Quad 2-input NAND Schmitt trigger Rev. 1 — 4 April 2013

General description 1.

The 74LVC132A-Q100 provides four 2-input NAND gates with Schmitt trigger inputs. It can transform slowly changing input signals into sharply defined, jitter-free output signals.

The inputs switch at different points for positive and negative-going signals. The difference between the positive voltage V_{T+} and the negative voltage V_{T-} is defined as the input hysteresis voltage V_H.

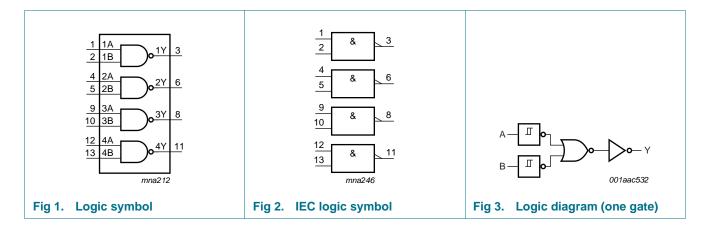
Inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of these devices as translators in mixed 3.3 V and 5 V environment.

This product has been gualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

Features and benefits 2.

- Automotive product gualification in accordance with AEC-Q100 (Grade 1) Specified from –40 °C to +85 °C and from –40 °C to +125 °C
- Wide supply voltage range from 1.2 V to 3.6 V
- 5 V tolerant inputs for interfacing with 5 V logic
- CMOS low-power consumption
- Direct interface with TTL levels
- Unlimited input rise and fall times
- Inputs accept voltages up to 5.5 V
- Complies with JEDEC standard JESD8-C/JESD36 (2.7 V to 3.6 V)
- ESD protection:
 - MIL-STD-883, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)
- Multiple package options

Applications 3.


- Wave and pulse shapers for highly noisy environments
- Astable multivibrator
- Monostable multivibrator.

4. Ordering information

Table 1. Ordering information							
Type number	Package						
	Temperature range	Name	Description	Version			
74LVC132AD-Q100	–40 °C to +125 °C	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1			
74LVC132APW-Q100	–40 °C to +125 °C	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1			
74LVC132ABQ-Q100	–40 °C to +125 °C	DHVQFN14	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body $2.5 \times 3 \times 0.85$ mm	SOT762-1			

5. Functional diagram

Quad 2-input NAND Schmitt trigger

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2.	Pin description	
Symbol	Pin	Description
1A	1	data input
1B	2	data input
1Y	3	data output
2A	4	data input
2B	5	data input
2Y	6	data output
GND	7	ground (0 V)
3Y	8	data output
3A	9	data input
3B	10	data input
4Y	11	data output
4A	12	data input
4B	13	data input
V _{CC}	14	supply voltage

Functional description 7.

Function table^[1] Table 3.

Input		Output
nA	nB	nY
L	L	Н
L	Н	Н
Н	L	Н
Н	Н	L

[1] H = HIGH voltage level;

L = LOW voltage level.

Limiting values 8.

Table 4. **Limiting values**

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+6.5	V
VI	input voltage		<u>[1]</u> –0.5	+6.5	V
Vo	output voltage		[2][3] -0.5	V _{CC} + 0.5	V
I _{IK}	input clamping current	V _I < 0 V	-50	-	mA
Ι _{ΟΚ}	output clamping current	$V_{\rm O}$ > $V_{\rm CC}$ or $V_{\rm O}$ < 0 V	-	±50	mA
lo	output current	$V_{O} = 0 V \text{ to } V_{CC}$	-	±50	mA
I _{CC}	supply current		-	100	mA
I _{GND}	ground current		-100	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \text{ °C to } +125 \text{ °C}$	<u>[4]</u> _	500	mW

[1] The minimum input voltage ratings may be exceeded if the input current ratings are observed.

- The output voltage ratings may be exceeded if the output current ratings are observed. [2]
- When V_{CC} = 0 V (Power-down mode), the output voltage can be 3.6 V in normal operation. [3]

For SO14 packages: Ptot derates linearly with 8 mW/K above 70 °C. [4] For TSSOP14 packages: Ptot derates linearly with 5.5 mW/K above 60 °C. For DHVQFN14 packages: Ptot derates linearly with 4.5 mW/K above 60 °C.

Recommended operating conditions 9.

Table 5.	Recommended operating conditions							
Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
V _{CC}	supply voltage		1.65	-	3.6	V		
		functional	1.2	-	-	V		
VI	input voltage		0	-	5.5	V		
Vo	output voltage		0	-	V _{CC}	V		
T _{amb}	ambient temperature		-40	-	+125	°C		

74LVC132A Q100 **Product data sheet**

Quad 2-input NAND Schmitt trigger

10. Static characteristics

Table 6. Static characteristics

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Мах	Unit
T _{amb} = -	40 °C to +85 °C					
V _{OH}	HIGH-level output voltage	$V_I = V_{T+}$ or V_{T-}				
		I_O = $-100~\mu\text{A};~V_{CC}$ = 1.65 V to 3.6 V	$V_{CC}-0.2$	-	-	V
		$I_{O} = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	$V_{CC}-0.45$	-	-	V
		$I_{O} = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	$V_{CC}-0.5$	-	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	$V_{CC}-0.5$	-	-	V
		$I_{O} = -18 \text{ mA}; V_{CC} = 3.0 \text{ V}$	$V_{CC}-0.6$	-	-	V
		$I_{O} = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	$V_{CC}-0.8$	-	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{T+} \text{ or } V_{T-}$				
		I_O = 100 $\mu\text{A};V_{CC}$ = 1.65 V to 3.6 V	-	-	0.2	V
		$I_{O} = 4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.45	V
		$I_0 = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.6	V
		I_{O} = 12 mA; V_{CC} = 2.7 V	-	-	0.4	V
		$I_{O} = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.55	V
l _l	input leakage current	V_{CC} = 3.6 V; V_{I} = 5.5 V or GND	-	±0.1	±5	μA
I _{CC}	supply current	V_{CC} = 3.6 V; V_{I} = V_{CC} or GND; I_{O} = 0 A	-	0.1	10	μA
∆l _{CC}	additional supply current	per input pin; V _{CC} = 2.7 V to 3.6 V; V _I = V _{CC} - 0.6 V; I _O = 0 A	-	5	500	μΑ
CI	input capacitance	V_{CC} = 0 V to 3.6 V; V_{I} = GND to V_{CC}	-	4.0	-	pF
T _{amb} = –	40 °C to +125 °C					
V _{ОН}	HIGH-level output voltage	$V_{I} = V_{T+} \text{ or } V_{T-}$				
		I_O = –100 $\mu\text{A};V_{CC}$ = 1.65 V to 3.6 V	$V_{CC}-0.3$	-	-	V
		$I_{O} = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	$V_{CC}-0.6$	-	-	V
		$I_O = -8$ mA; $V_{CC} = 2.3$ V	$V_{CC}-0.65$	-	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	$V_{CC}-0.65$	-	-	V
		$I_{O} = -18 \text{ mA}; V_{CC} = 3.0 \text{ V}$	$V_{CC}-0.75$	-	-	V
		$I_O = -24$ mA; $V_{CC} = 3.0$ V	$V_{CC}-1$	-	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{T+} \text{ or } V_{T-}$				
		I_O = 100 $\mu\text{A};V_{CC}$ = 1.65 V to 3.6 V	-	-	0.3	V
		$I_{O} = 4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.65	V
		$I_{O} = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.8	V
		$I_O = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	-	0.6	V
		$I_{O} = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.8	V
lı	input leakage current	V_{CC} = 3.6 V; V_{I} = 5.5 V or GND	-	-	±20	μA
I _{CC}	supply current	V_{CC} = 3.6 V; V_{I} = V_{CC} or GND; I_{O} = 0 A	-	-	40	μA
Δl _{CC}	additional supply current	per input pin; V _{CC} = 2.7 V to 3.6 V; V _I = V _{CC} - 0.6 V; I _O = 0 A	-	-	5	mA

[1] All typical values are measured at V_{CC} = 3.3 V (unless stated otherwise) and T_{amb} = 25 °C.

All information provided in this document is subject to legal disclaimers.

74LVC132A_Q100

5 of 16

Quad 2-input NAND Schmitt trigger

11. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 7.

Symbol	Parameter	Conditions	Conditions		–40 °C to +85 °C			–40 °C to +125 °C	
				Min	Typ <mark>[1]</mark>	Max	Min	Max	
t _{pd}	propagation delay	nA, nB to nY; see Figure 6	[2]						
		V _{CC} = 1.2 V		-	18.0	-	-	-	ns
		V_{CC} = 1.65 V to 1.95 V		2.0	7.2	12.8	2.0	16.0	ns
		V_{CC} = 2.3 V to 2.7 V		1.5	4.0	7.6	1.5	9.6	ns
		$V_{CC} = 2.7 V$		1.5	3.8	7.6	1.5	9.6	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		1.5	3.4	6.4	1.5	8.0	ns
t _{sk(o)}	output skew time		[3]	-	-	1.0	-	1.5	ns
C _{PD} power dissipation capacitance		per buffer; $V_I = GND$ to V_{CC}	[4]						
	capacitance	V_{CC} = 1.65 V to 1.95 V		-	10.5	-	-	-	pF
		V_{CC} = 2.3 V to 2.7 V		-	10.8	-	-	-	pF
		V_{CC} = 3.0 V to 3.6 V		-	11.4	-	-	-	pF

[1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.2 V, 1.8 V, 2.5 V, 2.7 V, and 3.3 V respectively.

[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

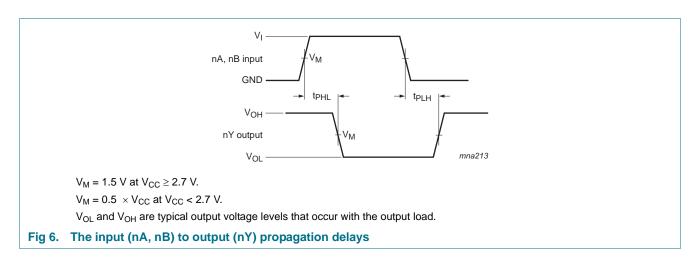
[3] Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.

[4] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \sum (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 f_i = input frequency in MHz;

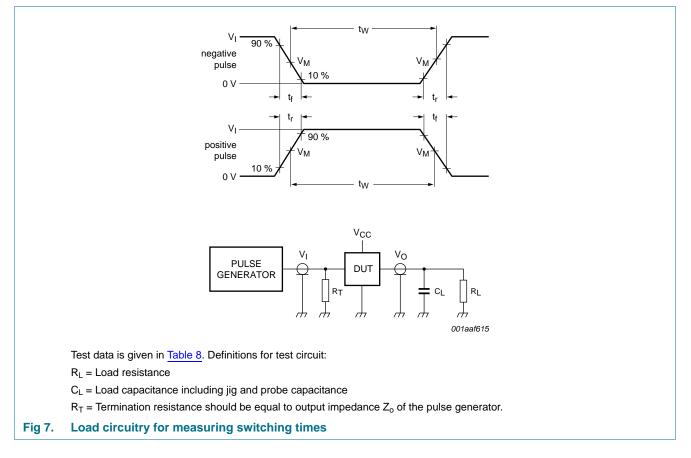
 $f_o = output frequency in MHz;$


 C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}{}^2 \times f_o)$ = sum of outputs.


12. Waveforms

NXP Semiconductors

74LVC132A-Q100

Quad 2-input NAND Schmitt trigger

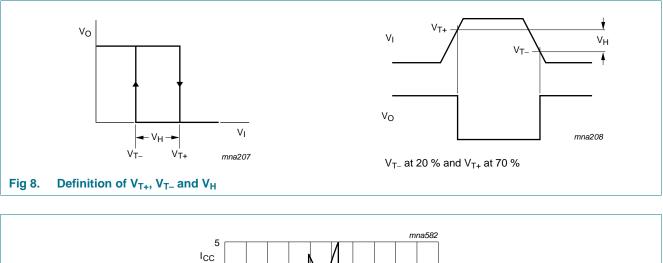
Table 8. Test data

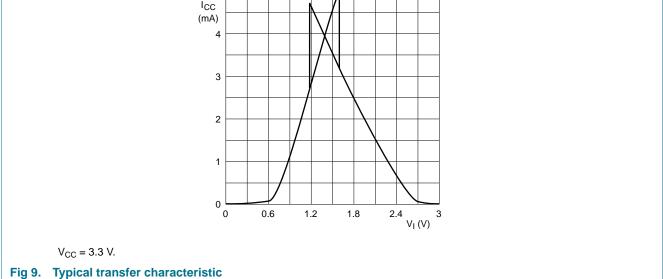
Supply voltage	Input		Load	Load		
	VI	t _r , t _f	C∟	RL		
1.2 V	V _{CC}	\leq 2 ns	30 pF	1 kΩ		
1.65 V to 1.95 V	V _{CC}	\leq 2 ns	30 pF	1 kΩ		
2.3 V to 2.7 V	V _{CC}	\leq 2 ns	30 pF	500 Ω		
2.7 V	2.7 V	\leq 2.5 ns	50 pF	500 Ω		
3.0 V to 3.6 V	2.7 V	\leq 2.5 ns	50 pF	500 Ω		

Quad 2-input NAND Schmitt trigger

13. Transfer characteristics

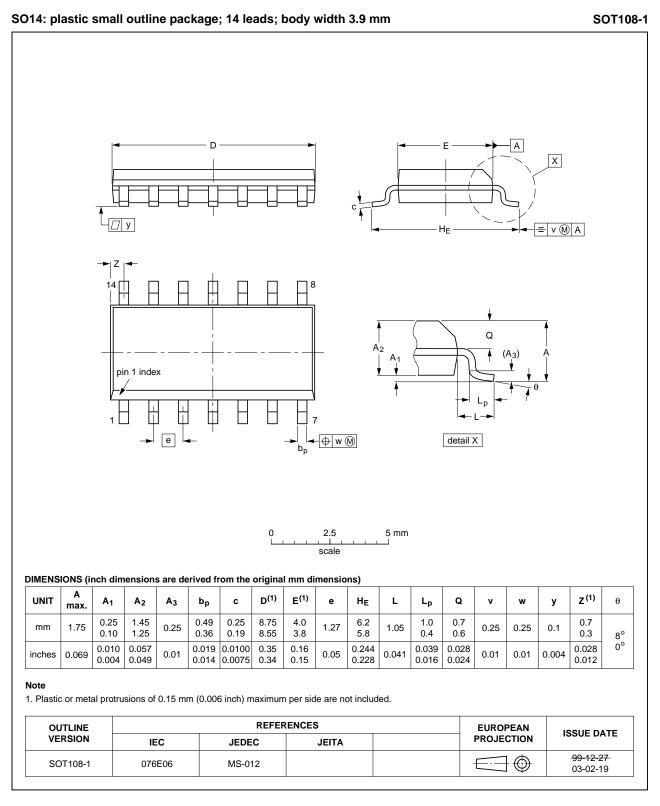
Table 9. Transfer characteristics


Voltages are referenced to GND (ground = 0 V); see <u>Figure 8</u>.


Symbol Parameter		Conditions		-40 °C 1	to +85 °C	–40 °C to	Unit	
				Min	Max	Min	Max	
V _{T+}	positive-going	V _{CC} = 1.2 V		0.2	1.0	0.2	1.0	V
	threshold voltage	V _{CC} = 1.65 V		0.4	1.3	0.4	1.3	V
		V _{CC} = 1.95 V		0.6	1.5	0.6	1.5	V
		$V_{CC} = 2.3 V$		0.8	1.7	0.8	1.7	V
		$V_{CC} = 2.5 V$		0.9	1.7	0.9	1.7	V
		$V_{CC} = 2.7 V$		1.1	2	1.1	2	V
		$V_{CC} = 3 V$		1.2	2	1.2	2	V
		V _{CC} = 3.6 V		1.2	2	1.2	2	V
V _{T-}	negative-going	V _{CC} = 1.2 V		0.12	0.75	0.12	0.75	V
	threshold voltage	V _{CC} = 1.65 V		0.15	0.85	0.15	0.85	V
		V _{CC} = 1.95 V		0.25	0.95	0.25	0.95	V
		$V_{CC} = 2.3 V$		0.4	1.1	0.4	1.1	V
		$V_{CC} = 2.5 V$		0.4	1.2	0.4	1.2	V
		$V_{CC} = 2.7 V$		0.8	1.4	0.8	1.4	V
		$V_{CC} = 3 V$		0.8	1.5	0.8	1.5	V
		V _{CC} = 3.6 V		0.8	1.5	0.8	1.5	V
V _H	hysteresis voltage	$(V_{T+} - V_{T-})$						
		V _{CC} = 1.2 V		0.1	1.0	0.1	1.0	V
		V _{CC} = 1.65 V		0.2	1.15	0.2	1.15	V
		V _{CC} = 1.95 V		0.2	1.25	0.2	1.25	V
		$V_{CC} = 2.3 V$		0.3	1.3	0.3	1.3	V
		$V_{CC} = 2.5 V$		0.3	1.3	0.3	1.3	V
		$V_{CC} = 2.7 V$		0.3	1.1	0.3	1.1	V
		$V_{CC} = 3 V$		0.3	1.2	0.3	1.2	V
		V _{CC} = 3.6 V	<u>[1]</u>	0.3	1.2	0.3	1.2	V

[1] Typical transfer characteristic is displayed in Figure 9.

Quad 2-input NAND Schmitt trigger


14. Waveforms transfer characteristics

Quad 2-input NAND Schmitt trigger

15. Package outline

Fig 10. Package outline SOT108-1 (SO14)

All information provided in this document is subject to legal disclaimers.

74LVC132A_Q100

Quad 2-input NAND Schmitt trigger

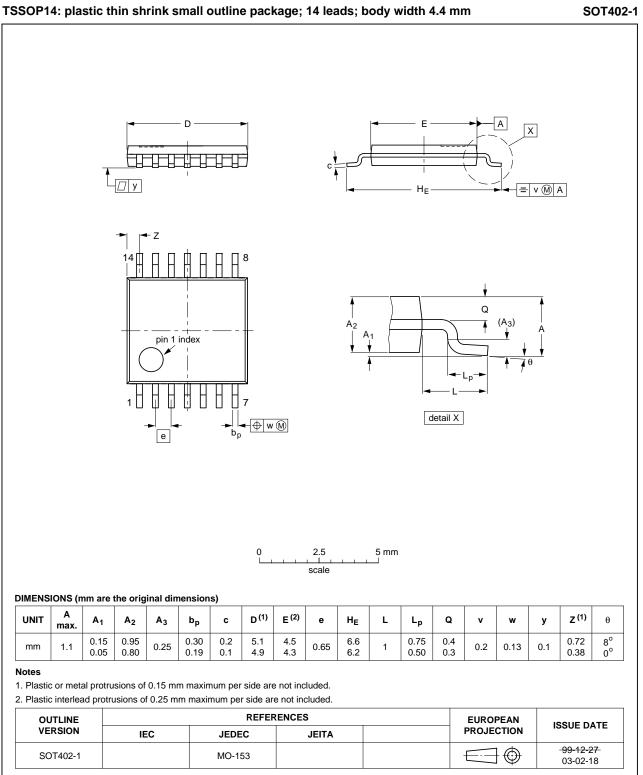
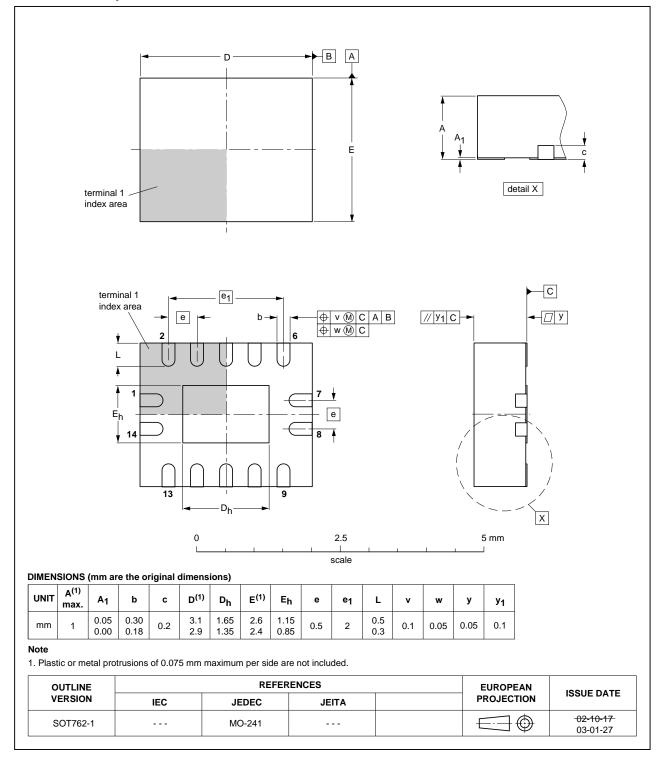



Fig 11. Package outline SOT402-1 (TSSOP14)

74LVC132A_Q100

DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body 2.5 x 3 x 0.85 mm SOT762-1

Fig 12. Package outline SOT762-1 (DHVQFN14)

All information provided in this document is subject to legal disclaimers.

74LVC132A_Q100

Quad 2-input NAND Schmitt trigger

16. Abbreviations

Table 10.	Abbreviations
Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MIL	Military
MM	Machine Model
TTL	Transistor-Transistor Logic

17. Revision history

Table 11. Revision history					
Document ID	Release date	Data sheet status	Change notice	Supersedes	
74LVC132A_Q100 v.1	20130404	Product data sheet	-	-	

18. Legal information

18.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

18.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

18.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications - This NXP

Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Quad 2-input NAND Schmitt trigger

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

18.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

19. Contact information

For more information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, please send an email to: salesaddresses@nxp.com

Quad 2-input NAND Schmitt trigger

20. Contents

1	General description 1
2	Features and benefits 1
3	Applications 1
4	Ordering information 2
5	Functional diagram 2
6	Pinning information 3
6.1	Pinning 3
6.2	Pin description 3
7	Functional description 4
8	Limiting values 4
9	Recommended operating conditions 4
10	Static characteristics 5
11	Dynamic characteristics 6
12	Waveforms
13	Transfer characteristics 8
14	Waveforms transfer characteristics
15	Package outline 10
16	Abbreviations 13
17	Revision history 13
18	Legal information 14
18.1	Data sheet status 14
18.2	Definitions 14
18.3	Disclaimers 14
18.4	Trademarks 15
19	Contact information 15
20	Contents 16

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2013.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 4 April 2013 Document identifier: 74LVC132A_Q100