UM10735 SSL2101DB1169 230 V 5 W buck boost dimmable candle LED driver Rev. 1 — 11 November 2013 driver

User manual

Document information

Info	Content
Keywords	SSL2101DB1169, SSL2101T, mains dimmable, AC to DC conversion, buck boost, candle LE driver
Abstract	This user manual describes the SSL2101 mains 230 V 5 W candle buck boost dimmable demo board.

Revision history

Rev	Date	Description
v.1	20131111	first issue

Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

UM10735

1. Introduction

WARNING

Lethal voltage and fire ignition hazard

The non-insulated high voltages that are present when operating this product, constitute a risk of electric shock, personal injury, death and/or ignition of fire.

This product is intended for evaluation purposes only. It shall be operated in a designated test area by personnel qualified according to local requirements and labor laws to work with non-insulated mains voltages and high-voltage circuits. This product shall never be operated unattended.

The SSL2101T is a highly integrated switching mode LED driver. It enables constant current driving from the mains input. The SSL2101T supports buck converter topology. It is suitable for non-isolated LED retrofit lamps.

The application in this document is a compact 230 V mains dimmable LED driver for candle size 5 W input power. It improves dimmer compatibility by drawing strong bleeding current and weak bleeding current from the input. To reach the strict form factor, all the bleeding circuits are integrated. The application is energy saving because it uses the SSL2101 quasi-resonant switching technology.

All values listed in this user manual are typical values unless otherwise specified.

2. Safety warning

The board must be connected to the mains voltage. Touching the board during operation must be avoided at all times. An isolated housing is obligatory when used in uncontrolled, non-laboratory environments. Even though the secondary circuit with LED connection includes galvanic isolation, this isolation is not according to any norm. Thus, galvanic isolation of the mains phase using a variable transformer is always recommended. Figure 1 shows the symbols by which these devices can be recognized.

3. Specification

Table 1. SSL2101	DB1169 specifications		
Symbol	Parameter	Condition	Value
V _{i(mains)}	mains input voltage		207 V to 253 V; 50 Hz
V _{O(LED)}	LED output voltage		30 V (DC)
V _{O(ovp)}	overvoltage protection output voltage		60 V (DC)
I _{o(LED)}	LED output current		128 mA
I _{o(LED)ripple} / I _{o(LED)}	LED output current ripple to LED output current ratio		±13 %; nominal I _{LED} = 128 mA
$\Delta I_{O(LED)}$ / ΔV_{mains}	line regulation	load current dependent	\pm 7.5 %; V _{mains} = 230 V ± 10 %
$\Delta I_{O(LED)} / \Delta V_{O(LED)}$	load regulation	load current dependent	± 7 % at $V_{\text{LED}} \pm 10$ %
η	efficiency		77 %; V _{mains} = 230 V (AC); V _{O(LED)} = 30 V (DC)
PF	power factor		0.56; V _{mains} = 230 V (AC)
THD	total harmonic distortion		< 66 %
	PCB size		diameter = 28 mm
	EMC compliance		meets EN55015

UM10735

4. Board photographs

All information provided in this document is subject to legal disclaimers.

UM10735

5. Connecting the board

The board can be optimized for a 230 V/50 Hz mains supply. In addition to the mains voltage optimization, the board is designed to work with multiple high-power LEDs with a total working voltage of between 28 V and 33 V.

When attaching an LED load to an operational board (hot plugging) an inrush peak current occurs due to the discharge of the output capacitor. After a number of discharges, the LEDs can be damaged.

Mount the board in a shielded or isolated box for demonstration purposes.

UM10735

6. Dimmers

NXP Semiconductors have tested several TRIAC and transistor-based dimmers. <u>Table 2</u> shows a list of dimmers that have been tested with the board.

Table 2. List of test	ted dimmers			
Manufacturer	I _{O(LED)} no dimming (mA)	l _{O(LED)} minimum dimming (mA)	I _{O(LED)} maximum dimming (mA)	Stability
Clipsal 32E450LM	129	10	111	smooth
HPM legrand	129	25	100	smooth
Berker2819	129	45	115	smooth; increase damper resistor (R1) to 150 Ω
Berker2873	129	16	108	smooth
GIRA030000/I01	129	46	114	smooth; increase damper resistor (R1) to 150 Ω
GIRA118400/I00	129	22	110	smooth; increase damper resistor (R1) to 150 Ω
LICHTERGLER	129	3	115	smooth
BUSH2200	129	29	109	smooth
BUSH2250U	129	5	112	smooth
Chinese dimmer 01	129	40	126	smooth
NVC	129	49	126	smooth
Chinese dimmer 02	129	54	128	smooth
Clipsal 32V500 series	129	5	116	smooth

7. Functional description

The SSL2101T is an LED driver IC that operates directly from the rectified mains. It uses on-time mode control and frequency control to control the LED brightness. The BRIGHTNESS and PWMLIMIT pins can be used to control the LED output current when an external dimmer is connected.

7.1 Start-up and V_{CC} supply

The charging current flows from high-voltage DRAIN pin via an internal start-up current source to the V_{CC} pin. The IC starts switching when the voltage on the V_{CC} pin passes the V_{CC(startup)} level. The auxiliary winding of the transformer can take over the supply when V_{CC} is high enough and the supply from the line is stopped for high-efficiency operation.

7.2 Frequency setting

External RC components on pins RC and RC2 control the timing of an internal oscillator. The internal oscillator sets the converter frequency. The frequency can be modulated to an upper and lower value using the BRIGHTNESS pin.

7.3 Bleeding

The IC has two bleeding circuits that ensure proper dimmer operation The two circuits are called weak bleeder (pin WBLEED) and strong bleeder (pin SBLEED). When the voltage on both pins is lower than 52 V, the SBLEED switches on providing a current path that loads the dimmer.

7.4 Output Short Protection (OSP)

When the LEDs are short-circuited, the demagnetization time is much longer than during normal operation because the voltage (V_f) of diode D3 determines the demagnetized slope. The valley switch circuit keeps the MOSFET switched off until the demagnetization time has passed. The work frequency is very low during a short circuit event, which limits the input power.

7.5 Output OverVoltage Protection (OVP)

Zener diode D5 and the V_{CC} pin are positioned in parallel to detect output overvoltage. Because of the ratio between the auxiliary wind and the primary winding, the V_{CC} voltage increases with the output voltage until it reaches the threshold of diode D5. Diode D5 acts as a voltage fuse when an overvoltage event occurs. It breaks down and shorts V_{CC} to GND.

UM10735

8. System optimization

Several modifications can be made to meet customer application specifications.

8.1 Changing the output ripple current

The LED voltage, the LED dynamic resistance, and the output capacitor determine the output current ripple. The value of capacitor C3 is chosen to optimize the capacitor size and the light output. A ripple of ± 25 % results in an expected light output deterioration of < 1 %.

The size for the buffer capacitor can be estimated from Equation 1:

$$C_{out} = \frac{I_{LED}}{\Delta I} \cdot \frac{I}{6 \cdot f_{mains} \cdot R_{dynamic}}$$
(1)

For a series of LEDs, the dynamic resistance of each LED can be added to get the total dynamic resistance. At 50 Hz or 60 Hz, f_{mains} is the AC mains frequency.

8.2 High-accuracy design recommendations

- Use 1 % (or better) devices for peak current sensing resistors R14 and R15
- Use 10 % (or better) inductance tolerance for transformer T1
- Use 5 % (or better) tolerance for COG ceramic capacitor C7

8.3 Multistring dimming

For multistring LED dimming (several LED candles in parallel), decrease the X capacitor C1 to 4.7 nF. It changes the conductive EMI margin from 150 kHz to 500 kHz. However, the final scan result of the peak value still meets the EN55015 standard.

User manual

SSL2101DB1169 230 V 5 W buck boost dimmable candle LED driver UM10735

10. Bill Of Material (BOM)

Table 3. SS	L2101DB1169 bill of material		
Reference	Description and value	Part number	Manufacturer
C1	X capacitor; ceramic; 10 nF; 250 V (AC)	GRM55D7U3A103JW31L	Murata
C2	capacitor; ceramic; 22 nF; 630 V; 1210	GHM1335X7T223K630D500	Murata
C3	capacitor; film; 330 nF; 400 V; P = 10 mm	-	Fara
C5	capacitor; ceramic; 4.7 μF ; 25 V; X7R; 0805	-	Murata
C6	capacitor; ceramic; 10 μF ; 50 V; X5R; 1206	GRM31CR61H106KA	Murata
C7	capacitor; ceramic; 330 pF; 50 V; 0603; X7R; 5 %	-	Murata
C12	capacitor; ceramic; 1 nF; 25 V; 0603; X7R	-	Murata
C13	capacitor; ceramic; 2.2 nF; 630 V; X7T; 1206	GHM1530X7R222K630D500	Murata
C14	capacitor; ceramic; 47 nF; 250 V; X7R; 1206	GR331BD72E473KW01L	Murata
CE1	capacitor; electrical; 100 $\mu\text{F};$ 63 V; 105; 8 \times 15 mm	-	-
D1; D3	fast recovery diode; 600 V; 1 A; SMA	ES1J	Diotec
D2	TVS diode; 500 W; SMA	SMAJ440A	Micro Commercial Components
D4	switching diode; 200 V; 0.2 A; SOD123F	BAS21H	NXP Semiconductors
D5	Zener diode; 27 V; SOD323F	BZX84J-B27	NXP Semiconductors
L1	drum inductor; power; 3.3 mH; 6×8 mm	-	-
L4	EMI suppression ferrite bead; 0805	WE-CBF 742792097	WE Electronic
L5	Inductor; axial; 1.3 mH; 0408	-	-
R1	resistor; axial; 120 Ω ; 2 W	-	Yageo
R2	resistor; axial; 100 Ω ; 1 W	•	Yageo
R3; R4	resistor; chip; 750 kΩ; 5 %; 1206	•	Yageo
R5; R10; R18	resistor; chip; 15 k Ω ; 1 %; 0603	•	Yageo
R6; R7	resistor; chip; 180 kΩ; 5 %; 1206	•	Yageo
R8; R9	resistor; chip; 1.1 kΩ; 5 %; 1206	-	Yageo
R11	resistor; chip; 6.2 kΩ; 1 %; 0603	•	Yageo
R12	resistor; chip; 56 k Ω ; 1 %; 0603	•	Yageo
R13	resistor; chip; 4.3 kΩ; 5 %; 0805	•	Yageo
R14	resistor; chip; 2 Ω; 1 %; 0805	-	Yageo
R15	resistor; chip; 8.2 Ω; 1 %; 0805	•	Yageo
R16	resistor; chip; 100 kΩ; 5 %; 0805	-	Yageo
R17	resistor; chip; 1 Ω; 5 %; 0805	-	Yageo
R19	resistor; chip; 100 kΩ; 5 %; 0603	-	Yageo
T1	transformer; 1.1 mH; ER11.5	750341915	Wurth Electronics Midcom
U1	IC; SSL2101; SO-16	-	NXP Semiconductors
U2	bridge rectifier; 0.5 A; 600 V; MB6S	-	Vishay

11. Transformer

Table 4. Winding information

Number	Section	Wire	Turns	Begin pin	End pin	Description
N1	pins 1 to 2	Ø0.12 mm * 1UEW	108	1	2	1.1 mH ± 10 %
N2	pins 7 to 4	Ø0.12 mm * 1UEW	56	7	4	

12. Performance data

Fig 10. Load regulation

UM10735

Fig 9.

Line regulation

13. EMC performance

14. Legal information

14.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

14.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

UM10735

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Evaluation products — This product is provided on an "as is" and "with all faults" basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer's exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US\$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

Safety of high-voltage evaluation products — The non-insulated high voltages that are present when operating this product, constitute a risk of electric shock, personal injury, death and/or ignition of fire. This product is intended for evaluation purposes only. It shall be operated in a designated test area by personnel that is qualified according to local requirements and labor laws to work with non-insulated mains voltages and high-voltage circuits.

The product does not comply with IEC 60950 based national or regional safety standards. NXP Semiconductors does not accept any liability for damages incurred due to inappropriate use of this product or related to non-insulated high voltages. Any use of this product is at customer's own risk and liability. The customer shall fully indemnify and hold harmless NXP Semiconductors from any liability, damages and claims resulting from the use of the product.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

14.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

15. Contents

1	Introduction	3
2	Safety warning	3
3	Specification	4
4	Board photographs	5
5	Connecting the board	6
6	Dimmers	7
7	Functional description	8
7.1	Start-up and V _{CC} supply	8
7.2	Frequency setting	8
7.3	Bleeding	8
7.4	Output Short Protection (OSP)	8
7.5	Output OverVoltage Protection (OVP)	8
8	System optimization	9
8.1	Changing the output ripple current	9
8.2	High-accuracy design recommendations	9
8.3	Multistring dimming	9
9	Schematic	10
10	Bill Of Material (BOM)	11
11	Transformer	12
12	Performance data	13
13	EMC performance	15
14	Legal information	16
14.1	Definitions	16
14.2	Disclaimers	16
14.3	Trademarks	16
15	Contents	17

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2013.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 11 November 2013 Document identifier: UM10735