8-Bit low cost signal conditioning ADC

1.0 SCOPE

This specification documents the detail requirements for space qualified product manufactured on Analog Devices, Inc.'s QML certified line per MIL-PRF-38535 Level V except as modified herein.
The manufacturing flow described in the STANDARD SPACE LEVEL PRODUCTS PROGRAM brochure is to be considered a part of this specification. http://www.analog.com/aerospace
This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at www.analog.com/AD670
2.0 Part Number. The complete part number(s) of this specification follow:

Part Number
AD670-703D
AD670-713D

Description
8-Bit low cost signal conditioning ADC
Radiation tested, 8-Bit low cost signal conditioning ADC

2.1 Case Outline.

$\frac{\text { Letter }}{\text { D }} \quad \frac{\text { Descriptive designator }}{\text { CDIP2-T20 }} \quad \frac{\text { Case Outline (Lead Finish per MIL-PRF-38535) }}{\text { 20-Lead ceramic, metal sealed, side-brazed leads }}$
3.0 Absolute Maximum Ratings. $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)
V_{CC} to ground 0 V to +7.5 V
Digital inputs)Pins 11-15) .. 0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Digital outputs (Pins 1-9) ... Momentary short to VCD or ground
Analog inputs (Pins 16-19) .. $\pm 30 \mathrm{~V}$
Power dissipation .. 450 mW
Storage temperature range.. $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead temperature range (soldering) .. $+300^{\circ} \mathrm{C}$
Operating temperature range.. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

3.1 Thermal Characteristics:

Thermal Resistance, Sidebrazed (D) Package
Junction-to-Case (Θ JC) $=25^{\circ} \mathrm{C} / \mathrm{W}$ Max
Junction-to-Ambient $(\Theta \mathrm{JA})=85^{\circ} \mathrm{C} / \mathrm{W}$ Max

Terminal	Function
1	DBO LSB
2	DB1
3	DB2
4	DB3
5	DB4
6	DB5
7	DB6
8	DB7 MSB
9	Status output
10	Power ground
11	BPO/ UPO
12	Format (See note)
13	R/W
14	CS
15	CE
16	-Vin High
17	-Vin Low
18	+ Vin High
19	+ VIn Low
20	VCC

NOTE: Twos complement or straightbinary.
Figure 1 - Terminal connections.

R / \bar{W}	$\overline{C S}$	$\overline{C E}$	Operation	Output
X	X	X	Converting (see note 1)	Three-state
0	0	0	Write/convert (see note 2)	Three-state
1	0	0	Read (see note 2)	Data valid
X	X	1	None (see note 3)	Three-state
X	1	X	None (see note 3)	Three-state

NOTES:

1. Status output high.
2. Status output low
3. Status output don't care

Figure 2. Control signal truth table.

Mode	Range	Min	Max	Unit
Unipolar	Low	0	255	mV
Unipolar	High	0	2.55	V
Bipolar	Low	-128	+127	mV
Bipolar	High	-1.28	+1.27	V

Figure 3. Differential input signal range truth table.

$B P O / \overline{U P O}$	Format	Input range/output format
0	0	Unipolar/straight binary
1	0	Bipolar/offset binary
0	1	Unipolar/2's complement
1	1	Bipolar/2's complement

Figure 4. Input selection/output format truth table.

Figure 5. Block diagram

TABLE I NOTES:

1/ Tested on both 2.55 V full scale and -1.28 V to 1.27 V full scale.
2/ Minimum resolution for which there are no missing codes.
3/ Parameter is tested at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$, but is guaranteed from $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
4/ The absolute input signal range defines the limits of input signal value from either the $(+)$ or (-) input to ground (as a function of V_{CC}) over which the device will produce distinct output codes.
5/ The differential input signal range defines the input signal span over which distinct output codes are produced. As this range is exceeded, the device ceases to change output state (see fig. 4).
6/ Guaranteed, if not tested, to the specified limits.
7/ 255 mV range. CMRR tested with 0 V and full scale applied to analog inputs output change measured from 0 to VCM maximum and 0 to VCM minimum and will not exceed specified limits.
8/ Subgroups 7 and 8 shall include verification of the truth table. (Fig. 3 and Fig. 4)

Figure 6. Timing diagram

4.1 Electrical Test Requirements:

Table II	
Test Requirements	Subgroups (in accordance with MIL-PRF-38535, Table III)
Interim Electrical Parameters	1
Final Electrical Parameters	$1,2,3,7,8,9 \underline{/ /} \underline{2 /}$
Group A Test Requirements	$1,2,3,7,8,9$
Group C end-point electrical parameters	$1 \underline{2 /}$
Group D end-point electrical parameters	1
Group E end-point electrical parameters	1

1/ PDA applies to Subgroup 1. Delta's excluded from PDA.
2/ See Table III for delta parameters. See table I for conditions.

4.2 Table III. Lifetest / Burn-in delta limits.

Table III				
TEST	BURN-IN	LIFETEST	DELTA	
TITLE	ENDPOINT	ENDPOINT	LIMIT	UNITS
A_{E}	± 1.5	± 1.5	± 1.5	LSB
$\mathrm{V}_{\text {OS }}$	± 1	± 1	± 1	LSB
$\mathrm{B}_{\text {PZE }}$	± 1	± 1	± 1	LSB

5.0 Life Test/Burn-In Circuit:

5.1 HTRB is not applicable for this drawing.
5.2 Burn-in is per MIL-STD-883 Method 1015 test condition D.
5.3 Steady state life test is per MIL-STD-883 Method 1005.

Rev	Description of Change	Date
A	Initiate	Aug. 9, 2000
B	Various corrections made to Table I to make compatible with 883. SMD has errors. Correct BI to dynamic. Update Table III.	Sept. 17, 2001
C	Update web address, BI condition is D	Jan. 25, 2002
D	Change BP2E to BPZE on table III (typo) Change Table I BOE to BPZE	Nov. 27, 2002
E	Update web address. Delete burn-in circuit	Jun. 20, 2003
F	Update header/footer \& add to 1.0 Scope description.	Feb. 25, 2008

