PSMN3R0-60BS

N-channel 60 V 3.2 mΩ standard level MOSFET in D2PAK Rev. 1 — 22 March 2012 Product data

Product data sheet

Product profile

1.1 General description

Standard level N-channel MOSFET in a D2PAK package qualified to 175 °C. This product is designed and qualified for use in a wide range of industrial, communications and domestic equipment.

1.2 Features and benefits

- High efficiency due to low switching and conduction losses
- Suitable for standard level gate drive sources

1.3 Applications

- DC-to-DC converters
- Load switching

- Motor control
- Server power supplies

1.4 Quick reference data

Table 1. Quick reference data

Parameter	Conditions		Min	Тур	Max	Unit
drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C		-	-	60	V
drain current	T_{mb} = 25 °C; V_{GS} = 10 V; see Figure 1	[1]	-	-	100	Α
total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	-	306	W
junction temperature			-55	-	175	°C
acteristics						
drain-source on-state resistance	$V_{GS} = 10 \text{ V}; I_D = 25 \text{ A}; T_j = 100 °C;$ see <u>Figure 12</u> ; see <u>Figure 13</u>		-	4.32	5.1	mΩ
	$V_{GS} = 10 \text{ V; } I_D = 25 \text{ A; } T_j = 25 \text{ °C;}$ see Figure 13		-	2.7	3.2	mΩ
naracteristics						
gate-drain charge	$V_{GS} = 10 \text{ V}; I_D = 25 \text{ A}; V_{DS} = 30 \text{ V};$		-	28	-	nC
total gate charge	see Figure 14; see Figure 15		-	130	-	nC
ruggedness						
non-repetitive drain-source avalanche energy	V_{GS} = 10 V; $T_{j(init)}$ = 25 °C; I_D = 100 A; V_{sup} ≤ 60 V; R_{GS} = 50 Ω ; unclamped		-	-	800	mJ
	drain-source voltage drain current total power dissipation junction temperature acteristics drain-source on-state resistance paracteristics gate-drain charge total gate charge ruggedness non-repetitive drain-source	drain-source voltage $T_j \ge 25 ^{\circ}\text{C}; T_j \le 175 ^{\circ}\text{C}$ drain current $T_{mb} = 25 ^{\circ}\text{C}; V_{GS} = 10 \text{V};$ $see \underline{Figure} 1$ total power dissipation $T_{mb} = 25 ^{\circ}\text{C}; see \underline{Figure} 2$ junction temperature deteristics drain-source on-state resistance $V_{GS} = 10 \text{V}; I_D = 25 \text{A}; T_j = 100 ^{\circ}\text{C};$ $see \underline{Figure} 12; see \underline{Figure} 13$ $V_{GS} = 10 \text{V}; I_D = 25 \text{A}; T_j = 25 ^{\circ}\text{C};$ $see \underline{Figure} 13$ varacteristics gate-drain charge $V_{GS} = 10 \text{V}; I_D = 25 \text{A}; V_{DS} = 30 \text{V};$ total gate charge $V_{GS} = 10 \text{V}; I_D = 25 \text{A}; V_{DS} = 30 \text{V};$ total gate charge $V_{GS} = 10 \text{V}; I_D = 25 \text{A}; V_{DS} = 30 \text{V};$ $v_{GS} = 10 \text{V}; v_{DS} = 25 \text{C};$ $v_{CS} = 10 \text{V}; v_{CS} = 10 \text{V}; v_{CS} = 10 \text{V};$ $v_{CS} = 10 $	drain-source voltage $T_j \ge 25 ^{\circ}\text{C}; T_j \le 175 ^{\circ}\text{C}$ drain current $T_{mb} = 25 ^{\circ}\text{C}; V_{GS} = 10 \text{V}; \text{II}$ total power dissipation $T_{mb} = 25 ^{\circ}\text{C}; \text{see Figure 2}$ junction temperature deteristics drain-source on-state resistance $V_{GS} = 10 \text{V}; I_D = 25 \text{A}; T_j = 100 ^{\circ}\text{C}; \text{see Figure 12}; \text{see Figure 13}$ $V_{GS} = 10 \text{V}; I_D = 25 \text{A}; T_j = 25 ^{\circ}\text{C}; \text{see Figure 13}$ varacteristics gate-drain charge $V_{GS} = 10 \text{V}; I_D = 25 \text{A}; V_{DS} = 30 \text{V}; \text{see Figure 14}; \text{see Figure 15}$ ruggedness non-repetitive drain-source avalanche energy $V_{GS} = 10 \text{V}; T_{j(init)} = 25 ^{\circ}\text{C}; I_D = 100 \text{A}; V_{sup} \le 60 \text{V}; R_{GS} = 50 \Omega;$	drain-source voltage $T_j \ge 25 ^{\circ}\text{C}; T_j \le 175 ^{\circ}\text{C}$ - drain current $T_{mb} = 25 ^{\circ}\text{C}; V_{GS} = 10 \text{V};$ [1] - see Figure 1 total power dissipation $T_{mb} = 25 ^{\circ}\text{C}; \text{see Figure 2}$ - junction temperature -55 drain-source on-state resistance $V_{GS} = 10 \text{V}; I_D = 25 \text{A}; T_j = 100 ^{\circ}\text{C};$ - see Figure 12; see Figure 13 $V_{GS} = 10 \text{V}; I_D = 25 \text{A}; T_j = 25 ^{\circ}\text{C};$ - see Figure 13 $V_{GS} = 10 \text{V}; I_D = 25 \text{A}; T_j = 25 ^{\circ}\text{C};$ - see Figure 13 $V_{GS} = 10 \text{V}; I_D = 25 \text{A}; V_{DS} = 30 \text{V};$ total gate charge $V_{GS} = 10 \text{V}; I_D = 25 \text{A}; V_{DS} = 30 \text{V};$ see Figure 14; see Figure 15 - $V_{GS} = 10 \text{V}; V_{SS} = 30 \text{V};$ - see Figure 15 - $V_{SS} = 10 \text{V}; V_{SS} = 10 \text{V}; V_{S$	drain-source voltage $T_j \ge 25 ^{\circ}\text{C}; T_j \le 175 ^{\circ}\text{C}$ drain current $T_{mb} = 25 ^{\circ}\text{C}; V_{GS} = 10 \text{V};$ see Figure 1 see Figure 2 junction temperature -55 - deteristics drain-source on-state resistance $V_{GS} = 10 \text{V}; I_D = 25 \text{A}; T_j = 100 ^{\circ}\text{C};$ - 4.32 see Figure 12; see Figure 13 $V_{GS} = 10 \text{V}; I_D = 25 \text{A}; T_j = 25 ^{\circ}\text{C};$ - 2.7 see Figure 13 $V_{GS} = 10 \text{V}; I_D = 25 \text{A}; V_{DS} = 30 \text{V};$ see Figure 14; see Figure 15 - 130 ruggedness non-repetitive drain-source avalanche energy $V_{GS} = 10 \text{V}; T_{j(init)} = 25 ^{\circ}\text{C};$	drain-source voltage $T_j \ge 25 ^{\circ}\text{C}; T_j \le 175 ^{\circ}\text{C}$ 60 drain current $T_{mb} = 25 ^{\circ}\text{C}; V_{GS} = 10 \text{V};$ $11 - - 100 \text{C}$ see Figure 1 - 306 junction temperature $T_{mb} = 25 ^{\circ}\text{C}; \text{see Figure 2}$ 306 junction temperature $T_{mb} = 25 ^{\circ}\text{C}; \text{see Figure 2}$ 175 interestics $ \frac{\text{drain-source on-state}}{\text{drain-source on-state}} \frac{V_{GS} = 10 \text{V}; I_D = 25 \text{A}; T_j = 100 ^{\circ}\text{C}; - 2.7 3.2 \text{See Figure 13} \text{V}_{GS} = 10 \text{V}; I_D = 25 \text{A}; T_j = 25 ^{\circ}\text{C}; - 2.7 3.2 \text{See Figure 13} \text{V}_{GS} = 10 \text{V}; I_D = 25 \text{A}; V_{DS} = 30 \text{V}; - 28 - \text{See Figure 14}; \text{see Figure 15} \text{See Figure 15} \text{See Figure 16} See Figure 16$

^[1] Continuous current is limited by package

2. Pinning information

Table 2. Pinning information

I GOIO E.		, information		
Pin	Symbol	Description	Simplified outline	Graphic symbol
1	G	gate		
2	D	drain ^[1]	mb	D
3	S	source		
mb	D	mounting base; connected to drain		mbb076 S
			SOT404 (D2PAK)	

^[1] It is not possible to make connection to pin 2

3. Ordering information

Table 3. Ordering information

Type number	Package		
	Name	Description	Version
PSMN3R0-60BS	D2PAK	plastic single-ended surface-mounted package (D2PAK); 3 leads (one lead cropped)	SOT404

4. Marking

Table 4. Marking codes

Type number	Marking code
PSMN3R0-60BS	PSMN3R0-60BS

5. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

		9 , (
Symbol	Parameter	Conditions		Min	Max	Unit
V_{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C		-	60	V
V_{DGR}	drain-gate voltage	$T_j \ge 25$ °C; $T_j \le 175$ °C; $R_{GS} = 20$ kΩ		-	60	V
V_{GS}	gate-source voltage			-20	20	V
I_D	drain current	$V_{GS} = 10 \text{ V}; T_{mb} = 100 \text{ °C}; \text{ see } \frac{\text{Figure 1}}{}$	<u>[1]</u>	-	83.4	Α
		$V_{GS} = 10 \text{ V}; T_{mb} = 25 \text{ °C}; \text{ see } \frac{\text{Figure 1}}{\text{Model}}$	<u>[1]</u>	-	100	Α
I _{DM}	peak drain current	pulsed; $t_p \le 10 \mu s$; $T_{mb} = 25 \degree C$; see Figure 3		-	824	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	306	W
T _{stg}	storage temperature			-55	175	°C
Tj	junction temperature			-55	175	°C
T _{sld(M)}	peak soldering temperature			-	260	°C
Source-dra	ain diode					
Is	source current	T _{mb} = 25 °C	<u>[1]</u>	-	100	Α
I _{SM}	peak source current	pulsed; $t_p \le 10 \ \mu s$; $T_{mb} = 25 \ ^{\circ}C$		-	824	Α
Avalanche	ruggedness					
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	V_{GS} = 10 V; $T_{j(init)}$ = 25 °C; I_D = 100 A; V_{sup} ≤ 60 V; R_{GS} = 50 Ω; unclamped		-	800	mJ

[1] Continuous current is limited by package

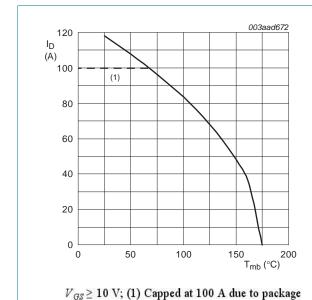


Fig 1. Continuous drain current as a function of mounting base temperature.

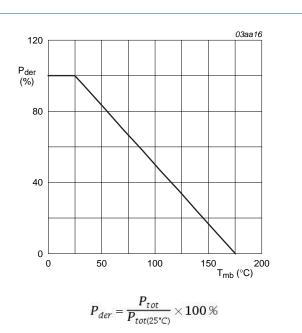


Fig 2. Normalized total power dissipation as a function of mounting base temperature

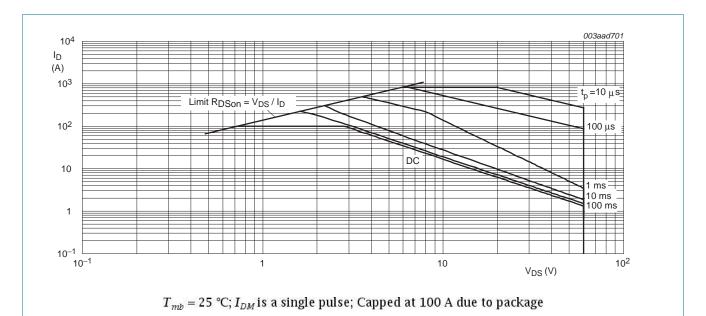


Fig 3. Safe operating area; continuous and peak drain currents as a function of drain-source voltage

6. Thermal characteristics

Table 6. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-mb)}$	thermal resistance from junction to mounting base	see Figure 4	-	0.3	0.49	K/W
$R_{th(j-a)}$	thermal resistance from junction to ambient	Minimum footprint; mounted in a printed circuit board	-	50	-	K/W

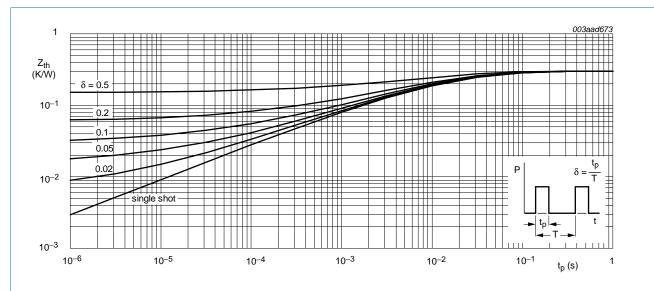


Fig 4. Transient thermal impedance from junction to mounting base as a function of pulse duration

7. Characteristics

Table 7. Characteristics

	Typ 3 - 0.05 - 10 10 4.32 6.21	Max 4 - 4.6 10 500 100 5.1 7.3	V V V V µA µA nA nA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 0.05 - 10 10 4.32 6.21	- 4 - 4.6 10 500 100 100 5.1	V V V V μΑ μΑ nA
$V_{GS(th)} \qquad \text{voltage} \qquad I_D = 250 \ \mu\text{A; } V_{GS} = 0 \ V; \ T_j = 25 \ ^{\circ}\text{C} \qquad 60$ $V_{GS(th)} \qquad \text{gate-source threshold voltage} \qquad I_D = 1 \ \text{mA; } V_{DS} = V_{GS;} \ T_j = 25 \ ^{\circ}\text{C}; \qquad 2 \\ \text{see Figure 10; see Figure 11} \qquad 2 \\ \text{V}_{GSth} \qquad \text{gate-source threshold voltage} \qquad I_D = 1 \ \text{mA; } V_{DS} = V_{GS;} \ T_j = 175 \ ^{\circ}\text{C}; \qquad 1 \\ \text{see Figure 11} \qquad I_D = 1 \ \text{mA; } V_{DS} = V_{GS;} \ T_j = 175 \ ^{\circ}\text{C}; \qquad 1 \\ \text{see Figure 11} \qquad I_D = 1 \ \text{mA; } V_{DS} = V_{GS;} \ T_j = 175 \ ^{\circ}\text{C}; \qquad 1 \\ \text{see Figure 11} \qquad I_D = 1 \ \text{mA; } V_{DS} = 0 \ \text{V; } V_j = 25 \ ^{\circ}\text{C}; \qquad 1 \\ \text{see Figure 11} \qquad V_{DS} = 60 \ \text{V; } V_{GS} = 0 \ \text{V; } V_j = 25 \ ^{\circ}\text{C}; \qquad 1 \\ \text{V}_{DS} = 60 \ \text{V; } V_{DS} = 0 \ \text{V; } V_j = 25 \ ^{\circ}\text{C}; \qquad 1 \\ \text{V}_{GS} = 20 \ \text{V; } V_{DS} = 0 \ \text{V; } V_j = 25 \ ^{\circ}\text{C}; \qquad 1 \\ \text{V}_{GS} = 20 \ \text{V; } V_{DS} = 0 \ \text{V; } V_j = 25 \ ^{\circ}\text{C}; \qquad 1 \\ \text{V}_{GS} = 20 \ \text{V; } V_{DS} = 0 \ \text{V; } V_j = 25 \ ^{\circ}\text{C}; \qquad 1 \\ \text{V}_{GS} = 20 \ \text{V; } V_{DS} = 0 \ \text{V; } V_j = 25 \ ^{\circ}\text{C}; \qquad 1 \\ \text{V}_{GS} = 10 \ \text{V; } I_j = 25 \ ^{\circ}\text{C}; \qquad 1 \\ \text{See Figure 12; see Figure 13}; \qquad V_{GS} = 10 \ \text{V; } I_j = 25 \ ^{\circ}\text{C}; \qquad 1 \\ \text{See Figure 13}; \qquad V_{GS} = 10 \ \text{V; } I_j = 25 \ ^{\circ}\text{C}; \qquad 1 \\ \text{See Figure 13}; \qquad V_{GS} = 10 \ \text{V; } I_j = 25 \ ^{\circ}\text{C}; \qquad 1 \\ \text{See Figure 13}; \qquad V_{GS} = 10 \ \text{V; } I_j = 25 \ ^{\circ}\text{C}; \qquad 1 \\ \text{See Figure 13}; \qquad V_{GS} = 10 \ \text{V; } I_j = 25 \ ^{\circ}\text{C}; \qquad 1 \\ \text{See Figure 14}; \qquad See Figure 15 \qquad 1 \\ \text{See Figure 15}; \qquad I_j = 25 \ ^{\circ}\text{C}; \qquad 1 \\ \text{See Figure 16}; \qquad I_j = 25 \ ^{\circ}\text{C}; \qquad 1 \\ \text{See Figure 17}; \qquad I_j = 25 \ ^{\circ}\text{C}; \qquad 1 \\ \text{See Figure 19}; \qquad I_j = 25 \ ^{\circ}\text{C}; \qquad 1 \\ \text{See Figure 19}; \qquad I_j = 25 \ ^{\circ}\text{C}; \qquad 1 \\ \text{See Figure 19}; \qquad I_j = 25 \ ^{\circ}\text{C}; \qquad 1 \\ \text{See Figure 19}; \qquad I_j = 25 \ ^{\circ}\text{C}; \qquad 1 \\ \text{See Figure 19}; \qquad I_j = 25 \ ^{\circ}\text{C}; \qquad 1 \\ \text{See Figure 19}; \qquad I_j = 25 \ ^{\circ}\text{C}; \qquad 1 \\ \text{See Figure 19}; \qquad I_j = 25 \ ^{\circ}\text{C}; \qquad 1 \\ \text{See Figure 19}; \qquad I_j = 25 \ ^{\circ}\text{C}; \qquad 1 \\ \text{See Figure 19}; \qquad I_j = 25 \ ^$	- 0.05 - 10 10 4.32 6.21	- 4 - 4.6 10 500 100 100 5.1	V V V V μΑ μΑ nA
$V_{GS(th)} \text{gate-source threshold voltage} \begin{array}{l} I_D = 1 \text{ mA; } V_{DS} = V_{GS}, T_j = 25 ^{\circ}\text{C}; \\ \text{see Figure 10; see Figure 11} \\ \hline V_{GSth} \text{gate-source threshold voltage} \\ V_{DS} = 1 \text{ mA; } V_{DS} = V_{GS}; T_j = 175 ^{\circ}\text{C}; \\ \text{see Figure 11} \\ \hline I_D = 1 \text{ mA; } V_{DS} = V_{GS}; T_j = -55 ^{\circ}\text{C}; \\ \text{see Figure 11} \\ \hline I_{DS} \text{drain leakage current} \\ \hline V_{DS} = 60 \text{V; } V_{GS} = 0 \text{V; } T_j = 25 ^{\circ}\text{C} \\ \hline V_{DS} = 60 \text{V; } V_{GS} = 0 \text{V; } T_j = 175 ^{\circ}\text{C} \\ \hline V_{DS} = 60 \text{V; } V_{DS} = 0 \text{V; } T_j = 175 ^{\circ}\text{C} \\ \hline V_{CS} = 20 \text{V; } V_{DS} = 0 \text{V; } T_j = 25 ^{\circ}\text{C} \\ \hline V_{CS} = 20 \text{V; } V_{DS} = 0 \text{V; } T_j = 25 ^{\circ}\text{C} \\ \hline V_{CS} = 20 \text{V; } V_{DS} = 0 \text{V; } T_j = 25 ^{\circ}\text{C} \\ \hline V_{CS} = 20 \text{V; } V_{DS} = 0 \text{V; } T_j = 25 ^{\circ}\text{C} \\ \hline V_{CS} = 20 \text{V; } V_{DS} = 0 \text{V; } T_j = 25 ^{\circ}\text{C} \\ \hline V_{CS} = 20 \text{V; } V_{DS} = 0 \text{V; } T_j = 25 ^{\circ}\text{C} \\ \hline V_{CS} = 10 \text{V; } I_D = 25 \text{A; } T_j = 100 ^{\circ}\text{C; } \\ \hline V_{CS} = 10 \text{V; } I_D = 25 \text{A; } T_j = 100 ^{\circ}\text{C; } \\ \hline V_{CS} = 10 \text{V; } I_D = 25 \text{A; } T_j = 175 ^{\circ}\text{C; } \\ \hline V_{CS} = 10 \text{V; } I_D = 25 \text{A; } T_j = 175 ^{\circ}\text{C; } \\ \hline V_{CS} = 10 \text{V; } I_D = 25 \text{A; } T_j = 25 ^{\circ}\text{C; } \\ \hline V_{CS} = 10 \text{V; } I_D = 25 \text{A; } T_j = 25 ^{\circ}\text{C; } \\ \hline V_{CS} = 10 \text{V; } I_D = 25 \text{A; } T_j = 25 ^{\circ}\text{C; } \\ \hline V_{CS} = 10 \text{V; } I_D = 25 \text{A; } T_j = 25 ^{\circ}\text{C; } \\ \hline V_{CS} = 10 \text{V; } I_D = 25 \text{A; } T_j = 25 ^{\circ}\text{C; } \\ \hline V_{CS} = 10 \text{V; } I_D = 25 \text{A; } T_j = 25 ^{\circ}\text{C; } \\ \hline V_{CS} = 10 \text{V; } I_D = 25 \text{A; } T_j = 25 ^{\circ}\text{C; } \\ \hline V_{CS} = 10 \text{V; } I_D = 25 \text{A; } T_j = 25 ^{\circ}\text{C; } \\ \hline V_{CS} = 10 \text{V; } I_D = 25 \text{A; } I_D = 25 $	- 0.05 - 10 10 4.32 6.21	- 4.6 10 500 100 100 5.1	V V V µA µA nA
$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	- 0.05 - 10 10 4.32 6.21	- 4.6 10 500 100 100 5.1	V V μΑ μΑ nA
	- 0.05 - 10 10 4.32 6.21	4.6 10 500 100 100 5.1	V μΑ μΑ nA
$I_{DSS} \qquad \text{drain leakage current} \qquad \frac{\text{see Figure 11}}{\text{V}_{DS} = 60 \text{ V; V}_{GS} = 0 \text{ V; T}_j = 25 ^{\circ}\text{C}} \qquad - \\ V_{DS} = 60 \text{ V; V}_{GS} = 0 \text{ V; T}_j = 175 ^{\circ}\text{C}} \qquad - \\ V_{DS} = 60 \text{ V; V}_{DS} = 0 \text{ V; T}_j = 175 ^{\circ}\text{C}} \qquad - \\ V_{GS} = 20 \text{ V; V}_{DS} = 0 \text{ V; T}_j = 25 ^{\circ}\text{C}} \qquad - \\ V_{GS} = 20 \text{ V; V}_{DS} = 0 \text{ V; T}_j = 25 ^{\circ}\text{C}} \qquad - \\ V_{GS} = 20 \text{ V; V}_{DS} = 0 \text{ V; T}_j = 25 ^{\circ}\text{C}} \qquad - \\ V_{GS} = 20 \text{ V; V}_{DS} = 0 \text{ V; T}_j = 25 ^{\circ}\text{C}} \qquad - \\ V_{GS} = 10 \text{ V; I}_D = 25 \text{ A; T}_j = 100 ^{\circ}\text{C; see Figure 13}} \\ V_{GS} = 10 \text{ V; I}_D = 25 \text{ A; T}_j = 175 ^{\circ}\text{C; see Figure 13}} \\ V_{GS} = 10 \text{ V; I}_D = 25 \text{ A; T}_j = 25 ^{\circ}\text{C; see Figure 13}} \\ V_{GS} = 10 \text{ V; I}_D = 25 \text{ A; T}_j = 25 ^{\circ}\text{C; see Figure 13}} \\ V_{GS} = 10 \text{ V; I}_D = 25 \text{ A; T}_j = 25 ^{\circ}\text{C; see Figure 13}} \\ V_{DS} = 10 \text{ V; I}_D = 25 \text{ A; T}_j = 25 ^{\circ}\text{C; see Figure 13}} \\ V_{DS} = 10 \text{ V; I}_D = 25 \text{ A; T}_j = 25 ^{\circ}\text{C; see Figure 14}} \\ V_{DS} = 10 \text{ V; I}_D = 25 \text{ A; T}_j = 25 ^{\circ}\text{C; see Figure 14}} \\ V_{DS} = 10 \text{ V; I}_D = 25 \text{ A; T}_j = 25 ^{\circ}\text{C; see Figure 14}} \\ V_{DS} = 10 \text{ V; I}_D = 25 \text{ A; T}_j = 25 ^{\circ}\text{C; see Figure 14}} \\ V_{DS} = 10 \text{ V; I}_D = 25 \text{ A; T}_j = 25 ^{\circ}\text{C; see Figure 14}} \\ V_{DS} = 10 \text{ V; I}_D = 25 \text{ A; T}_j = 25 ^{\circ}\text{C; see Figure 14}} \\ V_{DS} = 10 \text{ V; I}_D = 25 \text{ A; T}_j = 25 ^{\circ}\text{C; see Figure 14}} \\ V_{DS} = 10 \text{ V; I}_D = 25 \text{ A; T}_j = 25 ^{\circ}\text{C; see Figure 14}} \\ V_{DS} = 10 \text{ V; I}_D = 25 \text{ A; T}_j = 25 ^{\circ}\text{C; see Figure 14}} \\ V_{DS} = 10 \text{ V; I}_D = 25 \text{ A; T}_j = 25 ^{\circ}\text{C; see Figure 14}} \\ V_{DS} = 10 \text{ V; I}_D = 25 \text{ A; T}_j = 25 ^{\circ}\text{C; see Figure 14}} \\ V_{DS} = 10 \text{ V; I}_D = 25 \text{ A; T}_j = 25 ^{\circ}\text{C; see Figure 14}} \\ V_{DS} = 10 \text{ V; I}_D = 25 \text{ A; T}_j = 25 ^{\circ}\text{C; see Figure 14}} \\ V_{DS} = 10 \text{ V; I}_D = 25 \text{ A; T}_j = 25 ^{\circ}\text{C; see Figure 14}} \\ V_{DS} = 10 \text{ V; I}_D = 25 \text{ A; T}_j = 25 ^{\circ}\text{C; see Figure 14}} \\$	- 10 10 4.32 6.21	10 500 100 100 5.1	μΑ μΑ nA nA
$V_{DS} = 60 \text{ V; } V_{GS} = 0 \text{ V; } T_j = 175 \text{ °C} \qquad - \\ V_{GS} = 20 \text{ V; } V_{DS} = 0 \text{ V; } T_j = 25 \text{ °C} \qquad - \\ V_{GS} = 20 \text{ V; } V_{DS} = 0 \text{ V; } T_j = 25 \text{ °C} \qquad - \\ V_{GS} = 20 \text{ V; } V_{DS} = 0 \text{ V; } T_j = 25 \text{ °C} \qquad - \\ V_{GS} = 20 \text{ V; } V_{DS} = 0 \text{ V; } T_j = 25 \text{ °C} \qquad - \\ V_{GS} = 10 \text{ V; } I_D = 25 \text{ A; } T_j = 100 \text{ °C; } \qquad - \\ v_{GS} = 10 \text{ V; } I_D = 25 \text{ A; } T_j = 175 \text{ °C; } \qquad - \\ v_{GS} = 10 \text{ V; } I_D = 25 \text{ A; } T_j = 175 \text{ °C; } \qquad - \\ v_{GS} = 10 \text{ V; } I_D = 25 \text{ A; } T_j = 25 \text{ °C; } \qquad - \\ v_{GS} = 10 \text{ V; } I_D = 25 \text{ A; } T_j = 25 \text{ °C; } \qquad - \\ v_{GS} = 10 \text{ V; } I_D = 25 \text{ A; } T_j = 25 \text{ °C; } \qquad - \\ v_{GS} = 10 \text{ V; } I_D = 25 \text{ A; } T_j = 25 \text{ °C; } \qquad - \\ v_{GS} = 10 \text{ V; } I_D = 25 \text{ A; } I_D = 25 \text{ A; } I_D = 25 \text{ °C; } \qquad - \\ v_{GS} = 10 \text{ V; } I_D = 25 \text{ A; } I_D = 25 \text{ °C; } \qquad - \\ v_{GS} = 10 \text{ V; } I_D = 25 \text{ A; } I_D = 25 \text{ °C; } \qquad - \\ v_{GS} = 10 \text{ V; } I_D = 25 \text{ A; } I_D = 25 \text{ °C; } \qquad - \\ v_{GS} = 10 \text{ V; } I_D = 25 \text{ A; } I_D = 25 \text{ °C; } \qquad - \\ v_{GS} = 10 \text{ V; } I_D = 25 \text{ A; } I_D = 25 \text{ °C; } \qquad - \\ v_{GS} = 10 \text{ V; } I_D = 25 \text{ °C; } \qquad - \\ v$	- 10 10 4.32 6.21	500 100 100 5.1	μA nA nA
$\begin{array}{c} I_{GSS} & \text{gate leakage current} & V_{GS} = -20 \text{ V; } V_{DS} = 0 \text{ V; } T_j = 25 \text{ °C} & - \\ V_{GS} = 20 \text{ V; } V_{DS} = 0 \text{ V; } T_j = 25 \text{ °C} & - \\ \hline \\ R_{DSon} & \text{drain-source on-state} \\ \text{resistance} & V_{GS} = 10 \text{ V; } I_D = 25 \text{ A; } T_j = 100 \text{ °C;} & - \\ \text{see Figure 12; see Figure 13} & V_{GS} = 10 \text{ V; } I_D = 25 \text{ A; } T_j = 175 \text{ °C;} & - \\ \text{see Figure 12; see Figure 13} & V_{GS} = 10 \text{ V; } I_D = 25 \text{ A; } T_j = 25 \text{ °C;} & - \\ \text{see Figure 13} & V_{GS} = 10 \text{ V; } I_D = 25 \text{ A; } T_j = 25 \text{ °C;} & - \\ \text{see Figure 13} & - & - \\ \hline \\ R_G & \text{gate resistance} & f = 1 \text{ MHz} & - \\ \hline \\ Dynamic characteristics} & & - \\ \hline \\ Q_{G(tot)} & \text{total gate charge} & I_D = 0 \text{ A; } V_{DS} = 0 \text{ V; } V_{GS} = 10 \text{ V; } - \\ \hline \\ I_D = 25 \text{ A; } V_{DS} = 30 \text{ V; } V_{GS} = 10 \text{ V; } - \\ \hline \\ Q_{GS} & \text{gate-source charge} & - \\ \hline \\ Q_{GS(th-pl)} & \text{post-threshold gate-source charge} & - \\ \hline \\ Q_{GD} & \text{gate-drain charge} & - \\ \hline \end{array}$	10 4.32 6.21	100 100 5.1	nA nA
$V_{GS} = 20 \text{ V; } V_{DS} = 0 \text{ V; } T_j = 25 \text{ °C} \qquad - \\ P_{DSon} \qquad \text{drain-source on-state resistance} \qquad V_{GS} = 10 \text{ V; } I_D = 25 \text{ A; } T_j = 100 \text{ °C; see Figure 13} \\ \hline V_{GS} = 10 \text{ V; } I_D = 25 \text{ A; } T_j = 175 \text{ °C; see Figure 13} \\ \hline V_{GS} = 10 \text{ V; } I_D = 25 \text{ A; } T_j = 175 \text{ °C; see Figure 13} \\ \hline V_{GS} = 10 \text{ V; } I_D = 25 \text{ A; } T_j = 25 \text{ °C; see Figure 13} \\ \hline V_{GS} = 10 \text{ V; } I_D = 25 \text{ A; } T_j = 25 \text{ °C; see Figure 13} \\ \hline V_{GS} = 10 \text{ V; } I_D = 25 \text{ A; } T_j = 25 \text{ °C; see Figure 13} \\ \hline V_{GS} = 10 \text{ V; } I_D = 25 \text{ A; } V_D = 25 \text{ °C; see Figure 13} \\ \hline V_{GS} = 10 \text{ V; } I_D = 25 \text{ A; } V_D = 25 \text{ °C; see Figure 14} \\ \hline V_{GS} = 10 \text{ V; } I_D = 25 \text{ A; } V_D = 10 \text{ V; } I_D = 25 \text{ A; } I_D = 10 \text{ A; } V_D = 10 \text{ V; } I_D = 10 \text{ A; } V_D = 10 \text{ V; } I_D = 10 \text{ A; } V_D = 10 \text{ V; } I_D = 10 \text{ A; } V_D = 10 \text{ V; } I_D = 10 \text{ A; } V_D = 10 \text{ V; } I_D = 10 \text{ A; } V_D = 10 \text{ V; } I_D = 10 \text{ A; } V_D = 10 $	10 4.32 6.21	100 5.1	nA
$\begin{array}{c} R_{DSon} \\ R_{DSon} \\ \end{array} \begin{array}{c} drain\text{-source on-state} \\ resistance \\ \end{array} \begin{array}{c} V_{GS} = 10 \text{ V}; I_D = 25 \text{ A}; T_j = 100 ^{\circ}\text{C}; \\ \text{see } \overline{\text{Figure 12}}; \text{ see } \overline{\text{Figure 13}} \\ \hline V_{GS} = 10 \text{ V}; I_D = 25 \text{ A}; T_j = 175 ^{\circ}\text{C}; \\ \text{see } \overline{\text{Figure 12}}; \text{ see } \overline{\text{Figure 13}} \\ \hline V_{GS} = 10 \text{ V}; I_D = 25 \text{ A}; T_j = 25 ^{\circ}\text{C}; \\ \text{see } \overline{\text{Figure 13}} \\ \hline P_{GS} = 10 \text{ V}; I_D = 25 \text{ A}; T_j = 25 ^{\circ}\text{C}; \\ \text{see } \overline{\text{Figure 13}} \\ \hline P_{GS} = 10 \text{ V}; I_D = 25 \text{ A}; T_j = 25 ^{\circ}\text{C}; \\ \text{see } \overline{\text{Figure 13}} \\ \hline P_{GS} = 10 \text{ V}; I_D = 25 \text{ A}; T_j = 25 ^{\circ}\text{C}; \\ \text{see } \overline{\text{Figure 14}}; \\ \hline P_{GS} = 10 \text{ V}; I_D = 25 \text{ A}; T_j = 25 ^{\circ}\text{C}; \\ \hline P_{GS} = 10 \text{ V}; P_{GS} = 10 \text{ V}; \\ \hline P_{GS} = 10 \text{ V}; P_{GS} = 10 \text{ V}; \\ \hline P_{GS} = 10 \text{ V}; P_{GS} = 10 \text{ V}; \\ \hline P_{GS} = 25 \text{ A}; P_{DS} = 30 \text{ V}; P_{GS} = 10 \text{ V}; \\ \hline P_{GS} = 10 \text{ V}; P_{GS} = 10 \text{ V}; \\ \hline P_{GS} = 10 \text{ V}; P_{GS} = 10 \text{ V}; \\ \hline P_{GS} = 10 \text{ V}; P_{GS} = 10 \text{ V}; \\ \hline P_{GS} = 10 \text{ V}; P_{GS} = 10 \text{ V}; \\ \hline P_{GS} = 10 \text{ V}; P_{GS} = 10 \text{ V}; \\ \hline P_{GS} = 10 \text{ V}; P_{GS} = 10 \text{ V}; \\ \hline P_{GS} = 10 \text{ V}; P_{GS} = 10 \text{ V}; \\ \hline P_{GS} = 10 \text{ V}; P_{GS} = 10 \text{ V}; \\ \hline P_{GS} = 10 \text{ V}; P_{GS} = 10 \text{ V}; \\ \hline P_{GS} = 10 \text{ V}; P_{GS} = 10 \text{ V}; \\ \hline P_{GS} = 10 \text{ V}; P_{GS} = 10 \text{ V}; \\ \hline P_{GS} = 10 \text{ V}; P_{GS} = 10 \text{ V}; \\ \hline P_{GS$	4.32 6.21	5.1	
resistance	6.21		mΩ
$See \begin{tabular}{lllllllllllllllllllllllllllllllllll$		7.3	
$R_{G} \qquad \text{gate resistance} \qquad f = 1 \text{ MHz} \qquad - \\ \hline \textbf{Dynamic characteristics} \\ Q_{G(tot)} \qquad \text{total gate charge} \qquad \boxed{I_{D} = 0 \text{ A; V}_{DS} = 0 \text{ V; V}_{GS} = 10 \text{ V}} \qquad - \\ \hline I_{D} = 25 \text{ A; V}_{DS} = 30 \text{ V; V}_{GS} = 10 \text{ V;}} \qquad - \\ \hline Q_{GS} \qquad \text{gate-source charge} \qquad \qquad \text{see Figure 14; see Figure 15}} \qquad - \\ \hline Q_{GS(th-pl)} \qquad \text{post-threshold gate-source charge} \qquad \qquad - \\ \hline Q_{GD} \qquad \text{gate-drain charge} \qquad \qquad - \\ \hline \\ \hline \end{tabular}$			mΩ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.7	3.2	mΩ
$\begin{array}{c} Q_{G(tot)} & \text{total gate charge} & I_D = 0 \text{ A; } V_{DS} = 0 \text{ V; } V_{GS} = 10 \text{ V} \\ I_D = 25 \text{ A; } V_{DS} = 30 \text{ V; } V_{GS} = 10 \text{ V; } \\ Q_{GS} & \text{gate-source charge} & \text{see } \underline{\text{Figure 14; see } \underline{\text{Figure 15}}} & \text{-} \\ Q_{GS(th\text{-pl})} & \text{post-threshold gate-source charge} & \text{-} \\ Q_{GD} & \text{gate-drain charge} & \text{-} \\ \end{array}$	1.1	-	Ω
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
QGS gate-source charge QGS(th-pl) post-threshold gate-source charge QGD gate-drain charge - Indeed, see Figure 15 - Indeed, see Figure 1	110	-	nC
Q _{GS(th-pl)} post-threshold gate-source charge - charge Q _{GD} gate-drain charge	130	-	nC
charge Q _{GD} gate-drain charge -	43	-	nC
	21	-	nC
	28	-	nC
$V_{GS(pl)}$ gate-source plateau voltage $I_D = 25 \text{ A}$; $V_{DS} = 30 \text{ V}$; see Figure 14; see Figure 15	5.2	-	V
C_{iss} input capacitance $V_{DS} = 30 \text{ V; } V_{GS} = 0 \text{ V; } f = 1 \text{ MHz;}$ - $T_j = 25 \text{ °C; see } \frac{Figure \ 9}{Figure \ 9}$	8079	-	pF
C_{oss} output capacitance V_{DS} = 30 V; V_{GS} = 0 V; f = 1 MHz; - T_j = 25 °C; see Figure 16	971	-	pF
C_{rss} reverse transfer capacitance $V_{DS} = 30 \text{ V}; V_{GS} = 0 \text{ V}; f = 1 \text{ MHz}; - T_j = 25 ^{\circ}\text{C}; see Figure 16; see Figure 9}$	492	-	pF
$t_{d(on)}$ turn-on delay time $V_{DS} = 30 \text{ V}; R_L = 0.5 \Omega; V_{GS} = 10 \text{ V};$ -	31	-	ns
t_r rise time $R_{G(ext)} = 1.5 \Omega$		-	ns
t _{d(off)} turn-off delay time -	26	-	ns
t _f fall time -	26 77		

Table 7. Characteristics ... continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Source-drai	n diode					
V _{SD}	source-drain voltage	$I_S = 25 \text{ A}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C};$ see <u>Figure 17</u>	-	0.88	1.2	V
t _{rr}	reverse recovery time	$I_S = 25 \text{ A}$; $dI_S/dt = -100 \text{ A/}\mu\text{s}$;	-	54	-	ns
Qr	recovered charge	$V_{GS} = 0 \text{ V}; V_{DS} = 30 \text{ V}$	-	97	-	nC

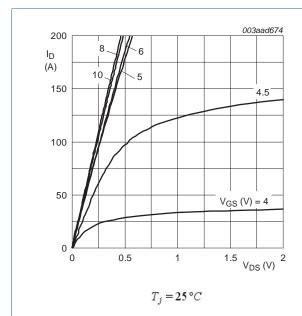


Fig 5. Output characteristics: drain current as a function of drain-source voltage; typical values

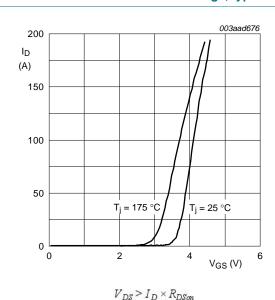
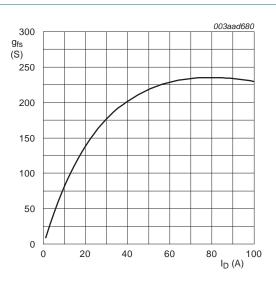
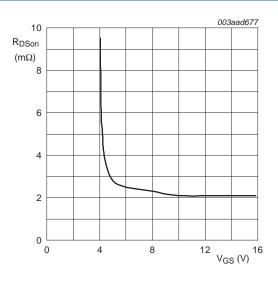




Fig 7. Transfer characteristics: drain current as a function of gate-source voltage; typical values

 $T_j = 25$ °C; $V_{DS} = 30$ V

Fig 6. Forward transconductance as a function of drain current; typical values

 $T_j = 25$ °C; $I_D = 25$ A

Fig 8. Drain-source on-state resistance as a function of gate-source voltage; typical values

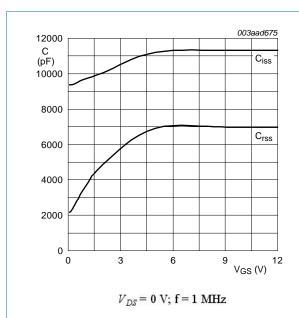
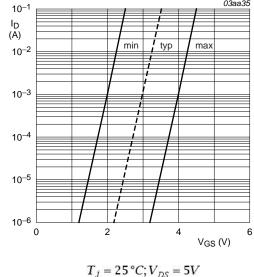



Fig 9. Input and reverse transfer capacitances as a function of gate-source voltage, typical values

 $T_j = 25 \, ^{\circ}C; V_{DS} = 5V$

Fig 10. Sub-threshold drain current as a function of gate-source voltage

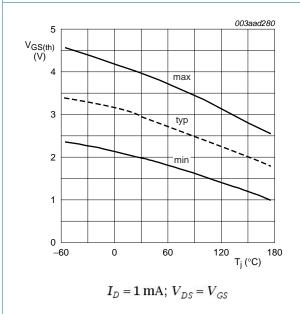
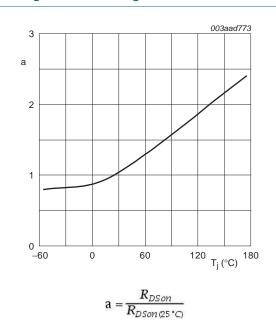
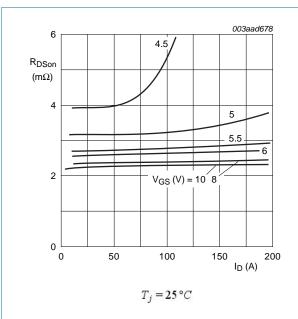
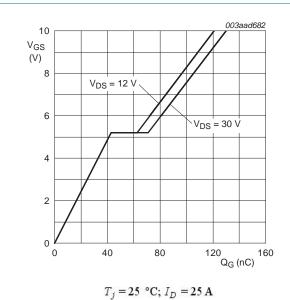


Fig 11. Gate-source threshold voltage as a function of junction temperature


Fig 12. Normalized drain-source on-state resistance factor as a function of junction temperature

V_{GS}(pl)
V_{GS}(th)
V_{GS}
Q_{GS1} Q_{GS2}
Q_{GG}(tot)
003aaa508

Fig 13. Drain-source on-state resistance as a function of drain current; typical values

Fig 14. Gate charge waveform definitions

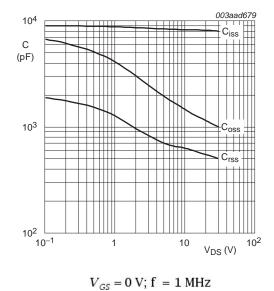



Fig 15. Gate-source voltage as a function of gate charge; typical values

8. Package outline

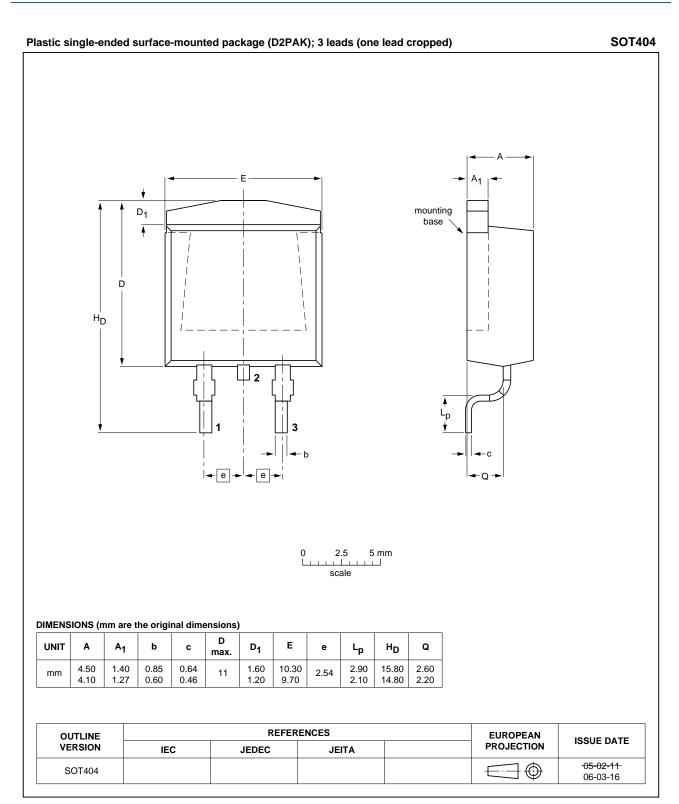


Fig 18. Package outline SOT404 (D2PAK)

9. Revision history

Table 8. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
PSMN3R0-60BS v.1	20120322	Product data sheet	-	-

10. Legal information

10.1 Data sheet status

Document status[1] [2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions'
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URLhttp://www.nxp.com.

10.2 Definitions

Preview — The document is a preview version only. The document is still subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet

10.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

PSMN3R0-60BS

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2012. All rights reserved.

PSMN3R0-60BS

N-channel 60 V 3.2 mΩ standard level MOSFET in D2PAK

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published athttp://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

10.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Adelante,Bitport,Bitsound,CoolFlux,CoReUse,DESFire,EZ-HV,FabKey,GreenChip,HiPerSmart,HITAG,I²C-bus logo,ICODE,I-CODE,ITEC,Labelution,MIFARE,MIFARE Plus,MIFARE

Ultralight,MoReUse,QLPAK,Silicon

Tuner, SiliconMAX, SmartXA, STARplug, TOPFET, TrenchMOS, TriMedia and UCODE — are trademarks of NXP B.V.

HD Radio and**HD Radio** logo — are trademarks of iBiquity Digital Corporation.

11. Contact information

For more information, please visit:http://www.nxp.com

For sales office addresses, please send an email to:salesaddresses@nxp.com

12. Contents

1	Product profile
1.1	General description
1.2	Features and benefits
1.3	Applications
1.4	Quick reference data
2	Pinning information
3	Ordering information
4	Marking
5	Limiting values
6	Thermal characteristics
7	Characteristics
8	Package outline
9	Revision history1
10	Legal information1
10.1	Data sheet status
10.2	Definitions1
10.3	Disclaimers
10.4	Trademarks14
11	Contact information 1

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.