PHD108NQ03LT

N-channel TrenchMOS logic level FET

Rev. 04 — 5 June 2009

Product data sheet

1. Product profile

1.1 General description

Logic level N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using TrenchMOS technology. This product is designed and qualified for use in computing, communications, consumer and industrial applications only.

1.2 Features and benefits

- Low conduction losses due to low on-state resistance
- Simple gate drive required due to low gate charge
- Suitable for logic level gate drive sources

1.3 Applications

■ DC-to-DC convertors

Switched-mode power supplies

1.4 Quick reference data

Table 1. Quick reference

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
				. 7 17		
V_{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C	-	-	25	V
I _D	drain current	$T_{mb} = 25$ °C; $V_{GS} = 5$ V; see <u>Figure 1</u> ; see <u>Figure 3</u>	-	-	75	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	-	187	W
Avalance	ruggedness					
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	V_{GS} = 10 V; $T_{j(init)}$ = 25 °C; I_D = 43 A; $V_{sup} \le$ 25 V; unclamped; t_p = 0.25 ms; R_{GS} = 50 Ω	-	-	180	mJ
Dynamic	characteristics					
Q_{GD}	gate-drain charge	$V_{GS} = 4.5 \text{ V}; I_D = 25 \text{ A};$ $V_{DS} = 12 \text{ V}; T_j = 25 \text{ °C}; \text{ see}$ <u>Figure 12</u> ; see <u>Figure 13</u>	-	5.6	-	nC
Static ch	aracteristics					
R _{DSon}	drain-source on-state resistance	$V_{GS} = 10 \text{ V}; I_D = 25 \text{ A};$ $T_j = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 10}{\text{Figure } 11};$	-	5.3	6	mΩ

2. Pinning information

Table 2. Pinning information

	_	•			
Pin	Symbol	Description		Simplified outline	Graphic symbol
1	G	gate			
2	D	drain	[1]	mb	D
3	S	source			$G \longrightarrow \overline{A}$
mb		mounting base; connected to drain		1 3	mbb076 S
				SOT428 (SC-63; DPAK)	

[1] It is not possible to make a connection to pin 2.

3. Ordering information

Table 3. Ordering information

Type number	Package		
	Name	Description	Version
PHD108NQ03LT	SC-63; DPAK	plastic single-ended surface-mounted package (DPAK); 3 leads (one lead cropped)	SOT428

4. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DS}	drain-source voltage	$T_j \ge 25 \text{ °C}; T_j \le 175 \text{ °C}$	-	25	V
V_{DGR}	drain-gate voltage	$T_j \ge 25 \text{ °C}; T_j \le 175 \text{ °C}; R_{GS} = 20 \text{ k}\Omega$	-	25	V
V_{GS}	gate-source voltage		-20	20	V
I _D	drain current	V _{GS} = 5 V; T _{mb} = 25 °C; see <u>Figure 1</u> ; see <u>Figure 3</u>	-	75	Α
		V _{GS} = 5 V; T _{mb} = 100 °C; see <u>Figure 1</u>	-	75	Α
I_{DM}	peak drain current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^{\circ}C$; see <u>Figure 3</u>	-	240	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	187	W
T _{stg}	storage temperature		-55	175	°C
Tj	junction temperature		-55	175	°C
Source-dr	ain diode				
Is	source current	T _{mb} = 25 °C	-	75	Α
I _{SM}	peak source current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^{\circ}C$	-	240	Α
Avalance	ruggedness				
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	V_{GS} = 10 V; $T_{j(init)}$ = 25 °C; I_D = 43 A; V_{sup} ≤ 25 V; unclamped; t_p = 0.25 ms; R_{GS} = 50 Ω	-	180	mJ

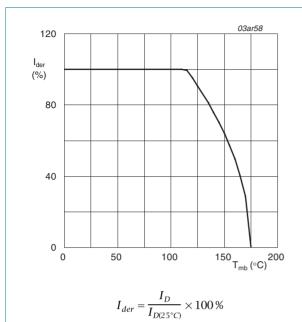
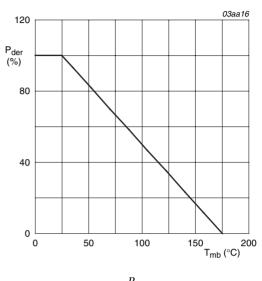
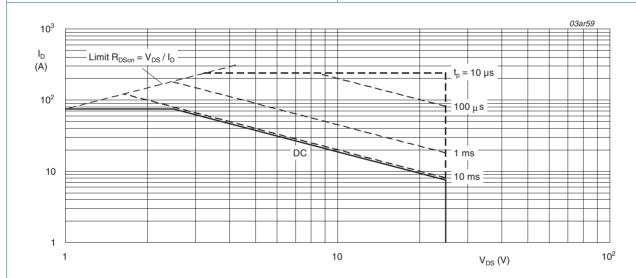
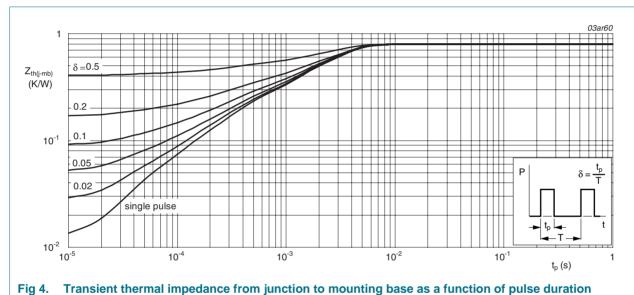




Fig 1. Normalized continuous drain current as a function of mounting base temperature

$$P_{der} = \frac{P_{tot}}{P_{tot(25^{\circ}C)}} \times 100\%$$

Fig 2. Normalized total power dissipation as a function of mounting base temperature

 $T_{mb} = 25$ °C; I_{DM} is single pulse; $V_{GS} = 5V$


Fig 3. Safe operating area; continuous and peak drain currents as a function of drain-source voltage

3 of 12

5. Thermal characteristics

Table 5. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{th(j-mb)}	thermal resistance from junction to mounting base	see Figure 4	-	-	8.0	K/W
R _{th(j-a)} thermal resistance from junction to ambient		minimum footprint; mounted on a printed-circuit board; vertical in still air	-	75	-	K/W
		mounted on a printed-circuit board; vertical in still air; SOT404 minimum footprint	-	50	-	K/W

rig 4. Transient thermal impedance from junction to mounting base as a function of pulse duration

6. Characteristics

Table 6. Characteristics

Symbol	Parameter	Conditions Min Typ M		Max	Unit	
Static char	racteristics					
V _{(BR)DSS}	drain-source	$I_D = 250 \mu A; V_{GS} = 0 V; T_j = 25 °C$	25	-	-	V
	breakdown voltage	$I_D = 250 \mu A; V_{GS} = 0 V; T_j = -55 °C$	22	-	-	V
V _{GS(th)} gate-so voltage	gate-source threshold voltage	$I_D = 1$ mA; $V_{DS} = V_{GS}$; $T_j = 25$ °C; see Figure 8; see Figure 9	1	1.5	2	V
		$I_D = 1 \text{ mA}$; $V_{DS} = V_{GS}$; $T_j = 175 \text{ °C}$; see Figure 8; see Figure 9	0.5	-	-	V
		I_D = 1 mA; V_{DS} = V_{GS} ; T_j = -55 °C; see Figure 8; see Figure 9	-	-	2.2	V
I _{DSS}	drain leakage current	$V_{DS} = 25 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	-	1	μΑ
		$V_{DS} = 25 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 175 \text{ °C}$	-	-	500	μΑ
I _{GSS}	gate leakage current	$V_{GS} = 10 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	0.02	100	nA
		$V_{GS} = -10 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	0.02	100	nA
PHD108NQ03LT_4				©	NXP B.V. 2009.	All rights reser

5 of 12

N-channel TrenchMOS logic level FET

Table 6. Characteristics ... continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{DSon}	drain-source on-state resistance	$V_{GS} = 5 \text{ V}; I_D = 25 \text{ A}; T_j = 25 ^{\circ}\text{C}; \text{ see}$ Figure 10; see Figure 11	-	6.7	7.5	mΩ
		$V_{GS} = 5 \text{ V}$; $I_D = 25 \text{ A}$; $T_j = 175 \text{ °C}$; see <u>Figure 10</u> ; see <u>Figure 11</u>	-	12.1	13.5	mΩ
		$V_{GS} = 10 \text{ V}; I_D = 25 \text{ A}; T_j = 25 \text{ °C}; \text{ see}$ Figure 10; see Figure 11	-	5.3	6	mΩ
R_G	internal gate resistance (AC)	f = 1 MHz; T _j = 25 °C	-	1.2	-	Ω
Dynamic o	characteristics					
Q _{G(tot)}	total gate charge	$I_D = 25 \text{ A}$; $V_{DS} = 12 \text{ V}$; $V_{GS} = 4.5 \text{ V}$; $T_j = 25 \text{ °C}$; see <u>Figure 12</u> ; see <u>Figure 13</u>	-	16.3	-	nC
		$I_D = 0 \text{ A}; V_{DS} = 0 \text{ V}; V_{GS} = 4.5 \text{ V};$ $T_j = 25 \text{ °C}$	-	12.5	-	nC
Q_{GS}	gate-source charge	$I_D = 25 \text{ A}; V_{DS} = 12 \text{ V}; V_{GS} = 4.5 \text{ V};$	-	4	-	nC
Q _{GS1}	pre-threshold gate-source charge	T _j = 25 °C; see <u>Figure 12</u> ; see <u>Figure 13</u>	-	2.5	-	nC
Q _{GS2}	post-threshold gate-source charge		-	1.5	-	nC
Q_{GD}	gate-drain charge		-	5.6	-	nC
$V_{GS(pl)}$	gate-source plateau voltage	$I_D = 25 \text{ A}$; $V_{DS} = 12 \text{ V}$; $T_j = 25 \text{ °C}$; see Figure 12; see Figure 13	-	2.4	-	V
C _{iss}	input capacitance	$V_{DS} = 12 \text{ V}; V_{GS} = 0 \text{ V}; f = 1 \text{ MHz};$ $T_j = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 14}{\text{ V}}$	-	1375	-	pF
		$V_{DS} = 0 \text{ V}; V_{GS} = 0 \text{ V}; f = 1 \text{ MHz};$ $T_j = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 14}{\text{ MHz}}$	-	2120	-	pF
Coss	output capacitance	$V_{DS} = 12 V; V_{GS} = 0 V; f = 1 MHz;$	-	640	-	pF
C _{rss}	reverse transfer capacitance	T _j = 25 °C; see <u>Figure 14</u>	-	250	-	pF
t _{d(on)}	turn-on delay time	$V_{DS} = 12 \text{ V}; R_L = 0.5 \Omega; V_{GS} = 4.5 \text{ V};$	-	15	-	ns
t _r	rise time	$R_{G(ext)} = 5.6 \ \Omega; T_j = 25 \ ^{\circ}C$	-	38	-	ns
t _{d(off)}	turn-off delay time		-	32	-	ns
t _f	fall time		-	25	-	ns
Source-dr	ain diode					
V_{SD}	source-drain voltage	$I_S = 25 \text{ A}$; $V_{GS} = 0 \text{ V}$; $T_j = 25 \text{ °C}$; see Figure 15	-	0.86	1.2	V
t _{rr}	reverse recovery time	$I_S = 20 \text{ A}; dI_S/dt = -100 \text{ A/}\mu\text{s}; V_{GS} = 0 \text{ V};$	-	34	-	ns
Q _r	recovered charge	$V_{DS} = 25 \text{ V}; T_j = 25 \text{ °C}$	-	21	-	nC

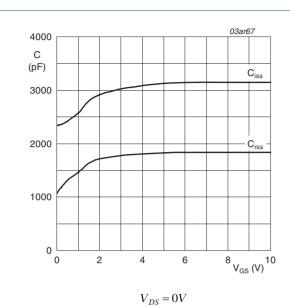
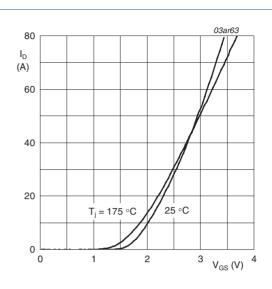



Fig 5. Input and reverse transfer capacitances as a function of gate-source voltage; typical values

 $T_j = 25$ °C and 175°C; $V_{DS} > I_D \times R_{DSon}$

Fig 6. Transfer characteristics: drain current as a function of gate-source voltage; typical values

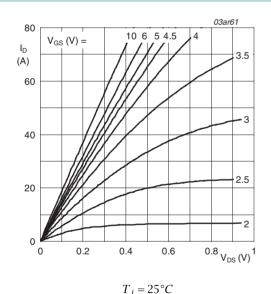


Fig 7. Output characteristics: drain current as a function of drain-source voltage; typical values

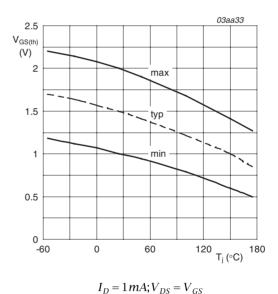
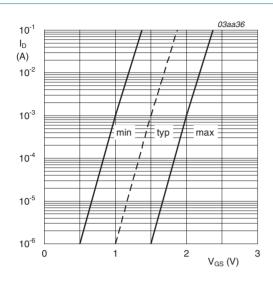
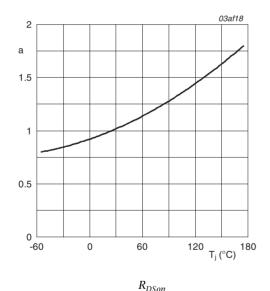
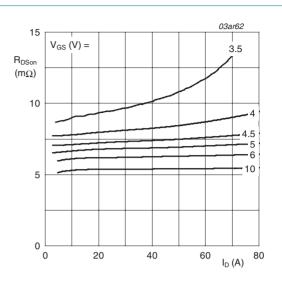
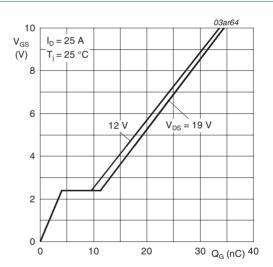



Fig 8. Gate-source threshold voltage as a function of junction temperature

 $T_i = 25 \,^{\circ}C; V_{DS} = V_{GS}$

Sub-threshold drain current as a function of Fig 9. gate-source voltage


Fig 11. Normalized drain-source on-state resistance

factor as a function of junction temperature

 $T_i = 25^{\circ}C$

Fig 10. Drain-source on-state resistance as a function of drain current; typical values

$$I_D = 25A; V_{DS} = 12V \text{ and } 19V$$

Fig 12. Gate-source voltage as a function of gate charge; typical values

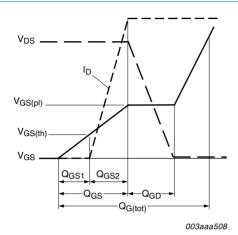
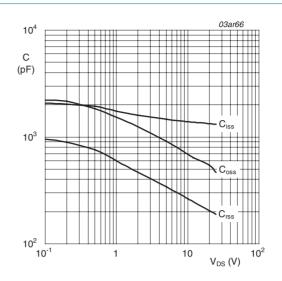
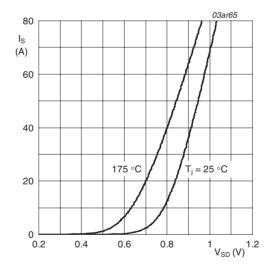




Fig 13. Gate charge waveform definitions

 $V_{GS} = 0V; f = 1MHz$

Fig 14. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values

 $T_j = 25 \,^{\circ} C \text{ and } 175 \,^{\circ} C; V_{GS} = 0V$

Fig 15. Source current as a function of source-drain voltage; typical values

7. Package outline

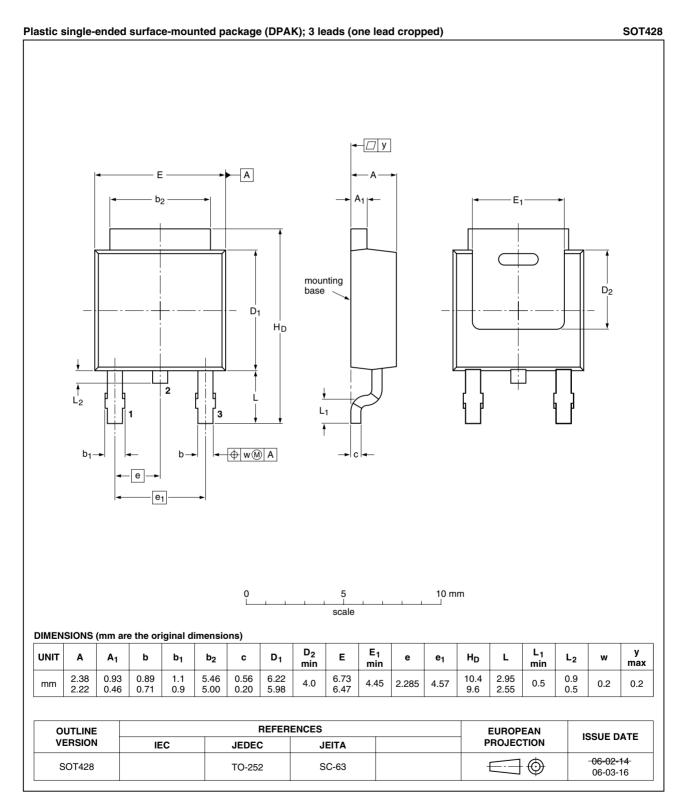


Fig 16. Package outline SOT428 (DPAK)

8. Revision history

Table 7. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
PHD108NQ03LT_4	20090605	Product data sheet	-	PHB_PHD_PHU108NQ03LT_3
Modifications:		t of this data sheet ha of NXP Semiconduct	J	to comply with the new identity
	 Legal texts 	s have been adapted t	to the new compan	y name where appropriate.
	• •	oer PHD108NQ03LT s _PHU108NQ03LT_3.	•	a sheet
PHB_PHD_PHU108NQ03LT_3 (9397 750 14707)	20050418	Product data sheet	2004070095	PHP_PHB_PHD108NQ03LT-02
PHP_PHB_PHD108NQ03LT-02 (9397 750 10159)	20020911	Product data	-	PHP_PHB_PHD108NQ03LT-01
PHP_PHB_PHD108NQ03LT-01 (9397 750 09065)	20011218	Product data	-	-

9. Legal information

9.1 Data sheet status

Document status [1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

9.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

TrenchMOS — is a trademark of NXP B.V.

10. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

PHD108NQ03LT

N-channel TrenchMOS logic level FET

11. Contents

1	Product profile
1.1	General description
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information
3	Ordering information
4	Limiting values
5	Thermal characteristics4
6	Characteristics4
7	Package outline
8	Revision history10
9	Legal information11
9.1	Data sheet status
9.2	Definitions
9.3	Disclaimers
9.4	Trademarks11
10	Contact information 11

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

