N-channel TrenchMOS FET

Rev. 02 — 30 August 2010

Product data sheet

1. Product profile

1.1 General description

Intermediate level gate drive N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using advanced TrenchMOS technology. This product has been designed and qualified to the appropriate AEC Q101 standard for use in high performance automotive applications.

1.2 Features and benefits

- AEC Q101 compliant
- Suitable for intermediate level gate drive sources

1.3 Applications

- 12 V Automotive systems
- Electric and electro-hydraulic power steering
- Motors, lamps and solenoid control

1.4 Quick reference data

Table 1. Quick reference data

- Suitable for thermally demanding environments due to 175 °C rating
- Start-Stop micro-hybrid applications
- Transmission control
- Ultra high performance power switching

QUICK reference data						
Parameter	Conditions		Min	Тур	Max	Unit
drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C		-	-	75	V
drain current	$V_{GS} = 10 \text{ V}; \text{ T}_{mb} = 25 \text{ °C};$ see <u>Figure 1</u>	<u>[1]</u>	-	-	120	A
total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	-	306	W
aracteristics						
drain-source on-state resistance	$V_{GS} = 10 \text{ V}; I_D = 25 \text{ A};$ T _j = 25 °C; see <u>Figure 11</u>		-	3.6	4.2	mΩ
	Parameter drain-source voltage drain current total power dissipation aracteristics drain-source on-state	ParameterConditionsdrain-source voltage $T_j \ge 25 \text{ °C}; T_j \le 175 \text{ °C}$ drain current $V_{GS} = 10 \text{ V}; T_{mb} = 25 \text{ °C};$ see Figure 1total power dissipation $T_{mb} = 25 \text{ °C};$ see Figure 2drain-source on-state $V_{GS} = 10 \text{ V}; I_D = 25 \text{ A};$	ParameterConditionsdrain-source voltage $T_j \ge 25 \text{ °C}; T_j \le 175 \text{ °C}$ drain current $V_{GS} = 10 \text{ V}; T_{mb} = 25 \text{ °C};$ total power dissipation $T_{mb} = 25 \text{ °C};$ see Figure 2total nower dissipation $T_{mb} = 25 \text{ °C};$ total power dissipation $V_{GS} = 10 \text{ V};$ total power dissipation $T_{mb} = 25 \text{ °C};$ total power dissipation $V_{GS} = 10 \text{ V};$	ParameterConditionsMindrain-source voltage $T_j \ge 25 ^{\circ}C; T_j \le 175 ^{\circ}C$ -drain current $V_{GS} = 10 ^{\circ}V; T_{mb} = 25 ^{\circ}C;$ [1]-total power dissipation $T_{mb} = 25 ^{\circ}C;$ see Figure 2-aracteristicsdrain-source on-state $V_{GS} = 10 ^{\circ}V; I_D = 25 ^{\circ};$ -	ParameterConditionsMinTypdrain-source voltage $T_j \ge 25 ^\circ C; T_j \le 175 ^\circ C$ drain current $V_{GS} = 10 V; T_{mb} = 25 ^\circ C;$ [1]-total power dissipation $T_{mb} = 25 ^\circ C;$ see Figure 2aracteristicsdrain-source on-state $V_{GS} = 10 V; I_D = 25 A;$ -3.6	ParameterConditionsMinTypMaxdrain-source voltage $T_j \ge 25 ^{\circ}C; T_j \le 175 ^{\circ}C$ 75drain current $V_{GS} = 10 ^{\circ}V; T_{mb} = 25 ^{\circ}C;$ [1]120total power dissipation $T_{mb} = 25 ^{\circ}C;$ see Figure 2306aracteristicsdrain-source on-state $V_{GS} = 10 ^{\circ}V; I_D = 25 ^{\circ}S;$ -3.64.2

BUK6E4R0-75C

N-channel TrenchMOS FET

Table 1.	Quick reference data	continued				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Avalanch	e ruggedness					
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	$\begin{split} I_D &= 120 \text{ A}; V_{\text{sup}} \leq 75 \text{ V}; \\ R_{\text{GS}} &= 50 \Omega; V_{\text{GS}} = 10 \text{V}; \\ T_{j(\text{init})} &= 25 ^{\circ}\text{C}; \text{ unclamped} \end{split}$	-	-	523	mJ
Dynamic	characteristics					
Q_{GD}	gate-drain charge	$I_D = 25 \text{ A}; V_{DS} = 60 \text{ V};$ $V_{GS} = 10 \text{ V}; \text{ see } \frac{\text{Figure } 13}{\text{see } \frac{\text{Figure } 14}{\text{Figure } 14}}$	-	63	-	nC

[1] Continuous current is limited by package.

2. Pinning information

Table 2.	Pinning	information		
Pin	Symbol	Description	Simplified outline	Graphic symbol
1	G	gate		2
2	D	drain	mb	
3	S	source		
mb	D	mounting base; connected to drain		mbb076 S
			SOT226 (I2PAK)	

3. Ordering information

Table 3. Ordering	g information		
Type number	Package		
	Name	Description	Version
BUK6E4R0-75C	I2PAK	plastic single-ended package (I2PAK); TO-262	SOT226

N-channel TrenchMOS FET

4. Limiting values

Table 4. Limiting values

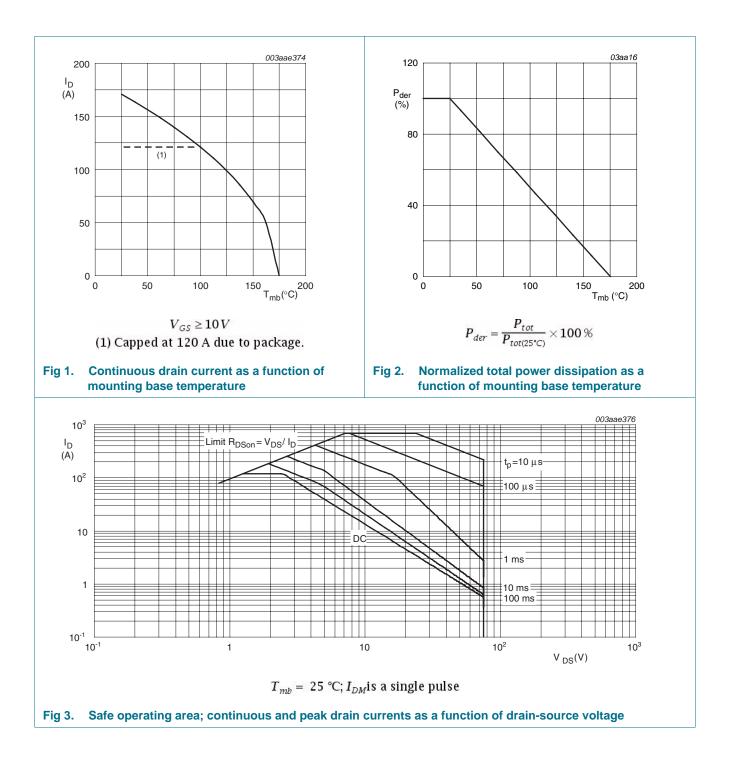
In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Мах	Unit
V _{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C		-	75	V
V _{GS}	gate-source voltage	DC	<u>[1]</u>	-16	16	V
		Pulsed	[2]	-20	20	V
I _D	drain current	$T_{mb} = 25 \text{ °C}; V_{GS} = 10 \text{ V}; \text{ see } \frac{\text{Figure 1}}{\text{Figure 1}}$	<u>[3]</u>	-	120	А
		T_{mb} = 100 °C; V_{GS} = 10 V; see Figure 1	[3]	-	120	А
I _{DM}	peak drain current	$T_{mb} = 25 \text{ °C}; t_p \le 10 \mu\text{s}; \text{ pulsed};$ see <u>Figure 3</u>		-	670	A
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	306	W
T _{stg}	storage temperature			-55	175	°C
Tj	junction temperature			-55	175	°C
Source-drai	n diode					
ls	source current	T _{mb} = 25 °C	<u>[3]</u>	-	120	А
I _{SM}	peak source current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^{\circ}C$		-	670	А
Avalanche r	uggedness					
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	I_D = 120 A; $V_{sup} \le 75$ V; $R_{GS} = 50$ Ω; $V_{GS} = 10$ V; $T_{j(init)} = 25$ °C; unclamped		-	523	mJ
E _{DS(AL)R}	repetitive drain-source avalanche energy		<u>[4][5][6]</u>	-	-	J

[1] -16V accumulated duration not to exceed 168 hrs

[2] Accumulated pulse duration not to exceed 5 mins.

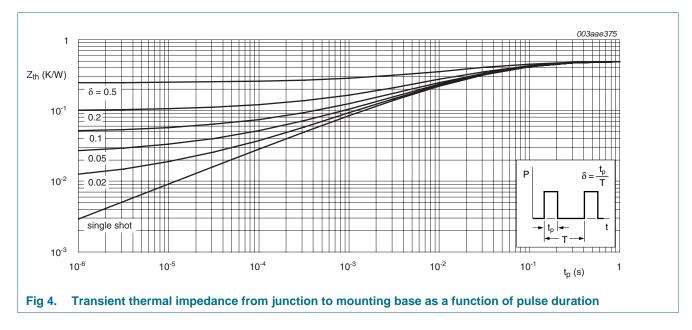
[3] Continuous current is limited by package.


[4] Single-pulse avalanche rating limited by maximum junction temperature of 175 °C.

[5] Repetitive avalanche rating limited by an average junction temperature of 170 °C.

[6] Refer to application note AN10273 for further information.

BUK6E4R0-75C


N-channel TrenchMOS FET

N-channel TrenchMOS FET

5. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{th(j-mb)}	thermal resistance from junction to mounting base	see Figure 4	-	-	0.49	K/W
R _{th(j-a)}	thermal resistance from junction to ambient	vertical in free air	-	60	-	K/W

Table 5. Thermal characteristics

N-channel TrenchMOS FET

6. Characteristics

Table 6.	Characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static cha	racteristics					
V _{(BR)DSS}	drain-source breakdown	$I_D = 250 \ \mu\text{A}; \ V_{GS} = 0 \ V; \ T_j = 25 \ ^\circ\text{C}$	75	-	-	V
	voltage	$I_D = 250 \ \mu\text{A}; \ V_{GS} = 0 \ V; \ T_j = -55 \ ^\circ\text{C}$	68	-	-	V
V _{GS(th)} gate-source threshold voltage	$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 25 \text{ °C};$ see <u>Figure 9</u> ; see <u>Figure 10</u>	1.8	2.3	2.8	V	
		$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = -55 \text{ °C};$ see Figure 10	-	-	3.3	V
		$I_D = 2.5 \text{ mA}; V_{DS} = V_{GS}; T_j = 175 \text{ °C};$ see Figure 10	0.8	-	-	V
I _{DSS}	drain leakage current	$V_{DS} = 75 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 175 \text{ °C}$	-	-	500	μΑ
		V_{DS} = 75 V; V_{GS} = 0 V; T_j = 25 °C	-	0.02	1	μΑ
I _{GSS}	gate leakage current	V_{DS} = 0 V; V_{GS} = 20 V; T_j = 25 °C	-	2	100	nA
		V_{DS} = 0 V; V_{GS} = -20 V; T_j = 25 °C	-	2	100	nA
R _{DSon}	R _{DSon} drain-source on-state resistance	V _{GS} = 10 V; I _D = 25 A; T _j = 25 °C; see <u>Figure 11</u>	-	3.6	4.2	mΩ
		V_{GS} = 4.5 V; I_D = 25 A; T_j = 25 °C; see <u>Figure 11</u>	-	4.4	6	mΩ
		V _{GS} = 5 V; I _D = 25 A; T _j = 25 °C; see <u>Figure 11</u>	-	4.1	5.3	mΩ
		V_{GS} = 10 V; I_D = 25 A; T_j = 175 °C; see <u>Figure 11</u> ; see <u>Figure 12</u>	-	-	10.9	mΩ
Dynamic	characteristics					
Q _{G(tot)}	total gate charge	$I_D = 25 \text{ A}; V_{DS} = 60 \text{ V}; V_{GS} = 10 \text{ V};$ see Figure 13; see Figure 14	-	234	-	nC
		$I_D = 25 \text{ A}; V_{DS} = 60 \text{ V}; V_{GS} = 5 \text{ V};$ see Figure 13; see Figure 14	-	132	-	nC
Q _{GS}	gate-source charge	$I_D = 25 \text{ A}; V_{DS} = 60 \text{ V}; V_{GS} = 10 \text{ V};$	-	32	-	nC
Q _{GD}	gate-drain charge	see Figure 13; see Figure 14	-	63	-	nC
C _{iss}	input capacitance	V_{GS} = 0 V; V_{DS} = 25 V; f = 1 MHz;	-	11580	15450	pF
C _{oss}	output capacitance	T _j = 25 °C; see <u>Figure 15</u>	-	870	1040	pF
C _{rss}	reverse transfer capacitance		-	580	800	pF
t _{d(on)}	turn-on delay time	$V_{DS} = 55 \text{ V}; \text{ R}_{L} = 2.2 \Omega; \text{ V}_{GS} = 10 \text{ V};$	-	52	-	ns
t _r	rise time	$R_{G(ext)} = 10 \Omega$	-	81	-	ns
t _{d(off)}	turn-off delay time		-	412	-	ns
t _f	fall time		-	156	-	ns
L _D	internal drain inductance	from drain lead 6 mm from package to centre of die ; $T_j = 25 \text{ °C}$	-	4.5	-	nH
L _S	internal source inductance	from source lead to source bond pad ; T _j = 25 °C	-	7.5	-	nH

Symbol

BUK6E4R0-75C

Min

Тур

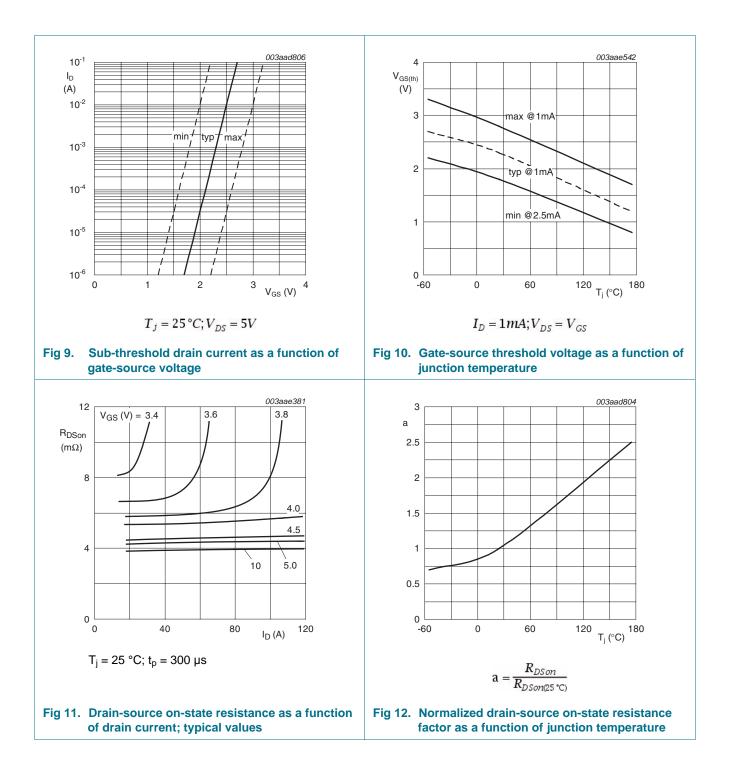
N-channel TrenchMOS FET

Max

Unit

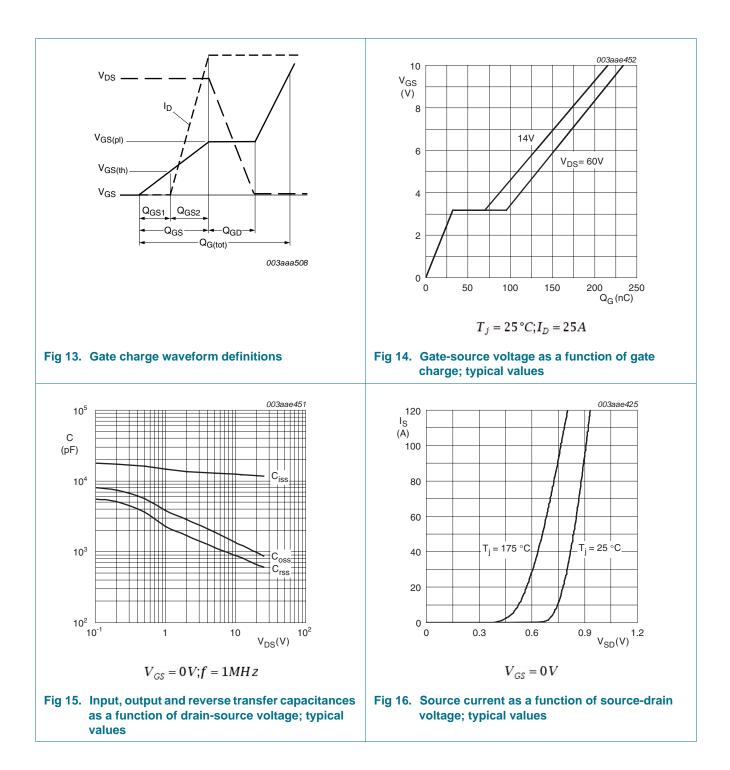
urce-drai	n diada								
				· • • • • • • • • • • • • • • • • • • •					
D	source-drain volta	ige	I _S = 25 A; V see <u>Figure</u>	′ _{GS} = 0 V; T _j = 25 <u>16</u>	°C;	-	0.8	1.2	V
	reverse recovery	time		I _S /dt = -100 A/μs;		-	72	-	ns
	recovered charge		$V_{GS} = 0 V;$	V _{DS} = 25 V		-	218	-	nC
160 ┌──		003aa	e377	100				003aae378	
ID	5 4.5	$V_{GS}(V) = 4$	4.0	ID					
(Ā)	10			(A)				//	
120 —			3.8 -	80					
120							+		
				60			+		
80 -									
80		3	9.6						
				40		Tj = 175 °			
40			3.4 _				$\overline{\mathbf{N}}$	25 °C	
40			3.3	20			+/ $+$ /	23 0	
			3.2 -						
g 5. Ou	1 = 25 °C; t _p = 300 μs ttput characteristics:		nt as a	Fig 6. Transf		cteristics	s: drain (
0 Tj = i g 5. Ou	= 25 °C; t _p = 300 μs	v _{DS} (v)	nt as a	0 V _{DS} < Fig 6. Transf	I _D x R _{DSc}	on	s: drain ((_{GS} (V)	
0 Tj = i g 5. Ou	= 25 °C; t _p = 300 μs It <mark>put characteristics:</mark>	v _{DS} (v)	nt as a pical values	0 V _{DS} < 1 Fig 6. Transf functio	I _D x R _{DSc}	on Icteristics	s: drain (voltage	(_{GS} (V)	
0 Tj = ig 5. Ou fur ²⁰ R _{DSon}	= 25 °C; t _p = 300 μs It <mark>put characteristics:</mark>	drain currei e voltage; ty	nt as a pical values	0 V _{DS} < Fig 6. Transf functio	I _D x R _{DSc}	on Icteristics	s: drain (voltage	(_{GS} (V) current a ; typical	
0 Tj : ig 5. Ou fur 20	= 25 °C; t _p = 300 μs It <mark>put characteristics:</mark>	drain currei e voltage; ty	nt as a pical values	0 V _{DS} < 1 Fig 6. Transf functio	I _D x R _{DSc}	on Icteristics	s: drain (voltage	(_{GS} (V) current a ; typical	
0 Tj = ig 5. Ou fur ²⁰ R _{DSon}	= 25 °C; t _p = 300 μs It <mark>put characteristics:</mark>	drain currei e voltage; ty	nt as a pical values	0 V _{DS} < Fig 6. Transf functio	I _D x R _{DSc}	on Icteristics	s: drain (voltage	(_{GS} (V) current a ; typical	
0 Tj = ig 5. Ou fur ²⁰ (mΩ)	= 25 °C; t _p = 300 μs It <mark>put characteristics:</mark>	drain currei e voltage; ty	nt as a pical values	0 V _{DS} < 1 Fig 6. Transf functio	I _D x R _{DSc}	on Icteristics	s: drain (voltage	(_{GS} (V) current a ; typical	
0 Tj = ig 5. Ou fur ²⁰ (mΩ)	= 25 °C; t _p = 300 μs It <mark>put characteristics:</mark>	drain currei e voltage; ty	nt as a pical values	0 V _{DS} < 1 Fig 6. Transf functio	I _D x R _{DSc}	on Icteristics	s: drain (voltage	(_{GS} (V) current a ; typical	
0 Tj = ig 5. Ou fur ²⁰ (mΩ)	= 25 °C; t _p = 300 μs It <mark>put characteristics:</mark>	drain currei e voltage; ty	nt as a pical values	0 V _{DS} < 1 Fig 6. Transf function	I _D x R _{DSc}	on Icteristics	s: drain (voltage	(_{GS} (V) current a ; typical	
0 Tj = ig 5. Ou fur R _{DSon} (mΩ) 15	= 25 °C; t _p = 300 μs It <mark>put characteristics:</mark>	drain currei e voltage; ty	nt as a pical values	0 V _{DS} < Fig 6. Transf function g _{fs} (S) 200 150	I _D x R _{DSc}	on Icteristics	s: drain (voltage	(_{GS} (V) current a ; typical	
0 Tj = ig 5. Ou fur R _{DSon} (mΩ) 15	= 25 °C; t _p = 300 μs It <mark>put characteristics:</mark>	drain currei e voltage; ty	nt as a pical values	0 V _{DS} < 1 Fig 6. Transf function	I _D x R _{DSc}	on Icteristics	s: drain (voltage	(_{GS} (V) current a ; typical	
0 Tj = ig 5. Ou fur R _{DSon} (mΩ) 15	= 25 °C; t _p = 300 μs It <mark>put characteristics:</mark>	drain currei e voltage; ty	nt as a pical values	0 V _{DS} < Fig 6. Transf function 9 _{fs} (S) 200 150 100	I _D x R _{DSc}	on Icteristics	s: drain (voltage	(_{GS} (V) current a ; typical	
0 Tj : ig 5. Ou fur ²⁰ (mΩ) 15 10	= 25 °C; t _p = 300 μs It <mark>put characteristics:</mark>	drain currei e voltage; ty	nt as a pical values	0 V _{DS} < Fig 6. Transf function g _{fs} (S) 200 150	I _D x R _{DSc}	on Icteristics	s: drain (voltage	(_{GS} (V) current a ; typical	
0 Tj : ig 5. Ou fur ²⁰ (mΩ) 15 10	= 25 °C; t _p = 300 μs It <mark>put characteristics:</mark>	drain currei e voltage; ty	nt as a pical values	0 V _{DS} < Fig 6. Transf function 9 _{fs} (S) 200 150 100	I _D x R _{DSc}	on Icteristics	s: drain (voltage	(_{GS} (V) current a ; typical	
0 Tj = ig 5. Ou fur 20 R _{DSon} (mΩ) 15 10 5	= 25 °C; t _p = 300 µs intput characteristics: inction of drain-sourc	v _{DS} (v,	nt as a pical values	0 V _{DS} < 1 Fig 6. Transf function 250 9fs (S) 200 150 150 50 0	I _D x R _{DSc} fer chara on of gat	e-source	s: drain (/GS (V)	value
0 Tj = ig 5. Ou fur ²⁰ (mΩ) 15 10 5	= 25 °C; t _p = 300 μs It <mark>put characteristics:</mark>	drain currei e voltage; ty	nt as a pical values	0 V _{DS} < Fig 6. Transf function g _{fs} (S) 200 150 100 50	I _D x R _{DSc}	on Icteristics	s: drain (voltage	(_{GS} (V) current a ; typical	value
0 Tj = ig 5. Ou fur R _{DSon} (mΩ) 15 10 5 0 0	= 25 °C; t _p = 300 µs intput characteristics: inction of drain-sourc	e drain curren e voltage; ty	nt as a pical values	0 V _{DS} < 1 Fig 6. Transf function 250 9fs (S) 200 150 150 50 0	PD X RDSc fer chara on of gat	e-source	s: drain (voltage	⁷ GS (V) CURRENT : ; typical 003aae379	value
0 Tj = ig 5. Ou fur ²⁰ (mΩ) 15 10 5 0 0 0 Tj =	e 25 °C; t _p = 300 μs tiput characteristics: action of drain-source action of drain-source actio	e drain curren e voltage; ty 003aa	nt as a pical values	0 V _{DS} < 1 Fig 6. Transf function 250 9fs (S) 200 150 150 0 0 0	$T_{j} = T_{j}$	50	s: drain (voltage	⁷ GS (V) current a ; typical 003aae379 003aaa 003aae379 003aae379 003aae379 003aaa 003aa 003aaa 003aaa 003aa 003aaa 003aa 003aa 003aaa 003a	value

Conditions

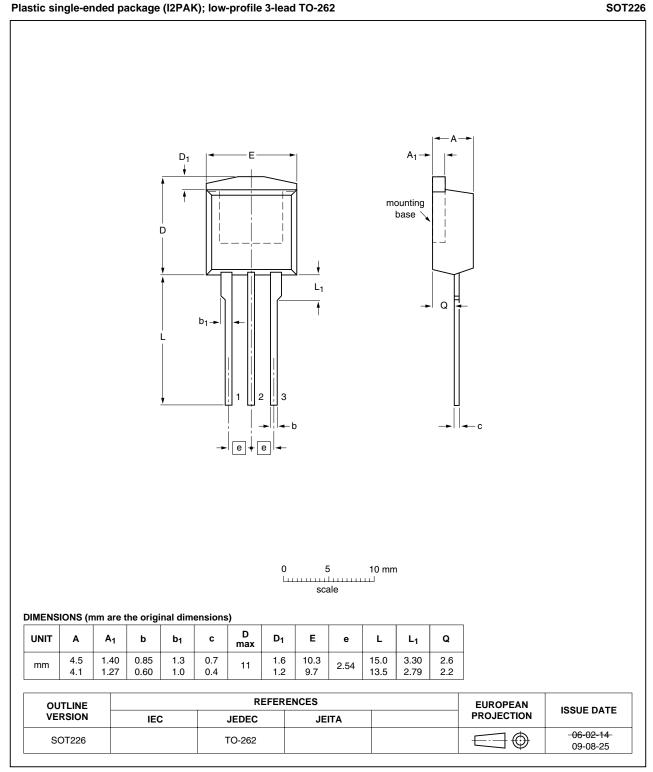

Table 6. Characteristics ...continued

Parameter

BUK6E4R0-75C Product data sheet


BUK6E4R0-75C

N-channel TrenchMOS FET


BUK6E4R0-75C

N-channel TrenchMOS FET

N-channel TrenchMOS FET

7. Package outline

Fig 17. Package outline SOT226 (I2PAK)

All information provided in this document is subject to legal disclaimers.

N-channel TrenchMOS FET

8. Revision history

Table 7. Revision h	nistory			
Document ID	Release date	Data sheet status	Change notice	Supersedes
BUK6E4R0-75C v.2	20100830	Product data sheet	-	BUK6E4R0-75C v.1
Modifications:	 Status change 	d from objective to product.		
	 Various chang 	es to content.		
BUK6E4R0-75C v.1	20100709	Objective data sheet	-	-

9. Legal information

9.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>http://www.nxp.com</u>.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

9.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. The product is not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual

All information provided in this document is subject to legal disclaimers.

N-channel TrenchMOS FET

agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Adelante, Bitport, Bitsound, CoolFlux, CoReUse, DESFire, EZ-HV, FabKey, GreenChip, HiPerSmart, HITAG, I²C-bus logo, ICODE, I-CODE, ITEC, Labelution, MIFARE, MIFARE Plus, MIFARE Ultralight, MoReUse, QLPAK, Silicon Tuner, SiliconMAX, SmartXA, STARplug, TOPFET, TrenchMOS, TriMedia and UCODE — are trademarks of NXP B.V.

HD Radio and **HD Radio** logo — are trademarks of iBiquity Digital Corporation.

10. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

11. Contents

1	Product profile1
1.1	General description1
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Limiting values3
5	Thermal characteristics5
6	Characteristics6
7	Package outline10
8	Revision history11
9	Legal information12
9.1	Data sheet status
9.2	Definitions12
9.3	Disclaimers
9.4	Trademarks
10	Contact information13

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2010.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 30 August 2010 Document identifier: BUK6E4R0-75C