BGA7127 400 MHz to 2700 MHz 0.5 W high linearity silicon amplifier Rev. 3 – 3 December 2010 Product data sheet

1. Product profile

1.1 General description

The MMIC is a one-stage amplifier, offered in a low-cost leadless surface-mount package. It delivers 28 dBm output power at 1 dB gain compression and a superior performance up to 2700 MHz. Its power saving features include simple quiescent current adjustment, which allows class-AB operation and logic-level shutdown control to reduce the supply current to 4 μ A.

1.2 Features and benefits

- 400 MHz to 2700 MHz frequency operating range
- 12 dB small signal gain at 2 GHz
- 28 dBm output power at 1 dB gain compression
- Integrated active biasing
- External matching allows broad application optimization of the electrical performance
- 5 V single supply operation
- All pins ESD protected

1.3 Applications

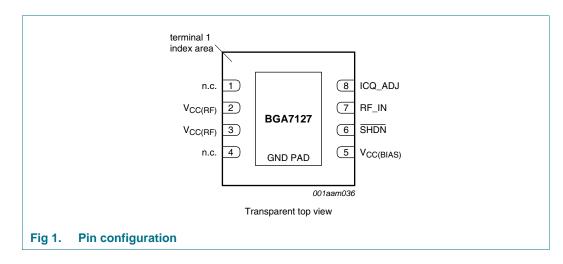
- Broadband CPE/MoCA
- WLAN/ISM/RFID
- Wireless infrastructure (base station, repeater, backhaul systems)
- Industrial applications
- E-metering
- Satellite Master Antenna TV (SMATV)

1.4 Quick reference data

Table 1. Quick reference data

Input and output impedances matched to 50 Ω , $\overline{SHDN} = HIGH$ (shutdown disabled). Typical values at V_{CC} = 5 V; I_{CC} = 180 mA; T_{case} = 25 °C; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f	frequency		[1]	400	-	2700	MHz
G _p	power gain	f = 2140 MHz		10.5	12.0	13.5	dB
P _{L(1dB)}	output power at 1 dB gain compression	f = 2140 MHz		26.5	28.0	-	dBm
IP3 ₀	output third-order intercept point	f = 2140 MHz	[2]	39.0	42.0	-	dBm


[1] Operation outside this range is possible but not guaranteed.

[2] $P_L = 17 \text{ dBm per tone}$; spacing = 1 MHz.

Pinning information 2.

2.1 Pinning

2.2 Pin description

Table 2. **Pin description**

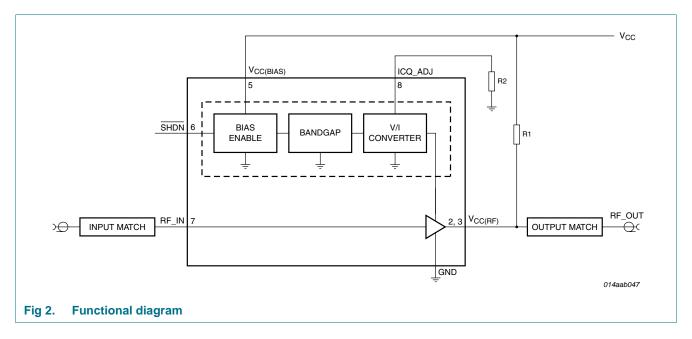
Symbol	Pin	Description
n.c.	1, 4	not connected
V _{CC(RF)}	2, 3	RF output for the power amplifier and DC supply input for the RF transistor collector $\begin{bmatrix} 1 \end{bmatrix}$
V _{CC(BIAS)}	5	bias supply voltage [2]
SHDN	6	shutdown control function enabled / disabled
RF_IN	7	RF input for the power amplifier [1]
ICQ_ADJ	8	quiescent collector current adjustment by an external resistor
GND	GND pad	RF ground and DC ground 3

[1] This pin is DC-coupled and requires an external DC-blocking capacitor.

[2] RF decoupled.

[3] The center metal base of the SOT908-1 also functions as heatsink for the power amplifier.

Ordering information 3.


Table 3. **Ordering information**

Type number	Package							
	Name	Description	Version					
BGA7127	HVSON8	plastic thermal enhanced very thin small outline package; no leads; 8 terminals; body $3 \times 3 \times 0.85$ mm	SOT908-1					

BGA7127 **Product data sheet**

400 MHz to 2700 MHz 0.5 W high linearity silicon amplifier

4. Functional diagram

5. Shutdown control

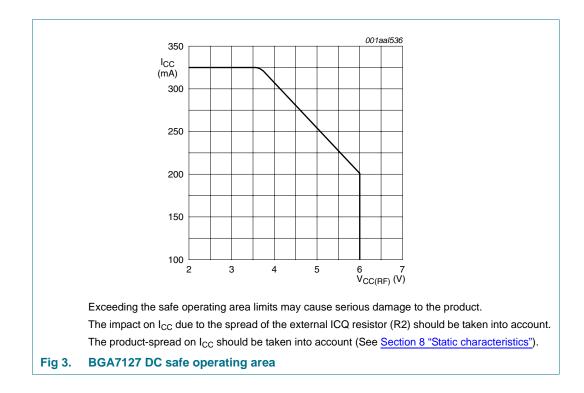
Table 4.Shutdown control settings

Mode	Mode description	Function description	SHDN	V _{ctrl(sd)} (V)		I _{ctrl(sd)} (μA)	
				Min	Max	Min	Мах
Idle	medium power MMIC fully off; minimal supply current	shutdown control enabled	0	0	0.7	-	2
ТΧ	medium power MMIC transmit mode	shutdown control disabled	1	2.5	V _{CC(BIAS)}	-	3

6. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).


Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC(RF)}	RF supply voltage		[1]	-	6.0	V
V _{CC(BIAS)}	bias supply voltage		[1]	-	6.0	V
I _{CC}	supply current		[1][2]	-	325	mA
V _{ctrl(sd)}	shutdown control voltage		[3]	0.0	V _{CC(BIAS)}	V
P _{i(RF)}	RF input power	f = 2140 MHz; switched	[4]	-	25	dBm
T _{case}	case temperature			-40	+85	°C
Tj	junction temperature			-	150	°C
V _{ESD}	electrostatic discharge voltage	Human Body Model (HBM); According JEDEC standard 22-A114E		-	2000	V
		Charged Device Model (CDM); According JEDEC standard 22-C101B		-	500	V

[1] See Figure 3 for safe operating area.

[2] The supply current is adjustable. See Section 8.1 "Supply current adjustment" and Section 12 "Application information".

[3] If V_{ctrl(sd)} exceeds V_{CC(BIAS)}, the internal ESD circuit can be damaged. The recommended preventive measure is to limit the I_{ctrl(sd)} to 20 mA. If the SHDN function is not used, the SHDN pin should be connected to V_{CC(BIAS)}.

[4] Withstands switching between zero and maximum P_{i(RF)}.

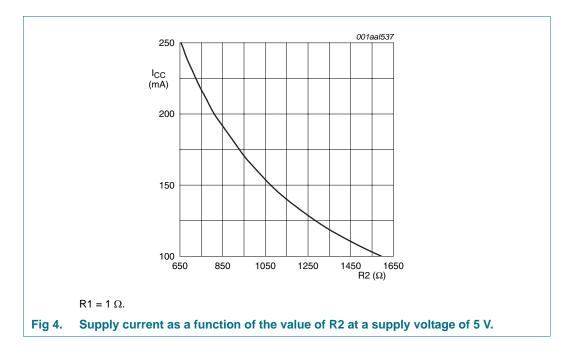
7. Thermal characteristics

Table 6.	Thermal characteristics				
Symbol	Parameter	Conditions	Тур	Max	Unit
R _{th(j-mb)}	thermal resistance from junction to mounting base	$T_{case} = 85 \ ^{\circ}C; V_{CC} = 5 \ V;$ $I_{CC} = 180 \ mA$	<u>[1]</u> 28	-	K/W

[1] Defined as thermal resistance from junction to GND pad.

8. Static characteristics

Table 7. Static characteristics


Input and output impedances matched to 50 Ω , $\overline{SHDN} = HIGH$ (shutdown disabled). Typical values at V_{CC} = 5.0 V; T_{case} = 25 °C; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{CC} supply current			[<u>1]</u> 100	-	250	mA
		R1 = 1 Ω; R2 = 909 Ω, E96	[<u>2]</u> 160	180	200	mA
		R1 = 1.8 Ω; R2 = 909 Ω, E96	[<u>2]</u> 160	180	200	mA
		during shutdown; pin SHDN = LOW (shutdown enabled)	-	4	6	μA

- [1] The supply current is adjustable. See <u>Section 8.1 "Supply current adjustment"</u> and <u>Section 12 "Application</u> information".
- [2] See <u>Section 12 "Application information"</u>.

8.1 Supply current adjustment

The supply current can be adjusted by changing the value of external ICQ resistor (R2).

9. Dynamic characteristics

Table 8. Dynamic characteristics

Input and output impedances matched to 50 Ω , $\overline{SHDN} = HIGH$ (shutdown disabled). Typical values at V_{CC} = 5 V; I_{CC} = 180 mA; T_{case} = 25 °C; see Section 12 "Application information"; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f	frequency		<u>[1]</u> 400	-	2700	MHz
G _p	power gain	f = 940 MHz	[2] _	20.0	-	dB
٢		f = 1960 MHz	[2] _	13.0	-	dB
		f = 2140 MHz	2 10.5	12.0	13.5	dB
		f = 2445 MHz	[2] _	10.5	-	dB
P _{L(1dB)}	output power at 1 dB gain compression	f = 940 MHz	-	27.5	-	dBm
		f = 1960 MHz	-	28.5	-	dBm
		f = 2140 MHz	26.5	28.0	-	dBm
		f = 2445 MHz	-	27.5	-	dBm
IP3 ₀	output third-order intercept point	f = 940 MHz	[3] _	41.5	-	dBm
		f = 1960 MHz	[3] _	42.5	-	dBm
		f = 2140 MHz	<u>[3]</u> 39.0	42.0	-	dBm
		f = 2445 MHz	[3] _	41.5	-	dBm
NF	noise figure	f = 940 MHz	-	3.1	-	dB
		f = 1960 MHz	-	4.5	-	dB
		f = 2140 MHz	-	4.6	-	dB
		f = 2445 MHz	-	4.7	-	dB
RL _{in}	input return loss	f = 940 MHz	[2] _	-25	-	dB
		f = 1960 MHz	[2] _	-9	-	dB
		f = 2140 MHz	[2] _	-9	-	dB
		f = 2445 MHz	[2] _	-11	-	dB
RL _{out}	output return loss	f = 940 MHz	[2] _	-12	-	dB
		f = 1960 MHz	[2] _	-14	-	dB
		f = 2140 MHz	[2] _	-10	-	dB
		f = 2445 MHz	[2] _	-17	-	dB

[1] Operation outside this range is possible but not guaranteed.

[2] Defined at $P_i = -40$ dBm; small signal conditions.

[3] $P_L = 17 \text{ dBm}$; tone spacing = 1 MHz.

9.1 Scattering parameters

 Table 9.
 Scattering parameters, MMIC only

 $V_{CC} = 5 V; I_{CC} = 180 mA; T_{case} = 25 °C.$

f (MHz)	s ₁₁		s ₂₁		s ₁₂		S ₂₂		
	Magnitude (ratio)	Angle (degree)	Magnitude (ratio)	Angle (degree)	Magnitude (ratio)	Angle (degree)	Magnitude (ratio)	Angle (degree)	
400	0.92	178	8.64	91	0.01	45	0.75	-173	
500	0.91	176	6.95	88	0.01	49	0.76	-175	
600	0.91	174	5.88	86	0.01	51	0.75	-176	
700	0.91	172	5.05	83	0.02	53	0.75	-178	
800	0.91	170	4.47	81	0.02	55	0.74	-180	
900	0.91	167	4.01	79	0.02	55	0.74	179	
1000	0.90	165	3.64	76	0.02	54	0.75	177	
1100	0.90	163	3.30	74	0.02	52	0.76	175	
1200	0.90	161	3.0	71	0.02	51	0.75	173	
1300	0.91	159	2.75	69	0.03	50	0.76	172	
1400	0.91	156	2.53	67	0.03	51	0.76	171	
1500	0.92	155	2.33	65	0.03	52	0.77	170	
1600	0.92	153	2.16	64	0.03	52	0.77	169	
1700	0.92	152	2.01	62	0.03	51	0.78	168	
1800	0.92	152	1.86	61	0.03	48	0.78	168	
1900	0.93	151	1.75	60	0.03	49	0.79	168	
2000	0.93	152	1.64	60	0.03	51	0.80	168	
2100	0.93	151	1.56	59	0.04	52	0.80	169	
2200	0.93	151	1.48	58	0.04	52	0.80	169	
2300	0.92	151	1.43	57	0.04	52	0.80	170	
2400	0.92	151	1.38	57	0.04	52	0.79	171	
2500	0.90	152	1.33	57	0.04	51	0.80	172	
2600	0.90	152	1.29	56	0.04	50	0.79	173	
2700	0.89	152	1.27	55	0.05	50	0.78	173	

10. Reliability information

Table 10.	Reliability	
Life test	Conditions	Intrinsic failure rate
HTOL	according to JESD85; confidence level 60 %; $T_j = 55$ °C; activation energy = 0.7 eV; acceleration factor determined according to the Arrhenius equation.	4

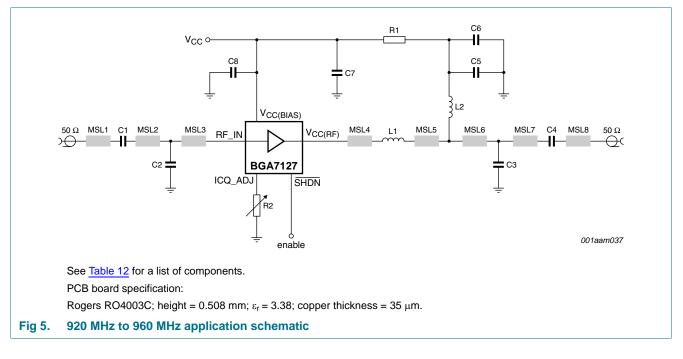
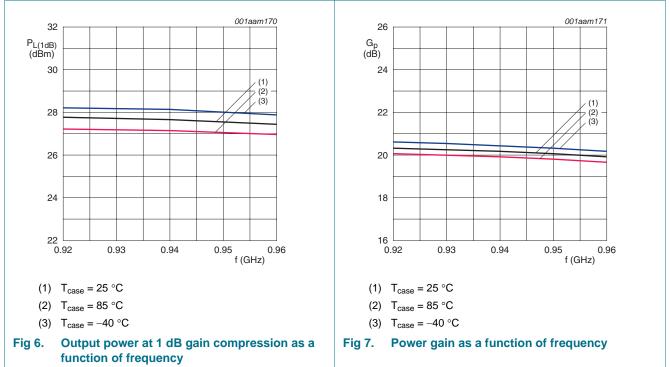
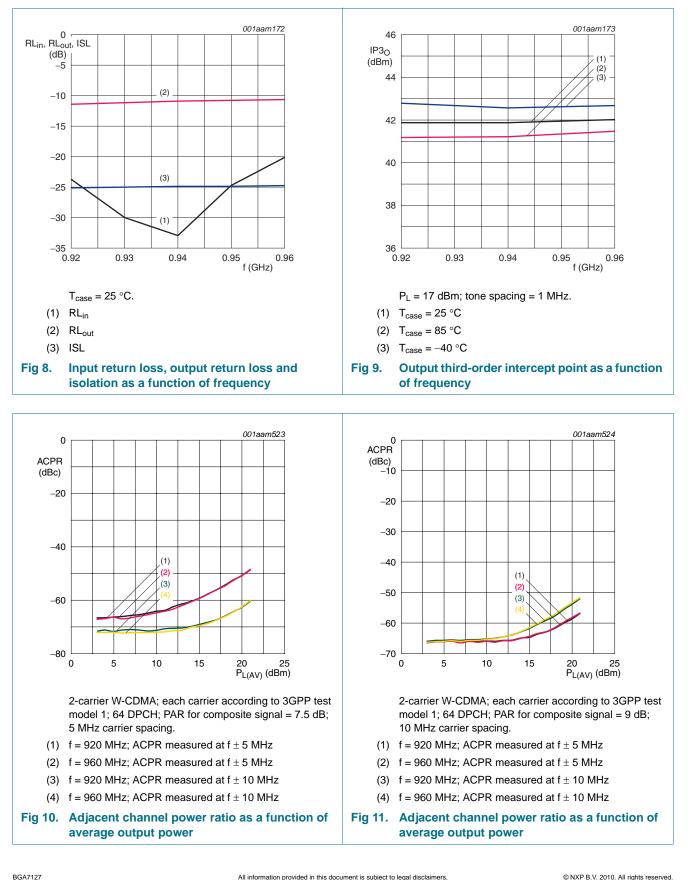

11. Moisture sensitivity

Table 11. Moisture sensitivity level	
Test methodology	Class
JESD-22-A113	1
All information provided in this document is subject to legal disclaimers.	© NXP B.V. 2010. All rights reserved.
Day 2 2 December 2010	7 of 25

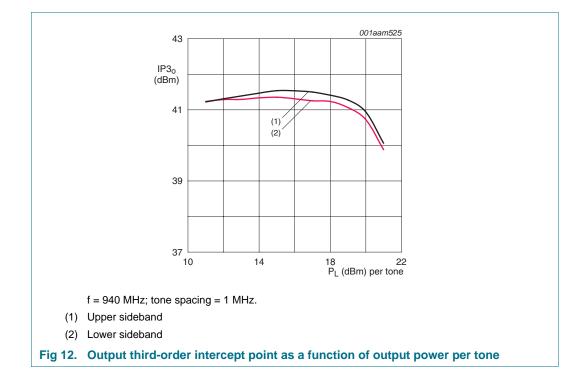

BGA7127

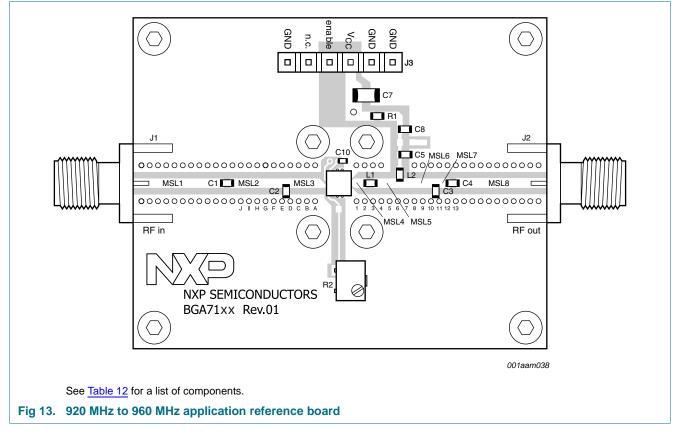
400 MHz to 2700 MHz 0.5 W high linearity silicon amplifier

12. Application information



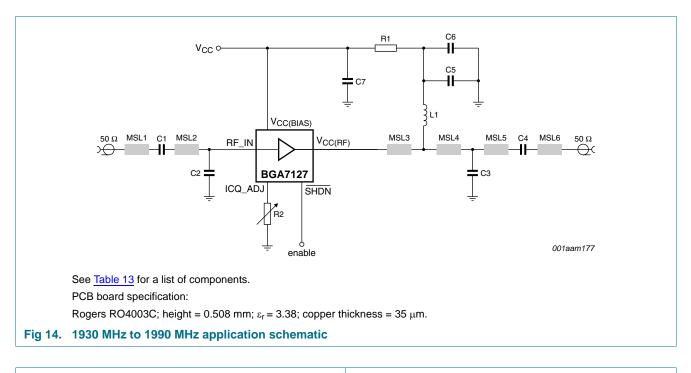
12.1 920 MHz to 960 MHz at 5 V; 180 mA


BGA7127


400 MHz to 2700 MHz 0.5 W high linearity silicon amplifier

All information provided in this document is subject to legal disclaimers.

400 MHz to 2700 MHz 0.5 W high linearity silicon amplifier

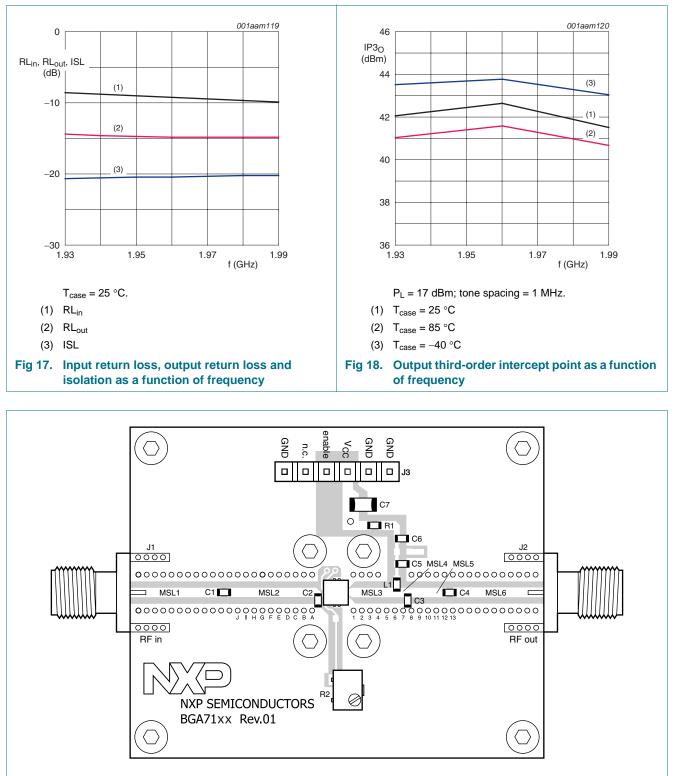


400 MHz to 2700 MHz 0.5 W high linearity silicon amplifier

Printed-Circuit Board (PCB): Rogers RO4003C stack; height = 0.508 mm; copper plating thickness = 35 μm. **Component Description** Value Function Remarks C1, C4 capacitor 68 pF DC blocking GRM1885C1H680JA01D C2 capacitor 9.1 pF input match Murata GRM1885C1H9R1CZ01D C3 capacitor 5.1 pF output match Murata GRM1885C1H5R1CZ01D **RF** decoupling Murata GRM1885C1H1R0CZ01D C5 capacitor 10 nF C6 capacitor 1 μF LF decoupling AVX 06033D105KAT2A C7 capacitor 10 μF LF decoupling AVX 1206ZG106ZAT2A Murata GRM1555C1H120JZ01D C8 capacitor 12 pF noise decoupling J1, J2 RF connector SMA Emerson Network Power 142-0701-841 J3 DC connector MOLEX 6 pins L1 inductor 2.2 nH output match Tyco Electronics 36501J2N2JTDG L2 inductor 22 nH DC Feed Tyco Electronics 36501J022JTDG PCB RO4003C stack KOVO MSL1 micro stripline $1.14 \text{ mm} \times 0.8 \text{ mm} \times 10.95 \text{ mm}$ input match Width (W) \times Spacing (S) \times Length (L) MSL2 micro stripline $1.14 \text{ mm} \times 0.8 \text{ mm} \times 6.8 \text{ mm}$ input match Width (W) \times Spacing (S) \times Length (L) MSL3 micro stripline $1.14 \text{ mm} \times 0.8 \text{ mm} \times 4.4 \text{ mm}$ input match Width (W) \times Spacing (S) \times Length (L) MSL4 micro stripline 1.14 mm × 0.8 mm × 2.0 mm output match Width (W) \times Spacing (S) \times Length (L) MSL5 micro stripline $1.14 \text{ mm} \times 0.8 \text{ mm} \times 3.2 \text{ mm}$ Width (W) \times Spacing (S) \times Length (L) output match MSL6 micro stripline $1.14 \text{ mm} \times 0.8 \text{ mm} \times 4.2 \text{ mm}$ output match Width (W) \times Spacing (S) \times Length (L) MSL7 micro stripline 1.14 mm × 0.8 mm × 1.8 mm output match Width (W) \times Spacing (S) \times Length (L) MSL8 micro stripline $1.14 \text{ mm} \times 0.8 \text{ mm} \times 10.95 \text{ mm}$ Width (W) \times Spacing (S) \times Length (L) output match R1 resistor **1.8** Ω Yageo RC0603FR-071R8L R2 resistor 2 kΩ trimmer bias adjustment Bourns 3214W-1-202E

Table 12. 920 MHz to 960 MHz list of components See Figure 5 and Figure 13 for component layout.

400 MHz to 2700 MHz 0.5 W high linearity silicon amplifier



12 of 25

BGA7127

400 MHz to 2700 MHz 0.5 W high linearity silicon amplifier

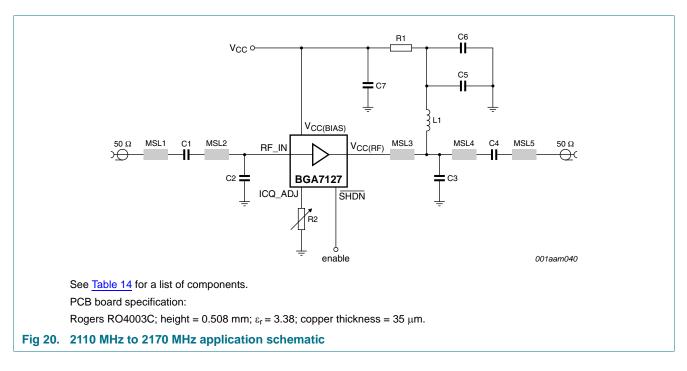
001aam039

See Table 13 for a list of components.

Fig 19. 1930 MHz to 1990 MHz application reference board

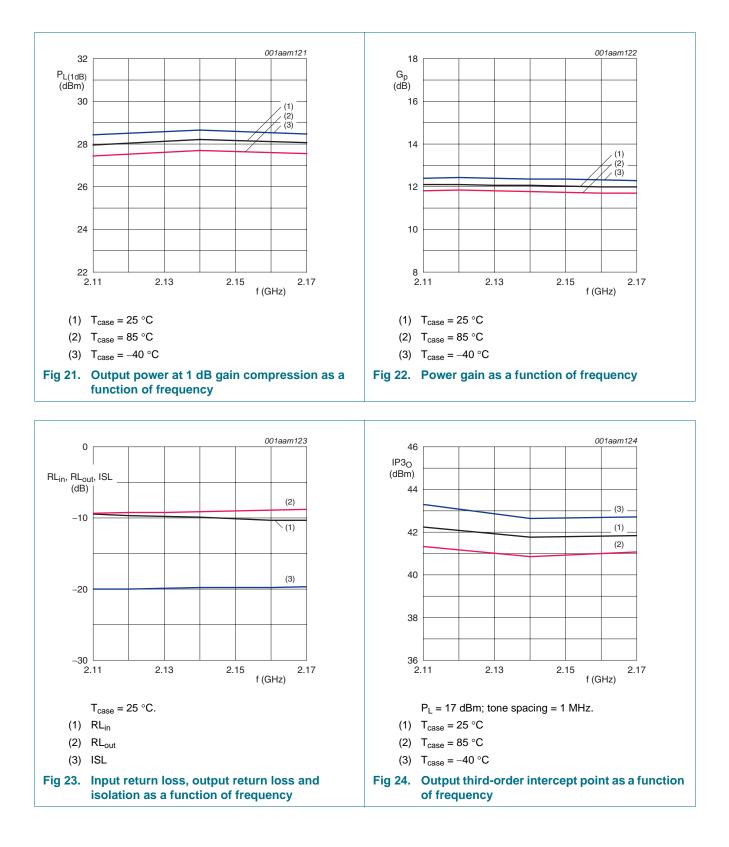
All information provided in this document is subject to legal disclaimers.

BGA7127


13 of 25

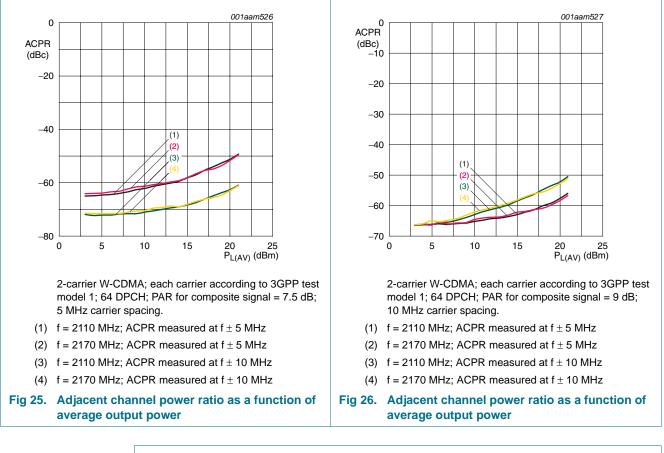
400 MHz to 2700 MHz 0.5 W high linearity silicon amplifier

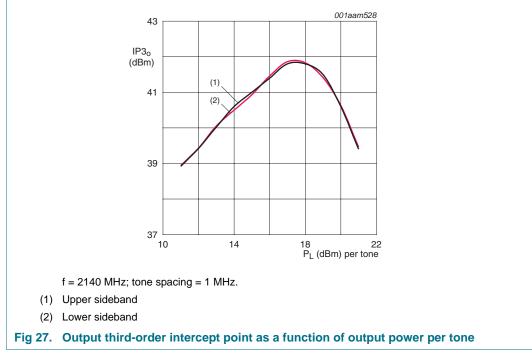
Printed-Circuit Board (PCB): Rogers RO4003C stack; height = 0.508 mm; copper plating thickness = 35 μm. Value **Component Description Function** Remarks C1,C4 DC blocking GRM1885C1H150JA01D capacitor 15 pF C2 capacitor 2.7 pF input match Murata, GRM1885C1H2R7CZ01D C3 output match Murata, GRM1885C1H1R8CZ01D capacitor 1.8 pF C5 capacitor 15 pF RF decoupling Murata, GRM1885C1H150JA01D C6 capacitor 100 nF LF decoupling AVX, 0603YC104KAT2A C7 capacitor 10 μF LF decoupling AVX, 1206ZG106ZAT2A J1,J2 RF connector SMA Emerson Network Power, 142-0701-841 J3 DC connector 6 pins MOLEX L1 22 nH DC Feed Tyco Electronics, 36501J022JTDG inductor MSL1 micro stripline $1.14 \text{ mm} \times 0.8 \text{ mm} \times 10.95 \text{ mm}$ input match Width (W) \times Spacing (S) \times Length (L) MSL2 micro stripline $1.14 \text{ mm} \times 0.8 \text{ mm} \times 11.4 \text{ mm}$ input match Width (W) \times Spacing (S) \times Length (L) MSL3 micro stripline $1.14 \text{ mm} \times 0.8 \text{ mm} \times 5.9 \text{ mm}$ output match Width (W) \times Spacing (S) \times Length (L) MSL4 micro stripline $1.14 \text{ mm} \times 0.8 \text{ mm} \times 1.4 \text{ mm}$ output match Width (W) \times Spacing (S) \times Length (L) MSL5 micro stripline $1.14 \text{ mm} \times 0.8 \text{ mm} \times 4.6 \text{ mm}$ output match Width (W) \times Spacing (S) \times Length (L) MSL6 micro stripline $1.14 \text{ mm} \times 0.8 \text{ mm} \times 10.95 \text{ mm}$ output match Width (W) \times Spacing (S) \times Length (L) R1 resistor 1Ω Yageo, RC0603FR-071RL R2 resistor $2 k\Omega$ trimmer bias adjustment Bourns, 3214W-1-202E


Table 13. 1930 MHz to 1990 MHz list of components See Figure 14 and Figure 19 for component layout.

12.3 2110 MHz to 2170 MHz at 5 V; 180 mA

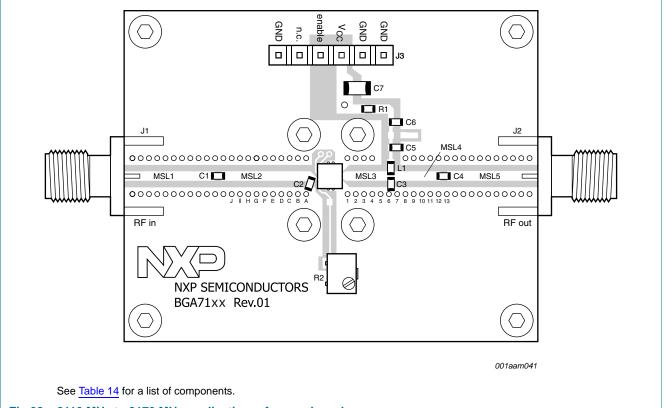
BGA7127


400 MHz to 2700 MHz 0.5 W high linearity silicon amplifier



15 of 25

BGA7127

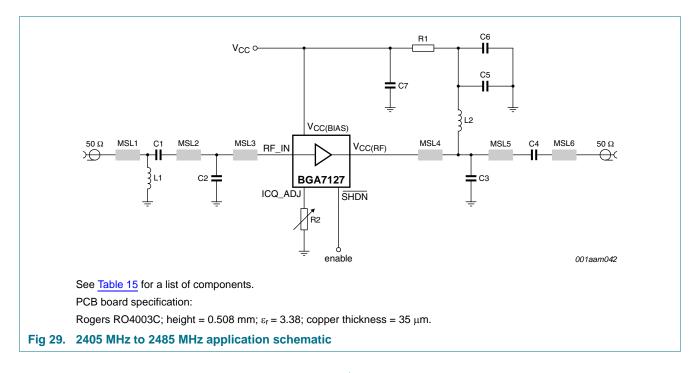

400 MHz to 2700 MHz 0.5 W high linearity silicon amplifier

BGA7127

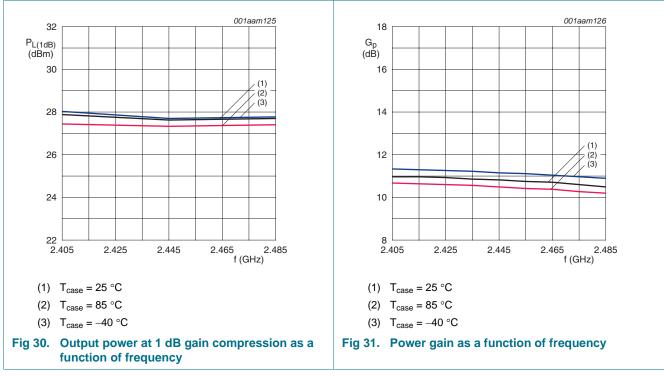
400 MHz to 2700 MHz 0.5 W high linearity silicon amplifier

Fig 28. 2110 MHz to 2170 MHz application reference board

Table 14. 2110 MHz to 2170 MHz list of components

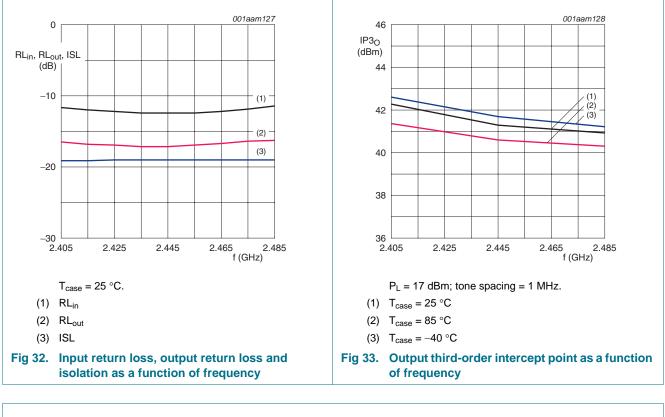

See Figure 20 and Figure 28 for component layout.

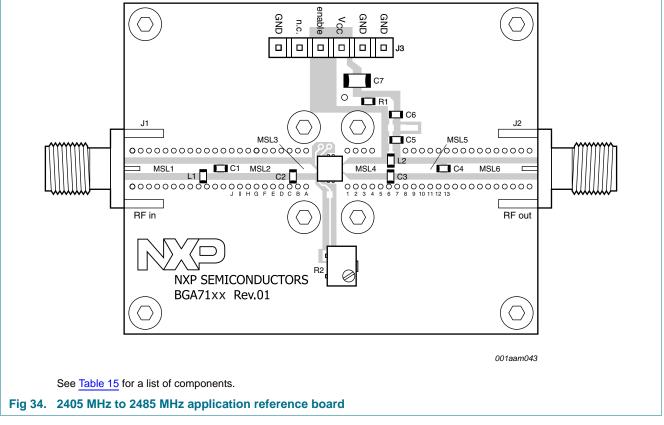
Printed-Circuit Board (PCB): Rogers RO4003C stack; height = 0.508 mm; copper plating thickness = 35 μm.


Component	Description	Value	Function	Remarks
C1,C4	capacitor	15 pF	DC blocking	Murata, GRM1885C1H150JA01D
C2	capacitor	2.4 pF	input match	Murata, GRM1885C1H2R4CZ01D
C3	capacitor	1.5 pF	output match	Murata, GRM1885C1H1R5CZ01D
C5	capacitor	15 pF	RF decoupling	Murata, GRM1885C1H150JA01D
C6	capacitor	100 nF	LF decoupling	AVX, 0603YC104KAT2A
C7	capacitor	10 μF	LF decoupling	AVX, 1206ZG106ZAT2A
J1,J2	RF connector	SMA		Emerson Network Power, 142-0701-841
J3	DC connector	6 pins		MOLEX
L1	inductor	22 nH	DC Feed	Tyco Electronics, 36501J022JTDG
MSL1	micro stripline	1.14 mm \times 0.8 mm \times 10.95 mm	input match	Width (W) \times Spacing (S) \times Length (L)
MSL2	micro stripline	1.14 mm \times 0.8 mm \times 11.2 mm	input match	Width (W) \times Spacing (S) \times Length (L)
MSL3	micro stripline	1.14 mm \times 0.8 mm \times 5.9 mm	output match	Width (W) \times Spacing (S) \times Length (L)
MSL4	micro stripline	1.14 mm \times 0.8 mm \times 6.0 mm	output match	Width (W) \times Spacing (S) \times Length (L)
MSL5	micro stripline	1.14 mm \times 0.8 mm \times 10.95 mm	output match	Width (W) \times Spacing (S) \times Length (L)
R1	resistor	1 Ω		Yageo, RC0603FR-071RL
R2	resistor	2 kΩ trimmer	bias adjustment	Bourns, 3214W-1-202E

BGA7127 Product data sheet

400 MHz to 2700 MHz 0.5 W high linearity silicon amplifier




12.4 2405 MHz to 2485 MHz at 5 V; 180 mA

BGA7127

400 MHz to 2700 MHz 0.5 W high linearity silicon amplifier

All information provided in this document is subject to legal disclaimers.

BGA7127

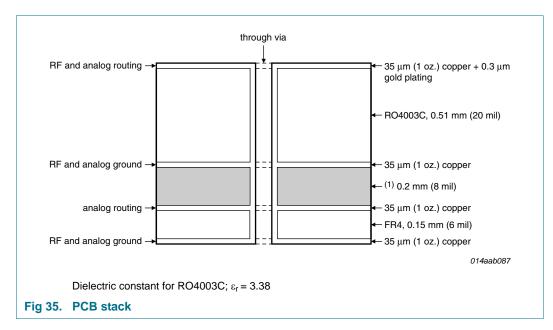
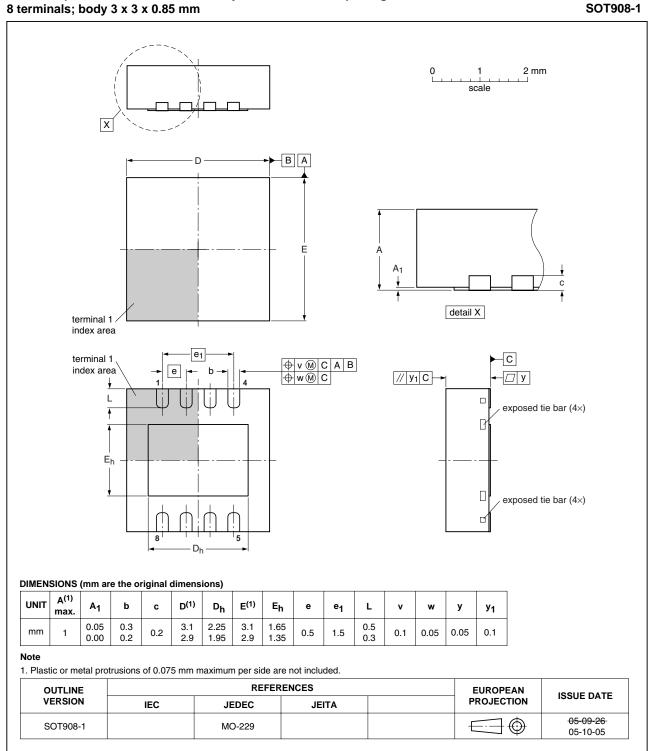

400 MHz to 2700 MHz 0.5 W high linearity silicon amplifier

Table 15.2405 MHz to 2485 MHz list of componentsSee Figure 29 and Figure 34 for component layout.

Printed-Circuit Board (PCB): Rogers RO4003C stack; height = 0.508 mm; copper plating thickness = 35 µm.

Component	Description	Value	Function	Remarks
C1,C4	capacitor	15 pF	DC blocking	GRM1885C1H150JA01D
C2	capacitor	1.5 pF	input match	Murata, GRM1885C1H1R5CZ01D
C3	capacitor	1.5 pF	output match	Murata, GRM1885C1H1R5CZ01D
C5	capacitor	15 pF	RF decoupling	Murata, GRM1885C1H150JA01D
C6	capacitor	100 nF	LF decoupling	AVX, 0603YC104KAT2A
C7	capacitor	10 μF	LF decoupling	AVX, 1206ZG106ZAT2A
L1	inductor	3.3 nH	input match	Tyco Electronics, 36501J3N3JTDG
L2	inductor	22 nH	DC Feed	Tyco Electronics, 36501J022JTDG
MSL1	micro stripline	1.14 mm \times 0.8 mm \times 10.95 mm	input match	Width (W) \times Spacing (S) \times Length (L)
MSL2	micro stripline	1.14 mm \times 0.8 mm \times 8.6 mm	input match	Width (W) \times Spacing (S) \times Length (L)
MSL3	micro stripline	1.14 mm \times 0.8 mm \times 2.8 mm	input match	Width (W) \times Spacing (S) \times Length (L)
MSL4	micro stripline	1.14 mm \times 0.8 mm \times 6.0 mm	output match	Width (W) \times Spacing (S) \times Length (L)
MSL5	micro stripline	$1.14~\text{mm} \times 0.8~\text{mm} \times 5.9~\text{mm}$	output match	Width (W) \times Spacing (S) \times Length (L)
MSL6	micro stripline	$1.14~\text{mm} \times 0.8~\text{mm} \times 10.95~\text{mm}$	output match	Width (W) \times Spacing (S) \times Length (L)
R1	resistor	1 Ω		Yageo, RC0603FR-071RL
R2	resistor	2 kΩ trimmer	bias adjustment	Bourns, 3214W-1-202E


12.5 PCB stack

BGA7127

400 MHz to 2700 MHz 0.5 W high linearity silicon amplifier

13. Package outline

HVSON8: plastic thermal enhanced very thin small outline package; no leads; 8 terminals; body 3 x 3 x 0.85 mm

21 of 25

BGA7127 **Product data sheet**

Fig 36. Package outline SOT908-1 (HVSON8)

14. Abbreviations

Table 16. Abb	reviations
Acronym	Description
3GPP	3rd Generation Partnership Project
CPE	Customer-Premises Equipment
DC	Direct Current
DPCH	Dedicated Physical CHannel
ESD	ElectroStatic Discharge
HTOL	High Temperature Operating Life
ISM	Industrial, Scientific and Medical
MMIC	Monolithic Microwave Integrated Circuit
MoCA	Multimedia over Coax Alliance
RFID	Radio Frequency IDentification
SMA	SubMiniature version A
ТХ	Transmit
W-CDMA	Wideband Code Division Multiple Access
WLAN	Wireless Local Area Network

15. Revision history

Table 17. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
BGA7127 v.3	20101203	Product data sheet	-	BGA7127 v.2		
Modifications:	• Figure 10 c	on page 9: Figure has been	changed			
	 Figure 11 on page 9: Figure has been changed 					
	• Figure 25 c	on page 16: Figure has beer	n changed			
	• Figure 26 c	on page 16: Figure has beer	n changed			
	 Some page 	e- layout enhancements hav	/e been made			
BGA7127 v.2	20100913	Product data sheet	-	BGA7127 v.1		
BGA7127 v.1	20100726	Product data sheet	-	-		

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

BGA7127

400 MHz to 2700 MHz 0.5 W high linearity silicon amplifier

Quick reference data - The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Non-automotive qualified products - Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the

17. Contact information

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

400 MHz to 2700 MHz 0.5 W high linearity silicon amplifier

18. Contents

1	Product profile 1	
1.1	General description 1	
1.2	Features and benefits 1	
1.3	Applications 1	
1.4	Quick reference data 1	
2	Pinning information 2	
2.1	Pinning	
2.2	Pin description 2	
3	Ordering information 2	
4	Functional diagram 3	,
5	Shutdown control 3	6
6	Limiting values 4	•
7	Thermal characteristics	,
8	Static characteristics 5	5
8.1	Supply current adjustment 5	,
9	Dynamic characteristics	;
9.1	Scattering parameters 7	
10	Reliability information	
11	Moisture sensitivity	
12	Application information 8	
12.1	920 MHz to 960 MHz at 5 V; 180 mA 8	
12.2	1930 MHz to 1990 MHz at 5 V; 180 mA 12	
12.3	2110 MHz to 2170 MHz at 5 V; 180 mA 14	
12.4	2405 MHz to 2485 MHz at 5 V; 180 mA 18	,
12.5	PCB stack 20	ł
13	Package outline 21	
14	Abbreviations 22	
15	Revision history 22	
16	Legal information 23	6
16.1	Data sheet status 23	6
16.2	Definitions 23	,
16.3	Disclaimers	,
16.4	Trademarks 24	•
17	Contact information 24	•
18	Contents 25	,

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2010.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 3 December 2010 Document identifier: BGA7127