74HC365-Q100; 74HCT365-Q100

Hex buffer/line driver; 3-state

Rev. 1 — 2 August 2012

Product data sheet

General description 1.

The 74HC365-Q100; 74HC365-Q100 is a hex buffer/line driver with 3-state outputs controlled by the output enable inputs (OEn). A HIGH on OEn causes the outputs to assume a high impedance OFF-state. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC}.

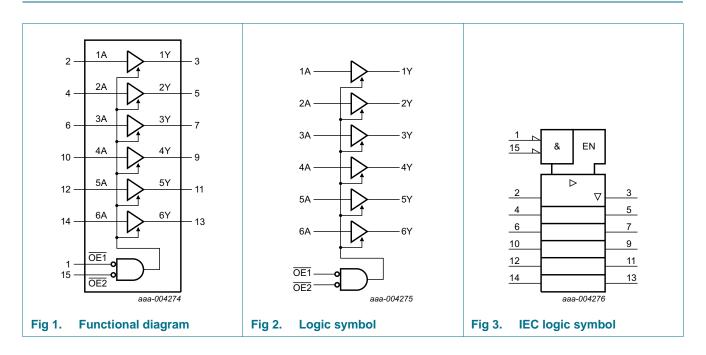
The 74HC365-Q100; 74HCT365-Q100 is functionally identical to:

74HC366-Q100; 74HCT366-Q100, but has non-inverting outputs

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

Features and benefits 2.

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - ◆ Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Inverting outputs
- Input levels:
 - For 74HC365-Q100: CMOS level
 - For 74HC365-Q100: TTL level
- Complies with JEDEC standard no. 7A
- ESD protection:
 - MIL-STD-883, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)
- Multiple package options



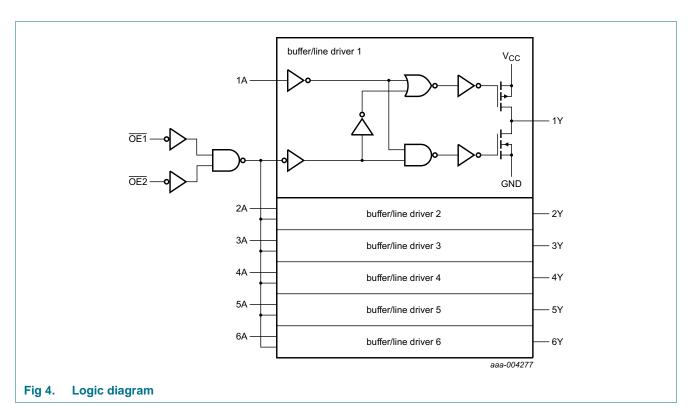
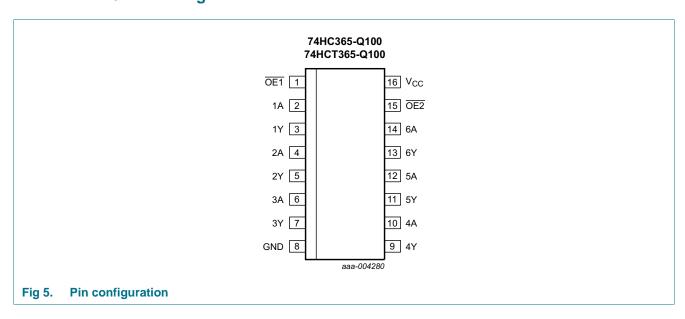

3. Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74HC365-Q100				
74HC365D-Q100	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1
74HC365PW-Q100	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1
74HCT365-Q100				
74HCT365D-Q100	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1
74HCT365PW-Q100	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1


4. Functional diagram

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
OE1	1	output enable input 1 (active LOW)
1A	2	data input 1
1Y	3	data output 1
2A	4	data input 2
2Y	5	data output 2
3A	6	data input 3
3Y	7	data output 3
GND	8	ground (0 V)
4Y	9	data output 4
4A	10	data input 4
5Y	11	data output 5
5A	12	data input 5
6Y	13	data output 6
6A	14	data input 6
OE2	15	output enable input 2 (active LOW)
V _{CC}	16	supply voltage

6. Functional description

Table 3. Function table[1]

Control		Input	Output
OE1	OE2	nA	nY
L	L	L	L
L	L	Н	Н
X	Н	X	Z
Н	X	X	Z

[1] H = HIGH voltage level;

L = LOW voltage level;

X = don't care;

Z = high-impedance OFF-state.

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7	V
I _{IK}	input clamping current	$V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$	-	±20	mA
I _{OK}	output clamping current	$V_{O} < -0.5 \text{ V or } V_{O} > V_{CC} + 0.5 \text{ V}$	-	±20	mA
Io	output current	$V_O = -0.5 \text{ V to } (V_{CC} + 0.5 \text{ V})$	-	±35	mA
I _{CC}	supply current		-	70	mA
I _{GND}	ground current		-	-7 0	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	SO16 package	<u>[1]</u> -	500	mW
		TSSOP16 package	[2] _	500	mW

^[1] For SO16 packages: P_{tot} derates linearly with 8 mW/K above 70 °C.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions	74HC365-Q100			74H	CT365-0	2100	Unit
			Min	Тур	Max	Min	Тур	Max	1
V_{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V_{CC}	0	-	V_{CC}	V
Vo	output voltage		0	-	V_{CC}	0	-	V_{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C
$\Delta t/\Delta V$	input transition rise and fall rate	$V_{CC} = 2.0 \text{ V}$	-	-	625	-	-	-	ns/V
		$V_{CC} = 4.5 \text{ V}$	-	1.67	139	-	1.67	139	ns/V
		$V_{CC} = 6.0 \text{ V}$	-	-	83	-	-	-	ns/V

^[2] For TSSOP16 packages: P_{tot} derates linearly with 5.5 mW/K above 60 °C.

9. Static characteristics

Table 6. Static characteristics 74HC365-Q100

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 25	5 °C					
V_{IH}	HIGH-level input voltage	$V_{CC} = 2.0 \text{ V}$	1.5	1.2	-	V
		$V_{CC} = 4.5 \text{ V}$	3.15	2.4	-	V
		$V_{CC} = 6.0 \text{ V}$	4.2	3.2	-	V
V_{IL}	LOW-level input voltage	$V_{CC} = 2.0 \text{ V}$	-	8.0	0.5	V
		V _{CC} = 4.5 V	-	2.1	1.35	V
		$V_{CC} = 6.0 \text{ V}$	-	2.8	1.8	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}	-	-	-	
		$I_O = -20 \mu A; V_{CC} = 2.0 V$	1.9	2.0	-	V
		$I_O = -20 \mu A; V_{CC} = 4.5 V$	4.4	4.5	-	V
		$I_O = -20 \mu A; V_{CC} = 6.0 V$	5.9	6.0	-	V
		$I_{O} = -6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	4.32	-	V
		$I_{O} = -7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.48	5.81	-	V
V_{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_O = 20 \mu A; V_{CC} = 2.0 V$	-	0	0.1	V
		$I_O = 20 \mu A; V_{CC} = 4.5 V$	-	0	0.1	V
		$I_O = 20 \mu A; V_{CC} = 6.0 \text{ V}$	-	0	0.1	V
		$I_O = 6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.26	V
		$I_O = 7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.26	V
l _I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±0.1	μΑ
loz	OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±0.5	μΑ
Icc	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0$ V	-	-	8.0	μΑ
Cı	input capacitance		-	3.5	-	pF
T _{amb} = -	40 °C to +85 °C					
V _{IH}	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	-	-	V
		V _{CC} = 4.5 V	3.15	-	-	V
		V _{CC} = 6.0 V	4.2	-	-	V
V_{IL}	LOW-level input voltage	$V_{CC} = 2.0 \text{ V}$	-	-	0.5	V
		V _{CC} = 4.5 V	-	-	1.35	V
		V _{CC} = 6.0 V	-	-	1.8	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_{O} = -20 \mu A; V_{CC} = 2.0 V$	1.9	-	-	V
		$I_{O} = -20 \mu A$; $V_{CC} = 4.5 V$	4.4	-	-	V
		$I_{O} = -20 \mu A$; $V_{CC} = 6.0 \text{ V}$	5.9	-	-	V
		$I_{O} = -6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.84	-	-	V
		$I_{O} = -7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.34	_	-	V

 Table 6.
 Static characteristics 74HC365-Q100 ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_O = 20 \mu A; V_{CC} = 2.0 V$	-	-	0.1	V
		$I_O = 20 \mu A; V_{CC} = 4.5 V$	-	-	0.1	V
		$I_O = 20 \mu A; V_{CC} = 6.0 V$	-	-	0.1	V
		$I_{O} = 6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.33	V
		$I_{O} = 7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	-	0.33	V
l _l	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$;	-	-	±1.0	μΑ
loz	OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±5.0	μΑ
lcc	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0$ V	-	-	80	μΑ
T _{amb} = -	40 °C to +125 °C					
V _{IH} HIGH-level input voltage		V _{CC} = 2.0 V	1.5	-	-	V
		V _{CC} = 4.5 V	3.15	-	-	V
		V _{CC} = 6.0 V	4.2	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 2.0 V	-	-	0.5	V
		V _{CC} = 4.5 V	-	-	1.35	V
		V _{CC} = 6.0 V	-	-	1.8	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_{O} = -20 \mu A; V_{CC} = 2.0 V$	1.9	-	-	V
		$I_{O} = -20 \mu A; V_{CC} = 4.5 V$	4.4	-	-	V
		$I_{O} = -20 \mu A; V_{CC} = 6.0 V$	5.9	-	-	V
		$I_{O} = -6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.7	-	-	V
		$I_{O} = -7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.2	-	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_O = 20 \mu A; V_{CC} = 2.0 V$	-	-	0.1	V
		$I_O = 20 \mu A; V_{CC} = 4.5 V$	-	-	0.1	V
		$I_O = 20 \mu A; V_{CC} = 6.0 V$	-	-	0.1	V
		$I_{O} = 6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.4	V
		$I_{O} = 7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	-	0.4	V
I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±1.0	μΑ
oz	OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±10.0	μΑ
СС	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0$ V	-	-	160	μΑ

Table 7. Static characteristics 74HCT365-Q100

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbo	ol Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} =	25 °C					
V_{IH}	HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	1.6	-	V
V_{IL}	LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	-	1.2	8.0	V
V_{OH}	HIGH-level output	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$				
voltage		$I_O = -20 \mu A$	4.4	4.5	-	V
		$I_{O} = -6.0 \text{ mA}$	3.98	4.32	-	V
74HC_HCT36	65_Q100	All information provided in this document is subject to legal disclaimers.		© NXP E	3.V. 2012. All	rights reserved.

 Table 7.
 Static characteristics 74HCT365-Q100 ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Parameter	Conditions	Min	Тур	Max	Uni
LOW-level output	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$				
voltage	I _O = 20 μA	-	0	0.1	V
	$I_{O} = 6.0 \text{ mA}$	-	0.16	0.26	V
input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	±0.1	μΑ
OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or GND per input pin; other inputs at GND or V_{CC} ; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	-	±0.5	μΑ
supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	-	8.0	μΑ
additional supply current	V_{I} = V_{CC} – 2.1 V; other inputs at V_{CC} or GND; I_{O} = 0 A				
	pins nA	-	100	360	μΑ
	pin OE1	-	100	360	μΑ
	pin OE2	-	90	324	μΑ
input capacitance		-	3.5	-	pF
40 °C to +85 °C					
HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	-	-	V
LOW-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	-	0.8	V
HIGH-level output	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$				
voltage	$I_0 = -20 \mu A$	4.4	-	-	V
	$I_{O} = -6.0 \text{ mA}$	3.84	-	-	V
LOW-level output	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$				
voltage	I _O = 20 μA	-	-	0.1	V
	$I_{O} = 6.0 \text{ mA}$	-	-	0.33	V
input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	±1.0	μΑ
OFF-state output current	V_I = V_{IH} or V_{IL} ; V_O = V_{CC} or GND per input pin; other inputs at GND or V_{CC} ; I_O = 0 A; V_{CC} = 5.5 V			±5.0	μΑ
supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	-	80	μΑ
additional supply current	V_{I} = V_{CC} – 2.1 V; other inputs at V_{CC} or GND; I_{O} = 0 A				
	pins nA	-	-	450	μΑ
	pin OE1	-	-	450	μΑ
	pin OE2	-	-	405	μΑ
40 °C to +125 °C					
HIGH-level input voltage	V _{CC} = 4.5 V to 5.5 V	2.0	-	-	V
LOW-level input voltage	V _{CC} = 4.5 V to 5.5 V	-	-	8.0	V
HIGH-level output	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$				
voltage	$I_{O} = -20 \ \mu A$	4.4	-	-	V
	$I_{O} = -6.0 \text{ mA}$	3.7	-	-	V
LOW-level output	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$				
voltage	$I_0 = 20 \mu A$	-	-	0.1	V
	$I_0 = 6.0 \text{ mA}$	-	-	0.4	V
input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	±1.0	μΑ
OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or GND per input pin; other inputs at GND or V_{CC} ; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	-	±10.0	μА
	input leakage current OFF-state output current supply current additional supply current additional supply current input capacitance to °C to +85 °C HIGH-level input voltage LOW-level output voltage LOW-level output voltage input leakage current OFF-state output current supply current additional supply current additional supply current to °C to +125 °C HIGH-level input voltage LOW-level input voltage LOW-level input voltage LOW-level output voltage LOW-level output voltage LOW-level output voltage LOW-level output voltage input leakage current	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{tabular}{ c c c c c c } \hline LOW-level output voltage & I_0 = 20 \muA & I_0 = 0.0 & 0.1 \\ \hline I_0 = 6.0 mA & I_0 = 6.0 mA & I_0 = 6.0 & 0.16 \\ \hline I_0 = 6.0 mA & I_0 = 6.0 & 0.16 & 0.26 \\ \hline I_0 = 6.0 mA & I_0 = 6.0 & 0.16 & 0.26 \\ \hline I_0 = 6.0 mA & I_0 = 6.0 & 0.0 & 0.16 & 0.26 \\ \hline I_0 = 6.0 mA & I_0 = 6.0 & 0.0 & 0.0 & 0.0 \\ \hline I_0 = 0.0 mA & I_0 = 0.0 & 0.0 & 0.0 & 0.0 \\ \hline I_0 = 0.0 mA & I_0 = 0.0 & 0.0 & 0.0 & 0.0 \\ \hline I_0 = 0.0 mA & I_0 = 0.0 & 0.0 & 0.0 & 0.0 \\ \hline I_0 = 0.0 mA & I_0 = 0.0 & 0.0 & 0.0 & 0.0 \\ \hline I_0 = 0.0 mA & I_0 = 0.0 & 0.0 & 0.0 & 0.0 \\ \hline I_0 = 0.0 mA & I_0 = 0.0 & 0.0 & 0.0 & 0.0 \\ \hline I_0 = 0.0 mA & I_0 = 0.0 & 0.0 & 0.0 \\ \hline I_0 = 0.0 mA & I_0 = 0.0 & 0.0 & 0.0 \\ \hline I_0 = 0.0 mA & I_0 = 0.0 & 0.0 & 0.0 \\ \hline I_0 = 0.0 mA & I_0 = 0.0 & 0.0 & 0.0 \\ \hline I_0 = 0.0 mA & I_0 = 0.0 & 0.0 & 0.0 \\ \hline I_0 = 0.0 mA & I_0 = 0.0 & 0.0 & 0.0 \\ \hline I_0 = 0.0 mA & I_0 = 0.0 & 0.0 \\ \hline I_0 = 0.$

Table 7. Static characteristics 74HCT365-Q100 ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I_{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	-	160	μΑ
ΔI_{CC}	additional supply current	V_{I} = V_{CC} $-$ 2.1 V; other inputs at V_{CC} or GND; I_{O} = 0 A				
		pins nA	-	-	490	μΑ
		pin OE1	-	-	490	μΑ
		pin OE2	-	-	441	μА

10. Dynamic characteristics

Table 8. Dynamic characteristics 74HC365-Q100

Voltages are referenced to GND (ground = 0 V); C_L = 50 pF unless otherwise specified; see test circuit Figure 8.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 2	5 °C					
t _{pd}	propagation delay	nA to nY; see Figure 6	<u>[1]</u>			
		V _{CC} = 2.0 V	-	30	95	ns
		V _{CC} = 4.5 V	-	11	19	ns
		V _{CC} = 5 V; C _L = 15 pF	-	9	-	ns
		V _{CC} = 6.0 V	-	9	16	ns
t _{en}	enable time	OEn to nY; see Figure 7	[2]			
		V _{CC} = 2.0 V	-	47	150	ns
		V _{CC} = 4.5 V	-	17	30	ns
		V _{CC} = 6.0 V	-	14	26	ns
t _{dis}	disable time	OEn to nY; see Figure 7	<u>[3]</u>			
		V _{CC} = 2.0 V	-	61	150	ns
		V _{CC} = 4.5 V	-	22	30	ns
		V _{CC} = 6.0 V	-	18	26	ns
t _t	transition time	see <u>Figure 6</u>	[4]			
		V _{CC} = 2.0 V	-	14	60	ns
		V _{CC} = 4.5 V	-	5	12	ns
		V _{CC} = 6.0 V	-	4	10	ns
C_{PD}	power dissipation capacitance	per buffer; $V_I = GND$ to V_{CC}	<u>[5]</u> -	40	-	pF
T _{amb} = -	40 °C to +85 °C					
t _{pd}	propagation delay	nA to nY; see Figure 6	<u>[1]</u>			
		V _{CC} = 2.0 V	-	-	120	ns
		V _{CC} = 4.5 V	-	-	24	ns
		V _{CC} = 6.0 V	-	-	20	ns
t _{en}	enable time	OEn to nY; see Figure 7	[2]			
		V _{CC} = 2.0 V	-	-	190	ns
		V _{CC} = 4.5 V	-	-	38	ns
		V _{CC} = 6.0 V	-	-	33	ns

74HC_HCT365_Q100

 Table 8.
 Dynamic characteristics 74HC365-Q100 ...continued

Voltages are referenced to GND (ground = 0 V); $C_L = 50 \ pF$ unless otherwise specified; see test circuit Figure 8.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{dis}	disable time	OEn to nY; see Figure 7	[3]			
		V _{CC} = 2.0 V	-	-	190	ns
		V _{CC} = 4.5 V	-	-	38	ns
		V _{CC} = 6.0 V	-	-	33	ns
t _t	transition time	see <u>Figure 6</u>	<u>[4]</u>			
		V _{CC} = 2.0 V	-	-	75	ns
		V _{CC} = 4.5 V	-	-	15	ns
		V _{CC} = 6.0 V	-	-	13	ns
T _{amb} = -	40 °C to +125 °C					
t _{pd}	propagation delay	nA to nY; see Figure 6	[1]			
		V _{CC} = 2.0 V	-	-	145	ns
		V _{CC} = 4.5 V	-	-	29	ns
		V _{CC} = 6.0 V	-	-	25	ns
t _{en}	enable time	OEn to nY; see Figure 7	[2]			
		V _{CC} = 2.0 V	-	-	225	ns
		V _{CC} = 4.5 V	-	-	45	ns
		V _{CC} = 6.0 V	-	-	38	ns
t _{dis}	disable time	OEn to nY; see Figure 7	[3]			
		V _{CC} = 2.0 V	-	-	225	ns
		V _{CC} = 4.5 V	-	-	45	ns
		V _{CC} = 6.0 V	-	-	38	ns
t _t	transition time	see Figure 6	<u>[4]</u>			
		V _{CC} = 2.0 V	-	-	90	ns
		V _{CC} = 4.5 V	-	-	18	ns
		V _{CC} = 6.0 V	-	-	15	ns

^[1] t_{pd} is the same as t_{PHL} and t_{PLH} .

[5] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

$$P_D = C_{PD} \times V_{CC}{}^2 \times f_i \times N + \sum (C_L \times V_{CC}{}^2 \times f_o)$$
 where:

f_i = input frequency in MHz;

 f_o = output frequency in MHz;

C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs.}$

^[2] t_{en} is the same as t_{PZH} and t_{PZL} .

^[3] t_{dis} is the same as t_{PHZ} and t_{PLZ} .

^[4] t_t is the same as t_{THL} and t_{TLH} .

Table 9. Dynamic characteristics 74HCT365-Q100

Voltages are referenced to GND (ground = 0 V); $C_L = 50 \text{ pF}$ unless otherwise specified; see test circuit Figure 8.

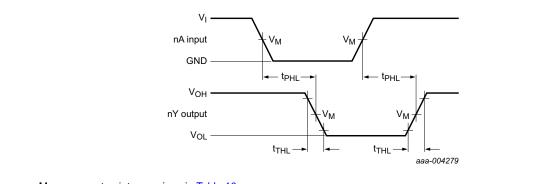
	_						
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
$T_{amb} = 25$	5 °C						
t _{pd} propagation delay		nA to nY; see Figure 6	[1]				
		V _{CC} = 4.5 V		-	14	25	ns
		$V_{CC} = 5 \text{ V}; C_L = 15 \text{ pF}$		-	11	-	ns
t _{en}	enable time	OEn to nY; V _{CC} = 4.5 V; see Figure 7	[2]	-	18	35	ns
t _{dis}	disable time	OEn to nY; V _{CC} = 4.5 V; see Figure 7	[3]	-	23	35	ns
t _t	transition time	V _{CC} = 4.5 V; see <u>Figure 6</u>	<u>[4]</u>	-	5	12	ns
C_{PD}	power dissipation capacitance	per buffer; $V_I = GND$ to $(V_{CC} - 1.5 V)$	<u>[5]</u>	-	40	-	pF
T _{amb} = -	40 °C to +85 °C						
t _{pd}	propagation delay	nA to nY; V _{CC} = 4.5 V; see Figure 6	[1]	-	-	31	ns
t _{en}	enable time	OEn to nY; V _{CC} = 4.5 V; see Figure 7	[2]	-	-	44	ns
t _{dis}	disable time	OEn to nY; V _{CC} = 4.5 V; see Figure 7	[3]	-	-	44	ns
t _t	transition time	V _{CC} = 4.5 V; see <u>Figure 6</u>	<u>[4]</u>	-	-	15	ns
T _{amb} = -	40 °C to +125 °C						
t _{pd}	propagation delay	nA to nY; V _{CC} = 4.5 V; see Figure 6	[1]	-	-	38	ns
t _{en}	enable time	OEn to nY; V _{CC} = 4.5 V; see Figure 7	[2]	-	-	53	ns
t _{dis}	disable time	OEn to nY; V _{CC} = 4.5 V; see Figure 7	[3]	-	-	53	ns
t _t	transition time	V _{CC} = 4.5 V; see <u>Figure 6</u>	[4]	-	-	18	ns

- [1] t_{pd} is the same as t_{PHL} and t_{PLH} .
- [2] t_{en} is the same as t_{PZH} and t_{PZL} .
- [3] t_{dis} is the same as t_{PHZ} and t_{PLZ} .
- [4] t_t is the same as t_{THL} and t_{TLH} .
- [5] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

f_o = output frequency in MHz;


C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs.}$

11. Waveforms

Measurement points are given in $\underline{\text{Table 10}}$.

 V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig 6. Propagation delay data input (nA) to output (nY) and output transition time

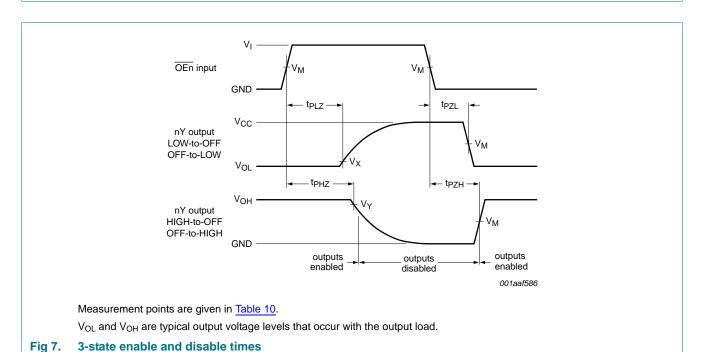
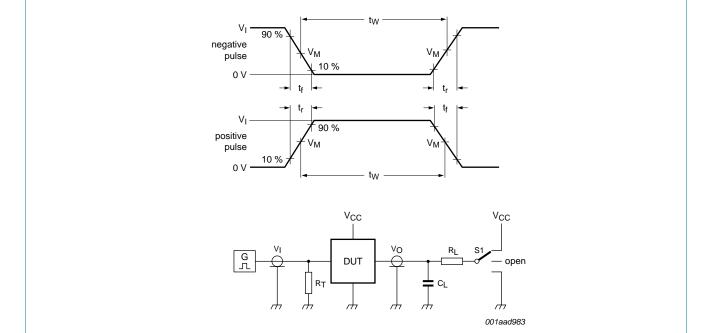



Table 10. Measurement points

Туре	Input	Output				
	V _M	V _M	V _X	V _Y		
74HC365-Q100	0.5V _{CC}	0.5V _{CC}	$0.1 \times V_{CC}$	$0.9 \times V_{CC}$		
74HCT365-Q100	1.3 V	1.3 V	$0.1 \times V_{CC}$	$0.9 \times V_{CC}$		

Test data is given in Table 11.

Definitions test circuit:

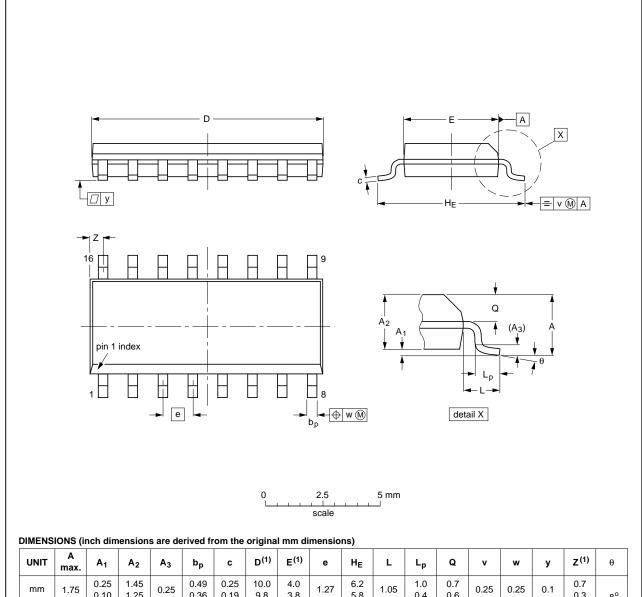
 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator

C_L = Load capacitance including jig and probe capacitance

R_L = Load resistor

S1 = Test selection switch

Fig 8. Load circuitry for measuring switching times


Table 11. Test data

Туре	Input		Load		S1 position				
	VI	t _r , t _f	C _L	R _L	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}		
74HC365-Q100	V_{CC}	6 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}		
74HCT365-Q100	3 V	6 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}		

12. Package outline

SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	ø	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	10.0 9.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075		0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016		0.01	0.01	0.004	0.028 0.012	0°

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

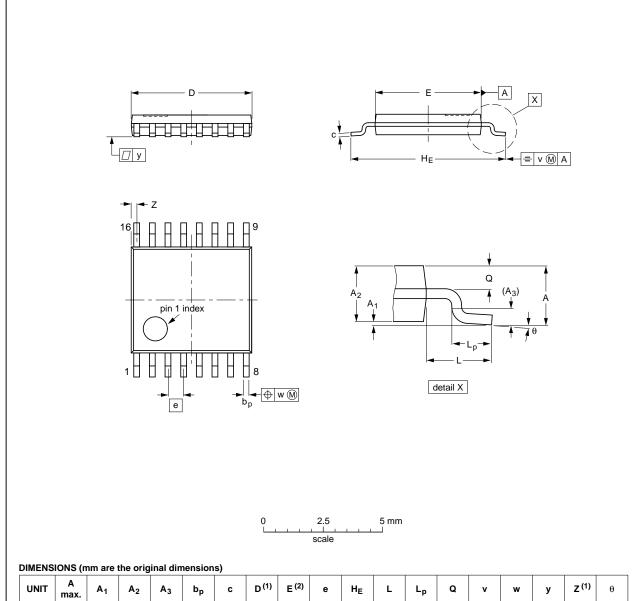

VERSION IEC JEDEC JEITA PROJECTION	
99	ISSUE DATE
SOT109-1 076E07 MS-012	-12-27 -02-19

Fig 9. Package outline SOT109-1 (SO16)

74HC_HCT365_Q100 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm

SOT403-1

-							-,												
	UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
	mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.40 0.06	8° 0°

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT403-1		MO-153				-99-12-27 03-02-18	
					7	03-02-10	

Fig 10. Package outline SOT403-1 (TSSOP16)

74HC_HCT365_Q100

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2012. All rights reserved.

13. Abbreviations

Table 12. Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
LSTTL	Low-power Schottky Transistor-Transistor Logic
MM	Machine Model
MIL	Military

14. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC_HCT365_Q100 v.1	20120802	Product data sheet	-	-

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or

applications and therefore such inclusion and/or use is at the customer's own

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

74HC_HCT365_Q100

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

74HC365-Q100; 74HCT365-Q100

NXP Semiconductors

Hex buffer/line driver; 3-state

17. Contents

1	General description 1
2	Features and benefits
3	Ordering information
4	Functional diagram 2
5	Pinning information
5.1	Pinning
5.2	Pin description 4
6	Functional description 4
7	Limiting values 5
8	Recommended operating conditions 5
9	Static characteristics 6
10	Dynamic characteristics 9
11	Waveforms
12	Package outline
13	Abbreviations
14	Revision history
15	Legal information
15.1	Data sheet status
15.2	Definitions
15.3	Disclaimers
15.4	Trademarks
16	Contact information
17	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.