120 V high power factor CFL reference board using the UBA2014T

Rev. 1 — 12 October 2010

User manual

Document information

Info	Content
Keywords	UBA2014T, half-bridge CFL driver, high PF, triac dimmable
Abstract	This user manual describes the 120 V mains dimmable Compact Fluorescent Lamp (CFL) reference board with high power factor based on the UBA2014T

120 V high power factor CFL reference board

Revision history		
Rev	Date	Description
v.1	20101012	initial version

Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

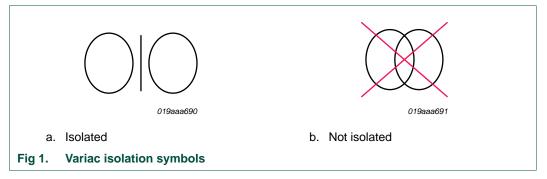
All information provided in this document is subject to legal disclaimers.

User manual

UM10409

2 of 25

1. Introduction


WARNING

Lethal voltage and fire ignition hazard

The non-insulated high voltages that are present when operating this product, constitute a risk of electric shock, personal injury, death and/or ignition of fire.

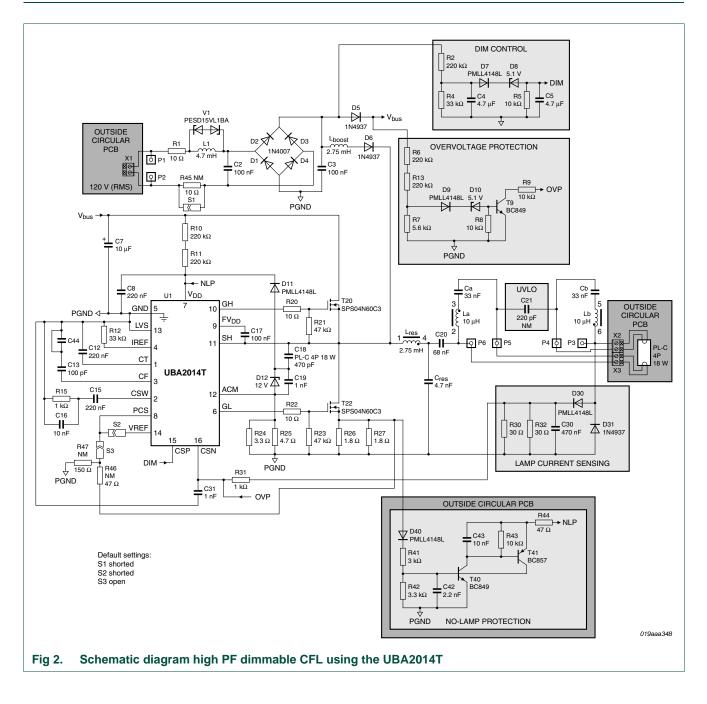
This product is intended for evaluation purposes only. It shall be operated in a designated test area by personnel qualified according to local requirements and labor laws to work with non-insulated mains voltages and high-voltage circuits. This product shall never be operated unattended.

Remark: Galvanic isolation of the mains phase using a variable transformer is always recommended. These devices can be recognized by the symbols shown in Figure 1.

The UBA2014T is a half-bridge driver IC used for electronically ballasted fluorescent lamps. In this application, it provides the drive function for two external MOSFETs and these supply power to the resonant tank circuit and Philips PL-C 4P 18 W CFL. The mains input is 120 V (RMS) \pm 10 %.

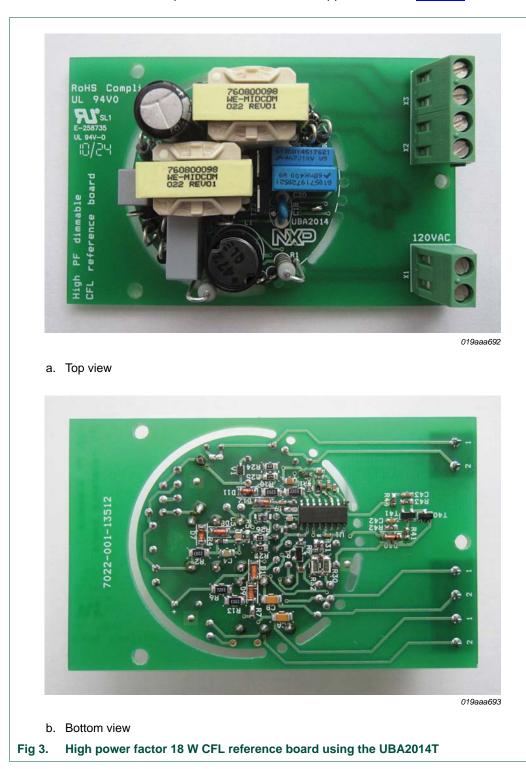
The bus voltage is generated with a Power Factor Correction (PFC) or boost circuit which utilizes the same external MOSFETs. This PFC circuit, also known as a combined free running PFC, has a Power Factor (PF) greater than 95 %.

Dimming down to 10 % of lamp current (< 10 % lumens) is possible using a triac dimmer. A 120 V Lutron dimmer was used.


The application can be used with lamps in a laboratory environment and a protection circuit is included (outside the circular PCB). This protection circuit disables the operation of the UBA2014T when a lamp is not attached to the circuit. This circuit is not necessary when the application is included in a CFL housing.

Other protective circuits include:

- OverVoltage Protection (OVP) on bus voltage
- UnderVoltage LockOut (UVLO) which is not necessary in this application during deep dimming


120 V high power factor CFL reference board

2. Schematic Diagram

120 V high power factor CFL reference board

3. Specifications

This section describes the specifications used in the application; see Figure 2.

3.1 General

The UBA2014T high PF reference board powers a Philips PL-C 4P 18 W CFL. The reference board specifications are:

- Input voltage range: 120 V (RMS); ± 10 %; 50 Hz or 60 Hz
- Input power: 24 W at 120 V (RMS)
- Input current: 200 mA (RMS) for 120 V (RMS) mains input
- Dimmable to 10 % lamp current (< 10 % lumens) using triac dimmer
- Power factor > 0.95, efficiency (η) > 75 %
- Operating frequency 45 Hz; frequency range between 40 kHz and 100 kHz
- Preheat time: 1200 ms; preheat frequency can be set to f_{max} or variable using current sensing on the Low-Side (LS) MOSFET for Preheat Current Sensor (PCS) pin
- Rectangular board with connectors for mains and CFL and the possibility to break out the circular board (form factor = 45.5 mm) with additional connector pins for mains input and CFL on circular breakout board
- Board mounted fused resistor
- Complies with safety standards, EMI, RoHS, UL 1993 and UL 94V0

3.2 **Protection circuits**

- No-lamp protection by voltage sensing at LS MOSFET
- OverVoltage Protection (OVP) on the bus voltage (V_{bus})
- Optional UnderVoltage LockOut (UVLO)
- Capacitive mode protection

3.3 CFLs tested

- Philips PL-C 4P 18 W
- Philips PL-C 4P 23 W
- TCP 18 W
- Megaman 18 W
- Baishi 18 W

4. Reference board connections and bill of materials

4.1 Reference board connections

Direct board connections: connect 120 V (RMS) to terminal X1 and connect PL-C 4P 18 W CFL filaments to terminals X2 and X3, respectively.

Connection to the CFL's circular board is also possible: 120 V (RMS) is connected between P1 and P2. The CFL filaments are connected between P3/P4 and P5/P6, respectively.

If R45 is not needed, it must be short circuited to the mains return line using the solder connection S1. The default is with R45 as NM and S1 short circuited.

The preheat selection can be chosen as follows:

- When the PCS pin is set to VREF = 3 V using the solder connection S2, the preheat frequency is f_{max} (the default setting)
- The preheat frequency is set using the current sensing resistors R26/R27 which are connected between the LS MOSFET (T22) and ground. The voltage across the sensing resistor is attenuated by R46/R47 and supplied to the Preheat Current Sensor (PCS) pin using solder connection S3

4.2 Bill Of Materials (BOM) including the PL-C 4P 18 W CFL

Table 1. Reference board BOM including the PL-C 4P 18 W CFL

Reference	Description	Remarks	Value
Resistors			
R1	flameproof power metal film resistor	fused resistor; radial	10 Ω; 5 %; 2 W
R2	thick film resistor; 1206	SMD	220 kΩ; 1 %; 0.25 W
R4	thick film resistor; 0603	SMD	33 kΩ; 5 %; 0.1 W
R5	thick film resistor; 0603	SMD	10 kΩ; 5 %; 0.1 W
R6	thick film resistor; 1206	SMD	220 kΩ; 1 %; 0.25 W
R7	thick film resistor; 0603	SMD	5.6 kΩ; 5 %; 0.1 W
R8	thick film resistor; 0603	SMD	10 kΩ; 5 %; 0.1 W
R9	thick film resistor; 0603	SMD	10 kΩ; 5 %; 0.1 W
R10	thick film resistor; 1206	SMD	220 kΩ; 1 %; 0.25 W
R11	thick film resistor; 1206	SMD	220 kΩ; 1 %; 0.25 W
R12	thick film resistor; 0603	SMD	33 kΩ; 5 %; 0.1 W
R13	thick film resistor; 1206	SMD	220 kΩ; 1 %; 0.25 W
R15	thick film resistor; 0603	SMD	1 kΩ; 5 %; 0.1 W
R20	thick film resistor; 0603	SMD	10 Ω; 5 %; 0.1 W
R21	thick film resistor; 0603	SMD	47 kΩ; 5 %; 0.1 W
R22	thick film resistor; 0603	SMD	10 Ω; 5 %; 0.1 W
R23	thick film resistor; 0603	SMD	47 kΩ; 5 %; 0.1 W
R24	thick film resistor; 0805	SMD	3.3 Ω; 1 %; 0.25 W
R25	thick film resistor; 0805	SMD	4.7 Ω; 1 %; 0.25 W
R26	thick film resistor; 0805	SMD	1.8 Ω; 1 %; 0.25 W
R27	thick film resistor; 0805	SMD	1.8 Ω; 1 %; 0.25 W
R30	thick film resistor; 1206	SMD	30 Ω; 1 %; 0.25 W
R31	thick film resistor; 0603	SMD	1 kΩ; 5 %; 0.1 W
R32	thick film resistor; 1206	SMD	30 Ω; 1 %; 0.25 W
R41	thick film resistor; 0603	SMD	3 kΩ; 5 %; 0.1 W
R42	thick film resistor; 0603	SMD	3.3 kΩ; 5 %; 0.1 W
R43	thick film resistor; 0603	SMD	10 kΩ; 5 %; 0.1 W
R44	thick film resistor; 0603	SMD	47 Ω; 5 %; 0.1 W
R45	flameproof power metal film resistor	fused, radial (NM)	10 Ω; 5 %; 2 W
R46	thick film resistor; 0603	SMD (NM)	47 Ω; 5 %; 0.1 W
R47	thick film resistor; 0603	SMD (NM)	150 Ω; 5 %; 0.1 W
UM10409	All information provided in this documen	t is subject to legal disclaimers.	© NXP B.V. 2010. All rights reserve

120 V high power factor CFL reference board

Table 1.	Reference board BOM including the PL-C 4P 18 W CFL	.continued	
Reference	Description	Remarks	Value
Capacitors			
C2	polypropylene capacitor; class X2; lead spacing 10 mm	interference suppression capacitor; radial	100 nF; 20 %; 310 V (AC)
C3	metallized polyester film capacitor; lead spacing 5 mm	radial	100 nF; 5 %; 250 V
C4, C5	ceramic capacitor; X5R dielectric; 0805	SMD	4.7 μF; 10 %; 25 V
C7	aluminium electrolytic capacitor; lead spacing 5 mm	bus capacitor; radial	10 µF; 20 %; 450 V
C8	ceramic capacitor; X7R dielectric; 0805	SMD	220 nF; 5 %; 25 V
C12	ceramic capacitor; X7R dielectric; 0603	SMD	220 nF; 10 %; 10 V
C13	ceramic capacitor; NP0 dielectric; 0402	SMD	100 pF; 5 %; 50 V
C15	ceramic capacitor; X7R dielectric; 0603	SMD	220 nF; 10 %; 10 V
C16	ceramic capacitor; X7R dielectric; 0603	SMD	10 nF; 10 %; 50 V
C17	ceramic capacitor; X7R dielectric; 0603	SMD	100 nF; 10 %; 50 V
C18	ceramic capacitor; lead spacing 5 mm	dV/dt; radial	470 pF; 10 %; 1000 V
C19	ceramic capacitor; X7R dielectric; 0603	SMD	1 nF; 10 %; 50 V
C20	polyester capacitor; lead spacing 10 mm	DC blocking capacitor; radial	68 nF; 20 %; 400 V
C21	ceramic capacitor; lead spacing 5 mm	UVLO; radial (NM)	220 pF; 10 %; 1000 V
C30	ceramic capacitor; X5R dielectric; 0603	SMD	470 nF; 10 %; 16 V
C31	ceramic capacitor; X7R dielectric; 0603	SMD	1 nF; 10 %; 50 V
C42	ceramic capacitor; X7R dielectric; 0603	SMD	2.2 nF; 10 %; 50 V
C43	ceramic capacitor; X7R dielectric; 0603	SMD	10 nF; 10 %; 50 V
C44	ceramic capacitor; NP0 dielectric; 0402	SMD; shorted	-
Ca	ceramic capacitor; X7R dielectric; 1206	SMD	33 nF; 10 %; 50 V
Cb	ceramic capacitor; X7R dielectric; 1206	SMD	33 nF; 10 %; 50 V
C _{res}	metallized polypropylene film; lead spacing 10 mm	resonant capacitor; radial	4.7 nF; 5 %; 1000 V
Discrete, ir	tegrated components		
D1, D2, D3, D4	diode; standard; 1 KV; 1 A; DO-41	mains rectifier diode; radial; 1N4007	-
D5, D6	diode; fast recovery; 1 A; 600 V; DO-41	radial; 1N4937	-
D7	diode; high speed; SOD80C	SMD; PMLL4148L	-
D8	diode; 5.1 V Zener; SOD80C	SMD; BZV55-C5V1	-
D9	diode; high speed; SOD80C	SMD; PMLL4148L	-
D10	diode; 5.1 V Zener; SOD80C	SMD; BZV55-C5V1	-
D11	diode; high speed; SOD80C	SMD; PMLL4148L	-
D12	diode; 12 V Zener; SOD80C	SMD; BZV55-C12V	-
D30, D31	diode; fast recovery; 1 A; 600 V; DO-41	Radial; 1N4937	-
D40	diode; high speed; SOD80C	SMD; PMLL4148L	-
V1	bidirectional diode; SOD323	SMD, transient suppression; PESD15VL1BA	-
T9	NPN transistor; SOT23	SMD; BC849BL	-
UM10409	All information provided in this document is subject to I	egai usciaimers.	© NXP B.V. 2010. All rights reserved.

Table 1. Reference board BOM including the PL-C 4P 18 W CFL ... continued

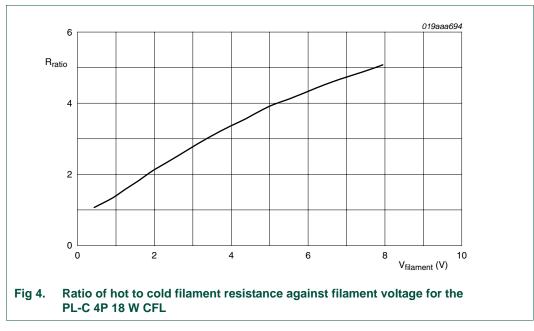
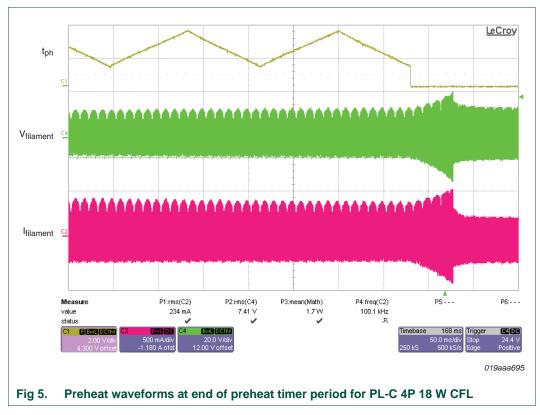

	Reference board BOM including the PL-C 4P 18 W CFL .		
Reference	Description	Remarks	Value
T20, T22	half-bridge MOSFETs; PG-TO251-3-11	SPS04N60C3	-
T40	NPN transistor; SOT23	SMD; BC849BL	-
T41	PNP transistor; SOT23	SMD; BC857	-
U1	half-bridge controller IC; SO16	UBA2014T	-
Inductors			
L1	ferrite inductor; 4.7 mH; 5R2; lead spacing 5 mm	filter inductor; radial	4.7 mH; 0.26 A; 10 %
L _{res}	ferrite inductor; EE20 core; bobbin UL-V0; TP4 core material	resonant inductor; Würth part nr. 76080098	-
	primary inductance		2.75 mH; 10 %
	secondary inductance for inductive mode heating	-	10 μH; 25 %
L _{boost}	ferrite inductor; EE20 core; bobbin UL-V0; TP4 core material; primary inductance	boost inductor; Würth part No. 76080098	2.75 mH; 10 %
X1	mains terminal connection outside circular PCB	5 mm; 2-way	-
X2	CFL filament 1 terminal connection outside circular PCB	5 mm, 2-way	-
Х3	CFL filament 2 terminal connection outside circular PCB	5 mm, 2-way	-
P1, P2	isolated test pins for mains inputs inside circular PCB	PK100	-
P3, P4	isolated test pins for CFL filament 1 connection inside circular PCB	PK100	-
P5, P6	isolated test pins for CFL filament 2 connection inside circular PCB	PK100	-

Table 1. Reference board BOM including the PL-C 4P 18 W CFL ... continued

5. Measurements


5.1 Preheat and Sum of Squares (SoS)

The hot to cold filament ratio (R_{ratio}) for the Philips PL-C 4P 18 W CFL was initially measured using a variable DC voltage source across the filament. Preheat is sufficient when R_{ratio} is approximately 5 : 1 (which is equivalent to a $V_{filament}$ of ±7.5 V).

The preheat waveforms for the reference board are shown in <u>Figure 5</u>. V_{filament} of 7.4 V (RMS) and I_{filament} of 235 mA (RMS) are measured at the end of the preheat timer period giving a power supply to the filament of approximately 1.7 W.

120 V high power factor CFL reference board

The preheat frequency is set at 100 kHz by connecting pin VREF = 3 V to the PCS pin. The preheat time is set to 1.2 s using:

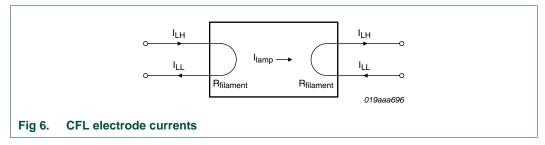
$$t_{ph} = 1.8 \times \left(\frac{C_{CT}}{330 \cdot 10^{-9}}\right) \left(\frac{R_{IREF}}{33 \cdot 10^{3}}\right)$$
(1)

where C_{CT} = 220 nF and R_{IREF} = 33 k Ω .

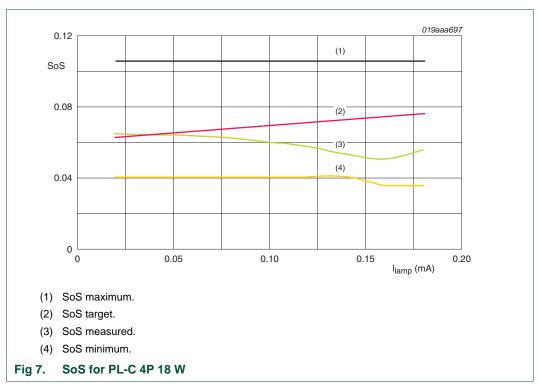
The preheat frequency can also be set by the current sensing resistors (see R26/R27 on Figure 2 on page 4) which are connected between the LS MOSFET and ground. The voltage across the sensing resistors is attenuated (R46/R47) and then supplied to the Preheat Current Sensor (PCS) pin using solder connection S3.

As an example, with R26/R27 = 1.8 Ω , R46 = 47 Ω and R47 open, the preheat frequency is approximately 70 kHz and the measured power supplied to the filaments is 3.2 W (V_{filament} = 10 V (RMS) and I_{filament} = 320 mA (RMS)) which is too high. In addition, the V_{bus} voltage exceeds 400 V (DC) (the rating of bus voltage) during the preheat time period.

The preheat frequency could be set higher by changing R26/R27 and the power to the filaments could be reduced by decreasing the preheat time. However, a preheat time of less than 0.4 s is not recommended.

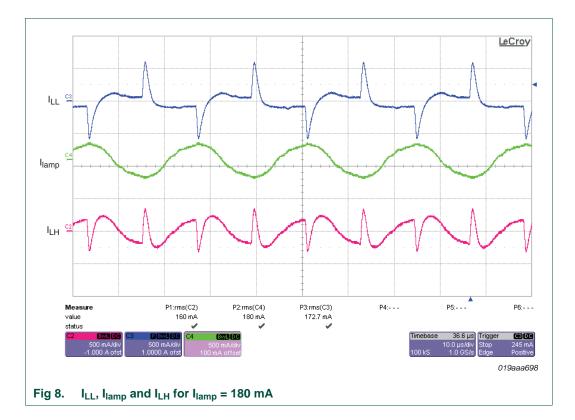

Setting the preheat frequency to the maximum frequency for this application with the PL-C 4P 18 W CFL, is the default (and optimum) setting.

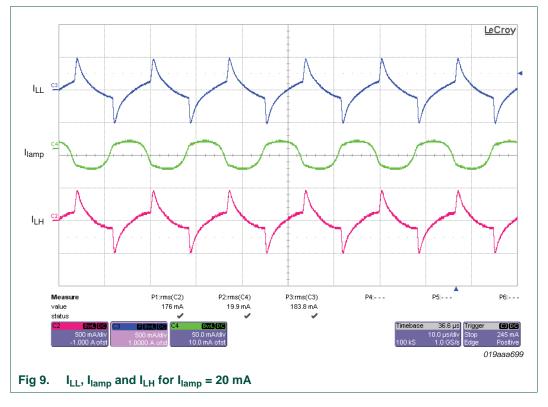
120 V high power factor CFL reference board


The Sum of Squares (SoS) gives a measure of the amount of heat that should be generated in the filaments to maintain the correct operating temperature. SoS is expressed by Equation 2:

$$SoS = I_{LH}^{2} + I_{LL}^{2}$$
(2)

where I_{LH} is the lead-high current or total current supplied to the filament and I_{LL} is the lead-low or filament heating current (see Figure 6).




The SoS curve shown in Figure 7 was measured over a dimming range of 20 mA to 180 mA lamp current.

In <u>Figure 8</u> and <u>Figure 9</u>, the waveforms for I_{LH} and I_{LL} are shown for both 180 mA and 20 mA lamp currents, measured with a current probe around the lead in wires. I_{lamp} is measured by taking both lead in wires through the current probe.

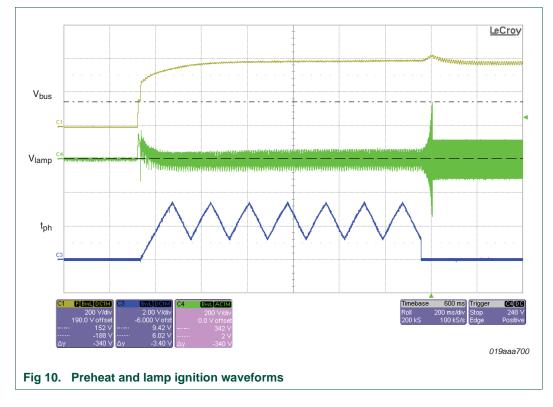
120 V high power factor CFL reference board

13 of 25

120 V high power factor CFL reference board

5.2 Preheat and lamp ignition

After the preheat timer period of 1.2 s, the frequency sweeps down from f_{max} to f_{min} where f_{min} and f_{max} are calculated using <u>Equation 3</u> and <u>Equation 4</u>, respectively. Ignition occurs when the minimum lamp ignition voltage is exceeded.


$$f_{min} = 40.5 \times 10^{3} \times \frac{100 \times 10^{-12}}{C_{CF}} \times \frac{33 \times 10^{3}}{R_{IREF}}$$
(3)

$$f_{max} = 2.5 \times f_{min} \tag{4}$$

where C_{CF} = 100 pF and R_{IREF} = 33 $k\Omega$

The maximum preheat voltage must be less than the minimum lamp ignition voltage. In this application, the preheat frequency is set to maximum (100 kHz) during the preheat timer period which avoids overlapping of the maximum preheat voltage and minimum lamp ignition voltage will not occur. The maximum lamp ignition voltage must be reached before f_{min} is reached.

The measured ignition voltage at 25 °C is shown in Figure 10.

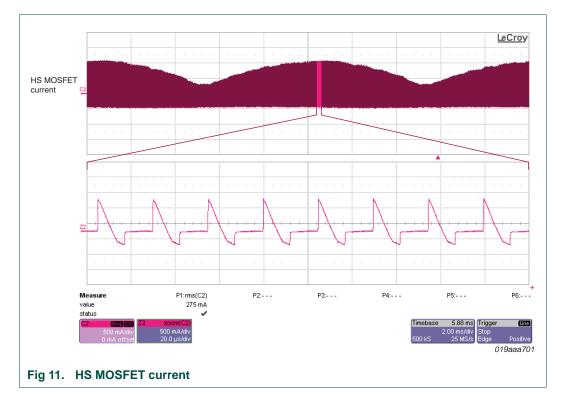
5.3 Efficiency, Power Factor (PF)

Using a mains input voltage of 120 V (RMS), the input current is 200 mA (RMS) and the input power is 24 W.

The losses are:

• Fused resistor 10 Ω is 0.4 W

All information provided in this document is subject to legal disclaimers.


- 4.7 mH EMI coil (R_{DC} = 5.2 Ω) is 0.5 W
- L_{boost} (R_{DC} = 9 Ω, I_{boost} = 260 mA (RMS)) is 0.6 W
- $L_{res} (R_{DC} = 9 \Omega, I_{Lres} = 275 \text{ mA} (RMS)) \text{ is } 0.7 \text{ W}$
- High-Side (HS) MOSFET ($R_{DS(on)} = 2.3 \Omega$, $I_I = 275 \text{ mA}$ (RMS)) is 0.2 W and Low-Side (LS) MOSFET ($R_{DS(on)} = 2.3 \Omega$, $I_I = 360 \text{ mA}$ (RMS)) is 0.3 W. The dissipation is 0.5 W for both MOSFETs. The waveforms shown in Figure 11 and Figure 12
- Each filament (R_{filament} = 35 Ω, I_{filament} = 175 mA) is 1.1 W, both filaments is 2.2 W

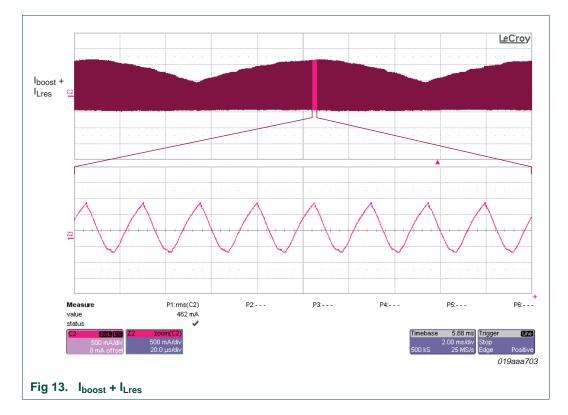
Total losses are approximately 5 W. The efficiency is $\frac{P_o}{P_{in}}$ = 80 %.

Parameter	120 V (RMS)/50 Hz			120 V (RM	120 V (RMS)/60 Hz		
	–10 (%)	nominal	+10% (%)	–10 (%)	nominal	+10% (%)	
P _{in} (W)	21.5	26.5	30	21.5	25.5	30	
P _{lamp} (W)	17.5	20.5	22.5	17.5	20.5	23	
PF	0.99	0.99	0.99	0.99	0.99	0.99	
CF	1.7	1.65	1.7	1.65	1.6	1.65	
THD (%)	11	10.5	11	11.5	10	10.5	
η (%)	81	77	75	81	80	77	

Table 2. Extra measurements for 120 V (\pm 10%) for 50 Hz and 60Hz

5.4 MOSFET, boost and resonant inductor currents

120 V high power factor CFL reference board



The current in the HS MOSFET is the sum of the boost inductor and resonant inductor currents when the HS MOSFET is conducting.

Similarly, the current in the LS MOSFET is the sum of the boost inductor current and resonant inductor current when the LS MOSFET is conducting as shown in Figure 11 and Figure 12.

The sum of boost inductor and resonant inductor current which is $I_{boost} + I_{Lres}$ is shown in Figure 13 and amounts to 460 mA (RMS) when measured over one cycle of the mains input.

120 V high power factor CFL reference board

5.5 Overvoltage protection circuit

It is necessary to have OverVoltage Protection (OVP) to protect the bus capacitance and MOSFETs from voltage transients greater than their rated values. The steady state voltage on the bus capacitance C7 = 10 μ F (see Figure 2) is described by Equation 5:

$$V_P = \frac{120\sqrt{2}}{1-\delta} \tag{5}$$

where $P_{\text{boost}} = P_{\text{lamp}}$ and δ is a 50 % duty cycle.

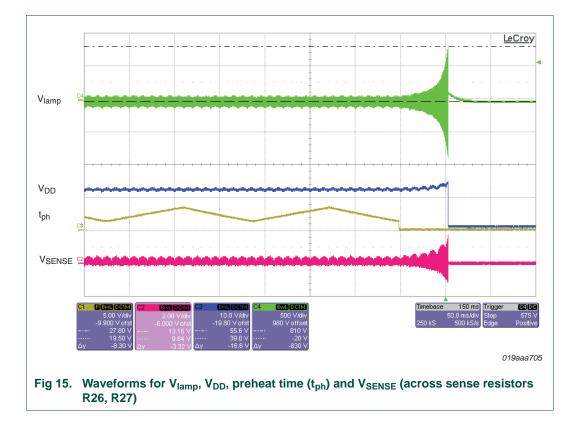
If $P_{boost} > P_{lamp}$, as is in the case of deep dimming when there is a small load, the bus voltage can rise above the rated bus capacitance value. The OVP circuit is designed to start operating when the bus voltage is greater than an OVP level of approximately 400 V. The OVP circuit then reduces the CSN pin voltage by 10 % (set by R9 in Figure 2) and the half-bridge frequency decreases implying that P_{lamp} increases and the bus voltage decreases under the OVP level.

When testing with different dimmers and for fast transient steps in the triac dimmer, the bus voltage did not rise above 400 V (DC).

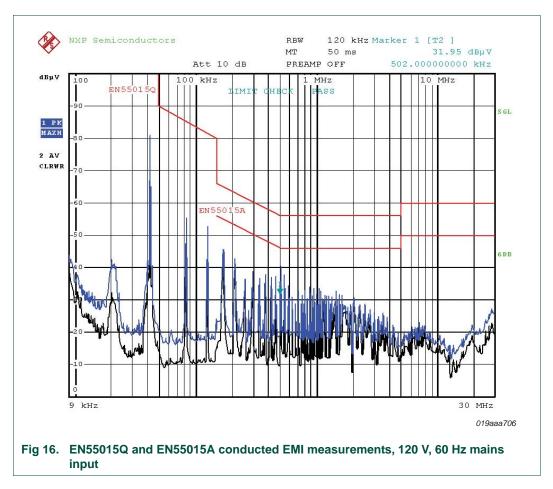
However, the OVP circuit was tested by supplying an external step on the bus voltage to the OVP circuit from 0 V (DC) to 410 V (DC) and at approximately 400 V (DC) the voltage on the CSN pin decreased by 10 %. The waveforms of the bus voltage to the OVP circuit and voltage at the CSN pin are shown in Figure 14.

120 V high power factor CFL reference board

5.6 No-lamp detection


When a lamp is not connected, the voltage across the resonant capacitor continues to rise as the frequency sweeps down after preheat. The current in the MOSFETs can become excessive causing eventual damage to the internal drivers in the UBA2014T and external MOSFETs.

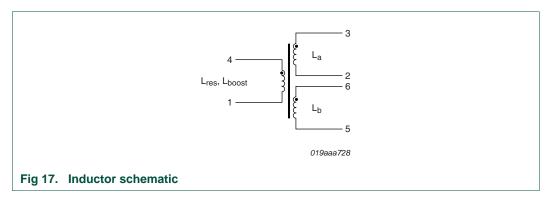
The no-lamp detection/latch circuit monitors the voltage (V_{SENSE}) across the sense resistor (parallel combination of R26/R27 which is 0.9 Ω) and thus, the current through the LS MOSFET. The resistors R26 and R27 are connected between the LS MOSFET source and ground as shown in Figure 2. When no-lamp is connected this voltage rises as the frequency sweeps down after the preheat time. The no-lamp detection/latch circuit is designed (using R41, R42 and R26, R27 in Figure 2) to trigger the latch and pull V_{DD} to ground when the voltage across the lamp terminals exceeds approximately 2.5 times the ignition voltage.


The relevant waveforms are shown in Figure 15.

The no-lamp protection circuit is reset by removing the mains voltage.

120 V high power factor CFL reference board

120 V high power factor CFL reference board



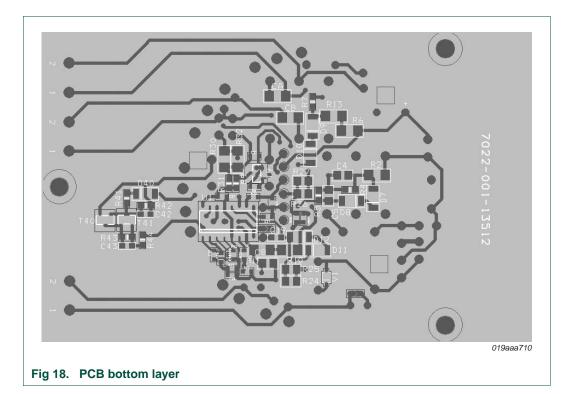
5.7 EMI prescan measurements

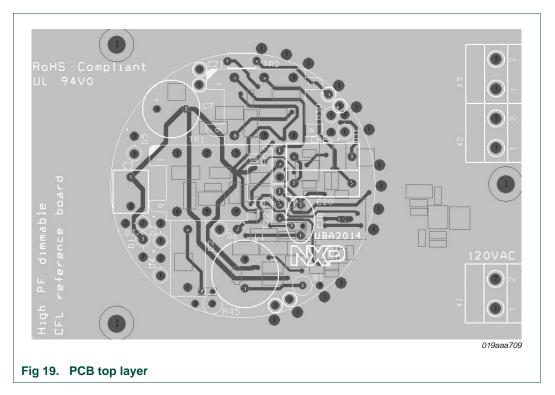
UM10409 User manual

120 V high power factor CFL reference board

6. Inductor specification

Table 3. Electrical characteristics


Parameter	Inductance (mH)	Resistance (Ω)	Rated current (A)	Saturation current (A)
L _{res}	2.75 ±10 %	9	0.35	1.1
L _a , L _b	0.010 ±25 %	0.495	-	-
L _{boost}	2.7 5 ±10 %	9	0.35	1.1


7. PCB layout

The following should be taken into account for the PCB layout:

- Separate ground of bridge rectifier back to bus capacitance (C7) ground (PGND in Figure 2)
- Components on pins 1 to 4 close to the UBA2014T and their grounding should be closely routed back to pin 5 of the UBA2014T (GND in Figure 2)
- Pin 5 (GND) of the UBA2014T should be routed back separately to C7 ground to minimize influence of PGND on GND
- Inductors L_{boost}, L_{res} and L1 should not be placed near the UBA2014T to minimize the magnetic field interference to the IC
- The grounding of both the lamp current sensing circuit and dim control should be connected closely together with separate routing back to bus capacitance (C7) ground (PGND)
- External MOSFETs close to L_{res}, L_{boost} and bus capacitance so as to have small current loops
- The half-bridge node tracks to L_{res}, L_{boost} and pin 11 of UBA2014T should be short to minimize interference from the half-bridge dV/dt voltage
- Sense resistors (R26/R27) ground routed back separately to C7 ground (PGND)
- ACM sense resistors (R24/R25) close to pin 12 (ACM) of UBA2014T and their grounding routed back separately to C7 ground (PGND)

120 V high power factor CFL reference board

120 V high power factor CFL reference board

8. Legal information

8.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

8.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Evaluation products — This product is provided on an "as is" and "with all faults" basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer's exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US\$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

8.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

120 V high power factor CFL reference board

9. Figures

Fig 1.	Variac isolation symbols
Fig 2.	Schematic diagram high PF dimmable
	CFL using the UBA2014T4
Fig 3.	High power factor 18 W CFL reference board
-	using the UBA2014T5
Fig 4.	Ratio of hot to cold filament resistance against
•	filament voltage for the PL-C 4P 18 W CFL10
Fig 5.	Preheat waveforms at end of preheat timer
•	period for PL-C 4P 18 W CFL
Fig 6.	CFL electrode currents12
Fig 7.	SoS for PL-C 4P 18 W12
Fig 8.	I_{LL} , I_{lamp} and I_{LH} for $I_{lamp} = 180 \text{ mA} \dots 13$
Fig 9.	I_{LL} , I_{lamp} and I_{LH} for $I_{lamp} = 20 \text{ mA} \dots 13$
Fig 10.	Preheat and lamp ignition waveforms14
Fig 11.	HS MOSFET current15
Fig 12.	LS MOSFET current16
Fig 13.	I _{boost} + I _{Lres}
Fig 14.	OVP circuit test with bus voltage and voltage
	at CSP pin
Fig 15.	Waveforms for V_{lamp} , V_{DD} , preheat time (t_{ph})
	and V _{SENSE} (across sense resistors R26, R27)19
Fig 16.	EN55015Q and EN55015A conducted EMI
	measurements, 120 V, 60 Hz mains input20
Fig 17.	Inductor schematic
Fig 18.	PCB bottom layer
Fig 19.	PCB top layer

120 V high power factor CFL reference board

10. Contents

1	Introduction 3
2	Schematic Diagram 4
3	Specifications 5
3.1	General
3.2	Protection circuits 6
3.3	CFLs tested 6
4	Reference board connections and bill of
	materials 6
4.1	Reference board connections
4.2	Bill Of Materials (BOM) including the
	PL-C 4P 18 W CFL 7
5	Measurements 10
5.1	Preheat and Sum of Squares (SoS) 10
5.2	Preheat and lamp ignition
5.3	Efficiency, Power Factor (PF) 14
5.4	MOSFET, boost and resonant inductor
	currents
5.5	Overvoltage protection circuit
5.6	No-lamp detection
5.7	EMI prescan measurements 20
6	Inductor specification 21
7	PCB layout 21
8	Legal information 23
8.1	Definitions 23
8.2	Disclaimers 23
8.3	Trademarks
9	Figures 24
10	Contents 25

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2010.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 12 October 2010 Document identifier: UM10409