1.0 SCOPE

This specification documents the detail requirements for space qualified product manufactured on Analog Devices, Inc.'s QML certified line per MIL-PRF-38535 Level V except as modified herein.
The manufacturing flow described in the STANDARD SPACE LEVEL PRODUCTS PROGRAM brochure is to be considered a part of this specification. http://www.analog.com/aerospace

This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at www.analog.com/AD847
2.0 Part Number. The complete part number(s) of this specification follow:

Part Number

AD847-703Q

2.1 Case Outline.

Letter
Descriptive designator
Q GDIP1-T8

AD847-713Q Radiation Tested, High speed, low power, operational amplifier

Description

High speed, low power, operational amplifier

Case Outline (Lead Finish per MIL-PRF-38535)
8 -Lead ceramic dual-in-line package (CERDIP)

Figure 1 - Terminal connections.
3.0 Absolute Maximum Ratings. $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)
Supply voltage ± 18 V
Differential input voltage ... $\pm 6 \mathrm{~V}$
Input common mode voltage ... $\pm \mathrm{V}_{\mathrm{S}}$
Operating temperature range... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage temperature range ... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power dissipation (P_{D}) .1.1W
Lead temperature (soldering, 10 seconds) .. $+300^{\circ} \mathrm{C}$
Thermal resistance, junction-to-case ($\theta_{\text {JC }}$) .. See MIL-STD-1835
Thermal resistance, junction-to-ambient $\left(\theta_{\mathrm{JA}}\right)$.. $110^{\circ} \mathrm{C} / \mathrm{W}$
Junction temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$... $+175^{\circ} \mathrm{C}$
4.0 Electrical Table: See notes at end of table

Table I						
Parameter	Symbol	Conditions 1/	Subgroup	$\frac{2 /}{\text { Min }}$	$\frac{2 /}{M a x}$	Units
Input offset voltage	$\mathrm{V}_{\text {IO }}$		1		± 1.0	mV
			2, 3		± 4.0	
Input bias current	I_{B}	$\overline{\mathrm{V}_{\mathrm{S}}}= \pm 5 \mathrm{~V}, \pm 15 \mathrm{~V}$	1		5.0	$\mu \mathrm{A}$
			2, 3		7.5	
Input offset current	I_{IO}		1		± 300	nA
			2, 3		± 400	
Common mode input voltage range 3/	IVR		1, 2, 3		± 2.5	V
		$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	1, 2, 3		± 12	
Open loop gain	AVO	$\mathrm{V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	1	2.0		V / mV
			2, 3	1.0		
		$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	1	3.0		
			2, 3	1.5		
Common mode rejection ratio	CMRR	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}= \pm 2.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}= \pm 12 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$	1	80		dB
			1	80		
			2, 3	75		
Output current 4/	$\mathrm{I}_{\text {OUT }}$	$\mathrm{V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}$	4	13		mA
		$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	4	20		
Output voltage swing	$+\mathrm{V}_{\text {OUT }}$	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	1	3.0		V
			2, 3	2.5		
		$\mathrm{R}_{\mathrm{L}}=150 \Omega$	1	2.5		
		$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	1, 2, 3	12		
		$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	1	10		
	- $\mathrm{V}_{\text {OUT }}$	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	1	-3.0		
			2, 3	-2.5		
		$\mathrm{R}_{\mathrm{L}}=150 \Omega$	1	-2.5		
		$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	1, 2, 3	-12		
		$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	1	-10		
Quiescent power supply current	I_{CC}		1		5.7	mA
			2, 3		7.8	
		$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	1		6.3	
			2, 3		8.4	
Power supply rejection ratio	PSRR	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	1	75		dB
			2, 3	72		
Differential input resistance 4/	$\mathrm{R}_{\text {IN }}$	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \pm 15 \mathrm{~V}$	4	80		$\mathrm{k} \Omega$

Table I						
Parameter	Symbol	Conditions 1/	$\begin{aligned} & \text { Sub- } \\ & \text { group } \end{aligned}$	$\begin{array}{r} \frac{21}{} \\ \text { Min } \end{array}$	$\frac{2 /}{\operatorname{Max}}$	Units
Slew rate 6/ 4/	+SR	$\mathrm{V}_{\text {out }}=-2.5 \mathrm{~V} \text { to }+2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=$ $500 \Omega, \mathrm{~A}_{\mathrm{V}}=1 \mathrm{~V} / \mathrm{V}$, Measured from 10% to 90%	4	120		V/ $\mu \mathrm{S}$
			5, 6	90		
	-SR	$\begin{aligned} & \mathrm{V}_{\text {OuT }}=+2.5 \mathrm{~V} \text { to }-2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}= \\ & 500 \Omega, \mathrm{~A}_{\mathrm{V}}=1 \mathrm{~V} / \mathrm{V}, \end{aligned}$$\text { Measured from } 10 \% \text { to } 90 \%$	4	90		
			5, 6	65		
	+SR	$\begin{aligned} & \mathrm{V}_{\text {out }}=-5 \mathrm{~V} \text { to }+5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega, \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$	4	200		
		Measured from 10% to 90%	5,6	130		
	-SR	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=+5 \mathrm{~V} \text { to }-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega, \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$	4	145		
		Measured from 10% to 90%	5,6	120		
Gain bandwidth product 4/	GBWP	$\mathrm{V}_{\text {OUT }}= \pm 100 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}-500 \Omega$	4	25		MHz
		$\begin{aligned} & \mathrm{V}_{\text {out }}= \pm 100 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega, \mathrm{VS} \\ & = \pm 15 \mathrm{~V} \end{aligned}$		40		
Full power bandwidth 4/	FPBW	$\mathrm{V}_{\mathrm{PK}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	4	5.7		
		$\begin{aligned} & \mathrm{V}_{\mathrm{PK}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{S}}= \\ & \pm 15 \mathrm{~V} \end{aligned}$		2.8		
Closed loop stable gain 4/	CLSG	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \pm 15 \mathrm{~V}$	4, 5, 6	1.0		V/V
Rise time 4/ 8/	r_{r}	$\begin{aligned} & \mathrm{V}_{\text {out }}=0 \mathrm{~V} \text { to }+200 \mathrm{mV}, \mathrm{~A}_{\mathrm{V}}=+1, \\ & \mathrm{R}_{\mathrm{L}}=-1 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$	4, 5, 6		10	nS
	t_{f}	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \text { to }-200 \mathrm{mV}, \mathrm{~A}_{\mathrm{V}}=+1, \\ & \mathrm{R}_{\mathrm{L}}=-1 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$	4, 5, 6		10	
Settling time 4 /	$\mathrm{t}_{\text {s }}$	$\mathrm{A}_{\mathrm{V}}=-1 \mathrm{~V} / \mathrm{V}, 10 \mathrm{~V}$ step at 0.1% of the fixed value, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega$			150	
		$\mathrm{A}_{\mathrm{V}}=-1 \mathrm{~V} / \mathrm{V}, 10 \mathrm{~V}$ step at 0.01% of the fixed value, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega$			200	
Overshoot 4/	+OS	$\begin{aligned} & \text { V } \begin{array}{l} \text { Out }=0 \mathrm{~V} \text { to }+200 \mathrm{mV}, \mathrm{~A}_{\mathrm{V}}=+1, \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{array} \\ & \hline \end{aligned}$	4		30	\%
	-OS	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \text { to }-200 \mathrm{mV}, \mathrm{~A}_{\mathrm{V}}=+1, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$	4		30	

TABLE I NOTES:

1/ Unless otherwise specified for dc tests, $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}<100 \Omega, \mathrm{R}_{\mathrm{L}}>100 \mathrm{k} \Omega$, $\mathrm{V}_{\text {OuT }}=0 \mathrm{~V}$, and $\mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF}$. Unless otherwise specified for ac tests, $\mathrm{A}_{\mathrm{V}}= \pm 1 \mathrm{~V} / \mathrm{V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$, and $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$.
2/ The limiting terms "min" (minimum) and "max" (maximum) shall be considered to apply to magnitudes only. Negative current shall be defined as conventional current flow out of a device terminal.
3/ This parameter is guaranteed by CMRR test.
4/ If not tested, shall be guaranteed to the limits specified in table I herein.
5/ Quiescent power consumption is based on quiescent supply current test maximum (no load at the output).
6/ Slew rate test limits are guarantee after 5 minutes of warm-up.
7/ Full power bandwidth $=\mathrm{SR} /\left(2 \pi \mathrm{~V}_{\mathrm{PK}}\right)$.
8/ Rise and fall times measured between 10% and 90% point.

4.1 Electrical Test Requirements:

Table II	
Test Requirements	
Interim Electrical Parameters	Subgroups (in accordance with MIL-PRF-38535, Table III)
Final Electrical Parameters	1
Group A Test Requirements	$1,2,3,4,5,6 \quad \underline{/ /} \quad \underline{2 /}$
Group C end-point electrical parameters	$1, \underline{2} /$
Group D end-point electrical parameters	1
Group E end-point electrical parameters	1

1/ PDA applies to Subgroup 1. Delta's excluded from PDA.
2/ See Table III for delta parameters. See table I for conditions.

4.2 Table III. Burn-in test delta limits.

Table III				
TEST	BURN-IN	LIFETEST	DELTA	
TITLE	ENDPOINT	ENDPOINT	LIMIT	UNITS
V_{OS}	± 1	± 1.5	± 0.5	mV
$\pm \mathrm{I}_{\mathrm{B}}$	5	7.5	2.5	$\mu \mathrm{~A}$
I_{IO}	± 300	± 500	± 200	nA

5.0 Life Test/Burn-In Circuit:

5.1 HTRB is not applicable for this drawing.
5.2 Burn-in is per MIL-STD-883 Method 1015 test condition B.
5.3 Steady state life test is per MIL-STD-883 Method 1005.

Rev	Description of Change	Date
A	Initiate	July 20, 2000
B	Update web address	Feb. 7, 2002
C	Update web address. Delete Burn-In circuit.	June 20, 2003
D	Update header/footer \& add to 1.0 scope description.	Feb. 25, 2008

