

Data Sheet

September 3, 2009

FN6387.1

Power Line Communication (PLC)

The ISL1571 is a dual operational amplifier designed for PLC line driving in OFDM and SSC based solutions. This device features a high drive capability of 750mA while consuming only 6mA of supply current per amplifier and operating from a single 4.5V to 12V supply. The driver achieves a typical distortion of -80dBc, at 150kHz into a 25Ω load.

The ISL1571 is available in the thermally-enhanced 16 Ld QFN or 10 Ld HMSOP package and is specified for operation over the full -40°C to +85°C temperature range. The ISL1571 has control pins $BIAS_0$ and $BIAS_1$ for controlling the bias and enable/disable of the outputs. These controls allow for lowering the power to fit the performance/power ratio for the application.

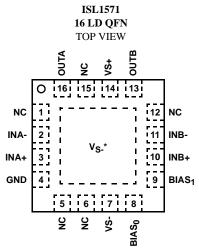
The ISL1571 is ideal for line driving applications following the Homeplug 1.0, Homeplug AV and UPA standard based PLC.

Features

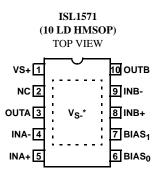
- 21dBm output power capability
- Drives up to 750mA from a +12V supply
- $20V_{P-P}$ differential output drive into 21Ω
- Very low noise floor
- -75dBc typical driver output distortion at 4MHz
- -80dBc typical driver output distortion at 10MHz
- · -79dBc typical driver output distortion at 17MHz
- · Low quiescent current of 6mA per amplifier
- · Supply range
 - For ISL1571IUEZ 4.5V to 12V
 - For ISL1571IRZ ±2.25V to ±6V, 4.5V to 12V
- 250MHz bandwidth
- Thermal shutdown
- Pb-free (RoHS compliant)

Applications

- Homeplug 1.0
- Homeplug AV
- UPA digital home standard


PART NUMBER (Note)	PART MARKING	TEMP. RANGE (°C)	PACKAGE (Pb-Free)	PKG. DWG. #
ISL1571IRZ	157 1IRZ	-40 to +85	16 Ld QFN	MDP0046
ISL1571IRZ-T7*	157 1IRZ	-40 to +85	16 Ld QFN (Tape and Reel)	MDP0046
ISL1571IUEZ	BBBDA	-40 to +85	10 Ld HMSOP	MDP0050
ISL1571IUEZ-T7*	BBBDA	-40 to +85	10 Ld HMSOP (Tape and Reel)	MDP0050

Ordering Information


*Please refer to TB347 for details on reel specifications

NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

Pinouts

*THERMAL PAD MUST BE CONNECTED TO NEGATIVE SUPPLY: $\mathsf{V}_{S}\mathsf{.}$ QFN PACKAGE CAN BE USED IN SINGLE AND DUAL SUPPLY APPLICATIONS.

*THERMAL PAD MUST BE CONNECTED TO NEGATIVE SUPPLY: $\rm V_{S-}.$ HMSOP PACKAGE CAN BE USED IN SINGLE SUPPLY APPLICATIONS ONLY.

Pin Descriptions

16 LD QFN	10 LD HMSOP	PIN NAME	FUNCTION
1, 5, 6, 12, 15	2	NC	No Connect
2	4	INA-	Inverting Input of Amplifier A
3	5	INA+	Non-Inverting Input of Amplifier A
4	Thermal Pad	GND	Ground Connect
7	Thermal Pad	VS-	Negative Supply
8	6	BIAS ₀ (Note 1)	Current Control Bias Pin
9	7	BIAS ₁ (Note 1)	Current Control Bias Pin
10	8	INB+	Non-Inverting Input of Amplifier B
11	9	INB-	Inverting Input of Amplifier B
13	10	OUTB	Output of Amplifier B
14	1	VS+	Positive Supply
16	3	OUTA	Output of Amplifier A

NOTE:

1. Single DSL port is comprised of amplifiers A and B. $BIAS_0$ and $BIAS_1$ control I_S settings for the DSL port.

Absolute Maximum Ratings (T_A = +25°C)

V _S + Voltage to Ground
V _{IN} + Voltage GND to V _S +
Current into any Input 8mA
Continuous Output Current
BIAS ₀ , BIAS ₁ to Ground+6.6V
ESD Rating
Human Body Model
Charge Device Model

Thermal Information

Ambient Operating Temperature Range40	°C to +85°C
Storage Temperature Range60°	C to +150°C
Operating Junction Temperature	+150°C
Power Dissipation	See Curves
Pb-free Reflow Profilese	e link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp	

*Excludes C0 and C1 pins which show less than 1kV of HBM ESD sensitivity.

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_J = T_C = T_A$

Electrical Specifications	$V_S = 12V$, $R_F = 750\Omega$, $R_{L-DIFF} = 50\Omega$, $BIAS_0 = BIAS_1 = 0V$, $T_A = +25^{\circ}C$, unless otherwise specified.
----------------------------------	---

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
AC PERFORMANCE		· · · · ·				
BW	-3dB Bandwidth	$R_{F} = 750\Omega, A_{V} = +5$		250		MHz
		R _F = 750Ω, A _V = +10		200		MHz
THD	Total Harmonic Distortion, Differential	$f = 4MHz, V_O = 4V_{P-P_DIFF}, R_{L-DIFF} = 100\Omega$		-75		dBc
		$f = 10MHz, V_O = 4V_{P-P_DIFF}, R_{L-DIFF} = 100\Omega$		-80		dBc
		$f = 17MHz, V_O = 4V_{P-P_DIFF}, R_{L-DIFF} = 100\Omega$		-79		dBc
SR	Slew Rate, Single-ended	V _{OUT} from -3V to +3V	750	1200		V/µs
DC PERFORMANCE						<u>.</u>
V _{OS_CM}	Offset Voltage Common Mode		-40		+40	mV
V _{OS_DM}	Offset Voltage Differential Mode		-7.5		+7.5	mV
R _{OL}	Differential Transimpedance	$V_{OUT} = 12V_{P-P}$ differential, unloaded		3.0		MΩ
INPUT CHARACTERI	STICS					<u>.</u>
I _B +	Non-Inverting Input Bias Current		-7.0		+7.0	μA
IB- DM	Inverting Input Bias Current Differential Mode		-75	3	+75	μA
e _N	Input Noise Voltage			6		nV√Hz
i _N	-Input Noise Current			13		pA∕√Hz
OUTPUT CHARACTE	RISTICS	·		L.		
V _{OUT}	Loaded Output Swing (single ended)	$V_{S} = \pm 6V, R_{L DIFF} = 50\Omega$	±4.8	±5.0		V
		$V_{S} = \pm 6V, R_{L DIFF} = 20\Omega$	±4.35	±4.7		V
IOUT	Output Current	$R_L = 0\Omega$		1000		mA
SUPPLY	·					
V _S	Supply Voltage	Single supply	4.5		13.2	V
I _S + (Full Bias)	Positive Supply Current per Amplifier	All outputs at 0V, $BIAS_0 = BIAS_1 = 0V$	12	15	21.5	mA
I _S + (Medium Bias)	Positive Supply Current per Amplifier	All outputs at 0V, $BIAS_0 = 5V$, $BIAS_1 = 0V$		11		mA
I _S + (Low Bias)	Positive Supply Current per Amplifier	All outputs at 0V, $BIAS_0 = 0V$, $BIAS_1 = 5V$		6.0		mA
I _S + (Power-down)	Positive Supply Current per Amplifier	All outputs at 0V, $BIAS_0 = BIAS_1 = 5V$		0.6	1.0	mA
I_{INH} , BIAS ₀ or BIAS ₁	BIAS ₀ , BIAS ₁ Input Current, High	BIAS ₀ , BIAS ₁ = 6V	100	175	250	μA
I_{INL} , BIAS ₀ or BIAS ₁	BIAS ₀ , BIAS ₁ Input Current, Low	$BIAS_0, BIAS_1 = 0V$	-5		+5	μA
V_{INH} , BIAS ₀ or BIAS ₁	BIAS ₀ , BIAS ₁ Input Voltage, High		2.0			V
V_{INL} , BIAS ₀ or BIAS ₁	BIAS ₀ , BIAS ₁ Input Voltage, Low				0.8	V

Typical Performance Curves

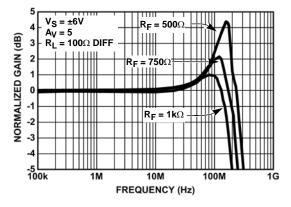


FIGURE 1. DIFFERENTIAL FREQUENCY RESPONSE WITH VARIOUS R_F (FULL BIAS MODE)

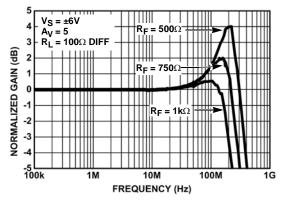


FIGURE 2. DIFFERENTIAL FREQUENCY RESPONSE WITH VARIOUS R_{F} (MEDIUM BIAS MODE)

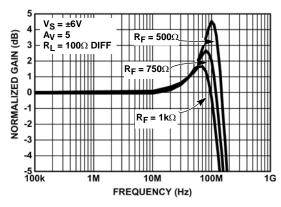


FIGURE 3. DIFFERENTIAL FREQUENCY RESPONSE WITH VARIOUS R_F (LOW BIAS MODE)

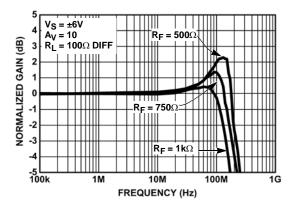


FIGURE 5. DIFFERENTIAL FREQUENCY RESPONSE WITH VARIOUS \mathbf{R}_{F} (MEDIUM BIAS MODE)

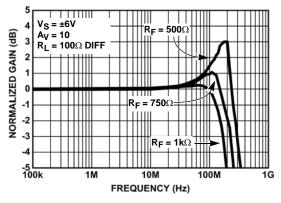


FIGURE 4. DIFFERENTIAL FREQUENCY RESPONSE WITH VARIOUS R_F (FULL BIAS MODE)

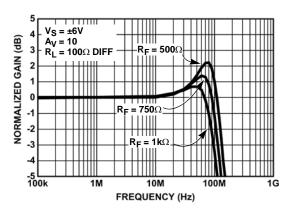


FIGURE 6. DIFFERENTIAL FREQUENCY RESPONSE WITH VARIOUS R_F (LOW BIAS MODE)

Typical Performance Curves (Continued)

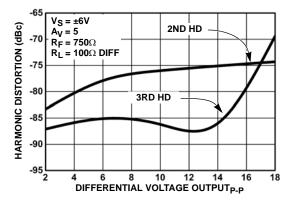


FIGURE 7. HARMONIC DISTORTION @ 2MHz

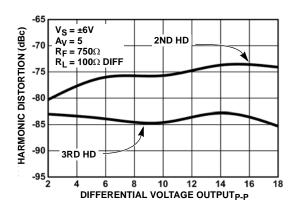


FIGURE 9. HARMONIC DISTORTION @ 3MHz

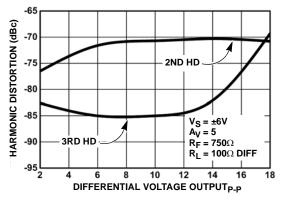


FIGURE 11. HARMONIC DISTORTION @ 5MHz

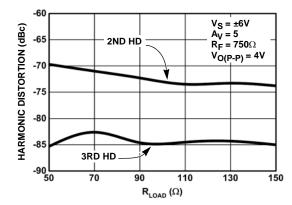


FIGURE 8. 2ND AND 3RD HARMONIC DISTORTION vs $$\rm R_{LOAD}$ @ 2MHz

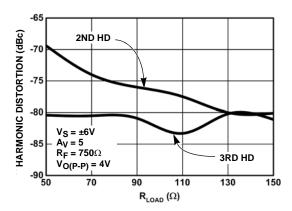


FIGURE 10. 2ND AND 3RD HARMONIC DISTORTION vs $$\rm R_{LOAD}$ @ 3MHz

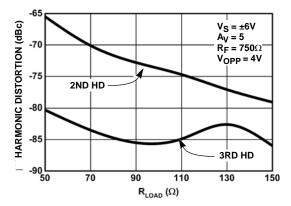


FIGURE 12. 2ND AND 3RD HARMONIC DISTORTION vs $$R_{LOAD} @ 5MHz$$

Typical Performance Curves (Continued)

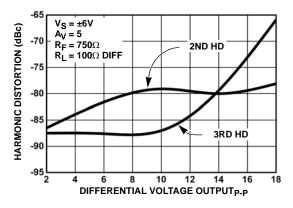


FIGURE 13. HARMONIC DISTORTION @ 10MHz

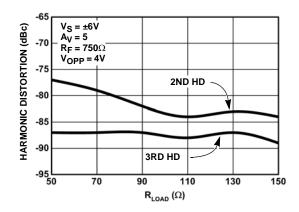


FIGURE 14. 2ND AND 3RD HARMONIC DISTORTION vs $R_{LOAD} @ 10 \mbox{MHz}$

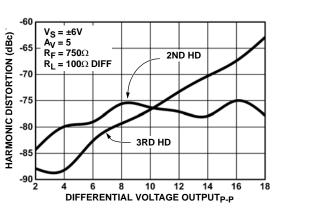


FIGURE 15. HARMONIC DISTORTION @ 17MHz

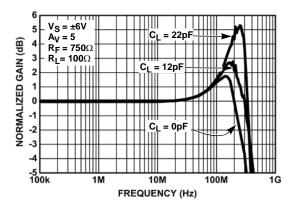


FIGURE 17. FREQUENCY RESPONSE WITH VARIOUS CL (FULL BIAS MODE)

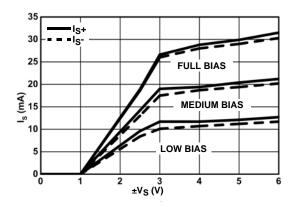


FIGURE 16. SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 18. FREQUENCY RESPONSE vs VARIOUS CL (MEDIUM BIAS MODE)

Typical Performance Curves (Continued)

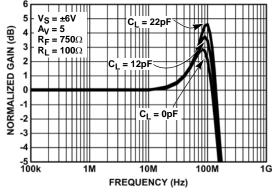


FIGURE 19. FREQUENCY RESPONSE WITH VARIOUS CL (LOW BIAS MODE)

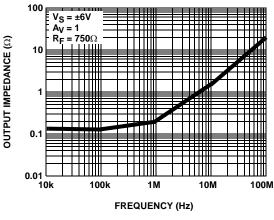
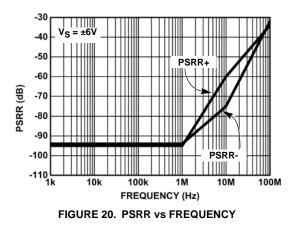



FIGURE 21. OUTPUT IMPEDANCE vs FREQUENCY

Product Description

The ISL1571 is a dual operational amplifier designed for line driving in OFDM and PLC solutions. It is a dual current mode feedback amplifier with low distortion while drawing moderately low supply current. It is built using Intersil's proprietary complimentary bipolar process and is offered in industry standard pinouts. Due to the current feedback architecture, the ISL1571 closed-loop 3dB bandwidth is dependent on the value of the feedback resistor. First the desired bandwidth is selected by choosing the feedback resistor, R_F, and then the gain is set by picking the gain resistor, R_G. The curves at the beginning of the "Typical Performance Curves" on page 4, show the effect of varying both R_F and R_G. The 3dB bandwidth is somewhat dependent on the power supply voltage.

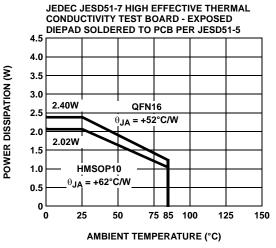


FIGURE 22. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

Power Supply Bypassing and Printed Circuit Board Layout

As with any high frequency device, good printed circuit board layout is necessary for optimum performance. Ground plane construction is highly recommended. Lead lengths should be as short as possible, below 0.25". The power supply pins must be well bypassed to reduce the risk of oscillation. A 4.7 μ F tantalum capacitor in parallel with a 0.1 μ F ceramic capacitor is adequate for each supply pin. During power-up, it is necessary to limit the slew rate of the rising power supply to within 1V/ μ s. If the power supply rising time is undetermined, a series 10 Ω resistor on the power supply line can be used to ensure the proper power supply rise time.

For good AC performance, parasitic capacitances should be kept to a minimum, especially at the inverting input. This implies keeping the ground plane away from this pin. Carbon resistors are acceptable, while use of wire-wound resistors should be avoided because of their parasitic inductance. Similarly, capacitors should be low inductance for best performance.

Capacitance at the Inverting Input

Due to the topology of the current feedback amplifier, stray capacitance at the inverting input will affect the AC and transient performance of the ISL1571 when operating in the non-inverting configuration.

In the inverting gain mode, added capacitance at the inverting input has little effect since this point is at a virtual ground and stray capacitance is therefore not "seen" by the amplifier.

Feedback Resistor Values

The ISL1571 has been designed and specified with $R_F = 750\Omega$ for $A_V = +5$. This value of feedback resistor yields extremely flat frequency response with 1dB peaking out to 250MHz. As is the case with all current feedback amplifiers, wider bandwidth, at the expense of slight peaking, can be obtained by reducing the value of the feedback resistor. Inversely, larger values of feedback resistor will cause rolloff to occur at a lower frequency. See the curves in the "Typical Performance Curves" section, beginning on page 4, which show 3dB bandwidth and peaking vs frequency for various feedback resistors and various supply voltages.

Bandwidth vs Temperature

Whereas many amplifier's supply current and consequently 3dB bandwidth drop off at high temperature, the ISL1571 was designed to have little supply current variations with temperature. An immediate benefit is the 3dB bandwidth does not drop off drastically with temperature.

Supply Voltage Range

The ISL1571IRZ has been designed to operate with supply voltages from $\pm 2.25V$ to $\pm 6V$ nominal. Optimum bandwidth, slew rate, and video characteristics are obtained at higher supply voltages.

Single Supply Operation

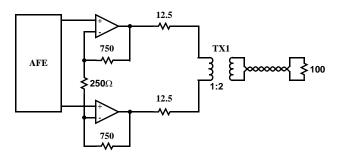
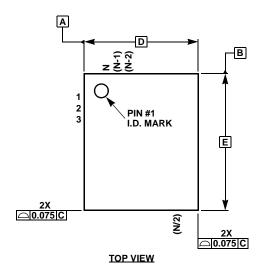
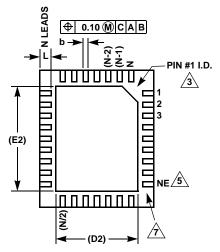
If a single supply is desired, values from +4.5V to +12V nominal can be used as long as the input common mode range is not exceeded. When using a single supply, be sure to either:

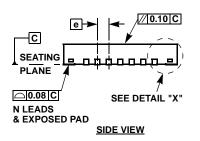
- 1. DC bias the inputs at an appropriate common mode voltage and AC couple the signal, or:
- 2. Ensure the driving signal is within the common mode range of the ISL1571. ISL1571IUEZ must be used in single supply applications.

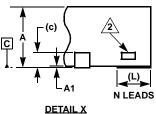
PLC Modem Applications

The ISL1571 is designed as a line driver for PLC modems. It is capable of outputting 450mA of output current with a typical supply voltage headroom of 1.3V. It can achieve -85dBc of distortion at low 7.1mA of supply current per amplifier.

The average line power requirement for the PLC application is 13dBm (20mW) into a 100Ω line. The average line voltage is $1.41V_{RMS}$. Using a differential drive configuration and transformer coupling with standard back termination, a transformer ratio of 1:2 is selected. The circuit configuration is shown in Figure 23.

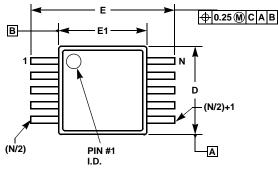

FIGURE 23. CIRCUIT CONFIGURATION


QFN (Quad Flat No-Lead) Package Family

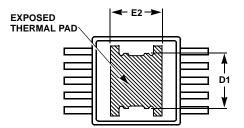
MDP0046

QFN (QUAD FLAT NO-LEAD) PACKAGE FAMILY (COMPLIANT TO JEDEC MO-220)

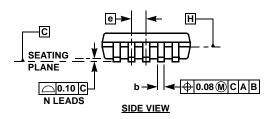
	MILLIMETERS							
SYMBOL	QFN44	QFN38	QFN32		TOLERANCE	NOTES		
А	0.90	0.90	0.90	0.90	±0.10	-		
A1	0.02	0.02	0.02	0.02	+0.03/-0.02	-		
b	0.25	0.25	0.23	0.22	±0.02	-		
с	0.20	0.20	0.20	0.20	Reference	-		
D	7.00	5.00	8.00	5.00	Basic	-		
D2	5.10	3.80	5.80	3.60/2.48	Reference	8		
Е	7.00	7.00	8.00	6.00	Basic	-		
E2	5.10	5.80	5.80	4.60/3.40	Reference	8		
e	0.50	0.50	0.80	0.50	Basic	-		
L	0.55	0.40	0.53	0.50	±0.05	-		
Ν	44	38	32	32	Reference	4		
ND	11	7	8	7	Reference	6		
NE	11	12	8	9	Reference	5		

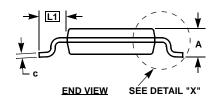

	MILLIMETERS					TOLER-	
SYMBOL	QFN28	QFN24	Q	FN20	QFN16	ANCE	NOTES
A	0.90	0.90	0.90	0.90	0.90	±0.10	-
A1	0.02	0.02	0.02	0.02	0.02	+0.03/ -0.02	-
b	0.25	0.25	0.30	0.25	0.33	±0.02	-
с	0.20	0.20	0.20	0.20	0.20	Reference	-
D	4.00	4.00	5.00	4.00	4.00	Basic	-
D2	2.65	2.80	3.70	2.70	2.40	Reference	-
E	5.00	5.00	5.00	4.00	4.00	Basic	-
E2	3.65	3.80	3.70	2.70	2.40	Reference	-
е	0.50	0.50	0.65	0.50	0.65	Basic	-
L	0.40	0.40	0.40	0.40	0.60	±0.05	-
N	28	24	20	20	16	Reference	4
ND	6	5	5	5	4	Reference	6
NE	8	7	5	5	4	Reference	5

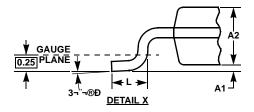
NOTES:


- 1. Dimensioning and tolerancing per ASME Y14.5M-1994.
- 2. Tiebar view shown is a non-functional feature.
- 3. Bottom-side pin #1 I.D. is a diepad chamfer as shown.
- 4. N is the total number of terminals on the device.
- 5. NE is the number of terminals on the "E" side of the package (or Y-direction).
- 6. ND is the number of terminals on the "D" side of the package (or X-direction). ND = (N/2)-NE.
- 7. Inward end of terminal may be square or circular in shape with radius (b/2) as shown.
- 8. If two values are listed, multiple exposed pad options are available. Refer to device-specific datasheet.

Rev 11 2/07


HMSOP (Heat-Sink MSOP) Package Family





BOTTOM VIEW

MDP0050

HMSOP (HEAT-SINK MSOP) PACKAGE FAMILY

HMSOP8 1.00 0.075	HMSOP10 1.00	TOLERANCE Max.	NOTES
		Max.	
0.075			-
	0.075	+0.025/-0.050	-
0.86	0.86	±0.09	-
0.30	0.20	+0.07/-0.08	-
0.15	0.15	±0.05	-
3.00	3.00	±0.10	1, 3
1.85	1.85	Reference	-
4.90	4.90	±0.15	-
3.00	3.00	±0.10	2, 3
1.73	1.73	Reference	-
0.65	0.50	Basic	-
0.55	0.55	±0.15	-
0.95	0.95	Basic	-
8	10	Reference	-
	0.15 3.00 1.85 4.90 3.00 1.73 0.65 0.55 0.95	0.15 0.15 3.00 3.00 1.85 1.85 4.90 4.90 3.00 3.00 1.73 1.73 0.65 0.50 0.55 0.55 0.95 0.95	0.15 0.15 ±0.05 3.00 3.00 ±0.10 1.85 1.85 Reference 4.90 4.90 ±0.15 3.00 3.00 ±0.10 1.73 1.73 Reference 0.65 0.50 Basic 0.55 0.95 ±0.15

NOTES:

- 1. Plastic or metal protrusions of 0.15mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25mm maximum per side are not included.
- 3. Dimensions "D" and "E1" are measured at Datum Plane "H".
- 4. Dimensioning and tolerancing per ASME Y14.5M-1994.

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com