

Microprocessor-Compatible 12-Bit D/A Converter

AD667

1.0 <u>SCOPE</u>

This specification documents the detailed requirements for Analog Devices space qualified die including die qualification as described for Class K in MIL-PRF-38534, Appendix C, Table C-II except as modified herein.

The manufacturing flow described in the STANDARD DIE PRODUCTS PROGRAM brochure at <u>http://mil-aero.analog.com/en/space/segment/ma.html</u> is to be considered a part of this specification.

This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at www.analog.com/AD667

2.0 <u>Part Number</u>. The complete part number(s) of this specification follow: <u>Part Number</u> AD667-000C Microprocessor-Compatible 12- Bit D/A Converter

3.0 <u>Die Information</u>

3.1 <u>Die Dimensions</u>

Die Size	Die Thickness	Bond Pad Metalization		
142 mil x 184 mil	19 mil ± 2 mil	Al/Cu		

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

3.2 <u>Die Picture</u>

PACKAGE PIN	FUNCTION
1	20V SPAN
2	10V SPAN
3	SUM JCT
4	BIP OFF
5	AGND
6	VREF OUT
7	VREF IN
8	+VCC
9	VOUT
10	-VEE
11	CS
12	A3
13	A2
14	A1
15	AO
16	POWER GROUND
17	DB0 LSB
18	DB1
19	DB2
20	DB3
21	DB4
22	DB5
23	DB6
24	DB7
25	DB8
26	DB9
27	DB10
28	DB11 MSB

Figure 1 - Terminal connections.

3.3 Absolute Maximum Ratings 1/

V _{CC} to power ground range	0V dc to +18V dc
V _{EE} to power ground range	0V dc to -18V dc
Digital inputs (pins 11-15, 17-28) to power ground range	e…±0.3V dc
Reference in to reference ground	±12V dc
Bipolar offset to reference ground	±12V dc
10V span R to reference ground	±12V dc
20V span R to reference ground	±24V dc
Reference out, V _{OUT} (pins 6 and 9)	continuous short to power ground, momentary short to V _{CC}
Storage Temperature Range	65°C to +150°C
Junction Temperature (T _J)	+150°C
Ambient Operating Temperature Range	55°C to +125°C

Absolute Maximum Ratings Notes:

<u>1/</u> Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

4.0 <u>Die Qualification</u>

In accordance with class-K version of MIL-PRF-38534, Appendix C, Table C-II, except as modified herein.

- (a) Qual Sample Size and Qual Acceptance Criteria 10/0
- (b) Qual Sample Package DIP
- (c) Pre-screen electrical test over temperature performed post-assembly prior to die qualification.

Table I - Dice Electrical Characteristics						
Parameter	Symbol	Conditions <u>1/</u> Limit Min		Limit Max	Units	
Resolution	RES		12		Bits	
Relative Accuracy	RA	All bits with positive errors on & All bits with negative error on.		±0.5	LSB	
Differential Nonlinearity	DNL	Major carry errors		±0.75	LSB	
Gain Error <u>2/</u>	AE	All bits on; All bits high		.20	%FSR	
Unipolar Offset Error	Vos	All bits off; All bits low		±2	LSB	
Bipolar Zero Error	B _{PZE}	MSB on, all other bits off		±0.1	%FSR	
Reference Output Voltage <u>3/</u>	V _{REF}	Bipolar mode, $V_s = \pm 11.4V$, 0.1 mA external load	9.9	10.1	V	
Dower Supply Poinction Datio	PSRR	All bits on; +11.4V≤ VCC ≤ +16.5V		10	ppm of	
		All bits on; -11.4V \ge VEE \ge -16.5V		10	FSR/%	
Power Supply Current	lcc	$V_s = \pm 16.5 V$, All bits on		12	mA	
	IEE			25		
Digital Input High Voltage	VIH		2		V	
Digital Input Low Voltage	VIL			0.8	V	
Digital Input High Current	Ін	V _{IH} =5.5 V		10	μΑ	
Digital Input Low Current	IιL	V _{IL} =0V		5	μA	

Table I Notes:

<u>1/</u>

 $V_{CC} = +15V$, $V_{EE} = -15V$, 50Ω resistor pin 6 to pin 7 A_O, A₁, A₂, A₃, CS = Logic "0", $V_{IH} = 2V$, $V_{IL} = 0.8V$, Unipolar configuration unless otherwise specifed. Unipolar configuration – Pins 1 and 2 to Pin 9, Pin 4 to Pin 5. Bipolar configuration – Pin 1 to Pin 9, 50Ω resistor Pin 4 to Pin 6.

- Adjustable to 0. In subgroup 1, the reference output is loaded with 0.5mA nominal reference current, 1.0 mA bipolar offset current and 0.1 mA additional current. <u>2/</u> 3/

Table II - Electrical Characteristics for Qual Samples							
Parameter	Symbol	Conditions <u>1/</u>	Sub- groups	Limit Min	Limit Max	Units	
Resolution	RES			12		Bits	
	RΔ	All bits with positive errors on & All bits with negative error on.	1		±0.5	I CR	
heldive needbacy	103		2, 3		±0.75	LSD	
Differential Nonlinearity	DNL	Major carry errors	1		±0.75	LSB	
Gain Error <u>2/</u>	A _E		2, 5		±1 0.2	%FSR	
Gain Temperature Coefficient	TCA _E	All bits on; All bits high	2, 3		30	ppm/°C	
Unipolar Offset Error	Vos		1		±2	LSB	
Unipolar Offset Temperature Coefficient	TCVos	All bits off; All bits low	2, 3		±3	ppm/°C	
Bipolar Zero Error <u>2/</u>	Bpze		1		±0.14	%FSR	
B _{PZE} Temperature Coefficient	TCB _{PZE}	MSB on, all other bits off	2, 3		±12	ppm/°C	
Reference Output Voltage <u>3/</u>	V _{REF}	Bipolar mode, $V_s = \pm 11.4V$, 0.1 mA external load	1, 2, 3	9.9	10.1	V	
Devuer Guerch, Dejection Datie		All bits on; +11.4V≤ VCC ≤ +16.5V	1		10	ppm of	
Power supply rejection ratio	PSKK	All bits on; -11.4V≥ V _{EE} ≥ -16.5V	1		10	FSR/%	
Power Supply Current	l _{cc}	$V_s = \pm 16.5$ V, All bits on	1		12	mA	
	IEE		1		25	III/A	
Digital Input High Voltage	VIH		1, 2, 3	2		V	
Digital Input High Voltage	V		1		0.8	V	
	V IL		2, 3		0.7	v	
Digital Input High Voltage	Ін	V _{IH} =5.5 V	1		10		
Digital Input High Voltage	IIL	V _{1L} =0V	1		5	μΛ	

Table II Notes:

 V_{CC} = +15V, V_{EE} = -15V, 50 Ω resistor pin 6 to pin 7 A_O, A₁, A₂, A₃, CS = Logic "0", V_{IH} = 2.0V, V_{IL} =0.8V, 1/

Unipolar configuration unless otherwise specified. Unipolar configuration -Pins 1 and 2 to Pin 9, Pin 4 to Pin 5. Bipolar configuration – Pin 1 to Pin 9, 50Ω resistor Pin 4 to Pin 6. Adjustable to 0.

<u>2/</u> 3/

In subgroup 1, the reference output is loaded with 0.5mA nominal reference current, 1.0 mA bipolar offset current and 0.1 mA additional current. In subgroups 2 and 3, only the 0.5 mA reference input current is applied. The reference must be buffered to supply external loads at elevated temperatures.

Table III - Delta Parameter Table								
Post Burn In Limit Post Life Test Limit							Life	
Parameter	Symbol	Sub- groups	Min	Max	Min	Max	Test Delta	Units
Input Offset Voltage	Vos	1		±3		±4	±1	LSB
Bipolar Zero Error	B _{PZE}	1		±0.19		±0.24	±0.05	%FS
Power Supply Current	lcc	1		13.2		14.4	1.2	mA
Power Supply Current	IEE	1		27.5		30	2.5	mA

5.0 Life Test/Burn-In Information

- 5.1 HTRB is not applicable for this drawing.
- 5.2 Burn-in is per MIL-STD-883 Method 1015 test condition B or C.
- 5.3 Steady state life test is per MIL-STD-883 Method 1005.

Rev	Description of Change	Date
А	Initiate	9-Apr-02
В	Update 1.0 Scope description.	1 Aug. 2007
С	Update header/footer & add to 1.0 Scope description	Mar. 3, 2008
D	Add Junction Temperature (T _J)+150°C to 3.3 Absolute Max. Ratings	April 2, 2008
Е	Updated Section 4.0c note to indicate pre-screen temp testing being performed	5-JUN-2009
F	Update Fonts and sizes to ADI standard	22-Sept-2011
G	Correct pin assignment in section 3.2	08-MAR-2013

© 2013 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective companies. Printed in the U.S.A. 03/13

www.analog.com

ASD0013003 Rev. G | Page 7 of 7