FAIRCHILD

SEMICONDUCTOR

November 1983 Revised April 2002

CD4051BC • CD4052BC • CD4053BC

Single 8-Channel Analog Multiplexer/Demultiplexer • Dual 4-Channel Analog Multiplexer/Demultiplexer • Triple 2-Channel Analog Multiplexer/Demultiplexer

General Description

The CD4051BC, CD4052BC, and CD4053BC analog multiplexers/demultiplexers are digitally controlled analog switches having low "ON" impedance and very low "OFF" leakage currents. Control of analog signals up to $15V_{p-p}$ can be achieved by digital signal amplitudes of 3–15V. For example, if V_{DD} = 5V, V_{SS} = 0V and V_{EE} = –5V, analog signals from –5V to +5V can be controlled by digital inputs of 0–5V. The multiplexer circuits dissipate extremely low quiescent power over the full V_{DD} – V_{SS} and V_{DD} – V_{EE} supply voltage ranges, independent of the logic state of the control signals. When a logical "1" is present at the inhibit input terminal all channels are "OFF".

CD4051BC is a single 8-channel multiplexer having three binary control inputs. A, B, and C, and an inhibit input. The three binary signals select 1 of 8 channels to be turned "ON" and connect the input to the output.

CD4052BC is a differential 4-channel multiplexer having two binary control inputs, A and B, and an inhibit input. The two binary input signals select 1 or 4 pairs of channels to be turned on and connect the differential analog inputs to the differential outputs.

CD4053BC is a triple 2-channel multiplexer having three separate digital control inputs, A, B, and C, and an inhibit input. Each control input selects one of a pair of channels which are connected in a single-pole double-throw configuration.

Features

- Wide range of digital and analog signal levels: digital 3 – 15V, analog to 15V_{p-p}
- Low "ON" resistance: 80Ω (typ.) over entire 15V_{p-p} signal-input range for V_{DD} V_{EE} = 15V
- High "OFF" resistance: channel leakage of ±10 pA (typ.) at V_{DD} - V_{EE} = 10V
- Logic level conversion for digital addressing signals of $3 15V (V_{DD} V_{SS} = 3 15V)$ to switch analog signals to $15 V_{p-p} (V_{DD} V_{EE} = 15V)$
- Matched switch characteristics: $\Delta R_{ON} = 5\Omega$ (typ.) for V_{DD} - V_{EE} = 15V
- Very low quiescent power dissipation under all digital-control input and supply conditions: 1 µ W (typ.) at V_{DD} - V_{SS} = V_{DD} - V_{EE} = 10V
- Binary address decoding on chip

Ordering Code:

Order Number	Package Number	Package Description
CD4051BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4051BCSJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
CD4051BCMTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
CD4051BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
CD4052BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4052BCSJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
CD4052BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
CD4053BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4053BCSJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
CD4053BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Devices also available i	in Tane and Reel Specify	by appending the suffix letter "X" to the ordering code

Truth Table

	INPUT	STATES		"0	N" CHANNE	LS
INHIBIT	С	В	Α	CD4051B	CD4052B	CD4053B
0	0	0	0	0	0X, 0Y	cx, bx, ax
0	0	0	1	1	1X, 1Y	cx, bx, ay
0	0	1	0	2	2X, 2Y	cx, by, ax
0	0	1	1	3	3X, 3Y	cx, by, ay
0	1	0	0	4		cy, bx, ax
0	1	0	1	5		cy, bx, ay
0	1	1	0	6		cy, by, ax
0	1	1	1	7		cy, by, ay
1	*	*	*	NONE	NONE	NONE

ıŃн

CUT/IN IN/OUT

TOP VIEW

bx cy IN/OUT ٧ss

VEE

*Don't Care condition.

Absolute Maximum Ratings(Note 1)

DC Supply Voltage (V _{DD})	–0.5 V_{DC} to +18 V_{DC}
Input Voltage (V _{IN})	–0.5 V_{DC} to V_{DD} +0.5 V_{DC}
Storage Temperature	
Range (T _S)	-65°C to +150°C
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (TL)	
(soldering, 10 seconds)	260°C

Recommended Operating Conditions

DC Supply Voltage (V _{DD})	+5 V_{DC} to +15 V_{DC}
Input Voltage (V _{IN})	0V to $V_{DD} V_{DC}$
Operating Temperature Range (T _A)	

CD4051BC/CD4052BC/CD4053BC

-55°C to +125°C Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be oper-ated at these limits. The Electrical Characteristics tables provide conditions for actual device operation.

CD4051BC • CD4052BC • CD4053BC

DC Electrical Characteristics (Note 2)

• • ·	-			-5	5°C		+ 25 °		12	5°C	
Symbol	Parameter	Cond	litions	Min	Max	Min	Тур	Max	Min	Max	Units
Control A	, B, C and Inhibit	1		1			1				
I _{IN}	Input Current	V _{DD} = 15V, V _{IN} = 0V	$V_{EE} = 0V$		-0.1		-10 ⁻⁵	-0.1		-1.0	
		V _{DD} = 15V, V _{IN} = 15V	$V_{EE} = 0V$		0.1		10 ⁻⁵	0.1		1.0	μΑ
I _{DD}	Quiescent Device Current	$V_{DD} = 5V$			5			5		150	
		$V_{DD} = 10V$			10			10		300	μΑ
		$V_{DD} = 15V$			20			20		600	
Signal Inp	outs (VIS) and Outputs (VOS)										
R _{ON}	"ON" Resistance (Peak	$R_L = 10 \ k\Omega$	V _{DD} = 2.5V,								
	for $V_{EE} \le V_{IS} \le V_{DD}$)	(any channel	$V_{EE} = -2.5V$		000		070	4050		4000	0
		selected)	or $V_{DD} = 5V$,		800		270	1050		1300	Ω
			$V_{EE} = 0V$								
			$V_{DD} = 5V$,								
			$V_{EE} = -5V$				400	100			
			or V _{DD} = 10V,		310		120	400		550	Ω
			$V_{EE} = 0V$								
			V _{DD} = 7.5V,								
			$V_{EE} = -7.5V$								
			or V _{DD} = 15V,		200		80	240		320	Ω
			$V_{EE} = 0V$								
ΔR_{ON}	Δ "ON" Resistance	$R_1 = 10 k\Omega$	$V_{DD} = 2.5V,$								
011	Between Any Two	(any channel	V _{FF} = -2.5V								
	Channels	selected)	or $V_{DD} = 5V$,				10				Ω
		,	$V_{FF} = 0V$								
			$V_{DD} = 5V$								
			$V_{FF} = -5V$								
			or $V_{DD} = 10V$,				10				Ω
			VEE = 0V								
			$V_{DD} = 7.5V.$								
			$V_{EE} = -7.5V$								
			or Vpp = 15V.				5				Ω
			$V_{EE} = 0V$								
	"OFF" Channel Leakage	V _{DD} =7.5V,	V _{FF} =-7.5V								
	Current, any channel "OFF"	0/I=±7.5V, I/O=	=0V		±50		±0.01	±50		±500	nA
	"OFF" Channel Leakage	Inhibit = 7.5V	CD4051		±200		±0.08	±200		±2000	
	Current, all channels	V _{DD} = 7.5V,									
	"OFF" (Common	V _{EE} = -7.5V,	D4052		±200		±0.04	±200		±2000	nA
	OUT/IN)	O/I = 0V									
		$I/O = \pm 7.5V$	CD4053		±200		±0.02	±200		±2000	
	1										

Symbol Baramotor	O an allthan a	_55°C		+ 25 °			125°C		Unite	
Symbol	Min Max		Min Typ Ma		Max	Min	Max			
Control Ir	puts A, B, C and Inhibit	<u> </u>								
V _{IL}	LOW Level Input Voltage	$V_{EE} = V_{SS} R_L = 1 k\Omega$ to V_{SS}								Γ
		$I_{IS}\!\!<\!\!2\mu A$ on all OFF Channels							ĺ	
		$V_{IS} = V_{DD}$ thru 1 k Ω							ĺ	
		$V_{DD} = 5V$		1.5			1.5		1.5	
		$V_{DD} = 10V$		3.0			3.0		3.0	
		$V_{DD} = 15V$		4.0			4.0		4.0	
VIH	HIGH Level Input Voltage	V _{DD} = 5	3.5		3.5			3.5		
		$V_{DD} = 10$	7		7			7	1	
		V _{DD} = 15	11		11			11	1	

CD4051BC • CD4052BC • (

	Parameter	Conditions	V _{DD}	Min	Тур	Max	Units
PZH,	Propagation Delay Time from	$V_{EE} = V_{SS} = 0V$	5V		600	1200	
ZL	Inhibit to Signal Output	$R_L = 1 \ k\Omega$	10V		225	450	ns
	(channel turning on)	C _L = 50 pF	15V		160	320	
PHZ.	Propagation Delay Time from	$V_{\text{FF}} = V_{\text{SS}} = 0V$	5V		210	420	
PLZ	Inhibit to Signal Output	$R_L = 1 k\Omega$	10V		100	200	ns
	(channel turning off)	C _L = 50 pF	15V		75	150	
IN	Input Capacitance						
	Control input				5	7.5	pF
	Signal Input (IN/OUT)				10	15	
оит	Output Capacitance						
	(common OUT/IN)						
	CD4051		10V		30		
	CD4052	$V_{FF} = V_{SS} = 0V$	10V		15		pF
	CD4053		10V		8		
109	Feedthrough Capacitance				0.2		pF
	Power Dissipation Capacitance						
FD	CD4051				110		
	CD4052				140		рF
	CD4053				70		F.
ignal Inpu	uts (V _{IS}) and Outputs (V _{OS})						
5 1	Sine Wave Response	$R_1 = 10 k\Omega$					
((Distortion)	fis = 1 kHz	10V		0.04		%
		$V_{1S} = 5 V_{D,D}$					
		$V_{FF} = V_{P} = 0V$					
	Frequency Response Channel	$R_{\rm r} = 1 \text{kg} V_{\rm rr} = 0 \text{V} V_{\rm rr} = 5 \text{V}_{\rm rr}$	10V		40		MHz
	"ON" (Sine Wave Input)	$20 \log_{10} V_{OS} / V_{IS} = -3 dB$					
	Feedthrough, Channel "OFF"	$R_{I} = 1 k\Omega$, $V_{FF} = V_{FF} = 0V$, $V_{IF} = 5V_{PR}$	10V		10		MHz
		$20 \log_{10} V_{\rm Op} N_{\rm IS} = -40 \text{dB}$					
	Crosstalk Between Any Two	$R_{\rm r} = 1 k\Omega V_{\rm eff} = V_{\rm eff} = 0 V_{\rm eff} (A) = 5 V_{\rm eff}$	10V	-	3		MHz
	Channels (frequency at 40 dB)	(12 - 1) $(12 + 1)$	101		Ŭ		1411 12
	Propagation Delay Signal	$V_{} = V_{} = 0V$	5\/		25	55	
'HL	Input to Signal Output	$V_{EE} = V_{SS} = 0.0$	101/		15	35	ne
νLH	input to oignal output	0L - 30 pi	151/		10	25	113
ontrol Inr	uts A B C and Inhibit		151		10	25	
onaormp	Control Input to Signal	$V_{} = V_{} = 0V B_{} = 10 k\Omega$ at both ends					
	Crosstalk		10\/		65		m)/ (poak)
	Crosstaik	Input Square Waye Amplitude - 10V	10 0		05		niv (peak)
	Propagation Dolay Time from		5\/		500	1000	
PHL,	Address to Size of Output		101/		100	1000	
PLH		$C_{L} = 50 \text{ pm}$	100		180	360	ns
	(channels ON OF OFF)		157		120	240	

www.fairchildsemi.com

7

Special Considerations

In certain applications the external load-resistor current may include both V_{DD} and signal-line components. To avoid drawing V_{DD} current when switch current flows into IN/OUT pin, the voltage drop across the bidirectional

switch must not exceed 0.6V at $T_A {\leq} 25^\circ C$, or 0.4V at $T_A {>} 25^\circ C$ (calculated from R_{ON} values shown). No V_{DD} current will flow through R_L if the switch current flows into OUT/IN pin.

CD4051BC • CD4052BC • CD4053BC Single 8-Channel Analog Multiplexer/Demultiplexer • Dual 4-Channel Analog