CMOSIC FROM 32K byte, RAM 2048 byte on-chip

8-bit 1-chip Microcontroller with Full-Speed USB

http://onsemi.com

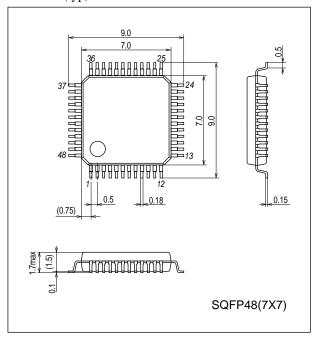
Overview

The LC87F1A32A is an 8-bit microcomputer that, integrates on a single chip a number of hardware features such as 32K-byte flash ROM, 2048-byte RAM, an on-chip debugger, 16-bit timers/counters, a 16-bit timer, two 8-bit timers, a base timer serving as a time-of-day clock, a high-speed clock counter, two channels of synchronous SIO interface (with automatic block transmission/reception capabilities), an asynchronous/synchronous SIO interface, a UART interface, a full-speed USB interface (function), a 12-channel AD converter (12- or 8-bit resolution selectable), two channels of 12-bit PWM, a system clock frequency divider, an infrared remote controller receiver circuit, and an interrupt feature.

Features

- ■Flash ROM
 - 32768×8 bits
 - Capable of on-board-programming with wide range, 3.0 to 5.5V, of voltage source.
 - Block-erasable in 128 byte units
 - Writable in 2-byte units

■RAM


• 2048×9 bits

■Package Form

• SQFP48(7×7): "Lead-free type"

Package Dimensions

unit: mm (typ) 3163B

* This product is licensed from Silicon Storage Technology, Inc. (USA).

■Minimum Bus Cycle

• 83.3ns (CF=12MHz)

Note: The bus cycle time here refers to the ROM read speed.

- ■Minimum Instruction Cycle Time
 - 250ns (CF=12MHz)

■Ports

• I/O ports

Ports whose I/O direction can be designated in 1 bit units 28 (P10 to P17, P20 to P27, P30 to P34, P70 to P73, PWM0, PWM1, XT2)

Ports whose I/O direction can be designated in 4 bit units 8 (P00 to P07)

• USB ports 2 (D+, D-)

Dedicated oscillator ports
 Input-only port (also used for oscillation)
 Reset pins
 (EES)

• Power pins 6 (VSS1 to 3, VDD1 to 3)

■Timers

• Timer 0: 16-bit timer/counter with a capture register.

Mode 0: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register)

×2 channels

Mode 1: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register)

+ 8-bit counter (with an 8-bit capture register)

Mode 2: 16-bit timer with an 8-bit programmable prescaler (with a 16-bit capture register)

Mode 3: 16-bit counter (with a 16-bit capture register)

• Timer 1: 16-bit timer/counter that supports PWM/toggle outputs

Mode 0: 8-bit timer with an 8-bit prescaler (with toggle outputs)

+ 8-bit timer/counter with an 8-bit prescaler (with toggle outputs)

Mode 1: 8-bit PWM with an-8bit prescaler \times 2 channels

Mode 2: 16-bit timer/counter with an 8-bit prescaler (with toggle outputs)

(toggle outputs also possible from the lower-order 8 bits)

Mode 3: 16-bit timer with an 8-bit prescaler (with toggle outputs)

(The lower-order 8 bits can be used as PWM.)

- Timer 6: 8-bit timer with a 6-bit prescaler (with toggle output)
- Timer 7: 8-bit timer with a 6-bit prescaler (with toggle output)
- Base timer
 - 1) The clock is selectable from the subclock (32.768kHz crystal oscillation), system clock, and timer 0 prescaler output.
 - 2) Interrupts programmable in 5 different time schemes

■SIO

- SIO0: Synchronous serial interface
 - 1) LSB first/MSB first mode selectable
 - 2) Transfer clock cycle: 4/3 to 512/3 tCYC
 - 3) Automatic continuous data transmission (1 to 256 bits, specifiable in 1 bit units, suspension and resumption of data transmission possible in 1 byte units)
- SIO1: 8-bit asynchronous/synchronous serial interface

Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clocks)

Mode 1: Asynchronous serial I/O (half-duplex, 8 data bits, 1 stop bit, 8 to 2048 tCYC baudrates)

Mode 2: Bus mode 1 (start bit, 8 data bits, 2 to 512 tCYC transfer clocks)

Mode 3: Bus mode 2 (start detect, 8 data bits, stop detect)

- SIO4: Synchronous serial interface
 - 1) LSB first/MSB first mode selectable
 - 2) Transfer clock cycle: 4/3 to 1020/3 tCYC
 - 3) Automatic continuous data transmission (1 to 2048 bytes, specifiable in 1 byte units, suspension and resumption of data transmission possible in 1 byte or 2 bytes units)
 - 4) Auto-start-on-falling-edge function
 - 5) Clock polarity selectable
 - 6) CRC16 calculator circuit built in

■Full Duplex UART

1) Data length: 7/8/9 bits selectable

2) Stop bits: 1 bit (2 bits in continuous transmission mode)

3) Baud rate: 16/3 to 8192/3 tCYC

■AD Converter: 12 bits × 12 channels

• 12-/8-bit resolution selectable AD converter

• Reference-voltage automatic generation control

■PWM: Multifrequency 12-bit PWM × 2 channels

■Infrared Remote Controller Receiver Circuit

- 1) Noise rejection function (noise filter time constant: Approx. 120µs when the 32.768kHz crystal oscillator is selected as the reference voltage source)
- 2) Supports data encoding systems such as PPM (Pulse Position Modulation) and Manchester encoding
- 3) X'tal HOLD mode release function

■USB Interface (function controller)

• Compliant with USB 2.0 Full-Speed

• Supports a maximum of 4 user-defined endpoints.

Endpoint		EP0	EP1	EP2	EP3	EP4
Transfer	Control	0	1		-	-
Type	Bulk	ı	0	0	0	0
	Interrupt	-	0	0	0	0
	Isochronous	-	0	0	0	0
Max. paylo	Max. payload		64	64	64	64

■Watchdog Timer

- External RC watchdog timer
- Interrupt and reset signals selectable

■Clock Output Function

- 1) Able to output selected oscillation clock 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 as system clock.
- 2) Able to output oscillation clock of sub clock.

■Interrupts

- 28 sources, 10 vector addresses
 - 1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
- 2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector address takes precedence.

No.	Vector Address	Level	Interrupt Source
1	00003H	X or L	INT0
2	0000BH	X or L	INT1
3	00013H	H or L	INT2/T0L/INT4/USB bus active/Remote control receive
4	0001BH	H or L	INT3/INT5/base timer
5	00023H	H or L	ТОН
6	0002BH	H or L	T1L/T1H
7	00033H	H or L	SIO0/USB bus reset/USB suspend/UART1 receive
8	0003BH	H or L	SIO1/USB endpoint/USB-SOF/SIO4/UART1 transmit
9	00043H	H or L	ADC/T6/T7
10	0004BH	H or L	Port 0/PWM0/PWM1

- Priority Level: X > H > L
- Of interrupts of the same level, the one with the smallest vector address takes precedence.
- ■Subroutine Stack Levels: 1024 levels (the stack is allocated in RAM.)
- High-speed Multiplication/Division Instructions

16 bits × 8 bits
24 bits × 16 bits
16 bits ÷ 8 bits
24 bits ÷ 16 bits
16 bits ÷ 8 bits
16 bits ÷ 16 bits
17 tCYC execution time
18 tCYC execution time
19 tCYC execution time
10 tCYC execution time
10 tCYC execution time
10 tCYC execution time
10 tCYC execution time
11 tCYC execution time
12 tCYC execution time
13 tCYC execution time
14 tCYC execution time
15 tCYC execution time
16 tCYC execution time
17 tCYC execution time
18 tCYC execution time
19 tCYC execution time
10 tCYC execution time

■Oscillation Circuits

RC oscillation circuit (internal): For system clock
CF oscillation circuit: For system clock

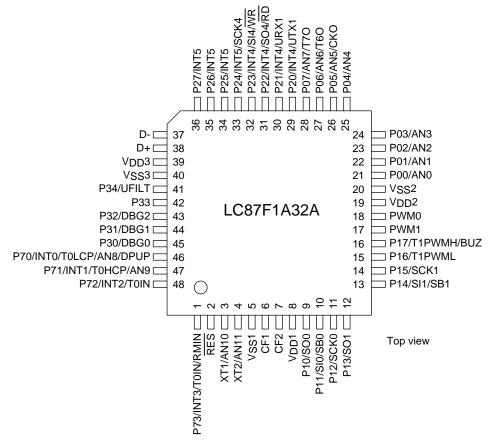
Crystal oscillation circuit: For system clock, time-of-day clock
 PLL circuit (internal): For USB interface (see Fig.5)

■Standby Function

- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
 - 1) Oscillation is not halted automatically.
 - 2) Canceled by a system reset or occurrence of an interrupt.
- HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
 - 1) The PLL base clock generator, CF, RC and crystal oscillators automatically stop operation.
 - 2) There are four ways of resetting the HOLD mode.
 - (1) Setting the reset pin to the lower level.
 - (2) Setting at least one of the INT0, INT1, INT2, INT4, and INT5 pins to the specified level
 - (3) Having an interrupt source established at port 0
 - (4) Having an bus active interrupt source established in the USB interface circuit
- X'tal HOLD mode: Suspends instruction execution and the operation of the peripheral circuits except for reception of a remote control signal.
 - 1) The PLL base clock generator, CF and RC oscillator automatically stop operation.
 - 2) The state of crystal oscillation established when the X'tal HOLD mode is entered is retained.
 - 3) There are five ways of resetting the X'tal HOLD mode.
 - (1) Setting the reset pin to the low level
 - (2) Setting at least one of the INT0, INT1, INT2, INT4, and INT5 pins to the specified level
 - (3) Having an interrupt source established at port 0
 - (4) Having an interrupt source established in the base timer circuit
 - (5) Having an bus active interrupt source established in the USB interface circuit
 - (6) Having an interrupt source established in the infrared remote controller receiver circuit.

■Development Tools

• On-chip debugger: TCB87 type-B + LC87F1A32A

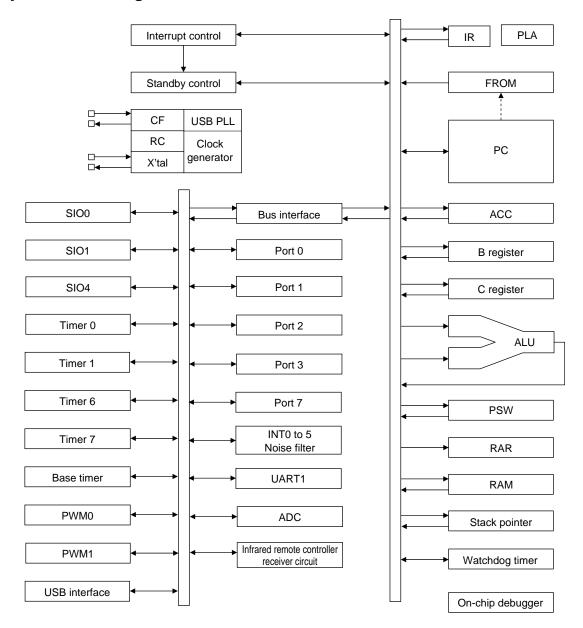

■Flash ROM Programming Boards

Package	Programming boards
SQFP48(7×7)	W87F55256SQ

■Recommended EPROM Programmer

	Maker Model		Supported version	Device	
	Flash Support Group, Inc. AF9708/AF9709/AF9709B		After Rev02.73	LC87F1A32A	
l	(Single)	(including product of Ando Electric Co.,Ltd)	Aitel Nevoz.73	LCO/FTA32A	
	Our company	SKK (SANYO FWS)	Application Version: After 1.03 Chip Data Version: After 2.07	LC87F1A32	

Pin Assignment



SQFP48(7×7) "Lead-free Type"

SQFP48	NAME
1	P73/INT3/T0IN/RMIN
2	RES
3	XT1/AN10
4	XT2/AN11
5	V _{SS} 1
6	CF1
7	CF2
8	V _{DD} 1
9	P10/SO0
10	P11/SI0/SB0
11	P12/SCK0
12	P13/SO1
13	P14/SI1/SB1
14	P15/SCK1
15	P16/T1PWML
16	P17/T1PWMH/BUZ
17	PWM1
18	PWM0
19	V _{DD} 2
20	V _{SS} 2
21	P00/AN0
22	P01/AN1
23	P02/AN2
24	P03/AN3

SQFP48	NAME
25	P04/AN4
26	P05/AN5/CKO
27	P06/AN6/T6O
28	P07/AN7/T7O
29	P20/INT4/UTX1
30	P21/INT4/URX1
31	P22/INT4/SO4/RD
32	P23/INT4/SI4/WR
33	P24/INT5/SCK4
34	P25/INT5
35	P26/INT5
36	P27/INT5
37	D-
38	D+
39	V _{DD} 3
40	V _{SS} 3
41	P34/UFILT
42	P33
43	P32/DBGP2
44	P31/ DBGP1
45	P30/ DBGP0
46	P70/INT0/T0LCP/AN8/DPUP
47	P71/INT1/T0HCP/AN9
48	P72/INT2/T0IN

System Block Diagram

Pin Description

Pin Name	1/0				Description				Option
V _{SS} 1,	-	- power supply	v pin		•				No No
V _{SS} 2,		ponor ouppr	, p						
V _{SS} 3									
									NI-
V _{DD} 1,	-	+ power supp	ıy pın						No
V _{DD} 2									
V _{DD} 3	-	USB reference	e voltage pin						Yes
Port 0	I/O	8-bit I/O port	:						Yes
P00 to P07		I/O specifiab	le in 4-bit units						
		Pull-up resis	tors can be tur	ned on and off	in 4-bit units.				
		HOLD reset	input						
		Port 0 interru	upt input						
		Pins function	ns						
		AD converte	r input port: AN	NO to AN7 (P00	to P07)				
		P05: System	Clock Output						
		P06: Timer 6	toggle outputs	S					
		P07: Timer 7	toggle output	S					
Port 1	I/O	8-bit I/O port	:						Yes
P10 to P17		I/O specifiab	le in 1-bit units						
		Pull-up resis	tors can be tur	ned on and off	in 1-bit units.				
		Pin functions	3						
		P10: SIO0 d	ata output						
		P11: SIO0 d	ata input/bus I/	O					
		P12: SIO0 c	lock I/O						
		P13: SIO1 d	ata output						
		P14: SIO1 d	ata input/bus I/	O					
		P15: SIO1 c	lock I/O						
		P16: Timer 1	PWML output	t					
		P17: Timer 1	I PWMH outpu	t/beeper output					
Port 2	I/O	8-bit I/O port	:						Yes
P20 to P27		I/O specifiab	le in 1-bit units						
		Pull-up resis	tors can be tur	ned on and off	in 1-bit units.				
		Pin functions	3						
		P20 to P23:	INT4 input/HO	LD reset input/t	imer 1 event inp	out/timer 0L cap	ture input/		
			timer 0H captu	ıre input					
		P24 to P27:	INT5 input/HO	LD reset input/t	imer 1 event inp	out/timer 0L cap	ture input/		
			timer 0H captu	ıre input					
		P20: UART1	transmit						
		P21: UART1							
				interface \overline{RD} o					
			P23: SIO4 date I/O/parallel interface WR output						
		P24: SIO4 c							
		Interrupt ack	nowledge type	1	T				
			Rising	Falling	Rising & Falling	H level	L level		
		INT4	enable	enable	enable	disable	disable		
		INT5	enable	enable	enable	disable	disable		

Continued on next page.

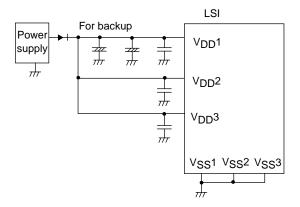
Continued from preceding page.

Pin Name	I/O				Description			Option		
Port 3	I/O	• 5-bit I/O por	t					Yes		
P30 to P34		• I/O specifiable in 1-bit units								
		Pull-up resis	stors can be turi	ned on and off ir	n 1-bit units.					
		Pin function	S							
		P34: USB ir	nterface PLL filte	er pin (see Fig.5	5)					
		Onchip deb	ugger pin: DBG	P0 to DBGP2 (F	P30 to P32)					
Port 7	I/O	• 4-bit I/O por	O port							
P70 to P73		I/O specifial	ole in 1-bit units							
		Pull-up resis	stors can be turi	ned on and off ir	n 1-bit units.					
		Pin function	S							
		P70: INT0 ii	nput/HOLD rese	et input/timer 0L	capture input/wa	tchdog timer ou	itput/			
				stor connect pin						
			-	et input/timer 0H						
			-	-	event input/timer	0L capture inpu	t/			
		_	peed clock cour	=						
				· ·	ner 0 event input	/ timer 0H captu	ire input/			
				oller receiver inp						
				18(P70), AN9(P7	(1)					
		Interrupt ac	knowledge type	I	Division 0	I		i		
			Rising	Falling	Rising & Falling	H level	L level	1		
		INT0	enable	enable	disable	enable	enable			
		INT1	enable	enable	disable	enable	enable			
		INT2	enable	enable	enable	disable	disable	1		
		INT3	enable	enable	enable	disable	disable	1		
		1110	Chabic	CHABIC	Chable	disable	didabic			
PWM0	I/O	• PWM0 and	PWM1 output p	ort				No		
PWM1		General-put	pose input port							
D-	I/O	• USB data I/	O pin D-					No		
		General-put	pose I/O port							
D+	I/O	• USB data I/	O pin D+					No		
		General-pur	pose I/O port							
RES	Input	Reset pin						No		
XT1	Input	• 32.768kHz	crystal oscillator	input pin				No		
		Pin function	s							
		General-pui	pose input port							
		AD converte	er input port: AN	l10						
		Must be conn	nected to V _{DD} 1	if not to be used	d.					
XT2	I/O	32.768kHz cr	ystal oscillator o	output pin				No		
		Pin function	S							
		General-pur	pose I/O port							
		AD converte	er input port: AN	l11						
		Must be set f	or oscillation an	d kept open if n	ot to be used.					
CF1	Input	Ceramic reso	nator input pin					No		
CF2	Output	Ceramic reso	nator output pir	1				No		

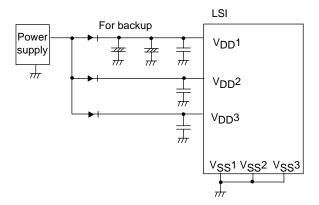
Port Output Types

The table below lists the types of port outputs and the presence/absence of a pull-up resistor.

Data can be read into any input port even if it is in the output mode.


Port Name	Option Selected in Units of	Option Type	Output Type	Pull-up Resistor
P00 to P07	1 bit	1	CMOS	Programmable (Note 1)
		2	Nch-open drain	No
P10 to P17	1 bit	1	CMOS	Programmable
P20 to P27 P30 to P34		2	Nch-open drain	Programmable
P70	-	No	Nch-open drain	Programmable
P71 to P73	-	No	CMOS	Programmable
PWM0, PWM1	-	No	CMOS	No
D+, D-	-	No	CMOS	No
XT1	-	No	Input only	No
XT2	-	No	32.768kHz crystal oscillator output (Nch-open drain when in general-purpose output mode)	No

Note 1: Programmable pull-up resistors for port 0 are controlled in 4 bit units (P00 to 03, P04 to 07).

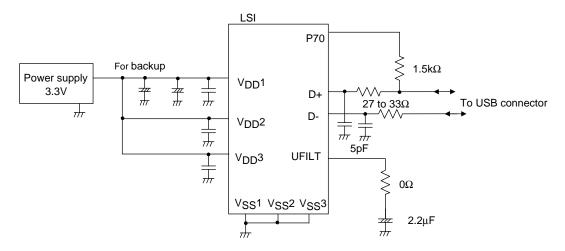

Power Pin Treatment

Connect the IC as shown below to minimize the noise input to the $V_{DD}1$ pin. Be sure to electrically short the $V_{SS}1,\,V_{SS}2,\,$ and $V_{SS}3$ pins.

Example 1: When the microcontroller is in the backup state in the HOLD mode, the power to sustain the high level of output ports is supplied by their backup capacitors.

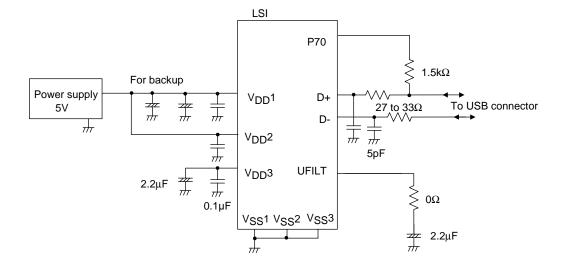
Example 2: The high level output at ports is not sustained and unstable in the HOLD backup mode.

USB Reference Power Option


When a voltage 4.5 to 5.5V is supplied to V_{DD1} and the internal USB reference voltage circuit is activated, the reference voltage for USB port output is generated. The active/inactive state of reference voltage circuit can be switched by the option select. The procedure for marking the option selection is described below.

		(1)	(2)	(3)	(4)
Option select	USB Regulator	USE	USE	USE	NONUSE
	USB Regulator at HOLD mode	USE	NONUSE	NONUSE	NONUSE
	USB Regulator at HALT mode	USE	NONUSE	USE	NONUSE
Reference voltage circuit	Normal state	active	active	active	inactive
state	HOLD mode	active	inactive	inactive	inactive
	HALT mode	active	inactive	active	inactive

- When the USB reference voltage circuit is made inactive, the level of the reference voltage for USB port output is equal to V_{DD}1.
- Selection (2) or (3) can be used to set the reference voltage circuit inactive in HOLD or HALT mode.
- When the reference voltage circuit is activated, the current drain increase by approximately 100µA compared with when the reference voltage circuit is inactive.


Example 1: $V_{DD}1=V_{DD}2=3.3V$

- Inactivating the reference voltage circuit (selection (4)).
- Connecting V_{DD}3 to V_{DD}1 and V_{DD}2.

Example 2: V_{DD}1=V_{DD}2=5.0V

- Activating the reference voltage circuit (selection (1)).
- Isolating VDD3 from VDD1 and VDD2, and connecting capacitor between VDD3 and VSS.

Absolute Maximum Ratings at $Ta=25^{\circ}C,\ V_{SS}1=V_{SS}2=V_{SS}3=0V$

			, 	7 88 88	55				
Parameter		Symbol	Pin/Remarks	Conditions)/ D/I			fication	
Ma	ximum supply	V _{DD} max	V _{DD} 1, V _{DD} 2, V _{DD} 3	V _{DD} 1=V _{DD} 2=V _{DD} 3	V _{DD} [V]	min	typ	max	unit
	tage	ADD max	VDD1, VDD2, VDD3	ν _{DD1=} ν _{DD2=} ν _{DD3}		-0.3		+6.5	
Inp	ut voltage	V _I (1)	XT1, CF1			-0.3		V _{DD} +0.3	V
Inp	ut/output	V _{IO} (1)	Ports 0, 1, 2, 3, 7			-0.3		V _{DD} +0.3	
vol	tage		PWM0, PWM1, XT2			0.0		1 DD 1 0.0	
	Peak output current	IOPH(1)	Ports 0, 1, 2	When CMOS output type is selected		-10			
	current			Per 1 applicable pin		10			
		IOPH(2)	PWM0, PWM1	Per 1 applicable pin		-20			
		IOPH(3)	Ports 3	When CMOS output					
			P71 to P73	type is selected		-5			
				Per 1 applicable pin					
int	Average	IOMH(1)	Ports 0, 1, 2	When CMOS output		7.5			
Surre	output current			type is selectedPer 1 applicable pin		-7.5			
bnt ((Note 1-1)	IOMH(2)	PWM0, PWM1	Per 1 applicable pin		-15			
High level output current	,	IOMH(3)	Ports 3	When CMOS output		10			
leve			P71 to P73	type is selected		-3			
ligh				Per 1 applicable pin					
_	Total output	ΣIOAH(1)	Ports 0, 2	Total of all applicable pins		-25			
	current	ΣIOAH(2)	Port 1 PWM0, PWM1	Total of all applicable pins		-25			
		ΣΙΟΑΗ(3)	Ports 0, 1, 2 PWM0, PWM1	Total of all applicable pins		-45			
		ΣΙΟΑΗ(4)	Ports 3 P71 to P73	Total of all applicable pins		-10			mA
		ΣΙΟΑΗ(5)	D+, D-	Total of all applicable pins		-25			
	Peak output	IOPL(1)	P02 to P07	Per 1 applicable pin					
	current		Ports 1, 2					20	
		1001 (0)	PWM0, PWM1	5 4 5 4 5					
		IOPL(2)	P00, P01	Per 1 applicable pin				30	
		IOPL(3)	Ports 3, 7, XT2	Per 1 applicable pin				10	
rent	Average output	IOML(1)	P02 to P07 Ports 1, 2	Per 1 applicable pin				15	
t cur	current		PWM0, PWM1					13	
Low level output current	(Note 1-1)	IOML(2)	P00, P01	Per 1 applicable pin				20	
vel o		IOML(3)	Ports 3, 7, XT2	Per 1 applicable pin				7.5	
<u> </u>	Total output	ΣIOAL(1)	Ports 0, 2	Total of all applicable pins				45	
P	current	ΣIOAL(2)	Port 1	Total of all applicable pins				4E	
			PWM0, PWM1					45	
		ΣIOAL(3)	Ports 0, 1, 2	Total of all applicable pins				80	
		ZIOA1 (4)	PWM0, PWM1	Total of all applicable sine					
		ΣIOAL(4)	Ports 3, 7, XT2	Total of all applicable pins				15	
A 11 -	wohlo nower	ΣIOAL(5)	D+, D-	Total of all applicable pins				25	
Dis	owable power sipation	Pd max	SQFP48(7×7)	Ta=-30to+70°C				190	mW
	erating ambient mperature	Topr				-30		+70	°C
Cto	rage ambient	Tstg							C

Note 1-1: The mean output current is a mean value measured over 100ms.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Allowable Operating Conditions at Ta = -30 °C to +70 °C, $V_SS1 = V_SS2 = V_SS3 = 0V$

				- 7 - 1010	. 00	- 00-		
D	0	Dia /Danasalas	O a madition a			Specific	ation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Operating	V _{DD} (1)	V _{DD} 1=V _{DD} 2=V _{DD} 3	0.245μs≤tCYC≤200μs		3.0		5.5	
supply voltage			0.490μs≤tCYC≤200μs Except					
(Note 2-1)			for onboard programming		2.7		5.5	
Memory	VHD	V _{DD} 1=V _{DD} 2=V _{DD} 3	RAM and register contents					
sustaining			sustained in HOLD mode.		2.0		5.5	
supply voltage								
High level	V _{IH} (1)	Ports 0, 1, 2, 3						
input voltage		P71 to P73			0.3V _{DD}		V_{DD}	
		P70 port input/		2.7 to 5.5	+0.7		55	
		interrupt side						
	\/(2)	PWM0, PWM1 Port 70 watchdog						
	V _{IH} (2)	timer side		2.7 to 5.5	0.9V _{DD}		V_{DD}	V
	V _{IH} (3)	XT1, XT2, CF1, RES		2.7 to 5.5	0.75V _{DD}		V _{DD}	
Low level	V _{IL} (1)	Ports 1, 2, 3		2.7 10 0.0	0.73400		0.1V _{DD}	
input voltage	VIL(1)	P71 to P73		4.0 to 5.5	V _{SS}		+0.4	
input voltago	V _{IL} (2)	P70 port input/						
	11(-/	interrupt side		2.7 to 4.0	V _{SS}		$0.2V_{DD}$	
	V _{IL} (3)	Port 0			.,		0.15V _{DD}	
		PWM0, PWM1		4.0 to 5.5	V _{SS}		+0.4	
	V _{IL} (4)			2.7 to 4.0	V _{SS}		0.2V _{DD}	
	V _{IL} (5)	Port 70 watchdog		0.74- 5.5			0.8V _{DD}	
		timer side		2.7 to 5.5	V _{SS}		-1.0	
	V _{IL} (6)	XT1, XT2, CF1, RES		2.7 to 5.5	V _{SS}		0.25V _{DD}	
Instruction	tCYC			3.0 to 5.5	0.245		200	
cycle time			Except for onboard	2.740.F.F	0.400		200	μs
(Note 2-2)			programming	2.7 to 5.5	0.490		200	
External	FEXCF(1)	CF1	CF2 pin open					
system clock			System clock frequency					
frequency			division ratio=1/1	3.0 to 5.5	0.1		12	
			External system clock duty					
			=50±5% • CF2 pin open					MHz
			System clock frequency					
			division ratio=1/1	2.7 to 5.5	0.1		6	
			External system clock duty	2.7 10 0.0	0.1		Ū	
			=50±5%					
Oscillation	FmCF(1)	CF1, CF2	12 MHz ceramic oscillation					
frequency			See Fig. 1.	3.0 to 5.5		12		
range	FmCF(2)	CF1, CF2	6 MHz ceramic oscillation	2.7 to 5.5		6		MHz
(Note 2-3)			See Fig. 1.	2.1 (0 0.0		U		
	FmRC		Internal RC oscillation	2.7 to 5.5	0.3	1.0	2.0	
	FsX'tal	XT1, XT2	32.768kHz crystal oscillation	2.7 to 5.5		32.768		kHz
			See Fig. 2.	2.7 10 3.3		JZ.700		NI IZ

Note 2-1: V_{DD} must be held greater than or equal to 3.0V in the flash ROM onboard programming mode.

Note 2-3: See Tables 1 and 2 for the oscillation constants.

Note 2-2: Relationship between tCYC and oscillation frequency is 3/FmCF at a division ratio of 1/1 and 6/FmCF at a division ratio of 1/2.

Electrical Characteristics at $Ta = -30^{\circ}C$ to $+70^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Parameter	Symbol	Pin/Remarks	Conditions			Specifica	ation	
Parameter	Symbol	Pili/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High level input current	I _{IH} (1)	Ports 0, 1, 2, 3 Port 7 RES PWM0, PWM1 D+, D-	Output disabled Pull-up resistor off VIN=VDD (Including output Tr's off leakage current)	2.7 to 5.5			1	
	I _{IH} (2)	XT1, XT2	For input port specification VIN=VDD	2.7 to 5.5			1	
	I _{IH} (3)	CF1	V _{IN} =V _{DD}	2.7 to 5.5			15	μА
Low level input current	IIL(1)	Ports 0, 1, 2, 3 Port 7 RES PWM0, PWM1 D+, D-	Output disabled Pull-up resistor off VIN=VSS (Including output Tr's off leakage current)	2.7 to 5.5	-1			μΑ
	I _{IL} (2)	XT1, XT2	For input port specification VIN=VSS	2.7 to 5.5	-1			
	I _{IL} (3)	CF1	V _{IN} =V _{SS}	2.7 to 5.5	-15			
High level output	V _{OH} (1)	Ports 0, 1, 2, 3	I _{OH} =-1mA	4.5 to 5.5	V _{DD} -1			
voltage	V _{OH} (2)	P71 to P73	I _{OH} =-0.4mA	3.0 to 5.5	V _{DD} -0.4			
	V _{OH} (3)		I _{OH} =-0.2mA	2.7 to 5.5	V _{DD} -0.4			
	V _{OH} (4)	PWM0, PWM1	I _{OH} =-10mA	4.5 to 5.5	V _{DD} -1.5			
	V _{OH} (5)	P05 (CK0 when	I _{OH} =-1.6mA	3.0 to 5.5	V _{DD} -0.4			
	V _{OH} (6)	using system clock output function)	I _{OH} =-1mA	2.7 to 5.5	V _{DD} -0.4			
Low level output	V _{OL} (1)	P00, P01	I _{OL} =30mA	4.5 to 5.5			1.5	V
voltage	V _{OL} (2)		I _{OL} =5mA	3.0 to 5.5			0.4	
	V _{OL} (3)		I _{OL} =2.5mA	2.7 to 5.5			0.4	
	V _{OL} (4)	Ports 0, 1, 2	I _{OL} =10mA	4.5 to 5.5			1.5	
	V _{OL} (5)	PWM0, PWM1	I _{OL} =1.6mA	3.0 to 5.5			0.4	
	V _{OL} (6)	XT2	I _{OL} =1mA	2.7 to 5.5			0.4	
	V _{OL} (7)	Ports 3, 7	I _{OL} =1.6mA	3.0 to 5.5			0.4	
	V _{OL} (8)		I _{OL} =1mA	2.7 to 5.5			0.4	
Pull-up resistance	Rpu(1)	Ports 0, 1, 2, 3	V _{OH} =0.9V _{DD}	4.5 to 5.5	15	35	80	
	Rpu(2)	Port 7		2.7 to 5.5	18	50	150	kΩ
Hysteresis voltage	VHYS	RES Ports 1, 2, 3, 7		2.7 to 5.5		0.1V _{DD}		V
Pin capacitance	СР	All pins	For pins other than that under test: V _{IN} =V _{SS} f=1MHz Ta=25°C	2.7 to 5.5		10		pF

Serial I/O Characteristics at Ta = -30°C to +70°C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

1. SIO0 Serial I/O Characteristics (Note 4-1-1)

	-) aramatar	Cumbal	Din/Damarka	Conditions			Specif	fication	
	F	Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
		Frequency	tSCK(1)	SCK0(P12)	See Fig.9.		2			
		Low level pulse width	tSCKL(1)				1			
		High level pulse width	tSCKH(1)				1			
	ock		tSCKHA(1a)		Continuous data transmission/ reception mode USB nor SIO4 are not in use simultaneous. See Fig.8. (Note 4-1-2)		4			
	Input clock		tSCKHA(1b)		Continuous data transmission/reception mode USB is in use simultaneous. SIO4 is not in use simultaneous. See Fig.8. (Note 4-1-2)	2.7 to 5.5	7			tCYC
Serial clock			tSCKHA(1c)		Continuous data transmission/ reception mode USB and SIO4 are in use simultaneous. See Fig.8. (Note 4-1-2)		9			
Serial		Frequency	tSCK(2)	SCK0(P12)	CMOS output selected See Fig.8.		4/3			
		Low level pulse width	tSCKL(2)		Coo i igio.			1/2		
		High level pulse width	tSCKH(2)					1/2		tSCK
	ock	pace mail.	tSCKHA(2a)		Continuous data transmission/ reception mode USB nor SIO4 are not in use simultaneous. CMOS output selected See Fig.8.		tSCKH(2) +2tCYC		tSCKH(2) +(10/3) tCYC	
	Output clock		tSCKHA(2b)		Continuous data transmission/reception mode USB is in use simultaneous. SIO4 is not in use simultaneous. CMOS output selected See Fig.8.	2.7 to 5.5	tSCKH(2) +2tCYC		tSCKH(2) +(19/3) tCYC	tCYC
			tSCKHA(2c)		Continuous data transmission/ reception mode USB and SIO4 are in use simultaneous. CMOS output selected See Fig.8.		tSCKH(2) +2tCYC		tSCKH(2) +(25/3) tCYC	

Note 4-1-1: These specifications are theoretical values. Add margin depending on its use.

Note 4-1-2: To use serial-clock-input in continuous trans/rec mode, a time from SI0RUN being set when serial clock is "H" to the first negative edge of the serial clock must be longer than tSCKHA.

Continued on next page.

Continued from preceding page.

			Cumbal	Pin/Remarks	Conditions			Speci	ification	
	r	Parameter	Symbol	Pin/Remarks	Conditions	$V_{DD}[V]$	min	typ	max	unit
input	Da	ta setup time	tsDI(1)	SB0(P11), SI0(P11)	Must be specified with respect to rising edge of SIOCLK. See Fig.8.	2.7 to 5.5	0.03			
Serial	Da	ta hold time	thDI(1)			2.7 to 5.5	0.03			
	clock	Output delay time	tdD0(1)	SO0(P10), SB0(P11)	Continuous data transmission/reception mode (Note 4-1-3)	2.7 to 5.5			(1/3)tCYC +0.05	μs
al output	Input		tdD0(2)		Synchronous 8-bit mode (Note 4-1-3)	2.7 to 5.5			1tCYC +0.05	
Serial	Output clock		tdD0(3)		(Note 4-1-3)	2.7 to 5.5			(1/3)tCYC +0.05	

Note 4-1-3: Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig.8.

2. SIO1 Serial I/O Characteristics (Note 4-2-1)

		Parameter	O. mala al	Pin/Remarks	O and distance			Speci	fication	
	ŀ	Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
	¥	Frequency	tSCK(3)	SCK1(P15)	See Fig.8.		2			
	Input clock	Low level pulse width	tSCKL(3)			2.7 to 5.5	1			.0.40
clock	ılı	High level pulse width	tSCKH(3)				1			tCYC
Serial clock	×	Frequency	tSCK(4)	SCK1(P15)	CMOS output selected See Fig.8.		2			
	Output clock	Low level pulse width	tSCKL(4)			2.7 to 5.5		1/2		
	Ont	High level pulse width	tSCKH(4)					1/2		tSCK
input	Da	ta setup time	tsDI(2)	SB1(P14), SI1(P14)	Must be specified with respect to rising edge of SIOCLK.	2.7 to 5.5	0.03			
Serial input	Da	ta hold time	thDI(2)		• See Fig.8.	2.7 to 5.5	0.03			
Serial output	Ou	tput delay time	tdD0(4)	SO1(P13), SB1(P14)	Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig.8.	2.7 to 5.5			(1/3)tCYC +0.05	μѕ

Note 4-2-1: These specifications are theoretical values. Add margin depending on its use.

3. SIO4 Serial I/O Characteristics (Note 4-3-1)

	Parameter	Symbol	Pin/	Conditions			Spec	ification	
-			Remarks		V _{DD} [V]	min	typ	max	unit
	Frequency	tSCK(5)	SCK4(P24)	See Fig.8.		2			
	Low level pulse width	tSCKL(5)				1			
	High level pulse width	tSCKH(5)				1			
olock		tSCKHA(5a)		USB nor continuous data Transmission/reception mode Of SIO0 are not in use simultaneous. See Fig.8. (Note 4-3-2)	07.155	4			
1000	nod:	tSCKHA(5b)		USB is in use simultaneous. Do not use SIO0 continuous data transmission mode at the same time. See Fig.8. (Note 4-3-2)	2.7 to 5.5	7			tCYC
Oction Clock	Frequency	tSCKHA(5c)		USB and continuous data transmission/ reception mode of SIO0 are in use simultaneous. See Fig.8. (Note 4-3-2)		10			
Sella	Frequency	tSCK(6)	SCK4(P24)	CMOS output selected See Fig.8		4/3			
	Low level pulse width	tSCKL(6)					1/2		1001
	High level pulse width	tSCKH(6)					1/2		tSCk
Z C C		tSCKHA(6a)		USB, AIF nor continuous data transmission/reception mode of SIO0 are not in use simultaneous. CMOS output selected See Fig.8.		tSCKH(6) +(5/3) tCYC		tSCKH(6) +(10/3) tCYC	
10000 H 20100 C	ndino	tSCKHA(6b)		USB is in use simultaneous. Do not use SIO0 continuous data transmission mode at the same time. CMOS output selected See Fig8.	2.7 to 5.5	tSCKH(6) +(5/3) tCYC		tSCKH(6) +(19/3) tCYC	tCYC
		tSCKHA(6c)		USB and continuous data transmission/reception mode of SIO0 are in use simultaneous. CMOS output selected See Fig.8.		tSCKH(6) +(5/3) tCYC		tSCKH(6) +(28/3) tCYC	
	Data setup time	tsDI(3)	SO4(P22), SI4(P23)	Must be specified with respect to rising edge of SIOCLK. See Fig.8.	2.7 to 5.5	0.03			
Serial input	Data hold time	thDI(3)			2.7 to 5.5	0.03			μs

Note 4-3-1: These specifications are theoretical values. Add margin depending on its use.

Note 4-3-2: To use serial-clock-input in continuous trans/rec mode, a time from SI4RUN being set when serial clock is "H" to the first negative edge of the serial clock must be longer than tSCKHA.

Continued on next page.

Continued from preceding page.

	Parameter	Symbol Pin/		Conditions		Specification			
	Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Serial output	Output delay time	tdD0(5)	SO4(P22), SI4(P23)	Must be specified with respect to rising edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig.8.	2.7 to 5.5			(1/3)tCYC +0.05	μs

Pulse Input Conditions at $Ta = -30^{\circ}C$ to $+70^{\circ}C$, VSS1 = VSS2 = VSS3 = 0V

Doromotor	Cymphol	Pin/Remarks	Conditions			Specif	fication	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High/low level	tP1H(1)	INT0(P70),	Interrupt source flag can be set.					
pulse width	tP1L(1)	INT1(P71),	Event inputs for timer 0 or 1 are					
		INT2(P72),	enabled.	2.7 to 5.5	1			
		INT4(P20 to P23),						
		INT5(P24 to P27)						
	tPIH(2)	INT3(P73) when	Interrupt source flag can be set.					
	tPIL(2)	noise filter time	Event inputs for timer 0 are	2.7 to 5.5	2			40)/0
		constant is 1/1	enabled.					tCYC
	tPIH(3)	INT3(P73) when	Interrupt source flag can be set.					
	tPIL(3)	noise filter time	Event inputs for timer 0 are	2.7 to 5.5	64			
		constant is 1/32	enabled.					
	tPIH(4)	INT3(P73) when	Interrupt source flag can be set.					
	tPIL(4)	noise filter time	Event inputs for timer 0 are	2.7 to 5.5	256			
		constant is 1/128	enabled.					
	tPIL(5)	RMIN(P73)	Recognized by the infrared remote	0.7 to F.F.	4			RMCK
			controller receiver circuit as a signal.	2.7 to 5.5	4			(Note 5-1)
	tPIL(6)	RES	Resetting is enabled.	2.7 to 5.5	200			μs

Note5-1: Represents the period of the reference clock (1 tCYC to 128 tCYC or the source frequency of the subclock) for the infrared remote controller receiver circuit.

AD Converter Characteristics at Ta= -30°C to +70°C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

<12-bits AD Converter Mode>

D	0	Pin/Remarks	Conditions					
Parameter	Symbol	Fill/Nellialks		V _{DD} [V]	min	typ	max	unit
Resolution	N	AN0(P00) to		3.0 to 5.5		12		bit
Absolute accuracy	ET	AN7(P07)	(Note 6-1)	3.0 to 5.5			±16	LSB
Conversion time	TCAD	AN8(P70) AN9(P71)	See conversion time calculation	4.0 to 5.5	32		115	
AN1	AN10(XT1)	(XT1) formulas. (Note 6-2)	3.0 to 5.5	64		115	μs	
Analog input voltage range	VAIN	AN11(XT2)		3.0 to 5.5	V _{SS}		V _{DD}	V
Analog port input	IAINH		VAIN=V _{DD}	3.0 to 5.5			1	
current	IAINL		VAIN=V _{SS}	3.0 to 5.5	-1			μΑ

<8-bits AD Converter Mode>

D	0	Dia /Dana anto	Conditions			Specification			
Parameter	Symbol	Pin/Remarks	Conditions	∨ _{DD} [∨]	min	typ	max	unit	
Resolution	Ν	AN0(P00) to		3.0 to 5.5		8		bit	
Absolute accuracy	ET	AN7(P07)	(Note 6-1)	3.0 to 5.5			±1.5	LSB	
Conversion time	TCAD	AN8(P70) AN9(P71)	See conversion time calculation	4.5 to 5.5	20		90		
		AN10(XT1)	formulas. (Note 6-2)	3.0 to 5.5	40		90	μs	
Analog input voltage range	VAIN	AN11(XT2)		3.0 to 5.5	V _{SS}		V _{DD}	V	
Analog port input	IAINH		VAIN=V _{DD}	3.0 to 5.5			1	•	
current	IAINL		VAIN=V _{SS}	3.0 to 5.5	-1			μΑ	

Conversion time calculation formulas:

12-bits AD Converter Mode: TCAD (Conversion time) = $((52/(AD \text{ division ratio}))+2) \times (1/3) \times \text{tCYC}$ 8-bits AD Converter Mode: TCAD (Conversion time) = $((32/(AD \text{ division ratio}))+2) \times (1/3) \times \text{tCYC}$

< Recommended Operating Conditions>

External	Supply Voltage System Clock		Cycle Time	AD Frequency	Conversion Time (TCAD)[μs]		
oscillator FmCF[MHz]	Range V _{DD} [V]	Division (SYSDIV)	tCYC [ns]	Division Ratio (ADDIV)	12-bit AD	8-bit AD	
12	4.0 to 5.5	1/1	250	1/8	34.8	21.5	
12	3.0 to 5.5	1/1	250	1/16	69.5	42.8	

Note 6-1: The quantization error (±1/2LSB) must be excluded from the absolute accuracy. The absolute accuracy must be measured in the microcontroller's state in which no I/O operations occur at the pins adjacent to the analog input channel.

Note 6-2: The conversion time refers to the period from the time an instruction for starting a conversion process till the time the conversion results register(s) are loaded with a complete digital conversion value corresponding to the analog input value.

The conversion time is 2 times the normal-time conversion time when:

- The first AD conversion is performed in the 12-bit AD conversion mode after a system reset.
- The first AD conversion is performed after the AD conversion mode is switched from 8-bit to 12-bit conversion mode.

$\textbf{Consumption Current Characteristics} \ \, \text{at } Ta = -30^{\circ}C \ \, \text{to} \ \, +70^{\circ}C, \ \, V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Description	Oh al	Pin/	O and this are			Specific	cation	
Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Normal mode consumption current	IDDOP(1)	V _{DD} 1 =V _{DD} 2 =V _{DD} 3	FmCF=12MHz ceramic oscillation mode FsX'tal=32.768kHz crystal oscillation mode System clock set to 12MHz side	4.5 to 5.5		9.8	24	
(Note 7-1)	IDDOP(2)		Internal PLL oscillation stopped Internal RC oscillation stopped USB circuit stopped 1/1 frequency division ration	3.0 to 3.6		5.6	14	
	IDDOP(3)		FmCF=12MHz ceramic oscillation mode FsX'tal=32.768kHz crystal oscillation mode System clock set to 12MHz side	4.5 to 5.5		14	34	
	IDDOP(4)		Internal PLL oscillation mode Internal RC oscillation stopped USB circuit operation mode 1/1 frequency division ration	3.0 to 3.6		7.7	19	mA
	IDDOP(5)		FmCF=12MHz ceramic oscillation mode FsX'tal=32.768kHz crystal oscillation mode	4.5 to 5.5		6.1	14	
	IDDOP(6)		System clock set to 6MHz side Internal RC oscillation stopped	3.0 to 3.6		3.7	8.5	
	IDDOP(7)		1/2 frequency division ration	2.7 to 3.0		3.0	6.7	
	IDDOP(8)		FmCF=0MHz (oscillation stopped) FsX'tal=32.768kHz crystal oscillation mode	4.5 to 5.5		0.63	3.0	
	IDDOP(9)		System clock set to internal RC oscillation	3.0 to 3.6		0.35	1.6	
	IDDOP(10)	-	• 1/2 frequency division ration	2.7 to 3.0		0.30	1.3	
	IDDOP(11)		FmCF=0MHz (oscillation stopped) FsX'tal=32.768kHz crystal oscillation mode	4.5 to 5.5		39	150	
	IDDOP(12)		System clock set to 32.768kHz side	3.0 to 3.6		17	58	μΑ
	IDDOP(13)		Internal RC oscillation stopped 1/2 frequency division ration	2.7 to 3.0		14	43	
HALT mode consumption current (Note 7-1)	IDDHALT(1)	V _{DD} 1 =V _{DD} 2 =V _{DD} 3	HALT mode FmCF=12MHz ceramic oscillation mode FsX'tal=32.768kHz crystal oscillation mode System clock set to 12MHz side	4.5 to 5.5		4.9	12	
	IDDHALT(2)		Internal PLL oscillation stopped Internal RC oscillation stopped USB circuit stopped 1/1 frequency division ration	3.0 to 3.6		2.6	6.3	
	IDDHALT(3)		HALT mode FmCF=12MHz ceramic oscillation mode FsX'tal=32.768kHz crystal oscillation mode System clock set to 12MHz side	4.5 to 5.5		8.9	23	mA
	IDDHALT(4)		Internal PLL oscillation mode Internal RC oscillation stopped USB circuit operation mode 1/1 frequency division ration	3.0 to 3.6		4.6	12	
	IDDHALT(5)		HALT mode FmCF=12MHz ceramic oscillation mode	4.5 to 5.5		3.0	7.2	
	IDDHALT(6)	-	FsX'tal=32.768kHz crystal oscillation mode System clock set to 6MHz side	3.0 to 3.6		1.6	3.8	
	IDDHALT(7)	1	Internal RC oscillation stopped 1/2 frequency division ration	2.7 to 3.0		1.3	2.9	
	1	1		1		1		

Note 7-1: The consumption current value includes none of the currents that flow into the output Tr and internal pull-up resistors.

Continued on next page.

Continued from preceding page.

Danasatas	O. made at	Pin/	Conditions			Specific	ation	
Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
HALT mode	IDDHALT(8)	V _{DD} 1	• HALT mode	4.5 to 5.5		0.37	1.8	
consumption current	IDDHALT(9)	=V _{DD} 2 =V _{DD} 3	FmCF=0MHz (oscillation stopped) FsX'tal=32.768kHz crystal oscillation mode	3.0 to 3.6		0.18	0.83	mA
(Note 7-1)	IDDHALT(10)		System clock set to internal RC oscillation 1/2 frequency division ration	2.7 to 3.0		0.15	0.62	
	IDDHALT(11)		HALT mode FmCF=0MHz (oscillation stopped)	4.5 to 5.5		24	93	
	IDDHALT(12)		FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz side Internal RC oscillation stopped 1/2 frequency division ration	3.0 to 3.6		7.9	33	
	IDDHALT(13)			2.7 to 3.0		5.8	22	
HOLD mode	IDDHOLD(1)	V _{DD} 1	HOLD mode	4.5 to 5.5		0.08	24	μА
consumption	IDDHOLD(2)		CF1=V _{DD} or open (External clock mode)	3.0 to 3.6		0.03	11	
current	IDDHOLD(3)			2.7 to 3.0		0.02	9.6	
Timer HOLD	IDDHOLD(4)	V _{DD} 1	Timer HOLD mode	4.5 to 5.5		19	77	
mode	IDDHOLD(5)		CF1=V _{DD} or open (External clock mode)	3.0 to 3.6		5.1	23	
consumption current	IDDHOLD(6)		FsX'tal=32.768kHz crystal oscillation mode	2.7 to 3.0		3.3	14	

Note 7-1: The consumption current value includes none of the currents that flow into the output Tr and internal pull-up resistors.

USB Characteristics and Timing at Ta = 0°C to +70°C, VSS1 = VSS2 = VSS3 = 0V

Descriptor	Countries and	O and distance		Specification			
Parameter	Symbol	Conditions	min typ		max	unit	
High level output	VOH(USB)	• 15kΩ±5% to GND	2.8		3.6	V	
Low level output	VOL(USB)	• 1.5kΩ±5% to 3.6 V	0.0		0.3	V	
Output signal crossover voltage	V _{CRS}		1.3		2.0	V	
Differential input sensitivity	V _{DI}	• (D+)-(D-)	0.2			V	
Differential input common mode range	Vсм		0.8		2.5	V	
High level input	VIH(USB)		2.0			V	
Low level input	VIL(USB)				0.8	V	
USB data rise time	t _R	• R _S =27 to 33Ω,CL=50pF • V _{DD} 3=3.0 to 3.6V	4		20	ns	
USB data fall time	t _F	• R _S =27 to 33Ω,CL=50pF • V _{DD} 3=3.0 to 3.6V	4		20	ns	

F-ROM Programming Characteristics at $Ta = +10^{\circ}C$ to $+55^{\circ}C$, $V_SS1 = V_SS2 = V_SS3 = 0V$

Parameter	Cumbal	Pin	Conditions		Specification				
Parameter	Symbol	Pin	Conditions	V _{DD} [V]	min	typ	max	unit	
Onboard programming current	IDDFW(1)	V _{DD} 1	Excluding power dissipation in the microcontroller block	3.0 to 5.5		5	10	mA	
Programming	tFW(1)		Erase operation	204-55		20	30	ms	
time	tFW(2)		Write operation	3.0 to 5.5		40	60	μs	

Characteristics of a Sample Main System Clock Oscillation Circuit

Given below are the characteristics of a sample main system clock oscillation circuit that are measured using a Our designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 1 Characteristics of a Sample Main System Clock Oscillator Circuit with a Ceramic Oscillator at $Ta = 0^{\circ}C$ to $+70^{\circ}C$

Nominal Vendor		Circuit Constant			Operating Voltage	Oscillation Stabilization Time			
Frequency	Name	Oscillator Name	C1	C2	Rd1	Range	typ	max	Remarks
			[pF]	[pF]	[Ω]	[V]	[ms]	[ms]	
6MHz	MURATA	CSTCR6M00G15L**-R0	(39)	(39)	680	2.7 to 5.5	0.05	0.50	
8MHz	MURATA	CSTCE8M00G15L**-R0	(33)	(33)	220	3.0 to 5.5	0.05	0.50	Duille in C4 C0
10MHz	MURATA	CSTCE10M0G15L**-R0	(33)	(33)	220	3.0 to 5.5	0.05	0.50	Built-in C1, C2
12MHz	MURATA	CSTCE12M0G15L**-R0	(33)	(33)	330	3.0 to 5.5	0.05	0.50	

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after V_{DD} goes above the operating voltage lower limit (see Figure 4).

Characteristics of a Sample Subsystem Clock Oscillator Circuit

Given below are the characteristics of a sample subsystem clock oscillation circuit that are measured using a Our designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 2 Characteristics of a Sample Subsystem Clock Oscillator Circuit with a CF Oscillator

Nominal Vendor		0 11 1		Circuit (Constant		Operating Voltage	Oscillation Stabilization Time			
Frequency	Name	Oscillator Name	C3 [pF]	C4 [pF]	Rf [Ω]	Rd2 [Ω]	Range [V]	typ [s]	max [s]	Remarks	
32.768kHz	EPSON TOYOCOM	MC-306	18	18	OPEN	560k	2.7 to 5.5	1.1	3.0	Applicable CL value=12.5pF	

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after the instruction for starting the subclock oscillation circuit is executed and to the time interval that is required for the oscillation to get stabilized after the HOLD mode is reset (see Figure 4).

Note: The components that are involved in oscillation should be placed as close to the IC and to one another as possible because they are vulnerable to the influences of the circuit pattern.

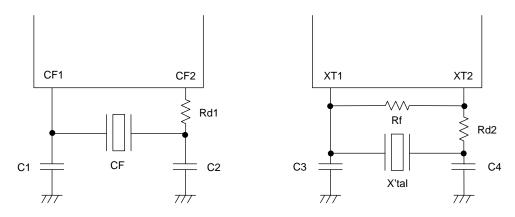



Figure 1 CF Oscillator Circuit

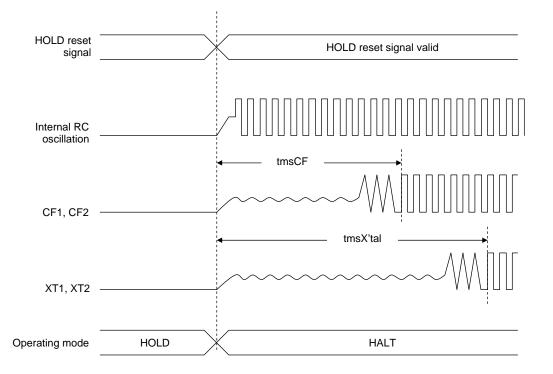
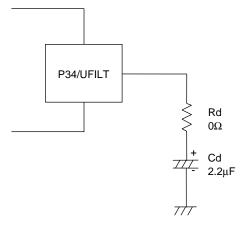

Figure 2 XT Oscillator Circuit

Figure 3 AC Timing Measurement Point



Reset Time and Oscillation Stabilization Time

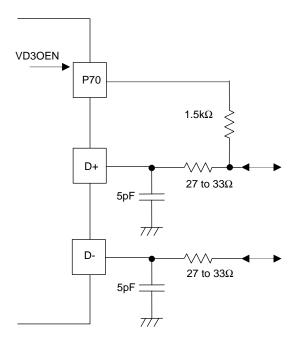
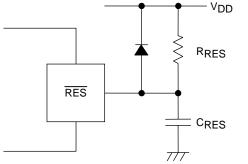

HOLD Reset Signal and Oscillation Stabilization Time

Figure 4 Oscillation Stabilization Time

When using the internal PLL circuit to generate the 48~MHz clock for USB , it is necessary to connect a filter circuit such as that shown to the left to the P34/UFILT pin.


Figure 5 External Filter Circuit for the Internal USB-dedicated PLL Circuit

Note:

It's necessary to adjust the Circuit Constant of the USB Port Peripheral Circuit each mounting board. Make the D+ Pull-up resistors available to control on/off according to the Vbus.

Figure 6 USB Port Peripheral Circuit

Note:

Determine the value of CRES and RRES so that the reset signal is present for a period of 200µs after the supply voltage goes beyond the lower limit of the IC's operating voltage.

Figure 7 Reset Circuit

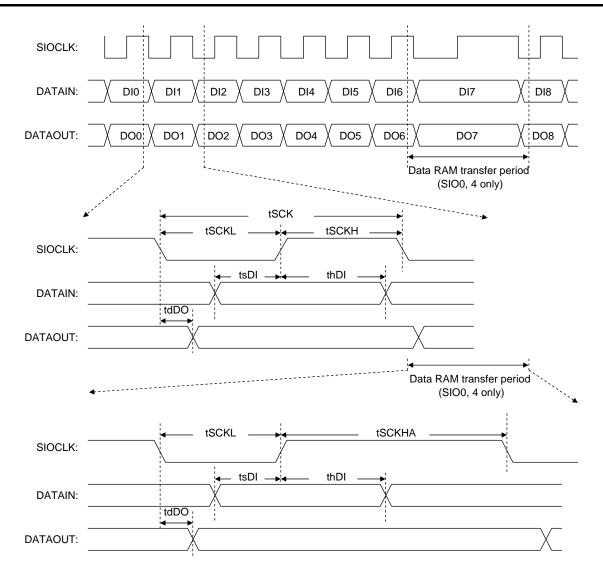


Figure 8 Serial I/O Waveforms

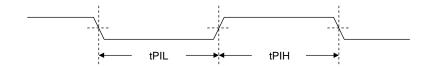


Figure 9 Pulse Input Timing Signal Waveform

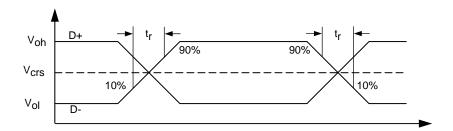


Figure 10 USB Data Signal Timing and Voltage Level

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and lod SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal