

Fusible, Non-Flammable Metal Film Leaded Resistors

DESCRIPTION

A homogeneous film of metal alloy is deposited on a high grade ceramic body. After a helical groove has been cut in the resistive layer, tinned connecting wires of electrolytic copper are welded to the end-caps. The resistors are coated with a grey, flame retardant lacquer which provides electrical, mechanical, and climatic protection. The encapsulant is resistant to all cleaning solvents in accordance with **IEC 60068-2-45**.

FEATURES

- Technology: Metal film
- Overload protection without risk of fire
- Wide range of overload currents (refer Fusing Characteristics graphs)

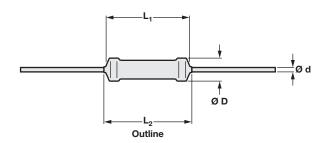
- Lead (Pb)-free solder contacts
- Pure tin plating provides compatibility with lead (Pb)-free and lead containing soldering processes
- Compatible to RoHS directive 2002/95/EC

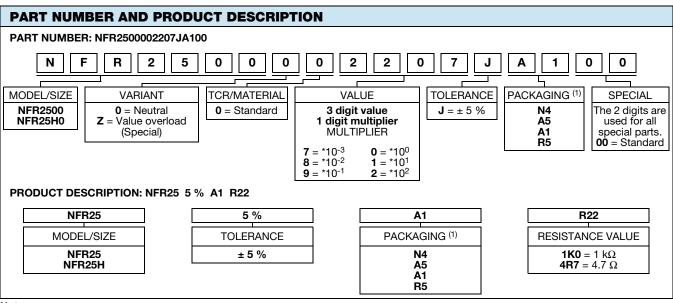
APPLICATIONS

- Audio
- Video

TECHNICAL SPECIFICATIONS					
DESCRIPTION	UNIT	NFR25	NFR25H		
Resistance Range (1)	Ω	0.22 to 15k	0.22 to 15k		
Resistance Tolerance	%	± 5	± 5		
Resistance Series		E24	E24		
Rated Dissipation, P ₇₀	W	0.33	0.5		
Thermal Resistance (R _{th})	K/W	240	150		
Temperature Coefficient					
$0.22 \Omega \le R \le 4.7 \Omega$		≤ ± 200	≤ ± 200		
$4.7~\Omega < R \le 15~\Omega$	ppm/K	≤ ± 200	≤ ± 100		
15 Ω < R ≤ 15 k Ω		≤ ± 100	≤ ± 100		
Operating Voltage, $U_{\rm max.}$ DC or RMS	V	250	350		
Basic Specifications		IEC 60 115-1	IEC 60 115-1		
Climatic Category (IEC 60068-1)		55/155/56	55/155/56		
Max. Resistance Change for Resistance Range, ΔR max., after:					
Load (1000 h, P ₇₀):		± (1 % R + 0.05 Ω)	± (1 % R + 0.05 Ω)		
Long Term Damp Heat Test (56 Days):		± (1 % R + 0.05 Ω)	± (1 % R + 0.05 Ω)		
Soldering (260 °C, 10 s):		± (0.25 % R + 0.05 Ω)	± (0.25 % R + 0.05 Ω)		

Notes

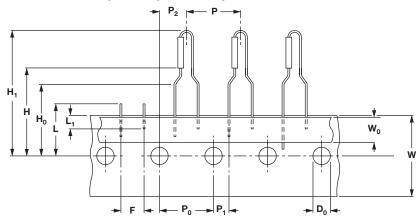

- R value is measured with probe distance of 24 mm ± 1 mm using 4-terminal method
- (1) Ohmic values (other than resistance range) are available on request


Fusible, Non-Flammable Metal Film Vishay BCcomponents Leaded Resistors

PACKAGING						
MODEL	TAPING	AMMOPACK		REEL		
WODEL		PIECES	CODE	PIECES	CODE	
NFR25, NFR25H	Axial, 52 mm	5000	A5	5000	R5	
NFN25, NFN25H	Axiai, 52 mm	1000	A1	3000		
NFR25, NFR25H	Radial	4000	N4	-	-	

DIMENSIONS

DIMENSIONS (Resistor Types, Mass and Relevant Physical Dimensions)						
TYPE	D _{max.} (mm) L _{1 max.} (mm) L _{2 max.} (mm) Ø d (mm) MASS (mg)					
NFR25	2.5	6.5	7.5	0.58 ± 0.05	201	
NFR25H	2.5	0.5	7.5	0.56 ± 0.05	201	


Notes

- The PART NUMBER is shown to facilitate the introduction of a unified part numbering system for ordering products
- (1) Please refer packaging table

Fusible, Non-Flammable Metal Film Leaded Resistors

PRODUCTS WITH RADIAL LEADS (NFR25, NFR25H)

DIMENSIONS (Radial Taping)					
SYMBOL	PARAMETER	VALUE	TOLERANCE	UNIT	
Р	Pitch of components	12.7	± 1.0	mm	
P ₀	Feed-hole pitch	12.7	± 0.2	mm	
P ₁	Feed-hole centre to lead at topside at the tape	3.85	± 0.5	mm	
P ₂	Feed-hole center to body center	6.35	± 1.0	mm	
F	Lead-to-lead distance	4.8	+ 0.7/- 0	mm	
W	Tape width	18.0	± 0.5	mm	
W ₀	Minimum hold down tape width	5.5	-	mm	
H ₁	Component height	29.0	Max.	mm	
H ₀	Lead wire clinch height	16.5	± 0.5	mm	
Н	Height of component from tape center	19.5	± 1	mm	
D ₀	Feed-hole diameter	4.0	± 0.2	mm	
L	Maximum length of snipped lead	11.0	-	mm	
L ₁	Minimum lead wire (tape portion) shortest lead	2.5	-	mm	

Note

MARKING

The nominal resistance and tolerance are marked on the resistor using four colored bands in accordance with IEC 60062, marking codes for resistors and capacitors.

For ease of recognition a fifth ring is added, which is violet for type NFR25 and white for type NFR25H.

OUTLINES

The length of the body (L_1) is measured by inserting the leads into holes of two identical gauge plates and moving these plates parallel to each other until the resistor body is clamped without deformation (IEC 60294).

FUNCTIONAL PERFORMANCE, PRODUCT CHARACTERIZATION

Standard values of nominal resistance are taken from the E24 series for resistors with a tolerance of \pm 5 %.

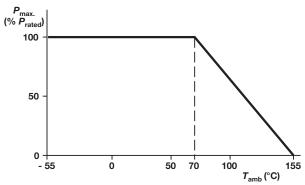
The values of the E24 series are in accordance with IEC 60063.

LIMITING VALUES					
TYPE	LIMITING VOLTAGE <i>U</i> ⁽¹⁾ (V)	LIMITING POWER P ₇₀ (W)			
NFR25	250	0.33			
NFR25H	350	0.5			

Note

[•] Please refer document number 28721 "Packaging" for more detail

⁽¹⁾ The maximum voltage that may be continuously applied to the resistor element, see IEC 60115-1. The maximum permissible hot-spot temperature is 155 °C.

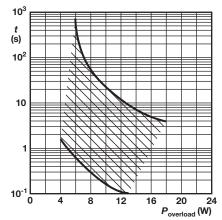


Fusible, Non-Flammable Metal Film Leaded Resistors

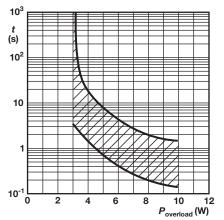
Vishay BCcomponents

DERATING

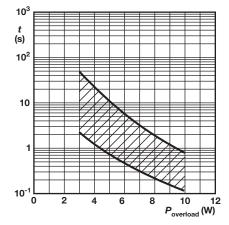
The power that the resistor can dissipate depends on the operating temperature.



Maximum dissipation (P_{max}) in percentage of rated power as a function of the ambient temperature (T_{amb})

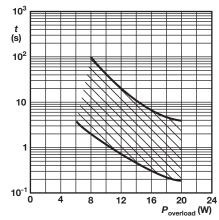

FUSING CHARACTERISTICS

The resistors will fuse without the risk of fire and within an indicated range of overload. Fusing means that the resistive value of the resistor increases at least 100 times.

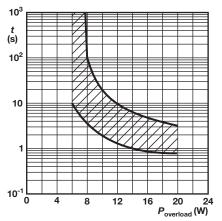

The fusing characteristic is measured under constant voltage.

NFR25 This graph is based on measured data which may deviate according to the application. Fusing Characteristics: \leq 1 Ω

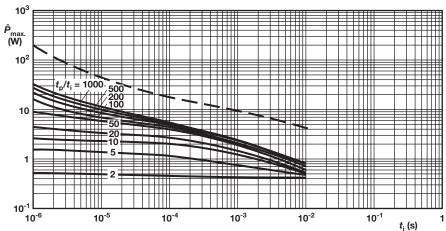
NFR25 This graph is based on measured data which may deviate according to the application. Fusing Characteristics: 1 $\Omega \le R \le$ 15 Ω



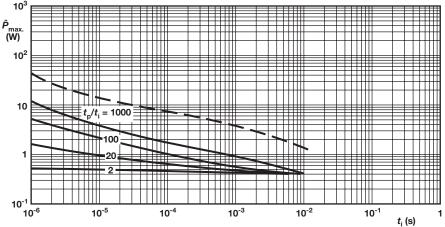
NFR25 This graph is based on measured data which may deviate according to the application. Fusing Characteristics: 15 $\Omega \le R \le$ 15 k Ω


Fusible, Non-Flammable Metal Film Leaded Resistors

FUSING CHARACTERISTICS



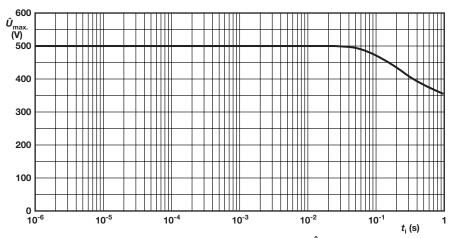
NFR25H This graph is based on measured data which may deviate according to the application. Fusing Characteristics: \leq 1 Ω

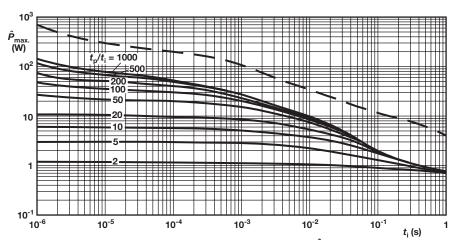


NFR25H This graph is based on measured data which may deviate according to the application. Fusing Characteristic: 1 $\Omega \le R \le 15 \text{ k}\Omega$

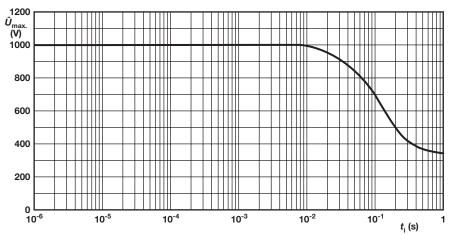
PULSE LOADING CAPABILITIES

NFR25 Pulse on a regular basis; maximum permissible peak pulse power (\hat{P}_{max}) as a function of pulse duration (t_i), 0.22 $\Omega \le R < 15 \Omega$


NFR25 Pulse on a regular basis; maximum permissible peak pulse power (\hat{P}_{max}) as a function of pulse duration (t_i), 15 $\Omega \le R \le 15$ k Ω

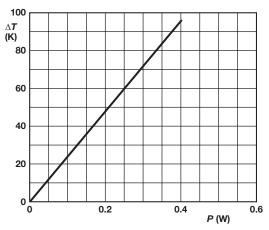

Fusible, Non-Flammable Metal Film Leaded Resistors

Vishay BCcomponents

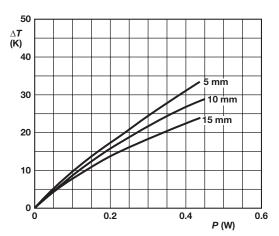

PULSE LOADING CAPABILITIES

NFR25 Pulse on a regular basis; maximum permissible peak pulse voltage $(\hat{U}_{max.})$ as a function of pulse duration (t_i)

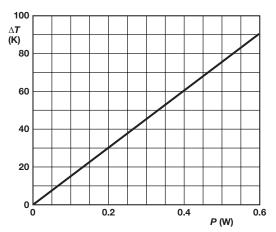
NFR25H Pulse on a regular basis; maximum permissible peak pulse power (\hat{P}_{max}) as a function of pulse duration (t_i)



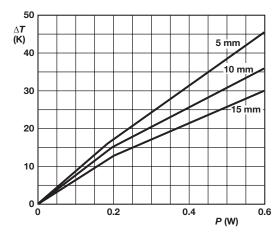
NFR25H Pulse on a regular basis; maximum permissible peak pulse voltage (\hat{U}_{max}) as a function of pulse duration (t_i)


Fusible, Non-Flammable Metal Film Leaded Resistors

APPLICATION INFORMATION



NFR25 Hot-spot temperature rise (ΔT) as a function of dissipated power



Minimum distance from resistor body to P.C.B. = 1 mm

NFR25 Temperature rise (ΔT) at thr lead end (soldering point) as a function of dissipated power at various lead lengths after mounting

NFR25H Hot-spot temperature rise (ΔT) as a function of dissipated power

Minimum distance from resistor body to P.C.B. = 1 mm

NFR25H Temperature rise (ΔT) at thr lead end (soldering point) as a function of dissipated power at various lead lengths after mounting

TESTS AND REQUIREMENTES

Essentially all tests are carried out in accordance with IEC 60115-1 specification, category LCT/UCT/56 (rated temperature range: Lower category temperature, upper category temperature; damp heat, long term, 56 days).

The tests are carried out in accordance with IEC 60068-2-xx test method, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to IEC 60068-1, 5.3.

In the Test Procedures and Requirements table the tests and requirements are listed with reference to the relevant clauses of IEC 60115-1 and IEC 60068-2-xx test methods. A short description of the test procedure is also given. In some instances deviations from the IEC recommendations were necessary for our method of specifying. For inflammability requirements reference is made to IEC 60115-1.

All soldering tests are performed with mildly activated flux.

Fusible, Non-Flammable Metal Film Vishay BCcomponents Leaded Resistors

IEC IEC 60068-2				REQUIREMENTS	
60115-1 CLAUSE	TEST METHOD	TEST	PROCEDURE	NFR25 NFR25H	
4.4.1		Visual examination		No holes; clean surface; no dama	
4.4.2		Dimensions (outline)	Gauge (mm)	See Dimensions Table	
4.5		Resistance (refer note on first page for measuring distance)	Applied voltage (+ 0 %/- 10 %): $R < 10 \Omega$: 0.1 V	<i>R - R</i> _{nom.} : max. ± 5 %	
4.18	20 (Tb)	Resistance to soldering heat	Thermal shock: 10 s; 260 °C; 3 mm from body	$\Delta R \text{ max.: } \pm (0.25 \% R + 0.05 \Omega)$	
4.29	45 (Xa)	Component solvent resistance	Isopropyl alcohol or H ₂ O followed by brushing	No visual damage	
4.17	20 (Ta)	Solderability	2 s; 235 °C: Solder bath method; SnPb40 3 s; 245 °C: Solder bath method; SnAg3Cu0.5	Good tinning (≥ 95 % covered); no damage	
		Solderability (after aging)	8 h steam or 16 h, 155 °C; leads immersed 6 mm; for 2 s at 235 °C: Solder bath (SnPb40) for 3 s at 245 °C: Solder bath (SnAg3Cu0.5) method	Good tinning (≥ 95 % covered) no damage	
4.7		Voltage proof on insulation	U _{RMS} = 500 V during 1 min; metal block method	No breakdown or flashover	
4.16		Robustness of terminations:			
4.16.2	21 (Ua1)	Tensile all samples	Load 10 N; 10 s	Number of failures $< 10 \times 10^{-6}$	
4.16.3	21 (Ub)	Bending half number of samples	Load 5 N; 4 x 90°	Number of failures < 10 x 10 ⁻⁶	
4.16.4	21 (Uc)	Torsion other half of samples	3 x 360° in opposite directions	No damage ΔR max.: \pm (0.25 % R + 0.05 Ω	
4.20	29 (Eb)	Bump	3 x 1500 bumps in 3 directions; 40 g	No damage ΔR max.: \pm (0.25 % R + 0.05 Ω)	
4.22	6 (Fc)	Vibration	Frequency 10 Hz to 500 Hz; displacement 1.5 mm or acceleration 10 g; 3 directions; total 6 h (3 x 2 h)	No damage ΔR max.: ± (0.25 % R + 0.05 Ω)	
4.19	14 (Na)	Rapid change of temperature	30 min at LCT and 30 min at UCT; 5 cycles	No visual damage ΔR max.: \pm (0.25 % R + 0.05 Ω)	
4.23 4.23.2	2 (Ba)	Climatic sequence: Dry heat	16 h; 155 °C		
4.23.3	30 (Db)	Damp heat (accelerated) 1st cycle	24 h; 55 °C; 90 % to 100 % RH		
4.23.4	1 (Aa)	Cold	2 h; - 55 °C		
4.23.5	13 (M)	Low air pressure Damp heat (accelerated)	2 h; 8.5 kPa; 15 °C to 35 °C	$R_{\rm ins}$ min.: $10^3~{ m M}\Omega$	
4.23.6	30 (Db)	remaining cycles	5 days; 55 °C; 95 % to 100 % RH	ΔR max.: \pm (1.5 % R + 0.1 Ω)	
4.24	78 (Cab)	Damp heat (steady state)	56 days; 40 °C; 90 % to 95 % RH; loaded with 0.01 P ₇₀ (IEC steps: 0 V to 100 V)	R_{ins} min.: 10 ³ MΩ ΔR max.: ± (1 % R + 0.05 Ω)	
4.25.1		Endurance (at 70 °C)	1000 h; loaded with P ₇₀ or U _{max.} ; 1.5 h ON and 0.5 h OFF	$\Delta R \text{ max.: } \pm (1 \% R + 0.05 \Omega)$	
4.25.3		Endurance at upper category temperature	1000 h; no load	ΔR max.: ± (1 % R + 0.05 Ω)	
4.8		Temperature coefficient	Between - 55 °C and + 155 °C $0.22~\Omega \le R \le 4.7~\Omega$ $4.7~\Omega < R \le 15~\Omega$ $15~\Omega < R \le 15~\kappa$	≤ ± 200 ppm/K ≤ ± 200 ppm/K ≤ ± 100 ppm/K ≤ ± 100 ppm/K ≤ ± 100 ppm	
4.12		Noise	IEC 60195	< 0.1 μV/V	
4.26		Accidental overload	Cheese-cloth	Non flammable	
4.6.1.1		Insulation resistance	Maximum voltage <i>U</i> _{max} . DC = 500 V after 1 min; metal block method	R_{ins} min.: $10^4~M\Omega$	

Document Number: 28737 Revision: 30-Mar-10 For technical questions, contact: filmresistorsleaded@vishay.com

NFR25, NFR25H

Vishay BCcomponents Fusible, Non-Flammable Metal Film Leaded Resistors

12NC INFORMATION FOR HISTORICAL CODING REFERENCE

- The resistors have a 12 digit numeric code starting with 23
- The subsequent 7 digits indicate the resistor type and packaging
- The remaining 3 digits indicate the resistance value:
 - The first 2 digits indicate the resistance value
 - The last digit indicates the resistance decade

Last Digit of 12NC Indicating Resistance Decade

RESISTANCE DECADE	LAST DIGIT
0.22 Ω to 0.91 Ω	7
1 Ω to 9.1 Ω	8
10 Ω to 91 Ω	9
100 Ω to 910 Ω	1
1 kΩ to 9.1 kΩ	2
10 k Ω to 15 k Ω	3

12NC Example

The 12NC of a NFR25 resistor with value 750 Ω , supplied on a bandolier of 1000 units in ammopack is: 2322 205 13751.

12NC (Resistors Type and Packaging)					
23					
TYPE	BANDOLIER IN AMMOPACK BANDOLIER O				
ITPE	RADIAL TAPED	STRAIGHT LEADS		STRAIGHT LEADS	
	4000 UNITS	1000 UNITS	5000 UNITS		
NFR25	06 204 03	22 205 13	22 205 33	22 205 23	
NFR25H	06 207 03	22 207 13	22 207 33	22 207 23	

For technical questions, contact: <u>filmresistorsleaded@vishay.com</u>

Document Number: 28737

Revision: 30-Mar-10

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000