User manual

Document information

Info	Content
Keywords	TEA1716T, 90 W notebook adapter, LLC, resonant, half-bridge, PFC, controller, converter, burst mode, power supply, demo board
Abstract	The TEA1716T includes a PFC controller as well as a controller for a half-bridge resonant converter.
	This document describes a 90 W resonant switching mode power supply for a typical notebook adapter design with the TEA1716T controller IC. The demoboard provides an output of 19.5 V/4.65 A. It operates in normal mode for medium and high-power levels and in burst mode for low-power levels. Burst mode operation provides a reduction of power losses to increase performance.
	The efficiency at high power is well above 90 % and the no-load power consumption is well below 200 mW. At 250 mW output power the input power is lower than 450 mW (EUP lot6 compliant).

TEA1716T 90 W note book adapter demo board

Revision history					
Rev	Date	Description			
v.1	20121210	first issue			

Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

UM10557

User manual

TEA1716T 90 W note book adapter demo board

1. Introduction

WARNING

Lethal voltage and fire ignition hazard

The non-insulated high voltages that are present when operating this product, constitute a risk of electric shock, personal injury, death and/or ignition of fire.

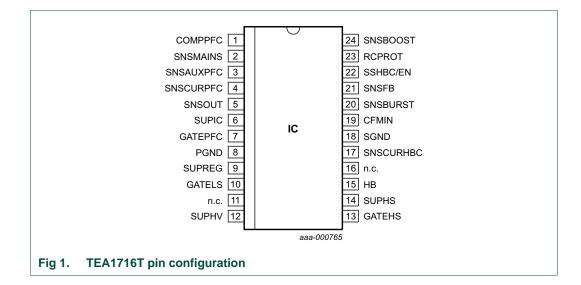
This product is intended for evaluation purposes only. It shall be operated in a designated test area by personnel qualified according to local requirements and labor laws to work with non-insulated mains voltages and high-voltage circuits. This product shall never be operated unattended.

1.1 Scope of this document

This document describes the 90 W notebook adapter demo board using the TEA1716T. A functional description is given, including a set of measurements to show the main characteristics.

1.2 TEA1716T

The TEA1716T integrates a controller for Power Factor Correction (PFC) and a controller for a half-bridge resonant converter (HBC). It provides the drive function for the discrete MOSFET for the upconverter and for the two discrete power MOSFETs in a resonant half-bridge configuration.

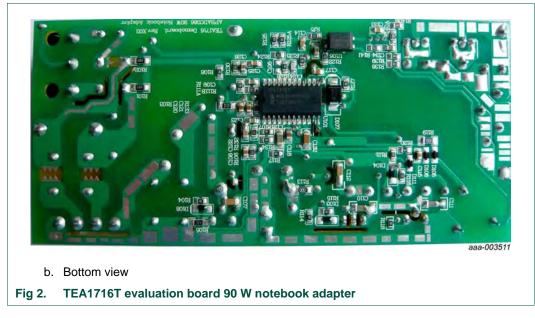

The resonant controller part is a high-voltage controller for a zero voltage switching LLC resonant converter. The resonant controller part of the IC includes a high-voltage level shift circuit. It also includes several protection features such as OverCurrent Protection (OCP), Open-Loop Protection (OLP), capacitive mode protection and a general purpose latched protection input.

In addition to the resonant controller, the TEA1716T contains a Power Factor Correction (PFC) controller. Functions such as quasi-resonant operation at high-power levels and quasi-resonant operation with valley skipping at lower power levels obtain the PFC's efficient operation. OCP, OverVoltage Protection (OVP) and demagnetization sensing, ensure safe operation under all conditions.


The proprietary high-voltage BCD Power logic process enables direct start-up from the rectified universal mains voltage in an efficient way. A second low-voltage Silicon-On-Insulator (SOI) IC is used for accurate, high-speed protection functions and control.

The combination of PFC and a resonant controller in one IC makes the TEA1716T very suitable for notebook adapter power supplies, desktop PCs and all-in-one PC applications.

TEA1716T 90 W note book adapter demo board



1.3 Setup of the 90 W notebook adapter

User manual

TEA1716T 90 W note book adapter demo board

The board can operate at a mains input voltage between 90 V and 264 V (universal mains).

The demo board contains two subcircuits:

- A Power Factor Converter (PFC): BCM type
- A Half-Bridge Converter (HBC): resonant LLC-type

The TEA1716T control both converters.

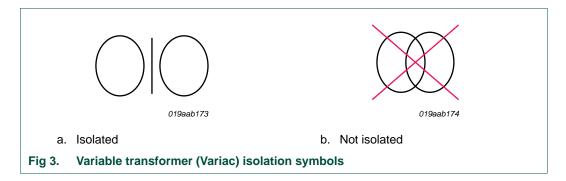
At low power, the converters operate in burst mode to reduce power losses.

The purpose of the demo board is to show the operation of the TEA1716T in a single output supply including burst mode operation. The performance is in alignment with current general standards, including the EuP lot6 requirements, and can be used as a starting point for further development.

1.4 Input and output properties

Table 1.	input data			
Symbol	Description	Conditions	Specification	Unit
Vi	input voltage	AC	90 to 264	V (RMS)
f _i	input frequency		47 to 60	Hz
$P_{i(no-load)}$	No-load input power	at 230 V; 50 Hz	< 300	mW
P _{i(load=250m})	_{N)} standby power consumption	at 230 V; 50 Hz	< 450	mW

Table 1. Input data


User manual

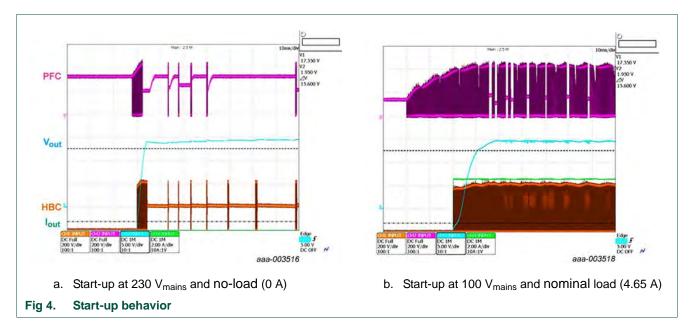
TEA1716T 90 W note book adapter demo board

Table 2. Output data					
Symbol	Description	Conditions	Specification	Unit	
Vo	output voltage		19.5	V	
V _{o(ripple)(p-p)}	peak-to-peak output ripple voltage	bandwidth = 20 M Hz	< 150	mV	
lo	output current	continuous	0 to 4.65	А	

2. Safety warning

Connect the board to the mains voltage. Avoid touching the board while it is connected to the mains voltage. An isolated housing is obligatory when used in uncontrolled, non-laboratory environments. Galvanic isolation of the mains phase using a variable transformer is always recommended.

3. Measurements


3.1 Test facilities

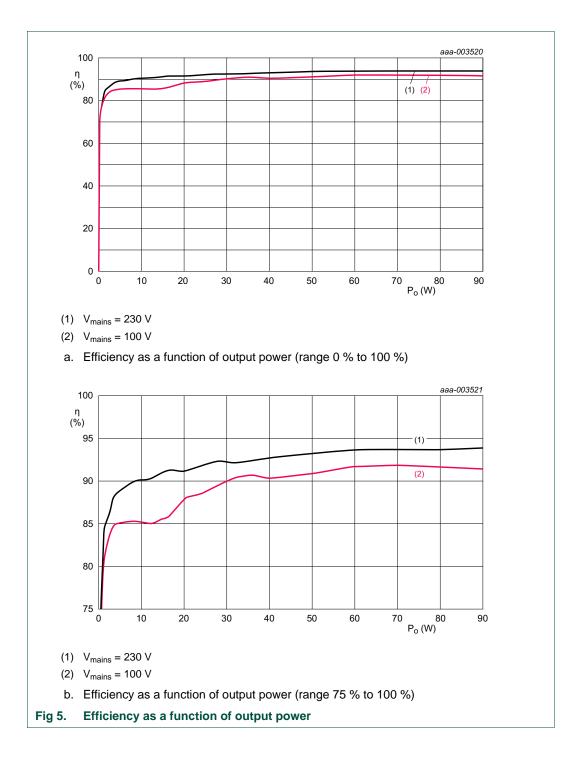
- Oscilloscope: Yokogawa DL9140L
- AC Power Source: Agilent 6812B
- Electronic load: Agilent 6063B
- Digital power meter: Yokogawa WT210

3.2 Start-up behavior

The rise time of the output voltage (measured from the 10 % to the 90 % nominal output point) is between 3 ms and 10 ms, depending on the output current load.

TEA1716T 90 W note book adapter demo board

3.3 Efficiency


3.3.1 Efficiency characteristics

Efficiency measurements were made measuring the output voltage on the board (not taking into account the losses in an output connection cable).

Table 3. Efficiency results

Condition	Energy star 2.0	Efficiency (%)				
efficiency requirement (%)	Average	25 % load	50 % load	75 % load	100 % load	
100 V; 60 Hz	> 87	90.7	88.5	90.8	91.8	91.5
230 V; 50 Hz	> 87	93.2	91.8	93.2	93.8	93.8

TEA1716T 90 W note book adapter demo board

TEA1716T 90 W note book adapter demo board

3.3.2 Power Factor Correction (PFC)

Table 4.Power factor correction

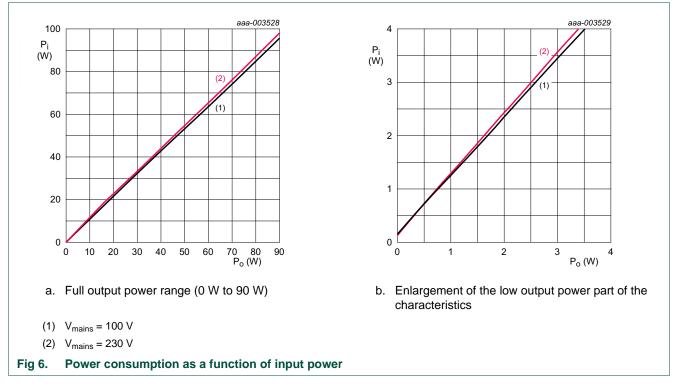
Condition	Energy Star 2.0 requirement	Output power (W)	Power factor
90 V; 60 Hz	-	90	0.99
100 V; 60 Hz	-	90	0.99
115 V; 60 Hz	≥ 0.9	90	0.98
230 V; 50 Hz	-	90	0.91
264 V; 50 Hz	-	90	0.88

3.3.3 No-load power consumption

Table 5. Output voltage and power consumption at no-load

Condition	Energy Star 2.0	Output voltage (V)	No load power
	requirement (mW)		consumption (mW)
90 V; 60 Hz	≤ 500	19.5	140
100 V; 60 Hz	≤ 500	19.5	140
115 V; 60 Hz	≤ 500	19.5	140
230 V; 50 Hz	≤ 500	19.5	170
264 V; 50 Hz	≤ 500	19.5	170

3.3.4 Standby load power consumption


Table 6. Output voltage and power consumption in standby

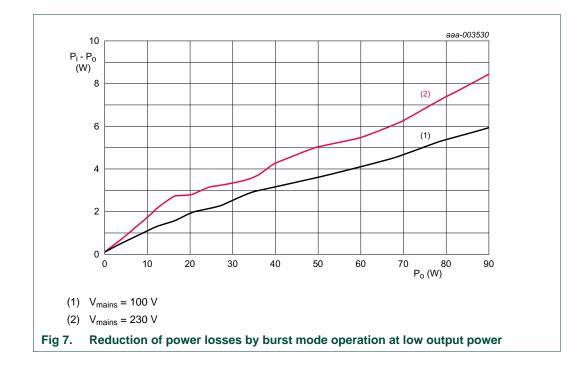
Condition	Output voltage (V)	Power consumption (mW)
Output power = 250 mW		
90 V; 60 Hz	19.5	430
100 V; 60 Hz	19.5	430
115 V; 60 Hz	19.5	430
230 V; 50 Hz	19.5	445
264 V; 50 Hz	19.5	445

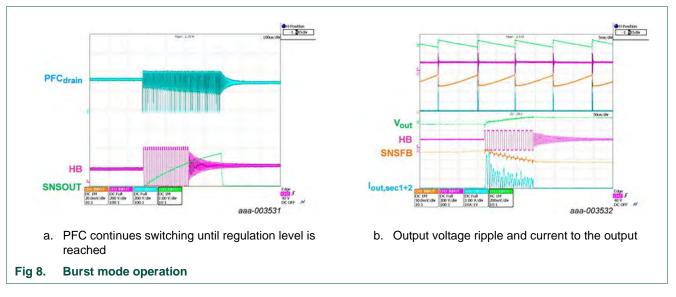
NXP Semiconductors

UM10557

TEA1716T 90 W note book adapter demo board

3.4 Burst mode operation

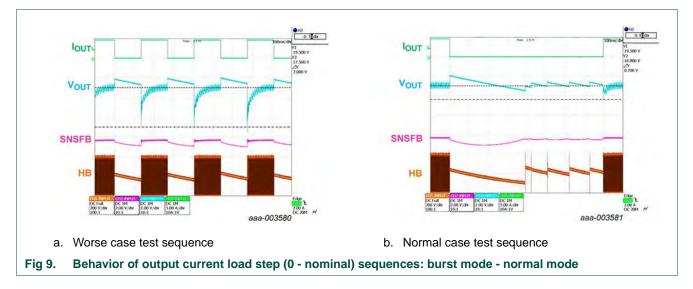

Burst mode operation is implemented. It improves the performance at low output load, so no-load and standby power consumption requirements (see <u>Section 3.3.3</u> and <u>Section 3.3.4</u>) can be achieved. The converter operates at less than approximately 30 W output power in burst mode. Between 30 W and 50 W output power the burst mode is triggered temporarily because of the ripple on the PFC output voltage.


Without burst mode operation, the power supply consumes approximately 2 W at no-load output.

NXP Semiconductors

UM10557

TEA1716T 90 W note book adapter demo board


The interruptive character of burst mode can lead to the generation of unwanted audible noise. Because the system only operates in burst mode at low-power levels, audible noise levels are low.

3.5 Transient response

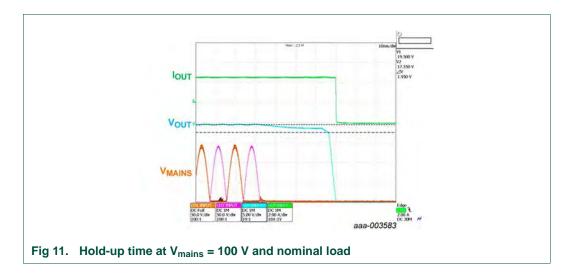
Normal load transients lead to a ripple on the output voltage \leq 750 mV.


When a worse case timing sequence is applied, the voltage drop can be 2 V (-10 %).

TEA1716T 90 W note book adapter demo board

3.6 OverPower Protection (OPP)

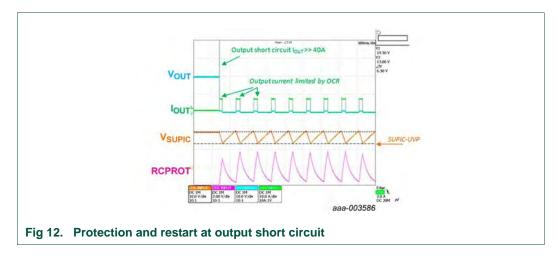
Tested with a higher current (dynamic overload) on the output voltage, the OPP is activated when the current exceeds 6.3 A (123 W). This corresponds with a load condition that is 35 % higher than the rated power for continuous use. The SNSCURHBC function of the TEA1716T which monitors the primary resonant current detects the OPP. When the voltage on the SNSCURHBC pin exceeds 0.5 V (or -0.5 V), the protection timer is started.

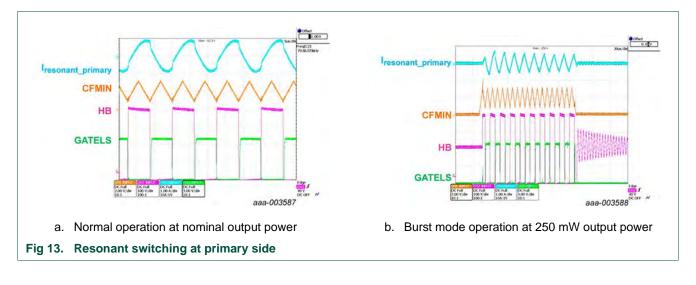


In some test conditions, another protection function can be triggered to initiate a restart (for example the SUPIC_UVP, see <u>Section 3.8</u>).

3.7 Hold-up time

The output is set to full load and the mains supply voltage of 100 V disconnected. The time that passes before the output voltage falls below 90 % of its initial value, is measured. The hold-up time is 32 ms.

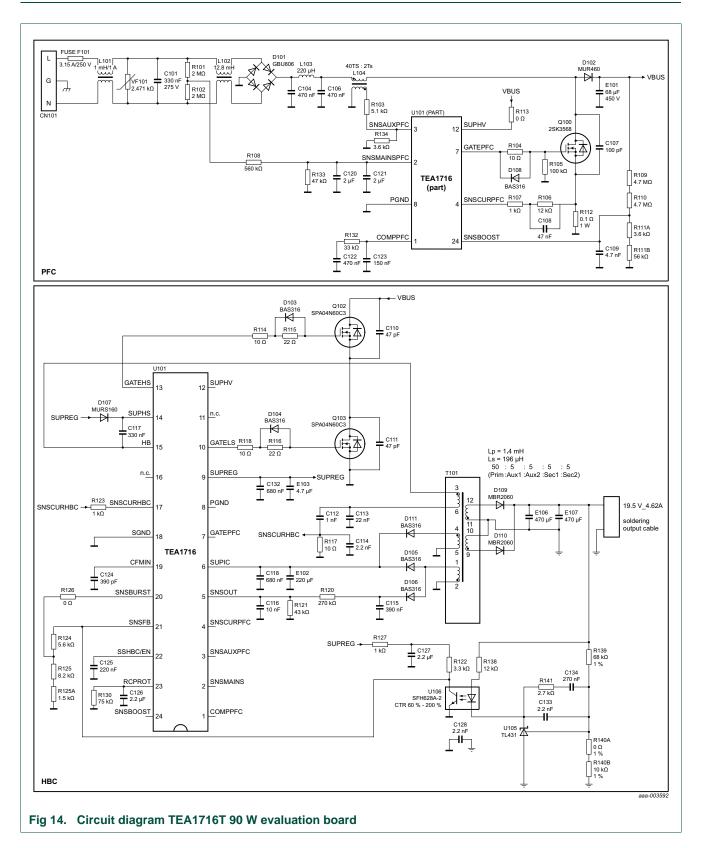

TEA1716T 90 W note book adapter demo board


3.8 Short circuit protection

A short circuit on the output of the resonant converter causes the primary current to increase. The SNSCURHBC function detects the increase. It leads to running on a higher frequency (OCR) until the protection timer RCPROT reaches its protection level (4 V). The RCPROT function performs its restart timer function and restarts when the voltage has dropped to 0.5 V. When the short circuit situation is resolved, the converter starts up and runs normally again.

While SNSCURHBC is running in OCR, it reduces the amount of primary current. This reduction leads to a limited output current and voltage. It also affects the auxiliary supply that provides the supply voltage for the TEA1716T. In this demo board, the voltage drop on SUPIC reaches the UVP level (13 V) before the protection timer RCPROT has reached 4 V. The SUPIC-UVP function initiates the restart.

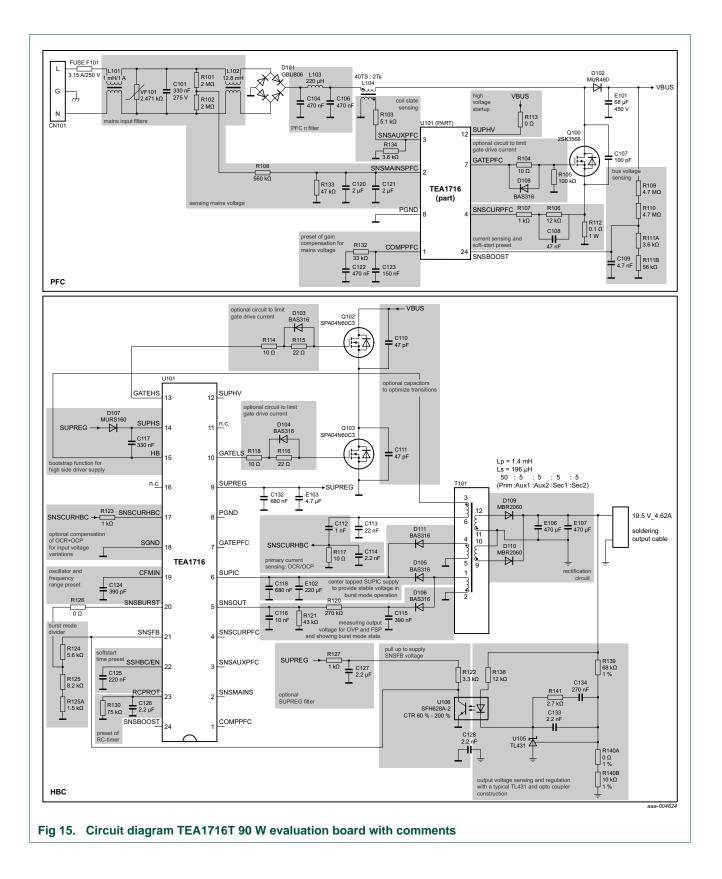
TEA1716T 90 W note book adapter demo board



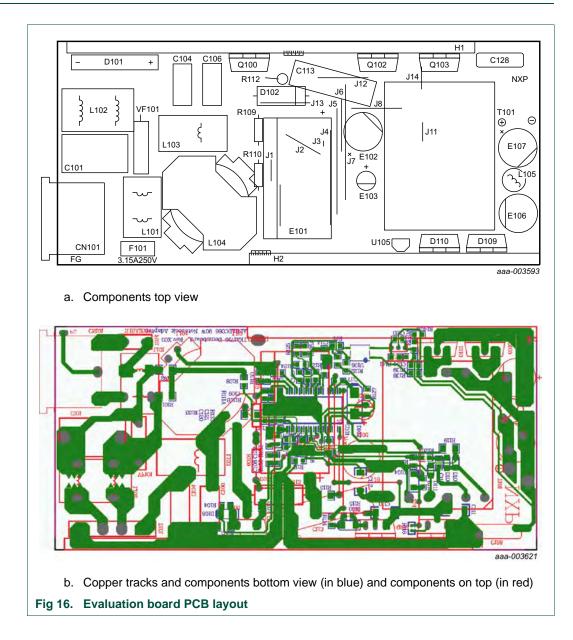
3.9 Resonant switching

UM10557 User manual

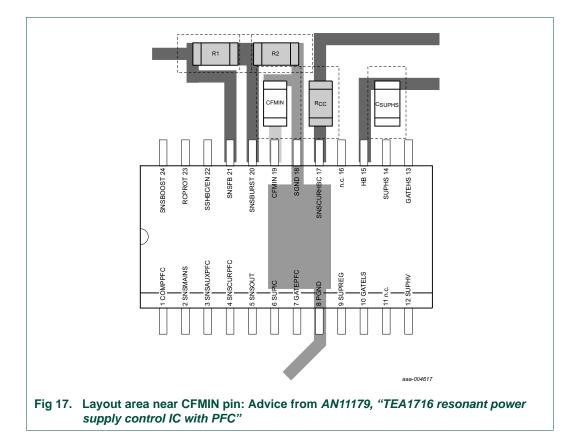
TEA1716T 90 W note book adapter demo board

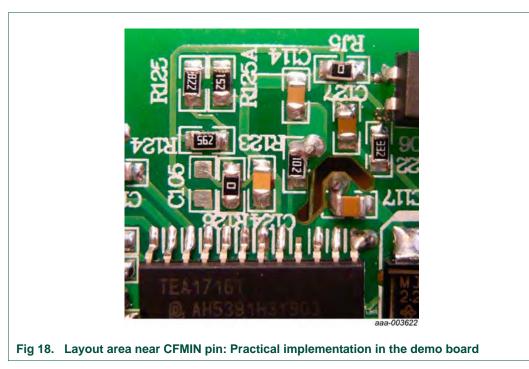

4. Circuit diagram

NXP Semiconductors


UM10557

TEA1716T 90 W note book adapter demo board




TEA1716T 90 W note book adapter demo board

PCB layout 5.

TEA1716T 90 W note book adapter demo board

TEA1716T 90 W note book adapter demo board

6. Bill Of Materials (BOM)

Table 7.	Bill of materials		
Reference	Description and values	Part number	Manufacturer
C101	x-capacitor; 330 nF; 275 V; RAD0.6H	-	-
C104	thin film capacitor; 0.47 $\mu\text{F};$ 450 V; rad0.4V	-	-
C105	ceramic capacitor; 805	-	-
C106	thin film capacitor; 0.47 $\mu\text{F};$ 450 V; rad0.4V	-	-
C107	ceramic capacitor; 100 pF; 1 kV; 1206	-	-
C108	ceramic capacitor; 47 nF; 50 V; 805	-	-
C109	ceramic capacitor; 4.7 nF; 50 V; 805	-	-
C110	ceramic capacitor; 47 pF; 1 kV; 1206	-	-
C111	ceramic capacitor; 47 pF; 1 kV; 1206	-	-
C112	ceramic capacitor; 1 nF; 1 kV; 1206	-	-
C113	thin film capacitor; 22 nF; 1 kV; RAD0.6(0.8)-3P	-	-
C114	ceramic capacitor; 2.2 nF; 16 V; 805	-	-
C115	ceramic capacitor; 390 nF; 50 V; 805	-	-
C116	ceramic capacitor; 10 nF; 16 V; 1206	-	-
C117	ceramic capacitor; 330 nF; 50 V; 805	-	-
C118	ceramic capacitor; 680 nF; 50 V; 805	-	-
C120	ceramic capacitor; 2 μ F; 50 V; 805	-	-
C121	ceramic capacitor; 2 μ F; 50 V; 805	-	-
C122	ceramic capacitor; 470 nF; 16 V; 805	-	-
C123	ceramic capacitor; 150 nF; 16 V; 805	-	-
C124	ceramic capacitor; 390 pF; 16 V; 805	-	-
C125	ceramic capacitor; 220 nF; 16 V; 805	-	-
C126	ceramic capacitor; 2.2 $\mu\text{F};$ 16 V; 805	-	-
C127	ceramic capacitor; 2.2 $\mu\text{F};$ 16 V; 805	-	-
C128	Y1-capacitor; 2.2 nF; C10(0.6)-1F	-	-
C132	ceramic capacitor; 680 nF; 16 V; 1206	-	-
C133	ceramic capacitor; 2.2 nF; 16 V; 805	-	-
C134	ceramic capacitor; 270 nF; 16 V; 805	-	-
CN101	connector; 3.96X5	ST-A04-001JT6T4	-
D101	diode bridge	GBU806	Diodes
D102	diode; diode0.7	MUR460	Vishay
D103	diode; sc-76	BAS316	-
D104	diode; sc-76	BAS316	-
D105	diode; sc-76	BAS316	-
D106	diode; sc-76	BAS316	-
D107	diode; SMB	MURS160	Vishay
D108	diode; sc-76	BAS316	-
D109	diode; TO-220	MBR2060	ON Semiconductors

User manual

© NXP B.V. 2012. All rights reserved.

NXP Semiconductors

UM10557

TEA1716T 90 W note book adapter demo board

Table 7.	Bill of materials continued		
Reference	Description and values	Part number	Manufacturer
D110	diode; TO-221	MBR2060	ON Semiconductors
D111	diode; sc-76	BAS316	-
E101	electrolytic capacitor; 68 μF; 450 V; EC16/8H	-	-
E102	electrolytic capacitor; 220 $\mu\text{F};$ 35 V; RB.1/.2	-	-
E103	electrolytic capacitor; 4.7 $\mu\text{F};$ 16 V; RB.1/.2	-	-
E106	electrolytic capacitor; 470 μF; 35 V; EC5/10H	-	-
E107	electrolytic capacitor; 470 μF; 35 V; EC5/10H	-	-
F101	fuse; 3.15 A; 250 V; FUSH_1	-	-
H1	$108\times23\times3$	•	-
H2	$80 \times 23 \times 3$	•	-
J1	jumper; 6.8 mm	-	-
J2	jumper: 9.2 mm	-	-
J3	jumper; 2.9 mm	-	-
J4	jumper; 31 mm	-	-
J5	jumper; 28 mm	-	-
J6	jumper; 31 mm	-	-
J7	jumper; 31 mm	-	-
J8	jumper; 15 mm	-	-
J9	jumper; 17.5 mm	-	-
J10	jumper; 20.9 mm	-	-
J11	jumper; 6.6 mm	-	-
J12	jumper; 13.9 mm	-	-
J13	jumper; 13.2 mm	-	-
J14	jumper; 6.6 mm	-	-
L101	common choke; 1 mH; 1 A; L0.2H	-	-
L102	common choke; 12.8 mH; L0.4	-	-
L103	inductor; 220 μH; EM1H	-	-
L104	PFC choke; RM8;	PFC_PQ2620	-
L105	jumper; 6.6 mm	-	-
Q100	MOSFET; TO-220H	2SK3568	Toshiba
Q102	MOSFET; TO-220H	SPA04N60C3	Infineon
Q103	MOSFET; TO-220H	SPA04N60C3	Infineon
R101	resistor; 2 MΩ; ±5 %; 1206	-	-
R102	resistor; 2 MΩ; ±5 %; 1206	-	-
R103	resistor; 5.1 kΩ; ±5 %; 1206	-	-
R104	resistor; 10 Ω ; ±5 %; 805	-	-
R105	resistor; 100 kΩ; ±5 %; 1206	-	-
R106	resistor; 12 kΩ; ±5 %; 805	-	-
R107	resistor; 1 kΩ; ±5 %; 805	-	-
1040557		The second second second second second second	

Table 7. Bill of materials ...continued

UM10557 User manual

TEA1716T 90 W note book adapter demo board

Reference	Description and values	Part number	Manufacturer
R108	resistor; 560 kΩ; ±5 %; 805	-	-
109	resistor; 4.7 M Ω ; ±1 %; axial0.4	-	-
10	resistor; 4.7 M Ω ; ±1 %; axial0.4	-	-
11A	resistor; 3.6 kΩ; ±1 %; 805 ^[1]	-	-
111B	resistor; 56 kΩ; ±1 %; 805	-	-
12	resistor; 100 m Ω ; ±1 %; resV	-	-
13	resistor; 0 Ω; 1206	-	-
14	resistor; 10 Ω; ±5 %; 805	-	-
15	resistor; 22 Ω; ±5 %; 805	-	-
16	resistor; 22 Ω; ±5 %; 805	-	-
17	resistor; 10 Ω; ±5 %; 805	-	-
18	resistor; 10 Ω; ±5 %; 402	-	-
19	resistor; 0 Ω; 1206	-	-
20	resistor; 270 kΩ; 805	-	-
21	resistor; 43 kΩ; 805	-	-
22	resistor; 3.3 kΩ; 805	-	-
23	resistor; 1 kΩ; 805	-	-
24	resistor; 5.6 kΩ; 805	-	-
25	resistor; 8.2 kΩ; 805	-	-
25A	resistor; 1.5 kΩ; 805 ^[1]	-	-
26	resistor; 0 Ω; 805	-	-
27	resistor; 1 kΩ; 805	-	-
30	resistor; 75 kΩ; 805	-	-
32	resistor; 33 kΩ; 805	-	-
33	resistor; 47 kΩ; 805	-	-
34	resistor; 3.6 kΩ; 805	-	-
38	resistor; 12 kΩ; 805	-	-
39	resistor; 68 kΩ; ±1 %; 805	-	-
40A	resistor; 0 Ω; 805 ^[1]	-	-
40B	resistor; 10 kΩ; ±1 %; 805	-	-
41	resistor; 2.7 kΩ; 805	-	-
1	resistor; 0 Ω; 805	-	-
2	resistor; 0 Ω; 805	-	-
3	resistor; 0 Ω; 805	-	-
1	resistor; 0 Ω; 805	-	-
	resistor; 0 Ω ; 805	-	-

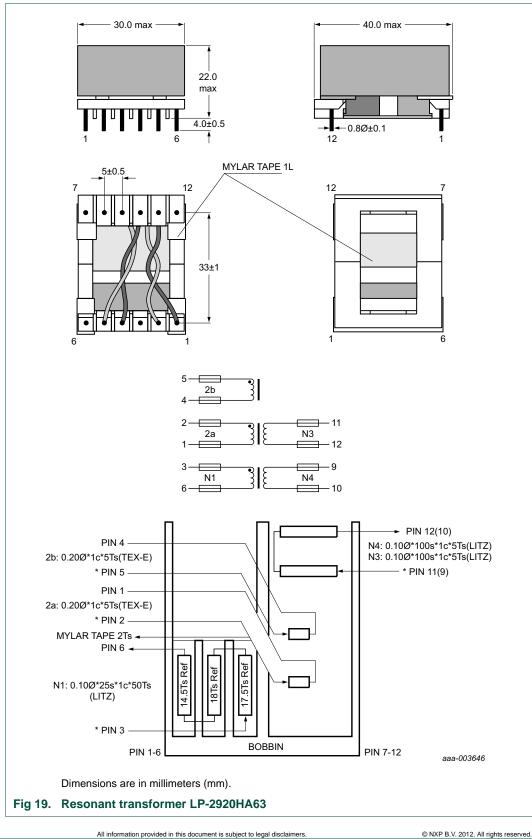

TEA1716T 90 W note book adapter demo board

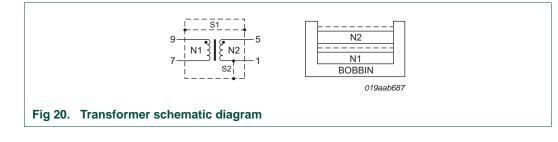
Table 7. B	Sill of materials continued		
Reference	Description and values	Part number	Manufacturer
T101	transformer; TR2	LP-2920	Yujingtech
U101	IC; TEA1716T	SO-24	NXP Semiconductors
U105	IC; TL431BFDT	TO92/SOT54	NXP Semiconductors
U106	optocoupler; SMD	SFH628A-2	-
VF101	MOV; 2k471; rad0.4	-	-

[1] This value can be different in a batch of boards.

TEA1716T 90 W note book adapter demo board

7. Appendix 1: Resonant transformer data

TEA1716T 90 W note book adapter demo board


Table 8. **Electrical specification**

HP: 4284A ZENTECH: 3200B, 502A, F = 100 kHz, V = 1 V, at 25 °C

No	Start	Finish	Wire	Color	Turns	Inductance	DCR (mΩ)
L1	3	6	$0.10 \ensuremath{\oslash} \times 25 \mbox{ s} \times 1 \ensuremath{\oslash}$ (LITZ)	Y	50 ± 0.5	1.4 mH ±10 %	334 max
L2a	2	1	$0.20 \ensuremath{ \oslash} imes 1 \ensuremath{ \oslash}$ (TEX-E)	Y	5 ±0.5	19.0 μH REF	250 max
L2b	5	4	$0.20 \ensuremath{ arsigma} imes 1 \ensuremath{ arsigma}$ (TEX-E)	Y	5 ±0.5	19.0 μH REF	250 max
L3	11	12	$0.10 \oslash imes 100 \text{ s} imes 1 \oslash$ (LITZ)	Y	5 ±0.5	12.0 μH REF	9 max
L4	9	10	$0.10 \ensuremath{\oslash} \times 100 \mbox{ s} \times 1 \ensuremath{\oslash}$ (LITZ)	Y	5 ±0.5	12.0 μH REF	9 max
Lk	3	6	$0.10 \ensuremath{\oslash} \times 25 \mbox{ s} \times 1 \ensuremath{\oslash}$ (LITZ)	Y	50 ±0.5	225 μH ±10 % a	at secondary short

Appendix 2: PFC coil data 8.

8.1 Transformer schematic diagram

8.2 Winding specification

No	Pin		Wire	Turns	Winding	Margin tape		Insulation	
	Start	Finish			method	Primary	Secondary	Turn	Width
N1	9	7	$0.1 \ \varnothing \times 30$	40	center	-	-	1	10 mm
N2	5	1	$0.22 \varnothing \times 2$	2	center	-	-	1	10 mm
S1	-	-	0.05 t × 14 mm	1	center	-	-	1	14 mm (S2)
S2	-	1	0.05 t × 14 mm	1	center	-	-	1	14 mm (S1)

8.3 Electrical characteristics

Table 10. Electrical characteristic

	Pins	Specification	Remarks
Inductance	9 to 7	250 μH ±10 %	60 kHz, 1 V
Leakage inductance	9 to 7	N/A	-

UM10557

TEA1716T 90 W note book adapter demo board

8.4 Core, bobbin and marking

Core and bobbin:

- Core: RM-10 (Ferroxcube RM/I or equivalent)
- Bobbin: RM-10 (12 pin, vertical type)
- Ae: 96.6 mm²

Marking:

• PFC-APBADC015

9. Abbreviations

Table 11.	Abbreviations
Acronym	Description
BCM	Boundary conduction Mode
CMP	Capacitive Mode Protection
EMC	ElectroMagnetic Compatibility
EMI	ElectroMagnetic Interference
FSP	Failed Start Protection
HBC	Half-Bridge resonant Converter
MOSFET	Metal-Oxide Semiconductor Field-Effect Transistor
OCP	OverCurrent Protection
OPP	OverPower Protection
OVP	OverVoltage Protection
OLP	Open-Loop Protection
PCB	Printed-Circuit Board
PFC	Power Factor Correction
RMS	Root Mean Square
SOI	Silicon-On-Insulator
ZVS	Zero Voltage Switching

10. References

- [1] TEA1716T Data sheet: Resonant power supply control IC with PFC
- [2] AN11179 Application note: TEA1716 resonant power supply control IC with PFC
- [3] Calculation sheet http://www.nxp.com/technical_support/designportal/llc

UM10557

TEA1716T 90 W note book adapter demo board

11. Legal information

11.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

11.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Safety of high-voltage evaluation products — The non-insulated high voltages that are present when operating this product, constitute a risk of electric shock, personal injury, death and/or ignition of fire. This product is intended for evaluation purposes only. It shall be operated in a designated test area by personnel that is qualified according to local requirements and labor laws to work with non-insulated mains voltages and high-voltage circuits.

The product does not comply with IEC 60950 based national or regional safety standards. NXP Semiconductors does not accept any liability for damages incurred due to inappropriate use of this product or related to non-insulated high voltages. Any use of this product is at customer's own risk and liability. The customer shall fully indemnify and hold harmless NXP Semiconductors from any liability, damages and claims resulting from the use of the product.

Evaluation products — This product is provided on an "as is" and "with all faults" basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer's exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US\$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

11.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

User manual

TEA1716T 90 W note book adapter demo board

12. Contents

1	Introduction	. 3
1.1	Scope of this document	
1.2	TEA1716T	. 3
1.3	Setup of the 90 W notebook adapter	. 4
1.4	Input and output properties	. 5
2	Safety warning	. 6
3	Measurements	. 6
3.1	Test facilities	. 6
3.2	Start-up behavior	. 6
3.3	Efficiency	. 7
3.3.1	Efficiency characteristics	
3.3.2	Power Factor Correction (PFC)	. 9
3.3.3	No-load power consumption	
3.3.4	Standby load power consumption	
3.4	Burst mode operation	
3.5	Transient response	
3.6	OverPower Protection (OPP)	
3.7	Hold-up time	12
3.8	Short circuit protection	13
3.9	Resonant switching	14
4	Circuit diagram	15
5	PCB layout	17
6	Bill Of Materials (BOM)	19
7	Appendix 1: Resonant transformer data	23
8	Appendix 2: PFC coil data	24
8.1	Transformer schematic diagram	24
8.2	Winding specification	24
8.3	Electrical characteristics	24
8.4	Core, bobbin and marking	25
9	Abbreviations	25
10	References	25
11	Legal information	26
11.1	Definitions	26
11.2	Disclaimers	26
11.3	Trademarks	26
12	Contents	27

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2012.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 10 December 2012 Document identifier: UM10557