MC74LCX258

Low-Voltage CMOS Quad 2-Input Multiplexer

With 5 V-Tolerant Inputs and Outputs (3-State, Inverting)

The MC74LCX258 is a high performance, quad 2-input inverting multiplexer with 3 -state outputs operating from a 2.3 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. $\mathrm{A} \mathrm{V}_{\mathrm{I}}$ specification of 5.5 V allows MC74LCX258 inputs to be safely driven from 5 V devices.

Four bits of data from two sources can be selected using the Select input. The four outputs present the selected data in the inverted form. The outputs may be switched to a high impedance state by placing a logic HIGH on the Output Enable ($\overline{\mathrm{OE}}$) input. Current drive capability is 24 mA at the outputs.

Features

- Designed for 2.3 to $3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- 5 V Tolerant - Interface Capability With 5 V TTL Logic
- Supports Live Insertion and Withdrawal
- I_{OFF} Specification Guarantees High Impedance When $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
- TTL Compatible
- CMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in all Three Logic States (10 $\mu \mathrm{A}$) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance:
- Human Body Model >2000 V
- Machine Model >200 V
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

PIN NAMES

Pins	Function
An	Source 0 Data Inputs
Bn	Source B Data Inputs
$\overline{\mathrm{OE}}$	Enable Input
S	Select Input
Yn	Outputs

Figure 1. Pinout: 16-Lead Plastic Package (Top View)

TRUTH TABLE

Inputs		Outputs
Output Enable	Select	Y0-Y3
H	X	Z
L	L	$\overline{\mathrm{A0}}-\overline{\mathrm{AB}}$
L	H	$\mathrm{B0}-\overline{\mathrm{B} 3}$

X = Don't Care
A0-A3, B0-B3 = The levels of the respective Data-Word Inputs

PIN DESCRIPTIONS

INPUTS

A0-A3 (Pins 2, 5, 11, 14)

Nibble A inputs. The data present on these pins is transferred to the outputs when the Select input is at a low level and the Output Enable input is at a low level. The data is presented to the outputs in inverted form for the LCX258.

B0-B3 (Pins 3, 6, 10, 13)

Nibble B inputs. The data present on these pins is transferred to the outputs when the Select input is at a high level and the Output Enable input is at a low level. The data is presented to the outputs in inverted form for the LCX258.

OUTPUTS

Y0-Y3 (Pins 4, 7, 9, 12)

Data outputs. The selected input nibble is presented at these outputs when the Output Enable input is at a low level. The data present on these pins is in its inverted form for the LCX258. For the Output Enable input at a high level, the outputs are at a high level for the LCX258.

Select (Pin 1)

Nibble select. This input determines the data word to be transferred to the outputs. A low level on this input selects the A inputs and a high level selects the B inputs.

CONTROL INPUTS

Output Enable (Pin 15)

Output Enable input. A low level on this input allows the selected data to be presented at the outputs. A high level on this input sets all of the outputs to 3 -state off.

Figure 2. Expanded Logic Diagram

MC74LCX258

MAXIMUM RATINGS

Symbol	Parameter	Value	Condition	Units
V_{CC}	DC Supply Voltage	-0.5 to +7.0		V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	$-0.5 \leq \mathrm{V}_{1} \leq+7.0$		V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}+0.5$	Note 1	V
I_{IK}	DC Input Diode Current	-50	$\mathrm{~V}_{\mathrm{I}}<\mathrm{GND}$	mA
I_{OK}	DC Output Diode Current	-50	$\mathrm{~V}_{\mathrm{O}}<\mathrm{GND}$	mA
		+50	$\mathrm{~V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	mA
I_{O}	DC Output Source/Sink Current	± 50		mA
I_{CC}	DC Supply Current Per Supply Pin	± 100		mA
$\mathrm{I}_{\mathrm{GND}}$	DC Ground Current Per Ground Pin	± 100	mA	
$\mathrm{~T}_{\text {STG }}$	Storage Temperature Range	$-65 \mathrm{to}+150$		${ }^{\circ} \mathrm{C}$
MSL	Moisture Sensitivity		Level 1	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Output in HIGH or LOW State. I_{O} absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Units
V_{CC}	$\begin{array}{l}\text { Supply Voltage } \\ \text { Operating } \\ \text { Data Retention Only }\end{array}$				V
	Input Voltage	1.5	2.3 to 3.3	3.6	
3.6					

ORDERING INFORMATION

Device	Package	Shipping †
MC74LCX258DR2G	SOIC-16 (Pb-Free)	$2500 /$ Tape \& Reel
MC74LCX258DTG	TSSOP-16 (Pb-Free)	96 Units / Rail
MC74LCX258DTR2G	TSSOP-16 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MC74LCX258

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
			Min	Max	
V_{IH}	Minimum HIGH Level Input Voltage (Note 2)	$\begin{aligned} & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 2.7 \mathrm{~V} \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.0 \mathrm{~V} \\ & 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.7 \\ & 2.0 \\ & 2.0 \\ & \hline \end{aligned}$		V
V_{IL}	Maximum LOW Level Input Voltage (Note 2)	$\begin{aligned} & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 2.7 \mathrm{~V} \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.0 \mathrm{~V} \\ & 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.7 \\ & 0.8 \\ & 0.8 \end{aligned}$	V
V_{OH}	Minimum HIGH Level Output Voltage	$\begin{gathered} 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{I}_{\mathrm{CH}}=-8 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-18 \mathrm{~mA} \\ \mathrm{O}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}-0.2 \\ 1.7 \\ 2.2 \\ 2.4 \\ 2.2 \end{gathered}$		V
V ${ }_{\text {OL }}$	Maximum LOW Level Output Voltage	$\begin{gathered} 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=8 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=12 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=16 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=24 \mathrm{~mA} \end{gathered}$		$\begin{gathered} \hline 0.2 \\ 0.7 \\ 0.4 \\ 0.4 \\ 0.55 \end{gathered}$	V
loz	3-State Output Current	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}, \\ \mathrm{~V}_{\mathrm{OUT}}=0 \text { to } 5.5 \mathrm{~V} \end{gathered}$		± 5	$\mu \mathrm{A}$
IOFF	Power Off Leakage Current	$\mathrm{V}_{\text {CC }}=0, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$ or $\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$		10	$\mu \mathrm{A}$
In	Input Leakage Current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND		± 5	$\mu \mathrm{A}$
ICC	Quiescent Supply Current	$\mathrm{V}_{\text {CC }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND		10	$\mu \mathrm{A}$
$\Delta \mathrm{l}$ CC	Increase in I CC per Input	$2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		500	$\mu \mathrm{A}$

2. These values of V_{I} are used to test DC electrical characteristics only.

AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Limits						Units
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V		$\mathrm{V}_{\text {cC }}=2.7 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$		
		Min	Max	Min	Max	Min	Max	
$t_{\text {tPLH }}$	Propagation Delay	1.0	6.5	1.0	7.5	1.0	8.5	ns
$\mathrm{t}_{\text {PHL }}$	A to B to Y	1.0	6.5	1.0	7.5	1.0	8.5	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay	1.0	7.0	1.0	8.0	1.0	9.0	ns
tpHL	S to Y	1.0	7.0	1.0	8.0	1.0	9.0	
${ }_{\text {tpzL }}$	Propagation Delay	1.0	7.0	1.0	8.0	1.0	9.0	ns
tpz	OE to Y	1.0	7.0	1.0	8.0	1.0	9.0	
$\mathrm{t}_{\text {PLZ }}$	Propagation Delay	1.0	6.0	1.0	7.0	1.0	8.0	ns
$t_{\text {te }}$	OE to Y	1.0	6.0	1.0	7.0	1.0	8.0	
toshl tosth	Output-to-Output Skew		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$					ns

DYNAMIC SWITCHING CHARACTERISTICS

	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Units
Symbol			Min	Typ	Max	
$\mathrm{V}_{\text {OLP }}$	Dynamic LOW Peak Voltage (Note 3)	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V
$\mathrm{V}_{\text {OLV }}$	Dynamic LOW Valley Voltage (Note 3)	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.8		V

3. Number of outputs defined as " n ". Measured with " $n-1$ " outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF
C_{PD}	Power Dissipation Capacitance	$10 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	25	pF

WAVEFORM 1 - NONINVERTING PROPAGATION DELAYS
$\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$

WAVEFORM 2 - INVERTING PROPAGATION DELAYS
$t_{R}=t_{F}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{w}}=500 \mathrm{~ns}$

WAVEFORM 3 - OUTPUT ENABLE AND DISABLE TIMES
$\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, 10 \%$ to $90 \% ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$

Figure 3. AC Waveforms

MC74LCX258

Test	Switch
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Open
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$	6 V
Open Collector/Drain $\mathrm{t}_{\text {PLH }}$ and $\mathrm{t}_{\text {PHL }}$	6 V
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PHZ }}$	GND

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically 50Ω)
Figure 4. Test Circuit

PACKAGE DIMENSIONS

MC74LCX258

PACKAGE DIMENSIONS

ON Semiconductor and (ON are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

