Dual 2-input EXCLUSIVE-OR gate

Rev. 1 — 7 May 2013

Product data sheet

1. General description

The 74LVC2G86-Q100 provides a dual 2-input EXCLUSIVE-OR gate.

Inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of these devices as translators in a mixed 3.3 V and 5 V environment.

This device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

2. Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Wide supply voltage range from 1.65 V to 5.5 V
- 5 V tolerant inputs for interfacing with 5 V logic
- High noise immunity
- Complies with JEDEC standard:
 - ◆ JESD8-7 (1.65 V to 1.95 V)
 - JESD8-5 (2.3 V to 2.7 V)
 - JESD8B/JESD36 (2.7 V to 3.6 V)
- ESD protection:
 - MIL-STD-883, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)
- ± 24 mA output drive (V_{CC} = 3.0 V)
- CMOS low-power consumption
- Latch-up performance exceeds 250 mA
- Direct interface with TTL levels
- Inputs accept voltages up to 5 V
- Multiple package options

Dual 2-input EXCLUSIVE-OR gate

3. Ordering information

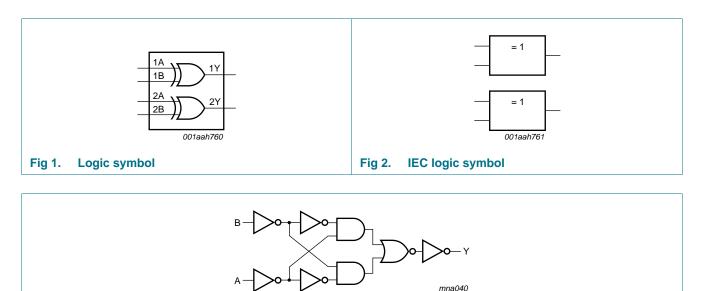
Table 1. Ordering information							
Type number	Package						
	Temperature range	Name	Description	Version			
74LVC2G86DP-Q100	–40 °C to +125 °C	TSSOP8	plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm	SOT505-2			
74LVC2G86DC-Q100	–40 °C to +125 °C	VSSOP8	plastic very thin shrink small outline package; 8 leads; body width 2.3 mm	SOT765-1			

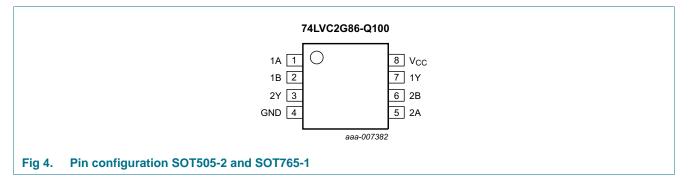
4. Marking

Table 2. Marking codes	
Type number	Marking code ^[1]
74LVC2G86DP-Q100	V86
74LVC2G86DC-Q100	V86

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

5. Functional diagram




Fig 3. Logic diagram (one driver)

74LVC2G86_Q100

Dual 2-input EXCLUSIVE-OR gate

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3.	Pin description	
Symbol	Pin	Description
1A, 2A	1, 5	data input
1B, 2B	2, 6	data input
GND	4	ground (0 V)
1Y, 2Y	7, 3	data output
V _{CC}	8	supply voltage

7. Functional description

Table 4.	Function table ^[1]		
Input			Output
nA		nB	nY
L		L	L
L		Н	Н
Н		L	Н
Н		Н	L

[1] H = HIGH voltage level; L = LOW voltage level

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

			•	10	,
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+6.5	V
I _{IK}	input clamping current	V _I < 0 V	-50	-	mA
VI	input voltage		<u>[1]</u> –0.5	+6.5	V
I _{OK}	output clamping current	$V_{\rm O}$ > $V_{\rm CC}$ or $V_{\rm O}$ < 0 V	-	±50	mA
Vo	output voltage	Active mode	<u>[1][2]</u> –0.5	V _{CC} + 0.5	V
		Power-down mode	<u>[1][2]</u> –0.5	+6.5	V
lo	output current	$V_{O} = 0$ to V_{CC}	-	±50	mA
I _{CC}	supply current		-	100	mA
I _{GND}	ground current		-100	-	mA
P _{tot}	total power dissipation	T_{amb} = -40 °C to +125 °C	[3]	300	mW
T _{stg}	storage temperature		-65	+150	°C

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] When V_{CC} = 0 V (Power-down mode), the output voltage can be 5.5 V in normal operation.

[3] For TSSOP8 packages: above 55 °C the value of P_{tot} derates linearly with 2.5 mW/K. For VSSOP8 packages: above 110 °C the value of P_{tot} derates linearly with 8.0 mW/K.

9. Recommended operating conditions

Table 6.	Operating conditions				
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		1.65	5.5	V
VI	input voltage		0	5.5	V
Vo	output voltage	Active mode	0	V _{CC}	V
		V _{CC} = 0 V; Power-down mode	0	5.5	V
T _{amb}	ambient temperature		-40	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	V_{CC} = 1.65 V to 2.7 V	-	20	ns/V
		V_{CC} = 2.7 V to 5.5 V	-	10	ns/V

Dual 2-input EXCLUSIVE-OR gate

10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Мах	Unit
T _{amb} = -	40 °C to +85 °C					
VIH	HIGH-level input voltage	V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$	-	-	V
		V_{CC} = 2.3 V to 2.7 V	1.7	-	-	V
		$V_{CC} = 2.7 V \text{ to } 3.6 V$	2.0	-	-	V
		V_{CC} = 4.5 V to 5.5 V	$0.7\times V_{CC}$	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 1.65 V to 1.95 V	-	-	$0.35 \times V_{CC}$	V
		V_{CC} = 2.3 V to 2.7 V	-	-	0.7	V
	$V_{CC} = 2.7 V \text{ to } 3.6 V$	-	-	0.8	V	
	V_{CC} = 4.5 V to 5.5 V	-	-	$0.3\times V_{CC}$	V	
V _{OL} LOW-level output voltage	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = 100 $\mu\text{A};$ V_{CC} = 1.65 V to 5.5 V	-	-	0.1	V
		$I_0 = 4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	0.07	0.45	V
		$I_0 = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	0.12	0.3	V
		$I_0 = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	0.17	0.4	V
		$I_0 = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	0.33	0.55	V
		$I_0 = 32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.39	0.55	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = –100 $\mu A;$ V_{CC} = 1.65 V to 5.5 V	$V_{CC}-0.1$	-	-	V
		$I_0 = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.2	1.54	-	V
		$I_{O} = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.9	2.15	-	V
		$I_0 = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	2.2	2.50	-	V
		$I_0 = -24$ mA; $V_{CC} = 3.0$ V	2.3	2.62	-	V
		$I_0 = -32$ mA; $V_{CC} = 4.5$ V	3.8	4.11	-	V
I _I	input leakage current	V_{I} = 5.5 V or GND; V_{CC} = 0 V to 5.5 V	-	±0.1	±5	μΑ
I _{OFF}	power-off leakage current	$V_{I} \text{ or } V_{O} = 5.5 \text{ V}; V_{CC} = 0 \text{ V}$	-	±0.1	±10	μΑ
I _{CC}	supply current	$V_{I} = 5.5 V \text{ or GND};$ $V_{CC} = 1.65 V \text{ to } 5.5 V; I_{O} = 0 A$	-	0.1	10	μΑ
∆l _{CC}	additional supply current	per pin; V _I = V _{CC} – 0.6 V; I _O = 0 A; V _{CC} = 2.3 V to 5.5 V	-	5	500	μΑ
Cı	input capacitance		-	2.5	-	pF

Dual 2-input EXCLUSIVE-OR gate

Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Мах	Unit
T _{amb} = -	40 °C to +125 °C					
VIH	HIGH-level input voltage	V_{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$	-	-	V
		V_{CC} = 2.3 V to 2.7 V	1.7	-	-	V
		$V_{CC} = 2.7 V \text{ to } 3.6 V$	2.0	-	-	V
		V_{CC} = 4.5 V to 5.5 V	$0.7\times V_{CC}$	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 1.65 V to 1.95 V	-	-	$0.35 \times V_{CC}$	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	-	0.7	V
		$V_{CC} = 2.7 V \text{ to } 3.6 V$	-	-	0.8	V
		$V_{CC} = 4.5 V$ to 5.5 V	-	-	$0.3\times V_{CC}$	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = 100 $\mu A; V_{CC}$ = 1.65 V to 5.5 V	-	-	0.1	V
		$I_0 = 4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.70	V
		$I_0 = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.45	V
		$I_0 = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	-	0.60	V
		$I_0 = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.80	V
		$I_0 = 32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.80	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_O = –100 $\mu A;V_{CC}$ = 1.65 V to 5.5 V	$V_{CC}-0.1$	-	-	V
		$I_0 = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	0.95	-	-	V
		$I_{O} = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.7	-	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	1.9	-	-	V
		$I_{O} = -24$ mA; $V_{CC} = 3.0$ V	2.0	-	-	V
		$I_{O} = -32$ mA; $V_{CC} = 4.5$ V	3.4	-	-	V
l _l	input leakage current	V_{I} = 5.5 V or GND; V_{CC} = 0 V to 5.5 V	-	-	±20	μA
I _{OFF}	power-off leakage current	V_{I} or V_{O} = 5.5 V; V_{CC} = 0 V	-	-	±20	μΑ
I _{CC}	supply current	$V_{I} = 5.5 V \text{ or GND};$ $V_{CC} = 1.65 V \text{ to } 5.5 V; I_{O} = 0 A$	-	-	40	μA
ΔI_{CC}	additional supply current	per pin; V _I = V _{CC} – 0.6 V; I _O = 0 A; V _{CC} = 2.3 V to 5.5 V	-	-	5000	μA

Table 7. Static characteristics ... continued

[1] All typical values are measured at V_{CC} = 3.3 V and T_{amb} = 25 °C.

11. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground 0 V); for test circuit see Figure 6.

Symbol	Parameter	Conditions		–40 °C to +85 °C			–40 °C to +125 °C		Unit
				Min	Typ <mark>[1]</mark>	Max	Min	Max	
t _{pd}	propagation delay	nA, nB to nY; see Figure 5	[2]						
		V_{CC} = 1.65 V to 1.95 V		1.4	3.8	9.9	1.4	12.4	ns
	V_{CC} = 2.3 V to 2.7 V		0.8	2.5	5.7	0.8	7.2	ns	
		$V_{CC} = 2.7 V$		0.8	3.0	5.7	0.8	7.2	ns
		V_{CC} = 3.0 V to 3.6 V		0.8	2.3	4.7	0.8	5.9	ns
		V_{CC} = 4.5 V to 5.5 V		0.6	1.9	3.6	0.6	4.5	ns
C _{PD} power dissipation capacitance		per gate; V_I = GND to V_{CC} ; V_{CC} = 3.3 V	[3]						
		output enabled		-	15.8	-	-	-	pF

[1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.8 V, 2.5 V, 2.7 V, 3.3 V and 5.0 V respectively.

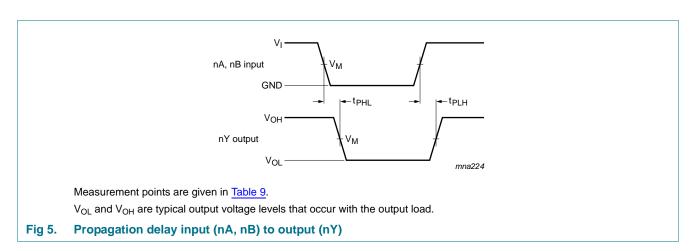
[2] t_{pd} is the same as t_{PLH} and t_{PHL}

[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma(C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 f_i = input frequency in MHz;

 $f_o = output frequency in MHz;$


 C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}{}^2 \times f_o) = \text{sum of outputs.}$

12. Waveforms

NXP Semiconductors

74LVC2G86-Q100

Dual 2-input EXCLUSIVE-OR gate

Table 5. Medsurement points				
Supply voltage	Input	Output		
V _{CC}	V _M	V _M		
1.65 V to 1.95 V	$0.5 imes V_{CC}$	$0.5 imes V_{CC}$		
2.3 V to 2.7 V	$0.5 imes V_{CC}$	$0.5 imes V_{CC}$		
2.7 V	1.5 V	1.5 V		
3.0 V to 3.6 V	1.5 V	1.5 V		
4.5 V to 5.5 V	$0.5 imes V_{CC}$	$0.5 imes V_{CC}$		

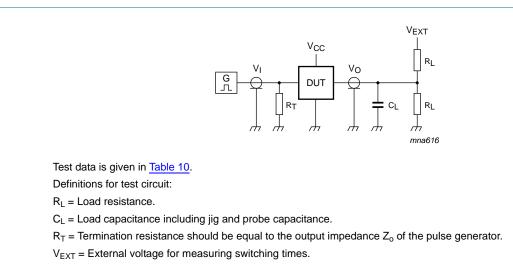
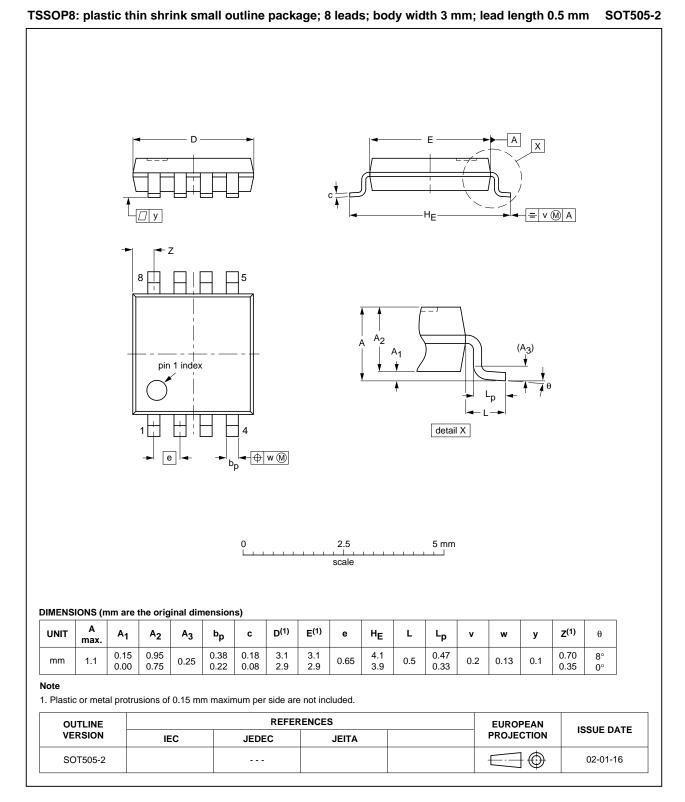


Fig 6. Test circuit for measuring switching times


Table 10. Test data

Supply voltage	Input		Load		V _{EXT}
V _{cc}	VI	t _r , t _f	CL	RL	t _{PLH} , t _{PHL}
1.65 V to 1.95 V	V _{CC}	\leq 2.0 ns	30 pF	1 kΩ	open
2.3 V to 2.7 V	V _{CC}	\leq 2.0 ns	30 pF	500 Ω	open
2.7 V	2.7 V	\leq 2.5 ns	50 pF	500 Ω	open
3.0 V to 3.6 V	2.7 V	\leq 2.5 ns	50 pF	500 Ω	open
4.5 V to 5.5 V	V _{CC}	\leq 2.5 ns	50 pF	500 Ω	open

Table 9. Measurement points

Dual 2-input EXCLUSIVE-OR gate

13. Package outline

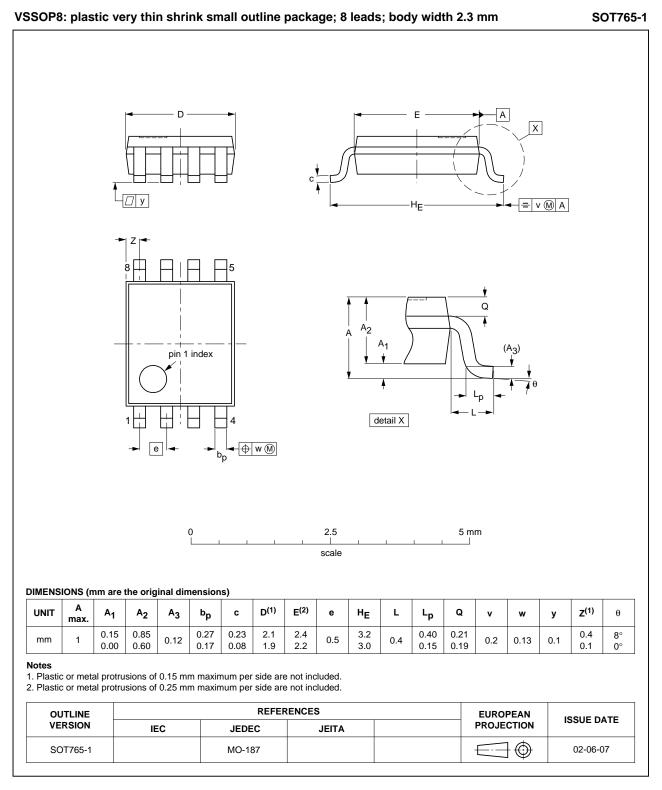


Fig 7. Package outline SOT505-2 (TSSOP8)

All information provided in this document is subject to legal disclaimers.

74LVC2G86_Q100

Dual 2-input EXCLUSIVE-OR gate

Fig 8. Package outline SOT765-1 (VSSOP8)

74LVC2G86_Q100
Product data sheet

Dual 2-input EXCLUSIVE-OR gate

14. Abbreviations

AcronymDescriptionCMOSComplementary Metal-Oxide SemiconductorDUTDevice Under TestESDElectroStatic DischargeHBMHuman Body ModelMILMilitaryMMMachine ModelTTLTransistor-Transistor Logic	Table 11.	Abbreviations		
DUTDevice Under TestESDElectroStatic DischargeHBMHuman Body ModelMILMilitaryMMMachine Model	Acronym	Description		
ESDElectroStatic DischargeHBMHuman Body ModelMILMilitaryMMMachine Model	CMOS	Complementary Metal-Oxide Semiconductor		
HBM Human Body Model MIL Military MM Machine Model	DUT	Device Under Test		
MIL Military MM Machine Model	ESD	ElectroStatic Discharge		
MM Machine Model	HBM	Human Body Model		
	MIL	Military		
TTI Transistor-Transistor Logic	MM	Machine Model		
	TTL	Transistor-Transistor Logic		

15. Revision history

Table 12. Revision hist	le 12. Revision history					
Document ID	Release date	Data sheet status	Change notice	Supersedes		
74LVC2G86_Q100 v.1	20130507	Product data sheet	-	-		

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions"

The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status [3] information is available on the Internet at URL http://www.nxp.com

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for guick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification - The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer. unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 **Disclaimers**

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications - This NXP

Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Dual 2-input EXCLUSIVE-OR gate

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Dual 2-input EXCLUSIVE-OR gate

18. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 2
4	Marking 2
5	Functional diagram 2
6	Pinning information 3
6.1	Pinning 3
6.2	Pin description 3
7	Functional description 3
8	Limiting values 4
9	Recommended operating conditions 4
10	Static characteristics 5
11	Dynamic characteristics 7
12	Waveforms
13	Package outline
14	Abbreviations 11
15	Revision history 11
16	Legal information 12
16.1	Data sheet status 12
16.2	Definitions
16.3	Disclaimers
16.4	Trademarks 13
17	Contact information 13
18	Contents 14

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2013.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 7 May 2013 Document identifier: 74LVC2G86_Q100