

Four Channel ECL Delay Line

AD53020

FEATURES

Four Delay Lines with the Ability to Independently Adjust All Edges

Pin Compatible and Functionally Equivalent with the BT624

Reduced Power Dissipation 44-Lead PLCC Package with Internal Heat Spreader

APPLICATIONS

Automatic Test Equipment Semiconductor Test Systems Board Test Systems Clocked ECL Circuits

PRODUCT DESCRIPTION

The AD53020 is a four-channel delay line designed for use in automatic test equipment and digital logic systems. High speed bipolar transistors and a 44-lead plastic PLCC package with internal heat spreader provide high frequency performance at a minimum of space, cost and power dissipation.

Featuring full pin compatibility and functional equivalence to the BT624, the AD53020 offers independent analog control of positive and negative edges with five delay ranges. The AD53020 offers attractive performance with optimized power dissipation and linear delay vs. program voltage control. This device is also very stable over operating conditions and has very low jitter.

Digital inputs are ECL compatible. They can either be provided independently for each channel (IN1, $\overline{\text{IN1}}$ through IN4, $\overline{\text{IN4}}$), or fanned out to all channels from Channel 2 (IN2, $\overline{\text{IN2}}$). The choice of these two options is made by setting the DRVMODE input, with ECL Logic 0 providing four independent channels, and ECL Logic 1 enabling a logical OR function between each channel and the Channel Number 2.

For maximum timing accuracy, differential signals are recommended for use with the digital inputs. However, single-ended operation is also supported and it is facilitated through the use of the V_{BB} midpoint level generated on-chip. To make use of this feature, connect the V_{BB} output to the inverting input of each channel. It is also advisable, when using the V_{BB} output, to decouple this signal with a 0.1 μ F ceramic capacitor to ground.

The outputs of the AD53020 are ECL compatible and should be terminated by 50 Ω to -2.0 V at the inputs of the gates they drive.

FUNCTIONAL BLOCK DIAGRAM

The delay is programmed through the VDELAY and VWIDTH pins for each channel. The acceptable range is -1.3 V to -0.1 V, representing the longest and the shortest delays provided by the device. An 0.01 μ F ceramic capacitor to ground is recommended for each input. The bias current for each input is fixed by an internal current mirror. The value of the bias current is set by the external resistor at REXT1. A 1.3 k Ω resistor to ground at this pin establishes 1 mA bias in each input. The nominal voltage at the REXT1 pin is -1.3 V.

The VDELAY affects both the positive and negative edges in all modes. The VWIDTH is an additional delay adjustment that is active in Modes 2, 3 and 5. VWIDTH has no effect in Modes 0 and 1. For Modes 2 and 3, the effect of the VWIDTH adjustment is to increase or decrease the delay of the negative edge relative to the positive edge. In Mode 5, the total delay for both positive and negative edges is set by the combination of VDELAY and VWIDTH.

(continued on page 4)

REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 1999

AD53020–SPECIFICATIONS AD53020-Test Conditions (Unless otherwise noted): Recommended Operating Conditions with all OUT and OUT outputs terminated through 50 Ω to -2.0 V, REXT1 = 1.3 k Ω , REXT2 = 2.94 k Ω . Typical values are based on nominal temperature, $T_A = +25^{\circ}$ C, and nominal supply voltage, $V_{EE} = -5.2$ V.

DC CHARACTERISTICS¹

Parameter	Symbol	T(°C)	Min	Тур	Max	Units
DIGITAL INPUT HIGH VOLTAGE IN, ĪN, DRVMODE, S0, S1	V _{IH}	70	-1.070		0.000	V
DIGITAL INPUT LOW VOLTAGE IN, ĪN, DRVMODE, S0	V _{IL}	70	-1.950		-1.450	V
DIGITAL INPUT LOW VOLTAGE, S1	V _{IL}	70	V _{EE}		-1.450	V
S1 THIRD STATE (EXTENDED DELAY)		Full	V _{EE}		-3.2	V
DIGITAL OUTPUT HIGH VOLTAGE	V _{OH}	70	-1.000		-0.735	V
DIGITAL OUTPUT LOW VOLTAGE	V _{OL}	70	-1.950		-1.600	V
DIGITAL INPUT BIAS CURRENT IN, ĪN, DRVMODE, S0, S1	I _{IN}			-100 to +100		μΑ
POWER SUPPLY REJECTION RATIO ²	PSRR	Full		0.5		% Tpd/V
V _{EE} SUPPLY CURRENT Mode 0 Modes 1, 2	I _{EE} I _{EE}	Full Full		174 225	200 250	mA mA
Modes 3, 5	I _{EE}	Full		267	290	mA

NOTES

¹The specified limits shown can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least two minutes while maintaining a transverse air flow of 400 linear feet per minute over the device either mounted in the test socket or on the printed circuit board. ²This parameter is fully characterized, but not production tested.

Specifications subject to change without notice.

AC CHARACTERISTICS¹

					1			
Paramet	ter			Symbol	Min	Тур	Max	Units
MINIMUM PROPAGATION DELAYS ²								
Mode	S 1	S 0	VDELAY					
0	0	0	-0.1 V	Tpd Min	3.6	4.5	5.4	ns
1	0	1	-0.1 V	Tpd Min	4.9	6.3	7.3	ns
2	1	0	-0.1 V	Tpd Min	3.9	5.3	6.8	ns
3	1	1	–0.1 V	Tpd Min	5.2	7.1	8.8	ns
5	V_{EE}	1	-0.1 V	Tpd Min	6.8	8.8	10.3	ns
DELAY	ADJUS	TME	NT RANGES					
Mode	SI	S 0						
0	0	0		Tpd Span	14.0	19.0	24.7	ns
1	0	1		Tpd Span	22.9	31.4	37.8	ns
2	1	0		Tpd Span	13.2	18.9	24.6	ns
3	1	1		Tpd Span	22.0	31.5	40.6	ns
5	V_{EE}	1		Tpd Span	29.3	44.5	52.0	ns
MINIMU	JM PU	LSEW	VIDTH ³			1.9		ns
RISING EDGE DELAY VS. VWIDTH DELAY								
Change (Modes 2 and 3) ³					30		ps	
DELAY VS. DUTY CYCLE ^{3, 4}					50		ps	
VWIDTH RANGE OF ADJUSTMENT								
(VDELAY = -0.6 V, MODES 2 AND 3, DELAY								
RELATIVE TO VWIDTH = -0.7 V)								
VWIDTH = -0.1 V						-5.5	-4.0	ns
	WIDTI					+5.5		ns
VWIDTH = -1.3 V					+4.0	+6.5		ns
		· ·	13 1			. 5.5		

Parameter	Symbol	Min	Тур	Max	Units
RISING TO FALLING EDGE DELAY MATCHING (VDELAY = VFALL = -0.5 V) ³					
Modes 0, 1, 5			0.1		ns
Modes 2, 3			1.0		ns
PROPAGATION DELAY TEMPERATURE COEFFICIENT ^{3, 5}			0.05		% Tpd/°C
OUTPUT RISE/FALL TIMES (20% to 80%) ³			550		ps
DELAY LINEARITY ³			MONOTONIC		

NOTES

¹The specified limits shown can be met only after thermal equilibrium has been established. Thermal equilibrium is established by applying power for at least two minutes while maintaining a transverse air flow of 400 linear feet per minute over the device either mounted in the test socket or on the printed circuit board. ²All minimum propagation delay time measurements refer to both rising and falling edges for Modes 0, 1, 5; these measurements refer to rising edges for Modes 2 and

3 only. DRVMODE is logically low.

³This parameter is fully characterized, but not production tested.

 4 Delay on leading and trailing edges are measured by setting VDELAY = VWIDTH = -0.7 V. The variations for each delay are measured by changing the input duty cycle from 5% to 95% at a constant frequency of 10 MHz.

⁵Propagation delay temperature coefficient measured at VDELAY = VWIDTH = -0.7 V.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS¹

Parameter	Symbol	Min	Max	Units	Model	Package Description	Package Option
V _{EE} (Relative to GND)		-6.0	0	V	Model	Description	Option
Voltage on Any Digital Pin		V _{EE}		V	AD53020	44-Lead Plastic Leaded Chip Carrier	P-44A
Output Current		· EE	50	mA		(PLCC)	
Ambient Operating Temperature	T_A	-55	+70	°C			
Storage Temperature	Ts	-65	+150	°C		PIN CONFIGURATION	
Junction Temperature	T		+150	°C			
Soldering Temperature ²	,					+ ~ ~	
(Soldering, 5 sec)	T _{SOL}		+260	°C		NN4 GND∠ GND2 GND3 GND3 GND3 GND2 GND2 GND2 GND2	
NOTES				I		= 0 > = = 0 > = = 0 > 6 5 4 3 2 1 44 43 42 41 40	

NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Absolute maximum limits apply individually, not in combination. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.

²To ensure lead solderability, handling with bare hands should be avoided and the device should be stored in environments at $24^{\circ}C \pm 5^{\circ}C$ (75°F $\pm 10^{\circ}F$) with relative humidity not to exceed 65%.

ORDERING GUIDE

CAUTION -

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD53020 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

AD53020

A second bias current reference is employed to set the bias current of the delay cells. This current is set by the external resistor at REXT2. A 2.94 k Ω resistor sets the nominal bias current of 500 μ A. The nominal voltage at the REXT2 pin is -1.47 V.

The current references require compensation capacitors of 0.1 μ F to V_{EE} at each of the COMP1 and COMP2 pins. In addition, each V_{EE} supply pin should also have its own decoupling capacitor of 0.1 μ F to ground.

All decoupling capacitors should be located as close as possible to the AD53020 chip.

The mode is set by the inputs S0 and S1. These pins use standard ECL levels, with the addition of a third level for the S1 Pin, which can also be connected to $V_{\rm EE}$. Refer to Table I for the description of the modes and their respective settings.

For Modes 2 and 3, it is important to note that an internal flipflop is used to provide the independent control of rising and falling edges. The state of this flip-flop is indeterminate upon power-up. The state becomes fixed once the first full pulse is provided to each channel, consisting of a positive edge followed by a negative edge.

Table I. Tru	uth Table for	Mode Determination
--------------	---------------	--------------------

S 1	S 0	Mode	Typical Span	Independent Adjustment of Positive and Negative Edges?
0	0	0	19 ns	No
0	1	1	31 ns	No
1	0	2	19 ns	Yes
1	1	3	31 ns	Yes
V_{EE}	0	Not Valid		
V_{EE}	1	5	45 ns	No

S0 and S1 accept logical ECL levels. In the case of S1 only, a third state is also accepted, at the negative supply, $V_{\rm EE}.$

Table II. Package Thermal Characteristics

C3265a-0-2/99