

Low-noise, matched dual monolithic transistor

MAT02

1.0 SCOPE

This specification documents the detail requirements for space qualified product manufactured on Analog Devices, Inc.'s QML certified line per MIL-PRF-38535 Level V except as modified herein.

The manufacturing flow described in the STANDARD SPACE LEVEL PRODUCTS PROGRAM brochure is to be considered a part of this specification <u>http://www.analog.com/aerospace</u>

This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete datasheet for commercial product grades can be found at www.analog.com/MAT02

2.0 Part Number. The complete part number(s) of this specification follow:

Part Number	Description
MAT02-903H	Low-noise, matched dual monolithic transistor
MAT02-913H	Radiation Tested, Low-noise, matched dual monolithic transistor

2.1 Case Outline.

Letter	Descriptive designator	Case Outline (Lead Finish per MIL-PRF-38535)

TO)
,

Figure 1 - Terminal connections.

3.0	Absolute Maximum Ratings . ($T_A = 25^{\circ}C$, unless otherwise noted)	
	Collector to base voltage (BV _{CBO})	40V
	Collector to emitter voltage (BV _{CEO})	40V
	Collector to collector voltage (BV _{CC})	40V
	Emitter to emitter voltage (BV _{EE})	40V
	Collector current (I _C)	20mA
	Emitter current (I _E)	20mA
	Total power dissipation <u>1/</u>	500mW
	Operating ambient temperature range	55 to +125°C
	Storage temperature range	
	Lead temperature (soldering, 60 sec)	
	Dice junction temperature	

1/ Rating applies to applications not using heat sinking, device is free air only.

3.1 Thermal Characteristics:

Thermal Resistance, TO-78 (H) Package

Junction-to-Case (Θ_{JC}) = 45°C/W Max

Junction-to-Ambient (Θ_{JA}) = 150°C/W Max

Derate linearly at 6.67 mW/°C for ambient temperatures above 70°C.

Terminal Connections <u>1/</u>				
Terminal	6 lead TO			
1	C1			
2	B1			
3	E1			
4	E2			
5	B2			
6	C2			

<u>1/</u> Substrate is connected to case on TO-78 package. Substrate is normally connected to the most negative circuit potential, but can be floated.

4.0 Electrical Table:

		Table I				
Parameter See notes at end of table	Symbol	Conditions <u>1/</u>	Sub- group	Limit Min	Limit Max	Units
Current Gain	h _{FE}	$I_{\rm C} = 1 {\rm mA}; V_{\rm CB} = 0 {\rm V}, 40 {\rm V}$	1	500		
			2, 3	275		
		$I_{C} = 100 \mu A; V_{CB} = 0V, 40V$	1	500		
		$I_{\rm C} = 100 \mu \text{A}; V_{\rm CB} = 15 \text{V}$	2, 3	225		
		$I_{C} = 10 \mu A; V_{CB} = 0V, 40V$	1	400		
		$I_{C} = 10 \mu A; V_{CB} = 15 V$	2, 3	175		
		$I_{\rm C} = 1 \mu A; V_{\rm CB} = 0V, 40V$	1	300		
		$I_{C} = 1 \mu A; V_{CB} = 15 V$	2, 3	150		
Current Gain Match 2/	Δh_{FE}	I _C =10μA,100μA,1mA; V _{CB} =0V	1		2	%
Offset Voltage	V _{OS}	$V_{CB} = 0V$	1		50	μV
			2, 3		80	
Offset Voltage vs. Temperature $5/$	TCV _{OS}	$V_{CB} = 0V$			0.3	$\mu V/^{\circ}C$
Offset Voltage vs. V_{CB} 3/	ΔV_{OS} / ΔV_{CB}	$V_{CB} = 0V, 40V$	1		25	μV
Offset Voltage vs. Collector Current	$\Delta V_{OS} / \Delta I_C$	$V_{CB} = 0V; I_C = 10\mu A, 1mA$	1		25	
Input Offset Current	I _{OS}	$V_{CB} = 0V, 40V$	1		0.6	nA
			2, 3		9.0	
Offset Current vs. V _{CB}	$\frac{\Delta I_{OS}}{/\Delta V_{CB}}$	$V_{CB} = 0V, 40V$	1		70	pA/V
Bulk Emitter Resistance	r _{BE}		1		0.5	Ω

Table I(cont'd)							
Parameter See notes at end of table	Symbol	Condi	tions <u>1/</u>	Sub- group	Limit Min	Limit Max	Units
Collector Base Leakage Current	I _{CBO}	$V_{CB} = 40V$		1		200	pА
Collector Emitter Leakage Current <u>4/</u>	I _{CES}	$V_{CE} = 40V, V_{BI}$	E = 0V	1		200	
Collector-Collector Leakage Current <u>4/</u>	I _{CC}	$V_{\rm CC} = 40 V$		1		200	
Bias Current	I _B	$V_{CB} = 0V, 40V$		1		25	nA
				2, 3		60	
Collector Saturation Voltage	V _{CE} SAT	$I_{\rm C} = 1 {\rm mA}, I_{\rm B} = 100 {\mu}{\rm A}$		1		0.1	V
Breakdown Voltage	BV _{CEO}	$I_C = 100 \mu A$		1	40		
Noise voltage density	e _n	I _C =1mA,	$f_0 = 10Hz$	7		2	nV/\sqrt{Hz}
		V _{CB} =0V	$f_{O} = 100Hz$]		1	
			$f_{O} = 1000 Hz$			1	
			$f_{O} = 10 KHz$			1	

TABLE I NOTES:

- $\underline{1/}~~V_{CB}=15V;~I_{C}=10\mu A,$ unless otherwise specified.
- <u>2/</u> Current gain match (Δh_{FE}) is defined as: $\Delta h_{FE} = \frac{100(\Delta I_B)h_{FE}}{I_C}$
- <u>3/</u> Measured at $I_C = 10\mu A$ and guaranteed by design over $1\mu A \le I_C \le 1mA$. <u>4/</u> I_{CC} and I_{CES} are verified by measurement of I_{CBO} .

5/ Guaranteed by
$$V_{OS}$$
 test $\left(TCV_{OS} \cong \frac{V_{OS}}{T} \text{ for } V_{OS} \ll V_{BE} \right) T = 298^{\circ} \text{K for } T_{A} = +25^{\circ} \text{C}.$

4.1 Electrical Test Requirements:

Table II				
Test Requirements	Subgroups (in accordance with MIL-PRF-38535, Table III)			
Interim Electrical Parameters	1			
Final Electrical Parameters	1, 2, 3 <u>1/ 2/</u>			
Group A Test Requirements	1, 2, 3, 7			
Group C end-point electrical parameters	1 <u>2/</u>			
Group D end-point electrical parameters	1			
Group E end-point electrical parameters	1			

- <u>1/</u> PDA applies to Subgroup 1. Delta's excluded from PDA.
- 2/ See Table III for delta parameters. See table I for conditions.

4.2 Table III. Burn-in test delta limits.

Table III					
TEST	BURN-IN	LIFE TEST	DELTA		
TITLE	ENDPOINT	ENDPOINT	LIMIT	UNITS	
h _{FE} @ 1mA	500	420	±80		
h _{FE} @ 100µA	500	410	±90		
h _{FE} @ 10μA	400	300	±100		
h _{FE} @ 1µA	300	180	±120		
IOS	0.6	1.1	±0.5	nA	

5.0 Life Test/Burn-In Circuit:

- 5.1 HTRB is not applicable for this drawing.
- 5.2 Burn-in is per MIL-STD-883 Method 1015 test condition B.
- 5.3 Steady state life test is per MIL-STD-883 Method 1005.

Rev	Description of Change	Date
А	Initiate	Aug. 29, 2000
В	Correct typo at Dice temperature range, change RC package Θ_{JC} from 18 to 35°C/W, correct typo's on table I (subscript), make correction to Table I note 3 (change from "Measured at $I_C = 10$ mA and guaranteed by design over 10 mA $\leq I_C \leq 1$ mA" to "Measured at $I_C = 10$ µA and guaranteed by design over 1μ A $\leq I_C \leq 1$ mA"), add subgroup 7 for e_n , add subgroup 7 to table II, delete subgroups 4, 5, 6 from table II.	Jan. 7, 2002
С	Update web address. Delete burn-in and rad circuits	June 20, 2003
D	Update package offering	Oct. 10, 2007
Е	Update header/footer & add to 1.0 Scope description.	Feb. 25,2008
F	Remove operating junction temperature line and change to Dice Junction Temperature $(T_J150^{\circ}C)$	March 31, 2008

© 2008 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective companies. Printed in the U.S.A. 03/08

www.analog.com

ASD0011413 Rev. F | Page 5 of 5