Four Channel ECL Delay Line

FEATURES

Four Delay Lines with the Ability to Independently Adjust All Edges
Pin Compatible and Functionally Equivalent with the BT624
Reduced Power Dissipation
44-Lead PLCC Package with Internal Heat Spreader
APPLICATIONS
Automatic Test Equipment
Semiconductor Test Systems
Board Test Systems
Clocked ECL Circuits

PRODUCT DESCRIPTION

The AD53020 is a four-channel delay line designed for use in automatic test equipment and digital logic systems. High speed bipolar transistors and a 44-lead plastic PLCC package with internal heat spreader provide high frequency performance at a minimum of space, cost and power dissipation.

Featuring full pin compatibility and functional equivalence to the BT624, the AD53020 offers independent analog control of positive and negative edges with five delay ranges. The AD53020 offers attractive performance with optimized power dissipation and linear delay vs. program voltage control. This device is also very stable over operating conditions and has very low jitter.
Digital inputs are ECL compatible. They can either be provided independently for each channel (IN1, $\overline{\mathrm{IN} 1}$ through IN4, $\overline{\mathrm{IN} 4}$), or fanned out to all channels from Channel 2 (IN2, $\overline{\mathrm{IN} 2}$). The choice of these two options is made by setting the DRVMODE input, with ECL Logic 0 providing four independent channels, and ECL Logic 1 enabling a logical OR function between each channel and the Channel Number 2.
For maximum timing accuracy, differential signals are recommended for use with the digital inputs. However, single-ended operation is also supported and it is facilitated through the use of the $V_{\text {BB }}$ midpoint level generated on-chip. To make use of this feature, connect the V_{BB} output to the inverting input of each channel. It is also advisable, when using the $V_{B B}$ output, to decouple this signal with a $0.1 \mu \mathrm{~F}$ ceramic capacitor to ground.
The outputs of the AD53020 are ECL compatible and should be terminated by 50Ω to -2.0 V at the inputs of the gates they drive.

[^0]
DC CHARACTERISTICS ${ }^{1}$

Parameter	Symbol	T(${ }^{\circ} \mathrm{C}$)	Min	Typ	Max	Units
DIGITAL INPUT HIGH VOLTAGE IN, $\overline{\mathrm{IN}}$, DRVMODE, S0, S1	$\mathrm{V}_{\text {IH }}$	70	-1.070		0.000	V
DIGITAL INPUT LOW VOLTAGE IN, $\overline{\mathrm{IN}}$, DRVMODE, S0	$\mathrm{V}_{\text {IL }}$	70	-1.950		-1.450	V
DIGITAL INPUT LOW VOLTAGE, S1	$\mathrm{V}_{\text {IL }}$	70	V_{EE}		-1.450	V
S1 THIRD STATE (EXTENDED DELAY)		Full	$\mathrm{V}_{\text {EE }}$		-3.2	V
DIGITAL OUTPUT HIGH VOLTAGE	V_{OH}	70	-1.000		-0.735	V
DIGITAL OUTPUT LOW VOLTAGE	V_{OL}	70	-1.950		1.600	V
DIGITAL INPUT BIAS CURRENT IN, $\overline{\mathrm{IN}}$, DRVMODE, S0, S1	$\mathrm{I}_{\text {IN }}$			$\begin{aligned} & -100 \\ & +100 \end{aligned}$		$\mu \mathrm{A}$
POWER SUPPLY REJECTION RATIO ${ }^{2}$	PSRR	Full		0.5		\% Tpd/V
V_{EE} SUPPLY CURRENT Mode 0 Modes 1, 2 Modes 3, 5	$\begin{aligned} & \mathrm{I}_{\mathrm{EE}} \\ & \mathrm{I}_{\mathrm{EE}} \\ & \mathrm{I}_{\mathrm{EE}} \end{aligned}$	Full Full Full		$\begin{aligned} & 174 \\ & 225 \\ & 267 \end{aligned}$	$\begin{aligned} & 200 \\ & 250 \\ & 290 \end{aligned}$	mA mA mA

NOTES
${ }^{1}$ The specified limits shown can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least two minutes while maintaining a transverse air flow of 400 linear feet per minute over the device either mounted in the test socket or on the printed circuit board. ${ }^{2}$ This parameter is fully characterized, but not production tested.

Specifications subject to change without notice.

AC CHARACTERISTICS ${ }^{1}$

Parameter	Symbol	Min	Typ	Max	Units
RISING TO FALLING EDGE DELAY MATCHING $(\text { VDELAY }=\mathrm{VFALL}=-0.5 \mathrm{~V})^{3}$ Modes 0, 1, 5 Modes 2, 3			$\begin{aligned} & 0.1 \\ & 1.0 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
PROPAGATION DELAY TEMPERATURE COEFFICIENT ${ }^{3,5}$			0.05		\% Tpd $/{ }^{\circ} \mathrm{C}$
OUTPUT RISE/FALL TIMES $(20 \% \text { to } 80 \%)^{3}$			550		ps
DELAY LINEARITY ${ }^{3}$			OTO		

NOTES
${ }^{1}$ The specified limits shown can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least two minutes while maintaining a transverse air flow of 400 linear feet per minute over the device either mounted in the test socket or on the printed circuit board.
${ }^{2}$ All minimum propagation delay time measurements refer to both rising and falling edges for Modes $0,1,5$; these measurements refer to rising edges for Modes 2 and 3 only. DRVMODE is logically low
${ }^{3}$ This parameter is fully characterized, but not production tested.
${ }^{4}$ Delay on leading and trailing edges are measured by setting VDELAY $=$ VWIDTH $=-0.7 \mathrm{~V}$. The variations for each delay are measured by changing the input duty cycle from 5% to 95% at a constant frequency of 10 MHz .
${ }^{5}$ Propagation delay temperature coefficient measured at VDELAY $=\mathrm{VWIDTH}=-0.7 \mathrm{~V}$.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

Parameter	Symbol	Min	Max	Units
V_{EE} (Relative to GND)		-6.0	0	V
Voltage on Any Digital Pin		V_{EE}		V
Output Current				mA
Ambient Operating Temperature	T_{A}	-55	+70	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {S }}$	-65	+150	${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{J}		+150	${ }^{\circ} \mathrm{C}$
Soldering Temperature ${ }^{2}$ (Soldering, 5 sec)	$\mathrm{T}_{\text {SOL }}$		+260	${ }^{\circ} \mathrm{C}$
NOTES				
${ }^{1}$ Stresses above those listed under Abso nent damage to the device. This is a st device at these or any other conditions of this specification is not implied. Ab not in combination. Exposure to ab tended periods of time may affect dev	te Maximum ess rating only ove those list olute maxim lute maximu reliability.	Rating functi in the m limit ratin	may caus 1 operat erationa pply ind ondition	e perma- on of the 1 sections ividually, sor ex-
${ }^{2}$ To ensure lead solderability, handling device should be stored in environment humidity not to exceed 65%.	ith bare hand at $24^{\circ} \mathrm{C} \pm 5^{\circ}$	$\begin{aligned} & \text { shoul } \\ & \left(75^{\circ} \mathrm{F}\right. \end{aligned}$	$\begin{aligned} & \text { e avoide } \\ & \left.0^{\circ} \mathrm{F}\right) \text { wi } \end{aligned}$	and the h relative

ORDERING GUIDE

Model	Package Description	Package Option
AD53020	44-Lead Plastic Leaded Chip Carrier (PLCC)	P-44A

PIN CONFIGURATION

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD53020 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

AD53020

A second bias current reference is employed to set the bias current of the delay cells. This current is set by the external resistor at REXT2. A $2.94 \mathrm{k} \Omega$ resistor sets the nominal bias current of $500 \mu \mathrm{~A}$. The nominal voltage at the REXT2 pin is -1.47 V .

The current references require compensation capacitors of $0.1 \mu \mathrm{~F}$ to V_{EE} at each of the COMP1 and COMP2 pins. In addition, each V_{EE} supply pin should also have its own decoupling capacitor of $0.1 \mu \mathrm{~F}$ to ground.
All decoupling capacitors should be located as close as possible to the AD53020 chip.
The mode is set by the inputs S 0 and S 1 . These pins use standard ECL levels, with the addition of a third level for the S1 Pin, which can also be connected to V_{EE}. Refer to Table I for the description of the modes and their respective settings.
For Modes 2 and 3, it is important to note that an internal flipflop is used to provide the independent control of rising and falling edges. The state of this flip-flop is indeterminate upon power-up. The state becomes fixed once the first full pulse is provided to each channel, consisting of a positive edge followed by a negative edge.

Table I. Truth Table for Mode Determination

S1	$\mathbf{S} \mathbf{0}$	Mode	Typical Span	Independent Adjustment of Positive and Negative Edges?
0	0	0	19 ns	No
0	1	1	31 ns	No
1	0	2	19 ns	Yes
1	1	3	31 ns	Yes
V_{EE}	0	Not Valid		
V_{EE}	1	5	45 ns	No

S0 and S1 accept logical ECL levels. In the case of S1 only, a third state is also accepted, at the negative supply, V_{EE}.

Table II. Package Thermal Characteristics

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

[^0]: REV. A
 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

