Low-power configurable multiple function gate Rev. 6 — 15 August 2012 P

Product data sheet

General description 1.

The 74AUP1G58 provides configurable multiple functions. The output state is determined by eight patterns of 3-bit input. The user can choose the logic functions AND, OR, NAND, NOR, XOR, inverter and buffer. All inputs can be connected to V_{CC} or GND.

This device ensures a very low static and dynamic power consumption across the entire V_{CC} range from 0.8 V to 3.6 V.

This device is fully specified for partial power-down applications using I_{OFF}. The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

The 74AUP1G58 has Schmitt trigger inputs making it capable of transforming slowly changing input signals into sharply defined, jitter-free output signals.

The inputs switch at different points for positive and negative-going signals. The difference between the positive voltage V_{T+} and the negative voltage V_{T-} is defined as the input hysteresis voltage V_H.

Features and benefits 2.

- Wide supply voltage range from 0.8 V to 3.6 V
- High noise immunity
- ESD protection:
 - HBM JESD22-A114F exceeds 5000 V
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101E exceeds 1000 V
- Low static power consumption; $I_{CC} = 0.9 \mu A$ (maximum)
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 3.6 V
- Low noise overshoot and undershoot < 10 % of V_{CC}
- I_{OFF} circuitry provides partial power-down mode operation
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

Low-power configurable multiple function gate

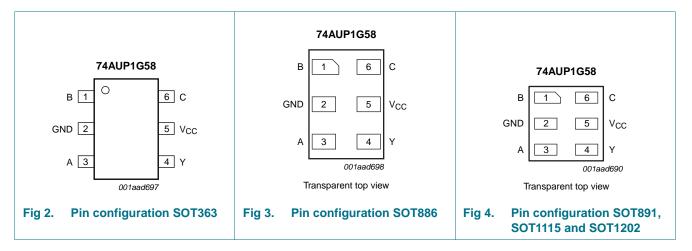
3. Ordering information


Table 1. Ordering	g information								
Type number	Package								
	Temperature range Name		Description	Version					
74AUP1G58GW	–40 °C to +125 °C	SC-88	plastic surface-mounted package; 6 leads	SOT363					
74AUP1G58GM	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1.45 \times 0.5 mm	SOT886					
74AUP1G58GF	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1 \times 0.5 mm	SOT891					
74AUP1G58GN	–40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body $0.9 \times 1.0 \times 0.35$ mm	SOT1115					
74AUP1G58GS	–40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body $1.0 \times 1.0 \times 0.35$ mm	SOT1202					

4. Marking

Table 2. Marking	
Type number	Marking code ^[1]
74AUP1G58GW	аК
74AUP1G58GM	аК
74AUP1G58GF	аК
74AUP1G58GN	аК
74AUP1G58GS	аК

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.


5. Functional diagram

Low-power configurable multiple function gate

6. Pinning information

6.1 Pinning

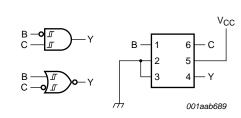
6.2 Pin description

Table 3.	Pin description	
Symbol	Pin	Description
В	1	data input
GND	2	ground (0 V)
A	3	data input
Y	4	data output
V _{CC}	5	supply voltage
С	6	data input

7. Functional description

Table 4.	Function table ^[1]			
Input			Output	
С	В	Α	Y	
L	L	L	L	
L	L	Н	Н	
L	Н	L	L	
L	Н	Н	Н	
Н	L	L	Н	
Н	L	Н	Н	
Н	Н	L	L	
Н	Н	Н	L	

[1] H = HIGH voltage level; L = LOW voltage level.


Low-power configurable multiple function gate

7.1 Logic configurations

Table 5.Function selection table

Logic function	Figure
2-input NAND	see <u>Figure 5</u>
2-input NAND with both inputs inverted	see Figure 8
2-input AND with inverted input	see <u>Figure 6</u> and <u>Figure 7</u>
2-input NOR with inverted input	see Figure 6 and Figure 7
2-input OR	see Figure 8
2-input OR with both inputs inverted	see Figure 5
2-input XOR	see Figure 9
Buffer	see Figure 10
Inverter	see Figure 11

Fig 5. 2-input NAND gate or 2-input OR with both inputs inverted

Fig 6.2-input AND gate with inverted B input or
2-input NOR gate with inverted C input

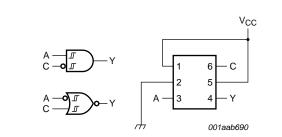
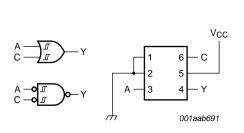
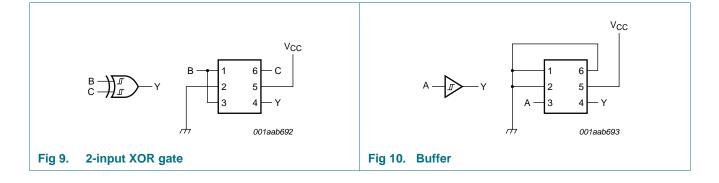




Fig 7. 2-input AND gate with inverted C input or 2-input NOR gate with inverted A input

Fig 8. 2-input OR gate or 2-input NAND gate with both inputs inverted

Low-power configurable multiple function gate

Limiting values 8.

Table 6. **Limiting values**

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+4.6	V
I _{IK}	input clamping current	V _I < 0 V	-50	-	mA
VI	input voltage		<u>[1]</u> –0.5	+4.6	V
Ι _{ΟΚ}	output clamping current	V _O < 0 V	-50	-	mA
Vo	output voltage	Active mode and Power-down mode	<u>[1]</u> –0.5	+4.6	V
I _O	output current	$V_{O} = 0 V$ to V_{CC}	-	±20	mA
I _{CC}	supply current		-	50	mA
I _{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C \ to \ +125 \ ^{\circ}C$	[2] _	250	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For SC-88 packages: above 87.5 °C the value of P_{tot} derates linearly with 4.0 mW/K. For XSON6 packages: above 118 °C the value of Ptot derates linearly with 7.8 mW/K.

Recommended operating conditions 9.

Table 7.	Recommended operating co	onditions			
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		0.8	3.6	V
VI	input voltage		0	3.6	V
Vo	output voltage	Active mode	0	V_{CC}	V
		Power-down mode; $V_{CC} = 0 V$	0	3.6	V
T _{amb}	ambient temperature		-40	+125	°C

74AUP1G58 **Product data sheet**

Low-power configurable multiple function gate

10. Static characteristics

Table 8. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
T _{amb} = 2	5 °C					
V _{OH}	HIGH-level output voltage	$V_{I} = V_{T+} \text{ or } V_{T-}$				
		I_O = –20 $\mu\text{A};V_{CC}$ = 0.8 V to 3.6 V	$V_{CC}-0.1$	-	-	V
		$I_{O} = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.75\times V_{CC}$	-	- - - - - - - - - - - - - - - - - - -	V
		$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	1.11	-	-	V
		$I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.32	-	-	V
		I_{O} = -2.3 mA; V_{CC} = 2.3 V	2.05	-	-	V
		$I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.9	-	-	V
		$I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.72	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.6	-	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{T+} \text{ or } V_{T-}$				
		I_{O} = 20 $\mu A; V_{CC}$ = 0.8 V to 3.6 V	-	-	0.1	V
		$I_{O} = 1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	-	-	$0.3\times V_{\text{CC}}$	V
		I_{O} = 1.7 mA; V_{CC} = 1.4 V	-	-	0.31	V
		$ \begin{split} I_{O} &= 1.9 \text{ mA}; \ V_{CC} &= 1.65 \text{ V} & - & - & 0.31 & \text{V} \\ I_{O} &= 2.3 \text{ mA}; \ V_{CC} &= 2.3 \text{ V} & - & - & 0.31 & \text{V} \\ I_{O} &= 3.1 \text{ mA}; \ V_{CC} &= 2.3 \text{ V} & - & - & 0.44 & \text{V} \\ I_{O} &= 2.7 \text{ mA}; \ V_{CC} &= 3.0 \text{ V} & - & - & 0.31 & \text{V} \\ I_{O} &= 4.0 \text{ mA}; \ V_{CC} &= 3.0 \text{ V} & - & - & 0.44 & \text{V} \\ \end{split} $	V			
		I_{O} = 2.3 mA; V_{CC} = 2.3 V	-	-	0.31	V
		I_{O} = 3.1 mA; V_{CC} = 2.3 V	-	-	0.44	V
		I_{O} = 2.7 mA; V_{CC} = 3.0 V	-	-	0.31	V
		I_{O} = 4.0 mA; V_{CC} = 3.0 V	-	-	0.44	V
l _l	input leakage current	V_I = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.1	μΑ
I _{OFF}	power-off leakage current	V_{I} or V_{O} = 0 V to 3.6 V; V_{CC} = 0 V	-	-	±0.2	μA
ΔI_{OFF}	additional power-off leakage current	$ V_{I} \text{ or } V_{O} = 0 \text{ V to } 3.6 \text{ V}; $	-	-	±0.2	μΑ
сс	supply current	$V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \text{ A};$ $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	-	-	0.5	μΑ
∆l _{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A};$ $V_{CC} = 3.3 \text{ V}$	-	-	40	μA
Cı	input capacitance	V_{I} = GND or V_{CC} ; V_{CC} = 0 V to 3.6 V	-	1.1	-	pF
Co	output capacitance	$V_0 = GND; V_{CC} = 0 V$	-	1.8	-	pF
T _{amb} = -	40 °C to +85 °C					
$\begin{tabular}{ c c c c } \hline \mathbf{V}_{OH} & HiGH-level output voltage} $$V_1 = V_{T_+} \mbox{ or } V_{T}$$ \\ \hline V_{OH} & HiGH-level output voltage} $$V_1 = V_{T_+} \mbox{ or } V_{T}$$ \\ \hline $I_0 = -20 \ \mu A; \ V_{CC} = 0.8 \ V \ 0.3.6 \ V$ $V_{CC} - 0.1 $$-$$ \\ \hline $I_0 = -1.1 \ mA; \ V_{CC} = 1.1 \ V$ $0.75 \times V_{CC} $$-$$ \\ \hline $I_0 = -1.1 \ mA; \ V_{CC} = 1.65 \ V$ $1.32 $$-$$ \\ \hline $I_0 = -2.3 \ mA; \ V_{CC} = 2.3 \ V$ $2.05 $$-$$ \\ \hline $I_0 = -2.3 \ mA; \ V_{CC} = 2.3 \ V$ $1.9 $$-$$ \\ \hline $I_0 = -2.7 \ mA; \ V_{CC} = 2.3 \ V$ $1.9 $$-$$ \\ \hline $I_0 = -2.7 \ mA; \ V_{CC} = 2.3 \ V$ $1.9 $$-$$ \\ \hline $I_0 = -2.7 \ mA; \ V_{CC} = 3.0 \ V$ $2.72 $$-$$ \\ \hline $I_0 = -4.0 \ mA; \ V_{CC} = 3.0 \ V$ $2.72 $$-$$ \\ \hline $I_0 = -4.0 \ mA; \ V_{CC} = 3.0 \ V$ $2.72 $$-$$ \\ \hline $I_0 = -4.0 \ mA; \ V_{CC} = 3.0 \ V$ $2.6 $$-$$ \\ \hline V_{OL} $$ LOW-level output voltage $$ V_1 = V_{T_1} \ V_1 = V_{T_1} $						
		I_{O} = -20 μ A; V_{CC} = 0.8 V to 3.6 V	$V_{CC} - 0.1$	-	-	V
		$I_{O} = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.7 \times V_{CC}$	-	-	V
		$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	1.03	-	-	V
		$I_0 = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.30	-	-	V
		$I_0 = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.97	-	-	V
		$I_0 = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.85	-	-	V
			2.67	-	-	V
			2.55	-	-	V
4AUP1G58		All information provided in this document is subject to legal disclaimers.			© NXP B.V. 2012. All rig	ghts reserv
Product d	ata shoot	Rev. 6 — 15 August 2012				6 of 2

NXP Semiconductors

74AUP1G58

Low-power configurable multiple function gate

Table 8. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OL}	LOW-level output voltage	$V_I = V_{T+}$ or V_{T-}				
		I_{O} = 20 $\mu\text{A};V_{CC}$ = 0.8 V to 3.6 V	-	-	0.1	V
		$I_0 = 1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	-	-	$0.3\times V_{CC}$	V
		I_{O} = 1.7 mA; V_{CC} = 1.4 V	-	-	0.37	V
		$I_0 = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.35	V
		$I_0 = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.33	V
		$\begin{split} = & V_{T+} \text{ or } V_{T-} \\ & I_0 = 20 \ \mu\text{A}; \ V_{CC} = 0.8 \ V \text{ to } 3.6 \ V & - & 0.1 \ V \\ & I_0 = 1.1 \ \text{mA}; \ V_{CC} = 1.1 \ V & - & 0.3 \times V_{CC} \ V \\ & I_0 = 1.7 \ \text{mA}; \ V_{CC} = 1.4 \ V & - & - & 0.37 \ V \\ & I_0 = 1.9 \ \text{mA}; \ V_{CC} = 1.65 \ V & - & - & 0.33 \ V \\ & I_0 = 2.3 \ \text{mA}; \ V_{CC} = 2.3 \ V & - & - & 0.33 \ V \\ & I_0 = 3.1 \ \text{mA}; \ V_{CC} = 2.3 \ V & - & - & 0.45 \ V \\ & I_0 = 2.7 \ \text{mA}; \ V_{CC} = 3.0 \ V & - & - & 0.45 \ V \\ & I_0 = 4.0 \ \text{mA}; \ V_{CC} = 3.0 \ V & - & - & 0.45 \ V \\ & I_0 = 4.0 \ \text{mA}; \ V_{CC} = 3.0 \ V & - & - & 0.45 \ V \\ & I_0 = 6 \ \text{ND} \ \text{to } 3.6 \ V; \ V_{CC} = 0 \ V \ to \ 3.6 \ V & - & - & 0.45 \ V \\ & I_0 = 6 \ \text{ND} \ \text{to } 3.6 \ V; \ V_{CC} = 0 \ V \ to \ 3.6 \ V & - & - & 0.45 \ W \\ & I_0 = V_{0} = 0 \ V \ to \ 3.6 \ V; \ V_{CC} = 0 \ V & - & - & 0.45 \ W \\ & I_0 = V_{0} = 0 \ V \ to \ 3.6 \ V; \ V_{CC} = 0 \ V & - & - & 0.45 \ W \\ & I_0 = 0 \ V \ to \ 3.6 \ V; \ V_{CC} = 0 \ V & - & - & 0.45 \ W \\ & I_0 = 0 \ V \ to \ 3.6 \ V; \ V_{CC} = 0 \ V & - & - & 0.45 \ W \\ & I_0 = 0 \ V \ to \ 3.6 \ V; \ V_{CC} = 0 \ V & - & - & 0.45 \ W \\ & I_0 = 0 \ V \ to \ 3.6 \ V; \ V_{CC} = 0 \ V & - & - & 0.9 \ W \\ & I_0 = -0 \ V \ to \ 3.6 \ V; \ V_{CC} = 0 \ V & - & - & - \ V \\ & I_0 = -1.1 \ \text{mA}; \ V_{CC} = 1.4 \ V & 0.93 \ - & - \ V \\ & I_0 = -1.7 \ \text{mA}; \ V_{CC} = 1.6 \ V \ 1.17 \ - & V \\ & I_0 = -1.9 \ \text{mA}; \ V_{CC} = 1.6 \ V \ 1.177 \ - & - \ V \\ & I_0 = -1.9 \ \text{mA}; \ V_{CC} = 2.3 \ V \ 1.177 \ - & - \ V \\ & I_0 = -2.3 \ \text{mA}; \ V_{CC} = 2.3 \ V \ 1.677 \ - & V \\ & I_0 = -2.7 \ \text{mA}; \ V_{CC} = 3.0 \ V \ 2.40 \ - & - \ V \\ & I_0 = -4.0 \ \text{mA}; \ V_{CC} = 3.0 \ V \ 2.300 \ - & - \ V \\ & V_1 \ V_1$				
		I_{O} = 2.7 mA; V_{CC} = 3.0 V	-	-	0.33	V
		I_{O} = 4.0 mA; V_{CC} = 3.0 V	-	-	0.1 $0.3 \times V_{CC}$ 0.37 0.37 0.35 0.33 0.45 0.33 0.45 0.33 0.45 1.12 ± 0.5 1.12 ± 0.6 0.9 $ 0.9$ $ 0.9$ $ 0.9$ $ 0.9$ $ 0.9$ $ 0.9$ $ 0.9$ $ 0.9$ $ 0.9$ $ 0.11$ $0.33 \times V_{CC}$ 0.41 0.39 0.36 0.50 0.36 0.50 0.50	V
l	input leakage current	$\label{eq:product} \begin{tabular}{ c c c c } V_1 = V_{T_*} or V_T & 0.1 & V \\ \hline l_0 = 1.1 \; mA; \; V_{CC} = 1.1 \; V & - & 0.3 \times V_{CC} & V \\ \hline l_0 = 1.7 \; mA; \; V_{CC} = 1.4 \; V & - & 0.37 & V \\ \hline l_0 = 1.7 \; mA; \; V_{CC} = 1.4 \; V & - & 0.33 & V \\ \hline l_0 = 1.7 \; mA; \; V_{CC} = 2.3 \; V & - & 0.33 & V \\ \hline l_0 = 2.3 \; mA; \; V_{CC} = 2.3 \; V & - & 0.45 & V \\ \hline l_0 = 2.7 \; mA; \; V_{CC} = 3.0 \; V & - & 0.45 & V \\ \hline l_0 = 2.7 \; mA; \; V_{CC} = 3.0 \; V & - & 0.45 & V \\ \hline l_0 = 4.0 \; mA; \; V_{CC} = 0 \; V \; to 3.6 \; V & - & 0.45 & V \\ elaskage current & V_1 = OV \; Do 3.6 \; V; \; V_{CC} = 0 \; V \; to 3.6 \; V & - & 0.45 & V \\ \hline l_0 = 2.7 \; mA; \; V_{CC} = 0 \; V \; to 3.6 \; V & - & 0.45 & V \\ \hline l_0 = 2.7 \; mA; \; V_{CC} = 0 \; V \; to 3.6 \; V & - & 0.45 & V \\ \hline l_0 = 4.0 \; mA; \; V_{CC} = 0 \; V \; to 3.6 \; V & - & 0.45 & V \\ \hline l_0 = 0 \; V \; D \; 0 \; 0 \; V \; to 3.6 \; V; \; V_{CC} = 0 \; V \\ \hline l_0 = 0 \; V \; V_0 = 0 \; V \; to 3.6 \; V; \; V_{CC} = 0 \; V \\ \hline l_0 = 0 \; V \; V_0 = 0 \; V \; to 3.6 \; V; \; V_{CC} = 0 \; V \\ \hline l_0 = 0 \; V \; V_0 = 0 \; V \; to 3.6 \; V; \; V_{CC} = 0 \; V \\ \hline l_0 = 0 \; V \; V_0 = 0 \; V \; to 3.6 \; V \\ \hline V_{CC} = 0.8 \; V \; to 3.6 \; V \\ \hline V_{CC} = 0.8 \; V \; to 3.6 \; V \\ \hline V_{CC} = 0.8 \; V \; to 3.6 \; V \\ \hline V_{CC} = 0.8 \; V \; to 3.6 \; V \\ \hline V_{CC} = 0.8 \; V \; to 3.6 \; V \\ \hline V_{CC} = 0.1 \; U \; V_{CC} = 0.8 \; V \; to 3.6 \; V \\ \hline V_{CC} = 0.1 \; U \; V_{CC} = 0.8 \; V \; to 3.6 \; V \\ \hline l_0 = -1.7 \; mA; \; V_{CC} = 1.6 \; V \; 1.17 \; V \\ \hline l_0 = -1.7 \; mA; \; V_{CC} = 1.6 \; V \; 1.17 \; V \\ \hline l_0 = -2.7 \; mA; \; V_{CC} = 0.8 \; V \; to 3.6 \; V \\ \hline l_0 = -2.7 \; mA; \; V_{CC} = 0.8 \; V \; to 3.6 \; V \\ \hline l_0 = -2.7 \; mA; \; V_{CC} = 0.8 \; V \; to 3.6 \; V \\ \hline l_0 = -2.7 \; mA; \; V_{CC} = 0.8 \; V \; to 3.6 \; V \\ \hline l_0 = -2.7 \; mA; \; V_{CC} = 0.8 \; V \; to 3.6 \; V \; V \\ \hline l_0 = -1.7 \; mA; \; V_{CC} = 0.8 \; V \; to 3.6 \; V \\ \hline l_0 = -2.7 \; mA; \; V_{CC} = 0.8 \; V \; to 3.6 \; V \\ \hline l_0 = -2.7 \; mA; \; V_{CC} = 0.8 \; V \; to 3.6 \; V \\ \hline l_0 = -2.7 \; mA; \; V_{CC} = 0.8 \; V \; to 3.6 \; V \\ \hline l_0 = -2.7 \; mA; \; V_{CC} = 0.8 \; V \; to 3.6 \; V \; V \\ \hline l_0 = -2.7 \; mA; \; V_$				
I _{OFF}	power-off leakage current	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V}; V_{CC} = 0 \text{ V}$	-	-	±0.5	μA
ΔI_{OFF}	additional power-off leakage current		-	-	±0.6	μA
I _{CC}	supply current		-	-	0.9	μA
Δl _{CC}	additional supply current		-	-	50	μΑ
T _{amb} = –	40 °C to +125 °C					
V _{OH}	HIGH-level output voltage	$V_I = V_{T+}$ or V_{T-}				
	= -40 °C to +125 °C HIGH-level output voltage	I_{O} = –20 $\mu A; V_{CC}$ = 0.8 V to 3.6 V	$V_{CC} - 0.11$	-	-	V
		$I_{O} = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.6 \times V_{CC}$	-	-	V
		$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	0.93	-	-	V
		$I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.17	-	-	V
		$I_0 = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.77	-	-	V
		$I_0 = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.67	-	-	V
		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	V			
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.30	-	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{T+}$ or V_{T-}			0.1 $0.3 \times V_{CC}$ 0.37 0.35 0.33 0.45 0.33 0.45 0.33 0.45 ± 0.5 ± 0.6 0.9 50 $ 0.11$ $0.33 \times V_{CC}$ 0.41 0.39 0.36 0.50 0.50	
		I_{O} = 20 $\mu\text{A};V_{CC}$ = 0.8 V to 3.6 V	-	-	0.11	V
		$I_0 = 1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	-	-	$0.33 \times V_{CC}$	V
		$I_0 = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	-	-	0.41	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.39	V
		$I_0 = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.36	V
		$I_0 = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.50	V
		$I_0 = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.36	V
		I_{O} = 4.0 mA; V_{CC} = 3.0 V	-	-	0.50	V
I	input leakage current		-	-	±0.75	μΑ
I _{OFF}	power-off leakage current	$V_{\text{I}} \text{ or } V_{\text{O}}$ = 0 V to 3.6 V; V_{CC} = 0 V	-	-	±0.75	μA

Low-power configurable multiple function gate

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ΔI_{OFF}	additional power-off leakage current	$ V_I \text{ or } V_O = 0 \text{ V to } 3.6 \text{ V}; $	-	-	±0.75	μA
I _{CC}	supply current	$V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \text{ A};$ $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	-	-	1.4	μΑ
ΔI_{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A};$ $V_{CC} = 3.3 \text{ V}$	-	-	75	μΑ

Table 8. Static characteristics ...continued

11. Dynamic characteristics

Table 9. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 13.

Symbol	Parameter	Conditions			25 °C		–40 °C to +125 °C			
				Min	Typ <mark>[1]</mark>	Max	Min	Max (85 °C)	Max (125 °C)	
C _L = 5 pl	F									
t _{pd} propagation delay	propagation delay	A, B and C to Y; see <u>Figure 12</u>	[2]							
		$V_{CC} = 0.8 V$		-	22.8	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V		2.8	6.6	12.9	2.6	13.1	13.3	ns
		V_{CC} = 1.4 V to 1.6 V		2.4	4.8	7.6	2.4	8.3	8.6	ns
		V_{CC} = 1.65 V to 1.95 V		2.1	4.0	6.3	2.0	6.9	7.3	ns
		V_{CC} = 2.3 V to 2.7 V		2.0	3.2	4.6	1.8	5.1	5.4	ns
		V_{CC} = 3.0 V to 3.6 V		1.9	2.9	3.9	1.6	4.2	4.4	ns
C _L = 10	ρF									
t _{pd} propagation delay	A, B and C to Y; see <u>Figure 12</u>	[2]								
		$V_{CC} = 0.8 V$		-	26.4	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V		3.2	7.4	14.5	3.0	14.9	15.2	ns
		V_{CC} = 1.4 V to 1.6 V		2.7	5.4	8.7	2.7	9.4	9.8	ns
		V_{CC} = 1.65 V to 1.95 V		2.5	4.5	7.1	2.3	7.9	8.3	ns
		V_{CC} = 2.3 V to 2.7 V		2.4	3.8	5.3	2.2	5.9	6.2	ns
		V_{CC} = 3.0 V to 3.6 V		2.3	3.5	4.6	1.9	4.9	5.1	ns
C _L = 15	ρF									
t _{pd}	propagation delay	A, B and C to Y; see Figure 12	[2]							
		$V_{CC} = 0.8 V$		-	29.9	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V		3.6	8.3	16.1	3.3	16.7	17.0	ns
		V_{CC} = 1.4 V to 1.6 V		3.0	5.9	9.7	3.0	10.5	11.0	ns
		V_{CC} = 1.65 V to 1.95 V		2.8	5.0	7.9	2.5	8.7	9.2	ns
		V_{CC} = 2.3 V to 2.7 V		2.7	4.2	5.9	2.5	6.6	6.9	ns
		V_{CC} = 3.0 V to 3.6 V		2.5	3.9	5.2	2.2	5.5	5.8	ns

Low-power configurable multiple function gate

Symbol	Parameter	Conditions		25 °C			-4	Unit		
				Min	Typ[1]	Мах	Min	Max (85 °C)	Max (125 °C)	_
C _L = 30	pF									
t _{pd}	propagation delay	A, B and C to Y; see <u>Figure 12</u>	[2]							
		$V_{CC} = 0.8 V$		-	38.0	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V		4.5	10.5	20.8	4.1	21.9	24.1	ns
		V_{CC} = 1.4 V to 1.6 V		3.8	7.5	12.2	3.8	13.5	14.1	ns
		V_{CC} = 1.65 V to 1.95 V		3.4	6.3	10.0	3.1	11.2	11.9	ns
		V_{CC} = 2.3 V to 2.7 V		3.4	5.3	7.5	3.1	8.4	8.9	ns
		V_{CC} = 3.0 V to 3.6 V		3.3	5.0	6.6	2.9	7.1	7.4	ns
C _L = 5 p	F, 10 pF, 15 pF and	30 pF								
C _{PD}	power dissipation	$f_i = 1 \text{ MHz}; V_I = \text{GND to } V_{\text{CC}}$	[3][4]							
	capacitance	$V_{CC} = 0.8 V$		-	2.7	-	-	-	-	pF
		V_{CC} = 1.1 V to 1.3 V		-	2.8	-	-	-	-	pF
		V_{CC} = 1.4 V to 1.6 V		-	3.0	-	-	-	-	pF
		V_{CC} = 1.65 V to 1.95 V		-	3.2	-	-	-	-	pF
		V_{CC} = 2.3 V to 2.7 V		-	3.8	-	-	-	-	pF
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		-	4.4	-	-	-	-	pF

Table 9. Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see <u>Figure 13</u>.

[1] All typical values are measured at nominal V_{CC} .

[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

[3] All specified values are the average typical values over all stated loads.

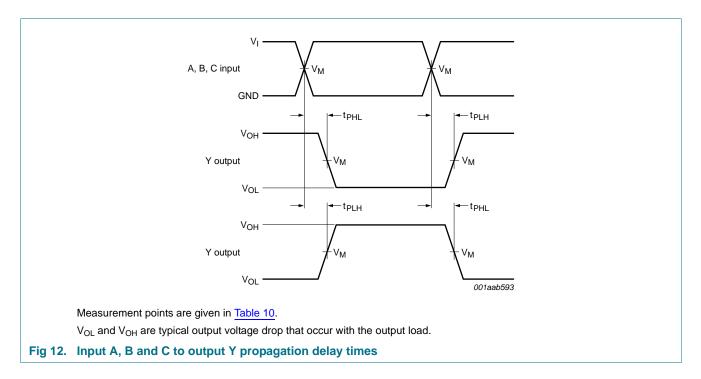
[4] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 f_i = input frequency in MHz;

 f_o = output frequency in MHz;

 C_L = load capacitance in pF;


 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

Low-power configurable multiple function gate

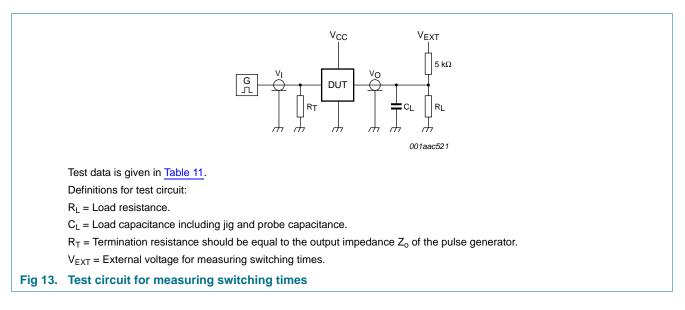

12. Waveforms

Table 10. Measurement points

Supply voltage	Output	Input		
V _{CC}	V _M	V _M	VI	t _r = t _f
0.8 V to 3.6 V	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	V _{CC}	≤ 3.0 ns

Low-power configurable multiple function gate

Table 11. Test data

Supply voltage	Load		V _{EXT}		
V _{cc}	CL	R _L [1]	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
0.8 V to 3.6 V	5 pF, 10 pF, 15 pF and 30 pF	5 k Ω or 1 M Ω	open	GND	$2 \times V_{CC}$

[1] For measuring enable and disable times $R_L = 5 k\Omega$, for measuring propagation delays, setup and hold times and pulse width $R_L = 1 M\Omega$.

Low-power configurable multiple function gate

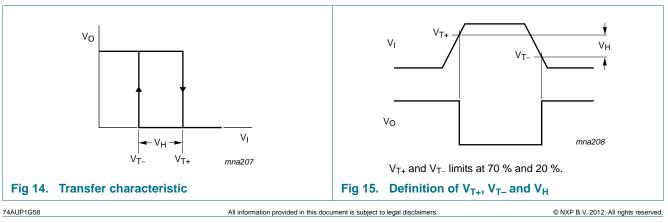
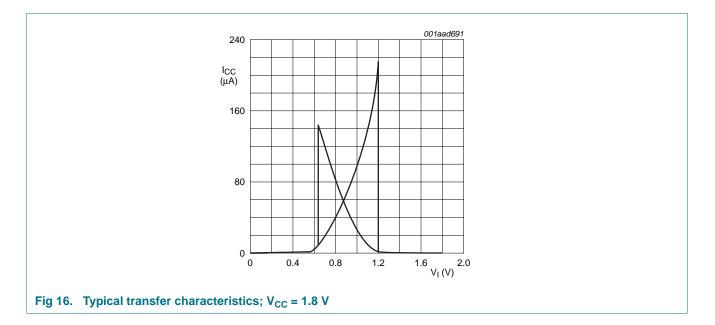
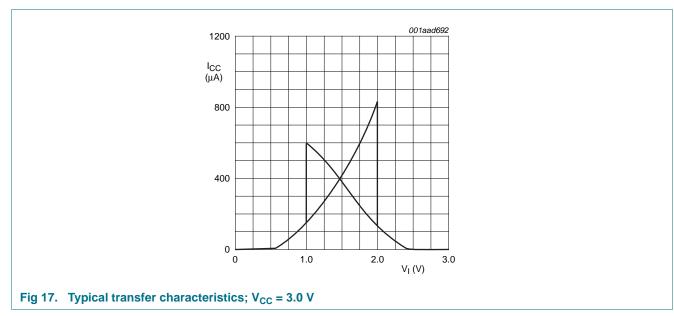

13. Transfer characteristics

Table 12. Transfer characteristics

Voltages are referenced to GND (ground = 0 V; for test circuit see Figure 13.

Symbol	Parameter	Conditions	25 °C			-40	Unit		
			Min	Тур	Мах	Min	Max (85 °C)	Max (125 °C)	_
V_{T+}	positive-going threshold voltage	see <u>Figure 14</u> and Figure 15							
		$V_{CC} = 0.8 V$	0.30	-	0.60	0.30	0.60	0.62	V
		V _{CC} = 1.1 V	0.53	-	0.90	0.53	0.90	0.92	V
		$V_{CC} = 1.4 V$	0.74	-	1.11	0.74	1.11	1.13	V
		V _{CC} = 1.65 V	0.91	-	1.29	0.91	1.29	1.31	V
		$V_{CC} = 2.3 V$	1.37	-	1.77	1.37	1.77	1.80	V
		$V_{CC} = 3.0 V$	1.88	-	2.29	1.88	2.29	2.32	V
V _{T-}	negative-going threshold voltage	see <u>Figure 14</u> and <u>Figure 15</u>							
		$V_{CC} = 0.8 V$	0.10	-	0.60	0.10	0.60	0.60	V
		V _{CC} = 1.1 V	0.26	-	0.65	0.26	0.65	0.65	V
		$V_{CC} = 1.4 V$	0.39	-	0.75	0.39	0.75	0.75	V
		V _{CC} = 1.65 V	0.47	-	0.84	0.47	0.84	0.84	V
		$V_{CC} = 2.3 V$	0.69	-	1.04	0.69	1.04	1.04	V
		$V_{CC} = 3.0 V$	0.88	-	1.24	0.88	1.24	1.24	V
V _H	hysteresis voltage	(V _{T+} – V _{T-}); see <u>Figure 14,</u> <u>Figure 15,</u> <u>Figure 16</u> and <u>Figure 17</u>							
		$V_{CC} = 0.8 V$	0.07	-	0.50	0.07	0.50	0.50	V
		V _{CC} = 1.1 V	0.08	-	0.46	0.08	0.46	0.46	V
		V _{CC} = 1.4 V	0.18	-	0.56	0.18	0.56	0.56	V
		V _{CC} = 1.65 V	0.27	-	0.66	0.27	0.66	0.66	V
		$V_{CC} = 2.3 V$	0.53	-	0.92	0.53	0.92	0.92	V
		$V_{CC} = 3.0 V$	0.79	-	1.31	0.79	1.31	1.31	V


14. Waveforms transfer characteristics



NXP Semiconductors

74AUP1G58

Low-power configurable multiple function gate

NXP Semiconductors

74AUP1G58

Low-power configurable multiple function gate

15. Package outline

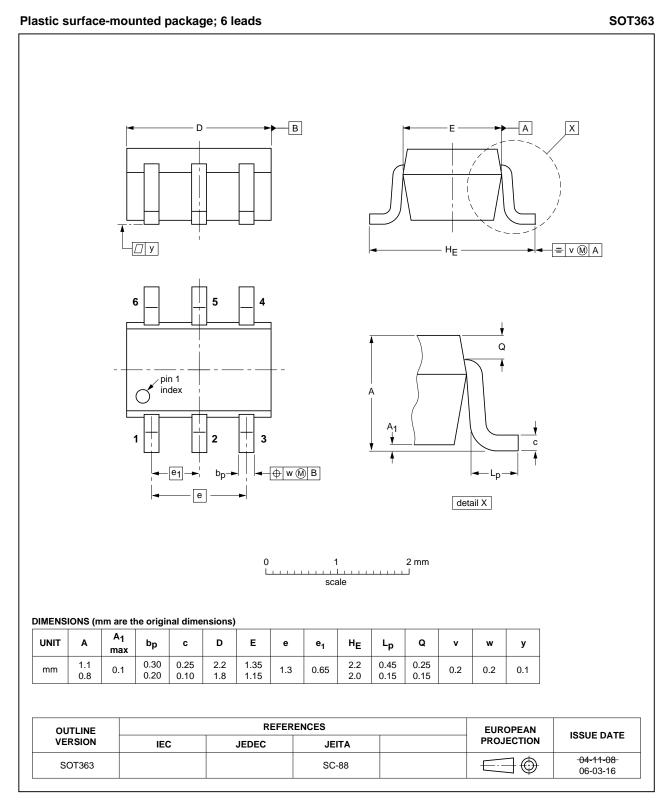
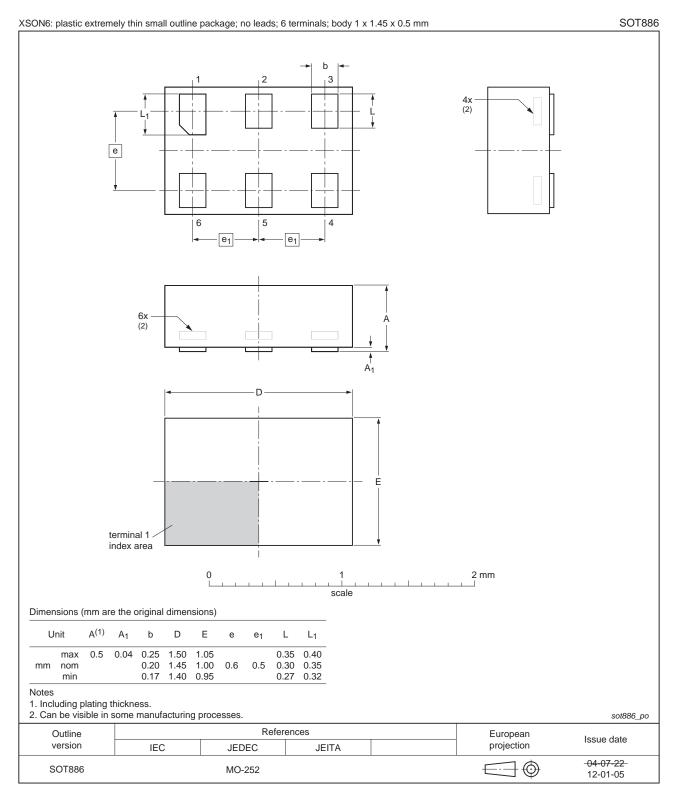



Fig 18. Package outline SOT363 (SC-88)

All information provided in this document is subject to legal disclaimers.

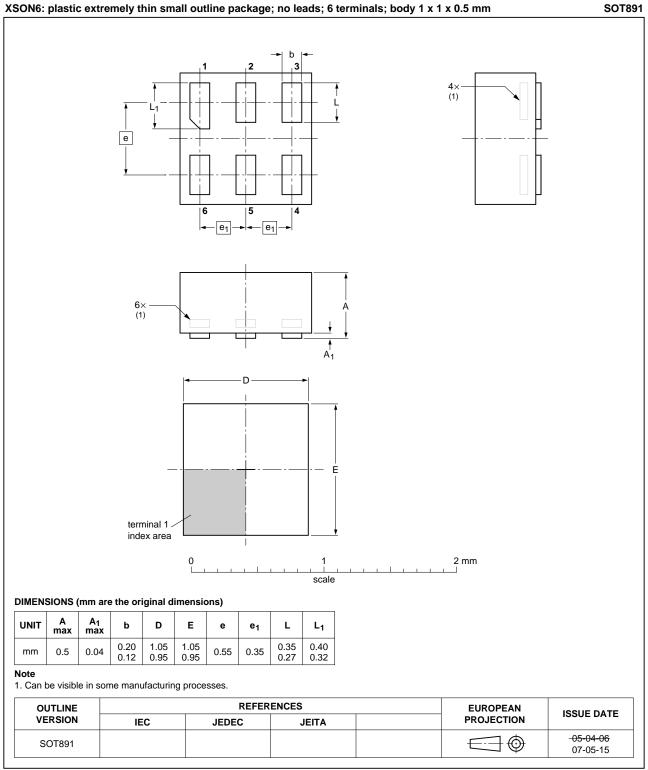
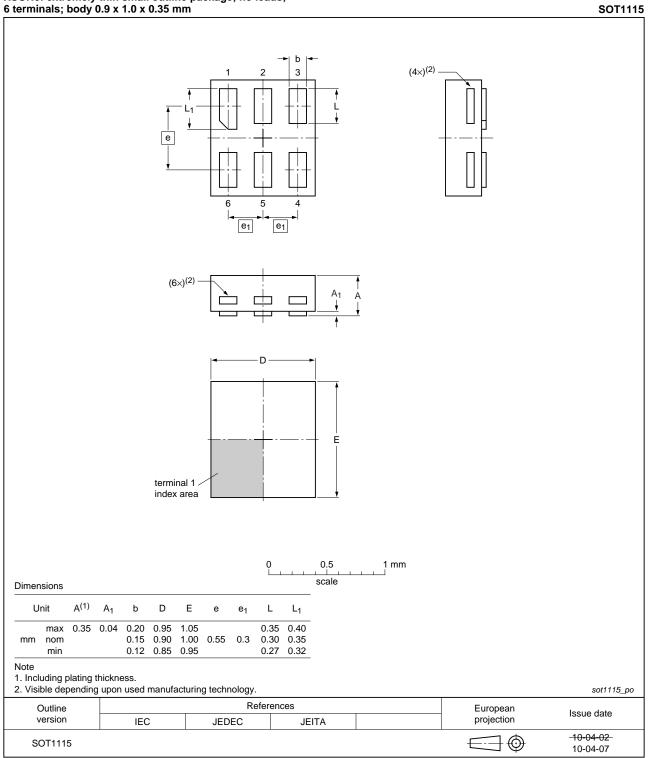

Low-power configurable multiple function gate

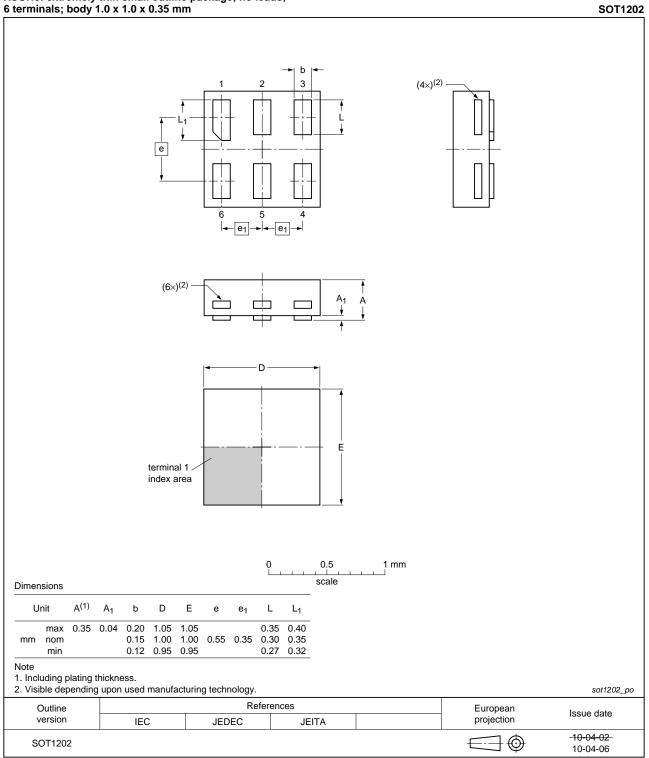
Fig 19. Package outline SOT886 (XSON6)


All information provided in this document is subject to legal disclaimers.

Low-power configurable multiple function gate

Fig 20. Package outline SOT891 (XSON6)

Low-power configurable multiple function gate



XSON6: extremely thin small outline package; no leads; 6 terminals; body 0.9 x 1.0 x 0.35 mm

Fig 21. Package outline SOT1115 (XSON6)

All information provided in this document is subject to legal disclaimers.

Low-power configurable multiple function gate

XSON6: extremely thin small outline package; no leads; 6 terminals; body 1.0 x 1.0 x 0.35 mm

Fig 22. Package outline SOT1202 (XSON6)

All information	provided in	this	document	is	subject	to	legal	disclain	ner

Low-power configurable multiple function gate

16. Abbreviations

Acronym CDM DUT	Description Charged Device Model
	-
DOT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model

17. Revision history

Table 14. Revision history **Document ID Release date** Data sheet status **Change notice** Supersedes 74AUP1G58 v.6 20120815 Product data sheet 74AUP1G58 v.5 Modifications: Package outline drawing of SOT886 (Figure 19) modified. 74AUP1G58 v.5 20111129 Product data sheet 74AUP1G58 v.4 -74AUP1G58 v.4 20101011 Product data sheet 74AUP1G58 v.3 -74AUP1G58 v.3 20090622 Product data sheet 74AUP1G58 v.2 -74AUP1G58 v.2 20090326 Product data sheet 74AUP1G58 v.1 -74AUP1G58 v.1 20070131 Product data sheet _ -

Low-power configurable multiple function gate

18. Legal information

18.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

18.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

18.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Low-power configurable multiple function gate

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

18.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

19. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

21 of 22

Low-power configurable multiple function gate

20. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 2
4	Marking 2
5	Functional diagram 2
6	Pinning information 3
6.1	Pinning
6.2	Pin description 3
7	Functional description 3
7.1	Logic configurations 4
8	Limiting values 5
9	Recommended operating conditions 5
10	Static characteristics 6
11	Dynamic characteristics 8
12	Waveforms
13	Transfer characteristics 12
14	Waveforms transfer characteristics 12
15	Package outline 14
16	Abbreviations 19
17	Revision history 19
18	Legal information 20
18.1	Data sheet status 20
18.2	Definitions 20
18.3	Disclaimers
18.4	Trademarks
19	Contact information 21
20	Contents 22

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2012.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 15 August 2012 Document identifier: 74AUP1G58