74AHC541-Q100; 74AHCT541-Q100 Octal buffer/line driver; 3-state Rev. 1 — 6 June 2013

Product data sheet

1. **General description**

The 74AHC541-Q100; 74AHCT541-Q100 is a high-speed Si-gate CMOS device.

The 74AHC541-Q100; 74AHCT541-Q100 are octal non-inverting buffer/line drivers with 3-state bus compatible outputs.

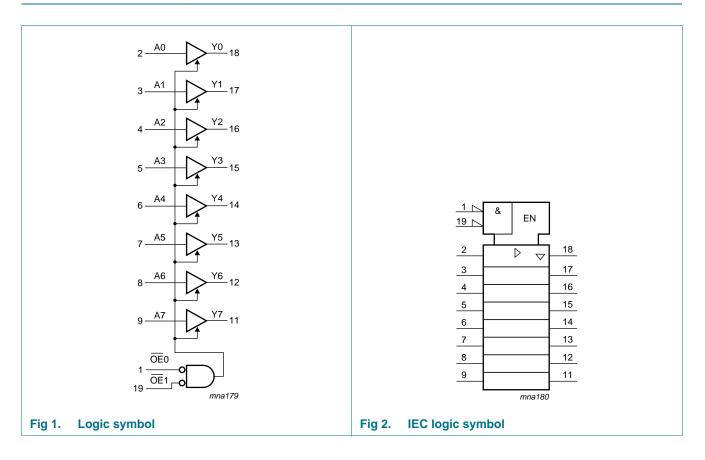
The output enable inputs $\overline{OE0}$ and $\overline{OE1}$, control the 3-state outputs.

A HIGH on \overline{OE} n causes the outputs to assume a high-impedance OFF-state.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

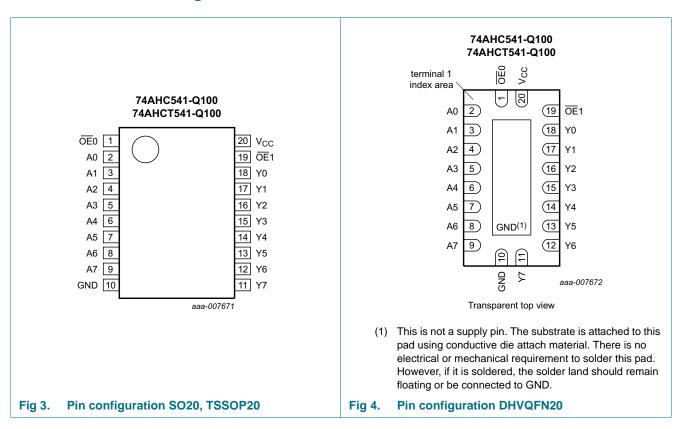
Features and benefits 2.

- Automotive product gualification in accordance with AEC-Q100 (Grade 1) Specified from –40 °C to +85 °C and from –40 °C to +125 °C
- Balanced propagation delays
- All inputs have a Schmitt-trigger action
- Inputs accept voltages higher than V_{CC}
- For 74AHC541-Q100 only: operates with CMOS input levels
- For 74AHCT541-Q100 only: operates with TTL input levels
- ESD protection:
 - MIL-STD-883, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)
- Multiple package options



Octal buffer/line driver; 3-state

3. Ordering information


Table 1. Ordering ir	nformation				
Type number	Package				
	Temperature range	Name	Description	Version	
74AHC541D-Q100	-40 °C to +125 °C	SO20	plastic small outline package; 20 leads;	SOT163-1	
74AHCT541D-Q100			body width 7.5 mm		
74AHC541PW-Q100	–40 °C to +125 °C	TSSOP20	plastic thin shrink small outline package;	SOT360-1	
74AHCT541PW-Q100			20 leads; body width 4.4 mm		
74AHC541BQ-Q100	–40 °C to +125 °C	DHVQFN20	plastic dual-in-line compatible thermal enhanced	SOT764-1	
74AHCT541BQ-Q100			very thin quad flat package; no leads; 20 terminals; body $2.5 \times 4.5 \times 0.85$ mm		

4. Functional diagram

Octal buffer/line driver; 3-state

Pinning information 5.

5.2 Pin description

Table 2.	Pin description	
Symbol	Pin	Description
OE0	1	output enable input (active LOW)
A[0:7]	2, 3, 4, 5, 6, 7, 8, 9	data input
GND	10	ground (0 V)
Y[0:7]	18, 17, 16, 15, 14, 13, 12, 11	data output
OE1	19	output enable input (active LOW)
V _{CC}	20	supply voltage

5.1 Pinning

Octal buffer/line driver; 3-state

6. Functional description

Table 5. Functional table	Table	3.	Functional	table ^[1]
---------------------------	-------	----	------------	----------------------

Control		Input	Output
OE0	OE1	An	Yn
L	L	L	L
L	L	Н	Н
Х	Н	Х	Z
Н	Х	Х	Z

[1] H = HIGH voltage level;

L = LOW voltage level;

X = don't care;

Z = high-impedance OFF-state.

7. Limiting values

Table 4.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

					-
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7.0	V
VI	input voltage		-0.5	+7.0	V
I _{IK}	input clamping current	V _I < -0.5 V	<u>[1]</u> –20	-	mA
Ι _{ΟΚ}	output clamping current	$V_{\rm O}$ < –0.5 V or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5 V	<u>[1]</u> _	±20	mA
Ι _Ο	output current	$V_{O} = -0.5 \text{ V}$ to (V_{CC} + 0.5 V)	-	±25	mA
I _{CC}	supply current		-	75	mA
I _{GND}	ground current		-75	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C \ to +125 \ ^{\circ}C$			
	SO20 package		[2] _	500	mW
	TSSOP20 package		<u>[3]</u>	500	mW
	DHVQFN20 package		<u>[4]</u> _	500	mW
-					

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] P_{tot} derates linearly with 8 mW/K above 70 °C.

[3] P_{tot} derates linearly with 5.5 mW/K above 60 °C.

[4] P_{tot} derates linearly with 4.5 mW/K above 60 °C.

Octal buffer/line driver; 3-state

8. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	74AH	74AHC541-Q100			74AHCT541-Q100		
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage		2.0	5.0	5.5	4.5	5.0	5.5	V
VI	input voltage		0	-	5.5	0	-	5.5	V
Vo	output voltage		0	-	V _{CC}	0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C
$\Delta t / \Delta V$	input transition rise	V_{CC} = 3.3 V \pm 0.3 V	-	-	100	-	-	-	ns/V
	and fall rate	V_{CC} = 5.0 V \pm 0.5 V	-	-	20	-	-	20	ns/V

9. Static characteristics

Table 6. Static characteristics

Voltages are referenced to GND (ground = 0 V).

Parameter	Conditions		25 °C		−40 °C	to +85 °C	–40 °C t	o +125 °C	Unit
		Min	Тур	Max	Min	Max	Min	Max	
74AHC541-Q1	00						1		
HIGH-level	V _{CC} = 2.0 V	1.5	-	-	1.5	-	1.5	-	V
input voltage	V _{CC} = 3.0 V	2.1	-	-	2.1	-	2.1	-	V
	V _{CC} = 5.5 V	3.85	-	-	3.85	-	3.85	-	V
LOW-level	V _{CC} = 2.0 V	-	-	0.5	-	0.5	-	0.5	V
input voltage	V _{CC} = 3.0 V	-	-	0.9	-	0.9	-	0.9	V
	V _{CC} = 5.5 V	-	-	1.65	-	1.65	-	1.65	V
HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}$								
output voltage	$I_{O} = -50 \ \mu A; \ V_{CC} = 2.0 \ V$	1.9	2.0	-	1.9	-	1.9	-	V
	$I_{O} = -50 \ \mu A; \ V_{CC} = 3.0 \ V$	2.9	3.0	-	2.9	-	2.9	-	V
	$I_{O} = -50 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	4.5	-	4.4	-	4.4	-	V
	$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.58	-	-	2.48	-	2.40	-	V
	$I_{O} = -8.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.94	-	-	3.8	-	3.70	-	V
LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}$								
output voltage	$I_0 = 50 \ \mu A; V_{CC} = 2.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
	$I_0 = 50 \ \mu A; \ V_{CC} = 3.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
	$I_{O} = 50 \ \mu A; V_{CC} = 4.5 \ V$	-	0	0.1	-	0.1	-	0.1	V
	$I_{O} = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.36	-	0.44	-	0.55	V
	I_{O} = 8.0 mA; V_{CC} = 4.5 V	-	-	0.36	-	0.44	-	0.55	V
OFF-state output current		-	-	±0.25	-	±2.5	-	±10.0	μΑ
input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 0 V$ to 5.5 V	-	-	0.1	-	1.0	-	2.0	μA
supply current		-	-	4.0	-	40	-	80	μA
41_Q100	All information provided	in this docum	ent is subje	ct to legal disc	laimers.		© N)	XP B.V. 2013. All rig	hts reserve
	74AHC541-Q1 HIGH-level input voltage LOW-level input voltage HIGH-level output voltage LOW-level output voltage OFF-state output leakage current supply current	74AHC541-Q100 HIGH-level input voltage $V_{CC} = 2.0 V$ $V_{CC} = 3.0 V$ $V_{CC} = 5.5 V$ LOW-level input voltage $V_{CC} = 2.0 V$ VI $V_{CC} = 3.0 V$ $V_{CC} = 5.5 V$ $V_{CC} = 3.0 V$ HIGH-level output voltage $V_I = V_{IH} \text{ or } V_{IL}$ $I_O = -50 \ \mu A; \ V_{CC} = 3.0 V$ $I_O = -50 \ \mu A; \ V_{CC} = 3.0 V$ $I_O = -50 \ \mu A; \ V_{CC} = 3.0 V$ $I_O = -4.0 \ mA; \ V_{CC} = 4.5 V$ $I_O = 50 \ \mu A; \ V_{CC} = 3.0 V$ $I_O = 50 \ \mu A; \ V_{CC} = 3.0 V$ $I_O = 50 \ \mu A; \ V_{CC} = 3.0 V$ $I_O = 50 \ \mu A; \ V_{CC} = 3.0 V$ $I_O = 50 \ \mu A; \ V_{CC} = 3.0 V$ $I_O = 50 \ \mu A; \ V_{CC} = 3.0 V$ $I_O = 50 \ \mu A; \ V_{CC} = 3.0 V$ $I_O = 8.0 \ mA; \ V_{CC} = 3.0 V$ $I_O = 8.0 \ mA; \ V_{CC} = 4.5 V$ $I_O = 8.0 \ mA; \ V_{CC} = 4.5 V$ $I_O = 8.0 \ mA; \ V_{CC} = 4.5 V$ $I_O = V_{CC} \ Or \ GND;$ $V_O = V_{CC} \ Or \ GND;$ $V_C = 5.5 \ V$ Supply current $V_I = V_{CC} \ Or \ GND; \ V_{CC} = 0 \ V to 5.5 \ V$	T4AHC541-Q100 Min HIGH-level input voltage $V_{CC} = 2.0 V$ 1.5 $V_{CC} = 3.0 V$ 2.1 $V_{CC} = 5.5 V$ 3.85 LOW-level input voltage $V_{CC} = 2.0 V$ - $V_{CC} = 3.0 V$ - $V_{CC} = 3.0 V$ - $V_{CC} = 5.5 V$ - HIGH-level output voltage $V_1 = V_{IH} \text{ or } V_{IL}$ $I_0 = -50 \mu A; V_{CC} = 2.0 V$ 1.9 $I_0 = -50 \mu A; V_{CC} = 3.0 V$ 2.9 $I_0 = -50 \mu A; V_{CC} = 3.0 V$ 2.9 $I_0 = -50 \mu A; V_{CC} = 3.0 V$ 2.9 $I_0 = -50 \mu A; V_{CC} = 3.0 V$ 2.9 $I_0 = -50 \mu A; V_{CC} = 3.0 V$ 2.9 $I_0 = -8.0 mA; V_{CC} = 3.0 V$ 2.58 $I_0 = 50 \mu A; V_{CC} = 3.0 V$ - $I_0 = 50 \mu A; V_{CC} = 3.0 V$ - $I_0 = 50 \mu A; V_{CC} = 3.0 V$ - $I_0 = 50 \mu A; V_{CC} = 3.0 V$ - $I_0 = 50 \mu A; V_{CC} = 3.0 V$ - $I_0 = 8.0 mA; V_{CC} = 4.5 V$ - $I_0 = 8.0 mA; V_{CC} = 4.5 V$ - $I_0 = V_{IH} \text{ or } $	$\begin{tabular}{ c c c c } \hline Min & Typ \\ \hline $T4AHC541-Q100$ \\ \hline $T4AHC541-Q100$ \\ \hline $T4CC = 2.0 V$ 1.5 $-$ \\ \hline $V_{CC} = 3.0 V$ 2.1 $-$ \\ \hline $V_{CC} = 5.5 V$ 3.85 $-$ \\ \hline $V_{CC} = 5.5 V$ 3.85 $-$ \\ \hline $V_{CC} = 3.0 V$ $-$ $-$ \\ \hline $V_{CC} = 3.0 V$ $-$ $-$ \\ \hline $V_{CC} = 3.0 V$ $-$ $-$ \\ \hline $V_{CC} = 5.5 V$ $-$ \\ \hline $V_{CC} = 0 MA; V_{CC} = 4.5 V$ $-$ $-$ \\ \hline $V_{C} = 50 $$ $\mu A; V_{CC} = 3.0 V$ $-$ $-$ \\ \hline $V_{C} = 50 $$ $\mu A; V_{CC} = 3.0 V$ $-$ $-$ \\ \hline $V_{C} = 50 $$ $\mu A; V_{CC} = 3.0 V$ $-$ $-$ \\ \hline $V_{C} = 50 $$ $\mu A; V_{CC} = 3.0 V$ $-$ $-$ \\ \hline $V_{C} = 50 $$ $\mu A; V_{CC} = 3.0 V$ $-$ $-$ \\ \hline $V_{C} = 50 $$ $\mu A; V_{CC} = 3.0 V$ $-$ $-$ \\ \hline $V_{C} = 0 $$ $\mu A; V_{CC} = 3.0 V$ $-$ $-$ \\ \hline $V_{C} = 0 $$ $\mu A; V_{CC} = 3.0 V$ $-$ $-$ \\ \hline $V_{C} = 0 $$ $V_{C} = 0 $$ $V_{C} = 0 $V_{C} = $V_{C} = 0 $V_{C} = 0 $V_{C} = 0 $V_{C} = 0 $V_{C} = $V_{C} = $$	$\begin{tabular}{ c c c c } \hline Min Typ Max $$T4AHC541-Q100$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $			$\begin{tabular}{ c c c c } \hline Min Typ Max Min Max Min Max Min Typ $Typ$$	

Octal buffer/line driver; 3-state

Symbol	Parameter	Conditions		25 °C		_40 °C	to +85 °C	–40 °C t	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
Cı	input capacitance		-	3.0	10	-	10	-	10	pF
Co	output capacitance		-	4.0	-	-	-	-	-	pF
For type	74AHCT541-Q	100								
V _{IH}	HIGH-level input voltage	V_{CC} = 4.5 V to 5.5 V	2.0	-	-	2.0	-	2.0	-	V
V _{IL}	LOW-level input voltage	V_{CC} = 4.5 V to 5.5 V	-	-	0.8	-	0.8	-	0.8	V
V _{OH}	HIGH-level	$V_{I} = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 V$								
	output voltage	I _O = -50 μA	4.4	4.5	-	4.4	-	4.4	-	V
	I _O = -8.0 mA	3.94	-	-	3.8	-	3.70	-	V	
V _{OL} LOW-level output voltage	V_{I} = V_{IH} or $V_{IL};V_{CC}$ = 4.5 V									
	I _O = 50 μA	-	0	0.1	-	0.1	-	0.1	V	
		I _O = 8.0 mA	-	-	0.36	-	0.44	-	0.55	V
I _{OZ}	OFF-state output current	per input pin; $V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 5.5 V$; $I_O = 0 A$; $V_O = V_{CC}$ or GND; other pins at V_{CC} or GND	-	-	±0.25	-	±2.5	-	±10.0	μA
lı	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 0 V$ to 5.5 V	-	-	0.1	-	1.0	-	2.0	μA
I _{CC}	supply current		-	-	4.0	-	40	-	80	μA
ΔI _{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1 \text{ V}; I_O = 0 \text{ A};$ other pins at V_{CC} or GND; $V_{CC} = 4.5 \text{ V}$ to 5.5 V	-	-	1.35	-	1.5	-	1.5	mA
CI	input capacitance		-	3	10	-	10	-	10	pF
Co	output capacitance		-	4.0	-	-	-	-	-	pF

Table 6. Static characteristics ... continued

Octal buffer/line driver; 3-state

10. Dynamic characteristics

Table 7.Dynamic characteristics

GND = 0 V. For test circuit, see <u>Figure 7</u>.

Symbol	Parameter	Conditions			25 °C		-40 °C	to +85 °C	-40 °C t	o +125 °C	Unit
				Min	Typ <mark>[1]</mark>	Max	Min	Max	Min	Max	
For type	74AHC541-C	100									
t _{pd}	propagation	An to Yn; see Figure 5	[2]								
	delay	V_{CC} = 3.0 V to 3.6 V									
		C _L = 15 pF		-	5.0	7.0	1.0	8.5	1.0	9.0	ns
		C _L = 50 pF		-	7.0	10.5	1.0	12.0	1.0	13.5	ns
		V_{CC} = 4.5 V to 5.5 V									
		C _L = 15 pF		-	3.5	5.0	1.0	6.0	1.0	6.5	ns
		C _L = 50 pF			5.0	7.0	1.0	8.0	1.0	9.0	ns
t _{en}	enable time	OEn to Yn; see Figure 6	[2]								
		V_{CC} = 3.0 V to 3.6 V									
		C _L = 15 pF		-	5.5	10.5	1.0	11.0	1.0	13.5	ns
		C _L = 50 pF		-	7.5	14.0	1.0	16.0	1.0	17.5	ns
		V_{CC} = 4.5 V to 5.5 V									
		C _L = 15 pF		-	3.5	7.2	1.0	8.5	1.0	9.0	ns
		C _L = 50 pF		-	5.0	9.2	1.0	10.5	1.0	11.5	ns
t _{dis}	disable time	OEn to Yn; see Figure 6	[2]								
		V_{CC} = 3.0 V to 3.6 V									
		C _L = 15 pF		-	6.0	11.0	1.0	12.0	1.0	14.0	ns
		C _L = 50 pF		-	9.5	15.4	1.0	17.5	1.0	19.5	ns
		V_{CC} = 4.5 V to 5.5 V									
		C _L = 15 pF		-	4.5	7.5	1.0	8.0	1.0	9.5	ns
		C _L = 50 pF		-	6.5	8.8	1.0	10.0	1.0	11.0	ns
C _{PD}	power dissipation	C_L = 50 pF; f _i = 1 MHz; V _I = GND to V _{CC}	<u>[3]</u>	-	10	-	-	-	-	-	pF

capacitance

Octal buffer/line driver; 3-state

Symbol	Parameter	Conditions		25 °C		−40 °C	to +85 °C	–40 °C t	o +125 °C	Unit	
				Min	Typ[1]	Max	Min	Max	Min	Max	
For type	74AHCT541-	Q100									
t _{pd}	propagation	An to Yn; see Figure 5	[2]								
	delay	V_{CC} = 4.5 V to 5.5 V									
		C _L = 15 pF		-	3.5	5.5	1.0	6.5	1.0	7.0	ns
		C _L = 50 pF		-	5.0	8.5	1.0	9.5	1.0	11.0	ns
t _{en} er	enable time	OEn to Yn; see Figure 6									
		V_{CC} = 4.5 V to 5.5 V									
		C _L = 15 pF		-	4.0	7.0	1.0	8.0	1.0	9.0	ns
		C _L = 50 pF		-	5.5	10.0	1.0	12.0	1.0	12.5	ns
t _{dis}	disable time	OEn to Yn; see Figure 6	[2]								
		V_{CC} = 4.5 V to 5.5 V									
		C _L = 15 pF		-	5.0	7.0	1.0	8.0	1.0	9.0	ns
		C _L = 50 pF		-	7.0	10.0	1.0	12.0	1.0	12.5	ns
C _{PD}	power dissipation capacitance	per buffer; $C_L = 50 \text{ pF}; \text{ f} = 1 \text{ MHz};$ $V_I = \text{GND to } V_{CC}$	<u>[3]</u>	-	12	-	-	-	-	-	pF

Table 7. Dynamic characteristics ...continued

[1] Typical values are measured at nominal supply voltage (V_{CC} = 3.3 V and V_{CC} = 5.0 V).

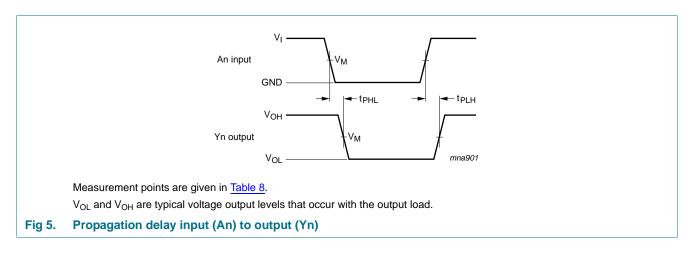
[2] t_{pd} is the same as t_{PLH} and t_{PHL} . t_{en} is the same as t_{PZL} and t_{PZH} .

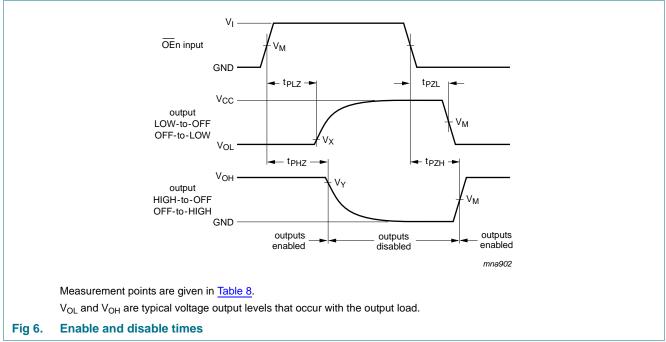
 t_{dis} is the same as t_{PLZ} and t_{PHZ} .

[3] C_{PD} is used to determine the dynamic power dissipation P_D (μ W).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;


 $f_o = output frequency in MHz;$

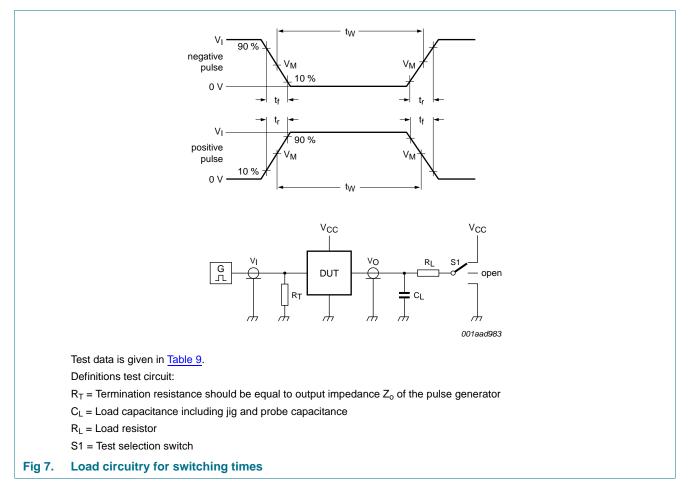

 C_L = output load capacitance in pF;

 V_{CC} = supply voltage in Volts.

Octal buffer/line driver; 3-state

11. Waveforms

Table 8.Measurement points


Туре	Input	Output					
	V _M	V _M	V _X	V _Y			
74AHC541-Q100	0.5V _{CC}	0.5V _{CC}	V _{OL} + 0.3 V	V _{OH} – 0.3 V			
74AHCT541-Q100	1.5 V	0.5V _{CC}	V _{OL} + 0.3 V	$V_{OH} - 0.3 \ V$			

74AHC_AHCT541_Q100

NXP Semiconductors

74AHC541-Q100; 74AHCT541-Q100

Octal buffer/line driver; 3-state

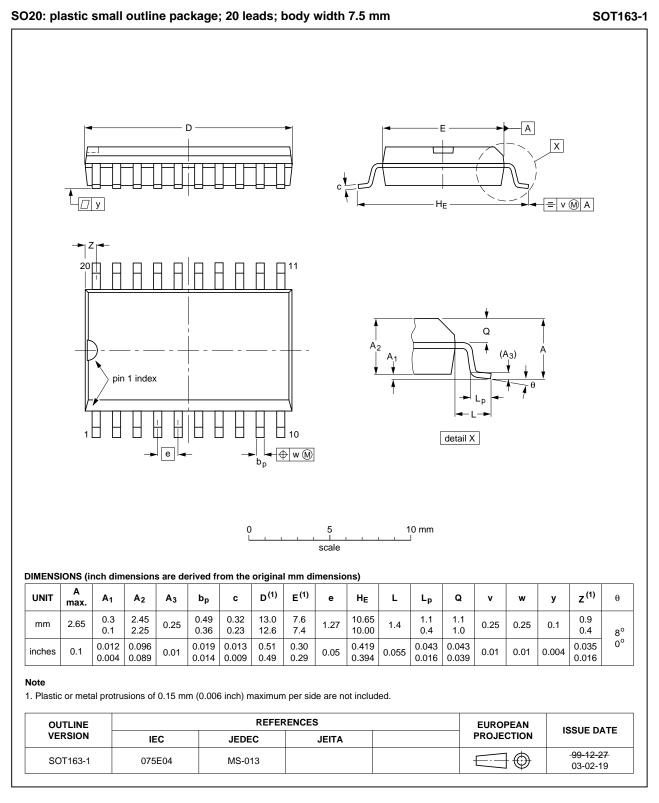


Table 9. Test data

Туре	Input		Load	S1 position			
	VI	t _r , t _f	CL	RL	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
74AHC541-Q100	V _{CC}	3.0 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}
74AHCT541-Q100	3.0 V	3.0 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}

Octal buffer/line driver; 3-state

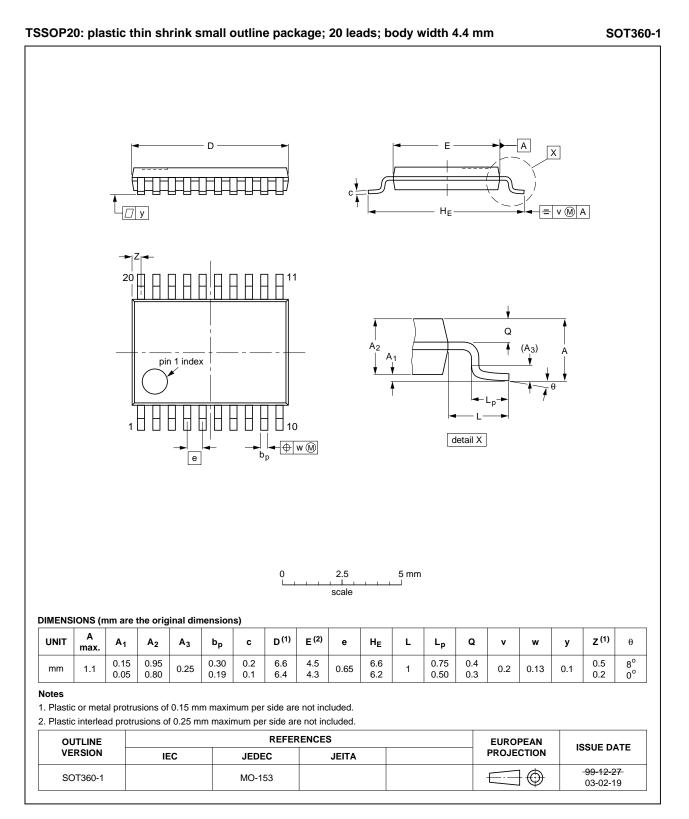

12. Package outline

Fig 8. Package outline SOT163-1 (SO20)

All information provided in this document is subject to legal disclaimers.

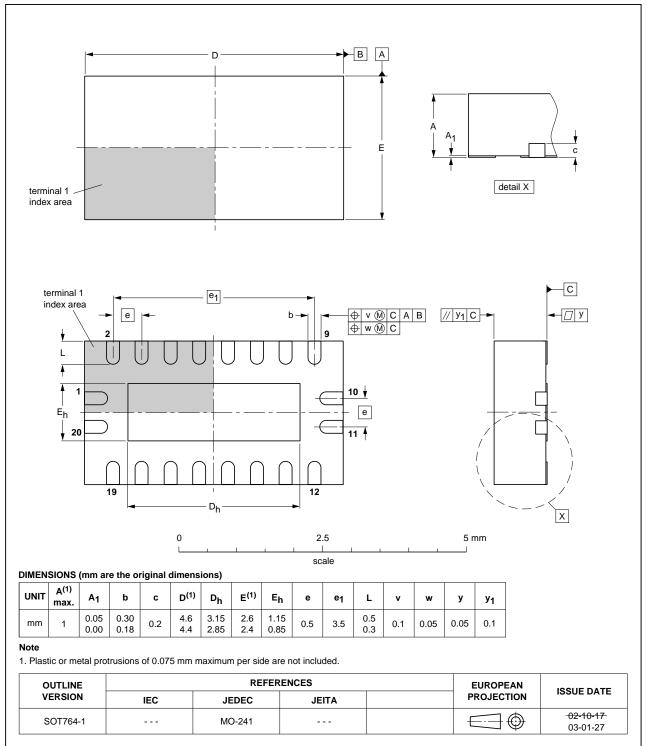

Octal buffer/line driver; 3-state

Fig 9. Package outline SOT360-1 (TSSOP20)

All information provided in this document is subject to legal disclaimers.

Octal buffer/line driver; 3-state

DHVQFN20: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 20 terminals; body 2.5 x 4.5 x 0.85 mm SOT764-1

Fig 10. Package outline SOT764-1 (DHVQFN20)

All information provided in this document is subject to legal disclaimers.

Octal buffer/line driver; 3-state

13. Abbreviations

Table 10.	Abbreviations		
Acronym	Description		
CDM	Charged Device Model		
CMOS	Complementary Metal Oxide Semiconductor		
DUT	Device Under Test		
ESD	ElectroStatic Discharge		
HBM	Human Body Model		
MIL	Military		
MM	Machine Model		
TTL	Transistor-Transistor Logic		

14. Revision history

Table 11. Revision history	Revision history						
Document ID	Release date	Data sheet status	Change notice	Supersedes			
74AHC_AHCT541_Q100 v.1	20130606	Product data sheet	-	-			

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications - This NXP

Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product sole and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

15 of 17

Octal buffer/line driver; 3-state

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Octal buffer/line driver; 3-state

17. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 2
4	Functional diagram 2
5	Pinning information 3
5.1	Pinning 3
5.2	Pin description 3
6	Functional description 4
7	Limiting values 4
8	Recommended operating conditions 5
9	Static characteristics 5
10	Dynamic characteristics 7
11	Waveforms 9
12	Package outline 11
13	Abbreviations 14
14	Revision history 14
15	Legal information 15
15.1	Data sheet status 15
15.2	Definitions 15
15.3	Disclaimers
15.4	Trademarks 16
16	Contact information 16
17	Contents 17

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2013.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 6 June 2013 Document identifier: 74AHC_AHCT541_Q100