

UM10514

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

Rev. 2 — 18 November 2013

User manual

Document information

Info	Content
Keywords	GreenChip, TEA1755T, GreenChip SR, TEA1792TS, GreenChip control IC, TEA1703TS, PFC, flyback, synchronous rectification, high efficiency, power-down functionality for very low standby power, adapter, notebook, PC power
Abstract	This manual provides the specification, performance measurements, schematics, bill of materials and PCB layout of the 90 W demo board. See the associated data sheets and application notes for more information on the TEA1755T, TEA1792TS and TEA1703TS ICs.

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

Revision history

Rev	Date	Description	
V.2.0	20131118	updated issue	
Modifications:		 The figure note of Figure 5 "Nominal and peak output power as function of mains voltage" has been updated. Figure 26 "Schematic 90 W TEA1755T/LT, TEA1792, TEA1703 demo board (configuration A)" has been updated. 	
v.1.1	20130118	updated issue	
v.1	20121210	first issue	

Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

1. Introduction

WARNING

Lethal voltage and fire ignition hazard

The non-insulated high voltages that are present when operating this product, constitute a risk of electric shock, personal injury, death and/or ignition of fire.

This product is intended for evaluation purposes only. It shall be operated in a designated test area by personnel qualified according to local requirements and labor laws to work with non-insulated mains voltages and high-voltage circuits. This product shall never be operated unattended.

This manual describes a universal input, 19.5 V, 90 W single output power supply using GreenChip devices TEA1755T with the TEA1703TS, and TEA1792TS of NXP Semiconductors.

It contains the following content:

- Specification of the power supply
- The circuit diagram
- The component list
- The PCB layout and component positions
- Documentation of the PFC choke and flyback transformer
- Test data and oscilloscope pictures of the most important waveforms

The GreenChip combines the control and drive for both the PFC and the flyback stages into a single device. The TEA1755 provides SMPS control functionality to comply with the IEC61000-3-2 harmonic current emission requirements. It enables a significant reduction of components, save PCB space and BOM cost.

It offers low-power consumption in no-load condition, which is attractive for the consumer products where this is a requirement. The built-in green functions ensure high efficiency at all power levels. This efficiency results in a design that can easily meet all existing and proposed energy efficiency standards such as: CoC (Europe), ENERGY STAR (U.S), CEC (California), MEPS (Australian and New Zealand), and CECP (China).

The TEA1703 in combination with the TEA1755 provides a very low-power consumption performance in standby mode.

The TEA1792 is a synchronous rectification control IC that needs no external components to set the timing. The GreenChip SR can be applied to a wide VCC operating range between 8.5 V and 38 V, minimizing the number of external components required and enabling simpler designs. The high driver output voltage (10 V) makes the GreenChip SR compatible with all brands of MOSFETs.

The assembled top board view is shown in <u>Figure 1</u> and the bottom board view in <u>Figure 2</u>.

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

Fig 1. 90 W TEA1755T, TEA1792TS and TEA1703TS demo board (top view)

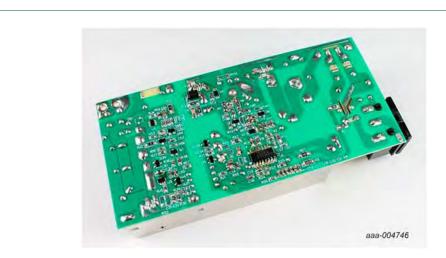


Fig 2. 90 W TEA1755T, TEA1792TS and TEA1703TS demo board (bottom view)

1.1 Features

- Universal mains supply operation
- Integrated PFC and flyback controller
- Accurate PFC on/off control
- Burst mode operation for high efficiency with low audible noise
- OverCurrent Protection (OCP)
- OverPower Protection (OPP)
- OverTemperature Protection (OTP)
- Open control loop protection for both converters (the open-loop protection for the flyback converter is safe restart; TEA1755LT version only)
- Excellent load step performance

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

- Ultra-low-power consumption in standby mode (Erp lot 6 compliant)
- High/low line output power compensation
- High efficiency (ENERGY STAR and Erp lot 6 compliant)
- EMI CISPR22 compliant

2. Configuration

There are two versions of this demo board

- APBADC068(A) with TEA1703TS
- APBADC068(B) without TEA1703TS

The configuration is marked on the back side of the demo board. The performance data refer to the (A) version, unless noted. More information about the differences between the two versions and other alternative circuit options can be found in <u>Section 10</u>.

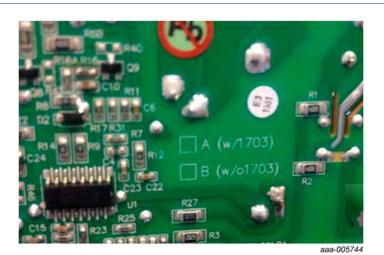


Fig 3. Demo board configuration marking

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

3. Power supply specifications

Table 1. Input specifications

Symbol	Description	Condition		Specification		Units
			Α		В	
V_{i}	mains input voltage	-		90 to 264		V
fi	mains input frequency	-		47 to 64		Hz
P _{i(no-load)}	no-load input power	230 V; 50 Hz	< 50		<100	mW

Table 2. Output specifications

Symbol	Description	Condition		Configuratio	n	Units
			Α		В	
V_{o}	output voltage	-		19.5		V
V _{o(min)}	minimum output voltage during standby operation	at 90 V; 60 Hz, no-load	≥12	-		V
V _{o(ripple)(p-p)}	output ripple and noise	20 MHz bandwidth		≤100		mV_{p-p}
Io	continuous output current	90 V to 264 V		0 to 4.62		Α
I _{OM}	peak output current	115 V; 60 Hz		5.6		Α
t _{holdup}	hold-up time	115 V; 60 Hz, full-load		5		ms
V _{line(reg)}	output voltage regulation as a function of mains voltage	90 V to 264 V		±1		%
V _{L(reg)}	output voltage regulation as a function of load	0 A to 4.62 A		±2		%
t _{startup}	start-up time	115 V; 60 Hz		≤2		S
η	efficiency	according to ENERGY STAR (EPS 2)		≥89.5		%
-	EMI	CISPR22 compliant		pass		-
-	immunity against ESD	EN61000-4-2 compliant		pass		-
		(≥ ±12 kV air discharge)				
SCP	Short-circuit Protection	-		P _{in} <1.2		W
OCP	OverCurrent Protection	-		P _{in} <2.2		W

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

 Table 2.
 Output specifications ...continued

Symbol	Description	Condition		Configuration	Units
			Α	В	
OVP	Latched output OverVoltage Protection	-		<24	V
OTP	OverTemperature Protection	-		≤120	°C
FLR	Fast Latched Reset	Disconnect mains voltages		<2	S

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

4. Performance data

4.1 Test setup

Performance figures are based on the following PCB design:

 Schematic version: APBADC068 TEA1755 plus TEA1792 plus TEA1703, 90 W Adapter (see Figure 12)

4.1.1 Test equipment

• AC source: Agilent 6812B

Power meter: Yokogawa WT210 with harmonics option

• DC electronic load: Chroma, model 6310

Digital oscilloscope: Yokogawa DLM 2024

• Current probe: Yokogawa 701933 30 A; 50 MHz

• 100 MHz, high-voltage differential probe: Yokogawa 700924

500 MHz, low voltage differential probe: Yokogawa 701920

• Multimeter: Keithley 2000

• EMC receiver: Rohde & Schwarz ESPI-3 + LISN ENV216

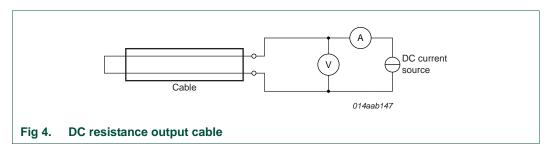
4.1.2 Test conditions

- Adapter on the lab-table with the heat sinks downwards
- The adapter has no casing
- Ambient temperature between 20 °C and 25 °C
- Measurements are made after stabilization of the temperature. These measurements are according to "test method for calculating the efficiency of single-voltage external AC-DC and AC-AC power supplies" of ENERGY STAR

4.2 Efficiency

Efficiency measurements are executed using an automated test program containing a temperature stability detection algorithm. The output voltage and current are measured using a 4-wire current sense configuration directly at the PCB connector.

The measurement results for a selection of mains input voltages are shown in Table 3.


Table 3. Efficiency results

Condition	ENERGY STAR 2.0								
	Efficiency	Average	100 %	75 %	50 %	25 %	500 mW	250 mW	100 mW
	requirement (%)		load	load	load	load	load	load	load
90 V; 60 Hz	>87	90.5	89.87	90.74	90.79	90.63	81.41	72.99	54.61
100 V; 50 Hz	>87	90.9	90.41	91.14	91.11	90.94	81.49	72.88	54.13
115 V; 60 Hz	>87	91.4	90.98	91.60	91.47	91.53	81.29	72.41	53.34
230 V; 50 Hz	>87	91.1	91.72	91.37	90.01	91.33	77.11	66.12	45.27
264 V; 50 Hz	>87	91	91.92	91.53	89.96	90.76	75.27	63.71	42.78

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

Remark: Warm-up time of 10 minutes

Remark: There is an efficiency loss of 1 % when measured at the end of a 1 m output cable.

DC resistance output cable produces a two-way resistance of:

$$\frac{voltage\ d\ rop}{current} = \frac{0.217}{3.01} = 72m\Omega(two-way) \tag{1}$$

4.3 PFC on/off level

To measure the PFC on/off tripping point, slowly increase/decrease the output current and check the power factor.

The measurement results for a selection of mains input voltages are shown in <a>Table 4.

Table 4. PFC on and off level as a function of the mains input voltage

Condition		Output current (A)
	PFC ON level	PFC OFF level
90 V; 60 Hz	1.8	1.25
100 V; 50 Hz	1.82	1.25
115 V; 60 Hz	1.82	1.25
230 V; 50 Hz	1.76	1.22
264 V; 50 Hz	1.76	1.22

4.4 No-load power consumption

Power consumption performance of the total application without load connected is measured using an automated test program containing a temperature stability detection algorithm.

The measurement results for a selection of mains input voltages are shown in Table 5.

Table 5. Output voltage and power consumption: no-load

ENERGY STAR 2.0	No-load power consumption (mW)			
requirement (mW)	Configuration A	Configuration B		
≤300	4	69		
≤300	5	70		
≤300	6	72		
≤300	27	97		
≤300	34	112		
	requirement (mW) ≤300 ≤300 ≤300 ≤300	requirement (mW) Configuration A ≤300 4 ≤300 5 ≤300 6 ≤300 27		

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

Configuration (A) containing the IC combination TEA1755 and TEA1703, results in a standby power consumption far below the requirements of ENERGY STAR EPS2.0. It reflects the extra low standby power consumption that is required in the market for certain products.

4.5 Minimum output current for normal operation

This measurement is valid only for configuration (A). This application can function in two modes:

- Normal mode: TEA1755 is active and output voltage is in regulation.
- Standby mode: TEA1755 is put in power-down mode by TEA1703; output voltage is not in regulation and is a saw tooth waveform with an amplitude between V_o and V_{o(min)}

The minimal current to leave standby operation and enter normal operation is measured for 90 V; 60 Hz and 264 V; 50 Hz. The measurement results are shown in Table 6.

Table 6. Minimal current for normal operation

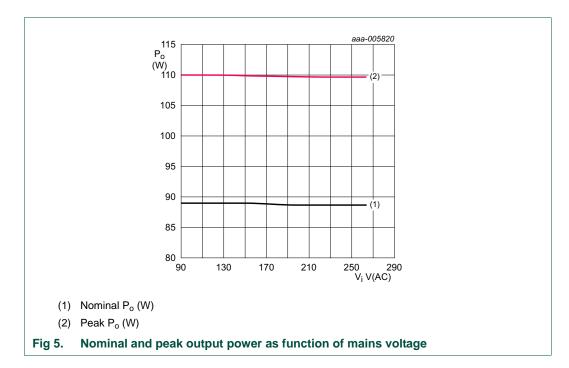
Condition	Output current (mA)
90 V; 60 Hz	1.73
264 V; 50 Hz	1.78

4.6 Power factor and THD

The total harmonic distortion for voltage and current is measured according to the IEC standard. Power factor and THD is measured using the Yokogawa power meter at the mains input with an automated test program containing a temperature stability detection algorithm. Measurements are performed for full load (4.62 A) condition.

The measurement results for a selection of mains input voltages are shown in Table 7.

Table 7. Power factor and THD


Condition	Power factor (%)	THD I (%)
90 V; 60 Hz	0.99	11.65
100 V; 50 Hz	0.99	13.29
115 V; 60 Hz	0.98	16.44
230 V; 50 Hz	0.92	36.73
264 V; 50 Hz	0.89	40.28

4.7 High/low line output power compensation

Nominal output power is measured directly at the output connector for various mains input voltages.

Figure 5 shows the nominal and peak output power as function of mains voltage.

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

4.8 VCC voltage

The voltage on the VCC pin voltage is measured for both no-load and full-load conditions. The minimum output current of 5 mA prevents switching to standby mode for configuration (A).

Table 8. VCC voltage configuration (A)

Condition	No-load (5 mA)	Full-load (4.62 A)
115 V; 60 Hz	21.2	28.6
230 V; 50 Hz	21.2	28

Table 9. VCC voltage configuration (B)

Condition	No-load (0 mA)	Full-load (4.62 A)
115 V; 60 Hz	15.8	28.6
230 V; 50 Hz	15.8	28

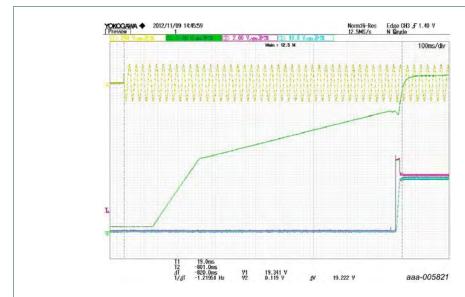
Remark: VCC voltage at no-load condition is VCC_(min).

4.9 Timing and protection

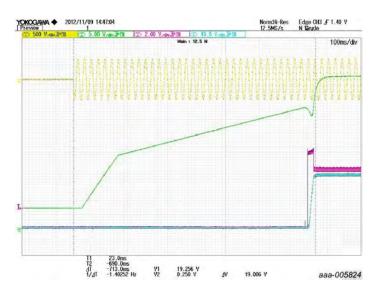
4.9.1 Switch-on delay and output rise time

Test conditions

The electronic load is set to Constant Current (CC) mode and $V_O = 0$ V. The electronic load is set to the maximum continuous output current.

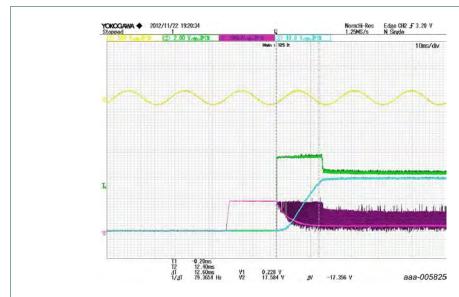

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

Criteria to pass


- Switch-on delay: 2 s maximum after the AC mains voltage is applied to the time when the output is within regulation
- Output rise time: The output voltage rises from 10 % of the maximum to the regulation limit within 30 ms. The ramp-up of the output voltage is smooth and continuous. No voltage with a negative polarity is present at the output connector during start-up
- No output voltage bounce or hiccup is allowed during switch-on
- There is sufficient margin between the FBCTRL signal and the 7.75 V time-out trigger level. This margin is to avoid false triggering of the time-out protection due to component tolerances

<u>Figure 6</u> shows the delay between switch-on and output regulation and <u>Figure 7</u>. shows the output rise time at full load start-up.

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board


a. Mains input 90 V; 60 Hz; delay time: 820 ms

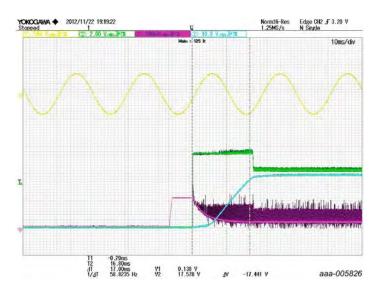

- b. Mains input 264 V; 50 Hz; delay time: 713 ms
- (1) Load = 4.62 A
- (2) Ch1 (yellow): mains input
- (3) Ch2 (green): VCC pin TEA1755
- (4) Ch3 (magenta): FBCTRL pin TEA1755
- (5) Ch4 (cyan): output voltage

Fig 6. Delay between switch-on and output regulation

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

a. Mains input 90 V; 60 Hz; output rise time: 13 ms

- b. Mains input 264 V; 50 Hz; output rise time: 17 ms
- (1) Load = 4.62 A
- (2) Ch1 (yellow): mains input
- (3) Ch2 (green): FBCTRL pin TEA1755
- (4) Ch3 (magenta): FBSENSE pin TEA1755 (soft-start)
- (5) Ch4 (cyan): output voltage

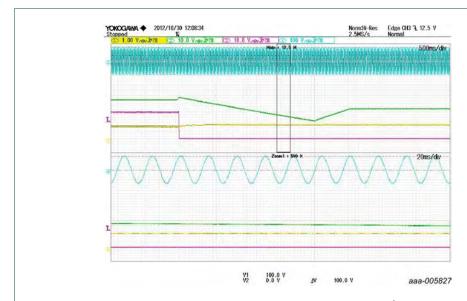
Fig 7. Output rise time at full load start-up

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

4.9.2 Brownout and brownout recovery

When the VINSENSE voltage is less than the $V_{stop(VINSENSE)}$, the PFC driver output is switched off to prevent the PFC from operating at very low mains input voltages. The flyback driver output is switched off when driver $t_{on(fb)max}$ is reached.

Test conditions


The mains input voltage is decreased from 90 V down to 0 V and then increased from 0 V to 90 V. The electronic load is set to Constant Current (CC) mode and $V_{on} = 0$ V. The electronic load is set to the maximum continuous output current (4.62 A).

Criteria to pass

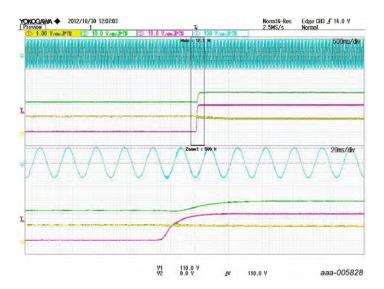

- The adapter survives the test without damage and excessive heating of component
- The output voltage remains within the specified regulation limits or switch-off
- No output bounce or hiccup is allowed during switch-on or switch-off
- The adapter powers up before the AC line input voltage reaches 85 V (maximum)

Figure 8 shows the graphs for brownout and brownout recovery.

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

a. AC mains input from 90 V to 0 V; Brownout voltage = 100 / $(\sqrt{2})$ = 71 V

- b. AC mains input from 0 V to 90 V; Brownout recovery voltage = 110 / $(\sqrt{2})$ = 78
- (1) Load = 4.62 A
- (2) Ch1 (yellow): VINSENSE pin TEA1755
- (3) Ch2 (green): VCC pin TEA1755
- (4) Ch3 (magenta): output voltage
- (5) Ch4 (cyan): mains input voltage

Fig 8. Brownout and brownout recovery

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

4.9.3 Output short circuit protection

To protect the adapter and application against an output short-circuit or a single fault open (flyback) feedback loop, time-out protection is implemented. When the voltage on the FBCTRL pin rises above 4.5 V (typical), a fault is assumed and switching is blocked.

The time-out protection must not trigger during a normal start-up with the maximum continuous output current.

Test conditions

There are two test conditions:

- 1. The adapter is switched on with 4.62 A output load. After start-up a short-circuit is applied manually at the end of the output cable
- Before the adapter is switched on, a short-circuit is applied at the end of the output cable

Remark: An output short-circuit is defined as an output impedance less than 0.1 Ω .

Criteria to pass

- The adapter can withstand a continuous short-circuit at the output without damaging or overstressing the adapter under any input conditions
- The average input power is less than 3 W during the short-circuit test
- After removal of the short circuit, the adapter recovers automatically

Figure 9, Figure 10 and Figure 11show the graphs for output short-circuit protection.

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

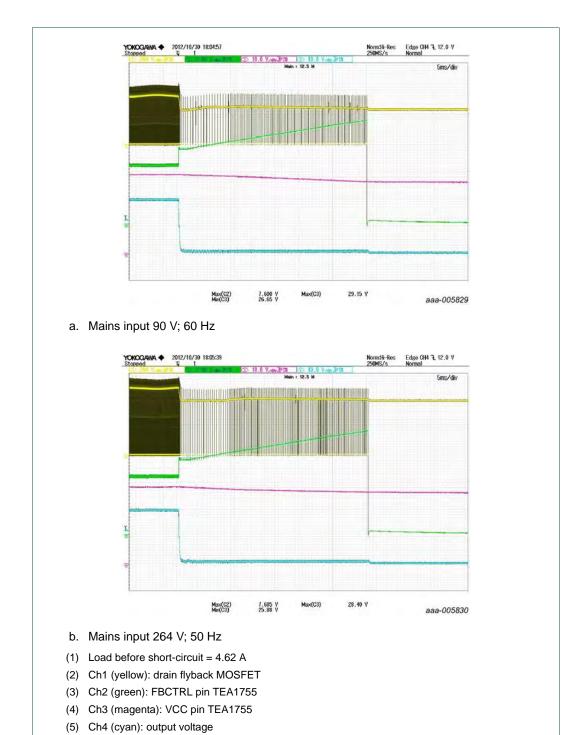
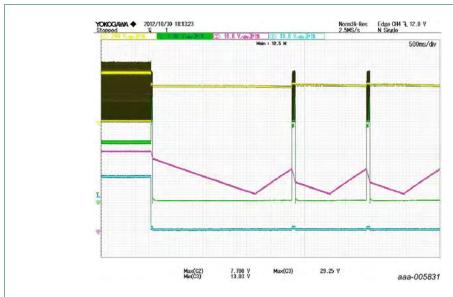
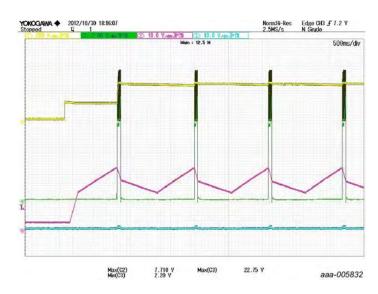
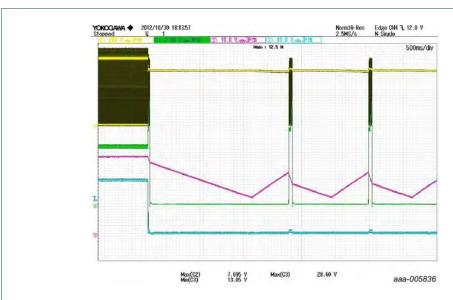




Fig 9. Output short-circuit: triggering of the time-out protection

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board


a. Output short-circuit during normal operation

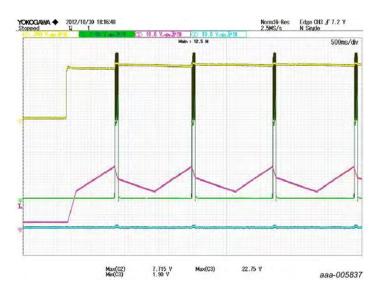

- b. Output short-circuit applied before start-up
- (1) Load before short-circuit = 4.62 A
- (2) Ch1 (yellow): drain flyback MOSFET
- (3) Ch2 (green): FBCTRL pin TEA1755
- (4) Ch3 (magenta): VCC pin TEA1755
- (5) Ch4 (cyan): output voltage

Fig 10. Output short-circuit: 90 V, 60 Hz

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

a. Output short-circuit during normal operation

- b. Output short-circuit applied before start-up
- (1) Load before short-circuit = 4.62 A
- (2) Ch1 (yellow): drain flyback MOSFET
- (3) Ch2 (green): FBCTRL pin TEA1755
- (4) Ch3 (magenta): VCC pin TEA1755
- (5) Ch4 (cyan): output voltage

Fig 11. Output short-circuit: 264 V, 50 Hz

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

Table 10. Output short-circuit input power

Output short-circuit input power at different mains input voltages

Condition	Input power P _i (mW)	Power meter current range (mA)
90 V; 60 Hz	404	100
100 V; 50 Hz	412	100
115 V; 60 Hz	424	100
230 V; 50 Hz	530	200
264 V; 50 Hz	568	500

Remark: P_i integrated over 6 minutes.

4.9.4 OverCurrent Protection (OCP)

Test conditions

- The electronic load is set in Constant Current (CC) mode
- The load is increased from the maximum continuous value in small steps until the
 overcurrent protection is triggered. The input power is measured after triggering the
 overcurrent protection without changing the load setting. P_i is integrated during a 6
 minutes interval. The input current range of the power meter is set to indicate *in range*when the controller is switching (*burst on state*).

Criteria to pass

- The output power is limited to less than 150 W, before triggering of the overcurrent protection
- The average input power is less than 3 W when the overcurrent protection has been triggered

Table 11. Maximum output power at different mains input voltages

Condition	Output voltage (V)	OCP trigger level (A)	Output power P _{o(max)} (W)
90 V; 60 Hz	19.25	6.7	129
100 V; 50 Hz	19.25	6.7	129
115 V; 60 Hz	19.25	6.7	129
230 V; 50 Hz	19.23	6.4	123
264 V; 50 Hz	19.23	6.4	123

Table 12. Input power in OCP state at different mains input voltages

Condition	P _i (W)	Power meter current range (A)
90 V; 60 Hz	2.2	2
100 V; 50 Hz	2.2	1
115 V; 60 Hz	2.2	1
230 V; 50 Hz	2.1	0.5
264 V; 50 Hz	2.1	0.5

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

4.9.5 OverVoltage Protection (OVP)

Test conditions

Applying a short-circuit across the opto-LED of the optocoupler (U2) creates an output overvoltage condition. The output voltage and VCC pin voltage is measured directly at the output connector. The minimum output current of 15 mA prevents entering standby mode.

Criteria to pass

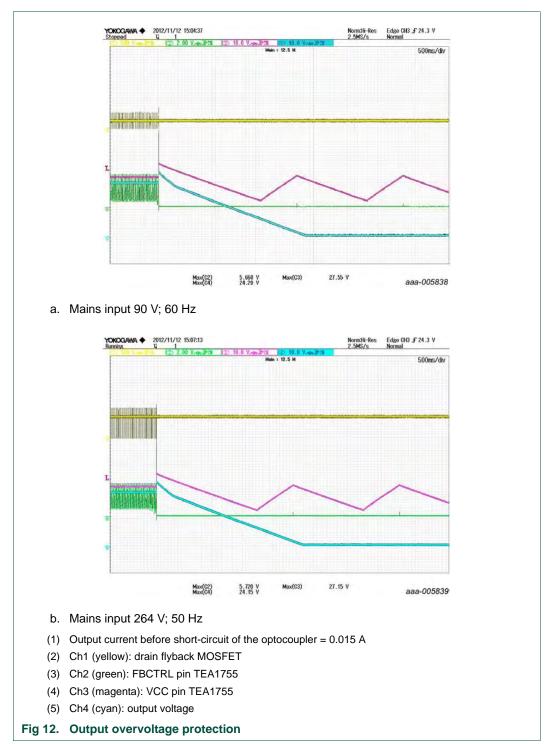

- The output voltage does not exceed 25 V or stabilizes between 25 V and the rated output voltage
- The voltage on the TEA1755 VCC pin does not exceed the absolute maximum rating of 38 V
- When OVP is triggered, the primary side controller shuts down and stays in a latched mode
- A single point fault must not cause a sustained overvoltage condition at the output

Table 13. VCC and output voltage in case of OVP as function of mains input voltage

Condition	V _O (V)	VCC (V)
90 V; 60 Hz	24.2	27.55
100 V; 50 Hz	24.28	27.45
115 V; 60 Hz	24.38	27.48
230 V; 50 Hz	24.13	27.30
264 V; 50 Hz	24.15	27.15

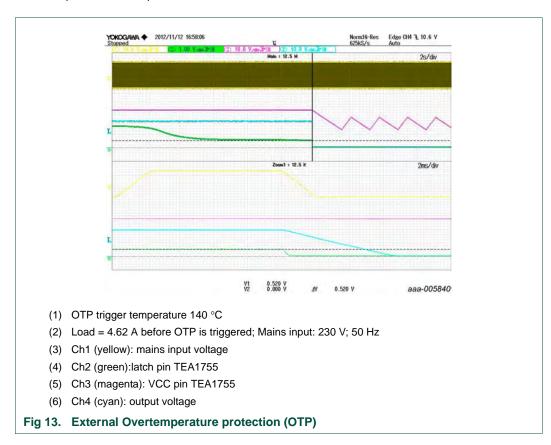
Figure 12 shows the graphs for output overvoltage protection.

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

4.9.6 OverTemperature Protection (OTP)

An accurate external over temperature protection (TEA1755 LATCH pin, RT2, R26 and C19) is provided on the demo board. This measure protects the flyback transformer against overheating (see Figure 13). Normally, the flyback transformer is the hottest component on the board.

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board


Test conditions

The NTC temperature sensor, glued to the transformer, is heated using hot air.

Criteria to pass

The IC latches off the output at a V_{LATCH} trip level of 0.494 V. No output bounce or hiccup is allowed.

Remark: For this demo board, the NTC is mounted on the heat sink. This place is not the hottest spot of the adapter. It is better to mount the NTC on the transformer.

4.9.7 Fast latch reset

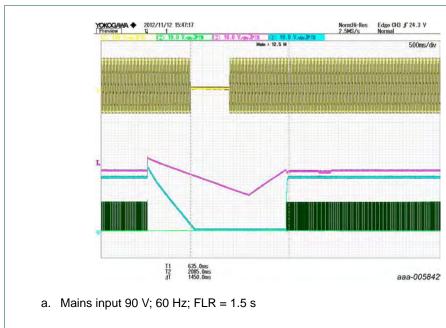
A Fast Latch Reset function (FLR) enables latched protection to be reset without discharging the bulk electrolytic capacitor. The latch protection is reset when the voltage on the VINSENSE pin drops below 0.75 V and is then raised to 0.86 V. This voltage variation is done by disconnecting the mains voltage.

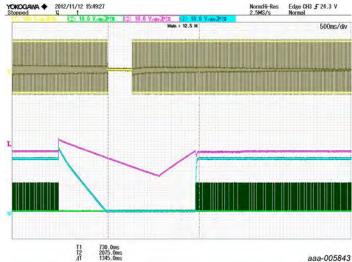
Test conditions

- The output is loaded (I_o = 50 mA)
- The test sequence is as follows:
 - A short-circuit across the OPTO-led provides an OVP to trigger the latch protection (see also Section 4.9.5)
 - The mains input is switched off and the voltage on the VINSENSE pin drops below 0.75 V

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

 The mains input is switched on and, when the voltage on the VINSENSE pin rises above 0.86 V, the latch protection is released


Remark: Switching of both live and neutral is required.


Criteria to pass

The latch is reset within 3 s after switching of the mains input voltage.

Figure 14 shows the graphs for FLR.

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

- b. Mains input 264 V; 50 Hz; FLR = 1.3 s
- (1) Ch1 (yellow): mains input voltage
- (2) Ch2 (green): FBDRIVER pin TEA1755
- (3) Ch3 (magenta): VCC pin TEA1755
- (4) Ch4 (cyan):output voltage

Fig 14. Fast Latch Reset (FLR)

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

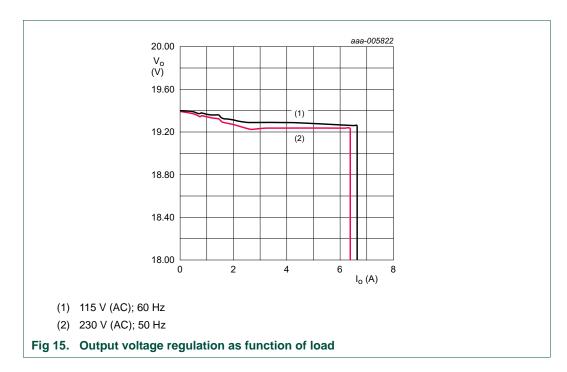
4.10 Output regulation

4.10.1 Load regulation

The output voltage as a function of load current is measured using a 4-wire current sense configuration at the end of the cable. The minimum current of 15 mA prevents switching to standby mode. Measurements are performed for 90 V; 60 Hz and 264 V; 50 Hz.

Criteria to pass

The output voltage deviation must be less than 2 %. The load regulation is calculated using Equation 2.


$$\frac{V_{o(max)} - V_{o(min)}}{V_{o(nom)}} \times 100\% \tag{2}$$

where $V_{O(nom)} = 19.5 \text{ V}.$

The results are shown in Table 14.

Table 14. Load regulation

Condition	No load		Full load		Load regulation (%)
	Vo (V)	lo (A)	Vo (V)	lo (A)	
90 V; 60 Hz	19.40	0.015	19.29	4.62	0.56
264 V; 50 Hz	19.40	0.015	19.24	4.62	0.82

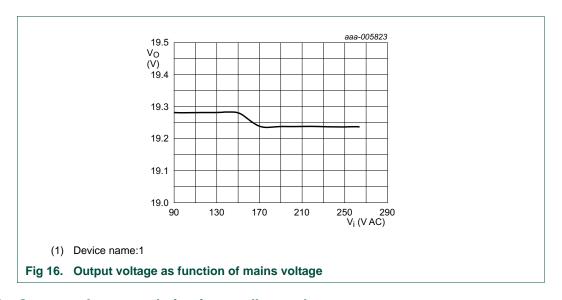
4.10.2 Line regulation

The output voltage as a function of mains input voltage is measured using a 4-wire current sense configuration at the end of the cable for full-load (4.62 A) condition.

The results are shown in Table 15 and Figure 16.

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

Criteria to pass


The output voltage deviation must be less than 0.05 %. The load regulation is calculated using Equation 3.

$$\frac{V_{o(mainsmin)} - V_{o(mainsmax)}}{V_{o(nom)}} \times 100\%$$
(3)

where $V_{O(nom)} = 19.5 \text{ V}$

Table 15. Line regulation

	•		
Condition		Full-load	
Mains	V _o (V)	I _o (A)	
90 V; 60 Hz	19.28	4.62	
100 V; 50 Hz	19.28	4.62	
115 V; 60 Hz	19.28	4.62	
230 V; 50 Hz	19.24	4.62	
264 V; 50 Hz	19.24	4.62	

4.10.3 Output voltage regulation in standby mode

Measurement is only valid for configuration (A).

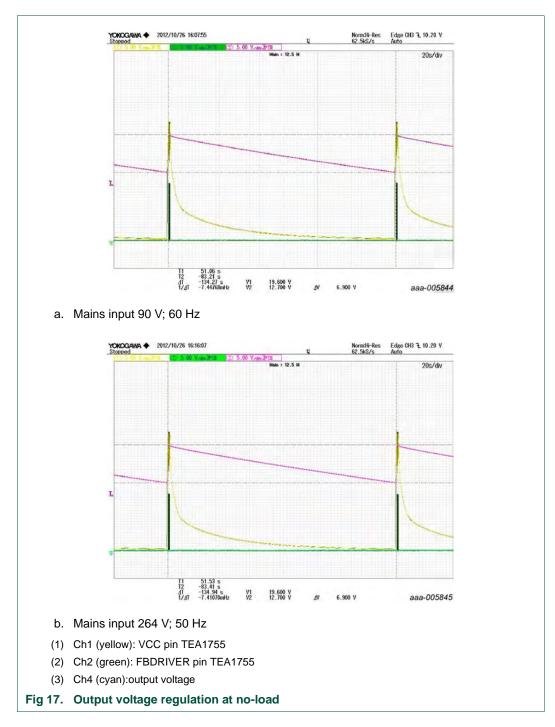

Mains input voltages and results for output voltage regulation during no-load operation are shown in <u>Table 16</u>.

Table 16. Output voltage in standby mode (configuration A)

Condition	V _o maximum (V)	V _o minimum (V)	Repetition rate (s)
90 V; 60 Hz	19.6	12.7	134.3
264 V; 50 Hz	19.6	12.7	134.9

Figure 17 shows the graphs for output voltage regulation at no-load.

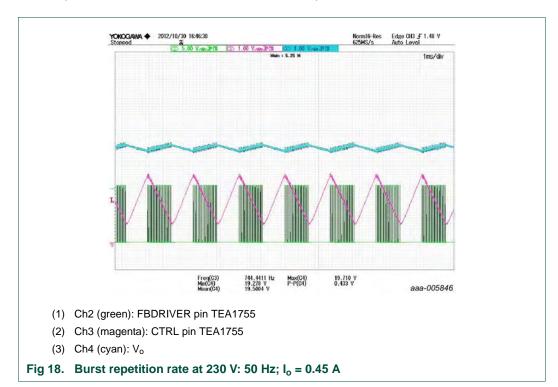
Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

4.10.4 No-load output ripple in burst mode

This measurement is only valid for demo board configuration (B). The output voltage ripple is measured when the TEA1755 controller is operating in burst mode. The output voltage ripple during no-load operation is measured for 90 V; 60 Hz and 264 V; 50 Hz, as shown in Table 17.

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

Table 17. Output voltage in standby mode (configuration B)


Condition	V _o maximum (V)	V _o minimum (V)	V _{p-p} (mV)	V _{mean} (mV)	Repetition rate (Hz)
90 V; 60 Hz	19.6	19.2	363	19.4	5
264 V; 50 Hz	19.6	19.3	363	19.4	5

4.10.5 Burst mode repetition rate

Burst repetition rate is measured when the burst on/off duty cycle is 50 %.

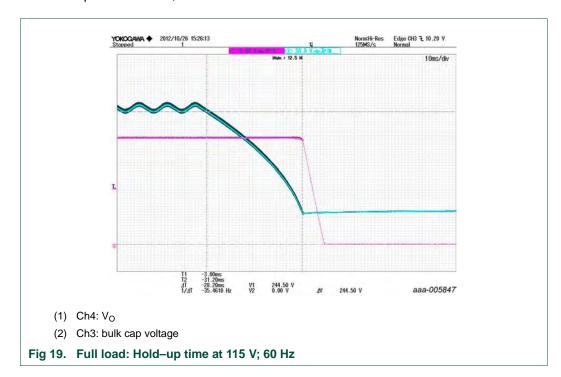
Criteria to pass

Burst repetition rate must be lower than 800 Hz to prevent the risk of audible noise.

Mains input voltages and results for burst mode repetition rate and output current are shown in Table 18.

Table 18. Burst mode repetition rate

Condition	Burst mode repetition rate (Hz)	Output current for 50 % duty-cycle (A)
90 V; 60 Hz	776	0.46
115 V; 60 Hz	754	0.44
230 V; 50 Hz	745	0.43
264 V; 50 Hz	749	0.43


Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

4.10.6 Hold-up time

Hold-up time is defined as the time between the following events:

- · After mains switch off
- When the lowest bulk cap voltage during a mains cycle is crossed
- When the output voltage starts to drop

The hold-up time at 115 V; 60 Hz is 28.2 ms.

4.11 Dynamic loading

Test conditions

- The adapter is subjected to a load change from 0.33 % to 100 % at a slew rate of 2.5 A / μs. The minimum output current of 15 mA (0.33 %) prevents entry into standby mode
- The frequency of change is set to give the best readability of the deviation and setting time
- The output voltage is measured at the end of the cable

Criteria to pass

The output voltage must not overshoot or undershoot beyond the specified limits (+1 V and -0.5 V) after a load change.

Figure 20 and Figure 21 show the graphs for dynamic load response.

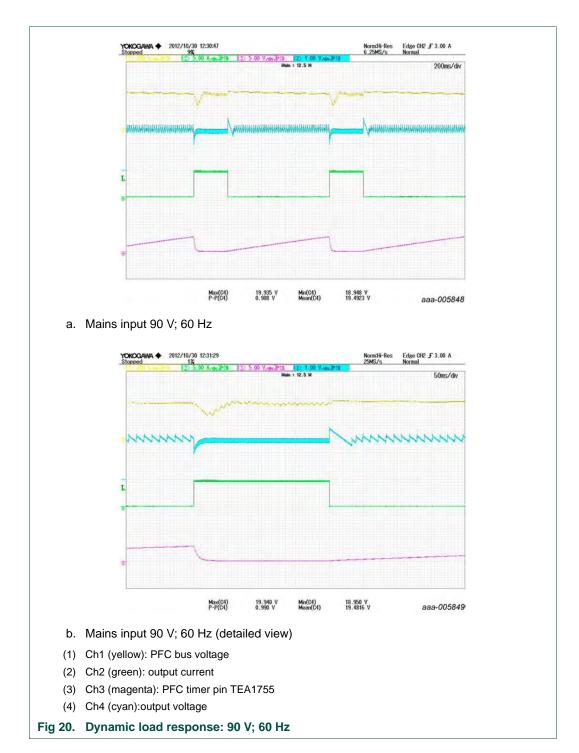
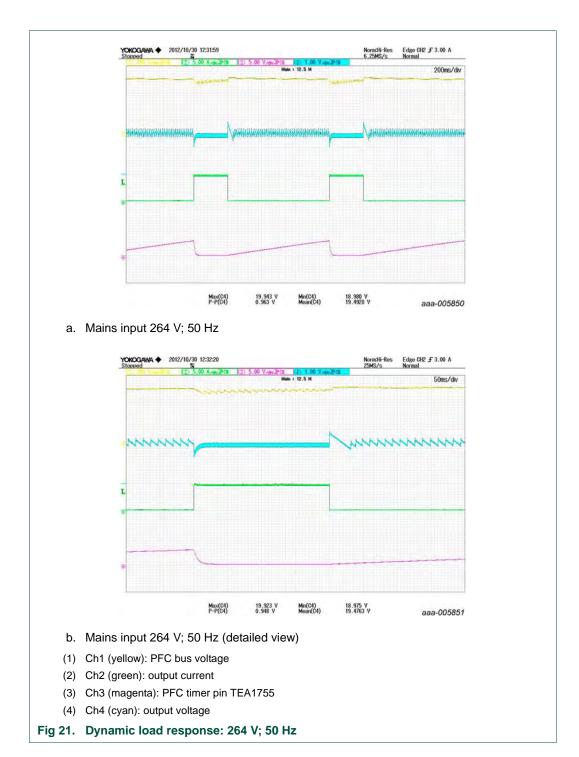

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

Table 19. Dynamic loading test condition and results

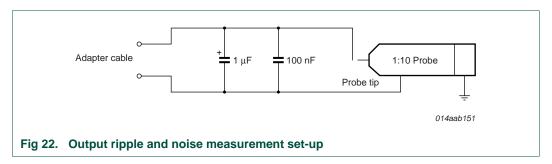

Deviation of the output voltage at a load step from 4.62 A to 0.015 A and from 0.015 A to 4.62 A

Condition	Loading	V _{o(max)} (V)	V _{o(min)} (V)	Deviation	
				$V_{o(max)} - V_{o(nom)}$ (mV)	$V_{o(nom)} - V_{o(min)}$ (mV)
90 V; 47 Hz	$\rm I_{o}$: 0.33 % to 100 %; f: 1.25 Hz; duty cycle 25 %	19.94	18.95	435	552
264 V; 63 Hz	$\rm I_{0}$: 0.33 % to 100 %; f: 1.25 Hz; duty cycle 25 %	19.93	18.98	443	520

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board


4.12 Output ripple and noise

Test conditions

Output ripple and noise is defined as periodic or random signals over a frequency band of 10 Hz to 20 MHz.

Output ripple and noise is measured at the end of the cable using the measurement set-up described in <u>Figure 22</u>. An oscilloscope probe is connected to the end of the adapter cable using a probe tip.

100 nF and 1 μ F capacitors are added between plus and minus to reduce high frequency noise. The input channel bandwidth of the oscilloscope is limited to 20 MHz.

Criteria to pass

The output ripple and noise must remain within the specified limits 100 mV (peak-to-peak) for the full load (4.62 A) condition.

The measurement results for a selection of mains input voltages are shown in Table 20.

Table 20. Output ripple and noise measurements
Ripple and noise (at maximum load) as a function of the mains input voltage

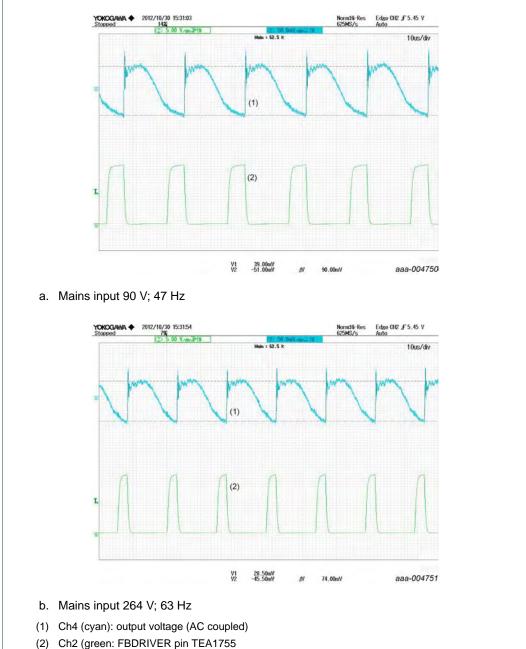

Condition	V _{o(ripple)(p-p)} (mV)
90 V; 47 Hz	90
100 V; 50 Hz	79
115 V; 60 Hz	79
230 V; 50 Hz	74
264 V; 63 Hz	74

Figure 23 shows the graphs for output ripple and noise.

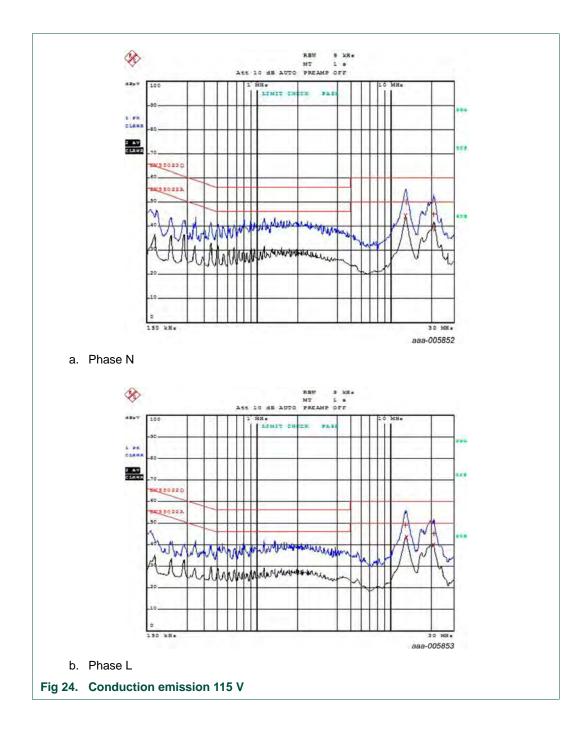
User manual

UM10514 NXP Semiconductors

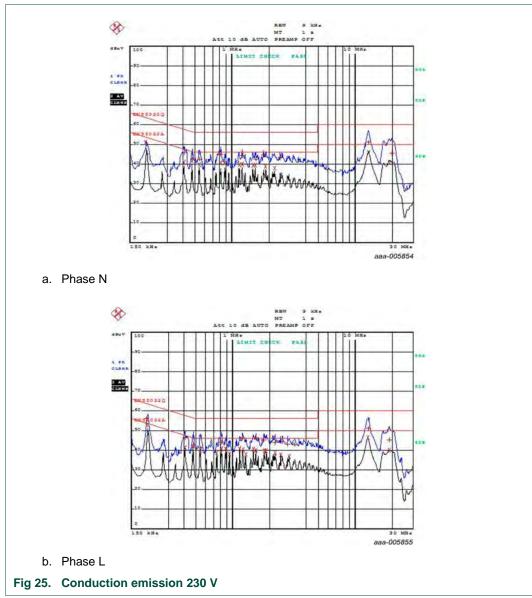
Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

- Fig 23. Output ripple and noise

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board


5. Electromagnetic Compatibility (EMC)

5.1 Conduction emission


5.1.1 Conditions

- Type: Conducted Electromagnetic Compatibility (EMC) measurement
- Frequency range: 150 kHz to 30 MHz
- Output power: full load condition
- Supply voltage: 115 V and 230 V
- Margin: 6 dB below limit
- Secondary ground connected to earth ground
- Measurements performed by NXP Semiconductors Nijmegen (The Netherlands)

In the graphs shown in <u>Figure 24</u> and <u>Figure 25</u>, the blue line is the quasi-peak measurement result and the black line is the average measurement result.

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

5.2 Immunity against lighting surges

Test conditions

- Combination wave: 1.2/50 μs open-circuit voltage and 8/20 μs short-circuit current
- Test voltage: 2 kV
- L1 to L2: 2 Ω ; L1 to PE, L2 to PE and L1 + L2 to PE: 12 Ω
- Phase angle: 0°, 90°, 180° and 270°
- Number of tests: 5 positive and 5 negative
- Pulse repetition rate: 20 s

Test result

There is no disruption of functionality.

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

5.3 Mains harmonic reduction

Test conditions

- The adapter is set to the maximum continuous load of 4.62 A
- The input voltage is 230 V; 50 Hz

Criteria to pass

Compliance with EN61000-3-2 A14 class D.

Test result

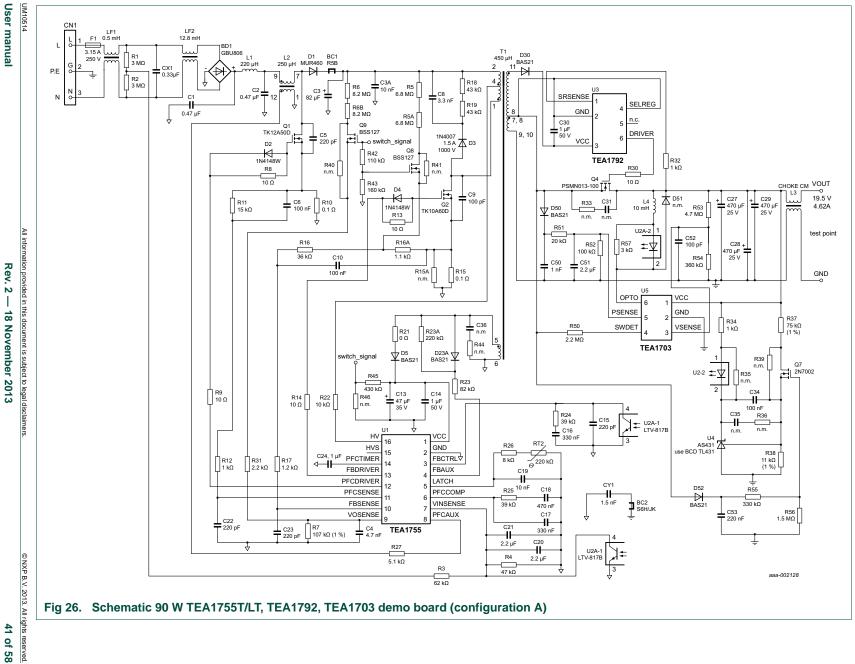
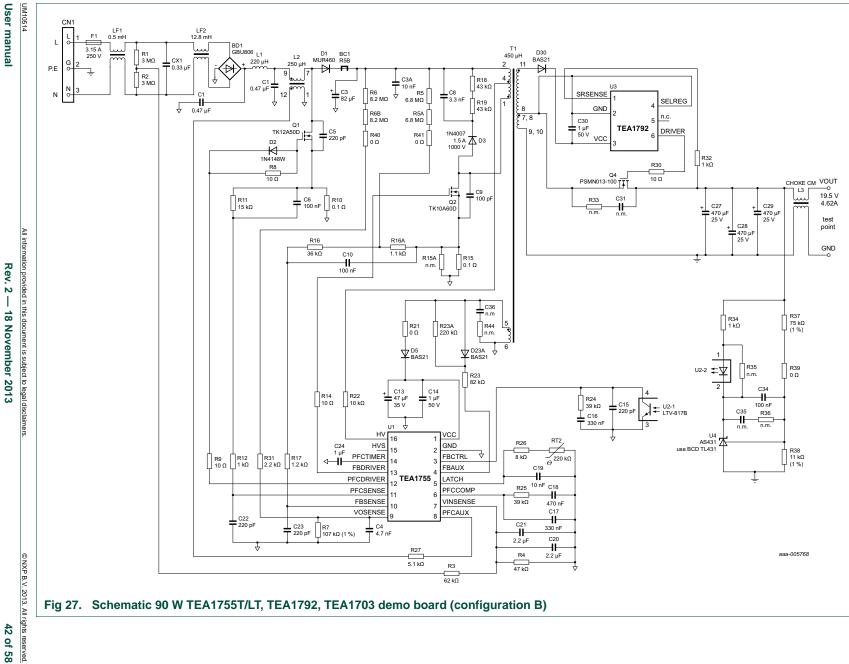

Passed, see Table 21.

Table 21. MHR according to EN61000-3-2 A14, class D

Harmonic nr.	Measured (mA)	Limit (mA)	Harmonic nr.	Measured (mA)	Limit (mA)
1	427.7	-	21	9.6	20.1
3	149.7	338.1	23	2.6	18.2
5	21.3	189	25	1.4	16.7
7	8.1	99.4	27	6.5	15.3
9	14.0	49.7	29	7.1	14.2
11	6.6	34.8	31	1.9	13.2
13	5.5	34.8	33	2.8	12.4
15	3.9	29.5	35	4.0	11.6
17	3.0	25.5	37	1.7	10.9
19	2.1	22.5	39	2.0	10.3

6. Schematic 90 W TEA1755T/LT, TEA1792, TEA1703 demo board


 $\underline{\text{Figure 26}}$ shows the schematic for configuration A and $\underline{\text{Figure 27}}$ shows the schematic for configuration B.

User manual

Rev. 2 —

18 November 2013

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

7. Bill of Materials (BOM)

Table 22. Bill of Materials

Reference	Description and Value	Part number/Package	Manufacturer	Board version
BC1	bead; core; RH $4 \times 6 \times 2$, R5B (King Core)/XP; for D1	N4/AMAX	-	A and B
BC2	bead; core; RH 3.5 \times 4.2 \times 1.3; S6H/JK; for CY1	N6/AMAX	-	A and B
BD1	bridge diode; Flat/Mini; 8 A; 600 V	GBU806	Lite-On	A and B
Cable	cable; 16AWG/1571; $2.5 \times 5.5 \times 12$ (kk, fk); L = 1200 mm	-	-	A and B
C1	capacitor; film; axial lead; 0.47 μ F; 450 V; P =10 mm	MFTD/HJC	-	A and B
C2	capacitor; film; axial lead; 0.47 μ F; 450 V; P =10 mm	MFTD/HJC	-	A and B
C3	capacitor; electric; radial lead; 100 μ F; 400 V; 105 °C; 16 × 30 mm	KMG/NCCC	-	A and B
C3A	capacitor; ceramic, disc, D = 11.5; 10000 pF; 1 KV	Z5U	-	A and B
C4	capacitor; MLCC; 4700 pF; 50 V; X7R	SMD 0603	-	A and B
C5	capacitor; MLCC; 220 pF; 630 V; NPO	SMD 1206	-	A and B
C6	capacitor; MLCC; 0.1 μ F; 50 V; X7R	SMD 0603	-	A and B
C8	capacitor; MLCC; 3300 pF; 630 V; X7R	SMD 1206	-	A and B
C9	capacitor; MLCC; 100 pF; 630 V; NPO	SMD 1206	-	A and B
C10	capacitor; MLCC; 0.1 μF; 50 V; X7R	SMD 0603	-	A and B
C13	capacitor; electric; radial lead; 5 × 11 mm; 47 µF; 35 V; 105 °C	-	ZLH Rubycon	A and B
C14	capacitor; MLCC; 1 μF; 50 V; Y5V	SMD 0805	-	A and B
C15	capacitor; MLCC; 220 pF; 50 V; X7R	SMD 0603	-	A and B
C16	capacitor; MLCC; 0.33 μF; 16 V; X7R	SMD 0603	-	A and B
C17	capacitor; MLCC; 0.33 μF; 16 V; X7R	SMD 0603	-	A and B
C18	capacitor; MLCC; 0.47 μF; 16 V; X7R	SMD 0603	-	A and B
C19	capacitor; MLCC; 0.01 μF; 50 V; X7R	SMD 0603	-	A and B
C20	capacitor; MLCC; 2.2 μF; 10 V; X7R	SMD 0603	-	A and B
C21	capacitor; MLCC; 2.2 μF; 10 V; X7R	SMD 0603	-	A and B
C22	capacitor; MLCC; 220 pF; 50 V; X7R	SMD 0603	-	A and B
C23	capacitor; MLCC; 220 pF; 50 V; X7R	SMD 0603	-	A and B
C24	capacitor; MLCC; 1 μF; 50 V; X7R	SMD 0805	-	A and B
C27	capacitor; electric; radial lead; 10×12.5 mm; $470~\mu F$; $25~V$; $105~^{\circ}C$	-	KZH/NCC	A and B
C28	capacitor; electric; radial lead; 10 × 12.5 mm; 470 μF; 25 V; 105 °C	-	KZH/NCC	A and B
C29	capacitor; electric; radial lead; 10×12.5 mm; 470 μF ; 25 V; 105 °C	-	KZH/NCC	A and B
C30	capacitor; MLCC; 1 μF; 50 V; Y5V	SMD 0805	-	A and B
C34	capacitor; MLCC; 0.1 μ F; 50 V; X7R	SMD 0603	-	A and B
UM10514	All information provided in	n this document is subject to legal disclaimers.		© NXP B.V. 2013. All rights reserve

Table 22. Bill of Materials ...continued

Reference	Description and Value	Part number/Package	Manufacturer	Board version	
C35	capacitor; nm	SMD 0805	-	-	
C36	capacitor; nm	SMD 0805	-	-	
C50	capacitor; MLCC; 1 nF; 50 V; X7R	SMD 0603	-	Α	
C51	capacitor; MLCC; 2.2 μF; 10 V; X7R	SMD 0805	-	Α	
C52	capacitor; MLCC; 100 pF; 50 V; NPO	SMD 0603	-	Α	
C53	capacitor; MLCC; 0.22 μF; 10 V; X7R	SMD 0603	-	Α	
CX1	capacitor; X2 cap; axial lead; 0.33 $\mu\text{F};$ 275 V	MKP/R46	KEMET	A and B	
CY1	capacitor; ceramic; D = 8.5; Y1 cap; 1500 pF; 400 V	-	CD/TDK	A and B	
D1	diode; ultra fast; axial lead; DO-201AD; 4 A; 600 V	MUR460	Vishay	A and B	
D2	diode; switching; SMD; 0.15 A; 75 V	1N4148W; SOD-123	Diodes	A and B	
D3	diode; general purpose; SMB; 1.5 A; 1000 V	S2M	Lite-On	A and B	
D4	diode; switching; SMD; 0.15 A; 75 V	1N4148W; SOD-123	Diodes	A and B	
D5	diode; ultra fast; SMD; 0.2 A; 250 V	BAS21; SOD-123	NXP Semiconductors	A and B	
D23A	diode; ultra fast; SMD; 0.2 A; 250 V	BAS21; SOD-123	NXP Semiconductors	A and B	
D30	diode; ultra fast; SMD; 0.2 A; 250 V	BAS21; SOD-123	NXP Semiconductors	A and B	
D52	diode; ultra fast; SMD; 0.2 A; 250 V	BAS21; SOD-123	NXP Semiconductors	А	
D30	diode; ultra fast; SMD; 0.2 A; 250 V	BAS21; SOD-123	NXP Semiconductors	А	
F1	fuse; axial lead; time-lag; T 3.15 A; 250 V	LT-5	Littelfuse	A and B	
Heatsink for Q1, Q2, BD1	I-Shape; 109 × 25 mm; t = 3 mm; Cu-Tinned; WD	-	-	A and B	
Heatsink for Q4	I-Shape; 90×25 mm; $t = 3$ mm; Cu-Tinned; WD	-	-	A and B	
Inlet	Inlet; S3P	TU-333-BZ-315-P3D	TECX	A and B	
J1	jumper wire; D = 0.6 taping	-	-	A and B	
J2	jumper wire; D = 0.6 taping	-	-	A and B	
J3	jumper wire; D = 0.6×27.5 mm with PVC	-	-	A and B	
J4	jumper wire; D = 0.6×17.5 mm with PVC			A and B	
J5	jumper wire; $D = 0.6 \times 20 \text{ mm}$ with PVC	-	-	A and B	
J7	jumper wire; D = 0.6×12.5 mm with PVC	-	-	A and B	
		SP05D100	SENDPOWER	A and B	

Table 22. Bill of Materials ...continued

Reference	Description and Value	Part number/Package	Manufacturer	Board version
LF2	inductor; line choke; T16 \times 12 \times 8 A10; D = 0.55 \times 2, 56 Ts; 14.5 mH	SP09Z250	SENDPOWER	A and B
L1	inductor; choke; T50-52, D = 0.5; 80 Ts; 210 μ H	SP08Z201	SENDPOWER	A and B
L2	inductor; PFC choke; RM-10; 40:2; 250 μH	SP08Z187	SENDPOWER	A and B
L3	inductor; choke; T12 \times 6 \times 4; D = 0.8 \times 2; 7 Ts; 200 μ H	SP05D087	SENDPOWER	A and B
L4	inductor; choke; 10 mH, 0.5 W			Α
Nut For Q1, Q2, Q4	nut; HEX/GW; M3; NI Shouh Pin; LF	-	-	A and B
PCB	single side; CEM-1; 2-OZ; $125.5 \times 59 \times 1.6$ mm	APBADC052	-	A and B
Q1	transistor; n-channel MOSFET; 0.45 Ω ; 500 V; 12 A; 15p-typ	TK12A50D; TO-220F	Toshiba	A and B
Q2	transistor; n-channel MOSFET; 0.58 Ω; 600 V; 10 A; 15p-typ	TK10A60D; TO-220F	Toshiba	A and B
Q4	transistor; n-channel MOSFET; 13.9 Ω; 100 V; 67 A; 220p-typ	PSMN013-100PS; TO-220F	NXP Semiconductors	A and B
Q7	transistor; n-channel MOSFET; 60 V; 18 A	2N7002; SOT-23	NXP Semiconductors	А
Q8	transistor; n-channel MOSFET; 600 V; 0.023 A	,BSS127; SOT-23	Infineon	А
Q9	transistor; n-channel MOSFET; 600 V; 0.023 A	,BSS127; SOT-23	Infineon	А
R1	resistor; thin film chip; 3 M Ω ; 1 %	SMD 1206	-	A and B
R2	resistor; thin film chip; 3 M Ω ; 1 %	SMD 1206	-	A and B
R3	resistor; thin film chip; 62 k Ω ; 1 %	SMD 1206	-	A and B
R4	resistor; thin film chip; 47 k Ω ; 5 %	SMD 0603	-	A and B
R5	resistor; thin film chip; 6.8 M Ω ; 1 %	SMD 1206	-	A and B
R5A	resistor; thin film chip; 6.8 M Ω ; 1 %	SMD 1206	-	A and B
R6	resistor; thin film chip; 8.2 M Ω ; 1 %	SMD 1206	-	A and B
R6B	resistor; thin film chip; 8.2 M Ω ; 1 %	SMD 1206	-	A and B
R7	resistor; thin film chip; 104 Ω ; 1 %	SMD 0603	-	A and B
R8	resistor; thin film chip; 10 Ω ; 5 %	SMD 0805	-	A and B
R9	resistor; thin film chip; 10 Ω ; 5 %	SMD 0805	-	A and B
R10	resistor; axial lead; MOF; 0.1 Ω ; 1 W (S); 5 %	-	-	A and B
R11	resistor; thin film chip; 15 k Ω ; 5 %	SMD 0603	-	A and B
R12	resistor; thin film chip; 1 k Ω ; 5 %	SMD 0805	-	A and B
R13	resistor; thin film chip; 10 Ω ; 5 %	SMD 0805	-	A and B
R14	resistor; thin film chip; 10 Ω ; 5 %	SMD 0805	-	A and B
R15	resistor; axial lead; MOF; 0.1 Ω ; 1 W (S); 5 %	-	-	A and B
R16	resistor; thin film chip; 36 k Ω ; 5 %	SMD 0603	-	A and B
UM10514	All information provided in	this document is subject to legal disclaimers.		© NXP B.V. 2013. All rights reserve

Table 22. Bill of Materials ...continued

Reference	Description and Value	Part number/Package	Manufacturer	Board version
R16A	resistor; thin film chip; 1.1 k Ω ; 5 %	SMD 0603	-	A and B
R17	resistor; thin film chip; 1.2 k Ω ; 5 %	SMD 0603	-	A and B
R18	resistor; thin film chip; 43 k Ω ; 1 %	SMD 1206	-	A and B
R19	resistor; thin film chip; 43 k Ω ; 1 %	SMD 1206	-	A and B
R21	resistor; thin film chip; 0 Ω ; 5 %	SMD 0603	-	A and B
R22	resistor; thin film chip; 10 k Ω ; 5 %	SMD 0805	-	A and B
R23	resistor; thin film chip; 82 k Ω ; 1 %	SMD 0603	-	A and B
R23A	resistor; thin film chip; 220 k Ω ; 1 %	SMD 0603	-	A and B
R24	resistor; thin film chip; 39 k Ω ; 5 %	SMD 0603	-	A and B
R25	resistor; thin film chip; 39 k Ω ; 5 %	SMD 0603	-	A and B
R26	resistor; thin film chip; 10 k Ω ; 5 %	SMD 0603	-	A and B
R27	resistor; thin film chip; 5.1 k Ω ; 5 %	SMD 1206	-	A and B
R30	resistor; thin film chip; 10 Ω ; 5 %	SMD 0805	-	A and B
R31	resistor; thin film chip; 2.2 k Ω ; 5 %	SMD 0603	-	A and B
R32	resistor; thin film chip; 1 k Ω ; 5 %	SMD 0805	-	A and B
R35	resistor; nm	SMD 0603	-	-
R36	resistor; nm	SMD 0603	-	-
R37	resistor; thin film chip; 75 k Ω ; 1 %	SMD 0603	-	A and B
R38	resistor; thin film chip; 11 k Ω ; 1 %	SMD 0603	-	A and B
R39	resistor; thin film chip; 0 Ω ; 5 %	SMD 0805	-	В
R40	resistor; thin film chip; 0 Ω ; 5 %	SMD 0603	-	В
R41	resistor; thin film chip; 0 $\Omega;$ 5 $\%$	SMD 0603	-	В
R42	resistor; thin film chip; 110 k Ω ; 5 %	SMD 0603	-	Α
R43	resistor; thin film chip; 160 k Ω ; 5 %	SMD 0603	-	Α
R44	resistor; nm	SMD 0805	-	-
R45	resistor; thin film chip; 430 k Ω ; 5 %	SMD 0603	-	Α
R46	resistor; nm	SMD 0805	-	-
R50	resistor; thin film chip; 2.2 M Ω ; 5 %	SMD 0603	-	Α
R51	resistor; thin film chip; 20 k Ω ; 1 %	SMD 0603	-	Α
R52	resistor; thin film chip; 100 k Ω ; 1 %	SMD 0603	-	Α
R53	resistor; thin film chip; 4.7 M Ω ; 1 %	SMD 0603	-	Α
R54	resistor; thin film chip; 360 k Ω ; 1 %	SMD 0603	-	Α
R55	resistor; thin film chip; 330 k Ω ; 1 %	SMD 0603	-	Α
R56	resistor; thin film chip; 1.5 M Ω ; 5 %	SMD 0603	-	Α
R57	resistor; thin film chip; 3 k Ω ; 5 %	SMD 0603	-	Α
RJ1	resistor; thin film chip; 0 Ω ; 5 %	SMD 0603	-	A and B
RJ2	resistor; thin film chip; 0 Ω ; 5 %	SMD 1206	-	A and B
RJ3	resistor; thin film chip; 0 Ω ; 5 %	SMD 1206	-	A and B
RJ4	resistor; thin film chip; 0 Ω ; 5 %	SMD 0603	-	A and B
RJ5	resistor; thin film chip; 0 Ω ; 5 %	SMD 0603	-	A and B

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

Table 22. Bill of Materials ...continued

D . (D	D. 1		B
Reference	Description and Value	Part number/Package	Manufacturer	Board version
RT2	resistor; NTC; axial lead; D = 5; 220 k Ω ; 5 %	TTC05104	Thinking Electronic Industrial Co., LTD	A and B
Screw For BD1, Q1, Q2, Q4	screw; M3 \times 8, flat head 5.0; NI Shouh Pin	-	-	A and B
T1	transformer; PQ-3220; 450 μH	SP08Z142	SENDPOWER	A and B
Tube for LF2	heat shrink tube; 20 D \times 20 mm	-	Fujikura, Sumitomo/LC	A and B
Tube for RT2	silicone tube; 1 D × 15 mm	-	A(Kurabe)/LC	A and B
U1	GreenChip SMPS control IC	TEA1755T; SO-16	NXP Semiconductors	A and B
U2	IC optocoupler; CTR = 130 % to 260 %	LTV-817B	Lite-On	A and B
U2A	IC optocoupler; CTR = 130 % to 260 %	LTV-817B	Lite-On	Α
U3	IC synchronous rectifier controller	TEA1792TS; TSOP-6	NXP Semiconductors	A and B
U4	IC adjustable precision shunt regulator	AS431I – ANTR-GL; SOT-23	BCD	A and B
U5	IC; SMPS standby control	TEA1703TS; TSOP-6	NXP Semiconductors	А

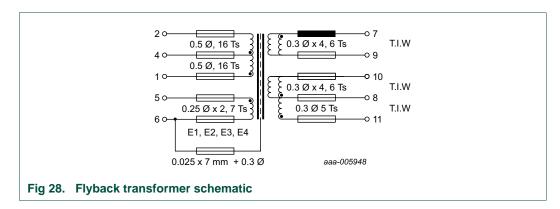
Remark: R7: Wrong value on demo board. Recommended: R7 = 104 Ω (1 %).

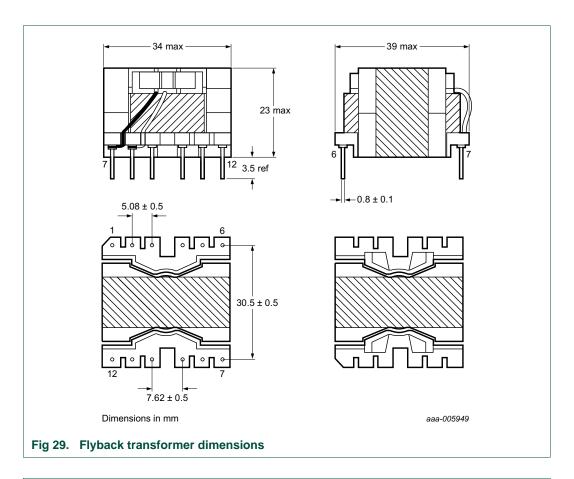
Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

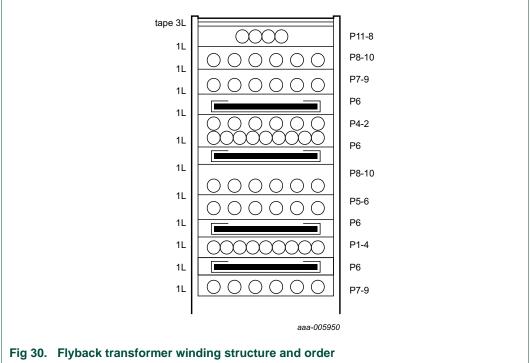
8. Transformer specification

8.1 Flyback transformer T1 Specification

Table 23. Electrical characteristics


Item	Winding	Specification
Inductance	P1-2	450 μ H \pm 5 %; 50 kHz; 1 V
Leakage Inductance	P1-2	6 μH maximum
DC Resistance	P1-2	300 mΩ, maximum at 25 °C
High-voltage test	PRI to SEC	3000 V; 3 s 5 mA
	PRI to CORE	1500 V; 3 s 5 mA
	SEC to CORE	600 V; 3 s 5 mA


Table 24. Material specification


Item	Description	Manufacturer
Core	FERRITE Mn-Zn PQ32/20	JFE
Bobbin	PQ32/20 12P PHENOLIC	CHANG CHUN
Tape	#1350F1	3M
Wire	2UEW; 130 °C TIW TLW-B × 130 °C	JUNG SHING DAHJIN
Cu foil	0.025 mm thickness \times 7 mm width	EXCELLENCE
Tube	PTFE (TFLON)	GREAT HOLDING
Varnish	BC-359	DOLPH
Tin	D9930C/SN100	DAI HYUI

Manufacturer: AXIS POWER ELECTRONICS, Taiwan (http://www.axispower.com.tw).

<u>Figure 28</u> shows the schematic for the flyback transformer, <u>Figure 29</u> shows its dimensions and <u>Figure 30</u> shows its winding structure and order.

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

8.2 Flyback transformer T1 winding specifications

Table 25. Winding specifications

Winding	Pin nun	nber	Wire type	Number	Number	of turns	Remarks
Order	Start	Finish		of wires	Winding	Mylar tape	
N1	7	9	TIW 0.3 Ø	2	6	1	-
E1	-	6	Copper foil 0.025 T $ imes$ 7 mm	-	1	1	finished with wire 0.3 Ø
N2	1	4	2UEW 0.5 Ø	1	16	1	-
E2	-	6	Copper foil 0.025 T \times 7 mm	-	1	1	finished with wire 0.3 Ø
N3	5	6	2UEW 0.25 Ø	2	7	1	-
N4	8	10	TIW 0.3 Ø	2	6	1	-
E3	-	6	Copper foil 0.025 T $ imes$ 7 mm	-	1	1	finished with wire 0.3 Ø
N5	4	2	2UEW 0.5 Ø	1	16	1	-
E4	-	6	Copper foil 0.025 T $ imes$ 7 mm	-	1	1	finished with wire 0.3 Ø
N6	7	9	TIW 0.3 Ø	2	6	1	-
N7	8	10	TIW 0.3 Ø	2	6	1	-
N8	11	8	TIW 0.3 Ø	1	5	1	-

8.3 PFC inductor L2 Specification

Table 26. Electrical characteristics

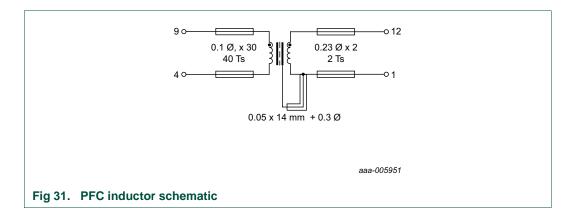
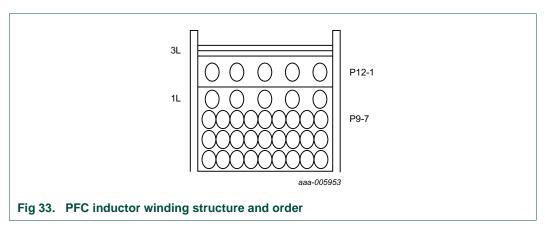

Item	Winding	Specification
Inductance	P9-7	250 μH ±10 %; 50 kHz; 1 V
DC Resistance	P9-7	170 mΩ, maximum at 25 °C
	P12-1	55 mΩ, maximum at 25 °C

Table 27. Material specification


Item	Description	Manufacturer
Core	FERRITE Mn-Zn PQ32/20	JFE
Bobbin	RM10 PHENOLIC	CHANG CHUN
Tape	#1350F1	3M
Wire	2UEW; 130 °C	JUNG SHING DAHJIN
Cu foil	0.05 mm thickness × 14 mm width	SCHLENK
Tube	PTFE (TFLON)	GREAT HOLDING
Varnish	BC-359	DOLPH
Tin	D99300C/SN100	DYFENCO

Remark: AXIS POWER ELECTRONICS, Taiwan (http://www.axispower.com.tw).

<u>Figure 31</u> shows the schematic for the PFC inductor, <u>Figure 32</u> shows its dimensions and <u>Figure 33</u> shows its winding structure and order.

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

8.4 PFC inductor L2 winding specifications

Table 28. Winding specifications

Winding	Pin nun	nber	Wire type	Number	Number		Remarks
Order	Start	Finish		of wires	Winding	Mylar tape	
N1	9	7	2UEW 0.1 Ø	30	40	1	-
N2	12	1	2UEW 0.23 Ø	2	2	3	-

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

9. 90 W TEA1755T/LT, TEA1792, TEA1703 demo board

The SMPS printed circuit board is a single-sided board. The dimensions are 125 mm \times 59 mm. The PCBs material is 1.6 mm FR2 with a single-sided 2 oz. copper (70 μm) layer. The Gerber file set for production of the PCB is available on the NXP website (www.nxp.com) or through the local NXP Semiconductors sales office.

<u>Figure 34</u> shows the copper layout and <u>Figure 35</u> the component placing of the demo board.

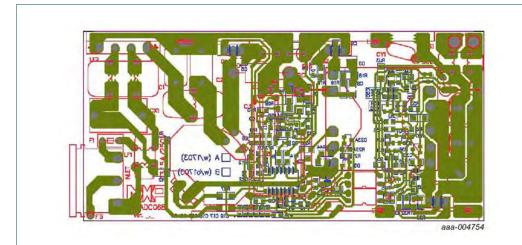
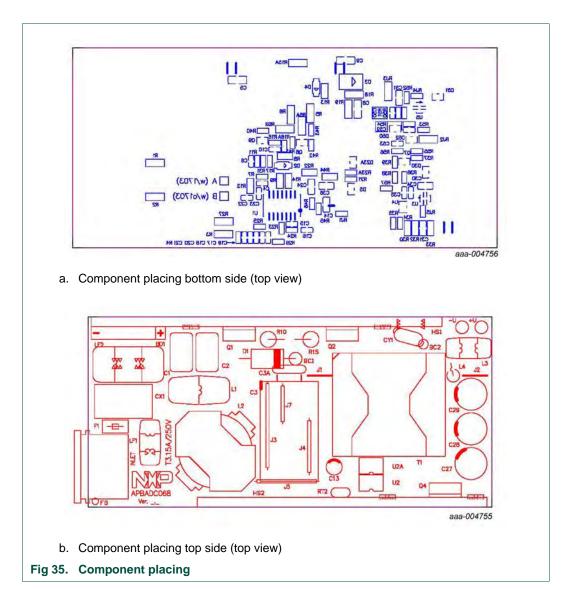



Fig 34. Copper layout bottom side (top view)

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

10. Alternative circuit options

10.1 Changing the output voltage

By changing the following components, the output voltage can be changed (± 30 %). Refer to the *TEA1755T/LT application note* for additional information on this topic. Ensure that the Auxiliary voltage remains within its operation limits (13.4 V to 38 V typical) and is high enough to start up (22.3 V typical).

R37/R38

The resistor divider R37 and R38 determines the output voltage. The total value of the two resistors is a compromise between no-load standby power dissipation and V_0 accuracy. This is not the case for configuration (A), since the resistor divider is switched off in no-load standby mode by the TEA1703.

- Higher value (R37+R38): lower no-load standby power dissipation plus more tolerance on V_o
- \bullet Higher value (R37+R38): higher no-load standby power dissipation plus less tolerance on V_{o}

$$V_o = 2.5V \times \frac{(R37 + R38)}{R38} \tag{4}$$

C27, C28, C29

The voltage rating of the electrolytic capacitor must be higher than the output voltage. For lower output currents, the capacity can be decreased.

10.2 TL431 selection

The selection of the TL431 is critical for the following performance parameters:

- Output voltage regulation
- No-load standby power consumption
- Stability of the control loop
- Start-up profile of the output voltage

The *minimum cathode current for regulation* must be met under all conditions. When at full-load, the current through the TL431 becomes too low and results in a drop of the output voltage at full-load. This current can be increased by changing R35 = 5.6 k Ω or by changing the TL431 for a type that requires a lower *minimum cathode current for regulation*.

10.3 VOSENSE pin resistors values

The VOSENSE pin senses the PFC output voltage. The VOSENSE pin has an integrated protection circuit to detect an open and short-circuited pin. The VOSENSE pin can also sense if one of the resistors of the voltage divider is open.

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

Based on calculations, the value of R7 must be less than 104.4 k Ω to guarantee the correct working of these protections. Selecting a too large value for R7 can override PFC open-loop protection when the current path to the bulk electrolytic capacitor C3 is lost (fault condition).

For more information about this subject refer to the *Application Note of the TEA1755* (AN1142, Section 4.1.1).

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

11. Legal information

11.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

11.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Evaluation products — This product is provided on an "as is" and "with all faults" basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer's exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US\$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

Safety of high-voltage evaluation products — The non-insulated high voltages that are present when operating this product, constitute a risk of electric shock, personal injury, death and/or ignition of fire. This product is intended for evaluation purposes only. It shall be operated in a designated test area by personnel that is qualified according to local requirements and labor laws to work with non-insulated mains voltages and high-voltage circuits.

The product does not comply with IEC 60950 based national or regional safety standards. NXP Semiconductors does not accept any liability for damages incurred due to inappropriate use of this product or related to non-insulated high voltages. Any use of this product is at customer's own risk and liability. The customer shall fully indemnify and hold harmless NXP Semiconductors from any liability, damages and claims resulting from the use of the product.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

11.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

GreenChip — is a trademark of NXP B.V.

UM10514 NXP Semiconductors

9

Greenchip 90 W TEA1755T TEA1792TS TEA1703TS demo board

12. Contents

1	Introduction	. 3
1.1	Features	. 4
2	Configuration	. 5
3	Power supply specifications	. 6
4	Performance data	
4.1	Test setup	
4.1.1	Test equipment	
4.1.2	Test conditions	
4.2	Efficiency	
4.3	PFC on/off level	
4.4	No-load power consumption	. 9
4.5	Minimum output current for normal operation.	10
4.6	Power factor and THD	10
4.7	High/low line output power compensation	10
4.8	VCC voltage	11
4.9	Timing and protection	11
4.9.1	Switch-on delay and output rise time	11
4.9.2	Brownout and brownout recovery	15
4.9.3	Output short circuit protection	17
4.9.4	OverCurrent Protection (OCP)	21
4.9.5	OverVoltage Protection (OVP)	22
4.9.6	OverTemperature Protection (OTP)	23
4.9.7	Fast latch reset	24
4.10	Output regulation	27
4.10.1	Line regulation	27
4.10.2 4.10.3	Line regulation	27 28
4.10.3 4.10.4	Output voltage regulation in standby mode No-load output ripple in burst mode	29
4.10. 4 4.10.5	Burst mode repetition rate	30
4.10.5	Hold-up time	31
4.11 4.11	Dynamic loading	31
4.12	Output ripple and noise	35
5	Electromagnetic Compatibility (EMC)	37
5.1	Conduction emission	37
5.1.1	Conditions.	37
5.2	Immunity against lighting surges	39
5.3	Mains harmonic reduction	40
6	Schematic 90 W TEA1755T/LT, TEA1792,	
-	TEA1703 demo board	40
7		43
8	Transformer specification	
8.1	Flyback transformer T1 Specification	48
8.2	Flyback transformer T1 winding specifications	
8.3	PFC inductor L2 Specification	50
8.4	PFC inductor L2 winding specifications	

9	90 W IEA1/331/LI, IEA1/92, IEA1/03	
	demo board	53
10	Alternative circuit options	55
10.1	Changing the output voltage	55
10.2	TL431 selection	55
10.3	VOSENSE pin resistors values	55
11	Legal information	57
11.1	Definitions	57
11.2	Disclaimers	57
11.3	Trademarks	57
12	Contents	58

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2013.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 18 November 2013 Document identifier: UM10514