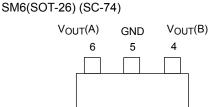
TOSHIBA CMOS Linear Integrated Circuit Silicon Monolithic

TCR6DA series

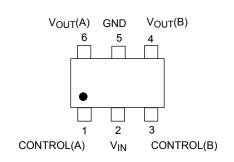
200 mA Dual Outputs CMOS Low-Dropout Regulator

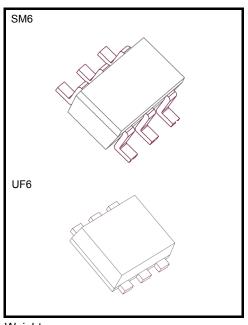
The TCR6DA series are CMOS general-purpose dual-outputs voltage regulators with independent on/off control inputs, featuring low dropout voltage and low quiescent bias current. The TCR6DA series can be enabled and disabled via the CONTROL pin for each LDOs.


These voltage regulators are available in fixed output voltages between 1.5 V and 3.3 V in 0.1-V steps and capable of driving up to 200 mA. They feature overcurrent protection.

The TCR6DA series are offered in the compact SM6 (SOT-26) (SC-74) and small package UF6 and allow the use of small ceramic input and output capacitors. Thus, these devices are ideal for portable applications that require high-density board assembly such as cellular phones.

Features

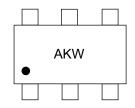

- Low quiescent bias current
- ($I_{B(ON)}$ = 60 μA (typ.)at I_{OUT} (A) and I_{OUT} (B) = 0 mA)
- Low stand-by current ($I_{B(OFF)} = 0.1 \ \mu A$ (typ.) at stand-by mode)
- Low dropout voltage
 - (V_{IN} V_{OUT} = 200 mV (max.) for 3.3V output, I_{OUT} = 50 mA)
- High output current (I_{OUT} = 200 mA (max))
- High ripple rejection (R.R. = 75 dB (typ.) at I_{OUT} = 10 mA, f =1kHz)
- Control voltage can be allowed from -0.3 to 6V regardless of V_{IN} voltage
- Overcurrent protection
- Ceramic capacitors can be used (C_{IN} = 1.0 μ F, C_{OUT} =1.0 μ F)
- SM6(SOT-26) (SC-74) and small package UF6 (2.0 mm x 2.1 mm x 0.7 mm)



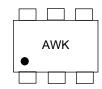
CONTROL(A)

UF6

Weight SM6(SOT-26)(SC-74): 15 mg (typ.) UF6 : 7 mg (typ.)


List of Products Number and Marking

Products No.	Package	VOUT(A)	VOUT(B)	Marking
*TCR6DA1525	SM6	1.5V	2.5V	AGS
TCR6DA1528	SM6	1.5V	2.8V	AGW
*TCR6DA1529	SM6	1.5V	2.9V	AGX
*TCR6DA1530	SM6	1.5V	3.0V	AGY
*TCR6DA1531	SM6	1.5V	3.1V	AG1
*TCR6DA1533	SM6	1.5V	3.3V	AG3
*TCR6DA1825	SM6	1.8V	2.5V	AKS
TCR6DA1828	SM6	1.8V	2.8V	AKW
*TCR6DA1829	SM6	1.8V	2.9V	AKX
TCR6DA1830	SM6	1.8V	3.0V	AKY
*TCR6DA1831	SM6	1.8V	3.1V	AK1
*TCR6DA1833	SM6	1.8V	3.3V	AK3
*TCR6DA1525U	UF6	2.5V	1.5V	ASG
TCR6DA1528U	UF6	2.8V	1.5V	AWG
*TCR6DA1529U	UF6	2.9V	1.5V	AXG
*TCR6DA1530U	UF6	3.0V	1.5V	AYG
*TCR6DA1531U	UF6	3.1V	1.5V	A1G
*TCR6DA1533U	UF6	3.3V	1.5V	A3G
*TCR6DA1825U	UF6	2.5V	1.8V	ASK
TCR6DA1828U	UF6	2.8V	1.8V	AWK
*TCR6DA1829U	UF6	2.9V	1.8V	AXK
*TCR6DA1830U	UF6	3.0V	1.8V	AYK
*TCR6DA1831U	UF6	3.1V	1.8V	A1K
*TCR6DA1833U	UF6	3.3V	1.8V	A3K
TCR6DA2530U	UF6	3.0V	2.5V	AYS


*If you need another voltage ranks, please contact to our sales

Marking

Example:TCR6DA1828 (1.8V, 2.8V output)

Example:TCR6DA1828U (2.8V, 1.8V output)

Absolute Maximum Ratings(Ta = 25°C)

Characteristics	Symbol	Rating			Unit			
Input voltage	V _{IN}	6			V			
Control voltage	V _{CT}		-0.3 to 6			-0.3 to 6 V		V
Output voltage	V _{OUT}	-0.3 to V _{IN} + 0.3			V			
Output current	IOUT	200			mA			
Power dissinction	D-	SM6	480	(Note1)	mW			
Power dissipation	PD	UF6	500	(Note1)	mW			
Operation temperature range	T _{opr}	-40 to 85			°C			
Junction temperature	Tj	150			°C			
Storage temperature range	T _{stg}	-55 to 150			°C			

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 1 : Rating at mounting on a board (25.4mm x 25.4mm x 1.6mm, copper pad:645mm²)

Electrical Characteristics

(Unless otherwise specified, $V_{IN}=V_{OUT}+1$ V, $I_{OUT}=50$ mA, $C_{IN}=1.0$ $\mu F,$ $C_{OUT}=1.0$ $\mu F,$ $T_{j}=25^{\circ}C)$

For 1.5 and 1.8V output

Characteristics	Symbol	Test Condition		Min.	Тур.	Max.	Unit
Output voltage	V _{OUT}	Please refer to the Output Voltage Accuracy table					
Line regulation	Reg·line			_	1	15	mV
Load regulation	Reg·load	$1 \text{ mA} \le I_{OUT} \le 100 \text{ mA}$		_	15	30	mV
Quiescent current	Ι _Β	I _{OUT} = 0 mA		_	30	75	μA
Dropout voltage	VIN-VOUT	Please refer to the Dropout voltage table					
Temperature coefficient	T _{CVO}	$-40^{\circ}C \leq T_{opr} \leq 85^{\circ}C$	$-40^{\circ}C \le T_{opr} \le 85^{\circ}C$		100		ppm/°C
Input voltage	VIN		V _{OUT} = 1.5V	2.0	_	6.0	V
input voltage	۷IN	V _{OUT} = 1.8V		2.15	_	6.0	v
Ripple rejection ratio	R.R.	$\label{eq:VIN} \begin{split} V_{IN} = V_{OUT} + 1 \ V, \ I_{OUT} = 10 \ mA, \\ f = 1 \ kHz, \ V_{Ripple} = 500 \ mV_{p-p}, \\ Ta = 25^{\circ}C \end{split}$		_	75	_	dB

For 2.5 to 3.3V output

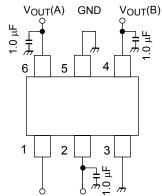
Characteristics	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Output voltage	V _{OUT}	Please refer to the Output Voltage Accuracy table				
Line regulation	Reg·line	$\label{eq:VOUT} \begin{split} V_{OUT} + 0.5 \ V \leq V_{IN} \leq 6 \ V, \\ I_{OUT} = 1 \ mA \end{split}$		1	15	mV
Load regulation	Reg·load	$1 \text{ mA} \le I_{OUT} \le 100 \text{ mA}$		15	30	mV
Quiescent current	Ι _Β	I _{OUT} = 0 mA		30	75	μA
Dropout voltage	VIN-VOUT	Please refer to the Dropout voltage table				
Temperature coefficient	T _{CVO}	$-40^{\circ}C \le T_{opr} \le 85^{\circ}C$	_	100	_	ppm/°C
Input voltage	V _{IN}	—	V _{OUT} (A) +0.2V		6.0	V
Ripple rejection ratio	R.R.	$\label{eq:VIN} \begin{array}{l} V_{IN} = V_{OUT} + 1 \ V, \ I_{OUT} = 10 \ mA, \\ f = 1 \ kHz, \ V_{Ripple} = 500 \ mV_{p-p}, \\ Ta = 25^{\circ}C \end{array}$	_	75	_	dB

Common Characteristics

Characteristics	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Quiescent current	I _{B(ON)}	I _{OUT} (A)= 0 mA, I _{OUT} (B)= 0 mA	_	60	150	μA
Quiescent current	I _{B(OFF)}	I _{OUT} = 0 mA	_	0.1	1	μA
Control voltage (ON)	V _{CT (ON)}		1.1	_	6.0	V
Control voltage (OFF)	V _{CT (OFF)}	_	0	—	0.3	V
Control current (ON)	ICT (ON)	V _{CT} = 6.0 V		_	0.1	μA
Control current (OFF)	I _{CT (OFF)}	$V_{CT} = 0 V$	_	_	0.1	μA

Output Voltage Accuracy (V_{IN} = V_{OUT} + 1 V, I_{OUT} = 50 mA, C_{IN} = 1.0 μ F, C_{OUT} = 1.0 μ F, T_j = 25°C)

Symbol	Min.	Тур.	Max.	Unit
Vout	1.47	1.5	1.53	
	1.76	1.8	1.84	
	2.45	2.5	2.55	
	2.74	2.8	2.86	V
	2.84	2.9	2.96	v
	2.94	3.0	3.06	
	3.03	3.1	3.17	
	3.23	3.3	3.37	


Dropout Voltage

 $(I_{OUT} = 50 \text{ mA}, C_{IN} = 1.0 \mu\text{F}, C_{OUT} = 1.0 \mu\text{F}, T_{i} = 25^{\circ}\text{C})$

Symbol	Output Voltage	Min.	Тур.	Max.	Unit
	1.5 V	_	300	500	
VIN-VOUT	1.8 V	_	200	350	mV
	2.5 to 3.3 V	_	90	200	

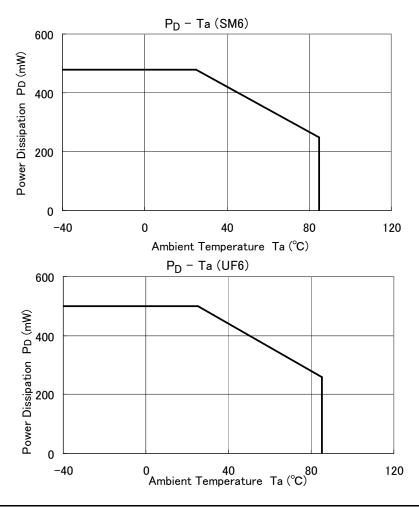
Application Note

1. Recommended Application Circuit

CONTRO	L Voltage	Output Voltage		
CONTROL(A)	CONTROL(B)	V _{OUT} (A)	V _{OUT} (B)	
High	High	ON	ON	
High	Low	ON	OFF	
Low	High	OFF	ON	
Low	Low	OFF	OFF	

CONTROL(A) V_{IN} CONTROL(B)

The figure above shows the recommended configuration for using a Low-Dropout regulator. Insert a capacitor to V_{OUT} and V_{IN} for stable input/output operation. (ceramic capacitors can be used)


If the control function is not used, Toshiba recommend that the control pin is connected to the VIN pin.

2. Power Dissipation

Power dissipation is measured on the board condition shown below.

[The Board Condition]

Board material : Glass epoxy Board dimension : 25.4mm x 25.4mm, t = 1.6mm Pad dimension : 645mm²

Attention in Use

Output Capacitors

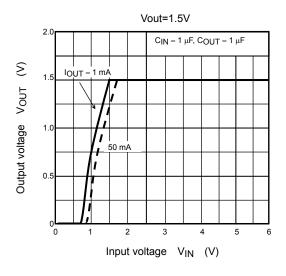
Ceramic capacitors can be used for these devices. However, because of the type of the capacitors, there might be unexpected thermal features. Please consider application condition for selecting capacitors. And Toshiba recommend the ESR of ceramic capacitor is under 10 Ω .

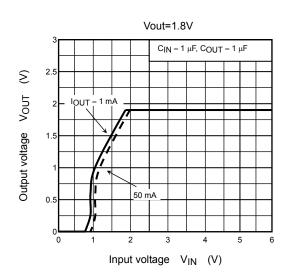
Mounting

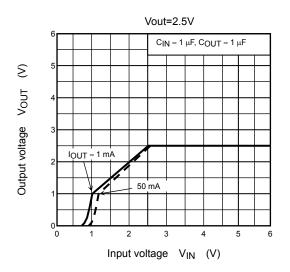
The long distance between IC and output capacitor might affect phase assurance by impedance in wire and inductor. For stable power supply, output capacitor need to mount near IC as much as possible. Also GND pattern need to be large and make the wire impedance small as possible.

Permissible Loss

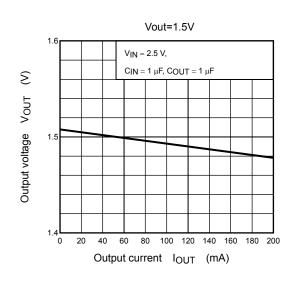
Please have enough board design patterns for expected maximum permissible loss. And under consideration of surrounding temperature, input voltage, and output current etc, please apply proper dissipation ratings for maximum permissible loss.

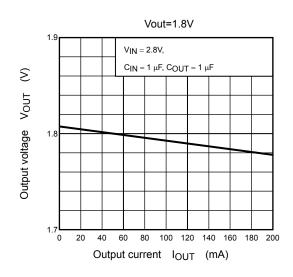

• Overcurrent Protection Circuit

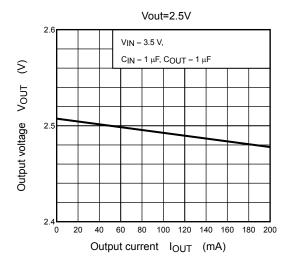

Overcurrent protection circuit is designed in these products, but this does not assure for the suppression of uprising device operation. If output pins and GND pins are shorted out, these products might be break down.

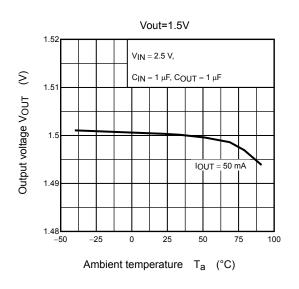

In use of these products, please read through and understand dissipation idea for absolute maximum ratings from the above mention or our 'Semiconductor Reliability Handbook'. Then use these products under absolute maximum ratings in any condition. Furthermore, Toshiba recommend inserting failsafe system into the design.

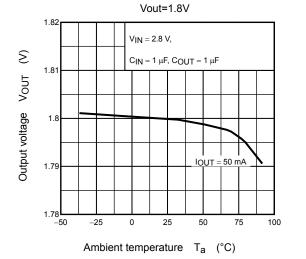
Representative Typical Characteristics

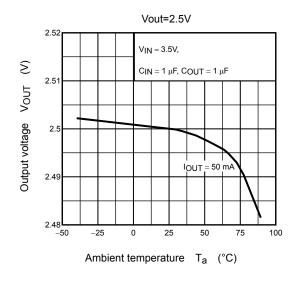

1) Output Voltage vs. Input Voltage

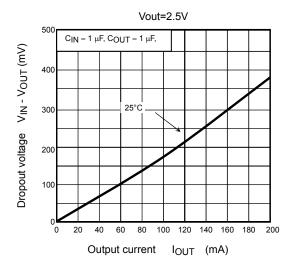


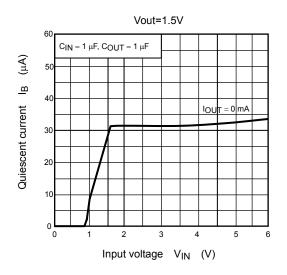


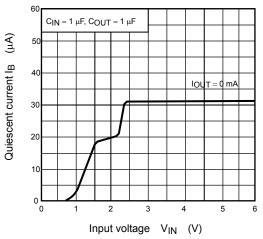

2) Output Voltage vs. Output Current

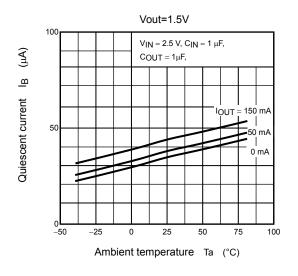


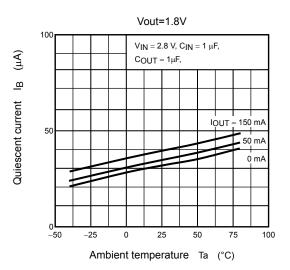


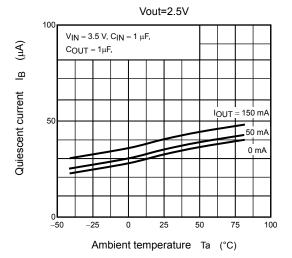

3) Output Voltage vs. Ambient temperature

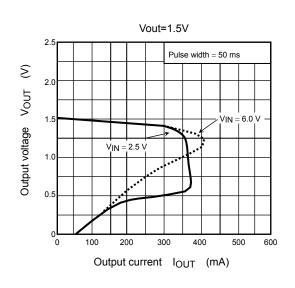



4) Dropout Voltage vs. Output Current

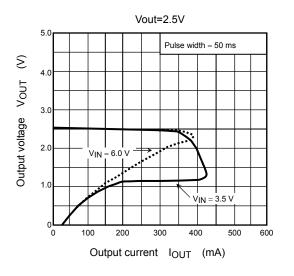

5) Quiescent Current vs. Input Voltage

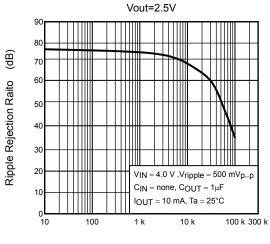


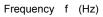

Vout=2.5V

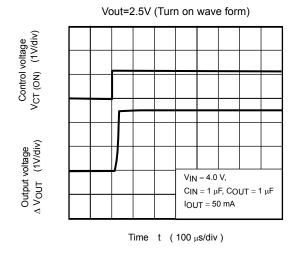

6) Quiescent current vs. Ambient temperature



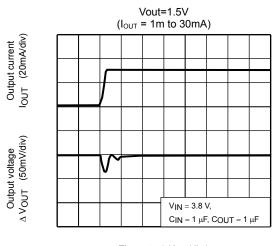


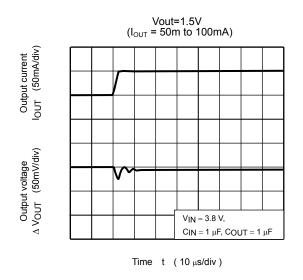


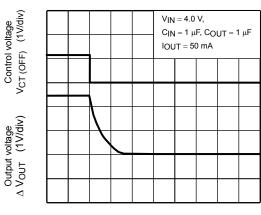




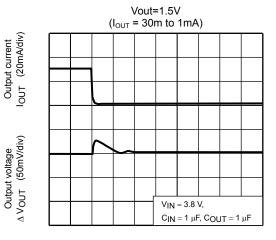
8) Ripple rejection Raito vs. Frequency

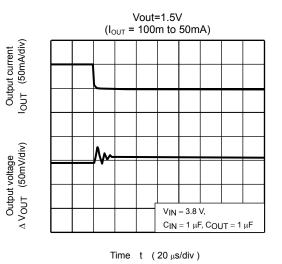


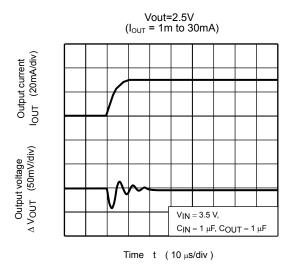

9) Control Transient Response



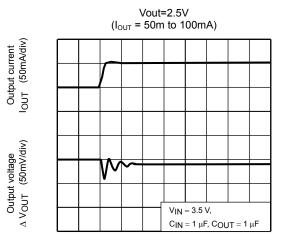
10) Load Transient Response


Time t (10 $\mu\text{s/div}$)



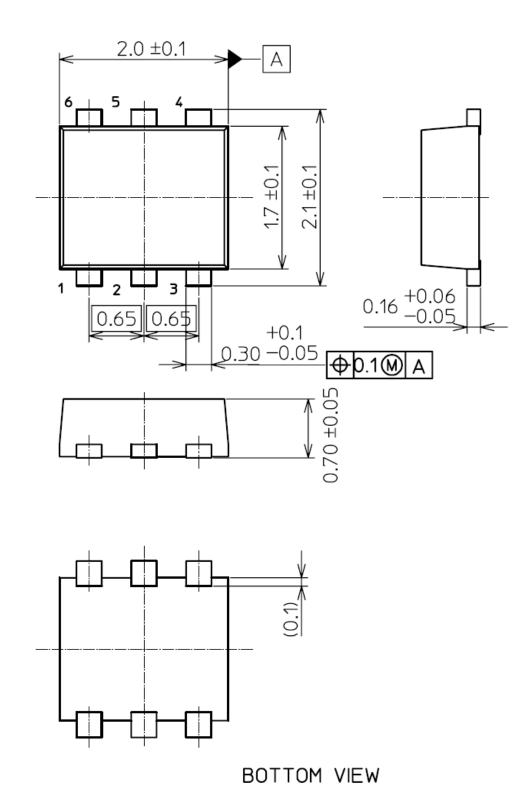

Vout=2.5V (Turn off wave form)

Time t (100 μ s/div)


Time t (20 μ s/div)

Time t (20 µs/div)

Time t (10 μ s/div)

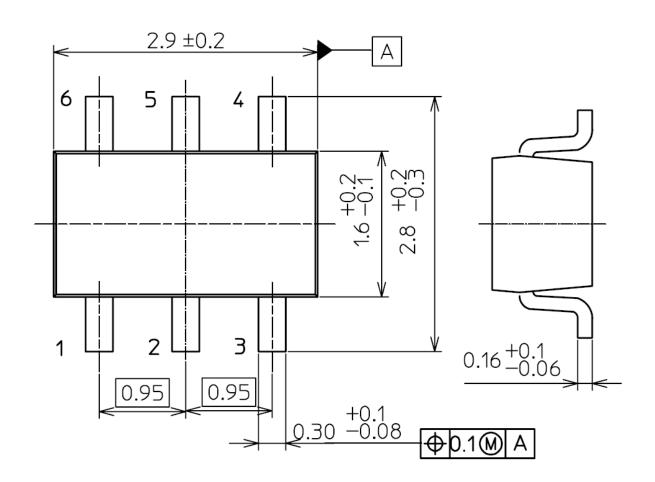

Vout=2.5V (I_{OUT} = 100m to 50mA)

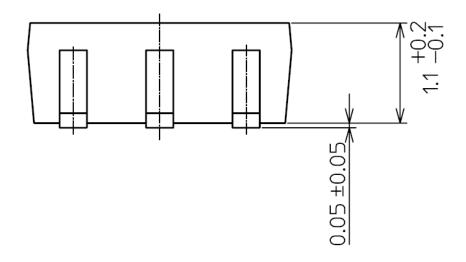
Time t (20 μ s/div)

Package Dimensions

UF6

Unit : mm




Weight: 7 mg (typ.)

Package Dimensions

SM6(SOT-26)(SC-74)

Unit : mm

Weight: 15 mg (typ.)

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- Product is intended for use in general electronics applications (e.g., computers, personal equipment, office equipment, measuring equipment, industrial robots and home electronics appliances) or for specific applications as expressly stated in this document. Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact ("Unintended Use"). Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for Unintended Use unless specifically permitted in this document.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.