TDA4864J; TDA4864AJ

Vertical deflection booster
Rev. 01 - 12 August 2004
Product data sheet

1. General description

The TDA4864J and TDA4864AJ are deflection boosters for use in vertical deflection systems for frame frequencies up to 200 Hz .

The TDA4864J needs a separate flyback supply voltage, so the supply voltages are independently adjustable to optimize power consumption and flyback time.

For the TDA4864AJ the flyback supply voltage will be generated internally by doubling the supply voltage and therefore a separate flyback supply voltage is not needed.

Both circuits provide differential input stages.

2. Features

- Power amplifier with differential inputs
- Output current up to 2.5 A (p-p)
- High vertical deflection frequency up to 200 Hz
- High linear sawtooth signal amplification
- Flyback generator:

TDA4864J: separate adjustable flyback supply voltage up to 60 V

- TDA4864AJ: internally doubled supply voltage (two supply voltages only for DC-coupled outputs).

3. Quick reference data

Table 1: Quick reference data Measurements referenced to pin GND.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$V_{P 1}$	supply voltage 1		9	-	30	V
$\mathrm{V}_{\mathrm{P} 2}$	supply voltage 2 for vertical output		$\mathrm{V}_{\mathrm{P} 1}-1$	-	60	V
$V_{\text {FB }}$	flyback supply voltage of TDA4864J		$\mathrm{V}_{\mathrm{P} 1}-1$	-	60	V
$\mathrm{V}_{\mathrm{P} 3}$	flyback generator output voltage of TDA4864AJ	$\mathrm{I}_{\text {Vout }}=-1.25 \mathrm{~A}$	0	-	$\mathrm{V}_{\mathrm{P} 1}+2.2$	V
V_{i}	input voltage on					
	pin INN		1.6	-	$\mathrm{V}_{\mathrm{P} 1}-0.5$	V
	pin INP		1.6	-	$V_{P 1}-0.5$	V
$\mathrm{l}_{\mathrm{P} 1}$	supply current 1	during scan	-	6	10	mA

Table 1: Quick reference data ...continued
Measurements referenced to pin GND.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$l_{\text {P2 }}$	quiescent supply current 2	$l_{\text {VOUT }}=0$	-	25	60	mA
$I_{\text {VOUT(p-p) }}$	vertical deflection output current (peak-to-peak value)		-	-	2.5	A
$\mathrm{T}_{\text {amb }}$	ambient temperature		-20	-	+75	${ }^{\circ} \mathrm{C}$

4. Ordering information

Table 2: Ordering information

Type number	Package		
	Name	Description	Version
TDA4864J	DBS7P	plastic DIL-bent-SIL power package; 7 leads (lead length 12/11 mm); exposed die pad	SOT524-1
TDA4864AJ			

5. Block diagram

6. Pinning information

6.1 Pinning

Fig 3. Pin configuration (TDA4864J).

Fig 4. Pin configuration (TDA4864AJ).

6.2 Pin description

Table 3: Pin description

Symbol	Pin		Description
	TDA4864J	TDA4864AJ	
$\mathrm{V}_{\mathrm{P} 1}$	1	1	positive supply voltage 1
V_{FB}	2	-	flyback supply voltage
$\mathrm{V}_{\mathrm{P} 3}$	-	2	flyback generator output
$\mathrm{V}_{\mathrm{P} 2}$	3	3	supply voltage 2 for vertical output
GND	4	4	ground or negative supply voltage
VOUT	5	5	vertical output
INN	6	6	inverted input of differential input stage
INP	7	7	non-inverted input of differential input stage

7. Functional description

Both the TDA4864J and TDA4864AJ consist of a differential input stage, a vertical output stage, a flyback generator, a reference circuit and a thermal protection circuit.

The TDA4864J operates with a separate flyback supply voltage (see Figure 1) while the TDA4864AJ generates the flyback voltage internally by doubling the supply voltage (see Figure 2).

7.1 Differential input stage

The differential sawtooth input current signal (from the deflection controller) is connected to the inputs (inverted signal to pin INN and non-inverted signal to pin INP). The vertical feedback signal is superimposed on the inverted signal on pin INN.

7.2 Vertical output and thermal protection

The vertical output stage is a quasi-complementary class-B amplifier with a high linearity.
The output stage is protected against thermal overshoots. For a junction temperature of $\mathrm{T}_{\mathrm{j}}>150^{\circ} \mathrm{C}$ the protection will be activated and will reduce the deflection current (lvout).

7.3 Flyback generator

The flyback generator supplies the vertical output stage during flyback.
The TDA4864J is used with a separate flyback supply voltage to achieve a short flyback time with minimized power dissipation.

The TDA4864AJ needs a capacitor (C_{F}) connected between pins $\mathrm{V}_{\mathrm{P} 3}$ and $\mathrm{V}_{\mathrm{P} 2}$ (see Figure 2). Capacitor C_{F} is charged during scan, using the external diode D1 and resistor R5. During flyback the cathode of capacitor C_{F} is connected to the positive supply voltage and the flyback voltage is then twice the supply voltage. For the TDA4864AJ the resistor $R 6$ in the positive supply line can be used to reduce the power consumption.

In parallel with the deflection coil a damping resistor R_{p} and an $R C$ combination ($\mathrm{R}_{\mathrm{S} 1}=5.6 \Omega$ and $\mathrm{C}_{\mathrm{S} 1}=100 \mathrm{nF}$) are needed. Furthermore, another additional $R C$ combination ($R_{S 2}=5.6 \Omega$ and $C_{S 2}=47 \mathrm{nF}$ to 150 nF) can be used to minimize the noise effect and the flyback time (see Figure 7 and 8).

8. Internal circuitry

Table 4: Internal circuitry
Pin Symbol Internal circuits
TDA4864J

TDA4864AJ

1	V $_{P 1}$
2	V $_{P 3}$
3	VP2 $_{P 2}$
4	GND
5	VOUT
6	INN
7	INP

9. Limiting values

Table 5: Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages referenced to pin GND; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Max	Unit
$V_{P 1}$	supply voltage 1			-	40	V
$\mathrm{V}_{\mathrm{P} 2}$	supply voltage 2			-	60	V
$V_{F B}$	flyback supply voltage of TDA4864J			-	60	V
$\mathrm{V}_{\mathrm{P} 3}$	flyback generator output voltage of TDA4864AJ			0	$\mathrm{V}_{\mathrm{P} 1}+3$	V
V_{i}	input voltage on					
	pin INN			-	$V_{P 1}$	V
	pin INP			-	$V_{P 1}$	V
$\mathrm{V}_{\text {o(VOUT) }}$	output voltage on pin VOUT			-	62	V
$\mathrm{l}_{\text {P2 }}$	supply current 2			-	± 1.5	A
$\mathrm{l}_{\text {(VOUT) }}$	output current on pin VOUT		[1]	-	± 1.5	A
$\mathrm{I}_{\mathrm{FFB}}$	current during flyback of TDA4864J			-	± 1.5	A
$\mathrm{I}_{\text {VP3 }}$	current during flyback of TDA4864AJ			-	± 1.5	A
$\mathrm{T}_{\text {stg }}$	storage temperature			-25	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	ambient temperature			-20	+75	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature		[1]	-	150	${ }^{\circ} \mathrm{C}$
$V_{\text {esd }}$	electrostatic discharge voltage on all pins		[2]	-300	+300	V

[1] Internally limited by thermal protection; will be activated for $\mathrm{T}_{\mathrm{j}} \geq 150^{\circ} \mathrm{C}$.
[2] Equivalent to discharging a 200 pF capacitor through a 0Ω series resistor.

10. Thermal characteristics

Table 6: Thermal characteristics

Symbol	Parameter	Conditions	Typ	Unit
$\mathrm{R}_{\text {th(j-mb) }}$	thermal resistance from junction to mounting base	[1] 6	K/W	

[1] To minimize the thermal resistance from mounting base to heatsink $\left[R_{t h(m b-h)}\right.$] follow the recommended mounting instruction: screw mounting preferred; torque $=40 \mathrm{Ncm}$; use heatsink compound; isolation plate increases $\mathrm{R}_{\mathrm{th}(\mathrm{mb}-\mathrm{h})}$.

11. Characteristics

Table 7: Characteristics
$V_{P 1}=25 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C}$; voltages referenced to pin GND; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Supplies						
$V_{\text {P1 }}$	supply voltage 1		9	-	30	V
$\mathrm{V}_{\mathrm{P} 2}$	supply voltage 2		$\mathrm{V}_{\mathrm{P} 1}-1$	-	60	V
V_{FB}	flyback supply voltage of TDA4864J		$\mathrm{V}_{\mathrm{P} 1}-1$	-	60	V
$\mathrm{V}_{\mathrm{P} 3}$	flyback generator output voltage of TDA4864AJ	$\mathrm{I}_{\text {VOUT }}=-1.25 \mathrm{~A}$	0	-	$V_{P 1}+2.2$	V
IP_{1}	supply current 1	during scan	-	6	10	mA
$\mathrm{l}_{\mathrm{P} 2}$	quiescent supply current 2	$\mathrm{l}_{\text {VOUT }}=0$	-	25	60	mA

Differential input stage

V_{i}	input voltage on				
	pin INN	1.6	-	$V_{P 1}-0.5$	V
	pin INP	1.6	-	$\mathrm{V}_{\mathrm{P} 1}-0.5$	V
$I_{\text {a }}$	input quiescent current on				
	pin INN	-	-100	-500	nA
	pin INP	-	-100	-500	nA

Flyback generator

$\mathrm{I}_{\text {VFB }}$	current during flyback of TDA4864J			-	± 1.5	A
$\mathrm{I}_{\mathrm{VP} 3}$	current during flyback of TDA4864AJ		-	-	± 1.5	A
$\mathrm{V}_{\text {VP2-VFB }}$	voltage drop during flyback of TDA4864J					
	reverse	$\mathrm{I}_{\text {VOUT }}=-1 \mathrm{~A}$	-	-1.5	-	V
		$\mathrm{I}_{\text {VOUT }}=-1.25 \mathrm{~A}$	-	-2	-	V
	forward	$\mathrm{I}_{\text {VOUT }}=1 \mathrm{~A}$	-	2.2	-	V
		$\mathrm{I}_{\text {VOUT }}=1.25 \mathrm{~A}$	-	2.5	-	V

$\mathrm{V}_{\text {VP3-VP1 }}$	$\begin{array}{l}\text { voltage drop during flyback of } \\ \text { TDA4864AJ }\end{array}$

reverse	$\mathrm{I}_{\text {Vout }}=-1 \mathrm{~A}$	-	-1.5	-	V
	$\mathrm{I}_{\text {Vout }}=-1.25 \mathrm{~A}$	-	-2	-	V
forward	$\mathrm{I}_{\text {Vout }}=1 \mathrm{~A}$	-	2.2	-	V
	$\mathrm{I}_{\text {Vout }}=1.25 \mathrm{~A}$	-	2.5	-	V

Vertical output stage; see Figure 5					
IVout	vertical deflection output current	-	-	± 1.25	A
$I_{\text {Vout(p-p) }}$	vertical deflection output current (peak-to-peak value)	-	-	2.5	A
$V_{\text {O(sat) }}$	output saturation voltage to ground $\mathrm{I}_{\text {Vout }}=1 \mathrm{~A}$	-	1.4	1.7	V
	$\mathrm{I}_{\text {VOUT }}=1.25 \mathrm{~A}$	-	1.8	2.3	V

Table 7: Characteristics ...continued
$V_{P 1}=25 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C}$; voltages referenced to pin GND; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\mathrm{o} \text { (sat)p }}$	output saturation voltage to $\mathrm{V}_{\mathrm{P} 2}$	I $_{\text {Vout }}=1 \mathrm{~A}$	-2.3	-2	-	V
			$\mathrm{I}_{\text {Vout }}=1.25 \mathrm{~A}$	-2.8	-2.3	-
LIN	non-linearity of output signal		$\underline{[1]}$	-	-	1

[1] Deviation of the output slope at a constant input slope.

(1) V_{FB} for TDA4864J; $2 \mathrm{~V}_{\mathrm{P} 1}$ for TDA4864AJ.

Fig 5. Timing diagram.

12. Application information

Fig 6. Application circuit with TDA4864J for external guard signal generation.

Attention: the heatsink of the IC must be isolated against ground of the application (it is connected to pin GND).
(1) With $\mathrm{C}_{\mathrm{S} 2}$ (typical value between 47 nF and 150 nF) the flyback time and the noise behavior can be optimized.

Fig 7. Application circuit with TDA4864J.

Attention: the heatsink of the IC must be isolated against ground of the application (it is connected to pin GND).
(1) With $\mathrm{C}_{\mathrm{S} 2}$ (typical value between 47 nF and 150 nF) the flyback time and the noise behavior can be optimized.
(2) With R5 capacitor C_{F} will be charged during scan and the value (typical value between 150Ω and 270Ω) depends on $I_{\text {deff }}$, $\mathrm{t}_{\mathrm{flb}}$ and C_{F}.
(3) R6 reduces the power dissipation of the IC. The maximum possible value depends on the application.

Fig 8. Application circuit with TDA4864AJ.

12.1 Example for both TDA4864J and TDA4864AJ

Table 8: Values given from application

Symbol	Value	Unit
$\mathrm{I}_{\text {defl(max) }}$	0.71	A
$\mathrm{~L}_{\text {deflcoil }}$	6	mH
$\mathrm{R}_{\text {deficoil }}$	6	Ω
R_{P}	270	Ω
R 1	1	Ω
$R 2$	1.8	$\mathrm{k} \Omega$
R 3	1.8	$\mathrm{k} \Omega$
$\mathrm{V}_{\text {FB }}^{[1]}$	50	V
$\mathrm{~T}_{\text {amb }}$	60	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {deflcoil }}$	75	${ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {th(j-mb) }}$	6	$\mathrm{~K} / \mathrm{W}$
$\mathrm{R}_{\text {th(mb-amb) }}$	8	$\mathrm{~K} / \mathrm{W}$

[^0]Table 9: Calculated values

Symbol	Value	Unit	
	TDA4864J	TDA4864AJ	
$\mathrm{V}_{\mathrm{P} 1}$	9	12.5	V
$\mathrm{~V}_{\mathrm{N}}$	-8	-12.5	V
$\mathrm{P}_{\text {tot }}$	3.2	4.4	W
$\mathrm{P}_{\text {defl }}$	1.2	1.2	W
P_{lc}	2	3.2	W
$\mathrm{R}_{\mathrm{th}(\text { tot })}$	14	14	$\mathrm{~K} / \mathrm{W}$
$\mathrm{T}_{\mathrm{j}(\max)}$	88	105	${ }^{\circ} \mathrm{C}$

$\mathrm{V}_{\mathrm{P} 1}, \mathrm{~V}_{\mathrm{N}}$ and V_{FB} are referenced to ground of application; voltages are calculated with $+10 \%$ tolerances.

The calculation formulae for supply voltages are as follows:
$V_{P 1}=-V_{o(s a t) p}+\left(R 1+R_{\text {deflcoil }}\right) \times I_{\text {defi(max) }}-U_{L}+U_{D 1}$
$\mathrm{V}_{\mathrm{N}}=\mathrm{V}_{\mathrm{o}(\text { sat }) \mathrm{n}}+\left(\mathrm{R} 1+\mathrm{R}_{\text {deflcoil }}\right) \times \mathrm{I}_{\text {defl(max })}+\mathrm{U}_{\mathrm{L}}$
where:

$$
\begin{aligned}
& U^{\prime} L=L_{\text {deficoil }} \times 2 I_{\text {defi(} \max)} \times f_{V} \\
& f_{V}=\text { vertical deflection frequency } \\
& U_{D 1}=\text { forward voltage drop across } D 1 .
\end{aligned}
$$

The calculation formulae for power consumption is:
$P_{\text {IC }}=P_{\text {tot }}-P_{\text {defl }}$
$P_{t o t}=\left(V_{P 1}-U_{D 1}\right) \times \frac{I_{\text {defl }(\max)}}{4}+V_{N} \times \frac{I_{\text {defl }(\max)}}{4}+\left(V_{P 1}-V_{N}\right) \times 0.01 \mathrm{~A}+0.2 \mathrm{~W}$
$P_{\text {defl }}=\frac{R_{\text {deflcoil }}+\mathrm{R} 1}{3} \times I_{\text {defl(max) }}^{2}$
where:
$P_{\text {IC }}=$ power dissipation of the IC
$P_{\text {tot }}=$ total power dissipation
$P_{\text {defl }}=$ power dissipation of the deflection coil.
Calculation formulae for maximum required thermal resistance for the heatsink at
$\mathrm{T}_{\mathrm{j}(\text { max })}=110^{\circ} \mathrm{C}$:
$R_{\mathrm{th}(\mathrm{mb}-\mathrm{amb})}=\left(\frac{T_{\mathrm{j}(\max)}-T_{\mathrm{amb}}}{P_{\mathrm{IC}}}\right)-R_{\mathrm{th}(\mathrm{j}-\mathrm{mb})}=19 \mathrm{~K} / \mathrm{W}(\max$.

Table 10: $\quad t_{\text {flb }}$ as a function of $V_{F B}$ for TDA4864J

$\mathbf{t}_{\text {flb }}(\boldsymbol{\mu s})$	$\mathbf{V}_{\text {FB }}(\mathbf{V})$
350	30
250	40
210	50

Table 11: $t_{\text {flb }}$ as a function of $V_{P 1}$ and V_{N} for TDA4864AJ

$\mathbf{t}_{\text {flb }}(\mu \mathbf{s})$	$\mathbf{V}_{\mathbf{P} \mathbf{1}}(\mathbf{V})$	$\mathbf{V}_{\mathbf{N}}(\mathbf{V})$	$\mathbf{P}_{\mathbf{I C}}(\mathbf{W})$	$\mathbf{R 6}(\Omega)$
360	+10	-10	+2.5	+1
290	+12.5	-12.5	+3.2	+3.9
240	+15	-15	+3.9	+6.8

13. Package outline

DIMENSIONS (mm are the original dimensions)

UNIT	$\mathrm{A}_{2}{ }^{(2)}$	b_{p}	C	$\mathrm{D}^{(1)}$	$\mathrm{D}_{1}{ }^{(2)}$	D_{h}	$E^{(1)}$	E_{h}	e	e_{1}	e_{2}	k	L	L_{1}	L_{2}	L_{3}	m	P	Q	q	q_{1}	q_{2}	v	w	X	$Z^{(1)}$
mm	2.7	0.80	0.58	13.2	6.2	3.5	14.7	3.5	2.54	1.27	5.08	3	12.4	11.4	6.7	4.5	2.8	3.4	1.15	17.5	4.85	3.8	0.8	0.3	0.02	2.92
	2.3	0.65	0.48	12.8	5.8		14.3					2	11.0	10.0	5.5	3.7		3.1	0.85	16.3		3.6				2.37

Notes

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
2. Plastic surface within circle area D_{1} may protrude 0.04 mm maximum.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT524-1					0	$00-07-03$ $03-03-12$

Fig 9. Package outline.

14. Soldering

14.1 Introduction to soldering through-hole mount packages

This text gives a brief insight to wave, dip and manual soldering. A more in-depth account of soldering ICs can be found in our Data Handbook IC26; Integrated Circuit Packages (document order number 9398652 90011).

Wave soldering is the preferred method for mounting of through-hole mount IC packages on a printed-circuit board.

14.2 Soldering by dipping or by solder wave

Driven by legislation and environmental forces the worldwide use of lead-free solder pastes is increasing. Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at $250^{\circ} \mathrm{C}$ or $265^{\circ} \mathrm{C}$, depending on solder material applied, SnPb or Pb -free respectively.

The total contact time of successive solder waves must not exceed 5 seconds.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature $\left(\mathrm{T}_{\mathrm{stg}(\max)}\right)$. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

14.3 Manual soldering

Apply the soldering iron (24 V or less) to the lead(s) of the package, either below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300^{\circ} \mathrm{C}$ it may remain in contact for up to 10 seconds. If the bit temperature is between $300^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$, contact may be up to 5 seconds.

14.4 Package related soldering information

Table 12: Suitability of through-hole mount IC packages for dipping and wave soldering methods

Package	Soldering method	
	Dipping	Wave
CPGA, HCPGA	-	suitable
DBS, DIP, HDIP, RDBS, SDIP, SIL	suitable	suitable $\underline{[1]}$
PMFP $[2]$	-	not suitable

[^1]
15. Revision history

Table 13: Revision history

| Document ID | Release date | Data sheet status | Change notice | Order number | Supersedes |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| TDA4864J_TDA4864AJ_1 | 20040812 | Product data sheet | - | 939775013441 | - |

16. Data sheet status

Level	Data sheet status $\underline{[1]}$	Product status $[2]$ [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

17. Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

18. Disclaimers

Life support - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

19. Contact information

For additional information, please visit: http://www.semiconductors.philips.com For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

20. Contents

1 General description 1
2 Features 1
3 Quick reference data 1
4 Ordering information 2
5 Block diagram 2
6 Pinning information 4
6.1 Pinning 4
6.2 Pin description 4
7 Functional description 5
7.1 Differential input stage 5
7.2 Vertical output and thermal protection 5
7.3 Flyback generator 5
8 Internal circuitry 6
9 Limiting values 7
10 Thermal characteristics. 7
11 Characteristics 8
12 Application information 10
12.1 Example for both TDA4864J and TDA4864AJ 11
13 Package outline 14
14 Soldering 15
14.1 Introduction to soldering through-hole mount packages 15
14.2 Soldering by dipping or by solder wave 15
14.3 Manual soldering 15
14.4 Package related soldering information 15
15 Revision history 16
16 Data sheet status 17
17 Definitions 17
18 Disclaimers 17
19 Contact information 17
© Koninklijke Philips Electronics N.V. 2004
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 12 August 2004
Document order number: 939775013441
Published in The Netherlands

[^0]: [1] For TDA4864J only.

[^1]: [1] For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.
 [2] For PMFP packages hot bar soldering or manual soldering is suitable.

