5	5/310 µs	10 0	
ITU-T-K20 (IEC61000-4-2)	8000 15000	1/60 ns	ESD contact discharge ESD air discharge		0	
IEC61000-4-5	IEC61000-4-5 4000 4000		100 100	5/310 μs 8/20 μs	0	
TIA/EIA IS-968, lightning surge type A	1500 800	10/160 μs 10/560 μs	200 100	10/160 μs 10/560 μs	2.5 0	
TIA/EIA IS-968, lightning surge type B		9/720 µs	25	5/320 µs	0	

SMP80MC Characteristics

Table 2. Absolute ratings ($T_{amb} = 25 \,^{\circ}C$)


Symbol	Parameter	Conditions	Value	Unit
Ірр	Repetitive peak pulse current (see Figure 2)	10/1000 μs 8/20 μs 10/560 μs 5/310 μs 10/160 μs 1/20 μs 2/10 μs	80 200 100 120 150 200 250	А
I _{FS}	Fail-safe mode: maximum current (1)	8/20 µs	5	kA
ITSM	Non repetitive surge peak on-state current (sinusoidal)	t = 0.2 s t = 1 s t = 2 s t = 15 mn	14 8 6.5 2	A
l ² t	I ² t value for fusing	t = 16.6 ms t = 20 ms	7.5 7.8	A ² s
T _{stg}	Storage temperature range	-55 to 150	°C	
T _j	Operating junction temperature range	-40 to 150		
T _L	Maximum lead temperature for soldering during 10 s. 260			

^{1.} In fail safe mode the device acts as a short circuit.

Table 3. Thermal resistances

Symbol	Parameter	Value	Unit
R _{th(j-a)}	Junction to ambient (with recommended footprint)	100	°C/W
R _{th(j-l)}	Junction to leads	20	°C/W

Figure 1. Electrical characteristics - definitions ($T_{amb} = 25$ °C)

Characteristics SMP80MC

Table 4. Electrical characteristics - values ($T_{amb} = 25$ °C)

	I _{RM} @	♥ V _{RM}	I _R @	∮ V _R	Dynamic V _{BO} ⁽¹⁾		atic I _{BO} (2)	I _H ⁽³⁾	C ⁽⁴⁾	C ⁽⁵⁾
Types	max.		max.		max.	max.	max.	min.	typ.	typ.
	μA	v	μΑ	V	v	٧	mA	mA	рF	рF
SMP80MC-120		108		120	155	155				
SMP80MC-140		126		140	180	180				
SMP80MC-160		144		160	205	205				
SMP80MC-200	2	180	5	200	255	255	800	150	12	25
SMP80MC-230		207		230	295	295				
SMP80MC-270		243		270	345	345				
SMP80MC-320		290		320	400	400				

- 1. See Figure 10: Test circuit 1 for dynamic I_{BO} and V_{BO} parameters
- 2. See Figure 11: Test circuit 2 for I_{BO} and V_{BO} parameters
- 3. See Figure 12: Test circuit 3 for dynamic I_H parameter
- 4. $V_R = 50 \text{ V bias}, V_{RMS} = 1 \text{ V}, F = 1 \text{ MHz}$
- 5. $V_R = 2 V \text{ bias}, V_{RMS} = 1 V, F = 1 MHz$

SMP80MC Characteristics

Figure 2. Pulse waveform

Repetitive peak pulse current tr = rise time (μ s) tp = pulse duration time (μ s) t

Figure 3. Non repetitive surge peak on-state current versus overload duration

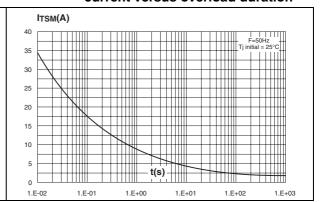
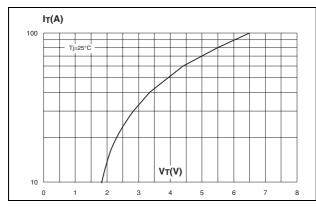



Figure 4. On-state voltage versus on-state current (typical values)

Figure 5. Relative variation of holding current versus junction temperature

IH[Tj] / IH[Tj=25°C]

2.0

1.8

1.6

1.4

1.2

1.0

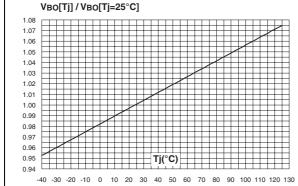
0.8

0.6

0.4

0.2

0.0


-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130

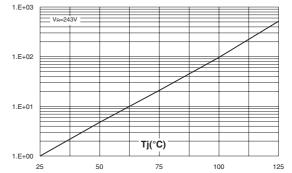

Figure 6. Relative variation of breakover voltage versus junction temperature

Figure 7. Relative variation of leakage current versus junction temperature (typical values)

IR[Tj] / IR[Tj=25°C]

1.E+03

Characteristics SMP80MC

Figure 9.

Figure 8. Variation of thermal impedance junction to ambient versus pulse duration

Relative variation of junction capacitance versus reverse voltage applied (typical values)

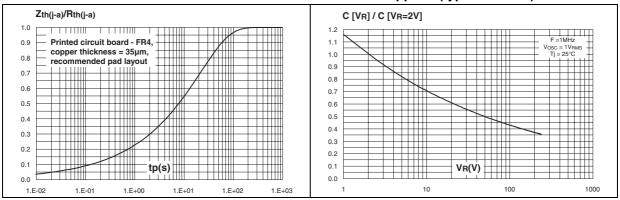
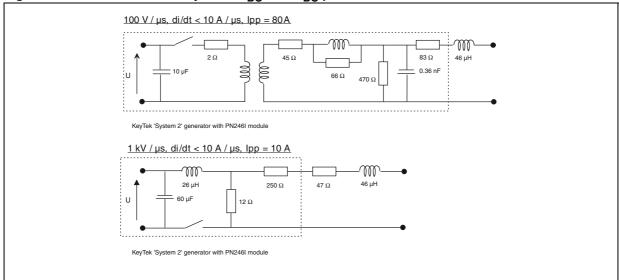



Figure 10. Test circuit 1 for dynamic I_{BO} and V_{BO} parameters

SMP80MC Characteristics

Figure 11. Test circuit 2 for I_{BO} and V_{BO} parameters

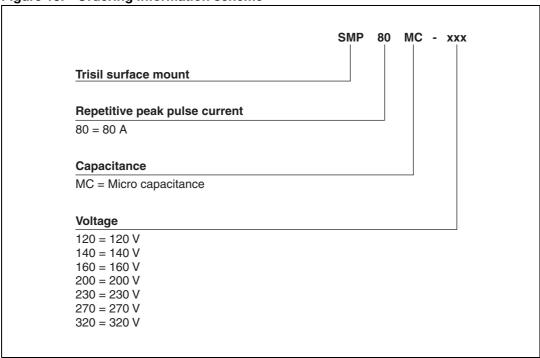



Figure 12. Test circuit 3 for dynamic I_H parameter

2 Ordering Information Scheme

Figure 13. Ordering information scheme

SMP80MC Package information

3 Package information

- Epoxy meets UL94, V0
- Lead-free package

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Table 5. SMB dimensions

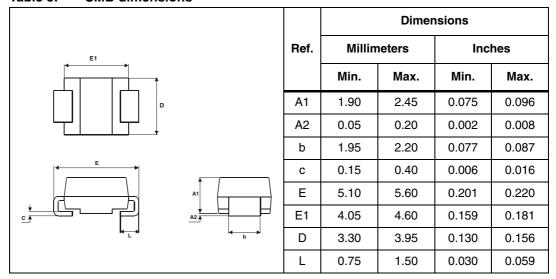
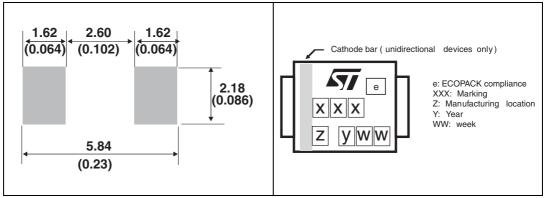



Figure 14. Footprint dimensions in mm (inches)

Figure 15. Marking layout⁽¹⁾

1. Marking layout can vary according to assembly location.

Ordering information SMP80MC

4 Ordering information

Table 6. Ordering information

Part Number	Marking	Package	Weight	Base qty	Delivery mode
SMP80MC-120	TP12				
SMP80MC-140	TP14				
SMP80MC-160	TP16				
SMP80MC-200	TP20	SMB	98 mg	2500	Tape and reel
SMP80MC-230	TP23				
SMP80MC-270	TP27				
SMP80MC-320	TP32				

5 Revision history

Table 7. Document revision history

- abio :					
Date	Revision Changes				
September-2001	1	First issue.			
11-May-2005	2	New types introduction.			
20-Jun-2005	3	Qualification of new types			
18-Jan-2007	4	Added product SMP80MC-320			
09-Feb-2012	5	Added UL statement in Complies with the following standards			

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 9702 Rev 5