Product data sheet

1. General description

The 74LVC3G34 provides three buffers.

The inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of the 74LVC3G34 as a translator in a mixed 3.3 V and 5 V environment.

This device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing a damaging backflow current through the device when it is powered down.

2. Features and benefits

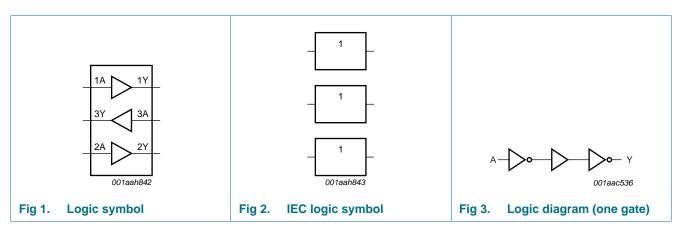
- Wide supply voltage range from 1.65 V to 5.5 V
- 5 V tolerant input/output for interfacing with 5 V logic
- High noise immunity
- Complies with JEDEC standard:
 - ◆ JESD8-7 (1.65 V to 1.95 V)
 - JESD8-5 (2.3 V to 2.7 V)
 - ◆ JESD8B/JESD36 (2.7 V to 3.6 V)
- ESD protection:
 - ◆ HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- ± 24 mA output drive (V_{CC} = 3.0 V)
- CMOS low power consumption
- Latch-up performance exceeds 250 mA
- Direct interface with TTL levels
- Multiple package options
- Specified from –40 °C to +85 °C and –40 °C to +125 °C

3. Ordering information

Table 1. Ordering information								
Type number	Package	Package						
	Temperature range	Name	Description	Version				
74LVC3G34DP	–40 °C to +125 °C	TSSOP8	plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm	SOT505-2				
74LVC3G34DC	–40 °C to +125 °C	VSSOP8	plastic very thin shrink small outline package; 8 leads; body width 2.3 mm	SOT765-1				
74LVC3G34GT	–40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body 1 \times 1.95 \times 0.5 mm	SOT833-1				
74LVC3G34GF	–40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.35 \times 1 \times 0.5 mm	SOT1089				
74LVC3G34GD	–40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body 3 \times 2 \times 0.5 mm	SOT996-2				
74LVC3G34GM	–40 °C to +125 °C	XQFN8	plastic, extremely thin quad flat package; no leads; 8 terminals; body 1.6 \times 1.6 \times 0.5 mm	SOT902-2				
74LVC3G34GN	–40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body $1.2 \times 1.0 \times 0.35$ mm	SOT1116				
74LVC3G34GS	–40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.35 \times 1.0 \times 0.35 mm	SOT1203				

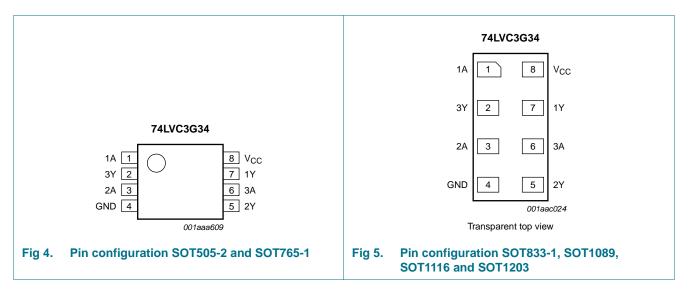
4. Marking

Table 2.Marking codes

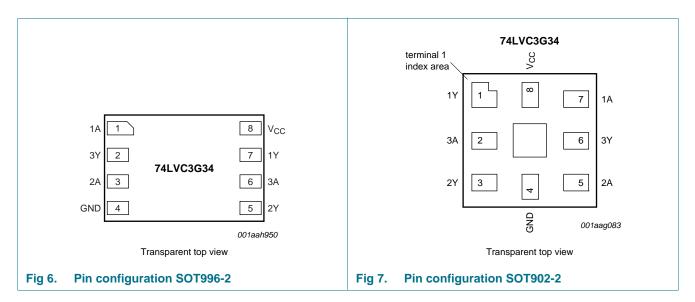

Type number	Marking code ^[1]
74LVC3G34DP	V34
74LVC3G34DC	Y34
74LVC3G34GT	Y34
74LVC3G34GF	YA
74LVC3G34GD	Y34
74LVC3G34GM	Y34
74LVC3G34GN	YA
74LVC3G34GS	YA

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

74LVC3G34


Triple buffer

5. Functional diagram



6. Pinning information

6.1 Pinning

6.2 Pin description

Symbol	Pin		Description	
	SOT505-2, SOT765-1, SOT833-1, SOT1089, SOT996-2, SOT1116 and SOT1203	SOT902-2		
1A, 2A, 3A	1, 3, 6	7, 5, 2	data input	
1Y, 2Y, 3Y	7, 5, 2	1, 3, 6	data output	
GND	4	4	ground (0 V)	
V _{CC}	8	8	supply voltage	

7. Functional description

Input nA Output nY L L H H	Table 4.	Function table ^[1]	
L H H	Input nA		Output nY
Н Н	L		L
	Н		Н

[1] H = HIGH voltage level; L = LOW voltage level.

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Parameter	Conditions	Min	Max	Unit
supply voltage		-0.5	+6.5	V
input clamping current	V ₁ < 0 V	-50	-	mA
input voltage		<u>[1]</u> –0.5	+6.5	V
output clamping current	$V_{\rm O}$ > $V_{\rm CC}$ or $V_{\rm O}$ < 0 V	-	±50	mA
output voltage	Active mode	<u>[1]</u> –0.5	$V_{CC} + 0.5$	V
	Power-down mode	<u>[1][2]</u> –0.5	+6.5	V
output current	$V_{O} = 0 V$ to V_{CC}	-	±50	mA
supply current		-	100	mA
ground current		-100	-	mA
total power dissipation	T_{amb} = -40 °C to +125 °C	[3] _	250	mW
storage temperature		-65	+150	°C
	supply voltage input clamping current input voltage output clamping current output voltage output current supply current ground current total power dissipation	supply voltageinput clamping current $V_1 < 0 V$ input voltage $V_0 > V_{CC} \text{ or } V_0 < 0 V$ output clamping current $V_0 > V_{CC} \text{ or } V_0 < 0 V$ output voltageActive modeoutput currentPower-down modeoutput current $V_0 = 0 V \text{ to } V_{CC}$ supply currentground currenttotal power dissipation $T_{amb} = -40 \ ^{\circ}C \text{ to } +125 \ ^{\circ}C$	supply voltage-0.5input clamping current $V_1 < 0 V$ -50input voltage[1] -0.5output clamping current $V_0 > V_{CC}$ or $V_0 < 0 V$ -output voltageActive mode[1] -0.5output voltage[1] -0.5-output current $V_0 = 0 V$ to V_{CC} -output current $V_0 = 0 V$ to V_{CC} -supply currentground current-100total power dissipation $T_{amb} = -40 °C$ to $+125 °C$ [3] -	supply voltage -0.5 +6.5 input clamping current $V_1 < 0 V$ -50 - input voltage 11 -0.5 +6.5 output clamping current $V_0 > V_{CC}$ or $V_0 < 0 V$ - ±50 output voltage Active mode 11 -0.5 $V_{CC} + 0.5$ output voltage Active mode 11 -0.5 $V_{CC} + 0.5$ output current $V_0 = 0 V \text{ to } V_{CC}$ - ±50 output current $V_0 = 0 V \text{ to } V_{CC}$ - ±50 supply current - 100 - ground current -100 - 250 total power dissipation $T_{amb} = -40 ^{\circ}C \text{ to } + 125 ^{\circ}C$ [3] - 250

[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] When V_{CC} = 0 V (Power-down mode), the output voltage can be 5.5 V in normal operation.

[3] For TSSOP8 package: above 55 °C the value of P_{tot} derates linearly with 2.5 mW/K.
 For VSSOP8 package: above 110 °C the value of P_{tot} derates linearly with 8 mW/K.
 For XSON8, XQFN8 packages: above 118 °C the value of P_{tot} derates linearly with 7.8 mW/K.

9. Recommended operating conditions

Table 6.	Operating conditions				
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		1.65	5.5	V
VI	input voltage		0	5.5	V
Vo	output voltage	Active mode	0	V _{CC}	V
		Power-down mode; $V_{CC} = 0 V$	0	5.5	V
T _{amb}	ambient temperature		-40	+125	°C
Δt/ΔV	input transition rise and fall rate	$V_{CC} = 1.65 \text{ V to } 2.7 \text{ V}$	-	20	ns/V
		$V_{CC} = 2.7 \text{ V to } 5.5 \text{ V}$	-	10	ns/V

10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Max	Unit
T _{amb} = -	40 °C to +85 °C					
VIH	HIGH-level input voltage	V_{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$	-	-	V
		V_{CC} = 2.3 V to 2.7 V	1.7	-	-	V
		V_{CC} = 2.7 V to 3.6 V	2.0	-	-	V
		V_{CC} = 4.5 V to 5.5 V	$0.7\times V_{CC}$	-	-	V
V _{IL}	LOW-level input voltage	V_{CC} = 1.65 V to 1.95 V	-	-	$0.35 \times V_{CC}$	V
		V_{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		$V_{CC} = 2.7 V \text{ to } 3.6 V$	-	-	0.8	V
		V_{CC} = 4.5 V to 5.5 V	-	-	$0.3\times V_{CC}$	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH} \text{ or } V_{IL}$				
		I_{O} = $-100~\mu\text{A};~V_{CC}$ = 1.65 V to 5.5 V	$V_{CC}-0.1$	-	-	V
		$I_{O} = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.2	-	-	V
		$I_{O} = -8$ mA; $V_{CC} = 2.3$ V	1.9	-	-	V
		$I_0 = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	2.2	-	-	V
		$I_{O} = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.3	-	-	V
		$I_{O} = -32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.8	-	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{IH} \text{ or } V_{IL}$				
		I_{O} = 100 $\mu A;$ V_{CC} = 1.65 V to 5.5 V	-	-	0.1	V
		$I_0 = 4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.45	V
		$I_{O} = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.3	V
		I_{O} = 12 mA; V_{CC} = 2.7 V	-	-	0.4	V
		$I_{O} = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.55	V
		$I_{O} = 32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.55	V
l _l	input leakage current	$V_{\rm I}$ = 5.5 V or GND; $V_{\rm CC}$ = 0 V to 5.5 V	-	±0.1	±5	μA
I _{OFF}	power-off leakage current	V_{CC} = 0 V; V _I or V _O = 5.5 V	-	±0.1	±10	μA
I _{CC}	supply current	$V_I = 5.5 V \text{ or GND};$ $V_{CC} = 1.65 V \text{ to } 5.5 V; I_O = 0 A$	-	0.1	10	μA
∆l _{CC}	additional supply current	per pin; V _{CC} = 2.3 V to 5.5 V; V _I = V _{CC} – 0.6 V; I _O = 0 A	-	5	500	μA
Cı	input capacitance	V_{CC} = 3.3 V; V_{I} = GND to V_{CC}	-	2.5	-	pF

Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Max	Unit
T _{amb} = -	40 °C to +125 °C					
VIH	HIGH-level input voltage	V_{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$	-	-	V
		V_{CC} = 2.3 V to 2.7 V	1.7	-	-	V
		V_{CC} = 2.7 V to 3.6 V	2.0	-	-	V
		V_{CC} = 4.5 V to 5.5 V	$0.7\times V_{CC}$	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 1.65 V to 1.95 V	-	-	$0.35 \times V_{CC}$	V
		V_{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		V_{CC} = 2.7 V to 3.6 V	-	-	0.8	V
		V_{CC} = 4.5 V to 5.5 V	-	-	$0.3\times V_{CC}$	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = –100 $\mu A;$ V_{CC} = 1.65 V to 5.5 V	$V_{CC}-0.1$	-	-	V
		$I_{O} = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	0.95	-	-	V
		$I_{O} = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.7	-	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	1.9	-	-	V
		$I_{O} = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.0	-	-	V
		$I_{O} = -32$ mA; $V_{CC} = 4.5$ V	3.4	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_{O} = 100 $\mu\text{A};V_{CC}$ = 1.65 V to 5.5 V	-	-	0.1	V
		$I_{O} = 4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.7	V
		$I_0 = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.45	V
		$I_0 = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	-	0.6	V
		$I_0 = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.8	V
		$I_{O} = 32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.8	V
I _I	input leakage current	V_{I} = 5.5 V or GND; V_{CC} = 0 V to 5.5 V	-	-	±20	μA
I _{OFF}	power-off leakage current	V_{CC} = 0 V; V _I or V _O = 5.5 V	-	-	±20	μA
I _{CC}	supply current	$V_{I} = 5.5 V \text{ or GND};$ $V_{CC} = 1.65 V \text{ to } 5.5 V; I_{O} = 0 A$	-	-	40	μΑ
Δl _{CC}	additional supply current	per pin; $V_{CC} = 2.3 \text{ V}$ to 5.5 V; $V_I = V_{CC} - 0.6 \text{ V}$; $I_O = 0 \text{ A}$	-	-	5000	μΑ

Table 7. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

[1] All typical values are measured at V_{CC} = 3.3 V and T_{amb} = 25 °C.

11. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 9.

Symbol	Parameter	Conditions		–40 °C to +85 °C			–40 °C to	o +125 °C	Unit
				Min	Typ <mark>[1]</mark>	Max	Min	Max	
t _{pd}	propagation delay	nA to nY; see Figure 8	[2]						
		V_{CC} = 1.65 V to 1.95 V		1.0	3.8	8.6	1.0	10.8	ns
		V_{CC} = 2.3 V to 2.7 V		0.5	2.4	4.4	0.5	5.5	ns
		$V_{CC} = 2.7 V$		0.5	2.5	5.0	0.5	6.3	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		0.5	2.2	4.1	0.5	5.1	ns
		$V_{CC} = 4.5 V \text{ to } 5.5 V$		0.5	1.9	3.2	0.5	4.0	ns
C_{PD}	power dissipation capacitance	$V_{\rm I}$ = GND to $V_{CC};V_{CC}$ = 3.3 V	[3]	-	14	-	-	-	pF

[1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.8 V, 2.5 V, 2.7 V, 3.3 V and 5.0 V respectively.

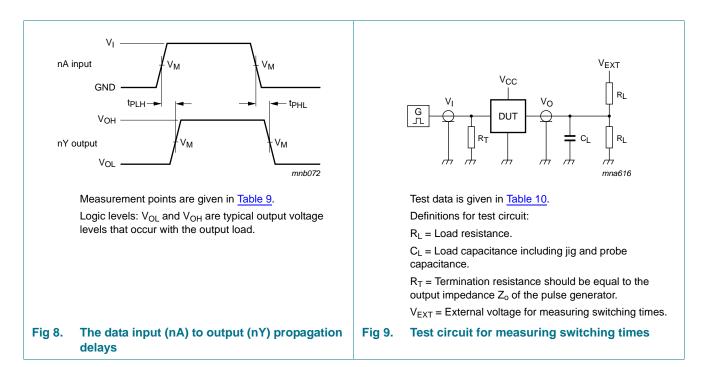
[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma(C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 f_i = input frequency in MHz;

 f_o = output frequency in MHz;

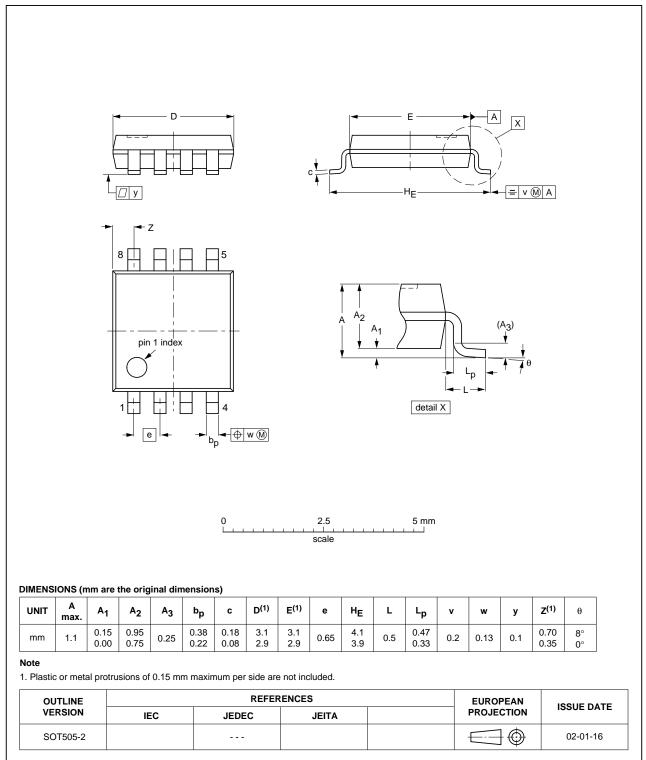

 C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}{}^2 \times f_o) = \text{sum of outputs.}$

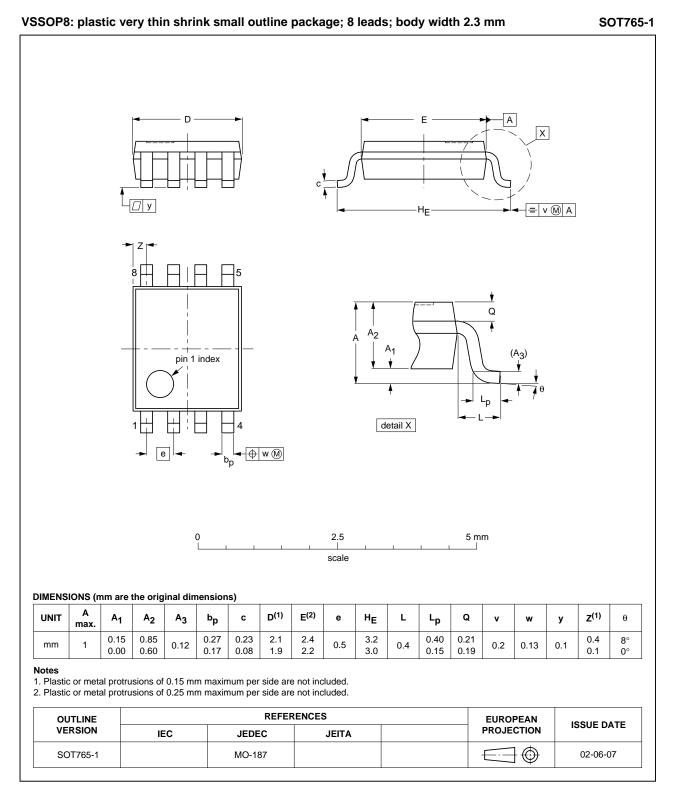
12. AC waveforms


Table 9.Measurement points

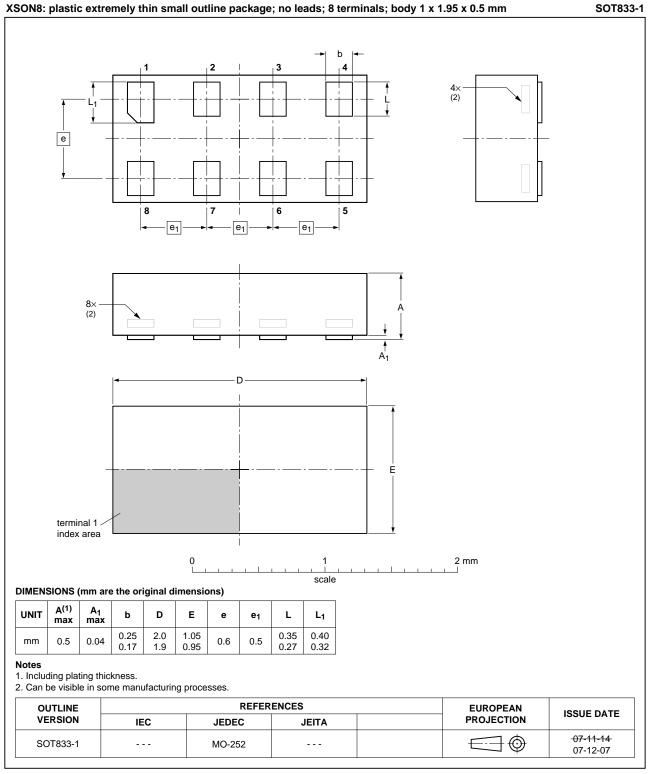
Supply voltage	Input	Output
V _{cc}	V _M	V _M
1.65 V to 1.95 V	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$
2.3 V to 2.7 V	$0.5 imes V_{CC}$	$0.5 imes V_{CC}$
2.7 V	1.5 V	1.5 V
3.0 V to 3.6 V	1.5 V	1.5 V
4.5 V to 5.5 V	$0.5 imes V_{CC}$	$0.5 \times V_{CC}$

Table 10. Test data

Supply voltage	Input		Load		V _{EXT}
V _{cc}	VI	$t_r = t_f$	CL	RL	t _{PLH} , t _{PHL}
1.65 V to 1.95 V	V _{CC}	\leq 2.0 ns	30 pF	1 kΩ	open
2.3 V to 2.7 V	V _{CC}	\leq 2.0 ns	30 pF	500 Ω	open
2.7 V	2.7 V	\leq 2.5 ns	50 pF	500 Ω	open
3.0 V to 3.6 V	2.7 V	\leq 2.5 ns	50 pF	500 Ω	open
4.5 V to 5.5 V	V _{CC}	≤ 2.5 ns	50 pF	500 Ω	open

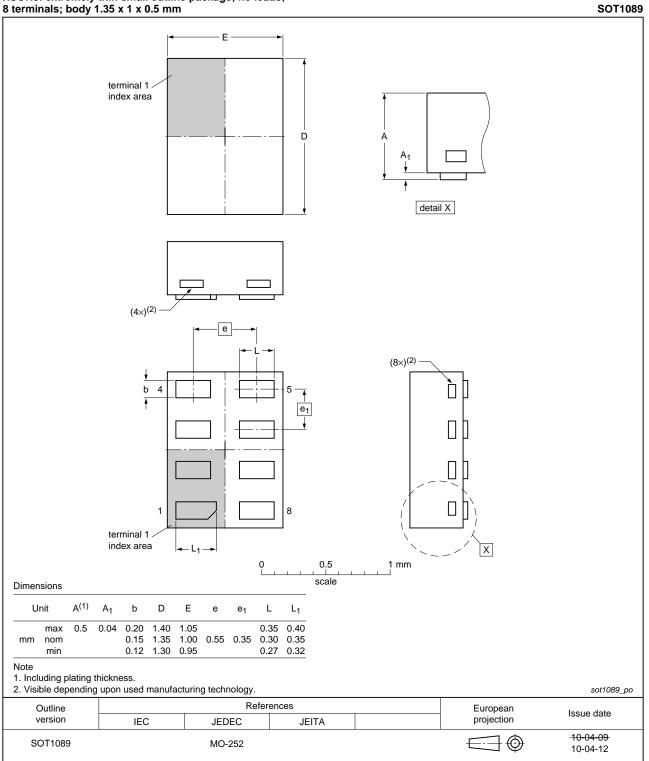

13. Package outline

TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm SOT505-2

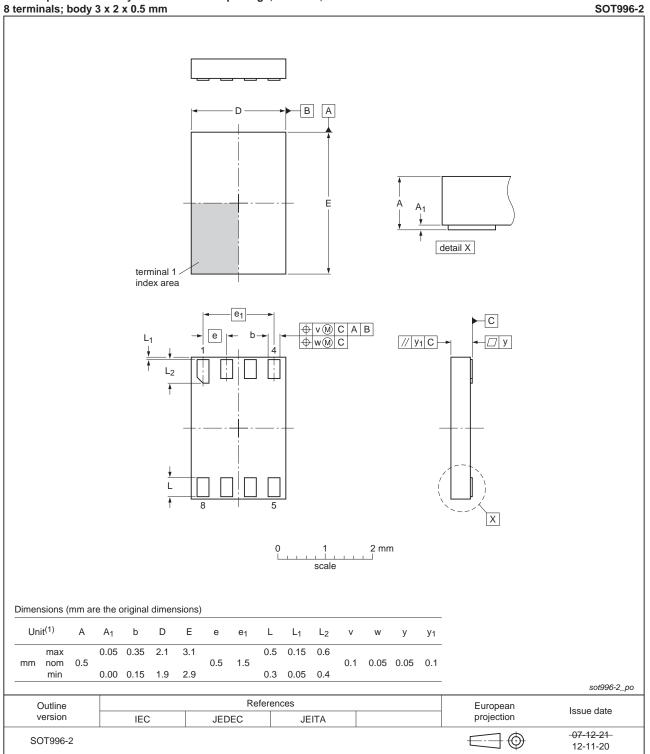

Fig 10. Package outline SOT505-2 (TSSOP8)

All information provided in this document is subject to legal disclaimers.

Fig 11. Package outline SOT765-1 (VSSOP8)

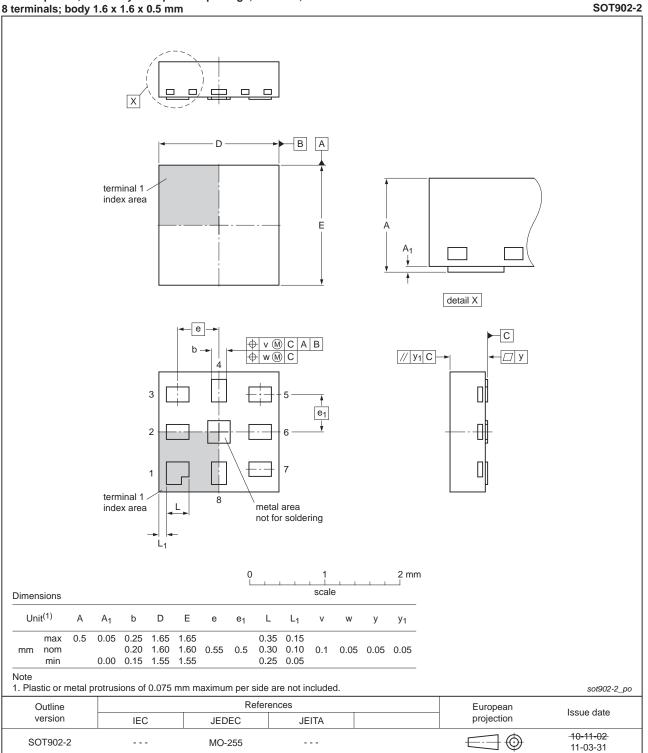

74LVC3G34 Product data sheet

XSON8: plastic extremely thin small outline package; no leads; 8 terminals; body 1 x 1.95 x 0.5 mm


Fig 12. Package outline SOT833-1 (XSON8)

All information provided in this document is subject to legal disclaimers.

XSON8: extremely thin small outline package; no leads; 8 terminals; body 1.35 x 1 x 0.5 mm

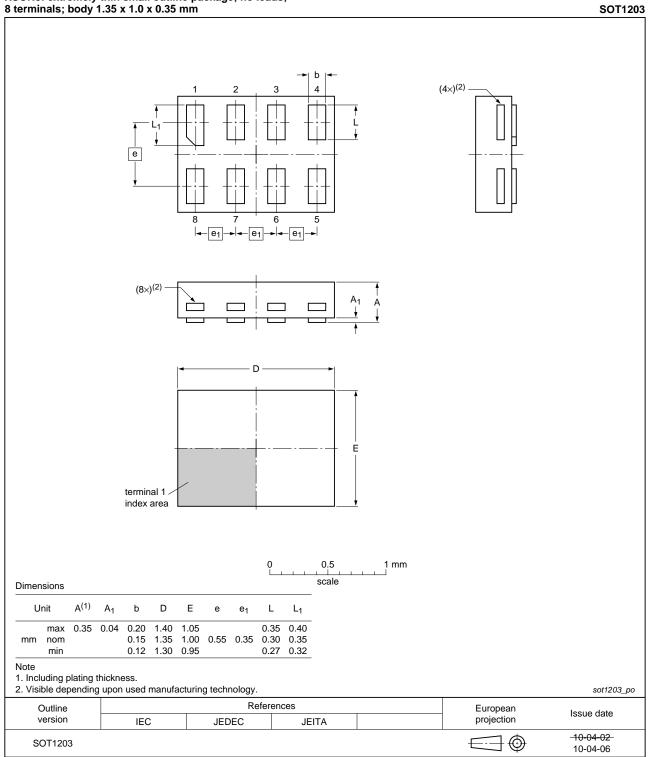

Fig 13. Package outline SOT1089 (XSON8)

XSON8: plastic extremely thin small outline package; no leads; 8 terminals; body 3 x 2 x 0.5 mm

Fig 14. Package outline SOT996-2 (XSON8)


All information provided in this document is subject to legal disclaimers.

XQFN8: plastic, extremely thin quad flat package; no leads; 8 terminals; body 1.6 x 1.6 x 0.5 mm


Fig 15. Package outline SOT902-2 (XQFN8)

All information provided in this document is subject to legal disclaimers.

XSON8: extremely thin small outline package; no leads; 8 terminals; body 1.2 x 1.0 x 0.35 mm

Fig 16. Package outline SOT1116 (XSON8)

XSON8: extremely thin small outline package; no leads; 8 terminals; body 1.35 x 1.0 x 0.35 mm

Fig 17. Package outline SOT1203 (XSON8)

74LVC3G34 **Product data sheet**

14. Abbreviations

AcronymDescriptionCMOSComplementary Metal-Oxide SemiconductorDUTDevice Under TestESDElectroStatic DischargeHBMHuman Body ModelMMMachine ModelTTLTransistor-Transistor Logic	Table 11. Abbreviations				
DUTDevice Under TestESDElectroStatic DischargeHBMHuman Body ModelMMMachine Model	Acronym	Description			
ESD ElectroStatic Discharge HBM Human Body Model MM Machine Model	CMOS	Complementary Metal-Oxide Semiconductor			
HBM Human Body Model MM Machine Model	DUT	Device Under Test			
MM Machine Model	ESD	ElectroStatic Discharge			
	HBM	Human Body Model			
TTL Transistor-Transistor Logic	MM	Machine Model			
	TTL	Transistor-Transistor Logic			

15. Revision history

Table 12. **Revision history Document ID Release date** Data sheet status **Change notice Supersedes** 74LVC3G34 v.11 20130402 Product data sheet 74LVC3G34 v.10 -Modifications: For type number 74LVC3G34GD XSON8U has changed to XSON8. 74LVC3G34 v.10 Product data sheet 74LVC3G34 v.9 20120808 Modifications: For type number 74LVC3G34GM the SOT code has changed to SOT902-2. 74LVC3G34 v.9 20111123 Product data sheet 74LVC3G34 v.8 _ Modifications: • Legal pages updated. 74LVC3G34 v.8 20100902 Product data sheet 74LVC3G34 v.7 _ 74LVC3G34 v.7 20080509 Product data sheet 74LVC3G34 v.6 -Product data sheet 74LVC3G34 v.6 20080312 74LVC3G34 v.5 _ 74LVC3G34 v.5 20071005 Product data sheet 74LVC3G34 v.4 -74LVC3G34 v.4 20070302 Product data sheet 74LVC3G34 v.3 -74LVC3G34 v.3 20050131 Product data sheet 74LVC3G34 v.2 -74LVC3G34 v.2 20041027 Product data sheet 74LVC3G34 v.1 -74LVC3G34 v.1 20040429 Product data sheet --

18 of 21

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

19 of 21

74LVC3G34

Triple buffer

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

17. Contact information

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

74LVC3G34

18. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 2
4	Marking 2
5	Functional diagram 3
6	Pinning information 3
6.1	Pinning 3
6.2	Pin description 4
7	Functional description 4
8	Limiting values 5
9	Recommended operating conditions 5
10	Static characteristics 6
11	Dynamic characteristics 8
12	AC waveforms 9
13	Package outline 10
14	Abbreviations 18
15	Revision history 18
16	Legal information 19
16.1	Data sheet status 19
16.2	Definitions 19
16.3	Disclaimers
16.4	Trademarks 20
17	Contact information 20
18	Contents 21

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2013.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 2 April 2013 Document identifier: 74LVC3G34