Low-power configurable gate with voltage-level translatorRev. 4 — 15 august 2012Product data sheet

1. General description

The 74AUP1T98 provides low-power, low-voltage configurable logic gate functions. The output state is determined by eight patterns of 3-bit input. The user can choose the logic functions MUX, AND, OR, NAND, NOR, inverter and buffer. All inputs can be connected to V_{CC} or GND.

This device ensures a very low static and dynamic power consumption across the entire V_{CC} range from 2.3 V to 3.6 V.

The 74AUP1T98 is designed for logic-level translation applications with input switching levels that accept 1.8 V low-voltage CMOS signals, while operating from either a single 2.5 V or 3.3 V supply voltage.

The wide supply voltage range ensures normal operation as battery voltage drops from 3.6 V to 2.3 V.

This device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

Schmitt trigger inputs make the circuit tolerant to slower input rise and fall times across the entire V_{CC} range.

2. Features and benefits

- Wide supply voltage range from 2.3 V to 3.6 V
- High noise immunity
- ESD protection:
 - HBM JESD22-A114F Class 3A exceeds 5000 V
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101E exceeds 1000 V
- Low static power consumption; I_{CC} = 1.5 μA (maximum)
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 3.6 V
- Low noise overshoot and undershoot < 10 % of V_{CC}
- I_{OFF} circuitry provides partial power-down mode operation
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

Low-power configurable gate with voltage-level translator

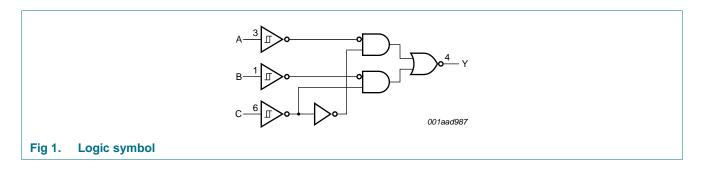
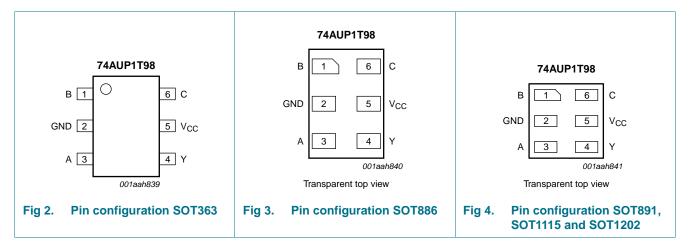

3. Ordering information

Table 1. Ordering information								
Type number	Package							
	Temperature range	Name	Description	Version				
74AUP1T98GW	–40 °C to +125 °C	SC-88	plastic surface-mounted package; 6 leads	SOT363				
74AUP1T98GM	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1.45 \times 0.5 mm	SOT886				
74AUP1T98GF	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1 \times 0.5 mm	SOT891				
74AUP1T98GN	–40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body $0.9 \times 1.0 \times 0.35$ mm	SOT1115				
74AUP1T98GS	–40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body $1.0 \times 1.0 \times 0.35$ mm	SOT1202				

4. Marking

Table 2. Marking	
Type number	Marking code
74AUP1T98GW	aR
74AUP1T98GM	aR
74AUP1T98GF	aR
74AUP1T98GN	aR
74AUP1T98GS	aR


5. Functional diagram

Low-power configurable gate with voltage-level translator

6. Pinning information

6.1 Pinning

6.2 Pin description

Symbol	Pin	Description
		- company
В	1	data input
GND	2	ground (0 V)
A	3	data input
Y	4	data output
V _{CC}	5	supply voltage
С	6	data input

7. Functional description

Table 4.	Function table ^[1]		
Input			Output
С	В	Α	Y
L	L	L	Н
L	L	Н	Н
L	н	L	L
L	н	Н	L
Н	L	L	Н
Н	L	Н	L
Н	Н	L	Н
Н	Н	Н	L

[1] H = HIGH voltage level; L = LOW voltage level.

74AUP1T98

Low-power configurable gate with voltage-level translator

7.1 Logic configurations

Table 5.Function selection table

Logic function	Figure
2-input MUX (inverting)	see <u>Figure 5</u>
2-input NAND	see <u>Figure 6</u>
2-input NOR with one input inverted	see Figure 7
2-input AND with one input inverted	see Figure 7
2-input NAND with one input inverted	see Figure 8
2-input OR with one input inverted	see Figure 8
2-input NOR	see Figure 9
Buffer	see Figure 10
Inverter	see Figure 11

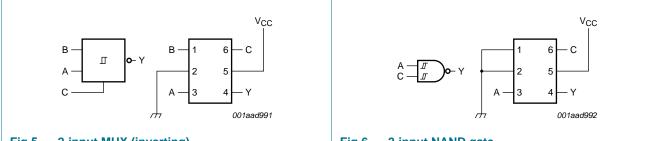


Fig 5. 2-input MUX (inverting)

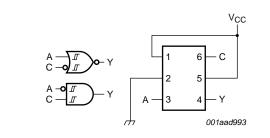


Fig 7. 2-input AND gate with input A inverted or 2-input NOR gate with input C inverted

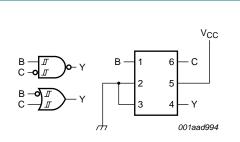
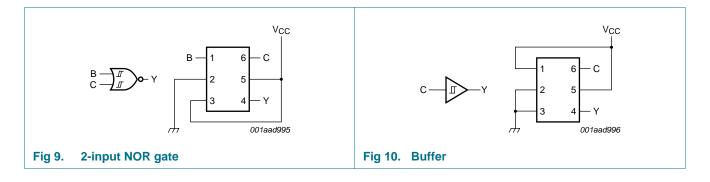




Fig 8. 2-input OR gate with input B inverted or 2-input NAND gate with input C inverted

Low-power configurable gate with voltage-level translator

Limiting values 8.

Table 6. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+4.6	V
I _{IK}	input clamping current	$V_{l} < 0 V$	-50	-	mA
VI	input voltage		<u>[1]</u> –0.5	+4.6	V
Ι _{ΟΚ}	output clamping current	V _O < 0 V	-50	-	mA
Vo	output voltage	Active mode and Power-down mode	<u>[1]</u> –0.5	+4.6	V
lo	output current	$V_{O} = 0 V$ to V_{CC}	-	±20	mA
I _{CC}	supply current		-	+50	mA
I _{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C$ to +125 $^{\circ}C$	[2] _	250	mW

[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For SC-88 package: above 87.5 °C the value of Ptot derates linearly with 4.0 mW/K.

For XSON6 packages: above 118 °C the value of Ptot derates linearly with 7.8 mW/K.

9. **Recommended operating conditions**

Table 7. **Recommended operating conditions** Conditions Symbol Parameter Min Max supply voltage 2.3 3.6 Vcc input voltage 0 3.6 VI Vo output voltage Active mode 0 V_{CC} Power-down mode; $V_{CC} = 0 V$ 0 3.6 -40 Tamb ambient temperature +125

Unit

V

V

V

V

°C

Low-power configurable gate with voltage-level translator

10. Static characteristics

Table 8. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 2	S ℃					
V _{T+}	positive-going threshold	V_{CC} = 2.3 V to 2.7 V	0.60	-	1.10	V
	voltage	$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	0.75	-	1.16	V
V _{T-}	negative-going threshold	V_{CC} = 2.3 V to 2.7 V	0.35	-	0.60	V
	voltage	$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	0.50	-	0.85	V
V _H	hysteresis voltage	$(V_H=V_{T+}-V_{T-})$				
		V_{CC} = 2.3 V to 2.7 V	0.23	-	0.60	V
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	0.25	-	0.56	V
V _{OH}	HIGH-level output voltage	$V_I = V_{T+} \text{ or } V_{T-}$				
		I_{O} = –20 $\mu A;~V_{CC}$ = 2.3 V to 3.6 V	$V_{CC}-0.1$	-	-	V
		$I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	2.05	-	-	V
		$I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.9	-	-	V
		$I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.72	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.6	-	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{T+}$ or V_{T-}				
		I_0 = 20 μ A; V_{CC} = 2.3 V to 3.6 V	-	-	0.10	V
		$I_0 = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.31	V
		$I_0 = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.44	V
		$I_0 = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.31	V
		$I_0 = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.44	V
I _I	input leakage current	$V_I = GND$ to 3.6 V; $V_{CC} = 0$ V to 3.6 V	-	-	±0.1	μA
I _{OFF}	power-off leakage current	V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC} = 0$ V	-	-	±0.1	μA
ΔI_{OFF}	additional power-off leakage current	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V to } 0.2 \text{ V}$	-	-	±0.2	μΑ
I _{CC}	supply current	$V_{I} = \text{GND or } V_{\text{CC}}; I_{\text{O}} = 0 \text{ A};$ $V_{\text{CC}} = 2.3 \text{ V to } 3.6 \text{ V}$	-	-	1.2	μA
CI	input capacitance	V_{CC} = 0 V to 3.6 V; V_I = GND or V_{CC}	-	0.8	-	pF
Co	output capacitance	$V_O = GND; V_{CC} = 0 V$	-	1.7	-	pF
T _{amb} = -	40 °C to +85 °C					
V _{T+}	positive-going threshold	V_{CC} = 2.3 V to 2.7 V	0.60	-	1.10	V
	voltage	$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	0.75	-	1.19	V
V _{T-}	negative-going threshold	V_{CC} = 2.3 V to 2.7 V	0.35	-	0.60	V
	voltage	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	0.50	-	0.85	V
V _H	hysteresis voltage	$(V_{H} = V_{T+} - V_{T-})$				
		V_{CC} = 2.3 V to 2.7 V	0.10	-	0.60	V
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	0.15			

74AUP1T98

Low-power configurable gate with voltage-level translator

Table 8. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{он}	HIGH-level output voltage	$V_I = V_{T+}$ or V_{T-}				
		I_{O} = –20 $\mu A; V_{CC}$ = 2.3 V to 3.6 V	$V_{CC}-0.1$	-	-	V
		I_{O} = -2.3 mA; V_{CC} = 2.3 V	1.97	-	-	V
		$I_0 = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.85	-	-	V
		$I_0 = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.67	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.55	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{T+}$ or V_{T-}				
		I_{O} = 20 $\mu A;$ V_{CC} = 2.3 V to 3.6 V	-	-	0.1	V
		I_{O} = 2.3 mA; V_{CC} = 2.3 V	-	-	0.33	V
		I_{O} = 3.1 mA; V_{CC} = 2.3 V	-	-	0.45	V
		$I_0 = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.33	V
		I_{O} = 4.0 mA; V_{CC} = 3.0 V	-	-	0.45	V
I _I	input leakage current	$V_{\rm I}$ = GND to 3.6 V; $V_{\rm CC}$ = 0 V to 3.6 V	-	-	±0.5	μΑ
I _{OFF}	power-off leakage current	V_{I} or V_{O} = 0 V to 3.6 V; V_{CC} = 0 V	-	-	±0.5	μΑ
ΔI_{OFF}	additional power-off leakage current	V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC} = 0$ V to 0.2 V	-	-	±0.5	μA
I _{CC}	supply current	$V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \text{ A};$ $V_{CC} = 2.3 \text{ V to } 3.6 \text{ V}$	-	-	1.5	μΑ
Δl _{CC}	additional supply current	V_{CC} = 2.3 V to 2.7 V; I_{O} = 0 A	<u>[1]</u> -	-	4	μΑ
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}; I_{O} = 0 \text{ A}$	[2] _	-	12	μA
T _{amb} = -	40 °C to +125 °C					
V _{T+}	positive-going threshold	V_{CC} = 2.3 V to 2.7 V	0.60	-	1.10	V
	voltage	$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	0.75	-	1.19	V
V _{T-}	negative-going threshold	V_{CC} = 2.3 V to 2.7 V	0.33	-	0.64	V
	voltage	$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	0.46	-	0.85	V
V _H	hysteresis voltage	$(V_{H} = V_{T+} - V_{T-})$				
		V_{CC} = 2.3 V to 2.7 V	0.10	-	0.60	V
		$V_{CC} = 3.0 V \text{ to } 3.6 V$	0.15	-	0.56	V
V _{OH}	HIGH-level output voltage	$V_I = V_{T+}$ or V_{T-}				
		I_{O} = –20 $\mu\text{A};V_{CC}$ = 2.3 V to 3.6 V	$V_{CC}-0.11$	-	-	V
		$I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.77	-	-	V
		$I_0 = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.67	-	-	V
		$I_0 = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.40	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.30	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{T+}$ or V_{T-}				
		I_{O} = 20 $\mu A; V_{CC}$ = 2.3 V to 3.6 V	-	-	0.11	V
		$I_0 = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.36	V
		$I_0 = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.50	V
		I_{O} = 2.7 mA; V_{CC} = 3.0 V	-	-	0.36	V
		I_{O} = 4.0 mA; V_{CC} = 3.0 V	-	-	0.50	V
I _I	input leakage current	$V_{\rm I}$ = GND to 3.6 V; $V_{\rm CC}$ = 0 V to 3.6 V	-	-	±0.75	μΑ
4AUP1T98		All information provided in this document is subject to legal discla	aimers.		© NXP B.V. 2012. A	l rights reserve

Low-power configurable gate with voltage-level translator

At recom	mended operating conditions	s; voltages are referenced to GND (grou	und = 0 V).			
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{OFF}	power-off leakage current	$V_{I} \text{ or } V_{O}$ = 0 V to 3.6 V; V_{CC} = 0 V	-	-	±0.75	μA
ΔI_{OFF}	additional power-off leakage current	V_{I} or $V_{O} = 0$ V to 3.6 V; $V_{CC} = 0$ V to 0.2 V	-	-	±0.75	μA
I _{CC}	supply current	$V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \text{ A};$ $V_{CC} = 2.3 \text{ V to } 3.6 \text{ V}$	-	-	3.5	μA
ΔI_{CC}	additional supply current	V_{CC} = 2.3 V to 2.7 V; I_O = 0 A	<u>[1]</u> -	-	7	μA
		$V_{CC} = 3.0 \text{ V}$ to 3.6 V; $I_{O} = 0 \text{ A}$	[2] _	-	22	μA

Table 8. Static characteristics ... continued

[1] One input at 0.3 V or 1.1 V, other input at $V_{CC} \mbox{ or GND}.$

[2] One input at 0.45 V or 1.2 V, other input at V_{CC} or GND.

11. Dynamic characteristics

Table 9. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 13.

o 2.7 V; V _I = 2.3	A, B, C to Y; see Figure 12 $C_L = 5 \text{ pF}$ $C_L = 10 \text{ pF}$ $C_L = 15 \text{ pF}$ $C_L = 30 \text{ pF}$	[2]	Min 2.0 2.5 2.9 3.9 1.7 2.1 2.5	Typ ^[1] 3.6 4.2 4.6 5.8 3.4 4.0	Max 5.7 6.3 6.9 8.3 5.6 6.3	Min 0.5 1.0 1.5 0.5 1.0	Max (85 °C) 6.8 7.9 8.7 10.8 6.0	Max (125 °C) 7.5 8.7 9.6 11.9 6.6	ns ns ns ns ns
pagation delay to 2.7 V; V _I = 2.3	$ \begin{array}{c} \text{A, B, C to Y; see Figure 12} \\ \hline C_L = 5 \text{ pF} \\ \hline C_L = 10 \text{ pF} \\ \hline C_L = 15 \text{ pF} \\ \hline C_L = 30 \text{ pF} \\ \hline \end{array} \\ \hline \begin{array}{c} \text{SV to 2.7 V} \\ \text{A, B, C to Y; see Figure 12} \\ \hline \end{array} \\ \hline \\ \hline \\ C_L = 5 \text{ pF} \\ \hline \end{array} \\ \hline \\ \hline \\ C_L = 10 \text{ pF} \\ \hline \end{array} \\ \hline \\ \hline \\ \hline \\ C_L = 15 \text{ pF} \\ \hline \end{array} $		2.5 2.9 3.9 1.7 2.1	4.2 4.6 5.8 3.4	6.3 6.9 8.3 5.6	1.0 1.0 1.5 0.5	7.9 8.7 10.8 6.0	8.7 9.6 11.9	ns ns ns
o 2.7 V; V _I = 2.3	$C_{L} = 5 \text{ pF}$ $C_{L} = 10 \text{ pF}$ $C_{L} = 15 \text{ pF}$ $C_{L} = 30 \text{ pF}$ 3 V to 2.7 V $A, B, C \text{ to Y; see Figure 12}$ $C_{L} = 5 \text{ pF}$ $C_{L} = 10 \text{ pF}$ $C_{L} = 15 \text{ pF}$		2.5 2.9 3.9 1.7 2.1	4.2 4.6 5.8 3.4	6.3 6.9 8.3 5.6	1.0 1.0 1.5 0.5	7.9 8.7 10.8 6.0	8.7 9.6 11.9	ns ns ns
-	$C_{L} = 10 \text{ pF}$ $C_{L} = 15 \text{ pF}$ $C_{L} = 30 \text{ pF}$ 3 V to 2.7 V A, B, C to Y; see Figure 12 $C_{L} = 5 \text{ pF}$ $C_{L} = 10 \text{ pF}$ $C_{L} = 15 \text{ pF}$	[2]	2.5 2.9 3.9 1.7 2.1	4.2 4.6 5.8 3.4	6.3 6.9 8.3 5.6	1.0 1.0 1.5 0.5	7.9 8.7 10.8 6.0	8.7 9.6 11.9	ns ns ns
-	$C_{L} = 15 \text{ pF}$ $C_{L} = 30 \text{ pF}$ 3 V to 2.7 V A, B, C to Y; see Figure 12 $C_{L} = 5 \text{ pF}$ $C_{L} = 10 \text{ pF}$ $C_{L} = 15 \text{ pF}$	[2]	2.9 3.9 1.7 2.1	4.6 5.8 3.4	6.9 8.3 5.6	1.0 1.5 0.5	8.7 10.8 6.0	9.6 11.9	ns ns
-	$C_{L} = 30 \text{ pF}$ 3 V to 2.7 V A, B, C to Y; see Figure 12 C_{L} = 5 \text{ pF} C_{L} = 10 \text{ pF} C_{L} = 15 \text{ pF}	[2]	3.9 1.7 2.1	5.8	8.3 5.6	1.5 0.5	10.8 6.0	11.9	ns
-		[2]	1.7 2.1	3.4	5.6	0.5	6.0		
-	A, B, C to Y; see Figure 12 $C_L = 5 \text{ pF}$ $C_L = 10 \text{ pF}$ $C_L = 15 \text{ pF}$	[2]	2.1					6.6	ns
pagation delay	$C_L = 5 \text{ pF}$ $C_L = 10 \text{ pF}$ $C_L = 15 \text{ pF}$	[2]	2.1					6.6	ns
	$C_L = 10 \text{ pF}$ $C_L = 15 \text{ pF}$		2.1					6.6	ns
	C _L = 15 pF			4.0	6.3	10	74		
			25			1.0	7.1	7.9	ns
	C = 20 pE		2.5	4.5	6.9	1.0	7.9	8.7	ns
	$C_L = 30 \text{pr}$		3.4	5.6	8.4	1.5	10.0	11.0	ns
o 2.7 V; V _I = 3.0) V to 3.6 V								
propagation delay	A, B, C to Y; see Figure 12	[2]							
	C _L = 5 pF		1.3	3.2	5.2	0.5	5.5	6.1	ns
	C _L = 10 pF		1.8	3.7	5.9	1.0	6.5	7.2	ns
	C _L = 15 pF		2.2	4.2	6.5	1.0	7.4	8.2	ns
	C _L = 30 pF		3.1	5.4	7.9	1.5	9.5	10.5	ns
:o 3.6 V; V _I = 1.6	65 V to 1.95 V								
pagation delay	A, B, C to Y; see Figure 12	[2]							
	C _L = 5 pF		2.0	2.9	4.1	0.5	8.0	8.8	ns
	C _L = 10 pF		2.4	3.5	4.8	1.0	8.5	9.4	ns
	C _L = 15 pF		2.8	3.9	5.4	1.0	9.1	10.1	ns
	C _L = 30 pF		3.6	5.1	6.9	1.5	9.8	10.8	ns
		$C_{L} = 30 \text{ pF}$ $c_{L} = 5 \text{ pF}$ $c_{L} = 10 \text{ pF}$ $c_{L} = 15 \text{ pF}$	$C_{L} = 30 \text{ pF}$ $c_{L} = 5 \text{ pF}$ $c_{L} = 10 \text{ pF}$ $c_{L} = 15 \text{ pF}$	$C_{L} = 30 \text{ pF} \qquad 3.1$ $c_{L} = 30 \text{ pF} \qquad 3.1$ $c_{L} = 30 \text{ pF} \qquad 3.1$ $c_{L} = 30 \text{ pF} \qquad 2.0$ $C_{L} = 5 \text{ pF} \qquad 2.0$ $C_{L} = 10 \text{ pF} \qquad 2.4$ $C_{L} = 15 \text{ pF} \qquad 2.8$	$C_{L} = 30 \text{ pF} \qquad 3.1 \qquad 5.4$ $D 3.6 \text{ V; } \text{V}_{I} = 1.65 \text{ V to } 1.95 \text{ V}$ $D agation delay \qquad A, B, C \text{ to } \text{ Y; see Figure } 12 \qquad [2] \qquad C_{L} = 5 \text{ pF} \qquad 2.0 \qquad 2.9 \qquad C_{L} = 10 \text{ pF} \qquad 2.4 \qquad 3.5 \qquad C_{L} = 15 \text{ pF} \qquad 2.8 \qquad 3.9 \qquad (C_{L} = 15 \text{ pF} \qquad 2.8 \qquad 3.9 \qquad (C_{L} = 10 \text{ pF} \qquad 2.8 \qquad 3.9 \qquad (C_{L} = 10 \text{ pF} \qquad 2.8 \qquad 3.9 \qquad (C_{L} = 10 \text{ pF} \qquad 2.8 \qquad 3.9 \qquad (C_{L} = 10 \text{ pF} \qquad 2.8 \qquad 3.9 \qquad (C_{L} = 10 \text{ pF} \qquad 2.8 \qquad 3.9 \qquad (C_{L} = 10 \text{ pF} \qquad 2.8 \qquad 3.9 \qquad (C_{L} = 10 \text{ pF} \qquad 2.8 \qquad 3.9 \qquad (C_{L} = 10 \text{ pF} \qquad 2.8 \qquad 3.9 \qquad (C_{L} = 10 \text{ pF} \qquad 2.8 \qquad 3.9 \qquad (C_{L} = 10 \text{ pF} \qquad 2.8 \qquad 3.9 \qquad (C_{L} = 10 \text{ pF} \qquad 2.8 \qquad 3.9 \qquad (C_{L} = 10 \text{ pF} \qquad 2.8 \qquad 3.9 \qquad (C_{L} = 10 \text{ pF} \qquad 2.8 \qquad 3.9 \qquad (C_{L} = 10 \text{ pF} \qquad 2.8 \qquad 3.9 \qquad (C_{L} = 10 \text{ pF} \qquad 2.8 \qquad 3.9 \qquad (C_{L} = 10 \text{ pF} \qquad C_{L} = 10 $	$C_{L} = 30 \text{ pF} \qquad 3.1 \qquad 5.4 \qquad 7.9$ $D 3.6 \text{ V; V}_{I} = 1.65 \text{ V to } 1.95 \text{ V}$ $C_{L} = 5 \text{ pF} \qquad 2.0 \qquad 2.9 \qquad 4.1$ $C_{L} = 10 \text{ pF} \qquad 2.4 \qquad 3.5 \qquad 4.8$ $C_{L} = 15 \text{ pF} \qquad 2.8 \qquad 3.9 \qquad 5.4$	$C_{L} = 30 \text{ pF} \qquad 3.1 \qquad 5.4 \qquad 7.9 \qquad 1.5$ $D 3.6 \text{ V; V}_{I} = 1.65 \text{ V to } 1.95 \text{ V}$ $D agation delay \qquad A, B, C \text{ to } Y; \text{ see Figure } 12 \qquad [2] \qquad \qquad$	$C_L = 30 \text{ pF}$ 3.1 5.4 7.9 1.5 9.5 o 3.6 V; V_I = 1.65 V to 1.95 V pagation delay A, B, C to Y; see Figure 12 [2] $C_L = 5 \text{ pF}$ 2.0 2.9 4.1 0.5 8.0 $C_L = 10 \text{ pF}$ 2.4 3.5 4.8 1.0 8.5 $C_L = 15 \text{ pF}$ 2.8 3.9 5.4 1.0 9.1	$C_{L} = 30 \text{ pF} \qquad 3.1 \qquad 5.4 \qquad 7.9 \qquad 1.5 \qquad 9.5 \qquad 10.5$ $pagation delay \qquad A, B, C to Y; see Figure 12 \qquad [2] \qquad \qquad$

74AUP1T98 Product data sheet

Low-power configurable gate with voltage-level translator

Symbol	Parameter	Conditions		25 °C		–40 °C to +125 °C			Unit
			Min	Typ <mark>[1]</mark>	Max	Min	Max (85 °C)	Max (125 °C)	
V _{CC} = 3.	0 V to 3.6 V; V _I = 2.3	3 V to 2.7 V		1					
t _{pd}	propagation delay	A, B, C to Y; see Figure 12	[2]						
		$C_L = 5 \text{ pF}$	1.5	2.8	4.4	0.5	5.3	5.9	ns
		C _L = 10 pF	2.0	3.4	5.1	1.0	6.1	6.8	ns
		C _L = 15 pF	2.4	3.9	5.7	1.0	6.8	7.5	ns
		C _L = 30 pF	3.4	5.0	7.2	1.5	8.5	9.4	ns
$V_{\rm CC} = 3.$	0 V to 3.6 V; V _I = 3.0) V to 3.6 V							
t _{pd}	propagation delay	A, B, C to Y; see Figure 12	[2]						
		C _L = 5 pF	1.3	2.8	4.4	0.5	4.7	5.2	ns
		C _L = 10 pF	1.7	3.3	5.2	1.0	5.7	6.3	ns
		C _L = 15 pF	2.1	3.8	5.8	1.0	6.2	6.9	ns
		C _L = 30 pF	3.1	5.0	7.2	1.5	7.8	8.6	ns
T _{amb} = 2	25 °C								
C _{PD}	power dissipation	$f_i = 1 \text{ MHz}; V_I = \text{GND to } V_{CC}$	[3]						
	capacitance	V_{CC} = 2.3 V to 2.7 V	-	3.6	-	-	-	-	pF
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	-	4.3	-	-	-	-	pF

Table 9. Dynamic characteristics ...continued

[1] All typical values are measured at nominal V_{CC} .

[2] t_{pd} is the same as t_{PLH} and t_{PHL}

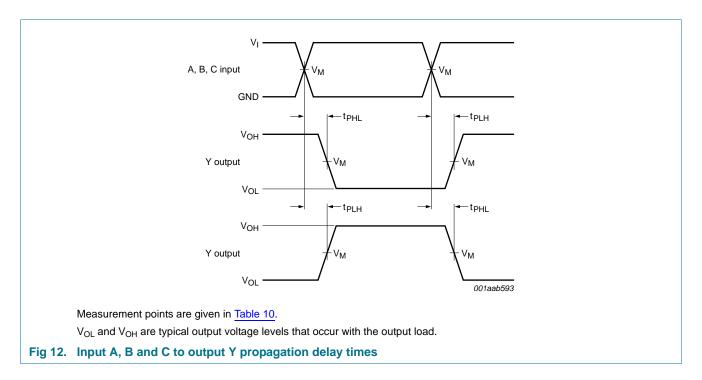
[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $\mathsf{P}_{\mathsf{D}} = \mathsf{C}_{\mathsf{P}\mathsf{D}} \times \mathsf{V}_{\mathsf{C}\mathsf{C}}^2 \times \mathsf{f}_i \times \mathsf{N} + \Sigma(\mathsf{C}_{\mathsf{L}} \times \mathsf{V}_{\mathsf{C}\mathsf{C}}^2 \times \mathsf{f}_o) \text{ where:}$

 $f_i = input frequency in MHz;$

 f_o = output frequency in MHz;

 C_L = output load capacitance in pF;


V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}{}^2 \times f_o)$ = sum of the outputs.

Low-power configurable gate with voltage-level translator

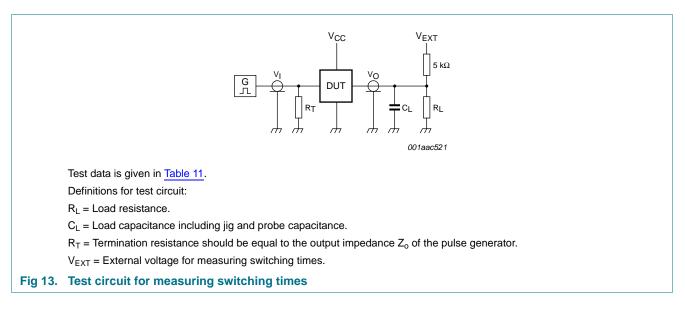

12. Waveforms

Table 10. Measurement points

Supply voltage	Output	Input					
V _{CC}	V _M	V _M	VI	t _r = t _f			
2.3 V to 3.6 V	$0.5 \times V_{CC}$	$0.5 \times V_I$	1.65 V to 3.6 V	≤ 3.0 ns			

Low-power configurable gate with voltage-level translator

Table 11. Test data

Supply voltage	Load		V _{EXT}		
V _{cc}	CL	R _L [1]	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
2.3 V to 3.6 V	5 pF, 10 pF, 15 pF and 30 pF	5 k Ω or 1 M Ω	open	GND	$2 \times V_{CC}$

[1] For measuring enable and disable times $R_L = 5 k\Omega$, for measuring propagation delays, setup and hold times and pulse width $R_L = 1 M\Omega$.

74AUP1T98

Low-power configurable gate with voltage-level translator

13. Package outline

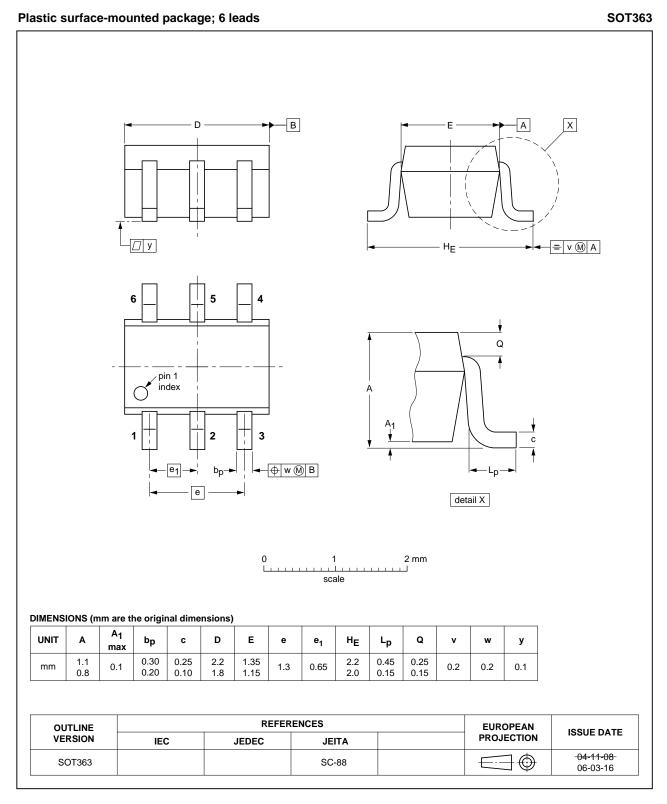
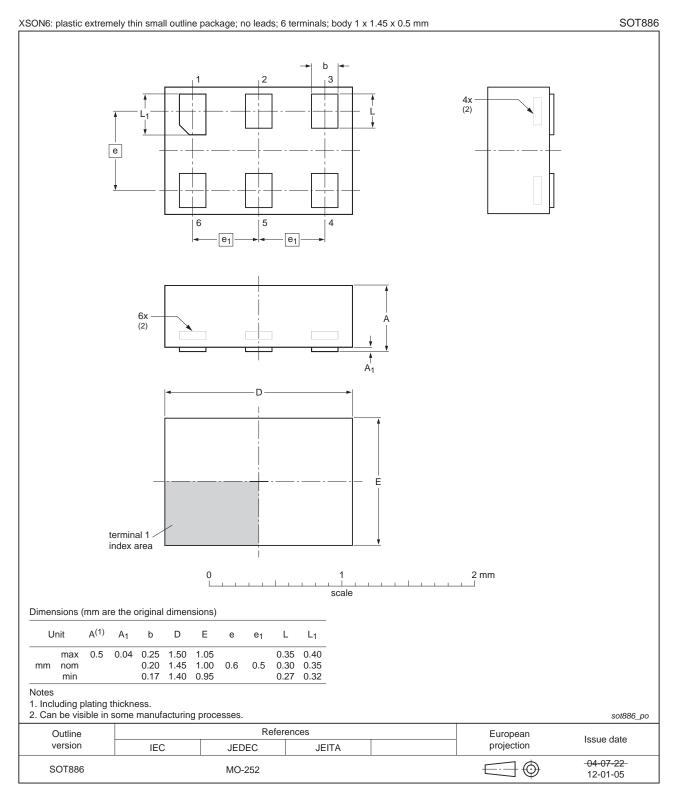



Fig 14. Package outline SOT363 (SC-88)

All information provided in this document is subject to legal disclaimers.

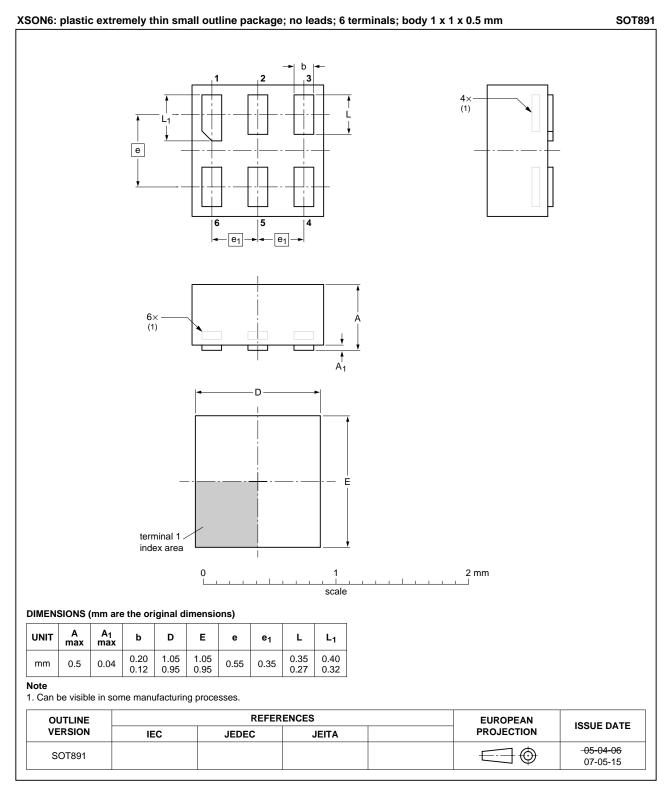

Low-power configurable gate with voltage-level translator

Fig 15. Package outline SOT886 (XSON6)

All information provided in this document is subject to legal disclaimers.

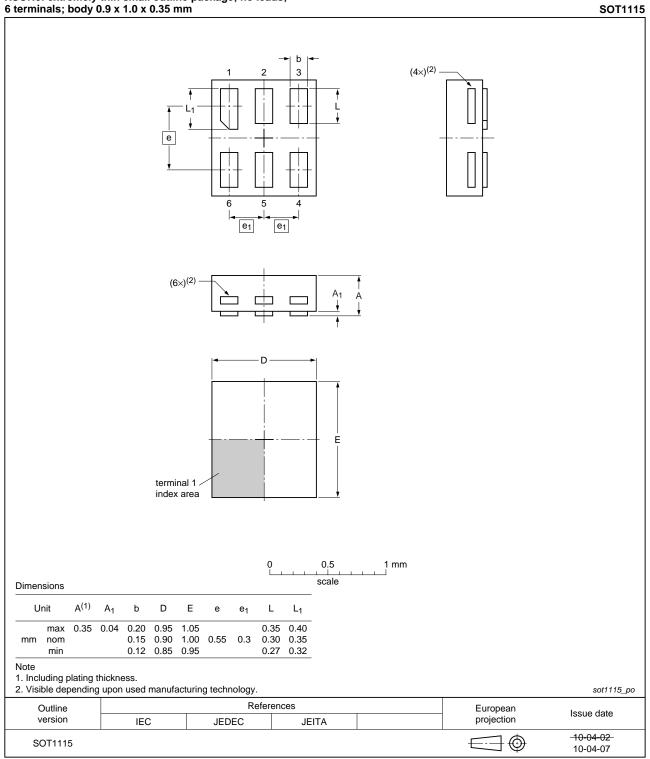
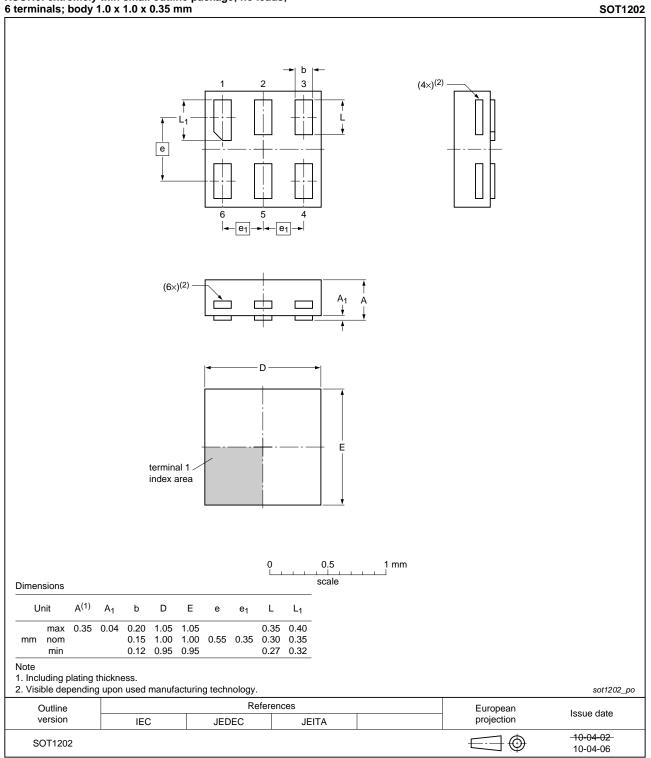

Low-power configurable gate with voltage-level translator

Fig 16. Package outline SOT891 (XSON6)

74AUP1T98 Product data sheet

Low-power configurable gate with voltage-level translator



XSON6: extremely thin small outline package; no leads; 6 terminals; body 0.9 x 1.0 x 0.35 mm

Fig 17. Package outline SOT1115 (XSON6)

All information provided in this document is subject to legal disclaimers.

Low-power configurable gate with voltage-level translator

XSON6: extremely thin small outline package; no leads; 6 terminals; body 1.0 x 1.0 x 0.35 mm

Fig 18. Package outline SOT1202 (XSON6)

Low-power configurable gate with voltage-level translator

14. Abbreviations

Table 12. Abbreviations		
Acronym	Description	
CDM	Charged Device Model	
CMOS	Complementary Metal-Oxide Semiconductor	
DUT	Device Under Test	
ESD	ElectroStatic Discharge	
HBM	Human Body Model	
MM	Machine Model	

15. Revision history

Table 13. Revision history				
Document ID	Release date	Data sheet status	Change notice	Supersedes
74AUP1T98 v.4	20120815	Product data sheet	-	74AUP1T98 v.3
Modifications:	 Package out 	line drawing of SOT886 (Figur	re 15) modified.	
74AUP1T98 v.3	20111130	Product data sheet	-	74AUP1T98 v.2
74AUP1T98 v.2	20101019	Product data sheet	-	74AUP1T98 v.1
74AUP1T98 v.1	20080306	Product data sheet	-	-

Low-power configurable gate with voltage-level translator

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

© NXP B.V. 2012. All rights reserved.

Low-power configurable gate with voltage-level translator

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

74AUP1T98

Low-power configurable gate with voltage-level translator

18. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 2
4	Marking 2
5	Functional diagram 2
6	Pinning information 3
6.1	Pinning
6.2	Pin description 3
7	Functional description 3
7.1	Logic configurations 4
8	Limiting values 5
9	Recommended operating conditions 5
10	Static characteristics 6
11	Dynamic characteristics 8
12	Waveforms 10
13	Package outline 12
14	Abbreviations 17
15	Revision history 17
16	Legal information 18
16.1	Data sheet status 18
16.2	Definitions
16.3	Disclaimers
16.4	Trademarks 19
17	Contact information 19
18	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2012.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 15 august 2012 Document identifier: 74AUP1T98