Greenchip 45 W TEA1733(L)T demo board for LCD monitor Rev. 1 — 25 June 2010 User man

User manual

Document information

Info	Content
Keywords	45 W typical, LCD monitor application, evaluation board with GreenChip, flyback, controller, SMPS, TEA1733(L)T.
Abstract	This manual describes the specification, schematics and PCB layout of the 45 W TEA1733(L)T demo board. For details on the controller device, please refer to TEA1733(L)T application note AN10868.

Revision history

Rev	Date	Description
v1	20100625	First issue

Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

UM10404

All information provided in this document is subject to legal disclaimers.

1. Introduction

The GreenChip 45 W TEA1733(L)T demo board for LCD monitor demonstrates the capabilities of the TEA1733T and TEA1733LT Switched-Mode Power Supply (SMPS) controller for typical LCD monitor applications. This user manual provides the 45 W TEA1733(L)T demo board's specification, schematics and PCB layout. Details of the TEA1733T and TEA1733LT SMPS controller are available in application note *AN10868* Ref. 1 and data sheet *TEA1733T_TEA1733LT* Ref. 2.

WARNING

Lethal voltage and fire ignition hazard

The non-insulated high voltages that are present when operating this product, constitute a risk of electric shock, personal injury, death and/or ignition of fire.

This product is intended for evaluation purposes only. It shall be operated in a designated test area by personnel that is qualified according to local requirements and labor laws to work with non-insulated mains voltages and high-voltage circuits. This product shall never be operated unattended.

2. Features

The features below enable the power supply engineer to design a reliable and cost-effective SMPS using a minimum number of external components and the possibility to deal with the high efficiency requirements.

- Universal mains supply operation (70 V AC to 276 V AC)
- High level of integration, resulting in very low external component count
- Constant frequency operation
- Safe restart mode for system fault conditions
- UnderVoltage Protection (UVP) (foldback during overload)
- IC OverTemperature Protection (OTP) (latched)
- Low and adjustable OverCurrent Protection (OCP) trip level
- Soft restart
- Mains voltage dependent operation enabling level
- General purpose input for latched or safe protection and timing such as OverVoltage Protection (OVP), output Short Circuit Protection (SCP) or system OverTemperature Protection (OTP)

3. Specification

Table 1. Input specification

Symbol	Description	Conditions	Specification	Unit
Vi	input voltage		90 to 264	V
f _i	input frequency		47 to 60	Hz
Pi(no load)	no load input power	at 230 V (AC)	< 100	mW

Table 2. Output specification

Symbol	Description	Conditions	Specification	Unit
V _{o1}	output voltage 1	-	5	V
V _{o2}	output voltage 2	-	12	V
V _{o(ripple)(p-p)}	peak-to-peak output ripple voltage	20 MHz bandwidth	≤ 100	mV
I _{o1}	output current 1	continuous	0 to 2	А
I _{o2}	output current 2	continuous	0 to 3	А
Po	output power	0 °C to 40 °C	45	W
t _{holdup}	hold-up time	at 115 V/60 Hz; full load	5	ms
-	line regulation	-	±1	%
-	load regulation	-	±5	%
t _{startup}	start-up time	at 115 V/60 Hz	≥2	S
η	efficiency	according to ENERGY STAR (EPS 2)	≥82	%
-	EMI	CISPR22 compliant	pass	-

4. Performance data

4.1 Test facility

- Programmable AC source: Chroma 61503
- Power analyzer: Chroma 6630
- DC electronic load: Chroma 63102
- Digital phosphor oscilloscope: Tektronix TDS5104B
- 61/2 digit multimeter: Agilent 34401A

4.2 Standby power consumption

4.2.1 Test conditions

Measure input power (P_i) at no load and light load conditions.

4.2.2 Test results

Table 3. Inpu	ıt power te	st results						
Input voltage	Load output 1	Load output 2	5 V output	12 V output	Input power (P _i)	Specification	Audible noise	Result
90 V, 60 Hz	0 A	0 A	4.85 V	12.16 V	33 mW	< 100 mW	free	pass
90 V, 60 Hz	5 mA	0 A	4.78 V	12.25 V	67 mW	< 100 mW	free	pass
264 V, 50 Hz	0 A	0 A	4.85 V	12.15 V	70 mW	< 100 mW	free	pass
264 V, 50 Hz	5 mA	0 A	4.78 V	12.24 V	97 mW	< 100 mW	free	pass

4.3 Start-up time

4.3.1 Test conditions

Set output (V_o) to full load and measure the interval ($t_{startup}$) from input voltage applied to stable output.

4.3.2 Test results

Table 4. Start-up time test results

Input voltage	t _{startup} at 5 V output	Specification	Result
90 V, 60 Hz	1.19 s	< 2.0 s	pass
264 V, 50 Hz	608 ms	< 2.0 s	pass

UM10404

4.3.3 Start-up time waveforms

4.4 Line and load regulation

4.4.1 Test conditions

Measure line and load voltage regulation $(V_{L(reg)})$ at no load and full load conditions.

4.4.2 Test results

Table 5.	Load voltage	regulation	test conditions
----------	--------------	------------	-----------------

Input voltage	Output conditi	ons			Specifications	Result	
90 V, 60 Hz	5 V at 0 A	12.16 V	5 V at 2 A	11.94 V	5 V \pm 1 % line regulation; 5 V \pm 5 %	pass	
	12 V at 0 A	4.85 V	12 V at 3 A	4.98 V	load regulation		
180 V, 50 Hz	5 V at 0 A	12.16 V	5 V at 2 A	11.94 V			
	12 V at 0 A	4.85 V	12 V at 3 A	4.97 V			
264 V, 50 Hz	5 V at 0 A	12.15 V	5 V at 2 A	11.94 V			
	12 V at 0 A	4.86 V	12 V at 3 A	4.97 V			

4.5 Efficiency

4.5.1 Test conditions

Output power at maximum load by universal input voltage.

4.5.2 Test results

Table 6. Efficie	ncy test results				
Input voltage	Input power (P _i)	Output power (P _o)	Efficiency (η)	Specification	Result
90 V, 60 Hz	53.7 W	45.46 W	84.65 %	> 80 %	pass
110 V, 60 Hz	53.0 W	45.45 W	85.76 %	> 80 %	pass
180 V, 50 Hz	52.5 W	45.46 W	86.59 %	> 80 %	pass
220 V, 50 Hz	52.5 W	45.47 W	86.61 %	> 80 %	pass
264 V, 50 Hz	52.6 W	45.48 W	86.47 %	> 80 %	pass

4.6 Dynamic loading

4.6.1 Test conditions

- Dynamic loading. Step load change: 1 A to 2 A load at 5 V.
- Dwell time: 1 kHz to 20 kHz at 5 V at the same time.
- Slew rate: 0.1 A/µs.

4.6.2 Test results

Table 7. Dynamic loading test results: dwell time = 1 kHz, T = 0.5 ms

Input voltage	Output	V _{o(ripple)(p-p)}
90 V, 47 Hz	12 V	32 mV
90 V, 47 Hz	5 V	168 mV
264 V, 63 Hz	12 V	40 mV
264 V, 63 Hz	5 V	176 mV

Table 8.Dynamic loading test results: dwell time = 10 kHz, T = 0.05 ms

Input voltage	Output	V _{o(ripple)(p-p)}
90 V, 47 Hz	12 V	40 mV
90 V, 47 Hz	5 V	144 mV
264 V, 63 Hz	12 V	32 mV
264 V, 63 Hz	5 V	144 mV

Table 9.Dynamic loading test results: dwell time = 20 kHz, T = 0.025 ms

Input voltage	Output	V _{o(ripple)(p-p)}
90 V, 47 Hz	12 V	40 mV
90 V, 47 Hz	5 V	112 mV
264 V, 63 Hz	12 V	40 mV
264 V, 63 Hz	5 V	104 mV

UM10404

4.6.3 Output voltage transient response waveforms

User manual

4.7 Output ripple and noise

4.7.1 Test conditions

Ripple and noise are measured using a 20 MHz bandwidth-limited oscilloscope with a 10 μF capacitor in parallel with a high frequency 0.1 μF capacitor across each output at full load.

4.7.2 Test results

Input voltage	Output	Load	Ripple and noise	Specification	Result
90 V, 60 Hz	5 V	2 A	32 mV	< 100 mV	pass
90 V, 60 Hz	12 V	3 A	84 mV	< 100 mV	pass
264 V, 50 Hz	5 V	2 A	32 mV	< 100 mV	pass
264 V, 50 Hz	12 V	3 A	80 mV	< 100 mV	pass

 Table 10.
 Output ripple and noise test results

UM10404

4.7.3 Output voltage ripple and noise waveforms

4.8 Overpower protection

4.8.1 Test conditions

Measure the overpower protection point by increasing the output load gradually at minimum and maximum universal input voltage.

4.8.2 Test results

Table 11.	Overpower protection test	results (output 2 =	12 V, 3 A, 36 W fixed)
-----------	---------------------------	---------------------	------------------------

Input voltage	Overpower protection		Comment	Note	
	Output	Measured			
90 V, 60 Hz	5 V output 1	4.15 A output	same results at	auto-restart	
264 V, 50 Hz	5 V output 1	4.02 A output	maximum and minimum input voltage	auto-restart	

4.9 Hold-up time

4.9.1 Test conditions

Set the output to full load and measure the time interval [hold-up time (t_{holdup})] between input voltage off (at zero-crossing) and the output voltage falling to the lower limit of the rated value.

4.9.2 Test results

Table 12.Hold-up time test results

Input voltage	t _{holdup} at output 1	Specification	Result
90 V, 60 Hz	13.6 ms	> 6 ms	pass

4.9.3 Hold-up time output voltage waveform

4.10 Short-circuit protection

4.10.1 Test conditions

Short the output of the power supply, it should enter safe restart mode with less than 5 W input power.

4.10.2 Test results

Table 13. Short-circuit protection test results

Input voltage	Specification	Result
90 V, 60 Hz	safe restart	pass
264 V, 50 Hz	safe restart	pass

UM10404

4.10.3 Short-circuit protection output voltage waveforms

4.11 Overvoltage protection

4.11.1 Test conditions

Measure the output voltage while shorting the secondary side of the photocoupler. The system should enter the safe restart mode or the latch mode. The output voltage should meet the specification for no load and for the 0.2 A load condition.

4.11.2 Test results

Table 14.	Overvoltage protection test results			
5 V load	5 V output with OVP	Specification	Result	
0 A	6.24 V	7 V	pass	
0.2 A	6.16 V	7 V	pass	

UM10404

UM10404

4.11.3 Overvoltage protection output voltage waveforms

4.12 Conduction EMI

Conditions:

- Type: conducted EMC measurement
- Frequency range: 150 kHz to 30 MHz
- Output power: full load condition
- Supply voltage: 115 V and 230 V
- Margin: 10 dB below limit
- Measuring time: 160 ms
- Secondary ground connected to mains earth ground

Greenchip 45 W TEA1733(L)T demo board for LCD monitor

Greenchip 45 W TEA1733(L)T demo board for LCD monitor

5. Circuit description

The 45 W TEA1733(L)T demo board for LCD monitor applications comprises the following:

- input section, containing a bridge diode rectifier and filtering section
- primary switching section operating in flyback mode
- two output sections (5 V and 12 V)
- optional third output (3V3)
- feedback section

5.1 Input section

The input section consists of a start-up circuit that generates the initial supply voltage for the TEA1733 device from the mains input voltage. After start-up, the device is powered from the auxiliary winding. A common-mode choke and capacitors are used to reduce noise and harmonics generated by the primary switching section. A bridge diode rectifier and bulk capacitor are connected after the filter section. Finally, a resistive divider network is applied for start-up and for brown-out and OVP protection.

5.2 Primary switching circuit

The primary switching circuit uses the NXP Semiconductor's TEA1733 device in combination with a N-channel high voltage MOSFET switch. A RCD snubber circuit is connected to deal with the energy stored in the stray inductance of the primary winding of the transformer.

5.3 Output sections

There are two controlled secondary flyback stages, delivering two DC outputs of 5 V and 12 V respectively. Both outputs contain low-pass chokes to filter out high frequency content. The demo board provides an optional 3V3 output derived from the 5 V voltage. If required, the 3V3 output can be implemented by adding resistor R28, capacitor C23 and regulator IC U9 as shown in the complete circuit diagram Figure 12.

5.4 Feedback section

The feedback section measures the output voltages of both secondary sections (5 V and 12 V) and feeds the information back to the TEA1733 device via an optocoupler circuit. The demo board uses an accurate voltage reference device (TL431: reference voltage 2.5 V) to produce two well-regulated outputs.

6. Circuit diagram

Rev. 1 ---

25 June 2010

Greenchip 45 W TEA1733(L)T demo board for LCD monitor

JM10404

© NXP B.V. 2010. All rights reserved. 17 of 26

7. Bill of materials

ltem	Description	Value	Designation	Quantity
1	resistor, SMD 1206 thin film chip	2.7 MΩ; 5 %	R1; R2	2
2	resistor, SMD 1206 thin film chip	10 MΩ; 5 %	R4; R5; R6	3
3	resistor, SMD 0805 thin film chip	0 Ω; 5 %	R_GND	1
4	resistor, SMD 0603 thin film chip	330 Ω; 5 %	R20	1
5	resistor, SMD 0805 thin film chip	10 Ω; 5 %	R14	1
6	resistor, axial lead, MOF 0.125 W	10 kΩ; 5 %	R3	1
7	resistor, SMD 0805 thin film chip	4.7 Ω; 5 %	R15	1
8	resistor, SMD 0805 thin film chip	47 Ω; 5 %	R26; R27; R32; R33	4
9	resistor, SMD 0603 thin film chip	240 kΩ; 5 %	R7	1
10	resistor, SMD 0603 thin film chip	1 kΩ; 5 %	R13	1
11	resistor, SMD 0603 thin film chip	2.2 MΩ; 5 %	R16	1
12	resistor, SMD 0603 thin film chip	33 kΩ; 5 %	R19	1
13	resistor, axial lead, MOF 1 W, small size	1 Ω; 5 %	R29	1
14	resistor, SMD 0603 thin film chip	4.7 kΩ; 5 %	R21	1
15	resistor, SMD 0603 thin film chip	8.2 kΩ; 5%	R22	1
16	resistor, SMD 0603 thin film chip	39 kΩ; 1 %	R23	1
17	resistor, SMD 0603 thin film chip	10 kΩ; 1 %	R24	1
18	resistor, axial lead, MOF 1 W, small size	100 kΩ; 5 %	R9	1
19	resistor, axial lead, MOF 0.5 W, small size	0.2 Ω; 5 %	R10	1
20	resistor, SMD 0603 thin film chip	51.1 kΩ; 1 %	R31	1
21	thermistor, pitch 10 mm	2.5 Ω; 5 A	RT1	1

Table 16. Capacitors

ltem	Description	Value	Designation	Quantity
1	ceramic; Y1-cap; disc 9¢; KX/Murata	470 pF; 250 V AC	CY1	1
2	ceramic; Y2-cap; disc 9¢; KX/Murata	1000 pF; 250 V AC	CY2; CY3	2
3	MPX; x-cap	0.33 μF; 275 V AC	CX1	1
4	ceramic capacitor; disc 5\$	10 nF; 630 V	C12	1
5	E/C; radial lead; 105 °C; 18 \times 35 mm; TY/LTEC	120 μF; 400 V	C1	1
6	ceramic capacitor; disc; 5ϕ	3300 pF; 630 V	C2	1
7	ceramic capacitor; disc; 5ϕ	2200 pF; 630 V	C3	1
8	MLCC; SMD 0603; X7R	100 nF; 50 V	C10; C13; C24; C25; C26	5

Table 16. Capacitors ...continued

ltem	Description	Value	Designation	Quantity
9	MLCC; SMD 0603; X7R	1 μF; 50 V	C14	1
10	MLCC; SMD 1206	100 pF; 630 V	C11	1
11	MLCC; SMD 0603; X7R	0.22 μF; 50 V	C5; C8	2
12	MLCC; SMD 0805; X7R	220 pF; 50 V	C18; C19	2
13	E/C; radial lead; 105 °C; 5 \times 11 mm; LZP/LTEC	4.7 μF; 50 V	C4	1
14	E/C; radial lead; 105 °C; 10 \times 20 mm; LZP/LTEC	680 μF; 25 V	C6; C7	2
15	E/C; radial lead; 105 °C; 10 \times 20 mm; LZP/LTEC	1500 μF; 16 V	C20; C21	2
16	MLCC; SMD 0603; X7R	470 nF; 50 V	C16	1
17	MLCC; SMD 0603; X7R	10 nF; 50 V	C9	1
18	E/C; radial lead; 105 °C; 8 \times 15 mm; LZP/LTEC	470 μF; 16 V	C22	1

Table 17. Diodes and transistors

ltem	Description	Value	Designation	Quantity
1	bridge diode; flat/mini; KBP206G	2 A; 600 V	BD1	1
2	varistor; TVR10471K		VR1	1
3	switching diode; SMD SOD-80; LL4148; Philips	0.2 A; 75 V	D2; D6; D7	3
4	diode; ultra/super fast diode; UF1007	1 A; 1000 V	D1; D3	2
5	Zener diode; SMD SOD323F; BZX84J-B22; Philips	24 V	ZD1	1
6	Zener diode; SMD SOD323F; BZX84J-B7V5; Philips	7.5 V	ZD2	1
7	Schottky diode; TO220AB; MBR20100CT; Lite-On (SP10100)	20 A; 100 V	D4	1
8	Schottky diode; TO220AB; SBL1060CT (SP1060)	10 A; 60 V	D5	1
9	MOSFET; TO220-3-31; 2SK3569; Hitachi	7.3 A; 650 V	Q1	1

Table 18. Integrated circuits

ltem	Description	Value	Designation	Quantity
1	SMPS controller IC; SO8; TEA1733T; NXP		U2	1
2	optocoupler; CTR = 130 ~ 260; PC123		U8	1
3	voltage regulator; TO92; TS431		IC1	1

	,			
ltem	Description	Value	Designation	Quantity
1	transformer; SP09Z317; ERL-28; 3C90; 3900G/TDK	550 μH	T1	1
2	bead	Z45/100 MHz	L1	1
3	line choke; SP05D100; T12 \times 6 \times 4; 0.6 ϕ \times 9.5 T; /Send power	380 μH	LF1 (not mounted)	1
4	line choke; SP09Z271; T16 \times 12 \times 8 C; 0.6 ϕ \times 48.5 T; /Send power	5 mH	LF2	1
5	power choke; R4 \times 15; 1.2 D \times 7.5 T; /Send power	2.7 μΗ	L2; L3	2
6	MLCC; SMD 0603	6.8 μΗ	L4	1
7	fuse; /MST	3.15 A; 250 V	F1	1
8	connector; 3-pin		CN1	1
9	connector; 9-pin		CN2	1
10	jumper; 1D; pitch 10 mm		JMP6	1
11	jumper; 0.6D; pitch 10 mm		JMP2; JMP3	2
12	jumper; 0.6D; pitch 12.7 mm		JMP5	1
13	jumper; 0.6D; pitch 15 mm		JMP4	1

Table 19. Choke, transformer and other items

7.1 Transformer specification

Layer	Winding		Wire	Turns	Winding	Tape insulation		
	Start	Finish			method	No	Turns	Width
N1	6	5	$0.35\phi imes 2$	21	uniform	S1	1	16.2 mm
COPPER		1	0.025T; 12 mm (copper foil)	1	center			
N2	11	7	0.6φ × 2 (3L)	4	uniform	S2	1	16.2 mm
N3	3	1	$0.3\phi imes 2$	11	uniform	S3	1	16.2 mm
N4	7	9	0.6φ × 2 (3L)	3	parallel and	S4	1	16.2 mm
	8	10			uniform			
COPPER		1	0.025T; 12 mm (copper foil)	1	center			
N5	5	4	$0.35\phi \times 2$	21	uniform	S5	3	16.2 mm

7.1.1 Transformer winding specification

7.1.2 Electrical characteristics

Table 21. Electrical characteristics

Description	Pin	Specification	Remark
Inductance	4 to 6	550 μH ± 5 %	60 kHz; 1 V
Leakage inductance	4 to 6	< 8 μH	secondary side all shorted

7.1.3 Core and bobbin

- Core: ER2828 (TDK PC40)
- Bobbin: ER-28-H-12P (12-pin, horizontal type)

A_e: 81.4 mm²

UM1	0404

8. TEA1733(L)T demo board PCB layout

The TEA1733(L)T demo board for LCD monitor applications is a single-sided board, with the following specification and size:

- Technology: single-sided, CEM-3, 1-OZ
- Dimensions: 133 mm (L), 123 mm (W) and 23 mm (H)

8.1 PCB layout considerations

Important points for correct layout are:

- On the primary side, keep large signal and small signal tracks separate
- Connect a resistor in series with the soft start capacitor to prevent EMI distortion and offset level
- Keep the area and the length of the drain track (high alternating voltages) as small as possible
- Noise can be reduced by minimizing the area of current loops with fast alternating currents, such as locations 1 and 2 in Figure 16
- Keep the components as close as possible to IC pins PROTECT, CTRL and ISENSE and keep their lead lengths as short as possible
- Use a single GND on the primary side connection to the bulk capacitor negative (-) terminal.
- Do not use a "floating" heatsink, but connect the heatsink to the primary GND directly or via a capacitor. Use the heatsink as an EMI shield between the small signal and the large signal parts.
- Connect the CY1 capacitor between the primary GND and the secondary GND with a short track to the primary buffer capacitor. Prevent a common GND with the controller.
- Keep the track length of the loops from ground to ISENSE, DRIVER and CTRL as short as possible. Also keep these high impedance input loops away from the MOSFET drain track which contains high current spikes.
- Use a serial resistor between V (DC) to drain (pin 8) to obtain enough maximum voltage rating

9. Abbreviations

Table 22.	Abbreviations
Acronym	Description
CTR	Current Transfer Ratio
EMC	ElectroMagnetic Compatibility
EMI	ElectroMagnetic Interference
MLCC	Multi-Layer Ceramic Capacitor
MOF	Metal Oxide Film
MPX	Metallized PolyPropylene film (capacitor)
PCB	Printed-Circuit Board
RCD	Residual Current Detector
SMD	Surface Mounted Device

10. References

- [1] AN10868 GreenChip TEA1733(L) fixed frequency flyback controller, application note, revision 01, 9 December 2009.
- [2] TEA1733T_TEA1733LT GreenChip SMPS control IC, data sheet, revision 01, 26 October 2009.

UM10404

11. Legal information

11.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

11.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Evaluation products — This product is provided on an "as is" and "with all faults" basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer's exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US\$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

Safety of high-voltage evaluation products — The non-insulated high voltages that are present when operating this product, constitute a risk of electric shock, personal injury, death and/or ignition of fire. This product is intended for evaluation purposes only. It shall be operated in a designated test area by personnel that is qualified according to local requirements and labor laws to work with non-insulated mains voltages and high-voltage circuits.

The product does not comply with IEC 60950 based national or regional safety standards. NXP Semiconductors does not accept any liability for damages incurred due to inappropriate use of this product or related to non-insulated high voltages. Any use of this product is at customer's own risk and liability. The customer shall fully indemnify and hold harmless NXP Semiconductors from any liability, damages and claims resulting from the use of the product.

11.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

GreenChip — is a trademark of NXP B.V.

12. Contents

1	Introduction 3
2	Features 4
3	Specification 4
4	Performance data 5
4.1	Test facility 5
4.2	Standby power consumption 5
4.2.1	Test conditions 5
4.2.2	Test results 5
4.3	Start-up time 5
4.3.1	Test conditions 5
4.3.2	Test results
4.3.3	Start-up time waveforms
4.4	Line and load regulation 6
4.4.1	Test conditions 6
4.4.2	Test results 6
4.5	Efficiency 7
4.5.1	Test conditions 7
4.5.2	Test results
4.6	Dynamic loading 7
4.6.1	Test conditions 7
4.6.2	Test results 7
4.6.3	Output voltage transient response
	waveforms 8
4.7	Output ripple and noise
4.7.1	Test conditions 9
4.7.2	Test results 9
4.7.3	Output voltage ripple and noise
	waveforms 10
4.8	Overpower protection
4.8.1	Test conditions 10
4.8.2	Test results 10
4.9	Hold-up time 10
4.9.1	Test conditions 10
4.9.2	Test results 10
4.9.3	Hold-up time output voltage waveform 11
4.10	Short-circuit protection 11
4.10.1	Test conditions 11
4.10.2	Test results
4.10.3	Short-circuit protection output voltage waveforms 12
4.11	Overvoltage protection
4.11 1	Test conditions
4.11.2	Test results
4.11.3	Overvoltage protection output voltage
	waveforms 13
4 12	Conduction FMI 13
5	Circuit description 16
J	

5.1	Input section.	16
5.2	Primary switching circuit	16
5.3	Output sections	16
5.4	Feedback section	16
6	Circuit diagram	17
7	Bill of materials	18
7.1	Transformer specification	20
7.1.1	Transformer winding specification	21
7.1.2	Electrical characteristics	21
7.1.3	Core and bobbin	21
8	TEA1733(L)T demo board PCB layout	22
8.1	PCB layout considerations	23
9	Abbreviations	24
10	References	24
11	Legal information	25
11.1	Definitions	25
11.2	Disclaimers	25
11.3	Trademarks	25
12	Contents	26

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2010.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 25 June 2010 Document identifier: UM10404