Power logic 8-bit shift register; open-drain outputs

Rev. 1 — 12 July 2012

Product data sheet

1. General description

The NPIC6C595-Q100 is an 8-bit serial-in/serial or parallel-out shift register with a storage register and open-drain outputs. Both the shift and storage register have separate clocks. The device features a serial input (DS) and a serial output (Q7S) to enable cascading and an asynchronous reset input (MR). A LOW on MR resets both the shift register and storage register. Data is shifted on the LOW-to-HIGH transitions of the SHCP input. The data in the shift register is transferred to the storage register on a LOW-to-HIGH transition of the STCP input and to the Q7S output on a LOW-to-HIGH transition of the SHCP input. If both clocks are connected together, the shift register is always one clock pulse ahead of the storage register. Data in the storage register drives the gate of the output extended-drain NMOS transistor whenever the output enable input (OE) is LOW. A HIGH on OE causes the outputs to assume a high-impedance OFF-state. Operation of the OE input does not affect the state of the registers. The open-drain outputs are 33 V/100 mA continuous current extended-drain NMOS transistors designed for use in systems that require moderate load power such as LEDs. Integrated voltage clamps in the outputs provide protection against inductive transients making the device suitable for power driver applications such as relay, solenoids and other low-current or medium-voltage loads.

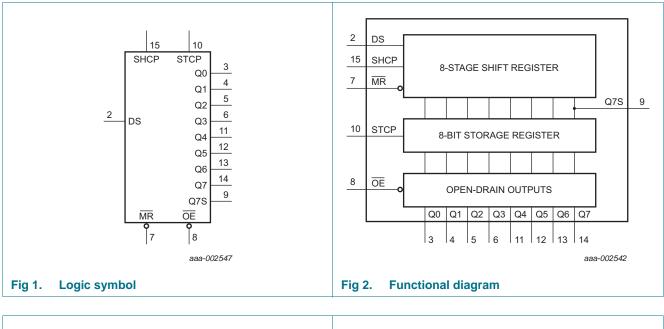
This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

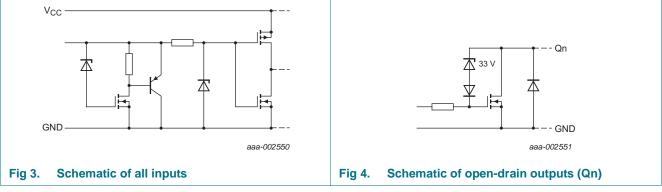
2. Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 Specified from -40 °C to +125 °C
- Low R_{DSon}
- Eight Power EDNMOS transistor outputs of 100 mA continuous current
- 250 mA current limit capability
- Output clamping voltage 33 V
- 30 mJ avalanche energy capability
- All registers cleared with single input
- Low power consumption
- ESD protection:
 - HBM AEC-Q100-002 revision D exceeds 2500 V
 - CDM AEC-Q100-011 revision B exceeds 1000 V

3. Applications

- LED sign
- Graphic status panel

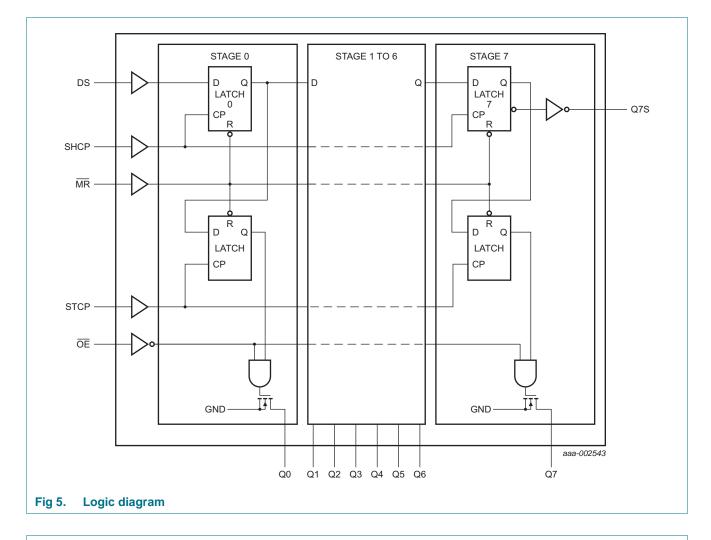

Power logic 8-bit shift register; open-drain outputs

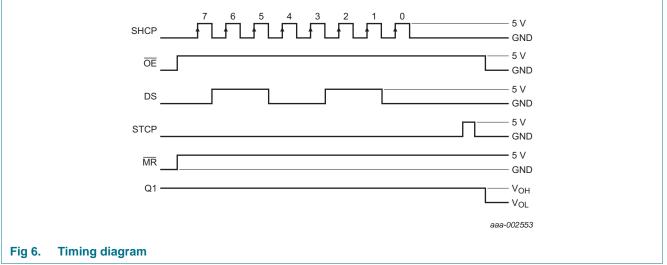

Fault status indicator

4. Ordering information

Table 1. Ordering i	Table 1. Ordering information							
Type number	Package	Package						
	Temperature range	Name	Description	Version				
NPIC6C595D-Q100	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1				
NPIC6C595PW-Q100	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1				
NPIC6C595BQ-Q100	–40 °C to +125 °C	DHVQFN16	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body $2.5 \times 3.5 \times 0.85$ mm	SOT763-1				

5. Functional diagram

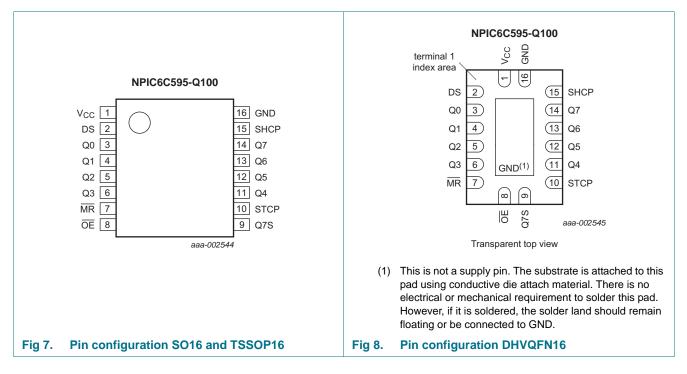




NPIC6C595_Q100
Product data sheet

NPIC6C595-Q100

Power logic 8-bit shift register; open-drain outputs



NPIC6C595_Q100
Product data sheet

Power logic 8-bit shift register; open-drain outputs

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2.Pin description

Symbol	Pin	Description
V _{CC}	1	supply voltage
DS	2	serial data input
Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7	3, 4, 5, 6, 11, 12, 13, 14	parallel data output (open-drain)
MR	7	master reset (active LOW)
OE	8	output enable input (active LOW)
Q7S	9	serial data output
STCP	10	storage register clock input
SHCP	15	shift register clock input
GND	16	ground (0 V)

Power logic 8-bit shift register; open-drain outputs

7. Limiting values

Table 3. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7.0	V
VI	input voltage		-0.3	+7.0	V
V _{DS}	drain-source voltage	power EDNMOS drain-source voltage	<u>[1]</u> -	+33	V
I _{d(SD)}	source-drain diode current	continuous	-	250	mA
		pulsed	[2] _	500	mA
I _D	drain current	T _{amb} = 25 °C			
		continuous; each output; all outputs on	-	100	mA
		pulsed; each output; all outputs on	[2] _	250	mA
I _{DM}	peak drain current	single output; $T_{amb} = 25 \ ^{\circ}C$	[2] _	250	mA
E _{AS}	non-repetitive avalanche energy	single pulse; see <u>Figure 9</u>	[3] _	30	mJ
I _{AL}	avalanche current	see <u>Figure 9</u>	[3] _	200	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	T _{amb} = 25 °C	<u>[4]</u>		
		SO16	-	800	mW
		TSSOP16	-	725	mW
		DHVQFN16	-	1825	mW
		T _{amb} = 125 °C	[4]		
		SO16	-	160	mW
		TSSOP16	-	145	mW
		DHVQFN16	-	365	mW

[1] Each power EDNMOS source is internally connected to GND.


[2] Pulse duration \leq 100 μs and duty cycle \leq 2 %.

[3] $V_{DS} = 15$ V; starting junction temperature (T_j) = 25 °C; L = 1.5 H; avalanche current (I_{AL}) = 200 mA.

For DHVQFN16 packages: above 25 °C the value of P_{tot} derates linearly with 14.6 mW/°C.

NPIC6C595_Q100

Power logic 8-bit shift register; open-drain outputs

7.1 Test circuit and waveform

(2) The input pulse duration (t_W) is increased until peak current I_{AL} = 200 mA. Energy test level is defined as: $E_{AS} = I_{AL} \times V_{(BR)DSS} \times t_{AL}/2 = 30$ mJ.

Fig 9. Test circuit and waveform for measuring single-pulse avalanche energy

8. Recommended operating conditions

Table 4. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage		4.5	-	5.5	V
VI	input voltage		0	-	5.5	V
I _D	drain current	pulsed drain output current; V _{CC} = 5 V; T _{amb} = 25 °C; all outputs on	[1][2] _	-	250	mA
T _{amb}	ambient temperature		-40	-	+125	°C

[1] Pulse duration \leq 100 μ s and duty cycle \leq 2 %.

[2] Technique should limit $T_j - T_{amb}$ to 10 °C maximum.

9. Static characteristics

Table 5.Static characteristics

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	V _{CC} = 5.	Unit		
			Min	Тур	Max	
V _{IH}	HIGH-level input voltage	$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$	0.85V _{CC}	-	-	V
V _{IL}	LOW-level input voltage	$V_{CC} = 4.5 V \text{ to } 5.5 V$	-	-	0.15V _{CC}	V
V _{OH}	HIGH-level	serial data output Q7S; $V_I = V_{IH}$ or V_{IL}				
output volta	output voltage	$I_{O} = -20 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	4.49	-	V
		$I_O = -4$ mA; $V_{CC} = 4.5$ V	4.0	4.2	-	V

NPIC6C595 Q100

NPIC6C595-Q100

Power logic 8-bit shift register; open-drain outputs

Symbol	Parameter	Conditions		V _{CC} =	5.0 V; T _{amb} =	= 25 °C	Unit
				Min	Тур	Max	
V _{OL}	LOW-level output	serial data output Q7S; $V_I = V_{IH}$ or V_{IL}					
	voltage	$I_0 = 20 \ \mu A; \ V_{CC} = 4.5 \ V$		-	0.005	0.1	V
		$I_0 = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$		-	0.3	0.5	V
IIH	HIGH-level input current	$V_{CC} = 5.5 \text{ V}; \text{ V}_{I} = V_{CC}$		-	-	1	μA
IIL	LOW-level input current	$V_{CC} = 5.5 \text{ V}; \text{ V}_{I} = 0 \text{ V}$		-	-	-1	μA
V _{(BR)DSS}	drain-source breakdown voltage	I _D = 1 mA		33	37	-	V
V _{SD}	source-drain voltage	diode forward voltage; $I_F = 100 \text{ mA}$		-	0.85	1.2	V
I _{CC} su	supply current	logic supply current; $V_{CC} = 5.5 V$; $V_I = V_{CC}$ or GND					
		all outputs off		-	0.004	200	μA
		all outputs on		-	0.006	500	μΑ
		all outputs off; SHCP = 5 MHz; $C_L = 30$ pF; see Figure 14 and Figure 16		-	0.75	5	mA
I _{O(nom)}	nominal output current	$V_{DS} = 0.5 \text{ V}; \text{T}_{amb} = 85 ^{\circ}\text{C}; \text{I}_{out} = \text{I}_{D}$	<u>[1][2][3]</u>	-	140	-	mA
I _{DSX}	drain cut-off	V_{CC} = 5.5 V; V_{DS} = 30 V		-	0.002	0.2	μA
curre	current	V_{CC} = 5.5 V; V_{DS} = 30 V; T_{amb} = 125 °C		-	0.15	0.3	μA
R _{DSon}	drain-source	see Figure 17 and Figure 18	<u>[1][2]</u>				
	on-state resistance	$V_{CC} = 4.5 \text{ V}; \text{ I}_{D} = 50 \text{ mA}$		-	3.0	9	Ω
	10010100	V_{CC} = 4.5 V; I _D = 50 mA; T _{amb} = 125 °C			5.4	12	Ω
		V _{CC} = 4.5 V; I _D = 100 mA		-	3.1	10	Ω

Table 5. Static characteristics ...continued

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

[1] Technique should limit $T_j - T_{amb}$ to 10 °C maximum.

[2] These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

[3] Nominal output current is defined for a consistent comparison between devices from different sources. It is the current that produces a voltage drop of 0.5 V at T_{amb} = 85 °C.

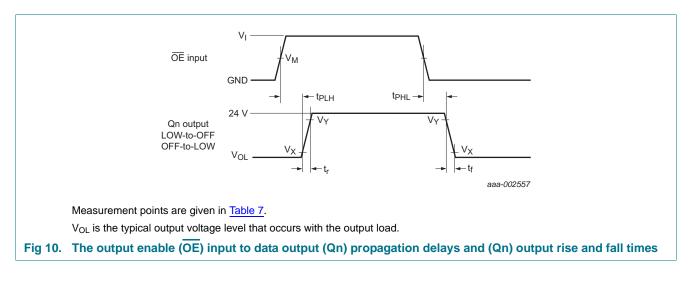
Power logic 8-bit shift register; open-drain outputs

10. Dynamic characteristics

Table 6. Dynamic characteristics

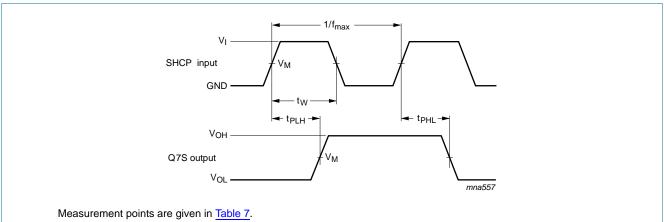
Voltages are referenced to GND (ground = 0 V); For test circuit see Figure 14.

Symbol	Parameter	Conditions		V _{CC} = \$	5.0 V; T _{amb} = 25 °C		Unit
				Min	Тур	Max	
t _{PLH}	LOW to HIGH propagation delay	\overline{OE} to Qn; I _D = 75 mA; see <u>Figure 10</u> and <u>Figure 19</u>		-	97	-	ns
t _{PHL}	HIGH to LOW propagation delay	\overline{OE} to Qn; I _D = 75 mA; see <u>Figure 10</u> and <u>Figure 19</u>		-	9	-	ns
t _r	rise time	\overline{OE} to Qn; I _D = 75 mA; see <u>Figure 10</u> and <u>Figure 19</u>		-	60	-	ns
t _f	fall time	\overline{OE} to Qn; I _D = 75 mA; see <u>Figure 10</u> and Figure 19		-	18	-	ns
t _{pd}	propagation delay	SHCP to Q7S; $I_D = 75$ mA; see Figure 11	<u>[1]</u>	-	5	-	ns
f _{max}	maximum frequency	SHCP; I _D = 75 mA; see <u>Figure 11</u>	[2]	-	-	10	MHz
t _{rr}	reverse recovery time	I _F = 100 mA; dl/dt = 10 A/μs; see <u>Figure 13</u>	<u>[3][4]</u>	-	120	-	ns
t _a	reverse recovery current rise time	$I_F = 100 \text{ mA}; \text{ dI/dt} = 10 \text{ A/}\mu\text{s};$ see Figure 13	<u>[3][4]</u>	-	100	-	ns
t _{su}	set-up time	DS to SHCP; see Figure 12		20	-	-	ns
t _h	hold time	DS to SHCP; see Figure 12		20	-	-	ns
t _W	pulse width			40	-	-	ns


[1] t_{pd} is the same as t_{PLH} and t_{PHL} .

[2] This is the maximum serial clock frequency assuming cascaded operation where serial data is passed from one stage to a second stage. The clock period allows for SHCP → Q7S propagation delay and setup time plus some timing margin.

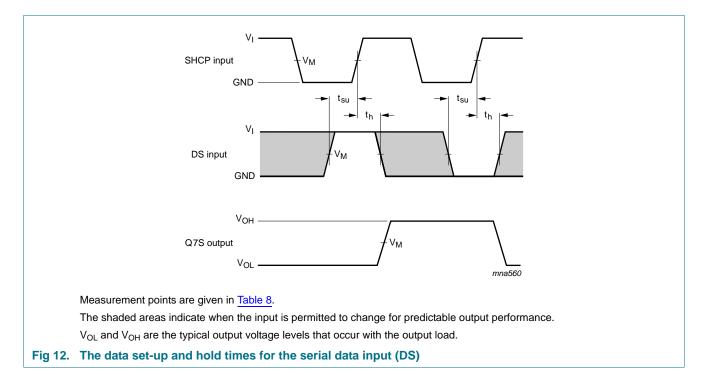
[3] Technique should limit $T_j - T_{amb}$ to 10 °C maximum.


[4] These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

10.1 Test circuits and waveforms

NPIC6C595-Q100

Power logic 8-bit shift register; open-drain outputs

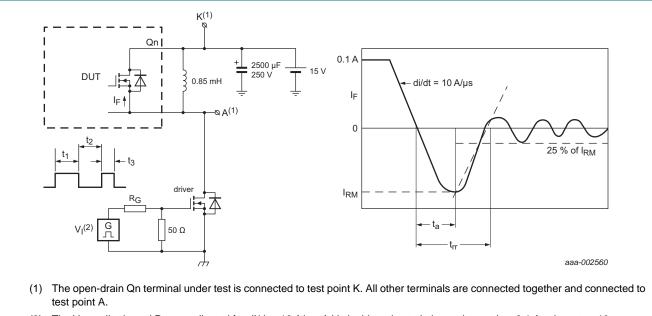


V_{OL} and V_{OH} are the typical output voltage levels that occur with the output load.

Fig 11. The shift clock (SHCP) to serial data output (Q7S) propagation delays, the shift clock pulse width and maximum shift clock frequency

Table 7. Measurement points

Supply voltage	Input	Output			
V _{CC}	V _M	V _M	V _X	V _Y	
5 V	0.5V _{CC}	0.5V _{DS}	0.1V _{DS}	0.9V _{DS}	


Table 8. Measurement points

Supply voltage	Input	Output
V _{cc}	V _M	V _M
5 V	0.5V _{CC}	0.5V _{CC}

NPIC6C595_Q100
Product data sheet

NPIC6C595-Q100

Power logic 8-bit shift register; open-drain outputs

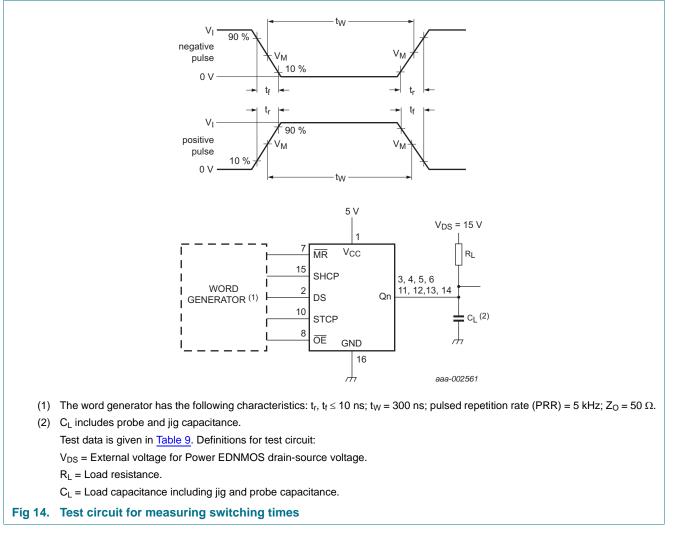

(2) The V_I amplitude and R_G are adjusted for dI/dt = 10 A/ μ s. A V_I double-pulse train is used to set I_F = 0.1 A, where t₁ = 10 μ s, t₂ = 7 μ s and t₃ = 3 μ s.

Fig 13. Test circuit and waveform for measuring reverse recovery current

NPIC6C595_Q100 Product data sheet

NPIC6C595-Q100

Power logic 8-bit shift register; open-drain outputs

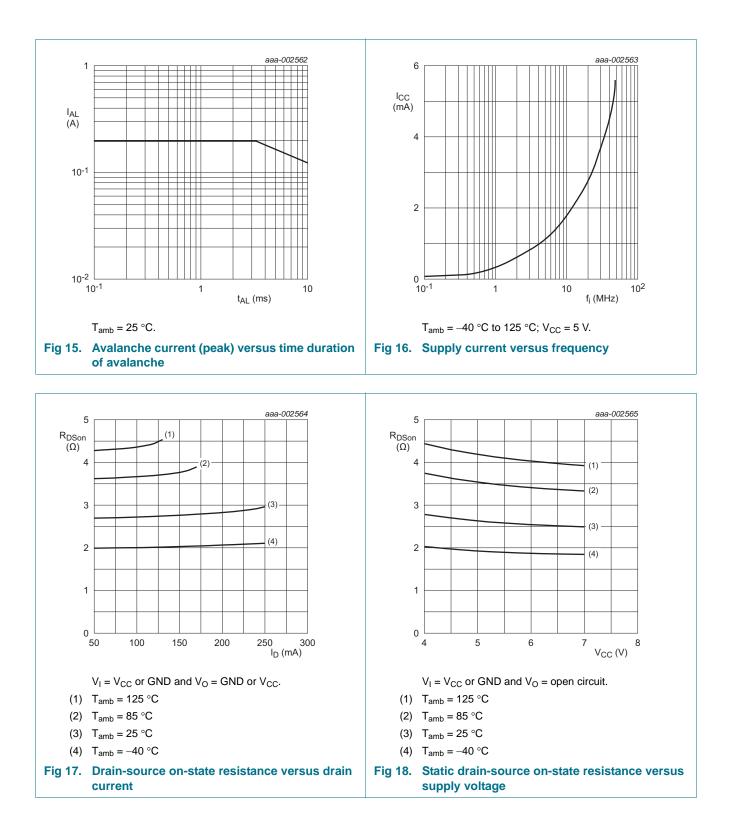
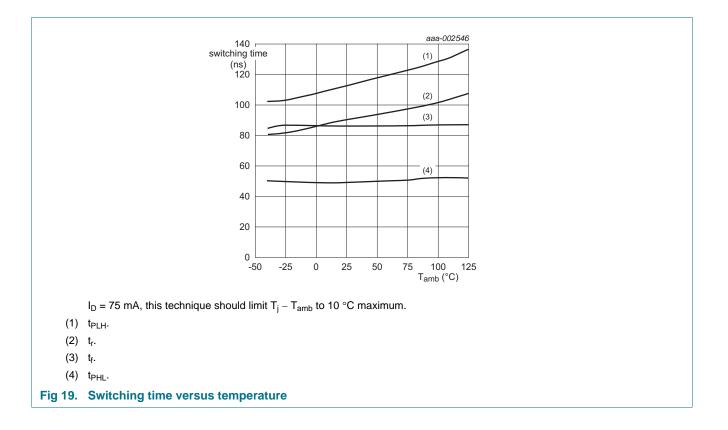


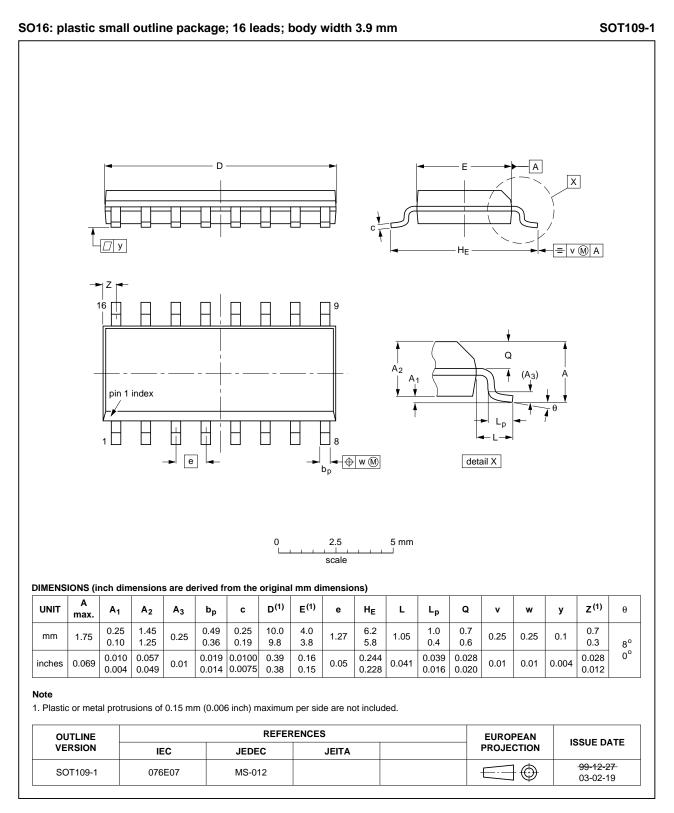
Table 9. Test data

Supply voltage	Input			Load		
	VI	t _r , t _f	V _M	CL	RL	
5 V	5 V	≤ 10 ns	50 %	30 pF	200 Ω	


NPIC6C595-Q100

Power logic 8-bit shift register; open-drain outputs

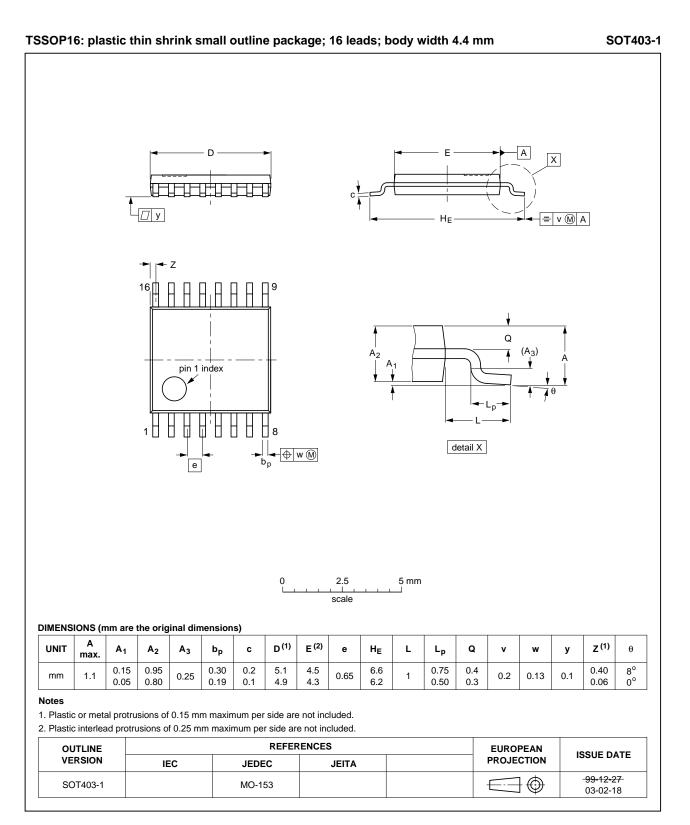
NPIC6C595-Q100


Power logic 8-bit shift register; open-drain outputs

NPIC6C595-Q100

Power logic 8-bit shift register; open-drain outputs

11. Package outline


Fig 20. Package outline SOT109-1 (SO16)

All information provided in this document is subject to legal disclaimers.

NPIC6C595_Q100

14 of 20

Power logic 8-bit shift register; open-drain outputs

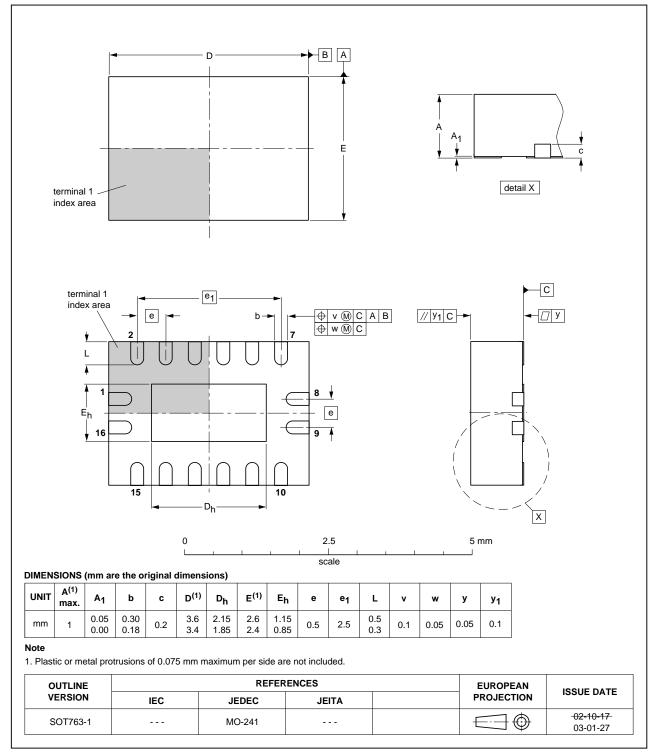


Fig 21. Package outline SOT403-1 (TSSOP16)

All information provided in this document is subject to legal disclaimers.

NPIC6C595_Q100

Power logic 8-bit shift register; open-drain outputs

DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 x 3.5 x 0.85 mm SOT763-1

Fig 22. Package outline SOT763-1 (DHVQFN16)

All information provided in this document is subject to legal disclaimers.

NPIC6C595_Q100

Power logic 8-bit shift register; open-drain outputs

12. Abbreviations

AcronymDescriptionCDMCharged Device ModelCMOSComplementary Metal Oxide SemiconductorDUTDevice Under TestEDNMOSExtended Drain Negative Metal Oxide SemiconductorESDElectroStatic DischargeHBMHuman Body Model	Table 10.	able 10. Abbreviations		
CMOSComplementary Metal Oxide SemiconductorDUTDevice Under TestEDNMOSExtended Drain Negative Metal Oxide SemiconductorESDElectroStatic Discharge	Acronym	Description		
DUTDevice Under TestEDNMOSExtended Drain Negative Metal Oxide SemiconductorESDElectroStatic Discharge	CDM	Charged Device Model		
EDNMOSExtended Drain Negative Metal Oxide SemiconductorESDElectroStatic Discharge	CMOS	Complementary Metal Oxide Semiconductor		
ESD ElectroStatic Discharge	DUT	Device Under Test		
	EDNMOS	Extended Drain Negative Metal Oxide Semiconductor		
HBM Human Body Model	ESD	ElectroStatic Discharge		
	HBM	Human Body Model		
TTL Transistor-Transistor Logic	TTL	Transistor-Transistor Logic		

13. Revision history

Table 11. Revision history					
Document ID	Release date	Data sheet status	Change notice	Supersedes	
NPIC6C595_Q100 v.1	20120712	Product data sheet	-	-	

Power logic 8-bit shift register; open-drain outputs

14. Legal information

14.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

14.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

14.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications - This NXP

Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

NPIC6C595 Q100

Power logic 8-bit shift register; open-drain outputs

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

14.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

15. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Power logic 8-bit shift register; open-drain outputs

16. Contents

1	General description 1
2	Features and benefits 1
3	Applications 1
4	Ordering information 2
5	Functional diagram 2
6	Pinning information 4
6.1	Pinning
6.2	Pin description 4
7	Limiting values 5
7.1	Test circuit and waveform 6
8	Recommended operating conditions 6
9	Static characteristics 6
10	Dynamic characteristics 8
10.1	Test circuits and waveforms 8
11	Package outline 14
12	Abbreviations 17
13	Revision history 17
14	Legal information 18
14.1	Data sheet status 18
14.2	Definitions
14.3	Disclaimers 18
14.4	Trademarks 19
15	Contact information 19
16	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2012.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 12 July 2012 Document identifier: NPIC6C595_Q100