74LVC1G123

Single retriggerable monostable multivibrator; Schmitt trigger inputs

Rev. 3 — 29 March 2013

Product data sheet

1. General description

The 74LVC1G123 is a single retriggerable monostable multivibrator with Schmitt trigger inputs. Output pulse width is controlled by three methods:

- 1. The basic pulse is programmed by selection of an external resistor (R_{EXT}) and capacitor (C_{EXT}).
- 2. Once triggered, the basic output pulse width may be extended by retriggering the gated active LOW-going edge input (A) or the active HIGH-going edge input (B). By repeating this process, the output pulse period (Q = HIGH) can be made as long as desired. Alternatively an output delay can be terminated at any time by a LOW-going edge on input CLR, which also inhibits the triggering.
- 3. An internal connection from CLR to the input gates makes it possible to trigger the circuit by a HIGH-going signal at input CLR.

Inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of these devices as translators in a mixed 3.3 V and 5 V environment. Schmitt trigger inputs, makes the circuit highly tolerant to slower input rise and fall times.

This device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

2. Features and benefits

- Wide supply voltage range from 1.65 V to 5.5 V
- High noise immunity
- \pm 24 mA output drive (V_{CC} = 3.0 V)
- CMOS low power consumption
- DC triggered from active HIGH or active LOW inputs
- Retriggerable for very long pulses up to 100 % duty factor
- Direct reset terminates output pulse
- Schmitt trigger on all inputs
- Complies with JEDEC standard:
 - ◆ JESD8-7 (1.65 V to 1.95 V)
 - ◆ JESD8-5 (2.3 V to 2.7 V)
 - ◆ JESD8-B/JESD36 (2.7 V to 3.6 V)
- Power-on-reset on outputs
- Latch-up performance exceeds 100 mA
- Direct interface with TTL levels

Single retriggerable monostable multivibrator; Schmitt trigger inputs

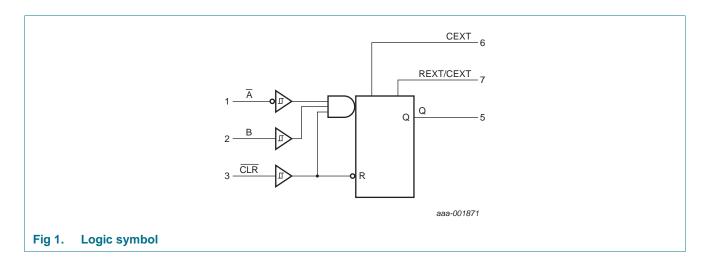
- Inputs accept voltages up to 5.5 V
- ESD protection:
 - ◆ HBM JESD22-A114F exceeds 2000 V
 - ◆ MM JESD22-A115-A exceeds 200 V
 - ◆ CDM JESD22-C101E exceeds 1000 V
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

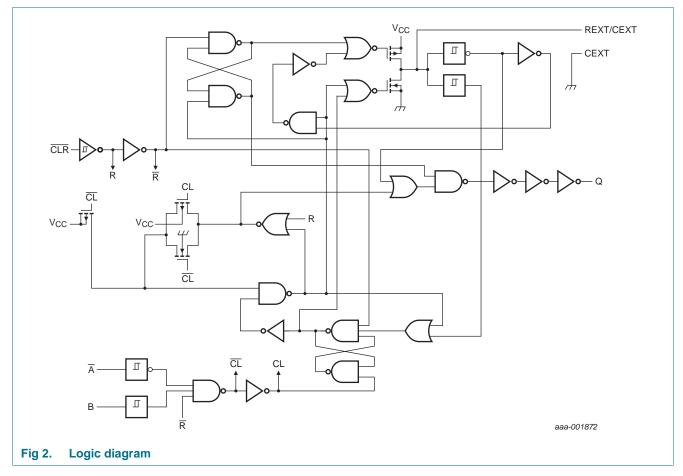
3. Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74LVC1G123DP	−40 °C to +125 °C	TSSOP8	plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm	SOT505-2
74LVC1G123DC	–40 °C to +125 °C	VSSOP8	plastic very thin shrink small outline package; 8 leads; body width 2.3 mm	SOT765-1
74LVC1G123GT	–40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body 1 \times 1.95 \times 0.5 mm	SOT833-1
74LVC1G123GF	–40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.35 \times 1 \times 0.5 mm	SOT1089
74LVC1G123GD	–40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body $3 \times 2 \times 0.5$ mm	SOT996-2
74LVC1G123GM	–40 °C to +125 °C	XQFN8	plastic extremely thin quad flat package; no leads; 8 terminals; body 1.6 \times 1.6 \times 0.5 mm	SOT902-2
74LVC1G123GN	-40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.2 \times 1.0 \times 0.35 mm	SOT1116
74LVC1G123GS	–40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.35 \times 1.0 \times 0.35 mm	SOT1203

4. Marking

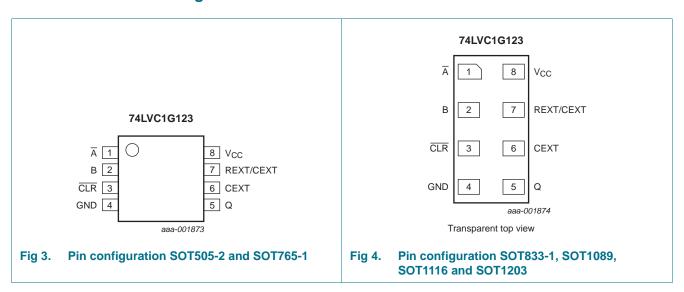

Table 2. Marking codes

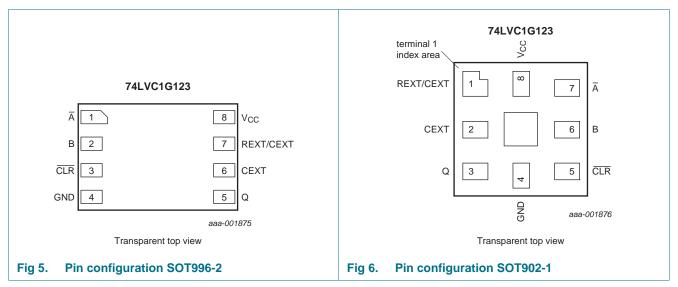

Type number	Marking code ^[1]
74LVC1G123DP	Y3
74LVC1G123DC	Y3
74LVC1G123GT	Y3
74LVC1G123GF	Y3
74LVC1G123GD	Y3
74LVC1G123GM	Y3
74LVC1G123GN	Y3
74LVC1G123GS	Y3

^[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

Single retriggerable monostable multivibrator; Schmitt trigger inputs

5. Functional diagram





Single retriggerable monostable multivibrator; Schmitt trigger inputs

6. Pinning information

6.1 Pinning

Single retriggerable monostable multivibrator; Schmitt trigger inputs

6.2 Pin description

Table 3. Pin description

Symbol	Pin		Description
	SOT505-2, SOT765-1, SOT833-1, SOT1089, SOT996-2, SOT1116 and SOT1203	SOT902-2	
Ā	1	7	negative-edge triggered input
В	2	6	positive-edge triggered input
CLR	3	5	direct reset LOW and positive-edge triggered input
GND	4	4	ground (0 V)
Q	5	3	active HIGH output
CEXT	6	2	external capacitor connection
REXT/CEXT	7	1	external resistor and capacitor connection
V_{CC}	8	8	supply voltage

7. Functional description

Table 4. Function table[1]

Input			Output
CLR	Ā	В	Q
L	X	X	L
X	Н	X	<u>[2]</u>
X	X	L	<u>[2]</u>
Н	L	\uparrow	Л
Н	\	Н	Л
\uparrow	L	Н	Л

^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; ↑ = LOW-to-HIGH transition; ↓ = HIGH-to-LOW transition;

⁼ one HIGH level output pulse; = one LOW level output pulse.

^[2] If the monostable was triggered before this condition was established, the pulse continues as programmed.

Single retriggerable monostable multivibrator; Schmitt trigger inputs

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+6.5	V
VI	input voltage		<u>[1]</u> –0.5	+6.5	V
Vo	output voltage	Active mode	<u>[1]</u> –0.5	$V_{CC} + 0.5$	V
		Power-down mode	[1][2] -0.5	+6.5	V
I _{IK}	input clamping current	V _I < 0 V	-50	-	mA
I _{OK}	output clamping current	$V_O < 0 V \text{ or } V_O > V_{CC}$	-	±50	mA
I _O	output current	$V_O = 0 V \text{ to } V_{CC}$	-	±50	mA
I _{CC}	supply current		-	100	mA
I_{GND}	ground current		-100	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	[3] _	300	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

9. Recommended operating conditions

Table 6. Operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		1.65	5.5	V
VI	input voltage		0	5.5	V
Vo	output voltage	Active mode	0	V_{CC}	V
		Power-down mode	0	5.5	V
T _{amb}	ambient temperature		-40	+125	°C
Δt/ΔV	input transition rise and fall rate	$V_{CC} = 1.65 \text{ V to } 5.5 \text{ V}$	-	1	ms/V

^[2] When $V_{CC} = 0 \text{ V}$ (Power-down mode), the output voltage can be 5.5 V in normal operation.

^[3] For TSSOP8 package: above 55 °C the value of P_{tot} derates linearly with 2.5 mW/K.
For VSSOP8 package: above 110 °C the value of P_{tot} derates linearly with 8 mW/K.
For XSON8 and XQFN8 packages: above 118 °C the value of P_{tot} derates linearly with 7.8 mW/K.

Single retriggerable monostable multivibrator; Schmitt trigger inputs

10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

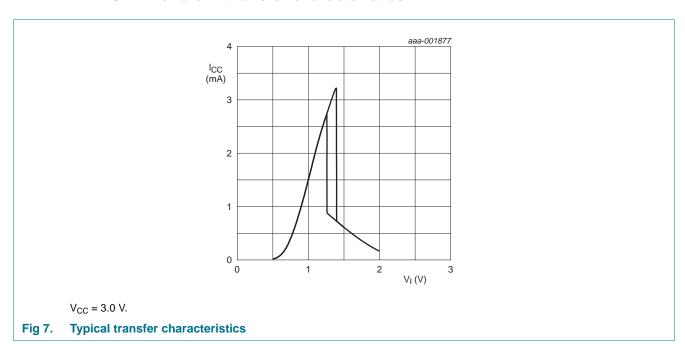
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -	40 °C to +85 °C[1	1				
V_{OH}	HIGH-level	$V_I = V_{T+}$ or V_{T-}				
	output voltage	$I_{O} = -100 \mu A$; $V_{CC} = 1.65 \text{ V}$ to 5.5 V	V _{CC} - 0.1	-	-	V
		$I_O = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.2	-	-	V
		$I_{O} = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.9	-	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	2.2	-	-	V
		$I_{O} = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.4	-	-	V
		$I_{O} = -32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.8	-	-	V
V_{OL}	LOW-level	$V_I = V_{T+}$ or V_{T-}				
	output voltage	$I_O = 100 \mu A$; $V_{CC} = 1.65 \text{ V}$ to 5.5 V	-	-	0.1	V
		$I_{O} = 4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	0.45	V	
		$I_0 = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.3	V
		$I_{O} = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	-	0.4	V
		$I_{O} = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.55	V
		$I_O = 32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.55	V
I ₁	input leakage current	$V_I = 5.5 \text{ V or GND}; V_{CC} = 0 \text{ V to } 5.5 \text{ V}$	-	-	±2	μА
l _{OFF}	power-off leakage current	V_{I} or $V_{O} = 5.5 \text{ V}$; $V_{CC} = 0 \text{ V}$	-	-	±2	μА
I _{CC}	supply current	$V_I = 5.5 \text{ V or GND};$				
		Quiescent; $V_{CC} = 1.65 \text{ V}$ to 5.5 V; $I_{O} = 0 \text{ A}$	-	0.1	10	μΑ
		Active state; $R_{EXT}/C_{EXT} = 0.5V_{CC}$				
		V _{CC} = 1.65 V	-	-	80	μΑ
		V _{CC} = 2.3 V	-	-	130	μΑ
		$V_{CC} = 3 V$	-	-	240	μΑ
		V _{CC} = 4.5 V	-	-	400	μΑ
		V _{CC} = 5.5 V	-	-	650	μΑ
Cı	input capacitance		-	2.0	-	pF

Table 7. Static characteristics ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -	40 °C to +125 °C					
V _{OH}	HIGH-level	$V_I = V_{T+}$ or V_{T-}				
	output voltage	$I_O = -100 \mu A$; $V_{CC} = 1.65 \text{ V}$ to 5.5 V	V _{CC} - 0.1	-	-	V
		$I_O = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.2	-	-	V
		$I_O = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.9	-	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	2.2	-	-	V
		$I_{O} = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.4	-	-	V
		$I_{O} = -32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.8	-	-	V
V _{OL}	LOW-level	$V_I = V_{T+}$ or V_{T-}				
	output voltage	$I_O = 100 \mu A; V_{CC} = 1.65 \text{ V to } 5.5 \text{ V}$	-	-	0.1	V
		$I_O = 4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.45	V
		$I_0 = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.3	V
		$I_{O} = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	-	0.4	V
		$I_O = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.55	V
		$I_O = 32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.55	V
I _I	input leakage current	$V_I = 5.5 \text{ V or GND}$; $V_{CC} = 0 \text{ V to } 5.5 \text{ V}$	-	-	±10	μΑ
I _{OFF}	power-off leakage current	V_{I} or $V_{O} = 5.5 \text{ V}$; $V_{CC} = 0 \text{ V}$	-	-	±10	μΑ
I _{CC}	supply current	$V_I = 5.5 \text{ V or GND};$				
		Quiescent; $V_{CC} = 1.65 \text{ V}$ to 5.5 V; $I_O = 0 \text{ A}$	-	-	20	μΑ
		Active state; $R_{EXT}/C_{EXT} = 0.5V_{CC}$				
		V _{CC} = 1.65 V	-	-	80	μΑ
		V _{CC} = 2.3 V	-	-	130	μΑ
		V _{CC} = 3 V	-	-	240	μΑ
		V _{CC} = 4.5 V	-	-	400	μΑ
		V _{CC} = 5.5 V	-	-	650	μΑ

^[1] All typical values are measured at T_{amb} = 25 °C.

Single retriggerable monostable multivibrator; Schmitt trigger inputs


Table 8. Transfer characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 19.

Symbol	Parameter	Conditions	-40) °C to +8	5 °C	–40 °C t	o +125 °C	Unit
			Min	Typ[1]	Max	Min	Max	
V_{T+}	positive-going threshold voltage	A, B and CLR input; see Figure 7		'				'
		V _{CC} = 1.65 V to 1.95 V	0.72	0.98	1.22	0.71	1.22	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	0.97	1.26	1.52	0.97	1.52	V
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	1.20	1.58	1.90	1.20	1.90	V
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	1.74	2.27	2.75	1.74	2.78	V
V_{T-}	negative-going threshold voltage	A, B and CLR input; see Figure 7						
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	0.56	0.81	1.04	0.56	1.04	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	0.83	1.09	1.33	0.82	1.33	V
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	1.08	1.40	1.70	1.08	1.72	V
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	1.61	2.07	2.53	1.61	2.57	V
V_{H}	hysteresis voltage	A, B and CLR input; (V _{T+} – V _{T-}); see <u>Figure 7</u>						
		V _{CC} = 1.65 V to 1.95 V	61	170	295	54	295	mV
		V _{CC} = 2.3 V to 2.7 V	41	174	304	41	304	mV
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	40	183	319	40	319	mV
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	32	199	363	26	363	mV

^[1] All typical values are measured at $T_{amb} = 25 \, ^{\circ}C$

10.1 Waveform transfer characteristics

Single retriggerable monostable multivibrator; Schmitt trigger inputs

11. Dynamic characteristics

Table 9. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 19.

Symbol	Parameter	Conditions	-	-40	°C to +8	35 °C	-40 °C to	o +125 °C	Unit
			М	in	Typ[1]	Max	Min	Max	
t _{pd}	propagation	A, B to Q; see Figure 8	[2]						
	delay	C _L = 15 pF;							
		V _{CC} = 1.65 V to 1.95 V	2	.5	7.1	16.3	2.5	17.6	ns
		V_{CC} = 2.3 V to 2.7 V	1	.9	-	10.3	1.9	11.2	ns
		V _{CC} = 2.7 V	1	.9	-	8.5	1.9	9.3	ns
		V_{CC} = 3.0 V to 3.6 V	1	.5	-	7.6	1.5	8.3	ns
		V _{CC} = 4.5 V to 5.5 V	1	.2	-	5.3	1.2	5.8	ns
		$C_L = 30 \text{ pF or } C_L = 50 \text{ pF}$							
		V _{CC} = 1.65 V to 1.95 V	2	.9	7.8	17.6	2.9	19.0	ns
		V_{CC} = 2.3 V to 2.7 V	2	.2	-	11.3	2.2	12.3	ns
		V _{CC} = 2.7 V	2	.7	-	10.5	2.7	11.4	ns
		V_{CC} = 3.0 V to 3.6 V	2	.0	-	9.5	2.0	10.3	ns
		V _{CC} = 4.5 V to 5.5 V	1	.5	-	6.7	1.5	7.2	ns
		CLR to Q; see Figure 8							
		C _L = 15 pF;							
		V _{CC} = 1.65 V to 1.95 V	3	.0	6.9	16.2	3.0	17.4	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	2	.2	-	9.6	2.2	10.5	ns
		V _{CC} = 2.7 V	2	.2	-	8.2	2.2	8.9	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	2	.0	-	7.3	2.0	8.0	ns
		V _{CC} = 4.5 V to 5.5 V	1	.5	-	5.1	1.5	5.5	ns
		$C_L = 30 \text{ pF or } C_L = 50 \text{ pF}$							
		V _{CC} = 1.65 V to 1.95 V	3	.3	7.5	17.2	3.8	18.6	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	2	.5	-	10.3	2.0	11.2	ns
		$V_{CC} = 2.7 \text{ V}$	2	.8	-	9.3	2.8	10.2	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	1	.5	-	8.4	1.5	9.2	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	1	.5	-	6.0	1.5	6.6	ns

Single retriggerable monostable multivibrator; Schmitt trigger inputs

 Table 9.
 Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 19.

Symbol	Parameter	Conditions	-40	°C to +8	35 °C	-40 °C t	o +125 °C	Unit
			Min	Typ[1]	Max	Min	Max	
t _{pd}	propagation	CLR to Q (trigger); see Figure 8	'					
	delay	$C_L = 15 pF;$						
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	2.7	7.6	17.4	2.7	18.9	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	2.1	-	11.0	2.1	12.0	ns
		$V_{CC} = 2.7 \text{ V}$	2.1	-	9.2	2.1	10.0	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	1.7	-	8.2	1.7	8.9	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	1.4	-	5.9	1.4	6.4	ns
		$C_L = 30 \text{ pF or } C_L = 50 \text{ pF}$						
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	3.1	8.3	18.8	3.3	20.3	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	2.5	-	12.0	2.5	13.1	ns
		$V_{CC} = 2.7 \text{ V}$	2.8	-	11.1	2.8	12.1	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	2.0	-	10.1	2.0	11.0	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	1.5	-	7.1	1.5	7.7	ns
t _W	pulse width	input A LOW; B HIGH; see Figure 8 and Figure 9						
		V _{CC} = 1.65 V to 1.95 V	8.0	-	-	8.0	-	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	4.0	-	-	4.0	-	ns
		$V_{CC} = 2.7 \text{ V}$	3.0	-	-	3.0	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	3.0	-	-	3.0	-	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	2.5	-	-	2.5	-	ns
		input CLR LOW; see Figure 8 and Figure 10						
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	8.0	-	-	8.0	-	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	4.0	-	-	4.0	-	ns
		$V_{CC} = 2.7 \text{ V}$	3.0	-	-	3.0	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	3.0	-	-	3.0	-	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	2.5	-	-	2.5	-	ns

Single retriggerable monostable multivibrator; Schmitt trigger inputs

 Table 9.
 Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 19.

Symbol	Parameter	Conditions		-40	°C to +8	5 °C	-40 °C t	o +125 °C	Unit
				Min	Typ[1]	Max	Min	Max	
W	pulse width	output Q HIGH; see Figure 8, Figure 9 and Figure 10; $R_{EXT} = 10 \text{ k}\Omega$	[3]		'	'			
		$C_{EXT} = 100 pF$							
		V _{CC} = 1.65 V to 1.95 V		-	1.4	2.2	-	2.2	μS
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		-	1.3	1.8	-	1.8	μS
		V _{CC} = 2.7 V		-	1.2	1.8	-	1.8	μS
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		-	1.2	1.8	-	1.8	μS
		V _{CC} = 4.5 V to 5.5 V		-	1.2	1.8	-	1.8	μS
		$C_{EXT} = 0.01 \mu F$	[3]						
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		-	100	110	-	110	μS
		V_{CC} = 2.3 V to 2.7 V		-	100	110	-	110	μS
		V _{CC} = 2.7 V		-	100	110	-	110	μS
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		-	100	110	-	110	μS
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		-	100	110	-	110	μS
		$C_{EXT} = 0.1 \mu F$	[3]						
		V _{CC} = 1.65 V to 1.95 V		-	1.0	1.05	-	1.05	ms
		$V_{CC} = 2.7 \text{ V}$		-	1.0	1.05	-	1.05	ms
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		-	1.0	1.05	-	1.05	ms
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		-	1.0	1.05	-	1.05	ms
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		-	1.0	1.05	-	1.05	ms
rtrig	retrigger time	A, B; see <u>Figure 9</u>							
		C_{EXT} = 100 pF; R_{EXT} = 5 k Ω							
		V _{CC} = 1.65 V to 1.95 V		-	174	-	-	-	μs μ
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		-	59	-	-	-	ns
		$C_{EXT} = 100 \text{ pF}; R_{EXT} = 1 \text{ k}\Omega$							
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		-	32	-	-	-	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		-	20	-	-	-	ns
		$C_{EXT} = 100 \mu F; R_{EXT} = 5 k\Omega$							
		V _{CC} = 1.65 V to 1.95 V		-	14	-	-	-	ms
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		-	10	-	-	-	ms
		$C_{EXT} = 100 \mu F; R_{EXT} = 1 k\Omega$							
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		-	10	-	-	-	ms
		V_{CC} = 4.5 V to 5.5 V		-	8	-	-	-	ms
R _{ext}	external	see Figure 13, Figure 14 and Figure 15							
	resistance	V _{CC} = 2.0 V		5	-	-	-	-	kΩ
		V _{CC} ≥ 3.0 V		1	-	-	-	-	kΩ
C _{ext}	external capacitance	V _{CC} = 5.0 V; see <u>Figure 13</u> , <u>Figure 14</u> and <u>Figure 15</u>		-	-	-	-	-	pF

74LVC1G123 **NXP Semiconductors**

Single retriggerable monostable multivibrator; Schmitt trigger inputs

Table 9. **Dynamic characteristics** ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 19.

Symbol	Parameter	Conditions	-40	0 °C to +8	5 °C	-40 °C to	Unit	
				Typ[1]	Max	Min	Max	
C_PD	power	$V_I = GND \text{ to } V_{CC}; C_{EXT} = 0 \text{ pF};$						
	capacitance	$R_{EXT} = 5 k\Omega$						
		V _{CC} = 1.8 V	-	35	-	-	-	pF
		$V_{CC} = 2.5 \text{ V}$	-	35	-	-	-	pF
		$R_{EXT} = 1 k\Omega$						
		$V_{CC} = 3.3 \text{ V}$	-	27	-	-	-	pF
		V _{CC} = 5.0 V	-	29	-	-	-	pF

^[1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.8 V, 2.5 V, 3.3 V and 5.0 V respectively.

 t_W = K \times R_{EXT} \times C_{EXT}, where:

t_W = typical output pulse width in ns;

 R_{EXT} = external resistor in $k\Omega$;

C_{EXT} = external capacitor in pF;

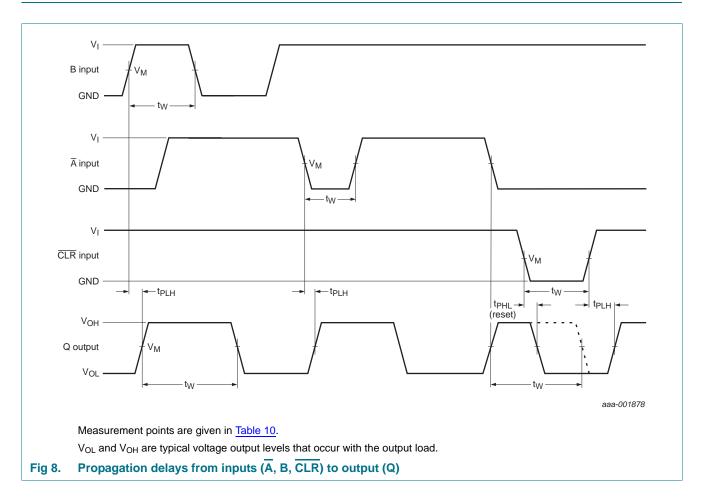
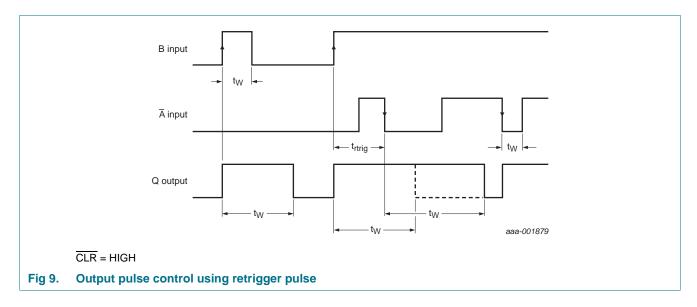
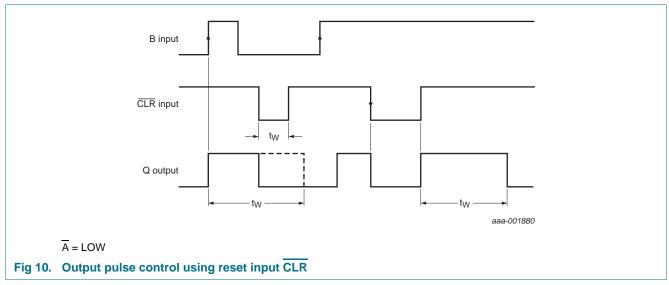
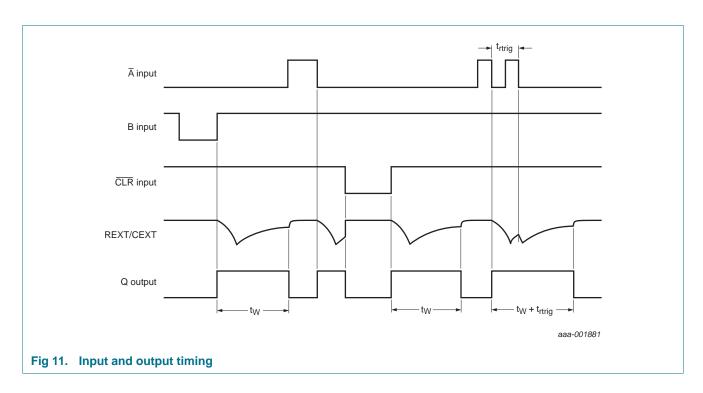
K = constant = 1; see Figure 16 for typical "K" factor as function of V_{CC} .

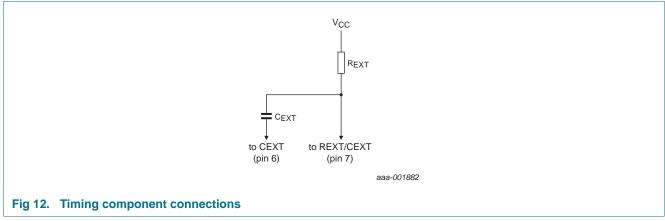
^[2] t_{od} is the same as t_{PHL} and t_{PLH} ; t_t is the same as t_{THL} and t_{TLH}

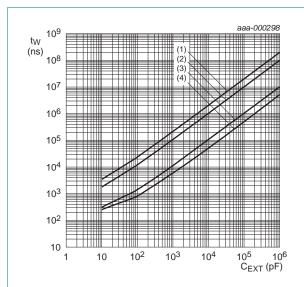
^[3] For other R_{EXT} and C_{EXT} combinations see Figure 13, Figure 14 and Figure 15. If C_{EXT} > 10 nF, the next formula is valid.

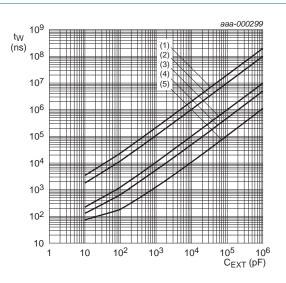
Single retriggerable monostable multivibrator; Schmitt trigger inputs

12. Waveforms, graphs and test circuit


Table 10. Measurement points

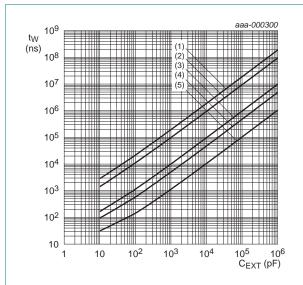

Supply voltage	Input	Output
V _{CC}	V _M	V _M
1.65 V to 1.95 V	0.5V _{CC}	0.5V _{CC}
2.3 V to 2.7 V	0.5V _{CC}	0.5V _{CC}
2.7 V	1.5 V	1.5 V
3.0 V to 3.6 V	1.5 V	1.5 V
4.5 V to 5.5 V	0.5V _{CC}	0.5V _{CC}



$$V_{CC}$$
 = 1.8 V; T_{amb} = 25 °C.

- (1) $R_{EXT} = 200 \text{ k}\Omega$
- (2) $R_{EXT} = 100 \text{ k}\Omega$
- (3) $R_{EXT} = 10 \text{ k}\Omega$
- (4) $R_{EXT} = 5 k\Omega$

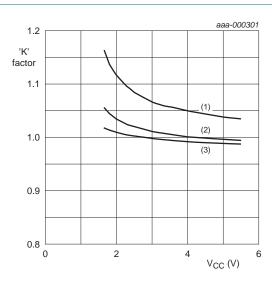
Fig 13. Typical output pulse width as a function of the external capacitor value



$$V_{CC} = 3.3 \text{ V}; T_{amb} = 25 ^{\circ}\text{C}.$$

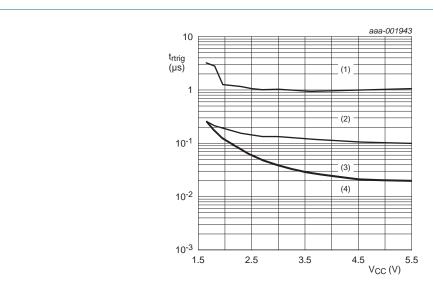
- (1) $R_{EXT} = 200 \text{ k}\Omega$
- (2) $R_{EXT} = 100 \text{ k}Ω$
- (3) $R_{EXT} = 10 \text{ k}\Omega$
- (4) $R_{EXT} = 5 k\Omega$
- (5) $R_{EXT} = 1 k\Omega$

Fig 14. Typical output pulse width as a function of the external capacitor value


Single retriggerable monostable multivibrator; Schmitt trigger inputs

 V_{CC} = 5.0 V; T_{amb} = 25 °C.

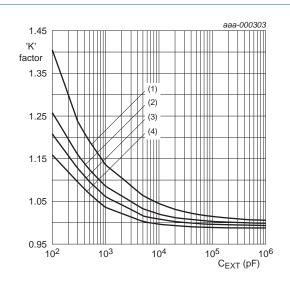
- (1) $R_{EXT} = 200 \text{ k}\Omega$
- (2) $R_{EXT} = 100 \text{ k}\Omega$
- (3) $R_{EXT} = 10 \text{ k}\Omega$
- (4) $R_{EXT} = 5 k\Omega$
- (5) $R_{EXT} = 1 k\Omega$


Fig 15. Typical output pulse width as a function of the external capacitor value

 R_{EXT} = 10 k Ω ; T_{amb} = 25 °C.

- (1) $C_{EXT} = 1000 pF$
- (2) $C_{EXT} = 0.01 \mu F$
- (3) $C_{EXT} = 0.1 \mu F$

Fig 16. Typical 'K' factor as function of V_{CC}

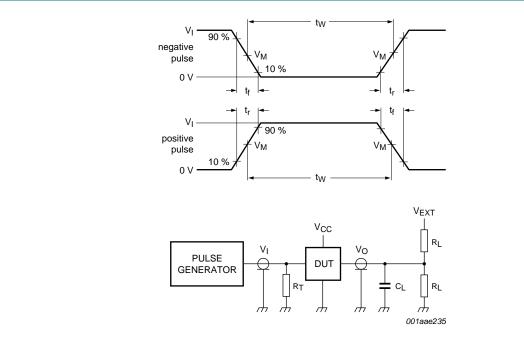


 T_{amb} = 25 °C.

- (1) $C_{EXT} = 0.01 \mu F$
- (2) $C_{EXT} = 1000 pF$
- (3) $C_{EXT} = 100 pF$
- (4) $C_{EXT} = 10 pF$

Fig 17. Minimum retrigger time as function of the supply voltage

Single retriggerable monostable multivibrator; Schmitt trigger inputs



 R_{EXT} = 10 k Ω ; T_{amb} = 25 °C.

- (1) $V_{CC} = 1.8 \text{ V}$
- (2) $V_{CC} = 2.5 \text{ V}$
- (3) $V_{CC} = 3.3 \text{ V}$
- (4) $V_{CC} = 5.0 \text{ V}$

Fig 18. Typical 'K' factor as function of CEXT

Single retriggerable monostable multivibrator; Schmitt trigger inputs

Test data is given in Table 11.

Definitions for test circuit:

 R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator.

V_{EXT} = Test voltage for switching times.

Fig 19. Test circuit for measuring switching times

Table 11. Test data

Supply voltage	Input		Load		V _{EXT}
V _{CC}	VI	t _r , t _f	C _L	R _L	t _{PLH} , t _{PHL}
1.65 V to 1.95 V	V _{CC}	\leq 2.0 ns	15 pF	1 ΜΩ	open
2.3 V to 2.7 V	V _{CC}	≤ 2.0 ns	15 pF	1 ΜΩ	open
2.7 V	2.7 V	≤ 2.5 ns	15 pF	1 ΜΩ	open
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	15 pF	1 ΜΩ	open
4.5 V to 5.5 V	V _{CC}	≤ 2.5 ns	15 pF	1 ΜΩ	open
1.65 V to 1.95 V	V _{CC}	≤ 2.0 ns	30 pF	1 kΩ	open
2.3 V to 2.7 V	V_{CC}	≤ 2.0 ns	30 pF	500 Ω	open
2.7 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open
4.5 V to 5.5 V	V _{CC}	≤ 2.5 ns	50 pF	500 Ω	open

13. Package outline

TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm SOT505-2

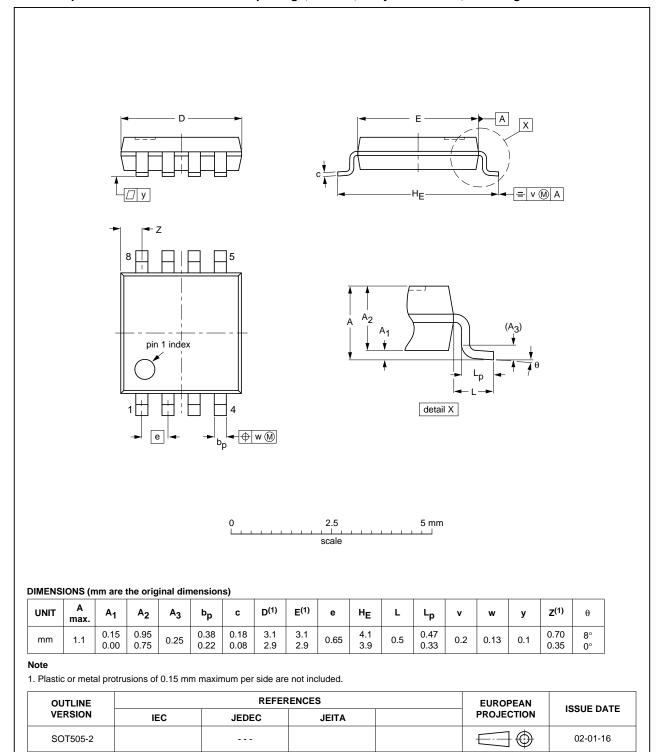
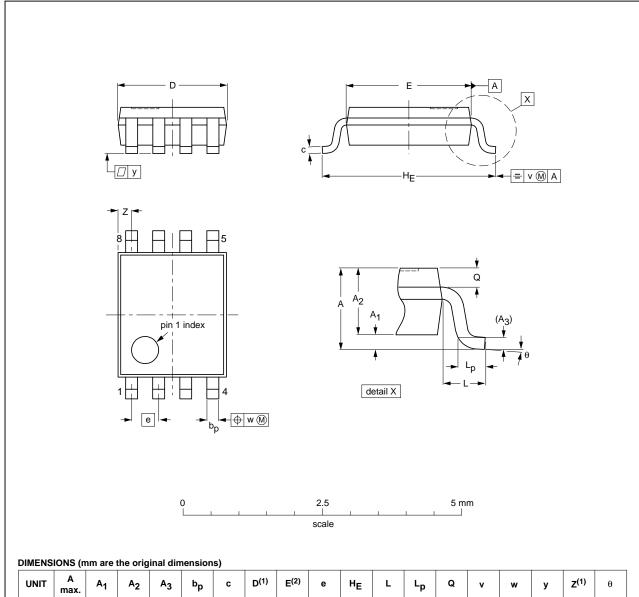



Fig 20. Package outline SOT505-2 (TSSOP8)

74LVC1G123 All information provided in this document is subject to legal disclaimers.

VSSOP8: plastic very thin shrink small outline package; 8 leads; body width 2.3 mm

SOT765-1

UNIT	A max.	A ₁	A ₂	А3	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	ď	٧	w	у	Z ⁽¹⁾	θ
mm	1	0.15 0.00	0.85 0.60	0.12	0.27 0.17	0.23 0.08	2.1 1.9	2.4 2.2	0.5	3.2 3.0	0.4	0.40 0.15	0.21 0.19	0.2	0.13	0.1	0.4 0.1	8° 0°

Notes

- Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT765-1		MO-187			02-06-07	

Fig 21. Package outline SOT765-1 (VSSOP8)

74LVC1G123

All information provided in this document is subject to legal disclaimers.

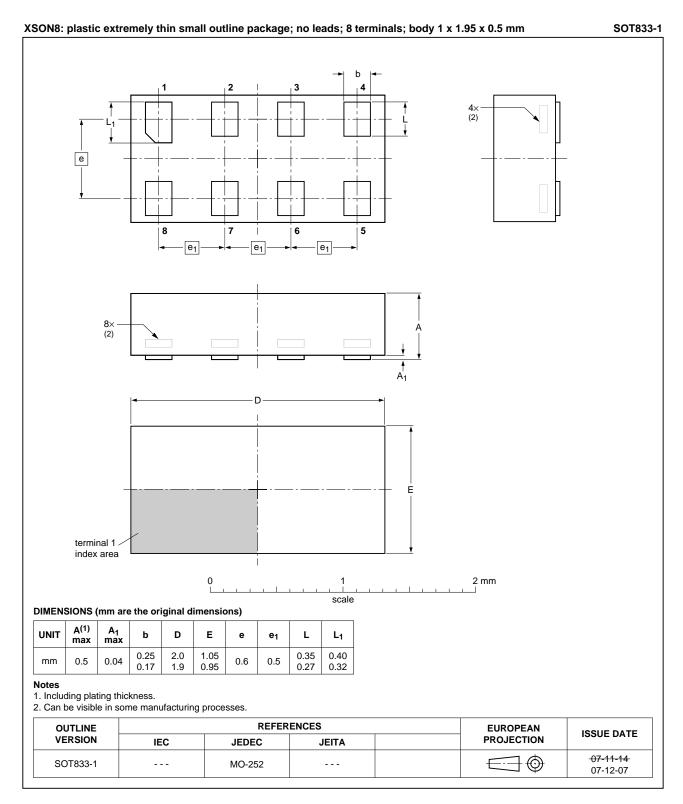


Fig 22. Package outline SOT833-1 (XSON8)

74LVC1G123 All information provided in this document is subject to legal disclaimers.

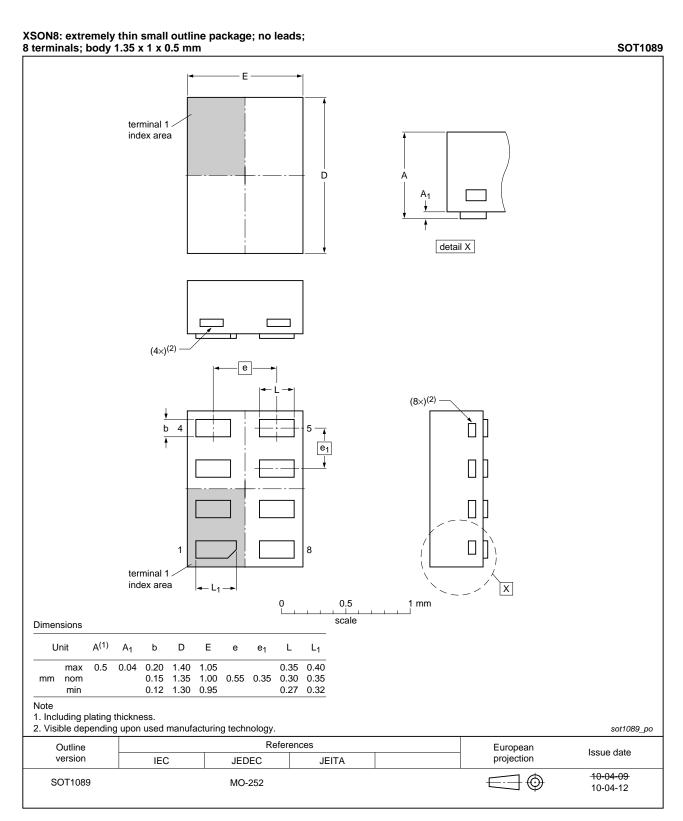


Fig 23. Package outline SOT1089 (XSON8)

74LVC1G123 All information provided in this document is subject to legal disclaimers.

74LVC1G123

Single retriggerable monostable multivibrator; Schmitt trigger inputs

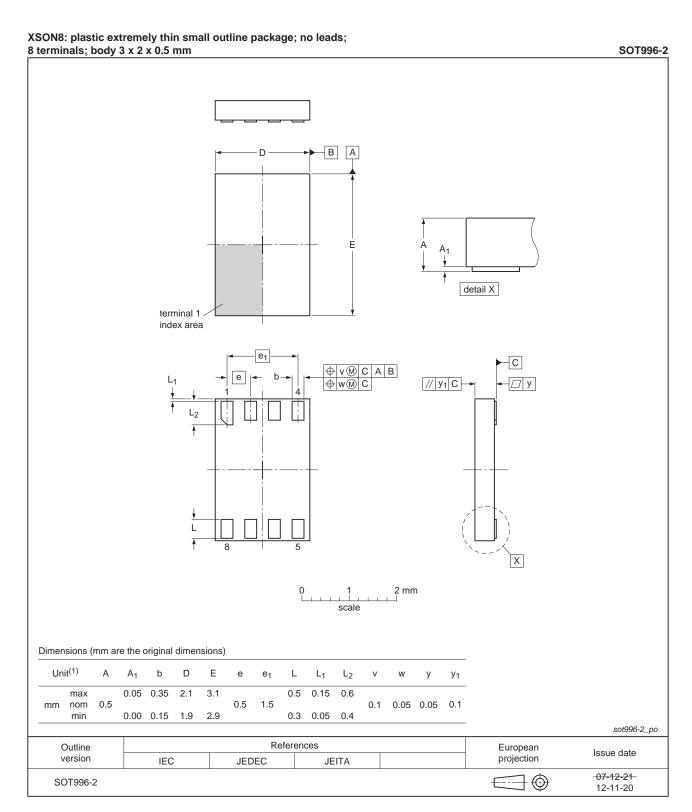


Fig 24. Package outline SOT996-2 (XSON8)

74LVC1G123

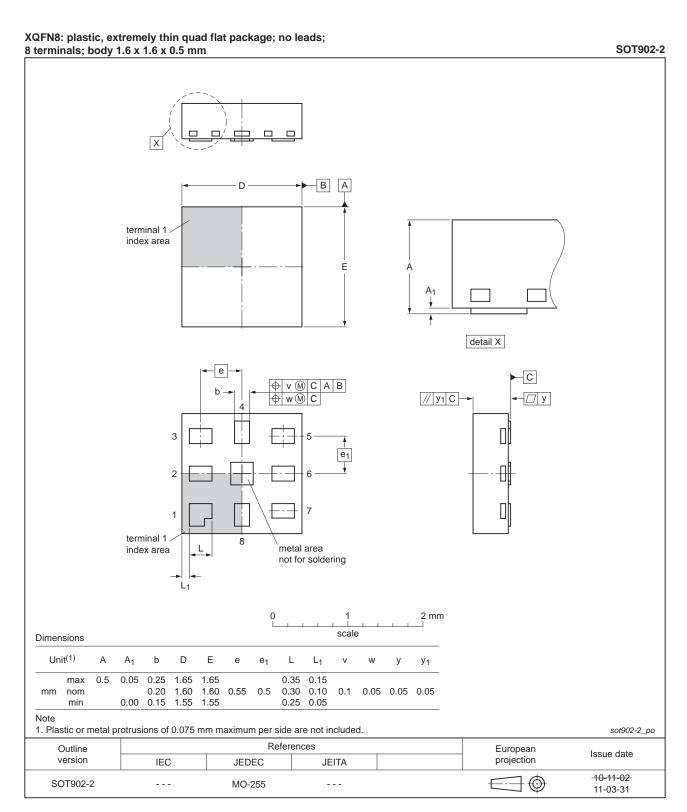


Fig 25. Package outline SOT902-2 (XQFN8)

74LVC1G123 All information provided in this document is subject to legal disclaimers.

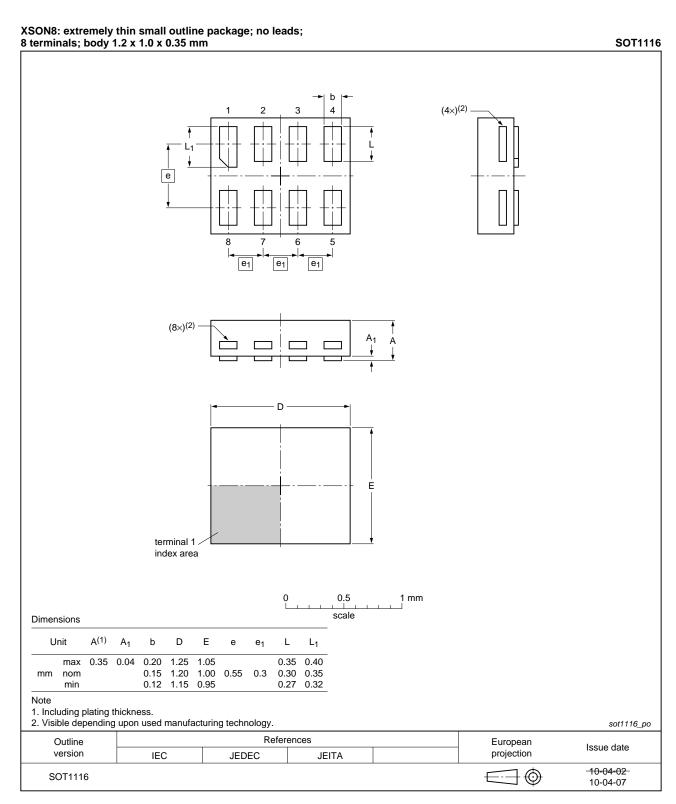


Fig 26. Package outline SOT1116 (XSON8)

74LVC1G123 All information provided in this document is subject to legal disclaimers.

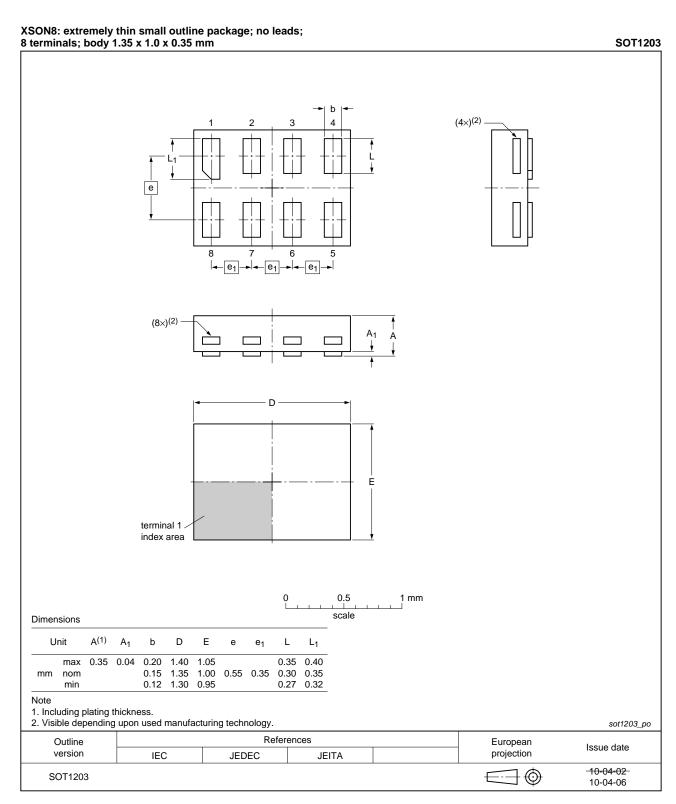


Fig 27. Package outline SOT1203 (XSON8)

74LVC1G123 All information provided in this document is subject to legal disclaimers.

74LVC1G123 **NXP Semiconductors**

Single retriggerable monostable multivibrator; Schmitt trigger inputs

14. Abbreviations

Table 12. Abbreviations

Acronym	Description
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
TTL	Transistor-Transistor Logic

15. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74LVC1G123 v.3	20130329	Product data sheet	-	74LVC1G123 v.2
Modifications:	 For type nu 	mber 74LVC1G123GD XS0	ON8U has changed to X	SON8.
74LVC1G123 v.2	20120801	Product data sheet	-	74LVC1G123 v.1
Modifications:	 V_{HYS} condit 	ions and limits corrected (e	rrata).	
74LVC1G123 v.1	20120123	Product data sheet	-	-

Single retriggerable monostable multivibrator; Schmitt trigger inputs

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

74LVC1G123

All information provided in this document is subject to legal disclaimers.

Single retriggerable monostable multivibrator; Schmitt trigger inputs

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Single retriggerable monostable multivibrator; Schmitt trigger inputs

18. Contents

1	General description
2	Features and benefits
3	Ordering information
4	Marking 2
5	Functional diagram 3
6	Pinning information 4
6.1	Pinning
6.2	Pin description
7	Functional description 5
8	Limiting values 6
9	Recommended operating conditions 6
10	Static characteristics 7
10.1	Waveform transfer characteristics 9
11	Dynamic characteristics
12	Waveforms, graphs and test circuit 14
13	Package outline 21
14	Abbreviations
15	Revision history
16	Legal information
16.1	Data sheet status
16.2	Definitions
16.3	Disclaimers
16.4	Trademarks 31
17	Contact information 31
18	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.