74LVC16374A-Q100; 74LVCH16374A-Q100 16-bit edge-triggered D-type flip-flop; 5 V tolerant; 3-state

Rev. 1 — 28 January 2013

Product data sheet

General description 1.

The 74LVC16374A-Q100 and 74LVCH16374A-Q100 are 16-bit edge-triggered flip-flops featuring separate D-type inputs with bus hold (74LVCH16374A-Q100 only) for each flip-flop and 3-state outputs for bus-oriented applications. It consists of two sections of eight positive edge-triggered flip-flops. A clock input (nCP) and an output enable (nOE) are provided for each octal. The flip-flops store the state of their individual D-inputs that meet the set-up and hold time requirements on the LOW-to-HIGH clock (CP) transition.

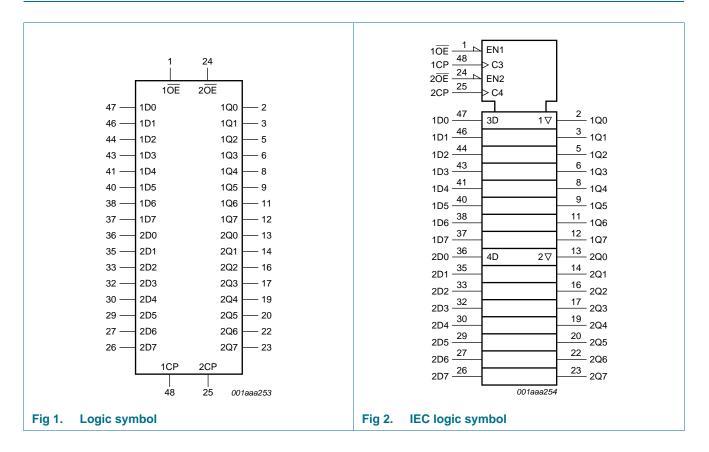
The flip-flops store the state of their individual D-inputs that meet the set-up and hold time requirements on the LOW-to-HIGH clock (CP) transition.

When pin nOE is LOW, the contents of the flip-flops are available at the outputs. When pin nOE is HIGH, the outputs go to the high-impedance OFF-state. Operation of input nOE does not affect the state of the flip-flops. Inputs can be driven from either 3.3 V or 5 V devices. When disabled, up to 5.5 V can be applied to the outputs. These features allow the use of these devices in mixed 3.3 V and 5 V applications. Bus hold on data inputs eliminates the need for external pull-up resistors to hold unused inputs.

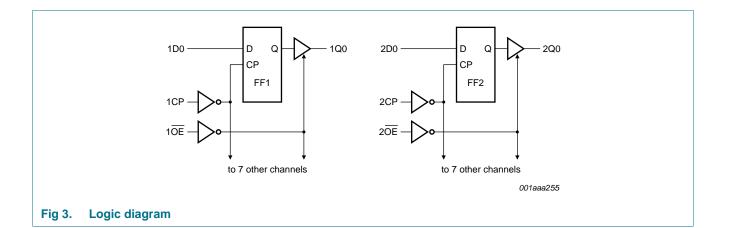
This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

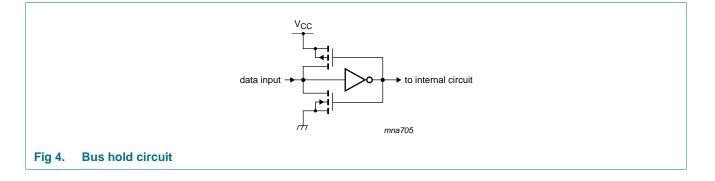
2. Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - Specified from –40 °C to +85 °C and from –40 °C to +125 °C
- 5 V tolerant inputs/outputs for interfacing with 5 V logic
- Wide supply voltage range from 1.2 V to 3.6 V
- CMOS low power consumption
- Multibyte flow-through standard pinout architecture
- Low inductance multiple supply pins for minimum noise and ground bounce
- Direct interface with TTL levels
- All data inputs have bus hold (74LVCH16374A-Q100 only)
- High-impedance outputs when V_{CC} = 0 V
- Complies with JEDEC standard:
 - JESD8-7A (1.65 V to 1.95 V)
 - JESD8-5A (2.3 V to 2.7 V)
 - JESD8-C/JESD36 (2.7 V to 3.6 V)
- ESD protection:


16-bit edge-triggered D-type flip-flop; 5 V tolerant; 3-state

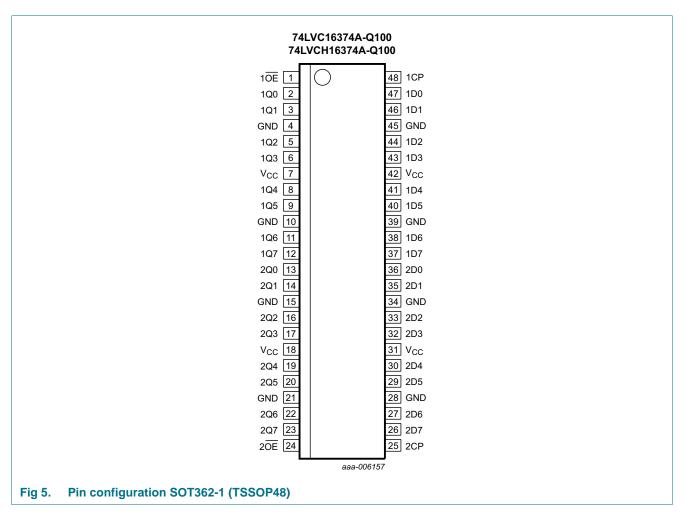
- MIL-STD-883, method 3015 exceeds 2000 V
- HBM JESD22-A114F exceeds 2000 V
- MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)


3. Ordering information


Table 1. Ordering information								
Type number	Package							
	Temperature range	Name	Description	Version				
74LVC16374ADGG-Q100	–40 °C to +125 °C	TSSOP48	plastic thin shrink small outline package;	SOT362-1				
74LVCH16374ADGG-Q100	_		48 leads; body width 6.1 mm					

4. Functional diagram

16-bit edge-triggered D-type flip-flop; 5 V tolerant; 3-state



16-bit edge-triggered D-type flip-flop; 5 V tolerant; 3-state

5. Pinning information

5.1 Pinning

16-bit edge-triggered D-type flip-flop; 5 V tolerant; 3-state

5.2 Pin description

Table 2.Pin	description	
Symbol	Pin	Description
1 <u>0E</u> , 2 <u>0E</u>	1, 24	output enable input (active LOW)
GND	4, 10, 15, 21, 28, 34, 39, 45	ground (0 V)
V _{CC}	7, 18, 31, 42	supply voltage
1Q0 to 1Q7	2, 3, 5, 6, 8, 9, 11, 12	data output
2Q0 to 2Q7	13, 14, 16, 17, 19, 20, 22, 23	data output
1D0 to 1D7	47, 46, 44, 43, 41, 40, 38, 37	data input
2D0 to 2D7	36, 35, 33, 32, 30, 29, 27, 26	data input
1CP, 2CP	48, 25	clock input
-		

6. Functional description

Table 3. Function selection^[1]

Operating mode	Input			Internal flip-flop	Output nQ0 to nQ7
	nOE	nCP	nDn		
Load and read register	L	1	I	L	L
	L	\uparrow	h	Н	Н
Load register and disable outputs	Н	1	I	L	Z
	Н	1	h	Н	Z

[1] H = HIGH voltage level;

h = HIGH voltage level one set-up time prior to the HIGH-to-LOW CP transition;

L = LOW voltage level;

I = LOW voltage level one set-up time prior to the HIGH-to-LOW CP transition;

 \uparrow = LOW-to-HIGH transition;

Z = high-impedance OFF-state.

7. Limiting values

Table 4.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

				.0	,
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+6.5	V
I _{IK}	input clamping current	V ₁ < 0 V	-50	-	mA
VI	input voltage		<u>[1]</u> –0.5	+6.5	V
I _{OK}	output clamping current	$V_{\rm O}$ > $V_{\rm CC}$ or $V_{\rm O}$ < 0 V	-	±50	mA
Vo	output voltage	output HIGH-or LOW-state	[2] -0.5	V _{CC} + 0.5	V
		output 3-state	[2] -0.5	+6.5	V
lo	output current	$V_{O} = 0 V$ to V_{CC}	-	±50	mA
I _{CC}	supply current		-	100	mA
I _{GND}	ground current		-100	-	mA
T _{stg}	storage temperature		-65	+150	°C

74LVC_LVCH16374A_Q100
Product data sheet

© NXP B.V. 2013. All rights reserved.

16-bit edge-triggered D-type flip-flop; 5 V tolerant; 3-state

Table 4. Limiting values ...continued

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
P _{tot}	total power dissipation	T_{amb} = -40 °C to +125 °C	<u>[3]</u>	500	mW

[1] The minimum input voltage ratings may be exceeded if the input current ratings are observed.

[2] The output voltage ratings may be exceeded if the output current ratings are observed.

[3] Above 60 °C, the value of P_{tot} derates linearly with 5.5 mW/K.

8. Recommended operating conditions

Table 5. **Recommended operating conditions** Symbol Conditions Parameter Min Typ Max Unit supply voltage 1.65 -3.6 V V_{CC} functional V 1.2 _ _ Vı input voltage 0 5.5 V -Vo output voltage active mode 0 V_{CC} V power-down mode; V_{CC} = 0 V 0 5.5 V _ Tamb ambient temperature -40 +125 °C - V_{CC} = 1.65 V to 2.7 V $\Delta t / \Delta V$ input transition rise and fall rate 0 20 ns/V - $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$ 0 10 ns/V -

9. Static characteristics

Table 6.Static characteristics

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40	°C to +8	85 °C	–40 °C to	o +125 ℃	Unit
			Min	Typ <mark>[1]</mark>	Max	Min	Max	
V _{IH}	HIGH-level	V _{CC} = 1.2 V	1.08	-	-	1.08	-	V
	input voltage	V_{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$	-	-	$0.65 \times V_{CC}$	-	V
		V_{CC} = 2.3 V to 2.7 V	1.7	-	-	1.7	-	V
		V_{CC} = 2.7 V to 3.6 V	2.0	-	-	2.0	-	V
V _{IL}	IL LOW-level input voltage	V _{CC} = 1.2 V	-	-	0.12	-	0.12	V
		V_{CC} = 1.65 V to 1.95 V	-	-	$0.35 \times V_{CC}$	-	$0.35 \times V_{CC}$	V
	V_{CC} = 2.3 V to 2.7 V	-	-	0.7	-	0.7	V	
		V_{CC} = 2.7 V to 3.6 V	-	-	0.8	-	0.8	V
V _{OH}	HIGH-level	$V_I = V_{IH} \text{ or } V_{IL}$						
	output voltage	$I_{O} = -100 \ \mu A;$ $V_{CC} = 1.65 \ V \text{ to } 3.6 \ V$	$V_{CC}-0.2$	V _{CC}	-	$V_{CC}-0.3$	-	V
		$I_0 = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.2	-	-	1.05	-	V
		$I_{O} = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.8	-	-	1.65	-	V
		$I_{O} = -12 \text{ mA}; \text{ V}_{CC} = 2.7 \text{ V}$	2.2	-	-	2.05	-	V
		$I_{O} = -18 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.4	-	-	2.25	-	V
		I_{O} = -24 mA; V_{CC} = 3.0 V	2.2	-	-	2.0	-	V

NXP Semiconductors

74LVC16374A-Q100; 74LVCH16374A-Q100

16-bit edge-triggered D-type flip-flop; 5 V tolerant; 3-state

symbol	Parameter	Conditions	-4	0 °C to +85	5 °C	-40 °C to	o +125 ℃	Unit
			Min	Typ[1]	Max	Min	Max	
/ _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}$						
	output voltage	$I_{O} = 100 \ \mu A;$ $V_{CC} = 1.65 \ V \ to \ 3.6 \ V$	-	0	0.2	-	0.3	V
		$I_0 = 4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.45	-	0.65	V
		$I_{O} = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.6	-	0.8	V
		I_{O} = 12 mA; V_{CC} = 2.7 V	-	-	0.4	-	0.6	V
		$I_{O} = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.55	-	0.8	V
I	input leakage current	$V_{CC} = 3.6 \text{ V}; \text{ V}_{I} = 5.5 \text{ V} \text{ or GND}$	-	±0.1	±5	-	±20	μA
OZ	OFF-state output current	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 3.6 \text{ V};$ $V_{O} = 5.5 \text{ V or GND}$ [2]	-	±0.1	±5	-	±20	μA
OFF	power-off leakage current	V_{CC} = 0 V; V ₁ or V ₀ = 5.5 V	-	±0.1	±10	-	±20	μΑ
сс	supply current	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 3.6 \ V; \ V_{I} = V_{CC} \ \text{or GND}; \\ I_{O} = 0 \ A \end{array}$	-	0.1	20	-	80	μA
VI _{CC}	additional supply current	per input pin; $V_{CC} = 2.7 V \text{ to } 3.6 V;$ $V_I = V_{CC} - 0.6 V; I_O = 0 A$	-	5	500	-	5000	μA
Cı	input capacitance	$V_{CC} = 0 V \text{ to } 3.6 V;$ $V_I = GND \text{ to } V_{CC}$	-	5.0	-	-	-	pF
BHL	bus hold	V _{CC} = 1.65; V _I = 0.58 V [3][4]	10	-	-	10	-	μΑ
	LOW current	$V_{CC} = 2.3; V_I = 0.7 V$	30	-	-	25	-	μΑ
		$V_{CC} = 3.0; V_I = 0.8 V$	75	-	-	60	-	μΑ
внн	bus hold	V _{CC} = 1.65; V _I = 1.07 V [3][4]	-10	-	-	-10	-	μA
	HIGH current	$V_{CC} = 2.3; V_I = 1.7 V$	-30	-	-	-25	-	μA
		$V_{CC} = 3.0; V_I = 2.0 V$	-75	-	-	-60	-	μA
BHLO	bus hold	V _{CC} = 1.95 V [3][5]	200	-	-	200	-	μΑ
	LOW overdrive	$V_{CC} = 2.7 V$	300	-	-	300	-	μA
	current	V _{CC} = 3.6 V	500	-	-	500	-	μA

Table 6. Static characteristics ...continued

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

16-bit edge-triggered D-type flip-flop; 5 V tolerant; 3-state

Symbol	Parameter	Conditions	-40	0 °C to +8	5 °C	–40 °C to	o +125 ℃	Unit
			Min	Typ[1]	Max	Min	Max	
I _{BHHO}	_{ВННО} bus hold HIGH overdrive	V _{CC} = 1.95 V [3][5]	-200	-	-	-200	-	μA
		$V_{CC} = 2.7 V$	-300	-	-	-300	-	μΑ
	current	$V_{CC} = 3.6 V$	-500	-	-	-500	-	μA

Table 6. Static characteristics ...continued

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V)

[1] All typical values are measured at V_{CC} = 3.3 V (unless stated otherwise) and T_{amb} = 25 °C.

[2] The bus hold circuit is switched off when $V_I > V_{CC}$ allowing 5.5 V on the input pin.

[3] Valid for data inputs (74LVCH16374A-Q100) only; control inputs do not have a bus hold circuit.

[4] The specified sustaining current at the data inputs holds the input below the specified V_I level.

[5] The specified overdrive current at the data input forces the data input to the opposite logic input state.

10. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 9.

Symbol	Parameter	Conditions		-40	°C to +8	5 °C	–40 °C to	+125 °C	Unit
				Min	Typ <mark>[1]</mark>	Max	Min	Max	
t _{pd}	propagation	nCP to nQn; see Figure 6	[2]						
	delay	$V_{CC} = 1.2 V$		-	14	-	-	-	ns
		V_{CC} = 1.65 V to 1.95 V		2.1	6.9	13.5	2.1	15.6	ns
		V_{CC} = 2.3 V to 2.7 V		1.5	3.7	6.7	1.5	7.7	ns
		$V_{CC} = 2.7 V$		1.5	3.4	6.0	1.5	7.5	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.5	3.1	5.4	1.5	7.0	ns
t _{en}	enable time	nOE to nQn; see Figure 8	[2]						
		$V_{CC} = 1.2 V$		-	20	-	-	-	ns
		V_{CC} = 1.65 V to 1.95 V		1.5	5.9	13.1	1.5	15.1	ns
		V_{CC} = 2.3 V to 2.7 V		1.5	3.4	6.9	1.5	8.0	ns
		$V_{CC} = 2.7 V$		1.5	3.6	6.0	1.5	7.5	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		1.0	2.7	5.2	1.0	6.5	ns
dis	disable time	nOE to nQn; see Figure 6	[2]						
		$V_{CC} = 1.2 V$		-	12	-	-	-	ns
		V_{CC} = 1.65 V to 1.95 V		2.8	4.6	9.1	2.8	10.5	ns
		V_{CC} = 2.3 V to 2.7 V		1.0	2.5	4.9	1.0	5.7	ns
		$V_{CC} = 2.7 V$		1.5	3.4	5.1	1.5	6.5	ns
		V_{CC} = 3.0 V to 3.6 V		1.5	3.1	4.9	1.5	6.5	ns
Ŵ	pulse width	nCP HIGH; see <u>Figure 6</u>							
		V_{CC} = 1.65 V to 1.95 V		5.0	-	-	5.0	-	ns
		V_{CC} = 2.3 V to 2.7 V		4.0	-	-	4.0	-	ns
		$V_{CC} = 2.7 V$		3.0	-	-	3.0	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		3.0	1.5	-	3.0	-	ns

16-bit edge-triggered D-type flip-flop; 5 V tolerant; 3-state

Symbol	Parameter	Conditions		-40	°C to +8	5 °C	–40 °C to	o +125 ℃	Unit
			-	Min	Typ <mark>[1]</mark>	Max	Min	Max	
t _{su}	set-up time	nDn to nCP; see Figure 7							
		V_{CC} = 1.65 V to 1.95 V		4.0	-	-	4.0	-	ns
		V_{CC} = 2.3 V to 2.7 V		3.0	-	-	3.0	-	ns
		$V_{CC} = 2.7 V$		1.9	-	-	1.9	-	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		1.9	0.3	-	1.9	-	ns
t _h	hold time	nDn to nCP; see Figure 7							
		V_{CC} = 1.65 V to 1.95 V		3.0	-	-	3.0	-	ns
		V_{CC} = 2.3 V to 2.7 V		2.5	-	-	2.5	-	ns
		$V_{CC} = 2.7 V$		1.1	-	-	1.1	-	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		1.5	-0.3	-	1.5	-	ns
f _{max}	maximum	see <u>Figure 6</u>							
	frequency	V_{CC} = 1.65 V to 1.95 V		100	-	-	80	-	ns
		V_{CC} = 2.3 V to 2.7 V		125	-	-	100	-	ns
		$V_{CC} = 2.7 V$		150	-	-	120	-	MHz
		V_{CC} = 3.0 V to 3.6 V		150	300	-	120	-	MHz
t _{sk(o)}	output skew time	$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	<u>[3]</u>	-	-	1.0	-	1.5	ns
C _{PD}	power	per input; $V_I = GND$ to V_{CC}	<u>[4]</u>						
	dissipation capacitance	V_{CC} = 1.65 V to 1.95 V		-	14.1	-	-	-	pF
	capacitarice	V_{CC} = 2.3 V to 2.7 V		-	16.4	-	-	-	pF
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		-	18.5	-	-	-	pF

Table 7. Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 9.

[1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.2 V, 1.8 V, 2.5 V, 2.7 V and 3.3 V respectively.

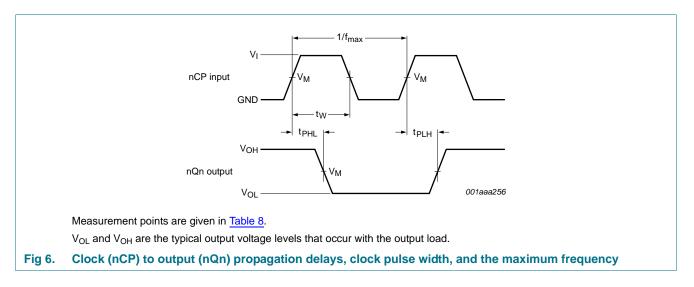
[3] Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.

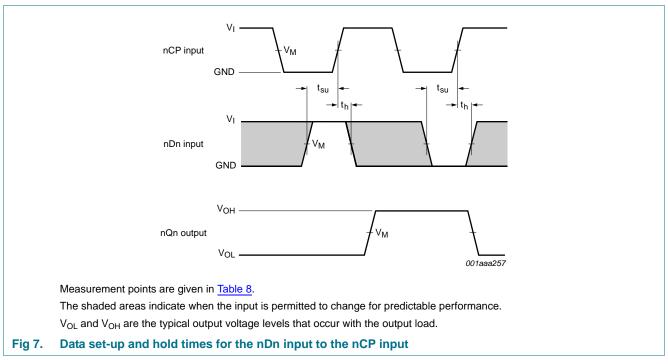
[4] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

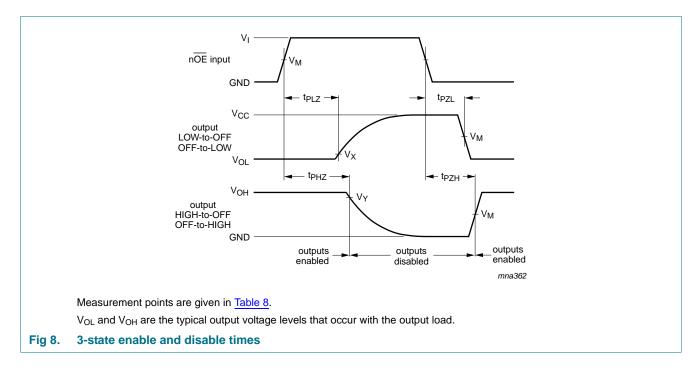
 f_i = input frequency in MHz; f_o = output frequency in MHz

 C_L = output load capacitance in pF


V_{CC} = supply voltage in Volts


N = number of inputs switching

 $\Sigma(C_L \times V_{CC}{}^2 \times f_o)$ = sum of the outputs


16-bit edge-triggered D-type flip-flop; 5 V tolerant; 3-state

11. Waveforms

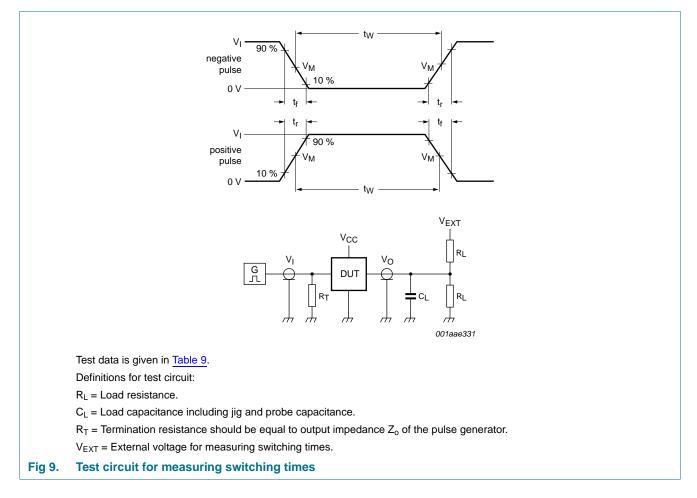
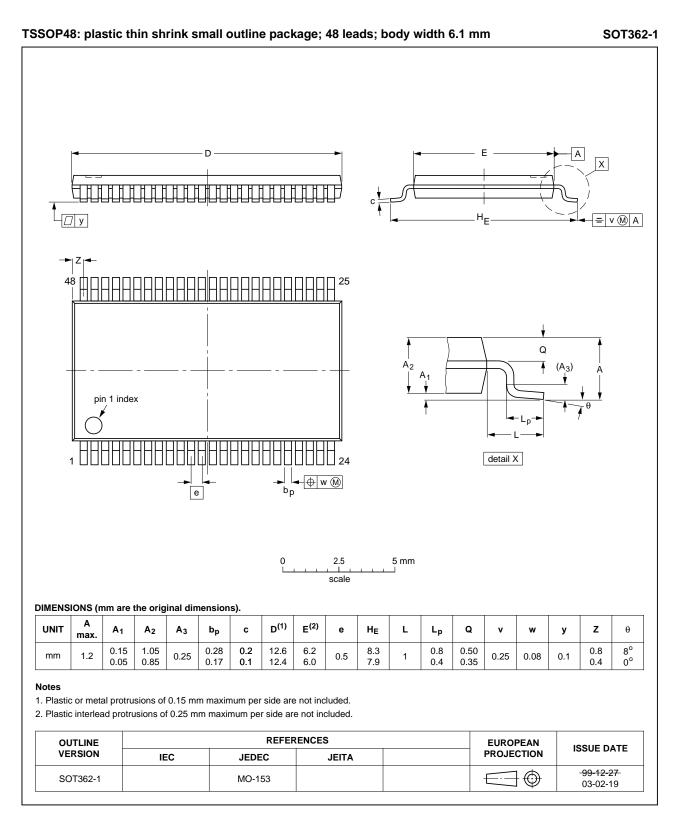

16-bit edge-triggered D-type flip-flop; 5 V tolerant; 3-state

Table 8. Measurement points

Supply voltage	Input		Output	Output				
V _{CC}	VI	V _M	V _M	V _X	V _Y			
1.2 V	V _{CC}	$0.5\times V_{CC}$	$0.5\times V_{CC}$	V _{OL} + 0.15 V	V _{OH} – 0.15 V			
1.65 V to 1.95 V	V _{CC}	$0.5\times V_{CC}$	$0.5\times V_{CC}$	V _{OL} + 0.15 V	V _{OH} – 0.15 V			
2.3 V to 2.7 V	V _{CC}	$0.5\times V_{CC}$	$0.5\times V_{CC}$	V _{OL} + 0.15 V	V _{OH} – 0.15 V			
2.7 V	2.7 V	1.5 V	1.5 V	V _{OL} + 0.3 V	V _{OH} – 0.3 V			
3.0 V to 3.6 V	2.7 V	1.5 V	1.5 V	V _{OL} + 0.3 V	V _{OH} – 0.3 V			


16-bit edge-triggered D-type flip-flop; 5 V tolerant; 3-state

Supply voltage	Input		Load		V _{EXT}		
	VI	t _r , t _f	CL	RL	t _{PLH} , t _{PHL}	t _{PLZ} , t _{PZL}	t _{PHZ} , t _{PZH}
1.2 V	V _{CC}	\leq 2 ns	30 pF	1 kΩ	open	$2 \times V_{CC}$	GND
1.65 V to 1.95 V	V _{CC}	\leq 2 ns	30 pF	1 kΩ	open	$2\times V_{CC}$	GND
2.3 V to 2.7 V	V _{CC}	\leq 2 ns	30 pF	500 Ω	open	$2\times V_{CC}$	GND
2.7 V	2.7 V	\leq 2.5 ns	50 pF	500 Ω	open	$2\times V_{CC}$	GND
3.0 V to 3.6 V	2.7 V	\leq 2.5 ns	50 pF	500 Ω	open	$2\times V_{CC}$	GND

16-bit edge-triggered D-type flip-flop; 5 V tolerant; 3-state

12. Package outline

Fig 10. Package outline SOT362-1 (TSSOP48)

All information provided in this document is subject to legal disclaimers.

16-bit edge-triggered D-type flip-flop; 5 V tolerant; 3-state

13. Abbreviations

Acronym CDM DUT	Description Charged Device Model Device Under Test
-	-
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model
MIL	Military
TTL	Transistor-Transistor Logic

14. Revision history

Table 11. Revision history				
Document ID	Release date	Data sheet status	Change notice	Supersedes
74LVC_LVCH16374A_Q100 v.1	20130128	Product data sheet	-	-

16-bit edge-triggered D-type flip-flop; 5 V tolerant; 3-state

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications - This NXP

Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

NXP Semiconductors

74LVC16374A-Q100;

16-bit edge-triggered D-type flip-flop; 5 V tolerant; 3-state

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, please send an email to: salesaddresses@nxp.com

NXP Semiconductors

74LVC16374A-Q100;

16-bit edge-triggered D-type flip-flop; 5 V tolerant; 3-state

17. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 2
4	Functional diagram 2
5	Pinning information 4
5.1	Pinning 4
5.2	Pin description 5
6	Functional description 5
7	Limiting values 5
8	Recommended operating conditions 6
9	Static characteristics 6
10	Dynamic characteristics 8
11	Waveforms 10
12	Package outline 13
13	Abbreviations 14
14	Revision history14
15	Legal information 15
15.1	Data sheet status 15
15.2	Definitions 15
15.3	Disclaimers
15.4	Trademarks 16
16	Contact information 16
17	Contents 17

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2013.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 28 January 2013 Document identifier: 74LVC_LVCH16374A_Q100