

FEMTOCLOCKS™ CRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR

ICS843051-57

General Description

The ICS843051-57 is a Gigabit Ethernet Clock Generator and a member of the HiPerClocks™ family of high performance devices from IDT. The ICS843051-57 uses a 25MHz crystal to synthesize 125MHz. The ICS843051-57 has excellent phase

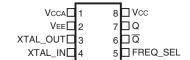
jitter performance, over the 1.875 MHz - 20 MHz integration range. The ICS843051-57 is packaged in a small 8-pin TSSOP, making it ideal for use in systems with limited board space.

Features

- One differential 3.3V LVPECL output
- Crystal oscillator interface designed for 18pF parallel resonant crystal
- •RMS phase jitter at:

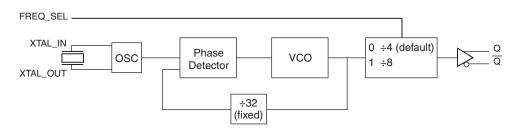
155.52MHz (12kHz – 20MHz): 0.84ps (typical) 156.25MHz (1.875MHz – 20MHz): 0.35ps (typical) 160MHz (1.933MHz – 20MHz): 0.35ps (typical)

•RMS phase noise at 156.25MHz Offset Noise Power


100Hz -107.4 dBc/Hz 1kHz -120.3 dBc/Hz 10kHz -124.4 dBc/Hz 100kHz -124.7 dBc/Hz

- Full 3.3V output supply mode
- 0°C to 70°C ambient operating temperature
- Available in both standard (RoHS 5) and lead-free (RoHS 6) packages
- Industrial temperature information available upon request

Table 1. Frequency Table


Inp	Output Frequency Range	
Crystal Frequency (MHz)	FREQ_SEL	(MHz)
20	0	160
20	1	80
19.53125	0	156.25
19.53125	1	78.125
19.44	0	155.52
19.44	1	77.76
18.75	0	150
18.75	1	75

Pin Assignment

ICS843051-57
8 Lead TSSOP
4.40mm x 3.0mm x 0.925
package body
G Package
Top View

Block Diagram

The Preliminary Information presented herein represents a product in pre-production. The noted characteristics are based on initial product characterization and/or qualification. Integrated Device Technology, Incorporated (IDT) reserves the right to change any circuitry or specifications without notice.

Table 1. Pin Descriptions

Number	Name	T	уре	Description
1	V _{CCA}	Power		Analog supply pin
2	V _{EE}	Power		Negative supply pin.
3, 4	XTAL_OUT XTAL_IN	Input		Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.
5	FREQ_SEL	Input	Pulldown	Frequency select pin. LVCMOS/LVTTL interface levels.
6, 7	Q, Q	Output		Differential output pair. LVPECL interface levels.
8	V _{CC}	Power		Core supply pin.

NOTE: Pullup refers to intenal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characterisitcs* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating	
Supply Voltage, V _{CC}	4.6V	
Inputs, V _I	-0.5V to V _{CC} + 0.5V	
Outputs, I _O Continous Current Surge Current	50mA 100mA	
Package Thermal Impedance, θ_{JA}	101.7°C/W (0 mps)	
Storage Temperature, T _{STG}	-65°C to 150°C	

DC Electrical Characteristics

Table 3A. Power Supply DC Characteristics, $V_{CC} = 3.3V \pm 10\%$, $T_A = 0$ °C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{CC}	Power Supply Voltage		2.97	3.3	3.63	V
V _{CCA}	Analog Supply Voltage		V _{CC} - 0.08	3.3	V _{CC}	V
I _{CC}	Power Supply Current			38		mA
I _{CCA}	Analog Supply Current			8		mA
I _{EE}	Power Supply Current			47		mA

Table 3B. LVCMOS/LVTTL DC Characteristics, $V_{CC} = 3.3V \pm 10\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage		2		V _{CC} + 0.3	V
V_{IL}	Input Low Voltage		-0.3		0.8	V
I _{IH}	Input High Current	$V_{CC} = V_{IN} = 3.63$			150	μΑ
I _{IL}	Input Low Current	$V_{CC} = 3.63V, V_{IN} = 0V$	-5			μΑ

Table 3C. LVPECL DC Characteristics, $V_{CC} = 3.3V \pm 10\%$, $T_A = 0$ °C to 70°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Current; NOTE 1		V _{CC} – 1.4		V _{CC} - 0.9	μΑ
V _{OL}	Output Low Current; NOTE 1		V _{CC} – 2.0		V _{CC} – 1.7	μΑ
V _{SWING}	Peak-toPeak Output Voltage Swing		0.6		1.0	V

NOTE 1: Outputs termination with 50Ω to V_{CC} – 2V.

Table 4. Crystal Characteristics

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation		Fundamental			
Frequency		15		24	MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF
Drive Level				100	μW

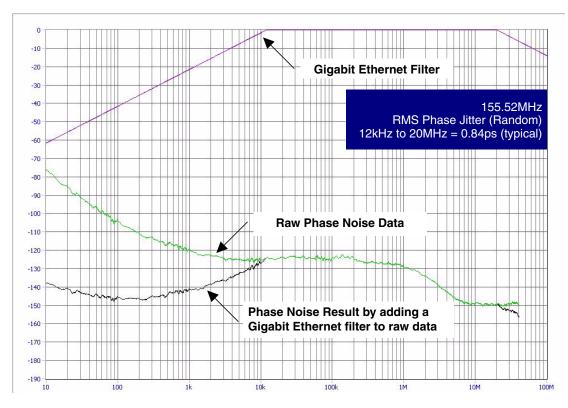
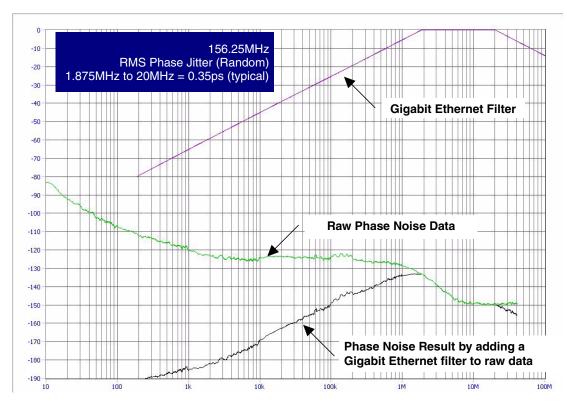
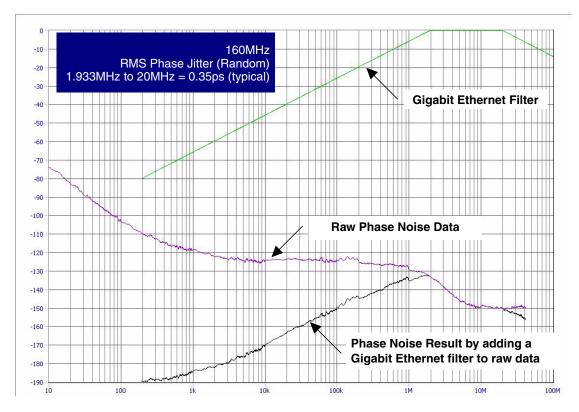
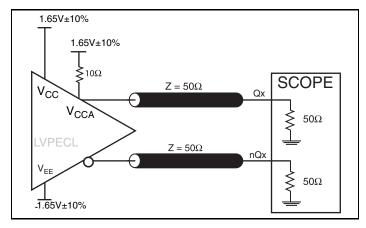

AC Electrical Characteristics

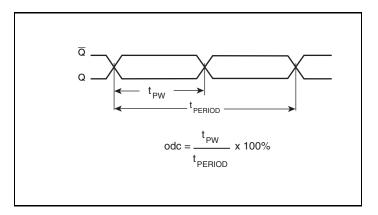
Table 5. AC Characteristics, V_{CC} = 3.3V \pm 10%, T_A = $0^{\circ}C$ to 70°

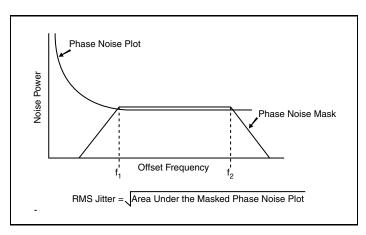

Parameter	Symbol	Test Conditions	Minimum	Typical	Maximum	Units
				155.52		MHz
f _{OUT}	Output Frequency			156.25		
				160		
		155.52MHz, Integration Range: 12kHz – 20MHz		0.84		ps
	156.25MHz, Integration Range: 1.875MHz – 20MHz		0.35		ps	
tjit(Ø)	RMS Phase Jitter, Random; NOTE 1	156.25MHz, Integration Range: 12kHz – 20MHz		0.89		ps
		160MHz, Integration Range: 1.933MHz – 20MHz		0.35		ps
		160MHz, Integration Range: 12kHz – 20MHz		0.88		ps
t _R / t _F	Output Rise/Fall Time	20% to 80%		475		ps
odc	Output Duty Cycle			50		%

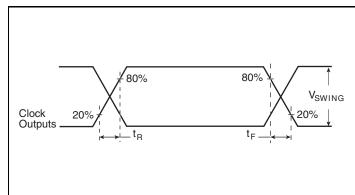
NOTE 1: Please refer to Phase Noise Plots.


Typical Phase Noise at 155.52MHz


Typical Phase Noise at 156.25MHz


Typical Phase Noise at 160MHz


Parameter Measurement Information


3.3V LVPECL Output Load AC Test Circuit

Output Duty Cycle/Pulse Width/Period

RMS Phase Jitter

Output Rise/Fall Time

Application Information

Power Supply Filtering Technique

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. The ICS843051-57 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{CC} and V_{CCA} should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. To achieve optimum jitter performance, power supply isolation is required. Figure 1 illustrates how a 10Ω resistor along with a $10\mu F$ and a $.01\mu F$ bypass capacitor should be connected to each V_{CCA} pin.

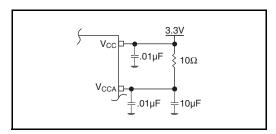


Figure 1. Power Supply Filtering

Crystal Input Interface

The ICS843051-57 has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in *Figure 2* below were determined using a 25MHz, 18pF parallel

resonant crystal and were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.

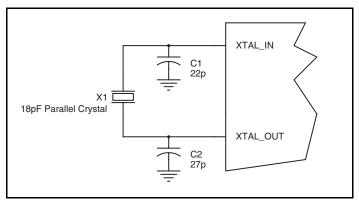


Figure 2. Crystal Input Interface

LVCMOS to XTAL Interface

The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in *Figure 3*. The XTAL_OUT pin can be left floating. The input edge rate can be as slow as 10ns. For LVCMOS inputs, it is recommended that the amplitude be reduced from full swing to half swing in order to prevent signal interference with the power rail and to reduce noise. This configuration requires that the output

impedance of the driver (Ro) plus the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω . This can also be accomplished by removing R1 and making R2 50Ω .

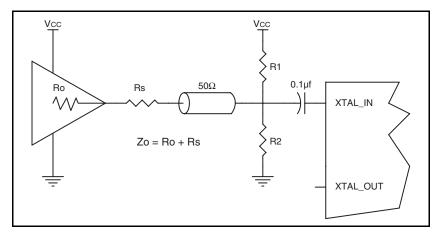


Figure 3. General Disgram for LVCMOS Driver to XTAL Input Interface

Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

FOUT and nFOUT are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω

transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 4A and 4B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

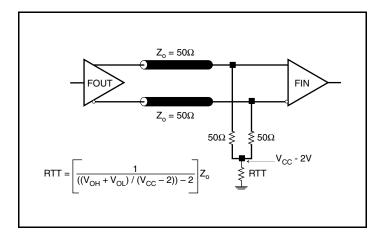


Figure 4A. 3.3V LVPECL Output Termination

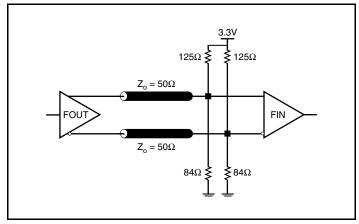


Figure 4B. 3.3V LVPECL Output Termination

Power Considerations

This section provides information on power dissipation and junction temperature for the ICS843051-57. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS843051-57 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{CC} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = V_{CC_MAX} * I_{EE_MAX} = 3.465V * 47mA = 162.9mW
- Power (outputs)_{MAX} = **30mW/Loaded Output pair**

Total Power_MAX (3.3V, with all outputs switching) = 162.9mW + 30mW = 192.9mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

 T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming a moderate air flow of 1 meter per second and a multi-layer board, the appropriate value is 90.5°C/W per Table 6below.

Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:

 $70^{\circ}\text{C} + 0.193\text{W} * 90.5^{\circ}\text{C/W} = 87.5^{\circ}\text{C}$. This is well below the limit of 125°C.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (single layer or multi-layer).

Table 6. Thermal Resitance θ_{JA} for 8 Lead TSSOP, Forced Convection

θ_{JA} vs. Air Flow			
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	101.7°C/W	90.5	89.8

3. Calculations and Equations.

The purpose of this section is to derive the power dissipated into the load.

LVPECL output driver circuit and termination are shown in Figure 5.

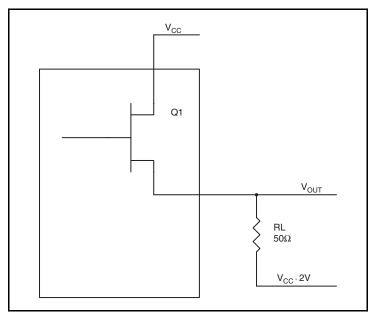


Figure 5. LVPECL Driver Circuit and Termination

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of V_{CC} - 2V.

- For logic high, $V_{OUT} = V_{OH_MAX} = V_{CC_MAX} 0.9V$ $(V_{CC_MAX} - V_{OH_MAX}) = 0.9V$
- For logic low, V_{OUT} = V_{OL_MAX} = V_{CO_MAX} 1.7V
 (V_{CC_MAX} V_{OL_MAX}) = 1.7V

Pd_H is power dissipation when the output drives high.

Pd_L is the power dissipation when the output drives low.

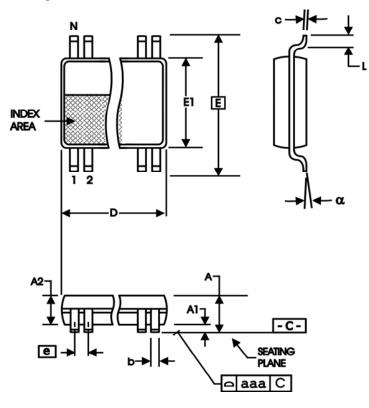
$$Pd_H = [(V_{OH_MAX} - (V_{CC_MAX} - 2V))/R_i] * (V_{CC_MAX} - V_{OH_MAX}) = [(2V - (V_{CC_MAX} - V_{OH_MAX}))/R_i] * (V_{CC_MAX} - V_{OH_MAX}) = [(2V - 0.9V)/50\Omega] * 0.9V = 19.8mW$$

$$Pd_L = [(V_{OL_MAX^-}(V_{CC_MAX^-}2V))/R_.] * (V_{CC_MAX^-}V_{OL_MAX}) = [(2V - (V_{CC_MAX} - V_{OL_MAX}))/R_.] * (V_{CC_MAX^-}V_{OL_MAX}) = [(2V - 1.7V)/50\Omega] * 1.7V = 10.2mW$$

Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW

Reliability Information

Table 7. θ_{JA} vs. Air Flow Table for a 8 Lead TSSOP


	$\theta_{ extsf{JA}}$ vs. Air Flow		
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	101.7°C/W	90.5	89.8

Transistor Count

The transistor count for ICS843051-57 is: 1747

Package Outline and Package Dimension

Package Outline - G Suffix for 8 Lead TSSOP

Table 8. Package Dimensions

All Din	All Dimensions in Millimeters					
Symbol	Minimum	Maximum				
N		3				
Α		1.20				
A 1	0.5	0.15				
A2	0.80	1.05				
b	0.19	0.30				
С	0.09	0.20				
D	2.90	3.10				
E	6.40	Basic				
E1	4.30	4.50				
е	0.65	Basic				
L	0.45	0.75				
α	0°	8°				
aaa		0.10				

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
843051AG-57	TBD	8 Lead TSSOP	Tube	0°C to 70°C
843051AG-57T	TBD	8 Lead TSSOP	2500 Tape & Reel	0°C to 70°C
843051AG-57LF	5A57L	"Lead-Free" 8 Lead TSSOP	Tube	0°C to 70°C
843051AG-57LFT	5A57L	"Lead-Free" 8 Lead TSSOP	2500 Tape & Reel	0°C to 70°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

netcom@idt.com 480-763-2056

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

Europe

IDT Europe, Limited 321 Kingston Road Leatherhead, Surrey KT22 7TU England +44 (0) 1372 363 339 Fax: +44 (0) 1372 378851

