

4552 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

REJ03B0023-0302 Rev.3.02 2006.12.22

DESCRIPTION

The 4552 Group is a 4-bit single-chip microcomputer designed with CMOS technology. Its CPU is that of the 4500 series using a simple, high-speed instruction set. The computer is equipped with two 8-bit timers (each timer has one or two reload registers), a 16-bit timer for clock count, interrupts, and oscillation circuit switch function.

The various microcomputers in the 4552 Group include variations of the built-in memory size as shown in the table below.

FFATURES

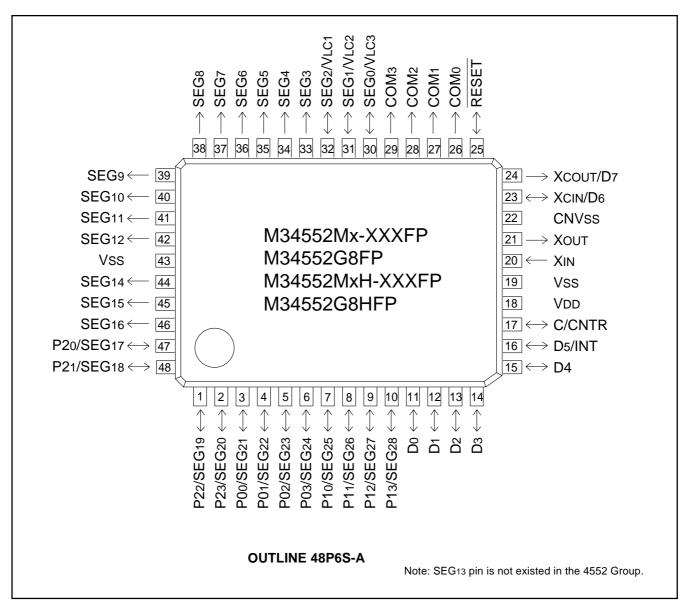
ILATORES
■Minimum instruction execution time
Mask ROM version 0.5 μ s
(at 6 MHz oscillation frequency, in high-speed through-mode)
One Time PROM version
(at 4.4 MHz oscillation frequency, in high-speed through-mode)
● Supply voltage
Mask ROM version
One Time PROM version
(It depends on operation source clock, oscillation frequency and op
eration mode)
●Timers
Timer 1 8-bit timer with a reload register

●Interrupt	4 sources
● Key-on wakeup function pins	9
● LCD control circuit	
Segment output	28
Common output	4
◆Voltage drop detection circuit (only H version)	
Reset occurrenceTyp. 1.8 V (Ta	a = 25 °C)
Reset releaseTyp. 1.9 V (Ta	a = 25 °C)
■Watchdog timer	

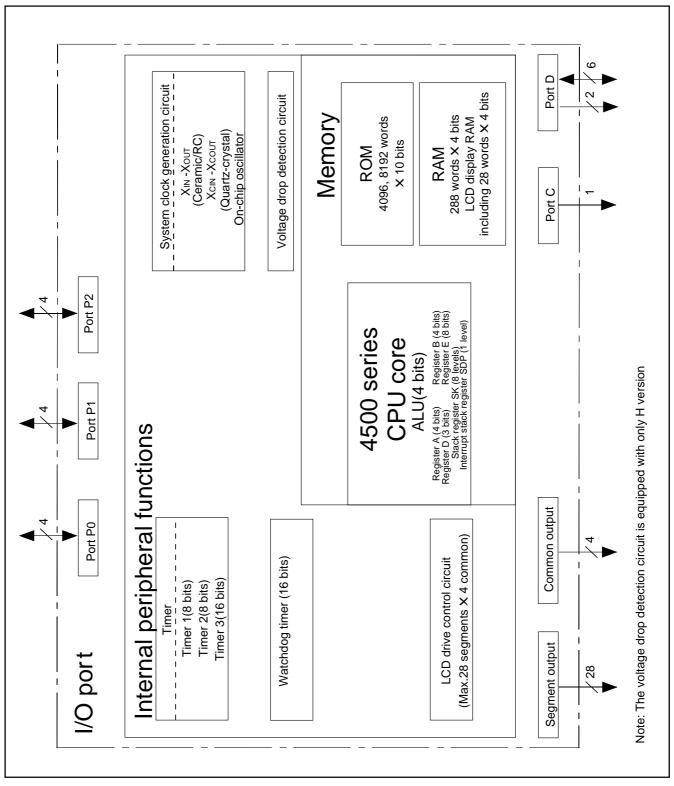
vvatchdog timer

Clock generating circuit
 Built-in clock
 (on-chip oscillator)
 Main clock
 (ceramic resonator/RC oscillation)
 Sub-clock
 (quartz-crystal oscillation)

●LED drive directly enabled (port D)


APPLICATION

Remote control transmitter


Part number		ROM (PROM) size (X 10 bits)	RAM size (X 4 bits)	Package	ROM type
	M34552M4-XXXFP	4096 words	288 words	48P6S-A	Mask ROM
dno	M34552M8-XXXFP	8192 words	288 words	48P6S-A	Mask ROM
Gro	M34552G8FP (Note)	8192 words	288 words	48P6S-A	One Time PROM
4552	M34552M4H-XXXFP	4096 words	288 words	48P6S-A	Mask ROM
4	M34552M8H-XXXFP	8192 words	288 words	48P6S-A	Mask ROM
	M34552G8HFP (Note)	8192 words	288 words	48P6S-A	One Time PROM

Note: Shipped in blank.

PIN CONFIGURATION

Pin configuration (top view) (4552 Group)

Block diagram (4552 Group)

PERFORMANCE OVERVIEW

<u> </u>	IAIN	<u> </u>	<u>OVERVIEW</u>					
	Parar	nete	r	Function				
Number of basic			14/M8/G8	123				
instructions	M345	52N	14H/M8H/G8H	124				
Minimum instruction	One Time PROM version			0.5 μ s (at 6 MHz oscillation frequency, in high-speed through mode)				
execution time				0.68 μ s (at 4.4 MHz oscillation frequency, in high-speed through mode)				
Memory sizes	ROM	МЗ	4552M4	4096 words X 10 bits				
		МЗ	4552M4H					
		МЗ	4552M8/G8	8192 words X 10 bits				
		МЗ	4552M8H/G8H					
	RAM	МЗ	4552M4/M8/G8	288 words X 4 bits (including LCD display RAM 28 words X 4 bits)				
		M34	1552M4H/M8H/G8H					
Input/Output ports	Do-D	5	I/O	Six independent I/O ports. Input is examined by skip decision. The output structure can be switched by software. Port D5 is also used as INT pin.				
	D6, D	7	Output	Two independent output ports. Ports D6 and D7 are also used as XCIN and XCOUT, respectively.				
	P00-I	- 03	I/O	4-bit I/O port; A pull-up function, a key-on wakeup function and output structure can be switched by software. Ports P00–P03 are also used as SEG21–SEG24, respectively.				
	P10-I	P1 3	I/O	4-bit I/O port; A pull-up function, a key-on wakeup function and output structure can be switched by software. Ports P10–P13 are also used as SEG25–SEG28, respectively.				
	P20-P23 I/O		I/O	4-bit I/O port; The output structure can be switched by software. Ports P20–P23 are also used as SEG17–SEG20, respectively.				
C Output			Output	1-bit output; Port C is also used as CNTR pin.				
Timers	Timer 1			8-bit programmable timer with a reload register and has an event counter.				
	Timer 2			8-bit programmable timer with two reload registers and PWM output function.				
	Timer 3			16-bit timer, fixed dividing frequency (timer for clock count)				
	Timer	· LC		4-bit timer with a reload register (for LCD clock)				
	Watch	ndog	timer	16-bit timer (fixed dividing frequency) (for watchdog)				
LCD control	Selective bias value		bias value	1/2, 1/3 bias				
circuit	Selec	tive	duty value	2, 3, 4 duty				
	Comr	non	output	4				
	Segm	ent	output	28				
	Internal resistor for power supply			$2r \times 3$, $2r \times 2$, $r \times 3$, $r \times 2$ ($r = 80 \text{ k}\Omega$, (Ta = 25 °C, Typical value))				
Interrupt	Sourc	es		4 (one for external, three for timer)				
	Nestii	ng		1 level				
Subroutine ne	sting			8 levels				
Device structu	re			CMOS silicon gate				
Package				48-pin plastic molded QFP (48P6S-A)				
Operating tem	peratu	ıre r	ange	−20 °C to 85 °C				
Supply	Mask ROM version		M version	1.8 to 5.5 V (It depends on operation source clock, oscillation frequency and operation mode)				
voltage	One Time PROM version		PROM version	1.8 to 3.6 V (It depends on operation source clock, oscillation frequency and operation mode)				
Power	Active mode		de	2.2 mA (at room temperature, VDD = 5 V, f(XIN) = 6 MHz, f(XCIN) = stop, f(RING) = stop,				
dissipation	(Masl	k RC	M version)	f(STCK) = f(XIN)/1)				
(Typ. value)			perating mode 0M version)	6 μ A (at room temperature, VDD = 5 V, f(XCIN) = 32 kHz)				
	(Mask ROM version) At RAM back-up (Mask ROM version)			0.1 μ A (at room temperature, VDD = 5 V, output transistor is cut-off state)				

PIN DESCRIPTION

Pin	Name	Input/Output	Function
VDD	Power supply	_	Connected to a plus power supply.
Vss	Ground	_	Connected to a 0 V power supply.
CNVss	CNVss	_	Connect CNVss to Vss and apply "L" (0V) to CNVss certainly.
RESET	Reset input/output	I/O	An N-channel open-drain I/O pin for a system reset. When the SRST instruction, watchdog timer, the built-in power-on reset or the voltage drop detection circuit causes the system to be reset, the RESET pin outputs "L" level.
XIN	Main clock input	Input	I/O pins of the main clock generating circuit. When using a ceramic resonator, connect it between pins XIN and XOUT. A feedback resistor is built-in between them.
Хоит	Main clock output	Output	When using the RC oscillation, connect a resistor and a capacitor to XIN, and leave XOUT pin open.
XCIN	Sub-clock input	Input	I/O pins of the sub-clock generating circuit. Connect a 32.768 kHz quartz-crystal oscillator between pins XCIN and XCOUT. A feedback resistor is built-in between them. XCIN and
Хсоит	Sub-clock output	Output	XCOUT pins are also used as ports D6 and D7, respectively.
D0-D5	I/O port D Input is examined by skip decision.	I/O	Each pin of port D has an independent 1-bit wide I/O function. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port D5 is also used as INT pin.
D6, D7	Output port D	Output	Each pin of port D has an independent 1-bit wide output function. The output structure is N-channel open-drain. Ports D6 and D7 are also used as XCIN pin and XCOUT pin, respectively.
P00-P03	I/O port P0	I/O	Port P0 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P0 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports P00–P03 are also used as SEG21–SEG24, respectively.
P10-P13	I/O port P1	I/O	Port P1 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port P1 has a key-on wakeup function and a pull-up function. Both functions can be switched by software. Ports P10–P13 are also used as SEG25–SEG28, respectively.
P20-P23	I/O port P2	I/O	Port P2 serves as a 4-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Ports P20–P23 are also used as SEG17–SEG20, respectively.
Port C	Output port C	Output	1-bit output port. The output structure is CMOS. Port C is also used as CNTR pin.
COM ₀ – COM ₃	Common output	Output	LCD common output pins. Pins COMo and COM1 are used at 1/2 duty, pins COMo—COM2 are used at 1/3 duty and pins COMo—COM3 are used at 1/4 duty.
SEG0-SEG28 (Note)	Segment output	Output	LCD segment output pins. SEG0–SEG2 pins are used as VLC3–VLC1 pins, respectively. SEG17–SEG28 pins are used as Ports P20–P23, Ports P00–P03 and Ports P10–P13, respectively.
CNTR	Timer input/output	I/O	CNTR pin has the function to input the clock for the timer 1 event counter and to output the PWM signal generated by timer 2.CNTR pin is also used as Port C.
INT	Interrupt input	Input	INT pin accepts external interrupts. They have the key-on wakeup function which can be switched by software. INT pin is also used as Port D5.

Note: SEG13 pin is not existed in the 4552 Group.

MULTIFUNCTION

MIOLIII	ONCTION						
Pin	Multifunction	Pin	Multifunction	Pin	Multifunction	Pin	Multifunction
XCIN	D6	D6	Xcin	P20	SEG17	SEG17	P20
Хсоит	D7	D7	Хсоит	P21	SEG18	SEG18	P21
P00	SEG21	SEG21	P00	P22	SEG19	SEG19	P22
P01	SEG22	SEG22	P01	P23	SEG20	SEG ₂₀	P23
P02	SEG23	SEG23	P02	D ₅	INT	INT	D5
P03	SEG24	SEG24	P03	С	CNTR	CNTR	С
P10	SEG25	SEG25	P10	SEG ₀	VLC3	VLC3	SEG ₀
P11	SEG26	SEG26	P11	SEG1	VLC2	VLC2	SEG1
P12	SEG27	SEG27	P12	SEG ₂	VLC1	VLC1	SEG ₂
P13	SEG28	SEG ₂₈	P13				

Notes 1: Pins except above have just single function.

^{2:} The input/output of D5 can be used even when INT is selected.

The threshold value is different between port D5 and INT. Accordingly, be careful when the input of both is used.

3: The port C "H" output function can be used even when CNTR (output) is selected.

DEFINITION OF CLOCK AND CYCLE

Operation source clock

The operation source clock is the source clock to operate this product. In this product, the following clocks are used.

- Clock (f(XIN)) by the external ceramic resonator
- Clock (f(XIN)) by the external RC oscillation
- Clock (f(XIN)) by the external input
- Clock (f(RING)) of the on-chip oscillator which is the internal oscillator
- Clock (f(XCIN)) by the external quartz-crystal resonator

System clock (STCK)

The system clock is the basic clock for controlling this product. The system clock is selected by the clock control register MR shown as the table below.

Instruction clock (INSTCK)

The instruction clock is the basic clock for controlling CPU. The instruction clock (INSTCK) is a signal derived by dividing the system clock (STCK) by 3. The one instruction clock cycle generates the one machine cycle.

Machine cycle

The machine cycle is the standard cycle required to execute the instruction.

Table Selection of system clock

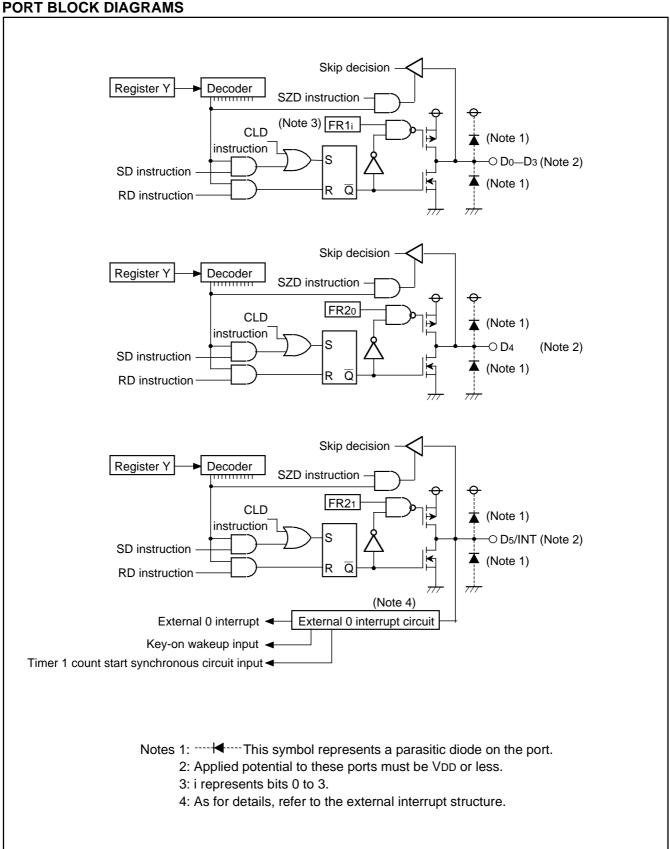
	Register MR			System clock	Operation mode				
MR ₃	MR2	MR1	MR ₀						
1	1	0	0	f(STCK) = f(RING)/8	Internal frequency divided by 8 mode				
1	0	0	0	f(STCK) = f(RING)/4	Internal frequency divided by 4 mode				
0	1	0	0	f(STCK) = f(RING)/2	Internal frequency divided by 2 mode				
0	0	0	0	f(STCK) = f(RING)	Internal frequency through mode				
1	1	0	1	f(STCK) = f(XIN)/8	High-speed frequency divided by 8 mode				
1	0	0	1	f(STCK) = f(XIN)/4	High-speed frequency divided by 4 mode				
0	1	0	1	f(STCK) = f(XIN)/2	High-speed frequency divided by 2 mode				
0	0	0	1	f(STCK) = f(XIN)	High-speed through mode				
1	1	1	0	f(STCK) = f(XCIN)/8	Low-speed frequency divided by 8 mode				
1	0	1	0	f(STCK) = f(XCIN)/4	Low-speed frequency divided by 4 mode				
0	1	1	0	f(STCK) = f(XCIN)/2	Low-speed frequency divided by 2 mode				
0	0	1	0	f(STCK) = f(XCIN)	Low-speed through mode				

Note: The f(RING)/8 is selected after system is released from reset.

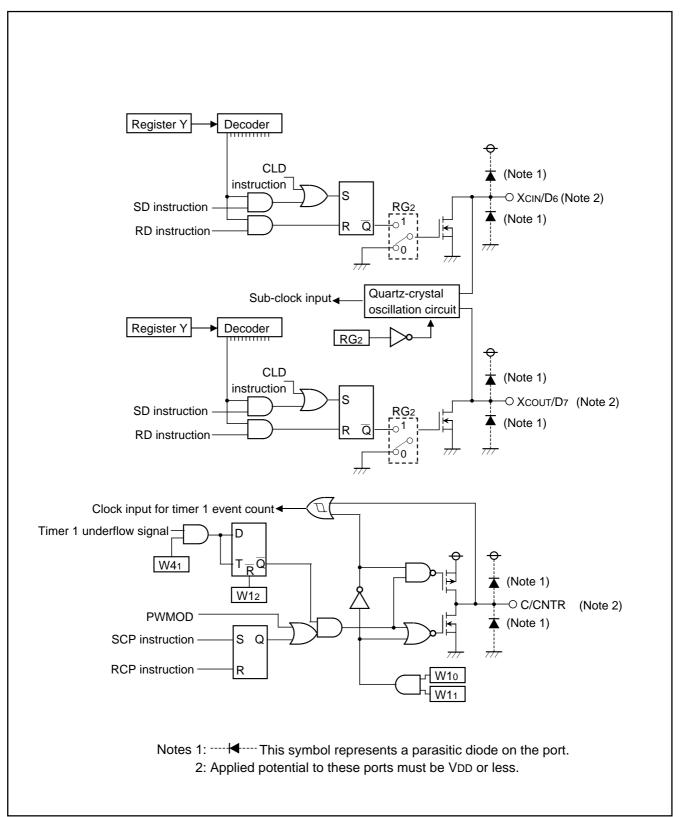
PORT FUNCTION

	1 011011011	lant	I	1/0	Cantual	0 1 1	_
Port	Pin	Input	Output structure	I/O	Control	Control	Remark
		Output	o aip at ott aota. o	unit	instructions	registers	. tomant
Port D	D0-D4, D5/INT	I/O	N-channel open-drain/	1	SD, RD	FR1, FR2	Output structure selection
		(6)	CMOS		SZD	I1, K2	function (programmable)
					CLD		
	XCIN/D6, XCOUT/D7	Output	N-channel open-drain			RG	
		(2)					
Port P0	P00/SEG21-P03/SEG24	I/O	N-channel open-drain/	4	OP0A	FR0, PU0	Built-in pull-up functions, key-on
		(4)	CMOS		IAP0	K0	wakeup functions and output
						C1	structure selection function
							(programmable)
Port P1	P10/SEG25-P13/SEG28	I/O	N-channel open-drain/	4	OP1A	FR0, PU1	Built-in pull-up functions, key-on
		(4)	CMOS		IAP1	K0, K1	wakeup functions and output
						C2	structure selection function
							(programmable)
Port P2	P20/SEG17-P23/SEG20	I/O	N-channel open-drain/	4	OP2A	FR2	Output structure selection func
		(4)	CMOS		IAP2	L3	tion (programmable)
Port C	C/CNTR	Output	CMOS	1	RCP	W1	
		(1)			SCP		

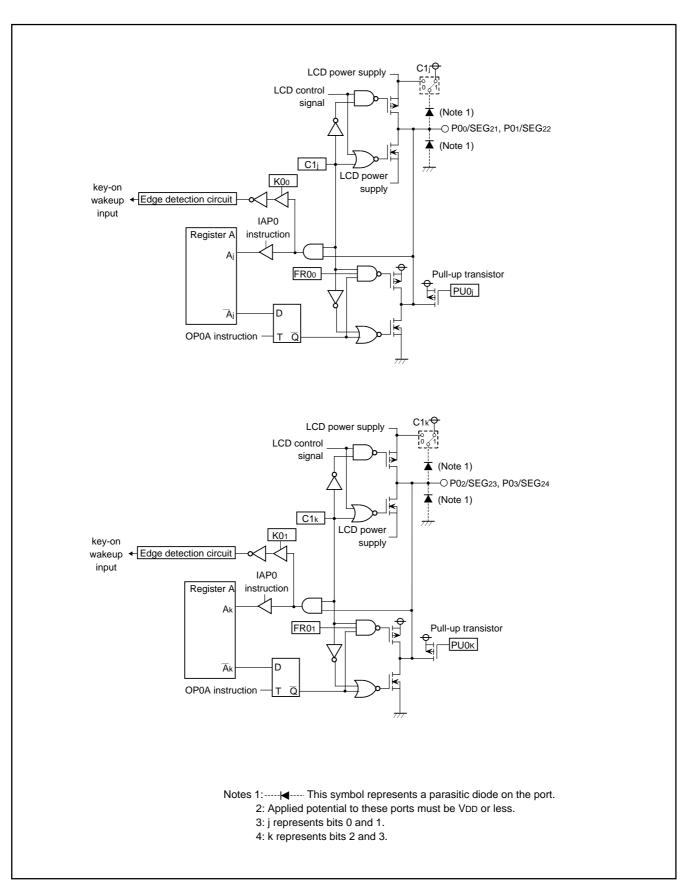
CONNECTIONS OF UNUSED PINS

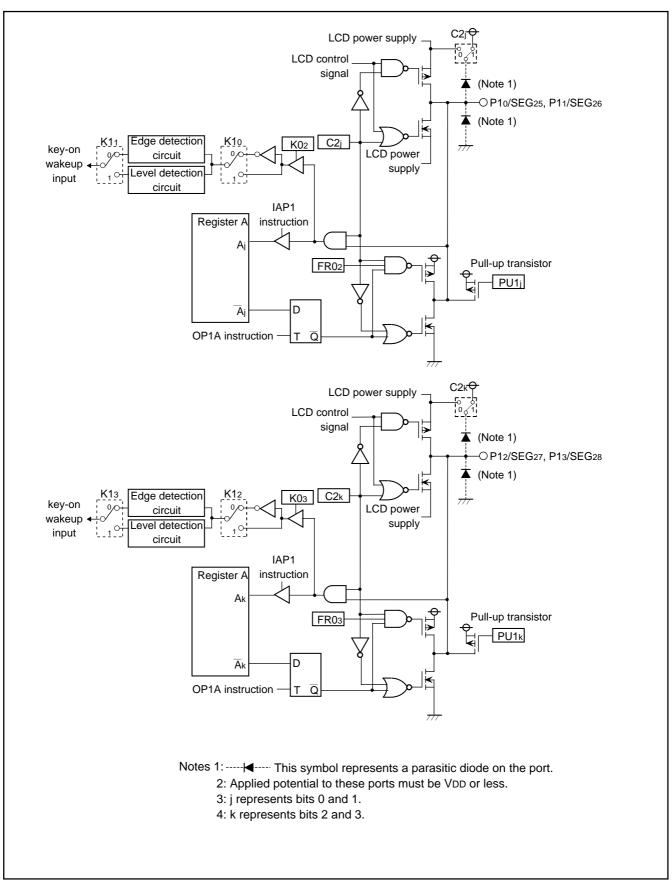

Pin	Connection	Usage condition
XIN	Connect to Vss.	RC oscillator is not selected
Хоит	Open.	
XCIN/D6	Connect to Vss.	
XCOUT/D7	Open.	
D0-D4	Open.	
	Connect to Vss.	N-channel open-drain is selected for the output structure.
D5/INT	Open.	INT pin input is disabled.
	Connect to Vss.	N-channel open-drain is selected for the output structure.
C/CNTR	Open.	CNTR input is not selected for timer 1 count source.
P00/SEG21-	Open.	The key-on wakeup function is invalid.
P03/SEG24	Connect to Vss.	Segment output is not selected.
		N-channel open-drain is selected for the output structure.
		Pull-up transistor is OFF.
		The key-on wakeup function is invalid.
P10/SEG25-	Open.	The key-on wakeup function is invalid.
P13/SEG28	Connect to Vss.	Segment output is not selected.
		N-channel open-drain is selected for the output structure.
		Pull-up transistor is OFF.
		The key-on wakeup function is invalid.
P20/SEG17-	Open.	
P23/SEG20	Connect to Vss.	Segment output is not selected.
		N-channel open-drain is selected for the output structure.
COM0-COM3	Open.	
SEG ₀ /V _{LC3}	Open.	SEGo pin is selected.
SEG1/VLC2	Open.	SEG1 pin is selected.
SEG2/VLC1	Open.	SEG2 pin is selected.
SEG3-SEG16 (Note)	Open.	

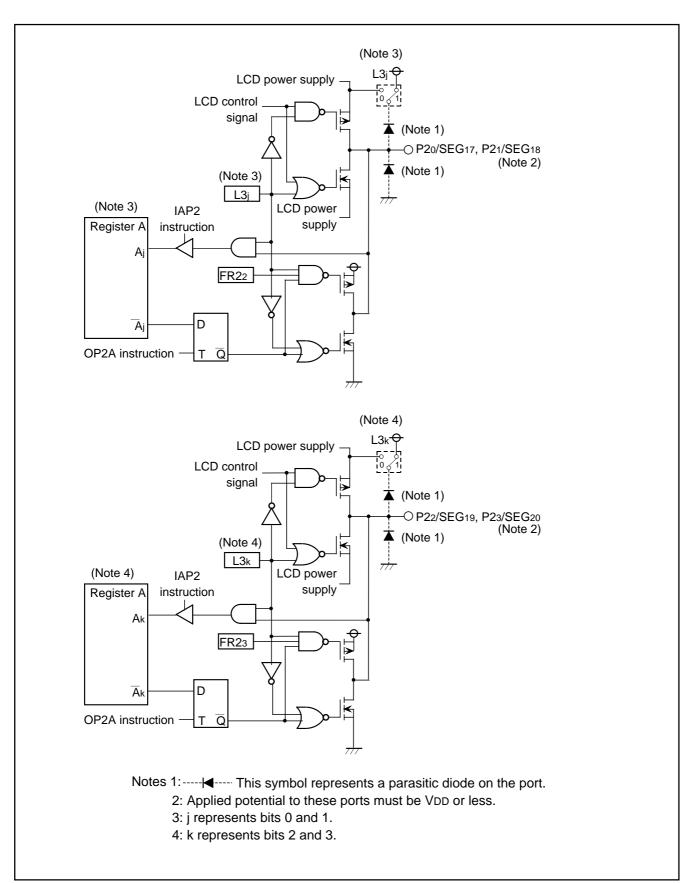
Note: SEG₁₃ pin is not existed in the 4552 Group.

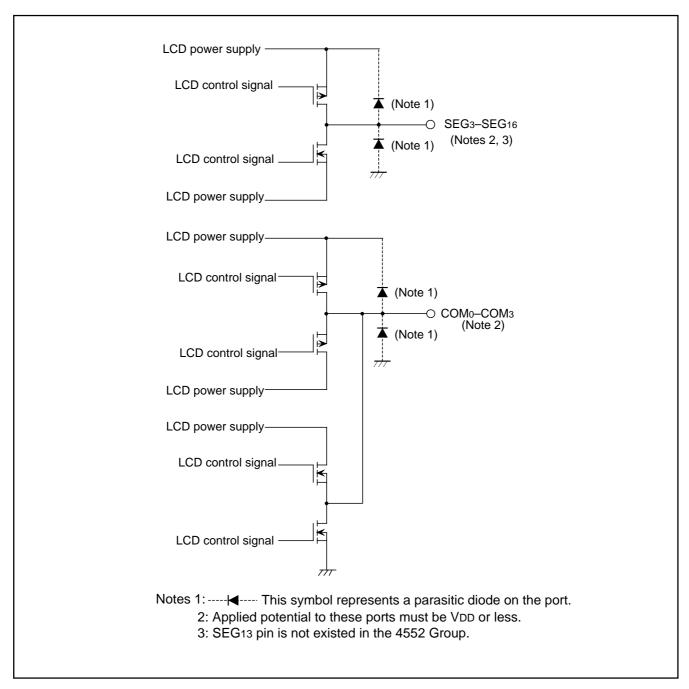

(Note when connecting to Vss and Vdd)

• Connect the unused pins to Vss and VDD using the thickest wire at the shortest distance against noise.

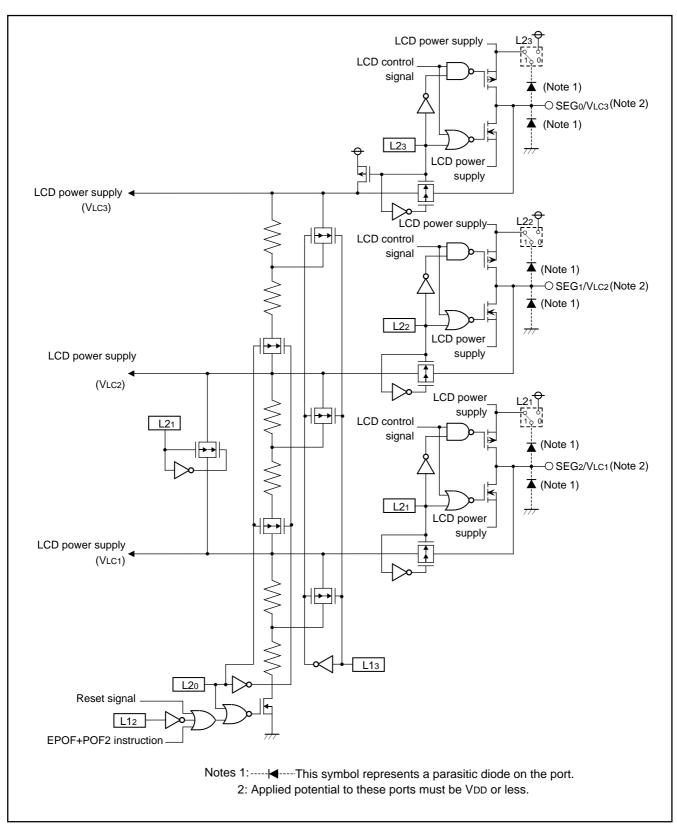


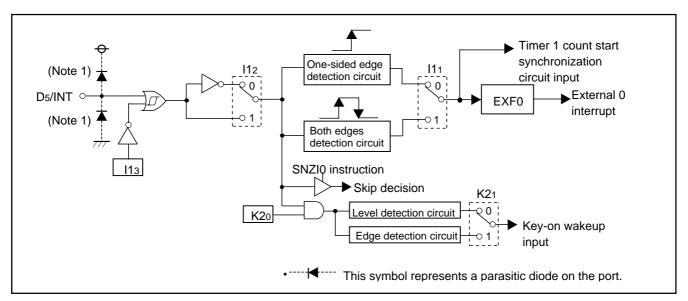



Port block diagram (1)



Port block diagram (2)





Port block diagram (6)

Port block diagram (7)

Block diagram of external interrupt

FUNCTION BLOCK OPERATIONS CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4-bit data addition, comparison, AND operation, OR operation, and bit manipulation.

(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.

Carry flag CY is a 1-bit flag that is set to "1" when there is a carry with the AMC instruction (Figure 1).

It is unchanged with both A n instruction and AM instruction. The value of A0 is stored in carry flag CY with the RAR instruction (Figure 2).

Carry flag CY can be set to "1" with the SC instruction and cleared to "0" with the RC instruction.

(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8-bit data transfer together with register A.

Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3).

Register E is undefined after system is released from reset and returned from the power down mode. Accordingly, set the initial value.

(4) Register D

Register D is a 3-bit register.

It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 4).

Also, when the TABP p instruction is executed at UPTF flag = "1", the high-order 2 bits of ROM reference data is stored to the low-order 2 bits of register D, the high-order 1 bit of register D is "0". When the TABP p instruction is executed at UPTF flag = "0", the contents of register D remains unchanged. The UPTF flag is set to "1" with the SUPT instruction and cleared to "0" with the RUPT instruction. The initial value of UPTF flag is "0".

Register D is undefined after system is released from reset and returned from the power down mode. Accordingly, set the initial value.

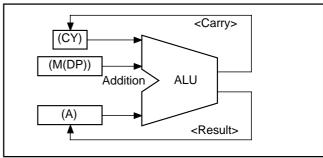


Fig. 1 AMC instruction execution example

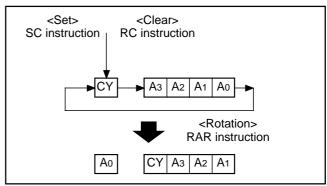


Fig. 2 RAR instruction execution example

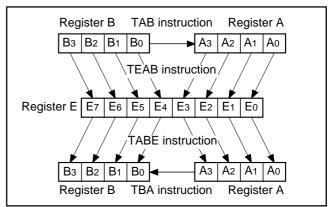


Fig. 3 Registers A, B and register E

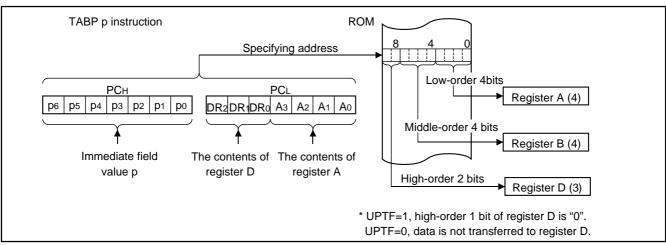


Fig. 4 TABP p instruction execution example

(5) Stack registers (SKs) and stack pointer (SP)

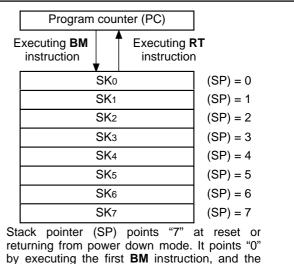
Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- branching to an interrupt service routine (referred to as an interrupt service routine),
- performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together. The contents of registers SKs are destroyed when 8 levels are exceeded.

The register SK nesting level is pointed automatically by 3-bit stack pointer (SP). The contents of the stack pointer (SP) can be transferred to register A with the TASP instruction.

Figure 5 shows the stack registers (SKs) structure.


Figure 6 shows the example of operation at subroutine call.

(6) Interrupt stack register (SDP)

Interrupt stack register (SDP) is a 1-stage register. When an interrupt occurs, this register (SDP) is used to temporarily store the contents of data pointer, carry flag, skip flag, register A, and register B just before an interrupt until returning to the original routine. Unlike the stack registers (SKs), this register (SDP) is not used when executing the subroutine call instruction and the table reference instruction.

(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions. When an interrupt occurs, the contents of skip flag is stored automatically in the interrupt stack register (SDP) and the skip condition is retained.

returning from power down mode. It points "0" by executing the first **BM** instruction, and the contents of program counter is stored in SKo. When the **BM** instruction is executed after eight stack registers are used ((SP) = 7), (SP) = 0 and the contents of SKo is destroyed.

Fig. 5 Stack registers (SKs) structure

Fig. 6 Example of operation at subroutine call

(8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.

Program counter consists of PCH (most significant bit to bit 7) which specifies to a ROM page and PCL (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7).

Make sure that the PCH does not specify after the last page of the built-in ROM.

(9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers Z, X, and Y. Register Z specifies a RAM file group, register X specifies a file, and register Y specifies a RAM digit (Figure 8)

Register Y is also used to specify the port D bit position.

When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 9).

• Note

Register Z of data pointer is undefined after system is released from reset

Also, registers Z, X and Y are undefined in the power down mode. After system is returned from the power down mode, set these registers.

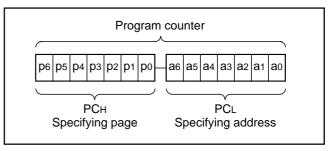


Fig. 7 Program counter (PC) structure

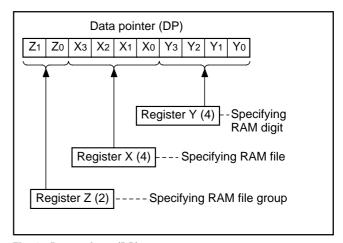


Fig. 8 Data pointer (DP) structure

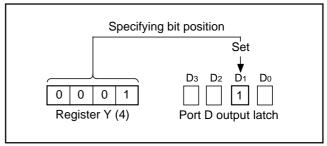


Fig. 9 SD instruction execution example

PROGRAM MEMORY (ROM)

The program memory is a mask ROM. 1 word of ROM is composed of 10 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127). Table 1 shows the ROM size and pages. Figure 10 shows the ROM map of M34552ED.

Table 1 ROM size and pages

Part number	ROM (PROM) size (X 10 bits)	Pages
M34552M4	4096 words	32 (0 to 31)
M34552M4H		
M34552M8	8192 words	64 (0 to 63)
M34552M8H		
M34552G8		
M34552G8H		

A part of page 1 (addresses 008016 to 00FF16) is reserved for interrupt addresses (Figure 11). When an interrupt occurs, the address (interrupt address) corresponding to each interrupt is set in the program counter, and the instruction at the interrupt address is executed. When using an interrupt service routine, write the instruction generating the branch to that routine at an interrupt address.

Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1-word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.

ROM pattern (bits 7 to 0) of all addresses can be used as data areas with the TABP p instruction.

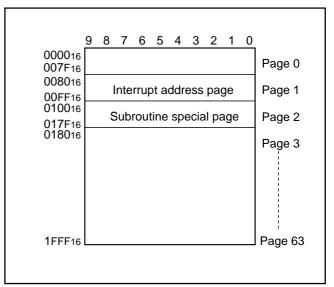


Fig. 10 ROM map of M34552M8/M8H/G8/G8H

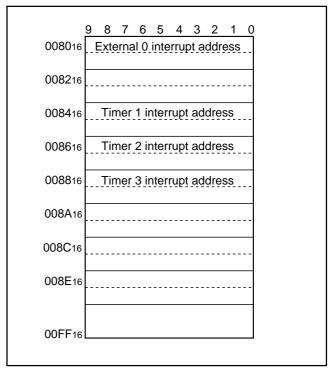


Fig. 11 Page 1 (addresses 008016 to 00FF16) structure

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers Z, X, and Y. Set a value to the data pointer certainly when executing an instruction to access RAM (also, set a value after system returns from power down mode).

RAM includes the area for LCD.

When writing "1" to a bit corresponding to displayed segment, the segment is turned on.

Table 2 shows the RAM size. Figure 12 shows the RAM map.

• Note

Register Z of data pointer is undefined after system is released from reset.

Also, registers Z, X and Y are undefined in the power down mode. After system is returned from the power down mode, set these registers.

Table 2 RAM size

Part number	RAM size
M34552M4/M4H	288 words X 4 bits (1152 bits)
M34552M8/M8H	
M34552G8/G8H	

RAM 288 words X 4 bits (1152 bits)

	Register Z			0						1				
	Register X	0	1	2	3		12	13	14	15	0	1	2	3
	0													
	1													
	2													
	3													
	4													
	5													
≻	6													
stel	7													
Register Y	8										0	8	16	24
~	9										1	9	17	25
	10										2	10	18	26
	11										3	11	19	27
	12										4	12	20	28
	13										5		21	
	14										6	14	22	
	15										7	15	23	

Note: The numbers in the shaded area indicate the corresponding segment output pin numbers.

Fig. 12 RAM map

INTERRUPT FUNCTION

The interrupt type is a vectored interrupt branching to an individual address (interrupt address) according to each interrupt source. An interrupt occurs when the following 3 conditions are satisfied.

- An interrupt activated condition is satisfied (request flag = "1")
- Interrupt enable bit is enabled ("1")
- Interrupt enable flag is enabled (INTE = "1")

Table 3 shows interrupt sources. (Refer to each interrupt request flag for details of activated conditions.)

(1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable. Interrupts are enabled when INTE flag is set to "1" with the EI instruction and disabled when INTE flag is cleared to "0" with the DI instruction. When any interrupt occurs, the INTE flag is automatically cleared to "0," so that other interrupts are disabled until the EI instruction is executed.

(2) Interrupt enable bit

Use an interrupt enable bit of interrupt control registers V1 and V2 to select the corresponding interrupt or skip instruction.

Table 4 shows the interrupt request flag, interrupt enable bit and skip instruction.

Table 5 shows the interrupt enable bit function.

(3) Interrupt request flag

When the activated condition for each interrupt is satisfied, the corresponding interrupt request flag is set to "1." Each interrupt request flag is cleared to "0" when either;

- an interrupt occurs, or
- the next instruction is skipped with a skip instruction.

Each interrupt request flag is set when the activated condition is satisfied even if the interrupt is disabled by the INTE flag or its interrupt enable bit. Once set, the interrupt request flag retains set until a clear condition is satisfied.

Accordingly, an interrupt occurs when the interrupt disable state is released while the interrupt request flag is set.

If more than one interrupt request flag is set when the interrupt disable state is released, the interrupt priority level is as follows shown in Table 3.

Table 3 Interrupt sources

Priority level	Interrupt name	Activated condition	Interrupt address
1	External 0 interrupt	Level change of INT pin	Address 0 in page 1
2	Timer 1 interrupt	Timer 1 underflow	Address 4 in page 1
3	Timer 2 interrupt	Timer 2 underflow	Address 6 in page 1
4	Timer 3 interrupt	Timer 3 underflow	Address 8 in page 1

Table 4 Interrupt request flag, interrupt enable bit and skip instruction

Interrupt name	Request flag	Skip instruction	Enable bit
External 0 interrupt	EXF0	SNZ0	V10
Timer 1 interrupt	T1F	SNZT1	V12
Timer 2 interrupt	T2F	SNZT2	V13
Timer 3 interrupt	T3F	SNZT3	V20

Table 5 Interrupt enable bit function

Interrupt enable bit	Occurrence of interrupt	Skip instruction		
1	Enabled	Invalid		
0	Disabled	Valid		

(4) Internal state during an interrupt

The internal state of the microcomputer during an interrupt is as follows (Figure 14).

- Program counter (PC)
 An interrupt address is set in program counter. The address to be executed when returning to the main routine is automatically stored in the stack register (SK).
- Interrupt enable flag (INTE)
 INTE flag is cleared to "0" so that interrupts are disabled.
- Interrupt request flag
 Only the request flag for the current interrupt source is cleared to "0"
- Data pointer, carry flag, skip flag, registers A and B
 The contents of these registers and flags are stored automatically in the interrupt stack register (SDP).

(5) Interrupt processing

When an interrupt occurs, a program at an interrupt address is executed after branching a data store sequence to stack register. Write the branch instruction to an interrupt service routine at an interrupt address.

Use the RTI instruction to return from an interrupt service routine. Interrupt enabled by executing the EI instruction is performed after executing 1 instruction (just after the next instruction is executed). Accordingly, when the EI instruction is executed just before the RTI instruction, interrupts are enabled after returning the main routine. (Refer to Figure 13)

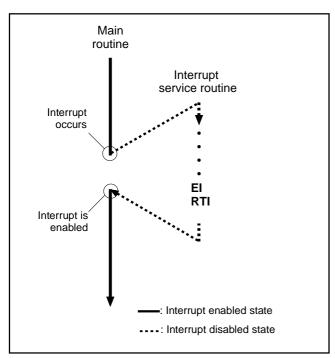


Fig. 13 Program example of interrupt processing

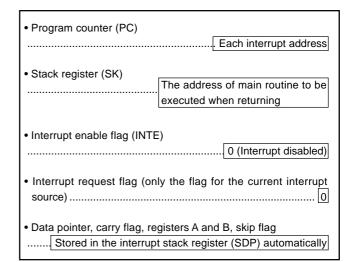


Fig. 14 Internal state when interrupt occurs

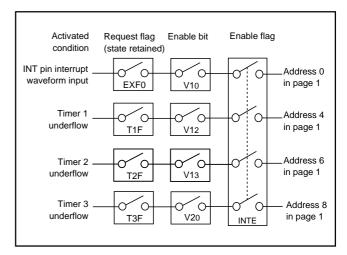


Fig. 15 Interrupt system diagram

(6) Interrupt control registers

- Interrupt control register V1
 Interrupt enable bits of external 0, timer 1 and timer 2 are assigned to register V1. Set the contents of this register through register A with the TV1A instruction. The TAV1 instruction can be used to transfer the contents of register V1 to register A.
- Interrupt control register V2
 The timer 3 interrupt enable bit is assigned to register V2. Set the contents of this register through register A with the TV2A instruction. The TAV2 instruction can be used to transfer the contents of register V2 to register A.

Table 6 Interrupt control registers

Interrupt control register V1		at reset : 00002		at power down : 00002	R/W TAV1/TV1A	
V13	Timer 2 interrupt enable bit	0	Interrupt disabled ((SNZT2 instruction is valid)		
V 13	V13 Timer 2 interrupt enable bit		Interrupt enabled (Interrupt enabled (SNZT2 instruction is invalid)		
V12	V12 Timer 1 interrupt enable bit		Interrupt disabled (SNZT1 instruction is valid)			
V 12	Timer i interrupt eriable bit	1	Interrupt enabled (SNZT1 instruction is invalid)		
V11	Not used	0	This his has a constitute but an advantage in a subband			
VII	Not used	1	This bit has no function, but read/write is enabled.			
V10	External 0 interrupt enable bit	0	Interrupt disabled ((SNZ0 instruction is valid)		
V 10		1	Interrupt enabled (SNZ0 instruction is invalid)		

	Interrupt control register V2		reset : 00002	at power down : 00002	R/W TAV2/TV2A	
1/00	V23 Not used		This bit has no function, but read/write is enabled.			
V23						
1/00	V22 Not used		This bit has no function, but read/write is enabled.			
V22	Not used	1	This bit has no function, but read/write is enabled.			
V0.	Not used	0	This bit has no function, but read/write is enabled.			
V21	V2 ₁ Not used		This bit has no function, but read/write is enabled.			
\/Oc	Timer 3 interrupt enable bit	0	Interrupt disabled ((SNZT3 instruction is valid)		
V20		1	Interrupt enabled (SNZT3 instruction is invalid)			

Note: "R" represents read enabled, and "W" represents write enabled.

(7) Interrupt sequence

Interrupts only occur when the respective INTE flag, interrupt enable bits (V10, V12, V13, V20), and interrupt request flag are "1." The interrupt actually occurs 2 to 3 machine cycles after the cycle in which all three conditions are satisfied. The interrupt occurs after 3 machine cycles only when the three interrupt conditions are satisfied on execution of other than one-cycle instructions (Refer to Figure 16).

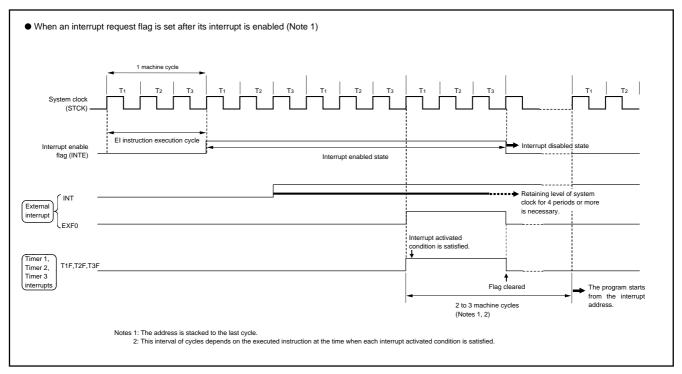


Fig. 16 Interrupt sequence

EXTERNAL INTERRUPTS

The 4552 Group has the external 0 interrupt.

An external interrupt request occurs when a valid waveform is input to an interrupt input pin (edge detection).

The external interrupt can be controlled with the interrupt control register I1.

Table 7 External interrupt activated conditions

Name	Input pin	Activated condition	Valid waveform selection bit
External 0 interrupt	D5/INT	When the next waveform is input to D5/INT pin	I 11
		 Falling waveform ("H"→"L") 	l12
		Rising waveform ("L"→"H")	
		Both rising and falling waveforms	

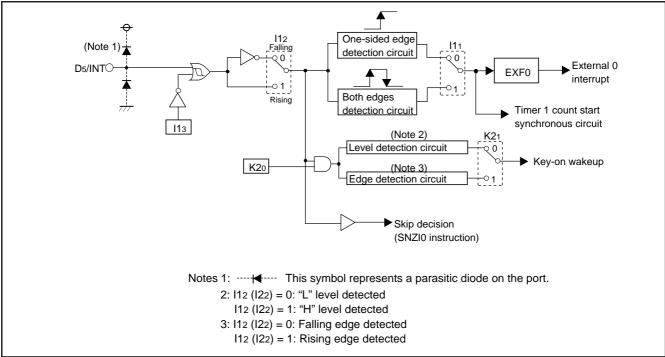


Fig. 17 External interrupt circuit structure

(1) External 0 interrupt request flag (EXF0)

External 0 interrupt request flag (EXF0) is set to "1" when a valid waveform is input to D5/INT pin.

The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16). The state of EXF0 flag can be examined with the skip instruction (SNZ0). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF0 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction.

• External 0 interrupt activated condition

External 0 interrupt activated condition is satisfied when a valid waveform is input to D5/INT pin.

The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 0 interrupt is as follows.

- ① Set the bit 3 of register I1 to "1" for the INT pin to be in the input enabled state.
- ② Select the valid waveform with the bits 1 and 2 of register I1.
- ③ Clear the EXF0 flag to "0" with the SNZ0 instruction.
- Set the NOP instruction for the case when a skip is performed
 with the SNZ0 instruction.
- Set both the external 0 interrupt enable bit (V10) and the INTE flag to "1."

The external 0 interrupt is now enabled. Now when a valid waveform is input to the D5/INT pin, the EXF0 flag is set to "1" and the external 0 interrupt occurs.

(2) External interrupt control registers

• Interrupt control register I1

Register I1 controls the valid waveform for the external 0 interrupt. Set the contents of this register through register A with the TI1A instruction. The TAI1 instruction can be used to transfer the contents of register I1 to register A.

Table 8 External interrupt control register

	Interrupt control register I1		reset : 00002	at power down : state retained	R/W TAI1/TI1A
l13	INT pin input control bit (Note 2)	0	INT pin input disab	pled	
113	in in put control bit (Note 2)	1	INT pin input enab	led	
			Falling waveform/"	L" level ("L" level is recognized with	the SNZI0
l12	Interrupt valid waveform for INT pin/	0	instruction)		
112	return level selection bit (Note 2)	4	Rising waveform/"H" level ("H" level is recognized with the SNZI0		
		ı	instruction)		
l1 ₁	INT pin edge detection circuit control bit	0	One-sided edge detected		
111	in pin eage detection circuit control bit	1	Both edges detected		
I1 0	INT pin Timer 1 count start synchronous	0	Timer 1 count start	t synchronous circuit not selected	
110	circuit selection bit	1	Timer 1 count start synchronous circuit selected		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: When the contents of these bits (I12, I13) are changed, the external interrupt request flag (EXF0) may be set.

(3) Notes on External 0 interrupts

- ① Note [1] on bit 3 of register I1
 - When the input of the INT pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.
- Depending on the input state of the D5/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 18⁽¹⁾) and then, change the bit 3 of register I1.
 - In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 182). Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 183).

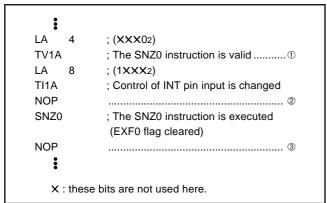


Fig. 18 External 0 interrupt program example-1

- 2 Note [2] on bit 3 of register I1
 - When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INT pin is disabled, be careful about the following notes.
- When the key-on wakeup function of INT pin is not used (register K20 = "0"), clear bits 2 and 3 of register I1 before system enters to the power down mode. (refer to Figure 19①).

```
LA 0 ; (00XX2)

TI1A ; Input of INT disabled.......

DI

EPOF

POF2 ; power down mode

X: these bits are not used here.
```

Fig. 19 External 0 interrupt program example-2

③ Note on bit 2 of register I1
When the interrupt valid waveform of the D5/INT pin is changed with the bit 2 of register I1 in software, be careful about the fol-

lowing notes.

- Depending on the input state of the D5/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 20①) and then, change the bit 2 of register I1.
 - In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 20②). Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 20③).

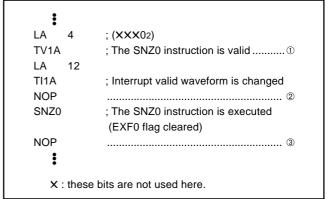


Fig. 20 External 0 interrupt program example-3

TIMERS

The 4552 Group has the following timers.

· Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to n + 1), a timer interrupt request flag is set to "1," new data is loaded from the reload register, and count continues (auto-reload function).

Fixed dividing frequency timer
 The fixed dividing frequency timer has the fixed frequency dividing ratio (n). An interrupt request flag is set to "1" after every n count of a count pulse.

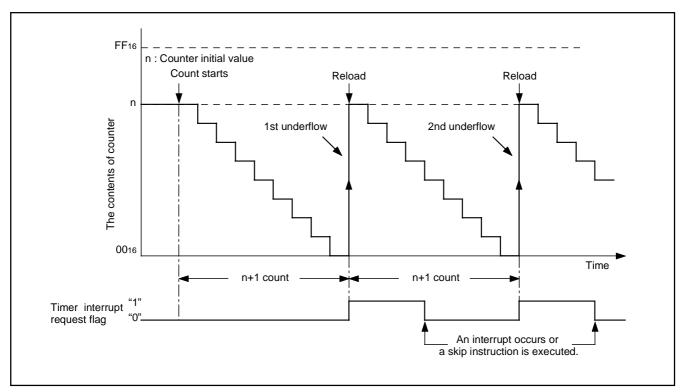


Fig. 21 Auto-reload function

The 4552 Group timer consists of the following circuits.

- Prescaler: 8-bit programmable timer
- Timer 1 : 8-bit programmable timer
- Timer 2 : 8-bit programmable timer
- Timer 3: 16-bit fixed dividing frequency timer
- Timer LC: 4-bit programmable timer
- Watchdog timer: 16-bit fixed dividing frequency timer
 (Timers 1, 2, and 3 have the interrupt function, respectively)

Prescaler and timers 1, 2, 3 and LC can be controlled with the timer control registers PA, W1 to W4. The watchdog timer is a free counter which is not controlled with the control register. Each function is described below.

Table 9 Function related timers

Circuit	Structure	Count source	Frequency dividing ratio	Use of output signal	Control register	
Prescaler	8-bit programmable binary down counter	Instruction clock (INSTCK)	1 to 256	• Timer 1, 2, and 3 count sources	PA	
Timer 1	8-bit programmable binary down counter (link to INT input)	PWM output (PWMOUT) Prescaler output (ORCLK) Timer 3 underflow (T3UDF)	1 to 256	CNTR output control Timer 1 interrupt	W1	
Timer 2	8-bit programmable binary down counter (PWM output function)	CNTR input XIN input Prescaler output (ORCLK) divided by 2	1 to 256	Timer 1 count source CNTR output Timer 2 interrupt	W2	
Timer 3	16-bit fixed dividing frequency	XCIN input ORCLK	8192 16384 32768 65536	Timer 1 count source Timer 3 interrupt Timer LC count source	W3	
Timer LC	4-bit programmable binary down counter	Bit 4 of timer 3 System clock (STCK)	1 to 16	• LCD clock	W4	
Watchdog timer	16-bit fixed dividing frequency	Instruction clock (INSTCK)	65534	System reset (count twice) WDF flag decision		

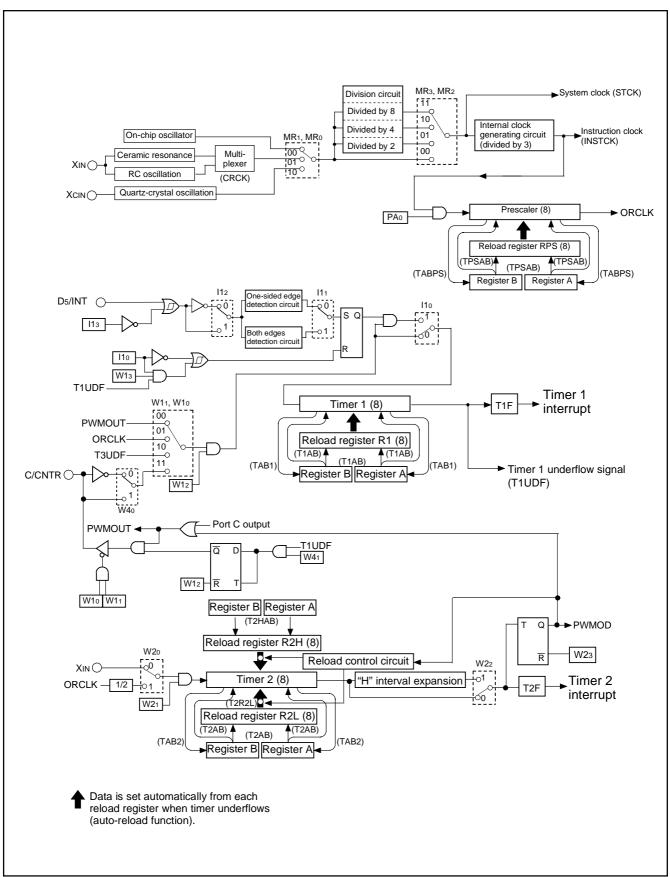


Fig. 22 Timer structure (1)

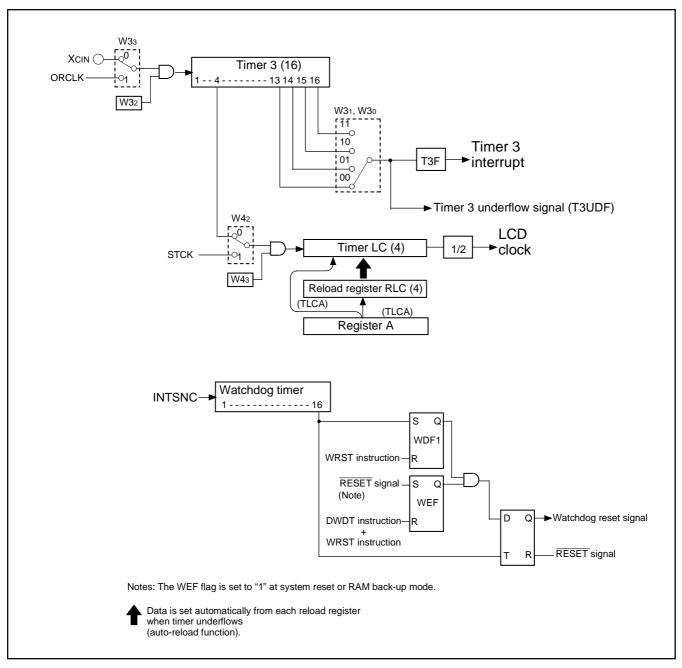


Fig. 23 Timer structure (2)

Table 10 Timer related registers

	Timer control register PA	at reset : 02		at power down : 02	W TPAA
PA ₀	Prescaler control bit	0	Stop (state retained)		
PA0 Prescaler control bit		1	Operating		

	Timer control register W1		at reset : 00002		at power down : state retained	R/W TAW1/TW1A
W13	Timer 1 count auto-stop circuit selection	()	Timer 1 count auto-stop circuit not selected		
****	bit (Note 2)	•	1	Timer 1 count auto-stop circuit selected		
\\\/12	W12 Timer 1 control bit)	Stop (state retained)		
VV 12			1	Operating		
		W11	W10		Count source	
W11	W11 Timer 1 count source selection bits		0	PWM signal (PWM	OUT)	
			1	Prescaler output (ORCLK)		
W10	(Note 3)	1	1 0 Timer 3 underflo		signal (T3UDF)	
		1	1	CNTR input		

Timer control register W2		at reset : 00002		at power down : 00002	R/W TAW2/TW2A	
W23	W23 CNTR pin output control bit		CNTR pin output ir	CNTR pin output invalid		
***25	GIVIN pin output control bit	1	CNTR pin output v	alid		
W22	W2a PWM signal interrupt valid waveform/		PWM signal "H" interval expansion function invalid			
V V Z Z	return level selection bit	1	PWM signal "H" interval expansion function valid			
W21	Toron Orandarille	0	Stop (state retained)			
VVZ1	Timer 2 control bit	1	Operating			
W20	Timer 2 count soruce selection bit	0	XIN input			
VV∠0		1	Prescaler output (ORCLK)/2 signal output			

	Timer control register W3		at reset : 00002		at power down : state retained	R/W TAW3/TW3A
W33	Timer 3 count auto-stop circuit selection	()	XCIN input		
*****	bit	1		Prescaler output (ORCLK)		
W32	W32 = 2 + 11 ::		0 Stop (Initial state)			
VV32	Timer 3 control bit	1		Operating		
1440		W31	W30		Count value	
W31	Town O count welve a clearly as his	0	0	Underflow occurs e	every 8192 counts	
	Timer 3 count value selection bits	0	1	Underflow occurs every 16384 counts		
W30		1	1 0 Underflow occurs every 32768 counts			
		1	1	Underflow occurs e	every 65536 counts	

Timer control register W4		at reset : 00002		at power down : state retained	R/W TAW4/TW4A
W43	Timer LC control bit	0	Stop (state retained)		
		1	Operating		
W42	Timer LC count source selection bit	0	Bit 4 (T34) of timer 3		
		1	System clock (STCK)		
W41	CNTR output auto-control circuit	0	CNTR output auto-control circuit not selected CNTR output auto-control circuit selected		
	selection bit	1			
W40	CNTR pin input count edge selection bit	0	Falling edge		
		1	Rising edge		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} This function is valid only when the timer 1 count start synchronous circuit is selected (I10="1").
3: Port C output is invalid when CNTR input is selected for the timer 1 count source.

(1) Timer control registers

· Timer control register PA

Register PA controls the count operation of prescaler. Set the contents of this register through register A with the TPAA instruction.

· Timer control register W1

Register W1 controls the selection of timer 1 count auto-stop circuit, and the count operation and count source of timer 1. Set the contents of this register through register A with the TW1A instruction. The TAW1 instruction can be used to transfer the contents of register W1 to register A.

• Timer control register W2

Register W2 controls the CNTR output, the expansion of "H" interval of PWM output, and the count operation and count source of timer 2. Set the contents of this register through register A with the TW2A instruction. The TAW2 instruction can be used to transfer the contents of register W2 to register A.

· Timer control register W3

Register W3 controls the count operation and count source of timer 3. Set the contents of this register through register A with the TW5A instruction. The TAW3 instruction can be used to transfer the contents of register W3 to register A.

• Timer control register W4

Register W4 controls the operation and count source of timer LC, the selection of CNTR output auto-control circuit and the count edge of CNTR input. Set the contents of this register through register A with the TW4A instruction. The TAW4 instruction can be used to transfer the contents of register W4 to register A..

(2) Prescaler (interrupt function)

Prescaler is an 8-bit binary down counter with the prescaler reload register RPS. Data can be set simultaneously in prescaler and the reload register RPS with the TPSAB instruction. Data can be read from reload register RPS with the TABPS instruction.

Stop counting and then execute the TPSAB or TABPS instruction to read or set prescaler data.

Prescaler starts counting after the following process;

① set data in prescaler, and

2 set the bit 0 of register PA to "1."

When a value set in reload register RPS is n, prescaler divides the count source signal by n + 1 (n = 0 to 255).

Count source for prescaler is the instruction clock (INSTCK).

Once count is started, when prescaler underflows (the next count pulse is input after the contents of prescaler becomes "0"), new data is loaded from reload register RPS, and count continues (auto-reload function).

The output signal (ORCLK) of prescaler can be used for timer 1, 2, and 3 count sources.

(3) Timer 1 (interrupt function)

Timer 1 is an 8-bit binary down counter with the timer 1 reload register (R1). Data can be set simultaneously in timer 1 and the reload register (R1) with the T1AB instruction. Data can be written to reload register (R1) with the TR1AB instruction. Data can be read from timer 1 with the TAB1 instruction.

Stop counting and then execute the T1AB or TAB1 instruction to read or set timer 1 data.

When executing the TR1AB instruction to set data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.

Timer 1 starts counting after the following process;

- ① set data in timer 1
- 2 set count source by bits 0 and 1 of register W1, and
- 3 set the bit 2 of register W1 to "1."

When a value set in reload register R1 is n, timer 1 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes "0"), the timer 1 interrupt request flag (T1F) is set to "1," new data is loaded from reload register R1, and count continues (auto-reload function).

INT pin input can be used as the start trigger for timer 1 count operation by setting the bit 0 of register I1 to "1."

Also, in this time, the auto-stop function by timer 1 underflow can be performed by setting the bit 3 of register W1 to "1."

(4) Timer 2 (interrupt function)

Timer 2 is an 8-bit binary down counter with two timer 2 reload registers (R2L, R2H). Data can be set simultaneously in timer 2 and the reload register R2L with the T2AB instruction. Data can be set in the reload register R2H with the T2HAB instruction. The contents of reload register R2L set with the T2AB instruction can be set to timer 2 again with the T2R2L instruction. Data can be read from timer 2 with the TAB2 instruction.

Stop counting and then execute the T2AB or TAB2 instruction to read or set timer 2 data.

When executing the T2HAB instruction to set data to reload register R2H while timer 2 is operating, avoid a timing when timer 2 underflows

Timer 2 starts counting after the following process;

- ① set data in timer 2
- 2 set count source by bit 0 of register W2, and
- 3 set the bit 1 of register W2 to "1."

When a value set in reload register R2L is n, timer 2 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes "0"), the timer 2 interrupt request flag (T2F) is set to "1," new data is loaded from reload register R2L, and count continues (auto-reload function).

When bit 3 of register W2 is set to "1", timer 2 reloads data from reload register R2L and R2H alternately each underflow.

Timer 2 generates the PWM signal (PWMOUT) of the "L" interval set as reload register R2L, and the "H" interval set as reload register R2H. The PWM signal (PWMOUT) is output from CNTR pin.

When bit 2 of register W2 is set to "1" at this time, the interval (PWM signal "H" interval) set to reload register R2H for the counter of timer 2 is extended for a half period of count source.

In this case, when a value set in reload register R2H is n, timer 2 divides the count source signal by n + 1.5 (n = 1 to 255).

When this function is used, set "1" or more to reload register R2H. When bit 1 of register W4 is set to "1", the PWM signal output to CNTR pin is switched to valid/invalid each timer 1 underflow. However, when timer 1 is stopped (bit 2 of register W1 is cleared to "0"), this function is canceled.

Even when bit 1 of a register W2 is cleared to "0" in the "H" interval of PWM signal, timer 2 does not stop until it next timer 2 underflow. When clearing bit 1 of register W2 to "0" to stop timer 2, avoid a timing when timer 2 underflows.

(5) Timer 3 (interrupt function)

Timer 3 is a 16-bit binary down counter.

Timer 3 starts counting after the following process;

- ① set count value by bits 0 and 1 of register W3,
- 2 set count source by bit 3 of register W3, and
- 3 set the bit 2 of register W3 to "1."

Once count is started, when timer 3 underflows (the set count value is counted), the timer 3 interrupt request flag (T3F) is set to "1", and count continues.

Bit 4 of timer 3 can be used as the timer LC count source for the LCD clock generating.

When bit 2 of register W3 is cleared to "0", timer 3 is initialized to "FFF16" and count is stopped.

Timer 3 can be used as the counter for clock because it can be operated at clock operating mode (POF instruction execution). When timer 3 underflow occurs at clock operating mode, system returns from the power down state.

When operating timer 3 during clock operating mode, set 1 cycle or more of count source to the following period; from setting bit 2 of register W3 to "1" till executing the POF instruction.

(6) Timer LC

Timer LC is a 4-bit binary down counter with the timer LC reload register (RLC). Data can be set simultaneously in timer LC and the reload register (RLC) with the TLCA instruction. Data cannot be read from timer LC. Stop counting and then execute the TLCA instruction to set timer LC data.

Timer LC starts counting after the following process;

- ① set data in timer LC,
- ② select the count source with the bit 2 of register W4, and
- 3 set the bit 3 of register W4 to "1."

When a value set in reload register RLC is n, timer LC divides the count source signal by n + 1 (n = 0 to 15).

Once count is started, when timer LC underflows (the next count pulse is input after the contents of timer LC becomes "0"), new data is loaded from reload register RLC, and count continues (auto-reload function).

Timer LC underflow signal divided by 2 can be used for the LCD clock.

(7) Timer input/output pin (C/CNTR pin)

CNTR pin is used to input the timer 1 count source and output the PWM signal generated by timer 2. When the PWM signal is output from C/CNTR pin, set "0" to the output latch of port C.

The selection of CNTR output signal can be controlled by bit 3 of register W2.

When the CNTR input is selected for timer 1 count source, timer 1 counts the waveform of CNTR input selected by bit 0 of register W4. Also, when the CNTR input is selected, the output of port C is invalid (high-impedance state).

(8) Timer interrupt request flags (T1F, T2F, T3F)

Each timer interrupt request flag is set to "1" when each timer underflows. The state of these flags can be examined with the skip instructions (SNZT1, SNZT2, SNZT3).

Use the interrupt control register V1, V2 to select an interrupt or a skip instruction.

An interrupt request flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with a skip instruction.

(9) Count start synchronization circuit (timer 1)

Timer 1 has the count start synchronous circuit which synchronizes the input of INT pin, and can start the timer count operation.

Timer 1 count start synchronous circuit function is selected by setting the bit 0 of register I1 to "1" and the control by INT pin input can be performed.

When timer 1 count start synchronous circuit is used, the count start synchronous circuit is set, the count source is input to each timer by inputting valid waveform to INT pin.

The valid waveform of INT pin to set the count start synchronous circuit is the same as the external interrupt activated condition.

Once set, the count start synchronous circuit is cleared by clearing the bit I10 to "0" or reset.

However, when the count auto-stop circuit is selected, the count start synchronous circuit is cleared (auto-stop) at the timer 1 underflow.

(10) Count auto-stop circuit (timer 1)

Timer 1 has the count auto-stop circuit which is used to stop timer 1 automatically by the timer 1 underflow when the count start synchronous circuit is used.

The count auto-stop cicuit is valid by setting the bit 3 of register W1 to "1". It is cleared by the timer 1 underflow and the count source to timer 1 is stopped.

This function is valid only when the timer 1 count start synchronous circuit is selected.

(11) Precautions

Note the following for the use of timers.

Prescaler

Stop counting and then execute the TABPS instruction to read from prescaler data.

Stop counting and then execute the TPSAB instruction to set prescaler data.

· Timer count source

Stop timer 1, 2, and LC counting to change its count source.

· Reading the count value

Stop timer 1 or 2 counting and then execute the data read instruction (TAB1, TAB2) to read its data.

· Writing to the timer

Stop timer 1, 2 or LC counting and then execute the data write instruction (T1AB, T2AB, TLCA) to write its data.

· Writing to reload register R1, R2H

When writing data to reload register R1 or reload regiser R2H while timer 1 or timer 2 is operating, avoid a timing when timer 1 or timer 2 underflows.

• Timer 2

Avoid a timing when timer 2 underflows to stop timer 2 at PWM output function used.

When "H" interval extension function of the PWM signal is set to be "valid", set "1" or more to reload register R2H.

• Timer 3

Stop timer 3 counting to change its count source.

• Timer input/output pin

Set the port C output latch to "0" to output the PWM signal from C/CNTR pin.

Prescaler and Timer 1 count start timing and count time when operation starts

Count starts from the first rising edge of the count source (2) after Prescaler and Timer 1 operations start (1).

Time to first underflow (3) is shorter (for up to 1 period of the count source) than time among next underflow (4) by the timing to start the timer and count source operations after count starts. When selecting CNTR input as the count source of Timer 1,

When selecting CNTR input as the count source of Timer 1, Timer 1 operates synchronizing with the falling edge of CNTR input.

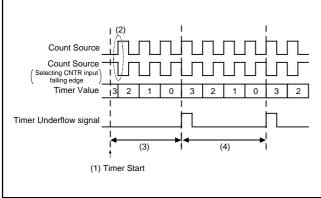


Fig. 24 Timer count start timing and count time when operation starts (Prescaler and Timer 1)

Timer 2 and Timer LC count start timing and count time when operation starts

Count starts from the rising edge (2) after the first falling edge of the count source, after Timer 2 and Timer LC operations start (1). Time to first underflow (3) is different from time among next underflow (4) by the timing to start the timer and count source operations after count starts.

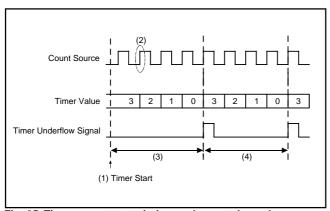
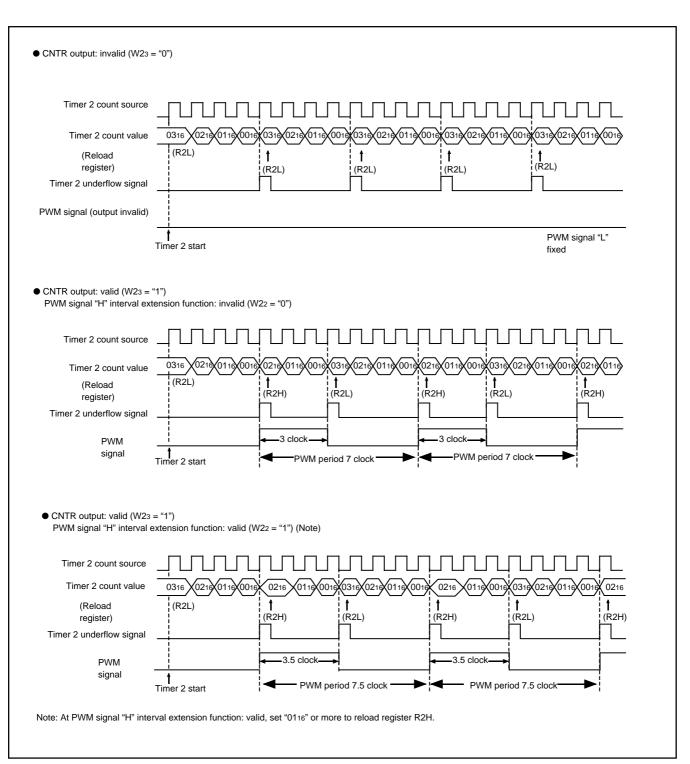
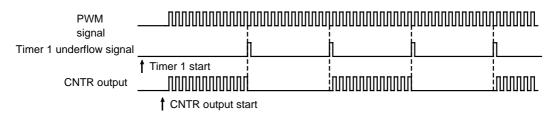
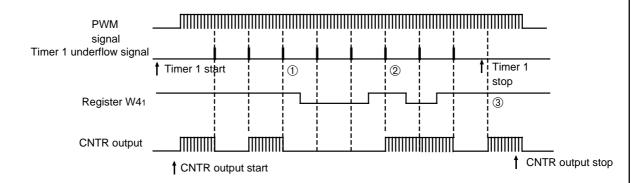


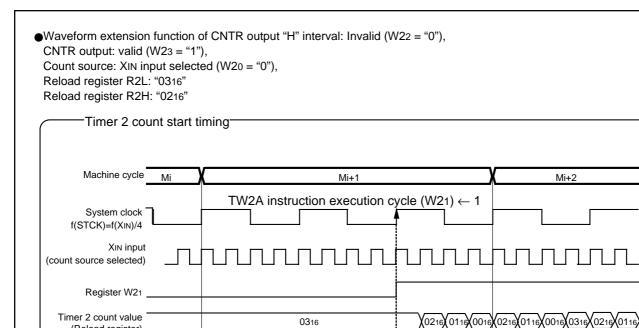
Fig. 25 Timer count start timing and count time when operation starts (Timer 2 and Timer LC)

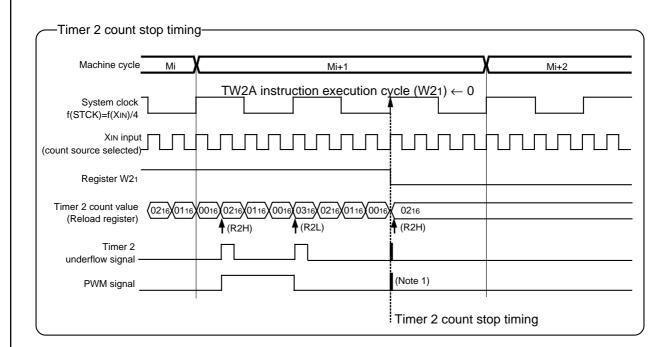




Fig. 26 Timer 2 operation (reload register R2L: "0316", R2H: "0216")

CNTR output auto-control circuit by timer 1 is selected.

CNTR output: valid (W23 = "1")
 CNTR output auto-control circuit selected (W41 = "1")


CNTR output auto-control function


- ① When the CNTR output auto-control function is set to be invalid while the CNTR output is invalid, the CNTR output invalid state is retained.
- When the CNTR output auto-control function is set to be invalid while the CNTR output is valid, the CNTR output valid state is retained.
- ③ When timer 1 is stopped, the CNTR output auto-control function becomes invalid.

Note: When the PWM signal is output from C/CNTR pin, set the output latch of port C to "0".

Fig. 27 CNTR output auto-control function by timer 1

(R2L)

↑(R2H)

Timer 2 count start timing

↑(R2L)

Fig. 28 Timer 2 count start/stop timing

(Reload register)

Timer 2 underflow signal

PWM signal

Notes 1: In order to stop timer 2 at CNTR output valid (W23 = "1"), avoid a timing when timer 2 underflows.

2: At CNTR output valid, timer 2 stops after "H" interval of PWM signal set by reload register R2H is output.

If these timings overlap, a hazard may occur in a CNTR output waveform.

WATCHDOG TIMER

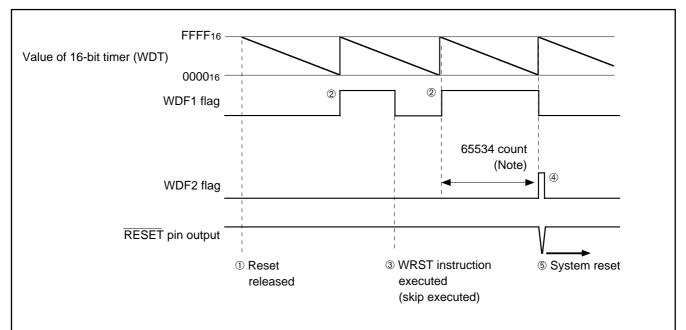
Watchdog timer provides a method to reset the system when a program run-away occurs. Watchdog timer consists of timer WDT(16-bit binary counter), watchdog timer enable flag (WEF), and watchdog timer flags (WDF1, WDF2).

The timer WDT downcounts the instruction clocks as the count source from "FFFF16" after system is released from reset.

After the count is started, when the timer WDT underflow occurs (after the count value of timer WDT reaches "000016," the next count pulse is input), the WDF1 flag is set to "1."

If the WRST instruction is never executed until the timer WDT underflow occurs (until timer WDT counts 65534), WDF2 flag is set to "1," and the RESET pin outputs "L" level to reset the microcomputer.

Execute the WRST instruction at each period of 65534 machine cycle or less by software when using watchdog timer to keep the microcomputer operating normally.


When the WEF flag is set to "1" after system is released from reset, the watchdog timer function is valid.

When the DWDT instruction and the WRST instruction are executed continuously, the WEF flag is cleared to "0" and the watchdog timer function is invalid.

The WEF flag is set to "1" at system reset or RAM back-up mode. The WRST instruction has the skip function. When the WRST instruction is executed while the WDF1 flag is "1", the WDF1 flag is cleared to "0" and the next instruction is skipped.

When the WRST instruction is executed while the WDF1 flag is "0", the next instruction is not skipped.

The skip function of the WRST instruction can be used even when the watchdog timer function is invalid.

- ① After system is released from reset (= after program is started), timer WDT starts count down.
- 2 When timer WDT underflow occurs, WDF1 flag is set to "1."
- ③ When the WRST instruction is executed, WDF1 flag is cleared to "0," the next instruction is skipped.
- When timer WDT underflow occurs while WDF1 flag is "1," WDF2 flag is set to "1" and the watchdog reset signal is output.
- ⑤ The output transistor of RESET pin is turned "ON" by the watchdog reset signal and system reset is executed.

Note: The number of count is equal to the number of cycle because the count source of watchdog timer is the instruction clock.

Fig. 29 Watchdog timer function

When the watchdog timer is used, clear the WDF1 flag at the period of 65534 machine cycles or less with the WRST instruction. When the watchdog timer is not used, execute the DWDT instruction and the WRST instruction continuously (refer to Figure 30). The watchdog timer is not stopped with only the DWDT instruction. The contents of WDF1 flag and timer WDT are initialized at the power down mode.

When using the watchdog timer and the power down mode, initialize the WDF1 flag with the WRST instruction just before the microcomputer enters the power down state (refer to Figure 31). The watchdog timer function is valid after system is returned from the power down. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously every system is returned from the power down, and stop the watchdog timer function.

```
WRST; WDF1 flag cleared

DI
DWDT; Watchdog timer function enabled/disabled
WRST; WEF and WDF1 flags cleared
```

Fig. 30 Program example to start/stop watchdog timer

```
WRST; WDF1 flag cleared
NOP
DI; Interrupt disabled
EPOF; POF instruction enabled
POF

U
Oscillation stop
```

Fig. 31 Program example to enter the mode when using the watchdog timer

LCD FUNCTION

The 4552 Group has an LCD (Liquid Crystal Display) controller/driver. When the proper voltage is applied to LCD power supply input pins (VLC1–VLC3) and data are set in timer control register (W4), timer LC, LCD control registers (L1, L2, L3, C1, C2), and LCD RAM, the LCD controller/driver automatically reads the display data and controls the LCD display by setting duty and bias. 4 common signal output pins and 28 segment signal output pins can be used to drive the LCD. By using these pins, up to 112 segments (when 1/4 duty and 1/3 bias are selected) can be controlled to display. The LCD power input pins (VLC1–VLC3) are also used as pins SEG0–SEG2. When SEG0–SEG2 are selected, the internal power (VDD) is used for the LCD power.

(1) Duty and bias

There are 3 combinations of duty and bias for displaying data on the LCD. Use bits 0 and 1 of LCD control register (L1) to select the proper display method for the LCD panel being used.

- 1/2 duty, 1/2 bias
- 1/3 duty, 1/3 bias
- 1/4 duty, 1/3 bias

Table 11 Duty and maximum number of displayed pixels

	-	
Duty	Maximum number of displayed pixels	Used COM pins
1/2	56 segments	COM ₀ , COM ₁ (Note)
1/3	84 segments	COM0-COM2 (Note)
1/4	112 segments	COM0-COM3

Note: Leave unused COM pins open.

(2) LCD clock control

The LCD clock is determined by the timer LC count source selection bit (W42), timer LC control bit (W43), and timer LC. Accordingly, the frequency (F) of the LCD clock is obtained by the following formula. Numbers (① to ③) shown below the formula correspond to numbers in Figure 32, respectively.

 When using the prescaler output (ORCLK) as timer LC count source (W42="1")

$$F = ORCLK \times \frac{1}{LC+1} \times \frac{1}{2}$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

• When using the bit 4 of timer 3 as timer LC count source (W42="0")

$$F = \begin{array}{c|c} T34 & \times & \frac{1}{LC+1} & \times & \frac{1}{2} \\ \hline ① & ② & ③ \\ \hline \end{array}$$

[LC: 0 to 15]

The frame frequency and frame period for each display method can be obtained by the following formula:

Frame frequency =
$$\frac{F}{n}$$
 (Hz)

Frame period =
$$\frac{n}{F}$$
 (s)

F: LCD clock frequency

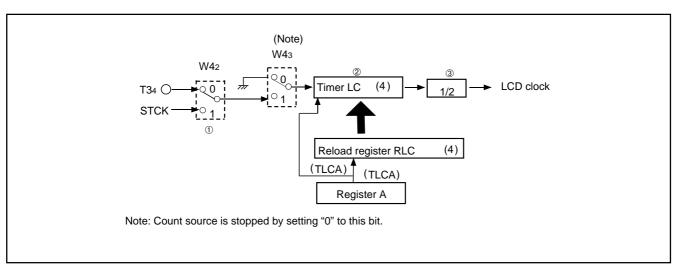


Fig. 32 LCD clock control circuit structure

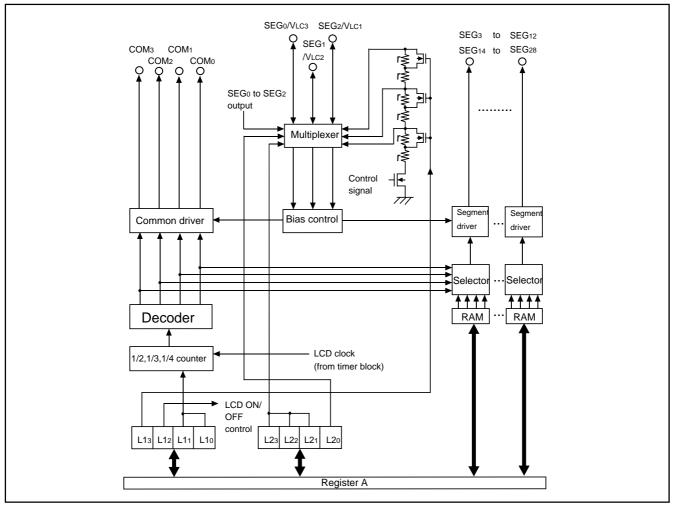


Fig. 33 LCD controller/driver

(3) LCD RAM

RAM contains areas corresponding to the liquid crystal display. When "1" is written to this LCD RAM, the display pixel corresponding to the bit is automatically displayed.

(4) LCD drive waveform

When "1" is written to a bit in the LCD RAM data, the voltage difference between common pin and segment pin which correspond to the bit automatically becomes IVLC3I and the display pixel at the cross section turns on.

When returning from reset, and in the RAM back-up mode, a display pixel turns off because every segment output pin and common output pin becomes VLC3 level.

Z		1														
Х			0				1				2		3			
Y Bits	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	(
8	SEG ₀	SEG ₀	SEG ₀	SEG ₀	SEG8	SEG8	SEG8	SEG8	SEG ₁₆	SEG ₁₆	SEG16	SEG16	SEG24	SEG24	SEG24	SE
9	SEG1	SEG1	SEG1	SEG1	SEG9	SEG9	SEG9	SEG9	SEG ₁₇	SEG17	SEG17	SEG17	SEG25	SEG25	SEG25	SEC
10	SEG2	SEG2	SEG2	SEG2	SEG ₁₀	SEG ₁₀	SEG ₁₀	SEG ₁₀	SEG18	SEG18	SEG18	SEG18	SEG26	SEG26	SEG26	SEC
11	SEG3	SEG3	SEG3	SEG3	SEG11	SEG11	SEG11	SEG11	SEG19	SEG19	SEG19	SEG19	SEG27	SEG27	SEG27	SEC
12	SEG4	SEG4	SEG4	SEG4	SEG12	SEG ₁₂	SEG ₁₂	SEG ₁₂	SEG ₂₀	SEG ₂₀	SEG ₂₀	SEG ₂₀	SEG28	SEG28	SEG28	SEC
13	SEG5	SEG5	SEG5	SEG5					SEG21	SEG21	SEG21	SEG21				_
14	SEG6	SEG6	SEG6	SEG6	SEG14	SEG14	SEG14	SEG14	SEG22	SEG22	SEG22	SEG22				_
15	SEG7	SEG7	SEG7	SEG7	SEG15	SEG ₁₅	SEG ₁₅	SEG ₁₅	SEG23	SEG23	SEG23	SEG23				_
СОМ	СОМз	COM ₂	COM ₁	COM ₀	СОМз	COM ₂	COM ₁	COM ₀	СОМз	COM ₂	COM ₁	COM ₀	СОМз	COM ₂	COM ₁	СО

Fig. 34 LCD RAM map

" is not the LCD display RAM.

Note: The area marked "

Table 12 LCD control registers (1)

	LCD control register L1		at	reset : 00002	at power down	: state retained	R/W TAL1/TL1A
L13	Internal dividing resistor for LCD power	()	2r X 3, 2r X 2			
L I3	supply selection bit (Note 2)	1	1	r X 3, r X 2			
1.40)	Stop			
L12	LCD control bit	1	1	Operating			
			L10	Duty		Bias	;
L11	LCD duty and bias selection bits	0	0		Not avai	lable	
		0	1	1/2		1/2	
L10		1	0	1/3		1/3	
LIU		1	1	1/4		1/3	

	LCD control register L2		reset : 00002	at power down : state retained	W TL2A
L23	SEGo/VLC3 pin function switch bit (Note 3)	0	SEG ₀		
LZ3	3E30/VEC3 pirrunction switch bit (Note 3)	1	VLC3		
L22	SEG1/VLC2 pin function switch bit (Note 4)	0	SEG1		
LZ2		1	VLC2		
L21	SECON/LOS pin function quitab bit (Note 4)	0	SEG ₂		
LZ1	SEG2/VLC1 pin function switch bit (Note 4)	1	VLC1		
L20	Internal dividing resistor for LCD power		Internal dividing res	sistor valid	
L20	supply control bit	1	Internal dividing resistor invalid		

	LCD control register L3		reset : 11112	at power down : state retained	W TL3A
L33	P23/SEG20 pin function switch bit	0	SEG20		
L33	F23/3LG20 piii iunciion switch bit	1	P23		
L32	P22/SEG19 pin function switch bit	0	SEG19		
L32		1	P22		
L31	P21/SEG18 pin function switch bit	0	SEG18		
L31		1	P21		
1.20	P20/SEG17 pin function switch bit	0	SEG17	·	
L30		1	P20		

^{2: &}quot;r (resistor) multiplied by 3" is used at 1/3 bias, and "r multiplied by 2" is used at 1/2 bias.

^{3:} VLC3 is connected to VDD internally when SEG0 pin is selected.

^{4:} Use internal dividing resistor when SEG1 and SEG2 pins are selected.

Table 12 LCD control registers (2)

LCD control register C1		at reset : 11112		at power down : state retained	W TC1A
C13	P03/SEG24 pin function switch bit	0	SEG24		
C13	F 03/3L G24 pin function Switch bit	1	P03		
C12	P02/SEG23 pin function switch bit	0	SEG23		
C12		1	P02		
C11	P01/SEG22 pin function switch bit	0	SEG22		
CII	P01/SEG22 pin function switch bit	1	P01		
C10	P00/SEG21 pin function switch bit	0	SEG21		
L C10	P00/SEG21 pin function switch bit	1	P00		

LCD control register C2		at reset : 11112		at power down : state retained	W TC2A
C23	P13/SEG28 pin function switch bit	0	SEG28		
	1 13/3E 328 piii function switch bit	1	P13		
C22	P12/SEG27 pin function switch bit	0	SEG27		
622		1	P12		
C21	P11/SEG26 pin function switch bit	0	SEG26		
C21	P11/SEG26 pin function switch bit	1	P11		
C20	P10/SEG25 pin function switch bit	0	SEG25		
C20		1	P10		·



Fig. 35 LCD controller/driver structure

(5) LCD power supply circuit

Select the LCD power supply circuit suitable for the using LCD panel.

The LCD power supply circuit is fixed by the followings;

- The internal dividing resistor is controlled by bit 0 of register L2.
- The internal dividing resistor is selected by bit 3 of register L1.
- The bias condition is selected by bits 0 and 1 of register L1.

●Internal dividing resistor

The 4552 Group has the internal dividing resistor for LCD power supply.

When bit 0 of register L2 is set to "0", the internal dividing resistor is valid. However, when the LCD is turned off by setting bit 2 of register L1 to "0", the internal dividing resistor is turned off.

The same six resistor (r) is prepared for the internal dividing resistor. According to the setting value of bit 3 of register L1 and using bias condition, the resistor is prepared as follows;

• L13 = "0", 1/3 bias used: 2r X 3 = 6r

• L13 = "0", 1/2 bias used: 2r X 2 = 4r

• L13 = "1", 1/3 bias used: r X 3 = 3r

• L13 = "1", 1/2 bias used: r X 2 = 2r

● VLC3/SEG0 pin

The selection of VLC3/SEG0 pin function is controlled with the bit 3 of register L2.

When the VLC3 pin function is selected, apply voltage of VLC3 < VDD to the pin externally.

When the SEGo pin function is selected, $\mbox{VLC3}$ is connected to \mbox{VDD} internally.

● VLC2/SEG1, VLC1/SEG2 pin

The selection of VLC2/SEG1 pin function is controlled with the bit 2 of register L2.

The selection of VLC1/SEG2 pin function is controlled with the bit 1 of register L2.

When the VLC2 pin and VLC1 pin functions are selected and the internal dividing resistor is not used, apply voltage of 0<VLC1<VLC2<VLC3 to these pins. Short the VLC2 pin and VLC1 pin at 1/2 bias.

When the VLC2 pin and VLC1 pin functions are selected and the internal dividing resistor is used, the dividing voltage value generated internally is output from the VLC1 pin and VLC2 pin. The VLC2 pin and VLC1 pin have the same electric potential at 1/2 bias. When SEG1 and SEG2 pin functions are selected, use the internal dividing resistor. In this time, VLC2 and VLC1 are connected to the generated dividingg voltage.

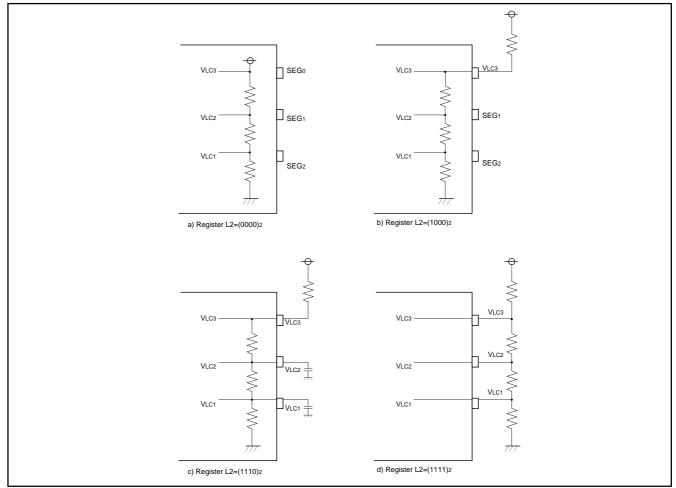


Fig. 36 LCD power supply circuit example (1/3 bias condition selected)

RESET FUNCTION

System reset is performed by applying "L" level to RESET pin for 1 machine cycle or more when the following condition is satisfied; the value of supply voltage is the minimum value or more of the recommended operating conditions.

Then when "H" level is applied to $\overline{\text{RESET}}$ pin, software starts from address 0 in page 0.

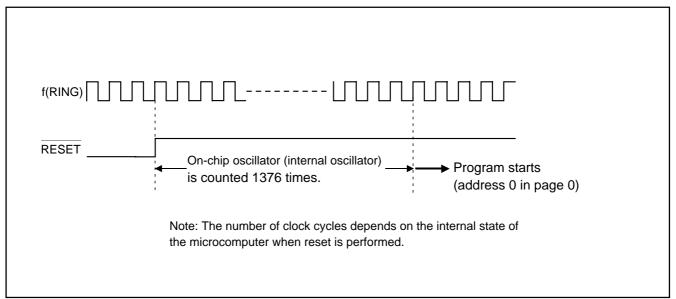


Fig. 37 Reset release timing

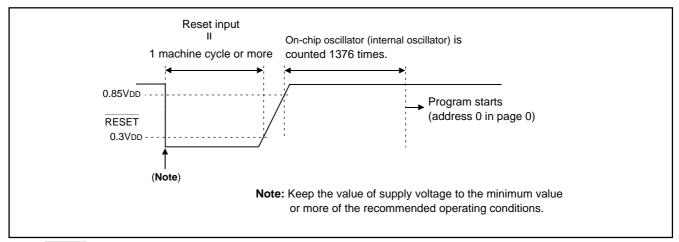


Fig. 38 RESET pin input waveform and reset operation

(1) Power-on reset

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, set the time for the supply voltage to rise from 0 V to the minimum voltage of recommended operating conditions to 100 μs or less.

If the rising time exceeds 100 μ s, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

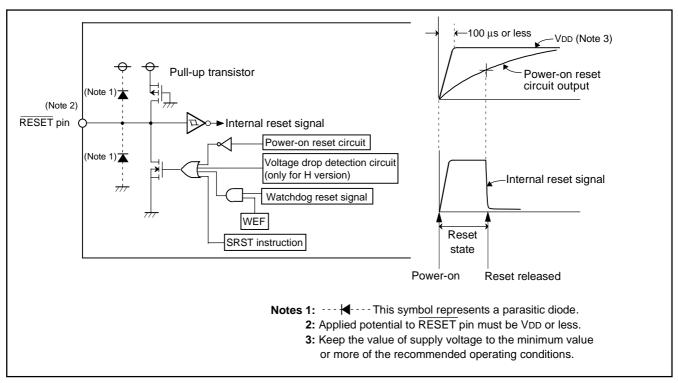


Fig. 39 Structure of reset pin and its peripherals,, and power-on reset operation

Table 13 Port state at reset

Name	Function	State
D0-D4	D0-D4	High-impedance (Notes 1, 2)
D5/INT	D5	High-impedance (Notes 1, 2)
XCIN/D6, XCOUT/D7	XCIN, XCOUT	Sub-clock input
P00/SEG21-P03/SEG24	P00-P03	High-impedance (Notes 1, 2, 3)
P10/SEG25-P13/SEG28	P10-P13	High-impedance (Notes 1, 2, 3)
P20/SEG17-P23/SEG20	P20-P23	High-impedance (Notes 1, 2, 3)
SEG0/VLC3-SEG2/VLC1	SEG0-SEG2	VLC3 (VDD) level
SEG3-SEG12, SEG14-SEG16	SEG3-SEG12, SEG14-SEG16	VLC3 (VDD) level
COM0-COM3	COM0-COM3	VLC3 (VDD) level
C/CNTR	С	"L" (Vss) level

Notes 1: Output latch is set to "1."

- 2: Output structure is N-channel open-drain.
- 3: Pull-up transistor is turned OFF.

(2) Internal state at reset

Figure 40 shows internal state at reset (they are the same after system is released from reset). The contents of timers, registers, flags and RAM except shown in Figure 40 are undefined, so set the initial value to them.

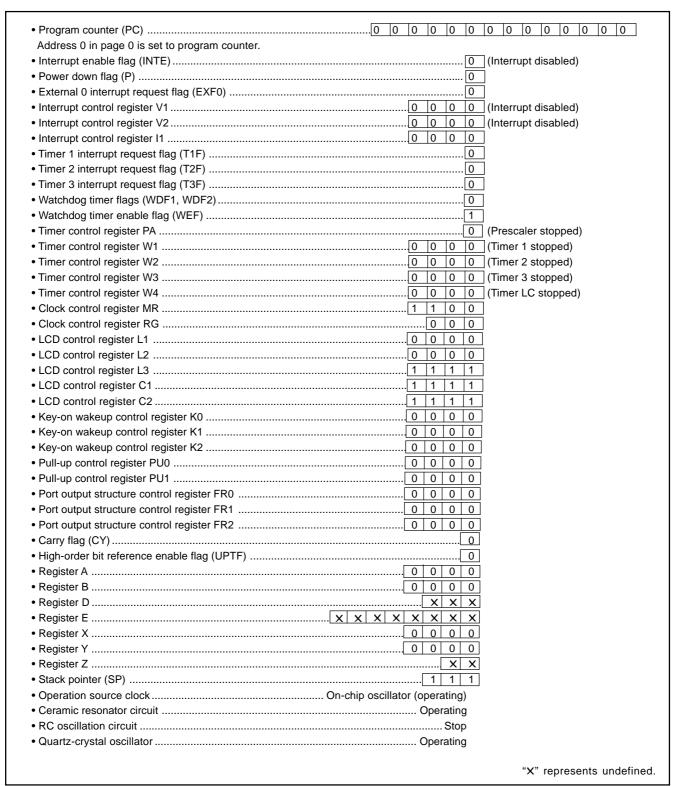


Fig. 40 Internal state at reset

VOLTAGE DROP DETECTION CIRCUIT (only for H version)

The built-in voltage drop detection circuit is designed to detect a drop in voltage and to reset the microcomputer if the supply voltage drops below a set value.

(1) SVDE instruction

When the SVDE instruction is executed, the voltage drop detection circuit is valid even after system enters into the power down mode. The SVDE instruction can be executed only once.

In order to release the execution of the SVDE instruction, the system reset is required.

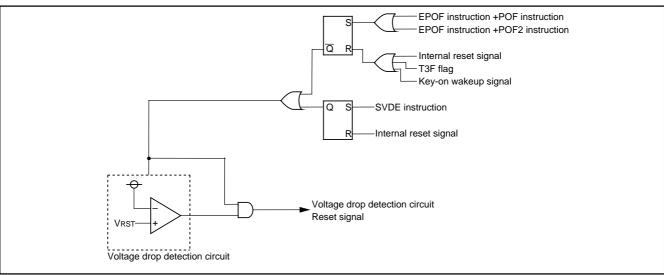


Fig. 41 Voltage drop detection reset circuit

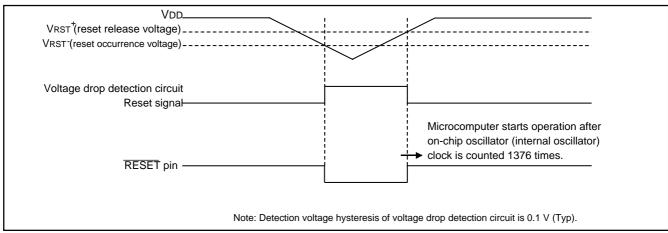


Fig. 42 Voltage drop detection circuit operation waveform

(2) Note on voltage drop detection circuit

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.

When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and regoes up (ex. battery exchange of an application product), depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 43);

supply voltage does not fall below to VRST, and its voltage re-goes up with no reset.

In such a case, please design a system which supply voltage is once reduced below to VRST and re-goes up after that.

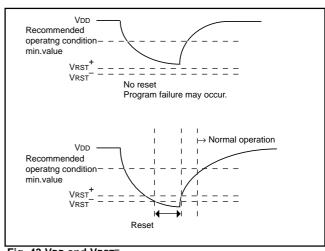


Fig. 43 VDD and VRST

POWER DOWN FUNCTION

The 4552 Group has 2-type power down functions.

System enters into each power down state by executing the following instructions.

Clock operating mode	EPOF and POF instructions
RAM back-up mode	EPOF and POF2 instructions

When the EPOF instruction is not executed before the POF or POF2 instruction is executed, these instructions are equivalent to the NOP instruction.

(1) Clock operating mode

The following functions and states are retained.

- RAM
- Reset circuit
- XCIN-XCOUT oscillation
- · LCD display
- Timer 3

(2) RAM back-up mode

The following functions and states are retained.

- RAM
- Reset circuit

(3) Warm start condition

The system returns from the power down state when;

- External wakeup signal is input
- Timer 3 underflow occurs

in the power down mode.

In either case, the CPU starts executing the software from address 0 in page 0. In this case, the P flag is "1."

(4) Cold start condition

The CPU starts executing the software from address 0 in page 0 when:

- reset pulse is input to RESET pin,
- reset by watchdog timer is performed, or
- reset by the voltage drop detection circuit is performed. In this case, the P flag is "0."

(5) Identification of the start condition

Warm start or cold start can be identified by examining the state of the power down flag (P) with the SNZP instruction. The warm start condition from the clock operating mode can be identified by examining the state of T3F flag.

Table 15 Functions and states retained at power down mode

	Power do	wn mode
Function	Clock	RAM
December (DO) manipulation A. B.	operating	back-up
Program counter (PC), registers A, B,	×	×
carry flag (CY), stack pointer (SP) (Note 2)	_	
Contents of RAM	0	0
Interrupt control registers V1, V2	X	X
Interrupt control register I1	0	0
Selected oscillation circuit	0	0
Clock control register MR, RG	0	0
Timer 1 to timer 2 functions	(Note 3)	(Note 3)
Timer 3 function	0	(Note 3)
Timer LC function	0	(Note 3)
Watchdog timer function	X (Note 4)	X (Note 4)
Timer control registers PA	×	×
Timer control registers W1 to W4	0	0
LCD display function	0	(Note 5)
LCD control registers L1 to L3, C1, C2	0	0
Voltage drop detection circuit	(Note 6)	(Note 6)
Port level	(Note 7)	(Note 7)
Pull-up control registers PU0, PU1	0	0
Key-on wakeup control registers K0 to K2	0	0
Port output structure control registers	0	0
FR0 to FR2		
External interrupt request flag	×	×
(EXF0)		
Timer interrupt request flags (T1F, T2F)	(Note 3)	(Note 3)
Timer interrupt request flag (T3F)	0	(Note 3)
Interrupt enable flag (INTE)	X	X
Watchdog timer flags (WDF1, WDF2)	X (Note 4)	X (Note 4)
Watchdog timer enable flag (WEF)	X (Note 4)	X (Note 4)

Notes 1:"O" represents that the function can be retained, and "X" represents that the function is initialized.

Registers and flags other than the above are undefined at RAM back-up, and set an initial value after returning.

- 2: The stack pointer (SP) points the level of the stack register and is initialized to "7" at RAM back-up.
- 3: The state of the timer is undefined.
- 4: Initialize the watchdog timer with the WRST instruction, and then go into the power down state.
- 5: LCD is turned off.
- 6: When the SVDE instruction is executed, this function is valid at power down.
- 7: In the RAM back-up mode, C/CNTR pin outputs "L" level. However, when the CNTR input is selected (W11, W10="11"), C/CNTR pin is in an input enabled state (output = high-impedance). Other ports retain their respective output levels.

(6) Return signal

An external wakeup signal or timer 3 interrupt request flag (T3F) is used to return from the clock operating mode.

An external wakeup signal is used to return from the RAM back-up mode because the oscillation is stopped.

Table 16 shows the return condition for each return source.

(7) Control registers

- · Key-on wakeup control register K0
 - Register K0 controls the ports P0 and P1 key-on wakeup function. Set the contents of this register through register A with the TK0A instruction. In addition, the TAK0 instruction can be used to transfer the contents of register K0 to register A.
- Key-on wakeup control register K1
 - Register K1 controls the return condition and the selection of valid waveform/level of port P1. Set the contents of this register through register A with the TK1A instruction. In addition, the TAK1 instruction can be used to transfer the contents of register K0 to register A.
- Key-on wakeup control register K2
 Register K2 controls the INT pin key-on wakeup function and the
 selection of return codition. Set the contents of this register
 through register A with the TK2A instruction. In addition, the TAK2
 instruction can be used to transfer the contents of register K2 to
 register A.

- Pull-up control register PU0
- Register PU0 controls the ON/OFF of the port P0 pull-up transistor. Set the contents of this register through register A with the TPU0A instruction. In addition, the TAPU0 instruction can be used to transfer the contents of register PU0 to register A.
- Pull-up control register PU1
- Register PU1 controls the ON/OFF of the port P1 pull-up transistor. Set the contents of this register through register A with the TPU1A instruction. In addition, the TAPU1 instruction can be used to transfer the contents of register PU1 to register A.
- External interrupt control register I1
- Register I1 controls the valid waveform of the external 0 interrupt, the input control of INT pin and the return input level. Set the contents of this register through register A with the TI1A instruction. In addition, the TAI1 instruction can be used to transfer the contents of register I1 to register A.

Table 16 Return source and return condition

	Return source	Return condition	Remarks
ıal	Ports P00–P03	Return by an external falling edge ("H" \rightarrow "L").	The key-on wakeup function can be selected by two port unit.
wakeup signal		Return by an external "H" level or "L" level input, or rising edge ("L"→"H") or falling edge ("H"→"L"). Return by an external "L" level input.	The key-on wakeup function can be selected by two port unit. Select the return level ("L" level or "H" level) and return condition (return by level or edge) with register K1 according to the external state before going into the power down state.
External w	INT pin	Return by an external "H" level or "L" level input, or rising edge ("L" \rightarrow "H") or falling edge ("H" \rightarrow "L").	Select the return level ("L" level or "H" level) with register I1 and return condition (return by level or edge) with register K2 according to the external state before going into the power down state.
l û		When the return level is input, the interrupt request flag (EXF0) is not set.	
		Return by timer 3 underflow or by setting T3F to "1".	Clear T3F with the SNZT3 instruction before system enters into the power down state.
		It can be used in the clock operating mode.	When system enters into the power down state while T3F is "1", system returns from the state immediately because it is recognized as return condition.

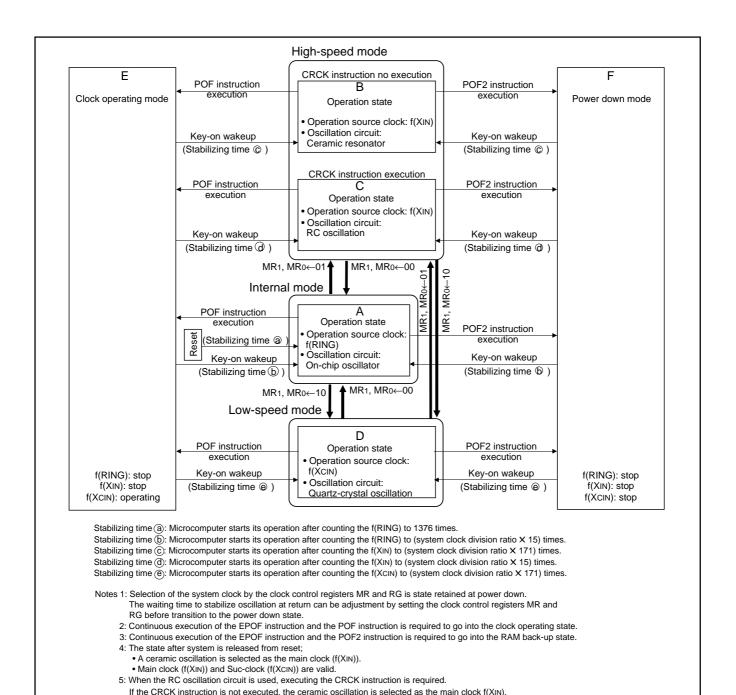


Fig. 44 State transition

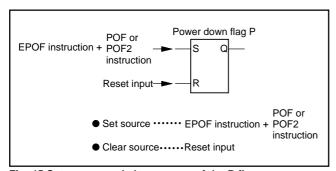


Fig. 45 Set source and clear source of the P flag

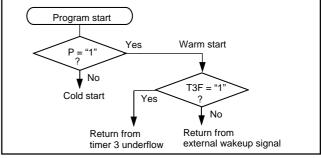


Fig. 46 Start condition identified example using the SNZP instruction

6: When the unoperating clock is selected as the system clock, turn it on by the clock control register RG, and generate the wait time until the oscillation is stabilized, and then, switch the system clock.

Table 17 Key-on wakeup control register, pull-up control register and interrupt control register

	Key-on wakeup control register K0	at	reset : 00002	at power down : state retained	R/W TAK0/ TK0A	
K03	Port P12, P13 key-on wakeup		Key-on wakeup not	used		
KU3	control bit (Note 3)	1	Key-on wakeup use	ed		
I/Os	Port P10, P11 key-on wakeup	0	Key-on wakeup not used			
K02	control bit (Note 2)	1	Key-on wakeup use	ed		
K04	Port P02, P03 key-on wakeup	0	Key-on wakeup not	used		
K01	control bit	1	Key-on wakeup used			
I/O ₂	Port P00, P01 key-on wakeup		Key-on wakeup not	used		
K0 0	control bit	1	Key-on wakeup used			

	Key-on wakeup control register K1		reset : 00002	at power down : state retained	R/W TAK1/ TK1A
K13	Ports P12, P13 return condition selection bit	0	Returned by edge		
K13	(Note 3)	1	Returned by level		
1/4.0	Ports P12, P13 valid waveform/level	0 Falling waveform/"L"		L" level	
K12	selection bit (Note 3)	1	Rising waveform/"H	ł" level	
K11	Ports P10, P11 return condition selection bit	0	Returned by edge		
I KII	(Note 2)	1 Returned by level			
V4.0	Ports P10, P11 valid waveform/level	0 Falling waveform/"L		_" level	
K1 0	selection bit (Note 2)	1 Rising waveform/"H		d" level	

	Key-on wakeup control register K2		reset : 00002	at power down : state retained	R/W TAK2/ TK2A		
K23	Not used	0	This bit has no function, but read/write is enabled.				
1\23	NZS INOLUSEU	1	This bit has no rane	This bit has no function, but read/write is enabled.			
Kaa	K22 Not used	0	This bit has no function, but read/write is enabled.				
N22		1	This bit has no function, but read/write is enabled.				
K21	INIT nin return condition coloration hit	0	Returned by level				
K21	INT pin return condition selection bit	1	Returned by edge				
K20	INT pin key on wakeun central hit	0	Key-on wakeup invalid				
NZU INI F	INT pin key-on wakeup control bit	1	Key-on wakeup vali	id			

^{2:} To be invalid (K02 = "0") key-on wakeup of ports P10 and P11, set the registers K10 and K11 to "0". 3: To be invalid (K03 = "0") key-on wakeup of ports P12 and P13, set the registers K12 and K13 to "0".

Pull-up control register PU0		at reset : 00002		at power down : state retained	R/W TAPU0/ TPU0A
PU03	Port P03 pull-up transistor	0	Pull-up transistor O	FF	
PU03	control bit	1	Pull-up transistor O	N	
DLIOs	Port P02 pull-up transistor	0 Pull-up transistor OFF			
PU02	control bit	1	Pull-up transistor O	N	
DUIG	Port P01 pull-up transistor	0	Pull-up transistor O	FF	
PU01	control bit	1	1 Pull-up transistor ON		
DLIOs	Port P00 pull-up transistor	0 Pull-up transistor OFF			
PU00	control bit	1	Pull-up transistor O	N	

Pull-up control register PU1		at reset : 00002		at power down : state retained	R/W TAPU1/ TPU1A
DUIA	Port P13 pull-up transistor	0	Pull-up transistor O	FF	
PU13	control bit	1	Pull-up transistor O	N	
DUIA	Port P12 pull-up transistor	0 Pull-up transistor OFF		FF	
PU12	control bit	1	Pull-up transistor O	N	
DUI4.	Port P11 pull-up transistor	0	Pull-up transistor O	FF	
PU11	control bit	1 Pull-up transistor ON			
DUIA	Port P10 pull-up transistor	0 Pull-up transistor OFF			
PU10	control bit	1	Pull-up transistor O	N	

	Interrupt control register I1		reset : 00002	at power down : state retained	R/W TAI1/TI1A
l13	INT pin input control bit (Note 2)	0	INT pin input disab	led	
113	in in put control bit (Note 2)	1	INT pin input enab	led	
l12	Interrupt valid waveform for INT pin/	0	Falling waveform/"L" level ("L" level is recognized with the SNZI0 instruction)		
112	return level selection bit (Note 2)	1	Rising waveform/"I instruction)	H" level ("H" level is recognized with	the SNZI0
l1 ₁	INT pin edge detection circuit control bit	0	One-sided edge detected		
111	111 INT pin eage detection circuit control bit		Both edges detected		
110	INT pin Timer 1 count start synchronous	0	Timer 1 count start	t synchronous circuit not selected	
110	circuit selection bit	1	Timer 1 count start synchronous circuit selected		

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: When the contents of I12 and I13 are changed, the external interrupt request flag (EXF0) may be set.

CLOCK CONTROL

The clock control circuit consists of the following circuits.

- On-chip oscillator (internal oscillator)
- · Ceramic resonator
- · RC oscillation circuit
- · Quartz-crystal oscillation circuit
- Multi-plexer (clock selection circuit)
- · Frequency divider
- Internal clock generating circuit

The system clock and the instruction clock are generated as the source clock for operation by these circuits.

Figure 47 shows the structure of the clock control circuit.

The 4552 Group operates by the on-chip oscillator clock (f(RING)) which is the internal oscillator after system is released from reset.

Also, the ceramic resonator or the RC oscillation can be used for the main clock (f(XIN)) of the 4552 Group.

The quartz-crystal oscillator can be used for sub-clock (f(XCIN)).

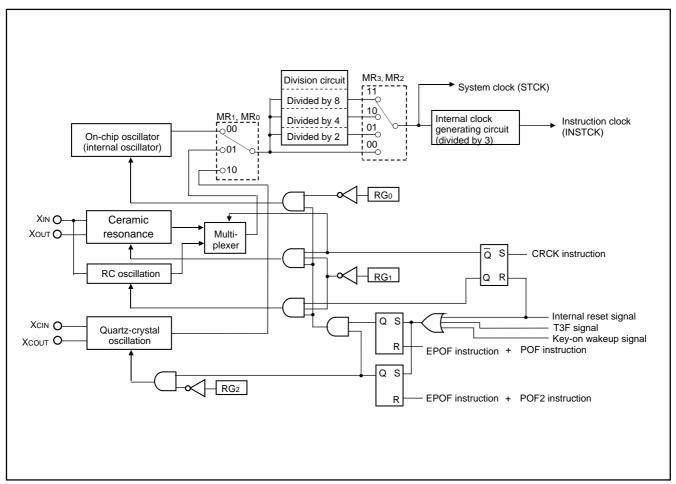


Fig. 47 Clock control circuit structure

(1) On-chip oscillator operation

After system is released from reset, the MCU starts operation by the clock output from the on-chip oscillator which is the internal oscillator.

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

(2) Main clock generating circuit (f(XIN))

When the MCU operates by the ceramic resonator or the RC oscillator as the main clock (f(XIN)).

After system is released from reset, the ceramic oscillation is valid for main clock.

The ceramic oscillation is invalid and the RC oscillation circuit is valid with the CRCK instruction.

The CRCK instruction can be executed only once.

Execute the CRCK instruction in the initial setting routine (executing it in address 0 in page 0 is recommended).

When the main clock (f(XIN)) is not used, connect XIN pin to Vss and leave XOUT pin open, and do not execute the CRCK instruction (Figure 49).

(3) Ceramic resonator

When the ceramic resonator is used as the main clock (f(XIN)), connect the ceramic resonator and the external circuit to pins XIN and XOUT at the shortest distance. A feedback resistor is built in between pins XIN and XOUT (Figure 50). Do not execute the CRCK instruction in program.

(4) RC oscillation

When the RC oscillation is used as the main clock (f(XIN)), connect the XIN pin to the external circuit of resistor R and the capacitor C at the shortest distance and leave XOUT pin open. Then, execute the CRCK instruction (Figure 51).

The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

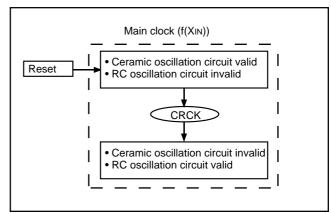


Fig. 48 Switch to ceramic oscillation/RC oscillation

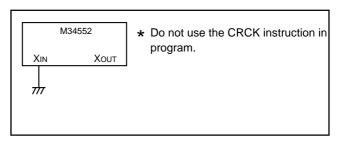


Fig. 49 Handling of XIN and XOUT when operating on-chip oscillator

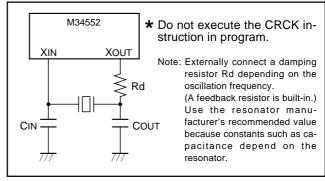


Fig. 50 Ceramic resonator external circuit



Fig. 51 External RC circuit

(5) External clock

When the external clock signal is used as the main clock (f(XIN)), connect the XIN pin to the clock source and leave XOUT pin open. (Figure 52). Do not execute the CRCK instruction in program. Be careful that the maximum value of the oscillation frequency

when using the external clock differs from the value when using the ceramic resonator (refer to the recommended operating condition). Also, note that the power down mode (POF and POF2 instructions) cannot be used when using the external clock.

(6) Sub-clock generating circuit f(XCIN)

Sub-clock signal f(XCIN) is obtained by externally connecting a quartz-crystal oscillator. Connect this external circuit and a quartzcrystal oscillator to pins XCIN and XCOUT at the shortest distance. A feedback resistor is built in between pins XCIN and XCOUT (Figure 53). XCIN pin and XCOUT pin are also used as ports D6 and D7, respectively. The sub-clock oscillation circuit is invalid and the function of ports D6 and D7 are valid by setting bit 2 of register RG to "1". When sub-clock, ports D6 and D7 are not used, connect XCIN/D6 to Vss and leave Xcout/D7 open.

(7) Clock control register MR

Register MR controls system clock. Set the contents of this register through register A with the TMRA instruction. In addition, the TAMR instruction can be used to transfer the contents of register MR to register A.

(8) Clock control register RG

Register RG controls the start/stop of each oscillation circuit. Set the contents of this register through register A with the TRGA instruction.

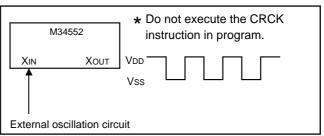


Fig. 52 External clock input circuit

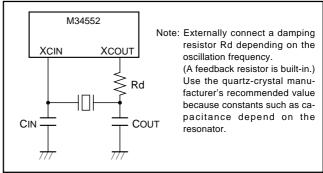


Fig. 53 External quartz-crystal circuit

ROM ORDERING METHOD

- 1.Mask ROM Order Confirmation Form*
- 2.Mark Specification Form*
- 3. Data to be written to ROM... one floppy disk.
- * For the mask ROM confirmation and the mark specifications, refer to the "Renesas Technology Corp." Homepage (http://www.renesas.com/homepage.jsp).

Table 18 Clock control registers

	Clock control register MR		at reset : 11002		at power down : state retained	R/W TAMR/ TMRA
		MRз	MR2		Operation mode	
MRз		0	0	Through mode		
	Operation mode selection bits	0	1	Frequency divided I	by 2 mode	
MR2		1	0	Frequency divided by 4 mode		
		1	1	Frequency divided I	by 8 mode	
		MR1	MR ₀		System clock	
MR3		0	0	f(RING)		
	System clock selection bits (Note 2)	0	1	f(XIN)		
MR ₂		1	0	f(XCIN)		
2			1	Not available (Note	3)	

	Clock control register RG		reset: 0002	at power down : state retained	W TRGA
RG ₂	RG2 Sub-clock (f(XCIN)) control bit (Note 4)		Sub-clock (f(XCIN))	oscillation available, ports D6 and D	7 not selected
1102			Sub-clock (f(XCIN)) oscillation stop, ports D6 and D7 selected		
D.O.	Main-clock (f(XIN)) control bit (Note 4)	0	Main clock (f(XIN)) oscillation available		
RG1	Walli-clock (I(XIN)) control bit (Note 4)	1	Main clock (f(XIN))	oscillation stop	
	On-chip oscillator (f(RING)) control bit	0 On-chip oscillator (f(RING))		(RING)) oscillation available	
RG ₀	(Note 4)	1	On-chip oscillator (t	f(RING)) oscillation stop	

- 2: The stopped clock cannot be selected for system clock
- 3: "11" cannot be set to the low-order 2 bits (MR1, MR0) of register MR.
- 4: The oscillation circuit selected for system clock cannot be stopped.

NOTES ON NOISE

Countermeasures against noise are described below.

The following countermeasures are effective against noise in theory, however, it is necessary not only to take measures as follows but to evaluate before actual use.

1. Shortest wiring length

(1) Wiring for RESET pin

Make the length of wiring which is connected to the RESET pin as short as possible. Especially, connect a capacitor across the RESET pin and the Vss pin with the shortest possible wiring.

<Reason>

In order to reset a microcomputer correctly, 1 machine cycle or more of the width of a pulse input into the $\overline{\text{RESET}}$ pin is required. If noise having a shorter pulse width than this is input to the $\overline{\text{RESET}}$ input pin, the reset is released before the internal state of the microcomputer is completely initialized.

This may cause a program runaway.

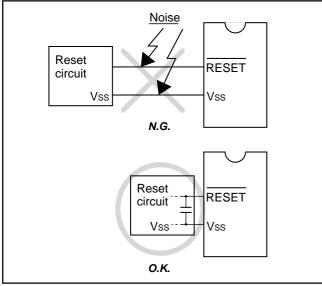


Fig. 54 Wiring for the RESET pin

(2) Wiring for clock input/output pins

- Make the length of wiring which is connected to clock I/O pins as short as possible.
- Make the length of wiring across the grounding lead of a capacitor which is connected to an oscillator and the Vss pin of a microcomputer as short as possible.
- Separate the Vss pattern only for oscillation from other Vss patterns.

<Reason>

If noise enters clock I/O pins, clock waveforms may be deformed. This may cause a program failure or program runaway. Also, if a potential difference is caused by the noise between the Vss level of a microcomputer and the Vss level of an oscillator, the correct clock will not be input in the microcomputer.

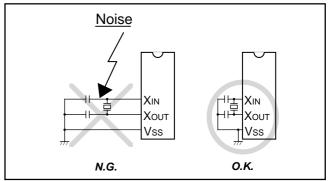


Fig. 55 Wiring for clock I/O pins

(3) Wiring to CNVss pin

Connect CNVss pin to a GND pattern at the shortest distance.

The GND pattern is required to be as close as possible to the GND supplied to Vss.

In order to improve the noise reduction, to connect a 5 k Ω resistor serially to the CNVss pin - GND line may be valid.

As well as the above-mentioned, in this case, connect to a GND pattern at the shortest distance. The GND pattern is required to be as close as possible to the GND supplied to Vss.

<Reason>

The CNVss pin of the One Time PROM is the power source input pin for the built-in One Time PROM. When programming in the built-in One Time PROM, the impedance of the CNVss pin is low to allow the electric current for writing flow into the One Time PROM. Because of this, noise can enter easily. If noise enters the CNVss pin, abnormal instruction codes or data are read from the built-in One Time PROM, which may cause a program runaway.

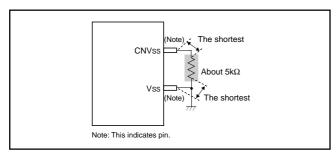


Fig. 56 Wiring for the CNVss pin of the One Time PROM

2. Connection of bypass capacitor across Vss line and VDD line Connect an approximately 0.1 μF bypass capacitor across the Vss

line and the VDD line as follows: • Connect a bypass capacitor across the Vss pin and the VDD pin

- at equal length.
- Connect a bypass capacitor across the Vss pin and the VDD pin with the shortest possible wiring.
- Use lines with a larger diameter than other signal lines for Vss line and VDD line.
- Connect the power source wiring via a bypass capacitor to the Vss pin and the VDD pin.

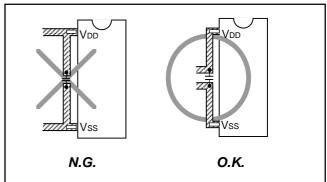


Fig. 57 Bypass capacitor across the Vss line and the VDD line

3. Oscillator concerns

Take care to prevent an oscillator that generates clocks for a microcomputer operation from being affected by other signals.

(1) Keeping oscillator away from large current signal lines Install a microcomputer (and especially an oscillator) as far as possible from signal lines where a current larger than the tolerance of current value flows.

<Reason>

In the system using a microcomputer, there are signal lines for controlling motors, LEDs, and thermal heads or others. When a large current flows through those signal lines, strong noise occurs because of mutual inductance.

(2) Installing oscillator away from signal lines where potential levels change frequently

Install an oscillator and a connecting pattern of an oscillator away from signal lines where potential levels change frequently. Also, do not cross such signal lines over the clock lines or the signal lines which are sensitive to noise.

<Reason>

Signal lines where potential levels change frequently (such as the CNTR pin signal line) may affect other lines at signal rising edge or falling edge. If such lines cross over a clock line, clock waveforms may be deformed, which causes a microcomputer failure or a program runaway.

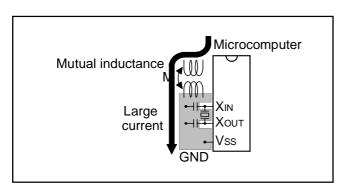


Fig. 58 Wiring for a large current signal line

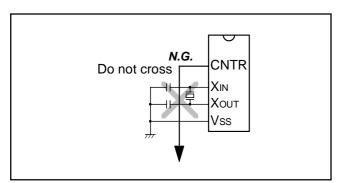


Fig. 59 Wiring to a signal line where potential levels change frequently

(3) Oscillator protection using Vss pattern

As for a two-sided printed circuit board, print a Vss pattern on the underside (soldering side) of the position (on the component side) where an oscillator is mounted.

Connect the Vss pattern to the microcomputer Vss pin with the shortest possible wiring. Besides, separate this Vss pattern from other Vss patterns.

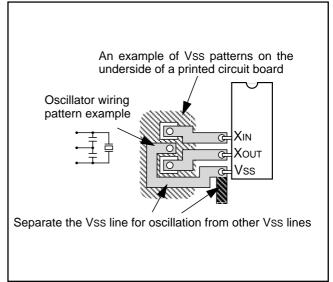


Fig. 60 Vss pattern on the underside of an oscillator

4. Setup for I/O ports

Setup I/O ports using hardware and software as follows:

<Hardware>

• Connect a resistor of 100 Ω or more to an I/O port in series.

<Software>

- As for an input port, read data several times by a program for checking whether input levels are equal or not.
- As for an output port or an I/O port, since the output data may reverse because of noise, rewrite data to its port latch at fixed periods.
- Rewrite data to pull-up control registers at fixed periods.

5. Providing of watchdog timer function by software

If a microcomputer runs away because of noise or others, it can be detected by a software watchdog timer and the microcomputer can be reset to normal operation. This is equal to or more effective than program runaway detection by a hardware watchdog timer. The following shows an example of a watchdog timer provided by software.

In the following example, to reset a microcomputer to normal operation, the main routine detects errors of the interrupt processing routine and the interrupt processing routine detects errors of the main routine.

This example assumes that interrupt processing is repeated multiple times in a single main routine processing.

<The main routine>

 Assigns a single word of RAM to a software watchdog timer (SWDT) and writes the initial value N in the SWDT once at each execution of the main routine. The initial value N should satisfy the following condition:

 $N+1 \ge (Counts of interrupt processing executed in each main routine)$

As the main routine execution cycle may change because of an interrupt processing or others, the initial value N should have a margin.

- Watches the operation of the interrupt processing routine by comparing the SWDT contents with counts of interrupt processing after the initial value N has been set.
- Detects that the interrupt processing routine has failed and determines to branch to the program initialization routine for recovery processing in the following case:

If the SWDT contents do not change after interrupt processing.

<The interrupt processing routine>

- Decrements the SWDT contents by 1 at each interrupt processing.
- Determines that the main routine operates normally when the SWDT contents are reset to the initial value N at almost fixed cycles (at the fixed interrupt processing count).
- Detects that the main routine has failed and determines to branch to the program initialization routine for recovery processing in the following case:

If the SWDT contents are not initialized to the initial value N but continued to decrement and if they reach 0 or less.

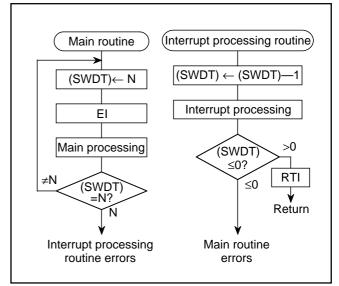


Fig. 61 Watchdog timer by software

LIST OF PRECAUTIONS

Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up;

- connect a bypass capacitor (approx. 0.1 μ F) between pins VDD and Vss at the shortest distance,
- · equalize its wiring in width and length, and
- use relatively thick wire.

In the One Time PROM version, CNVss pin is also used as VPP pin. Accordingly, when using this pin, connect this pin to Vss through a resistor about 5 k Ω (connect this resistor to CNVss/ VPP pin as close as possible).

In addition, the MCU may be replaced with mask ROM version without the need to remove the resistor from the circuit and without any adverse effect on operation.

2 Register initial values 1

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)

③ Register initial values 2

The initial value of the following registers are undefined at RAM backup. After system is returned from RAM back-up, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)

Stack registers (SKs)

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together.

⑤ Prescaler

Stop counting and then execute the TABPS instruction to read from prescaler data.

Stop counting and then execute the TPSAB instruction to set prescaler data.

® Timer count source

Stop timer 1, 2 and LC counting to change its count source.

Property Reading the count value

Stop timer 1 or 2 counting and then execute the data read instruction (TAB1, TAB2) to read its data.

®Writing to the timer

Stop timer 1, 2 or LC counting and then execute the data write instruction (T1AB, T2AB, TLCA) to write its data.

Writing to reload register R1, R2H

When writing data to reload register R1, reload register R2H while timer 1 or timer 2 is operating, avoid a timing when timer 1 or timer 2 underflows.

®Timer 2

Avoid a timing when timer 2 underflows to stop timer 2 at PWM output function used.

When "H" interval extension function of the PWM signal is set to be "valid", set "1" or more to reload register R2H.

Timer 3

Stop timer 3 counting to change its count source.

@Timer input/output pin

Set the port C output latch to "0" to output the PWM signal from C/CNTR pin.

Prescaler and Timer 1 count start timing and count time when operation starts

Count starts from the first rising edge of the count source (2) after Prescaler and Timer 1 operations start (1).

Time to first underflow (3) is shorter (for up to 1 period of the count source) than time among next underflow (4) by the timing to start the timer and count source operations after count starts. When selecting CNTR input as the count source of Timer 1, Timer 1 operates synchronizing with the falling edge of CNTR input.

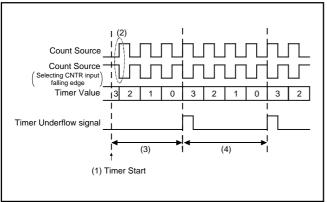


Fig. 62 Timer count start timing and count time when operation starts (Prescaler and Timer 1)

Timer 2 and Timer LC count start timing and count time when operation starts

Count starts from the rising edge (2) after the first falling edge of the count source, after Timer 2 and Timer LC operations start (1). Time to first underflow (3) is different from time among next underflow (4) by the timing to start the timer and count source operations after count starts.

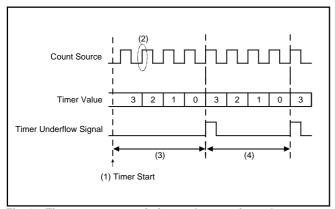


Fig. 63 Timer count start timing and count time when operation starts (Timer 2 and Timer LC)

®Watchdog timer

- The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously, and clear the WEF flag to "0" to stop the watchdog timer function.
- The watchdog timer function is valid after system is returned from the power down state. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously every system is returned from the power down state, and stop the watchdog timer function.
- When the watchdog timer function and power down function are used at the same time, execute the WRST instruction before system enters into the power down state and initialize the flag WDF1.

66 Multifunction

- Be careful that the output of port D5 can be used even when INT pin is selected.
 - The threshold value is different between port D5 and INT. Accordingly, be careful when the input of both is used.
- Be careful that the "H" output of port C can be used even when output of CNTR pin are selected.

[®] Program counter

Make sure that the PCH does not specify after the last page of the built-in ROM.

[®] D5/INT pin

• Note [1] on bit 3 of register I1

When the input of the INT pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.

- Depending on the input state of the D5/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 64⁻0) and then, change the bit 3 of register I1.
 - In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 64²). Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 64³).

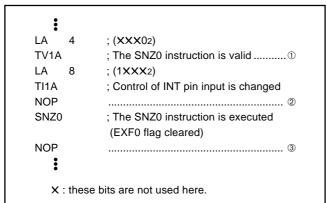


Fig. 64 External 0 interrupt program example-1

- Note [2] on bit 3 of register I1
 - When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INT pin is disabled, be careful about the following notes.
- When the key-on wakeup function of INT pin is not used (register K20 = "0"), clear bits 2 and 3 of register I1 before system enters to the power down mode. (refer to Figure 65①).

Fig. 65 External 0 interrupt program example-2

- Note on bit 2 of register I1
- When the interrupt valid waveform of the D5/INT pin is changed with the bit 2 of register I1 in software, be careful about the following notes.
- Depending on the input state of the D5/INT pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 66⁽¹⁾) and then, change the bit 2 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 66@). Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 66@).

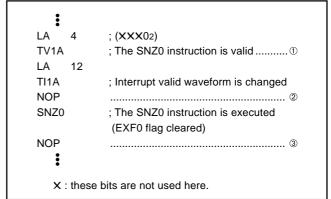


Fig. 66 External 0 interrupt program example-3

⁽⁹⁾POF and POF2 instructions

When the POF or POF2 instruction is executed continuously after the EPOF instruction, system enters the power down state.

Note that system cannot enter the power down state when executing only the POF or POF2 instruction.

Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction and the POF or POF2 instruction continuously.

@Power-on reset

When the built-in power-on reset circuit is used, set the time for the supply voltage to rise from 0 V to the minimum voltage of recommended operating conditions to 100 μs or less.

If the rising time exceeds 100 μ s, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

Voltage drop detection circuit (only in H version)

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.

When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and regoes up (ex. battery exchange of an application product), depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 67);

supply voltage does not fall below to VRST, and its voltage re-goes up with no reset.

In such a case, please design a system which supply voltage is once reduced below to VRST and re-goes up after that.

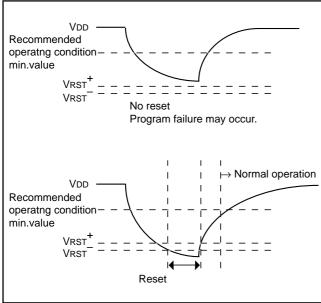


Fig. 67 VDD and VRST

@Clock control

Execute the CRCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended). The oscillation circuit by the CRCK instruction can be selected only once.

On-chip oscillator

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

Also, the oscillation stabilize wait time after system is released from reset is generated by the on-chip oscillator clock. When considering the oscillation stabilize wait time after system is released from reset, be careful that the variable frequency of the on-chip oscillator clock.

⊕ External clock

When the external signal clock is used as the source oscillation (f(XIN)), note that the power down mode (POF and POF2 instructions) cannot be used.

© Difference between Mask ROM version and One Time PROM version

Mask ROM version and One Time PROM version have some difference of the following characteristics within the limits of an electrical property by difference of a manufacture process, builtin ROM, and a layout pattern.

- a characteristic value
- a margin of operation
- the amount of noise-proof
- noise radiation, etc.,

Accordingly, be careful of them when swithcing.

®Note on Power Source Voltage

When the power source voltage value of a microcomputer is less than the value which is indicated as the recommended operating conditions, the microcomputer does not operate normally and may perform unstable operation.

In a system where the power source voltage drops slowly when the power source voltage drops or the power supply is turned off, reset a microcomputer when the supply voltage is less than the recommended operating conditions and design a system not to cause errors to the system by this unstable operation.

CONTROL REGISTERS

	Interrupt control register V1		reset : 00002	at power down : 00002	R/W TAV1/TV1A
V13	Timer 2 interrupt enable bit	0	Interrupt disabled	(SNZT2 instruction is valid)	
V 13	V13 Timer 2 interrupt enable bit	1	Interrupt enabled (SNZT2 instruction is invalid)	
V12	V/4 a Timer 4 interrupt enable hit	0	Interrupt disabled	(SNZT1 instruction is valid)	
V 12	Timer 1 interrupt enable bit	1	Interrupt enabled (SNZT1 instruction is invalid)	
V11	Not used	0	T1: 1:01		
V 11	Not used	1	This bit has no fun	ction, but read/write is enabled.	
1/40	V10 External 0 interrupt enable bit	0	Interrupt disabled	(SNZ0 instruction is valid)	
V 10		1	Interrupt enabled (SNZ0 instruction is invalid)	

	Interrupt control register V2		reset : 00002	at power down : 00002	R/W TAV2/TV2A		
\/22	Not used	0	This hit has no fun	This bit has no function, but read/write is enabled.			
V23	V23 Not used	1	Tills bit has no fair	This bit has no function, but read/write is enabled.			
\/2c	V22 Not used	0	This bit has no function, but read/write is enabled.				
V 22		1	This bit has no function, but read/white is enabled.				
V21	Not used	0	This bit has no function, but read/write is enabled.				
V21	Not used	1	This bit has no function, but read/write is enabled.				
\/O ₀	V20 Timer 3 interrupt enable bit	0	Interrupt disabled	(SNZT3 instruction is valid)			
V20	Timer 3 interrupt enable bit	1	Interrupt enabled (SNZT3 instruction is invalid)			

	Interrupt control register I1		reset : 00002	at power down : state retained	R/W TAI1/TI1A
l13	IAS INIT min in must positive bit (Nets O)		INT pin input disab	pled	
113	INT pin input control bit (Note 2)	1	INT pin input enab	led	
	Interrupt valid waveform for INT pin/	0	Falling waveform/"	L" level ("L" level is recognized with	the SNZI0
112			instruction)		
112	return level selection bit (Note 3)	1	Rising waveform/"H" level ("H" level is recognized with the SNZIO		
		'	instruction)		
l11	INT pin edge detection circuit control bit	0	One-sided edge detected		
'''	111 INT pin eage detection circuit control bit		Both edges detected		
110	INT pin Timer 1 count start synchronous	0 Timer 1 count st		art synchronous circuit not selected	
110	circuit selection bit			t synchronous circuit selected	

Clock control register MR			at reset : 11002		at power down : state retained	R/W TAMR/ TMRA
		MRз	MR2		Operation mode	
MR3		0	0	Through mode		
	Operation mode selection bits	0	1	Frequency divided b	oy 2 mode	
MR ₂		1	0	Frequency divided by 4 mode		
		1	1	Frequency divided b	by 8 mode	
		MR ₁	MR ₀		System clock	
MR3		0	0	f(RING)		
	System clock selection bits (Note 3)	0	1	f(XIN)		
MR ₂		1	0	f(XCIN)		
			1	Not available (Note	4)	

^{2:} When the contents of I12 and I13 are changed, the external interrupt request flag (EXF0) may be set.

^{3:} The stopped clock cannot be selected for system clock.
4: "11" cannot be set to the low-order 2 bits (MR1, MR0) of register MR.

Clock control register RG		at reset : 0002		at power down : state retained	W TRGA
RG2 Sub-clock (f(XCIN)) control bit (Note 2)		0	Sub-clock (f(XCIN))	oscillation available, ports D6 and D	7 not selected
11.02	Sub-clock (I(XCIIV)) control bit (Note 2)	1	Sub-clock (f(XCIN)) oscillation stop, ports D6 and D7 selected		
	Main-clock (f(XIN)) control bit (Note 2)	0	Main clock (f(XIN)) oscillation available		
RG1	Walli-clock (I(XIIV)) control bit (Note 2)	1	Main clock (f(XIN))	oscillation stop	
	On-chip oscillator (f(RING)) control bit	0 On-chip oscillator (fo		On-chip oscillator (f(RING)) oscillation available	
RG ₀	(Note 2)	1	On-chip oscillator (f	(RING)) oscillation stop	

Timer control register PA			at reset : 02	at power down : 02	W TPAA
PA ₀	Prescaler control bit	0	Stop (state retained	d)	
1 40	PA0 Prescaler control bit		Operating		

	Timer control register W1		at	reset : 00002	at power down : state retained	R/W TAW1/TW1A
W13	Timer 1 count auto-stop circuit selection	0		Timer 1 count auto-stop circuit not selected		
	bit (Note 3)		1	Timer 1 count auto	-stop circuit selected	
W12	Timer 1 control bit	0		Stop (state retained)		
VV 12	Timer i control bit		1	Operating		
		W11	W10		Count source	
W11		0	0	PWM signal (PWM	IOUT)	
	Timer 1 count source selection bits	0	1	Prescaler output (0	DRCLK)	
W10	(Note 4)	1	0	Timer 3 underflow	signal (T3UDF)	
		1	1	CNTR input		

Timer control register W2		at	reset : 00002	at power down : 00002	R/W TAW2/TW2A
W23	CNTR pin output control bit	0	CNTR pin output ir	nvalid	
VV25	W23 CNTR pin output control bit		CNTR pin output v	alid	
W22	W22 PWM signal interrupt valid waveform/	0	PWM signal "H" interval expansion function invalid		
V V Z Z	return level selection bit	1	PWM signal "H" int	terval expansion function valid	
W21	Time on O construct his	0	Stop (state retaine	d)	
VVZI	Timer 2 control bit	1	Operating		
W/20	W20 Timer 2 count soruce selection bit	0	XIN input		
v v Z U		1	Prescaler output (0	ORCLK)/2 signal output	

	Timer control register W3		at reset : 00002		at power down : state retained	R/W TAW3/TW3A
W33	Timer 3 count auto-stop circuit selection	()	XCIN input		
1105	bit	1		Prescaler output (0	ORCLK)	
W32	Timer 3 control bit	0		Stop (Initial state)		
VV32	Timer 3 control bit	1	1	Operating		
		W31	W30		Count value	
W31	The second second section is the	0	0	Underflow occurs	every 8192 counts	
	Timer 3 count value selection bits	0	1	Underflow occurs	every 16384 counts	
W30	W30		0	Underflow occurs every 32768 counts		
		1	1	Underflow occurs	every 65536 counts	

^{2:} The oscillation circuit selected for system clock cannot be stopped.

^{3:} This function is valid only when the timer 1 count start synchronous circuit is selected (I10="1").
4: Port C output is invalid when CNTR input is selected for the timer 1 count source.

	Timer control register W4	at	reset : 00002	at power down : state retained	R/W TAW4/TW4A
W43	Timer LC control bit	0	Stop (state retained	d)	
VV-13	vv43 Timer LC control bit		Operating		
W42	W42 Timer LC count source selection bit		Bit 4 (T34) of timer 3		
VV-42	Timer LC count source selection bit	1	System clock (STC	CK)	
W41	CNTR output auto-control circuit	0	CNTR output auto-	control circuit not selected	
VV-41	selection bit	1	CNTR output auto-	control circuit selected	
W40		0	Falling edge		
VV-40	CNTR pin input count edge selection bit	1	Rising edge		

	LCD control register L1		at	reset : 00002	at power dow	vn : state retained	R/W TAL1/TL1A
L13	Internal dividing resistor for LCD power	()	2r X 3, 2r X 2			
LIS	supply selection bit (Note 2)	1	ı	r X 3, r X 2			
L12		()	Stop			
L12	LCD control bit	1	I	Operating			
		L11	L10	Duty		Bias	i
L11		0	0		Not av	ailable	
	LCD duty and bias selection bits	0	1	1/2		1/2	
L10		1	0	1/3		1/3	
		1	1	1/4		1/3	

	LCD control register L2	at reset : 00002		at power down : state retained	W TL2A
1.22	SEGoA/Log pin function switch bit (Note 3)	0	SEG ₀		
LZ3	L23 SEG ₀ /V _L C ₃ pin function switch bit (Note 3)		VLC3		
L22	LOS CECANOS pia function quitab bit (Nata 4)		SEG1		
LZ2	SEG1/VLC2 pin function switch bit (Note 4)	1	VLC2		
10.	CECOA/(or min franction quitable hit (Nets 4)	0	SEG ₂		
L21	SEG2/VLC1 pin function switch bit (Note 4)	1	VLC1		
1.20	Internal dividing resistor for LCD power	0	Internal dividing res	sistor valid	
L20	supply control bit	1	Internal dividing res	sistor invalid	

	LCD control register L3		t reset : 11112	at power down : state retained	W TL3A
L33	P23/SEG20 pin function switch bit	0	SEG20		
LJJ	L33 F23/SEG20 pill function switch bit		P23		
1.20	L32 P22/SEG19 pin function switch bit	0	SEG19		
L32	1 22/3E 319 piri function switch bit	1	P22		
124	P21/SEG18 pin function switch bit	0	SEG18		
L31	F21/3EG18 pili function switch bit	1	P21		
1.20	P20/SEG47 pin function switch hit	0	SEG17		
L30	L30 P20/SEG17 pin function switch bit		P20		

^{2: &}quot;r (resistor) multiplied by 3" is used at 1/3 bias, and "r multiplied by 2" is used at 1/2 bias. 3: VLc3 is connected to VDD internally when SEG0 pin is selected.

^{4:} Use internal dividing resistor when SEG1 and SEG2 pins are selected.

LCD control register C1		at	reset : 11112	at power down : state retained	W TC1A
C13	P03/SEG24 pin function switch bit	0	SEG24		
U13	C13 P03/SEG24 pin function Switch bit		P03		
C10	C12 P02/SEG23 pin function switch bit	0	SEG23		
C12	F02/3EG23 piri function switch bit	1	P02		
C11	P01/SEG22 pin function switch bit	0	SEG22		
CII	P01/3EG22 pill fullction switch bit	1	P01		
C10	P00/SEG21 pin function switch bit	0	SEG21		
	F 00/3E 921 pin function switch bit	1	P00		

	LCD control register C2	at	reset : 11112	at power down : state retained	W TC2A
Caa	P12/SEG29 pin function switch hit	0	SEG28		
U23	C23 P13/SEG28 pin function switch bit		P13		
Can	C22 P12/SEG27 pin function switch bit	0	SEG27		
C22	F 12/3EG27 pill fullction switch bit	1	P12		
C21	P11/SEG26 pin function switch bit	0	SEG26		
C21	F 11/3EG26 pill fullction switch bit	1	P11		
C20	P10/SEG25 pin function switch bit	0	SEG25		·
C20	F 10/3EG25 piri function switch bit	1	P10		

Pull-up control register PU0		at reset : 00002		at power down : state retained T/	R/W APU0/ PU0A
PU03	Port P03 pull-up transistor	0	Pull-up transistor O	FF	
PU03	control bit	1	Pull-up transistor O	N	
DUO	Port P02 pull-up transistor	0 Pull-up transistor OF		FF	
PU02	control bit	1	Pull-up transistor O	N	
DUO.	Port P01 pull-up transistor	0	Pull-up transistor O	FF	
PU01	control bit	1 Pull-up transistor O		N	
DUO	Port P00 pull-up transistor	0	Pull-up transistor O	FF	
PU00	control bit	1	Pull-up transistor O	N	

Pull-up control register PU1		at reset : 00002		at power down : state retained	R/W TAPU1/ TPU1A
DUIA	Port P13 pull-up transistor	0	Pull-up transistor O	FF	
PU13	control bit	1	Pull-up transistor O	N	
DUIA	Port P12 pull-up transistor	0 Pull-up transistor OFF		FF	
PU12	control bit	1	Pull-up transistor O	N	
DUI4.	Port P11 pull-up transistor	0	Pull-up transistor O	FF	
PU11	control bit	1	Pull-up transistor O	N	
DUIA	Port P10 pull-up transistor	0	Pull-up transistor O	FF	
PU10	control bit	1	Pull-up transistor O	N	

Note: "W" represents write enabled.

Port output structure control register FR0		at reset : 00002		at power down : state retained	W TFR0A
FR03	Ports P12, P13 output structure selection	0	N-channel open-drain output		
	bit	1	CMOS output		
FR02	Ports P10, P11 output structure selection	0	N-channel open-drain output		
	bit	1	CMOS output		
FR01	Ports P02, P03 output structure selection	0	N-channel open-drain output		
	bit	1	CMOS output		
FR00	Ports P00, P01 output structure selection	0	N-channel open-dra	ain output	
	bit	1	CMOS output		

Port output structure control register FR1		at reset : 00002		at power down : state retained	W TFR1A
FR13	Port D3 output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
FR12	Port D2 output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
FR11	Port D1 output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
FR10	Port Do output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		

Port output structure control register FR2		at reset : 00002		at power down : state retained	W TFR2A
FR23	Ports P22, P23 output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
FR22	Ports P20, P21 output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
FR21	Port D5 output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		
FR20	Port D4 output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		

Note: "W" represents write enabled.

Key-on wakeup control register K0		at reset : 00002		at power down : state retained	R/W TAK0/ TK0A			
K03	Port P12, P13 key-on wakeup	0	Key-on wakeup not used					
KU3	control bit (Note 3)	1	1 Key-on wakeup used					
K02	Port P10, P11 key-on wakeup	0	Key-on wakeup not used					
NU2	control bit (Note 2)	1	Key-on wakeup used					
K01	Port P02, P03 key-on wakeup	0	Key-on wakeup not used					
I KU1	control bit	1	Key-on wakeup used					
K00	Port P00, P01 key-on wakeup	0	0 Key-on wakeup not used					
K00	control bit	1	Key-on wakeup use	ed				

	Key-on wakeup control register K1		reset : 00002	at power down : state retained	R/W TAK1/ TK1A	
K13	Ports P12, P13 return condition selection bit	0	Returned by edge			
K13	(Note 3)	1 Returned by level				
1/4 a	Ports P12, P13 valid waveform/level	0	Falling waveform/"L" level			
K12	selection bit (Note 3)	1 Rising waveform/"H" level				
1/4 /	Ports P10, P11 return condition selection bit	0	Returned by edge			
K11	(Note 2)	1	Returned by level			
V4.0	Ports P10, P11 valid waveform/level	0 Falling waveform/"L" level				
K1 0	selection bit (Note 2)	1 Rising waveform/"H" level				

Key-on wakeup control register K2		at reset : 00002		at power down : state retained	R/W TAK2/ TK2A				
K23	Mar was d		This hit has no fund	This bit has no function, but read/write is enabled.					
N23	Not used	1	This bit has no function, but read/white is enabled.						
K22 Not used		0	This bit has no function, but read/write is enabled.						
NZ2	Not used	1	This bit has no function, but read/white is enabled.						
K21	INIT nin voture condition coloction hit	0	Returned by level						
NZ1	INT pin return condition selection bit	1	Returned by edge						
K20	INT pin key on wakeup central hit	0	Key-on wakeup invalid						
K20	INT pin key-on wakeup control bit	1	Key-on wakeup valid						

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: To be invalid (K02 = "0") key-on wakeup of ports P10 and P11, set the registers K10 and K11 to "0".
3: To be invalid (K03 = "0") key-on wakeup of ports P12 and P13, set the registers K12 and K13 to "0".

INSTRUCTIONS

The 4552 Group has the 124 (123) instructions. Each instruction is described as follows;

- (1) Index list of instruction function
- (2) Machine instructions (index by alphabet)
- (3) Machine instructions (index by function)
- (4) Instruction code table

SYMBOL

The symbols shown below are used in the following list of instruction function and the machine instructions.

Symbol	Contents	Symbol	Contents
Α	Register A (4 bits)	PS	Prescaler
В	Register B (4 bits)	T1	Timer 1
DR	Register DR (3 bits)	T2	Timer 2
E	Register E (8 bits)	T3	Timer 3
V1	Interrupt control register V1 (4 bits)	TLC	Timer LC
V2	Interrupt control register V2 (4 bits)	T1F	Timer 1 interrupt request flag
l1	Interrupt control register I1 (4 bits)	T2F	Timer 2 interrupt request flag
MR	Clock control register MR (4 bits)	T3F	Timer 3 interrupt request flag
RG	Clock control register RG (3 bits)	WDF1	Watchdog timer flag
PA	Timer control register PA (1 bit)	WEF	Watchdog timer enable flag
W1	Timer control register W1 (4 bits)	INTE	Interrupt enable flag
W2	Timer control register W2 (4 bits)	EXF0	External 0 interrupt request flag
W3	Timer control register W3 (4 bits)	Р	Power down flag
W4	Timer control register W4 (4 bits)		
L1	LCD control register L1 (4 bits)	D	Port D (8 bits)
L2	LCD control register L2 (4 bits)	P0	Port P0 (4 bits)
L3	LCD control register L3 (4 bits)	P1	Port P1 (4 bits)
C1	LCD control register C1 (4 bits)	P2	Port P2 (4 bits)
C2	LCD control register C2 (4 bits)	С	Port C (1 bit)
PU0	Pull-up control register PU0 (4 bits)		
PU1	Pull-up control register PU1 (4 bits)	x	Hexadecimal variable
FR0	Port output structure control register FR0 (4 bits)	у	Hexadecimal variable
FR1	Port output structure control register FR1 (4 bits)	z	Hexadecimal variable
FR2	Port output structure control register FR2 (4 bits)	р	Hexadecimal variable
K0	Key-on wakeup control register K0 (4 bits)	n	Hexadecimal constant
K1	Key-on wakeup control register K1 (4 bits)	i	Hexadecimal constant
K2	Key-on wakeup control register K2 (4 bits)	j	Hexadecimal constant
X	Register X (4 bits)	A3A2A1A0	Binary notation of hexadecimal variable A
Υ	Register Y (4 bits)		(same for others)
Z	Register Z (2 bits)		
DP	Data pointer (10 bits)	\leftarrow	Direction of data movement
	(It consists of registers X, Y, and Z)	\leftrightarrow	Data exchange between a register and memory
PC	Program counter (14 bits)	?	Decision of state shown before "?"
РСн	High-order 7 bits of program counter	()	Contents of registers and memories
PCL	Low-order 7 bits of program counter	-	Negate, Flag unchanged after executing instruction
SK	Stack register (14 bits X 8)	M(DP)	RAM address pointed by the data pointer
SP	Stack pointer (3 bits)	а	Label indicating address a6 a5 a4 a3 a2 a1 a0
CY	Carry flag	р, а	Label indicating address a6 a5 a4 a3 a2 a1 a0
UPTF	High-order bit reference enable flag		in page p6 p5 p4 p3 p2 p1 p0
RPS	Prescaler reload register (8 bits)	Ç	Hex. C + Hex. number x
R1	Timer 1 reload register (8 bits)	X	
R3	Timer 3 reload register (8 bits)		
R2L	Timer 2 reload register (8 bits)		
R2H	Timer 2 reload register (8 bits)		
RLC	Timer LC reload register (4 bits)		

Note: Some instructions of the 4552 Group has the skip function to unexecute the next described instruction. The 4552 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

INDEX LIST OF INSTRUCTION FUNCTION

	NDEX LIST OF INSTRUCTION FUNCTION								
Group- ing	Mnemonic	Function	Group- ing	Mnemonic	Function				
	TAB	(A) ← (B)	16	XAMI j	$(A) \leftarrow \rightarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$				
	ТВА	(B) ← (A)	transfe		j = 0 to 15				
	TAY	$(A) \leftarrow (Y)$	egister	TA44 :	$(Y) \leftarrow (Y) + 1$				
	TYA	$(Y) \leftarrow (A)$	RAM to register transfer	TMA j	$ (M(DP)) \leftarrow (A) $ $ (X) \leftarrow (X)EXOR(j) $ $ j = 0 \text{ to } 15 $				
	TEAB	(E7–E4) ← (B)	12						
ınsfer		(E3–E0) ← (A)		LA n	(A) ← n n = 0 to 15				
r tra	TABE	(B) ← (E7–E4)							
egiste		(A) ← (E3–E0)		ТАВР р	(SP) ← (SP) + 1 (SK(SP)) ← (PC)				
Register to register transfer	TDA	(DR2−DR0) ← (A2−A0)			(PCH) ← p (Note) (PCL) ← (DR2–DR0, A3–A0) at (UPTF) = 0				
sige	TAD	$(A_2-A_0) \leftarrow (DR_2-DR_0)$			$(B) \leftarrow (ROM(PC))7-4$				
l &		(A3) ← 0			$(A) \leftarrow (ROM(PC))_{3-0}$ at $(UPTF) = 1$				
	TAZ	$(A_1, A_0) \leftarrow (Z_1, Z_0)$			(DR2) ← (0) (DR1, DR0) ← (ROM(PC))9, 8				
	172	$(A3, A2) \leftarrow 0$			$(B) \leftarrow (ROM(PC))7-4$				
		(7.6, 7.2)			$(A) \leftarrow (ROM(PC))_{3-0}$ $(PC) \leftarrow (SK(SP))$				
	TAX	$(A) \leftarrow (X)$			(SP) ← (SP) – 1				
	TASP	(A2−A0) ← (SP2−SP0)		AM	$(A) \leftarrow (A) + (M(DP))$				
		(A3) ← 0	۾	AMC	$(A) \leftarrow (A) + (M(DP)) + (CY)$				
	LXY x, y	$(X) \leftarrow x \ x = 0 \text{ to } 15$	ratic		(CY) ← Carry				
	LATA, y	$(x) \leftarrow x = 0 \text{ to } 13$ $(Y) \leftarrow y \text{ y} = 0 \text{ to } 15$	bec						
es		(1) \(\infty\) y = 0 to 13	tic o	A n	(A) ← (A) + n				
dress	LZ z	$(Z) \leftarrow z z = 0 \text{ to } 3$	Arithmetic operation		n = 0 to 15				
RAM addresses	INY	(Y) ← (Y) + 1	₹	AND	$(A) \leftarrow (A) \text{ AND } (M(DP))$				
2	DEY	(Y) ← (Y) − 1		OR	$(A) \leftarrow (A) OR (M(DP))$				
	ТАМ ј	$(A) \leftarrow (M(DP))$		sc	(CY) ← 1				
	.,,	$(X) \leftarrow (X) \in (X) \in (X) \in (X)$							
e		j = 0 to 15		RC	(CY) ← 0				
ransf	XAM j	$(A) \leftarrow \rightarrow (M(DP))$		SZC	(CY) = 0 ?				
er t	,	$(X) \leftarrow (X) \in (X) \in (X) \in (X)$			=				
		j = 0 to 15		СМА	$(A) \leftarrow (\overline{A})$				
RAM to register transfer	XAMD j	$(A) \leftarrow \rightarrow (M(DP))$		RAR	→CY→A3A2A1A0				
₹	,	$(X) \leftarrow (X)EXOR(j)$							
		j = 0 to 15							
		$(Y) \leftarrow (Y) - 1$							

Note: p is 0 to 31 for M34552M4/M4H.

p is 0 to 63 for M34552M8/M8H/G8/G8H.

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Group- ing	Mnemonic	Function	Group- ing	Mnemonic	Function
	SB j	(Mj(DP)) ← 1 j = 0 to 3		DI	$(INTE) \leftarrow 0$
eration	$ \begin{array}{c c} RB \ j & Mj(DP)) \leftarrow 0 \end{array} \hspace{0.5cm} EI $	EI SN70	(INTE) ← 1		
		SNZ0	V10 = 0: (EXF0) = 1 ? (EXF0) \leftarrow 0 V10 = 1: SNZ0 = NOP		
		j = 0 to 3	u.	SNZI0	I12 = 1 : (INT) = "H" ?
Comparison operation	SEAM (A) = (M(DP)) ?		l12 = 0 : (INT) = "L" ?		
Comparisor	SEA n	(A) = n ? n = 0 to 15	Interrupt operation	TAV1	(A) ← (V1)
	Ва	(PCL) ← a6–a0	<u>n</u>	TV1A	(V1) ← (A)
eration	BL p, a	(PCH) ← p		TAV2	(A) ← (V2)
Branch operation		(PCL) ← a6–a0		TV2A	(V2) ← (A)
Bran	BLA p	$(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$		TAI1	(A) ← (I1)
	BM a (SP) ← (SP) + 1		TI1A	(l1) ← (A)	
		$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow 2$		TPAA	$(PA) \leftarrow (A)$
L C		(PCL) ← a6–a0		TAW1	(A) ← (W1)
perati	BML p, a	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$		TW1A	(W1) ← (A)
Subroutine operation		(PCH) ← p (PCL) ← a6–a0		TAW2	(A) ← (W2)
Subro	BMLA p	(SP) ← (SP) + 1		TW2A	(W2) ← (A)
		$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$	uo	TAW3	(A) ← (W3)
		(PCL) ← (DR2–DR0, A3–A0)	operati	TW3A	(W3) ← (A)
	RTI	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	Timer operation	TAW4	(A) ← (W4)
	RT	(PC) ← (SK(SP))		TW4A	(W4) ← (A)
		$(SP) \leftarrow (SP) - 1$		TABPS	(B) ← (TPS7–TPS4) (A) ← (TPS3–TPS0)
Return operation	RTS	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$		TPSAB	(RPS7–RPS4) ← (B)
eturn c				III OAD	(TPS7–TPS4) ← (B)
<u>«</u>					$(RPS3-RPS0) \leftarrow (A)$ $(TPS3-TPS0) \leftarrow (A)$
	0.1.04.6.14	34552M4/M4H.			

Note: p is 0 to 31 for M34552M4/M4H.

p is 0 to 63 for M34552M8/M8H/G8/G8H.

Group- ing	Mnemonic	F INSTRUCTION FUNCTION (Group- ing	Mnemonic	Function
	TAB1	(B) ← (T17–T14) (A) ← (T13–T10)		CLD	(D) ← 1
		(.,, (,		RD	$(D(Y)) \leftarrow 0$
	T1AB	(R17–R14) ← (B)			(Y) = 0 to 7
		$(T17-T14) \leftarrow (B)$			(500)
		$(R13-R10) \leftarrow (A)$ $(T13-T10) \leftarrow (A)$		SD	$ (D(Y)) \leftarrow 1 $ $ (Y) = 0 \text{ to } 7 $
		(113-110) ← (A)			(1) = 0 to 7
	TAB2	(B) ← (T27–T24)		SZD	(D(Y)) = 0 ?
		(A) ← (T23–T20)			(Y) = 0 to 5
	T2AB	(R27–R24) ← (B)		RCP	(C) ← 0
		(T27−T24) ← (B)			
		(R23–R20) ← (A)		SCP	(C) ← 1
		(T23–T20) ← (A)		TAPU0	(A) ← (PU0)
	T2HAB	(R2H7–R2H4) ← (B)			
tion		$(R2H3-R2H0) \leftarrow (A)$	ation	TPU0A	(PU0) ← (A)
эрега	TR1AB	(R17–R14) ← (B)	oper	TAPU1	(A) ← (PU1)
Timer operation		(R13–R10) ← (A)	Input/Output operation	TPU1A	(PU1) ← (A)
	T2R2L	(T27–T24) ← (R2L7–R2L4)	out/C		
		$(T23-T20) \leftarrow (R2L3-R2L0)$	<u>u</u>	TAK0	(A) ← (K0)
	TLCA	(LC) ← (A)		TK0A	$(K0) \leftarrow (A)$
		$(RLC) \leftarrow (A)$		TAK1	$(A) \leftarrow (K1)$
	SNZT1	V12 = 0: (T1F) = 1 ?			
		(T1F) ← 0		TK1A	(K1) ← (A)
		V12 = 1: SNZT1 = NOP		TAK2	$(A) \leftarrow (K2)$
	SNZT2	V13 = 0: (T2F) = 1 ?			
		(T2F) ← 0		TK2A	(K2) ← (A)
		V13 = 1: SNZT2 = NOP		TEDOA	(FRO) ((A)
	SNZT3	V20 = 0: (T3F) = 1 ?		TFR0A	(FR0) ← (A)
	011210	$(T3F) \leftarrow 0$		TFR1A	(FR1) ← (A)
		V20 = 1: SNZT3 = NOP			
	IAP0	(A) ← (P0)		TFR2A	(FR2) ← (A)
	1/31 0	$(a) \leftarrow (i \ \forall)$		CRCK	RC oscillator selected
ion	ОР0А	(P0) ← (A)			
erati		(A) (D4)	<u> </u>	TAMR	$(A) \leftarrow (MR)$
ut op	IAP1	(A) ← (P1)	ratic	TMRA	(MR) ← (A)
Outpı	OP1A	(P1) ← (A)	Clock operation		
Input/Output operation	IAP2	(A) ← (P2)	Cloc	TRGA	(RG) ← (A)
	OP2A	(P2) ← (A)			

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Group-		FINSTRUCTION FUNCTION (COI				
ing	Mnemonic	Function				
	TAL1	(A) ← (L1)				
	TL1A	(L1) ← (A)				
eration	TL2A	(L2) ← (A)				
LCD operation	TL3A	(L3) ← (A)				
	TC1A	(C1) ← (A)				
	TC2A	(C2) ← (A)				
	NOP	(PC) ← (PC) + 1				
	POF	Transition to clock operating mode				
	POF2	Transition to RAM back-up mode				
	EPOF	POF, POF2 instructions valid				
uo	SNZP	(P) = 1 ?				
Other operation	DWDT	Stop of watchdog timer function enabled				
Other	SRST	System reset				
	WRST	(WDF1) = 1 ? (WDF1) ← 0				
	RUPT	(UPTF) ← 0				
	SUPT	(UPTF) ← 1				
	SVDE (Note)	At power down mode, voltage drop detection circuit valid				

Note: The SVDE instruction can be used only for the H version.

MACHINE INSTRUCTIONS (INDEX BY ALPHABET)

1 n (1) dd n	and accumulator)				_
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	1 149 0 1	
	16	1	1	_	Overflow = 0
Operation:	$(A) \leftarrow (A) + n$	Grouping:	Arithmetic	operation	
	n = 0 to 15		: Adds the	value n in	the immediate field to
			register A,	and stores	a result in register A.
				-	g CY remains unchanged.
					ction when there is no
					t of operation.
					struction when there is
			overnow as	s the resul	t of operation.
	ccumulator and Memory)	1		= O)	
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 0 1 0 1 0 1 0 ₂ 0 0 A ₁₆	1	1	_	_
Operation:	$(A) \leftarrow (A) + (M(DP))$	Grouping:	Arithmetic	operation	
Operation.	(*) (*) * (M(B)))			_	f M(DP) to register A.
		2 cccptc			egister A. The contents
					ins unchanged.
	accumulator, Memory and Carry)		1		
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 0 1 0 1 1 ₂ 0 0 B ₁₆	words 1	1	0/1	
		'	l l	0/1	
Operation:	$(A) \leftarrow (A) + (M(DP)) + (CY)$	Grouping:	Arithmetic		
	$(CY) \leftarrow Carry$	Description			M(DP) and carry flag
			_		res the result in regis-
			ter A and c	arry flag C	Υ.
AND (logic	cal AND between accumulator and memory)	1			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 0 0 0 0 0 1 8	words	cycles		·
		1	1	_	-
Operation:	$(A) \leftarrow (A) \text{ AND } (M(DP))$	Grouping:	Arithmetic	operation	
-		Description	1: Takes the	AND opera	ation between the con-
				•	and the contents of
			M(DP), an	d stores th	e result in register A.
		1			

B a (Branc	h to address a)				
Instruction code	D9 D0 0 1 1 a6 a5 a4 a3 a2 a1 a0 1 8 a	Number of words	Number of cycles	Flag CY	Skip condition
	0 1 1 20 23 24 23 22 21 20 2 1 +2 2 16	1	1	_	-
Operation:	(PCL) ← a6 to a0	Grouping:	Branch ope	eration	
		Description			: Branches to address
			a in the ide		
		Note:	Specify the	branch a	ddress within the page
			including th	nis instruct	ion.
	ranch Long to address a in page p)	Nontra	Niverbarat	FI= =: CV	Older and Billian
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
		2	2	-	-
	1 0 p5 a6 a5 a4 a3 a2 a1 a0 ₂ 2 p +a a ₁₆	Grouping:	Branch ope	eration	
Operation:	$(PCH) \leftarrow p$	Description	: Branch out	of a page	: Branches to address
-	(PCL) ← a6 to a0		a in page p		
		Note:	•		552M4/M4H and p is 0
			to 63 for M	34552M8/	M8H/G8/G8H.
BLA p (Bra	anch Long to address (D) + (A) in page p)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 0 0 0 0 2	words	cycles		
		2	2	_	_
	1 0 p5 p4 0 0 p3 p2 p1 p0 2 2 p p p 16	Grouping:	Branch ope	eration	
Operation:	(PCH) ← p	Description			: Branches to address
Operation.	$(PCL) \leftarrow (DR2-DR0, A3-A0)$				2 A1 A0)2 specified by
	(*, * (registers D		
		Note:	p is 0 to 3	1 for M345	552M4/M4H and p is 0
			to 63 for M	34552M8/	M8H/G8/G8H.
BM a (Brai	nch and Mark to address a in page 2)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 1 0 a6 a5 a4 a3 a2 a1 a0 2 1 a a 16	words	cycles		
		1	1	_	_
Operation:	(SP) ← (SP) + 1	Grouping:	Subroutine	call opera	ation
Operation.	$(SF) \leftarrow (SF) + F$ $(SK(SP)) \leftarrow (PC)$				in page 2 : Calls the
	$(PCH) \leftarrow 2$				s a in page 2.
	(PCL) ← a6–a0	Note: Subroutine at address a in page 2.			1 0
			other page	can also	be called with the BM
			instruction	when it sta	arts on page 2.
					the stack because the
			maximum l	evel of sub	routine nesting is 8.
		1			

MACHINI	E INSTRUCTIONS (INDEX BY ALPHABET)	(contini	uea)		
BML p, a (Branch and Mark Long to address a in page p)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 1 1 0 p4 p3 p2 p1 p0 2 0 C p 16	words	cycles		
		2	2	_	_
	1 0 p5 a6 a5 a4 a3 a2 a1 a0 ₂ 2 p ha a ₁₆	Grouping:	Subroutine	call opera	tion
Operation:	(SP) ← (SP) + 1	Description			Calls the subroutine at
	$(SK(SP)) \leftarrow (PC)$		address a		
	$(PCH) \leftarrow p$	Note:	•		52M4/M4H and p is 0
	(PCL) ← a6–a0				M8H/G8/G8H. the stack because the
					routine nesting is 8.
BMLA p (F	Branch and Mark Long to address (D) + (A) in page p	o)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 1 0 0 0 0 0 0 0 0 0	words	cycles		·
	0 0 0 1 1 0 0 0 2 0 3 0 16	2	2	_	-
	1 0 p5 p4 0 0 p3 p2 p1 p0 2 2 p p 1 ₆	Grouping:	Subroutine	call opera	tion
Operation:	(SP) ← (SP) + 1	Description			Calls the subroutine at
Operano	$(SK(SP)) \leftarrow (PC)$			R2 DR1 DI	Ro A3 A2 A1 A0)2 speci-
	$(PCH) \leftarrow p$				d A in page p.
	$(PCL) \leftarrow (DR2-DR0, A3-A0)$	Note:			52M4/M4H and p is 0
					M8H/G8/G8H. the stack because the
					routine nesting is 8.
CLD (CLea	er port D)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	J	
	16	1	1	_	_
Operation:	(D) ← 1	Grouping:	Input/Outp	ut operatio	n
			: Sets (1) to		
CMA (Colv	Iplement of Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 1 0 0 2 0 1 C	words	cycles		
		1	1	_	_
Operation:	$(A) \leftarrow \overline{(A)}$	Grouping:	Arithmetic	operation	
				•	mplement for register
			A's conten	ts in regist	er A.

	ock select: Rc oscillation ClocK)		1		
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 0 0 1 1 0 0 1 1 ₂ 2 9 B ₁₆	1	1	_	_
Operation:	RC oscillation circuit selected	Craunina	Clock cont	rol on orotic	
Орегаціон.	NO OSCIIIALION CITCUIL SELECIEU	Grouping:	Clock cont		llation circuit for mai
			clock f(XIN		
DEY (DEc	rement register Y)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 1 0 1 1 1 2	1	1	-	(Y) = 15
Operation:	(Y) ← (Y) − 1	Grouping:	RAM addr	esses	
					contents of register
					action, when the co
					15, the next instruction
				-	contents of register
					struction is executed.
			13 1101 13, 1	IIIC HOAL III	struction is executed.
DI (Disable	e Interrupt)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 0 0 1 0 0 0 0 4	words	cycles		
	0 0 0 0 0 0 1 0 0 2	1	1	-	-
Operation:	$(INTE) \leftarrow 0$	Grouping:	Interrupt c		
		Description			enable flag INTE, an
			disables th		
		Note:	Interrupt is	s disabled l	by executing the DI ir
			struction a	fter execut	ing 1 machine cycle.
	sable WatchDog Timer)	T	T	T =	
Instruction	D9 D0	Number of words	Number of	Flag CY	Skip condition
code	1 0 1 0 0 1 1 1 1 1 0 0 0 2 2 9 C 16		cycles		
		1	1	_	_
Operation:	Stop of watchdog timer function enabled	Grouping:	Other oper	ration	
		Description	•	-	timer function by th
			WRST in	struction	after executing th
			DWDT ins	truction.	

EI (Enable	Interrupt)				
Instruction code	D9 D0 0 0 0 0 0 1 0 1 0 0 5 46	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 0 0 1 0 1 2	1	1	_	_
Operation:	(INTE) ← 1	Grouping:	Interrupt co		
		Description	: Sets (1) to enables the		enable flag INTE, and
		Note:			by executing the EI in-
			struction a	fter execut	ing 1 machine cycle.
EPOF (En	able POF instruction)	<u>'</u>			
Instruction code	D9 D0 0 0 0 1 0 1 1 0 1 1 0 5 B	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 0 1 1 0 1 1 2 0 3 1 16	1	1	-	-
Operation:	POF instruction, POF2 instruction valid	Grouping:	Other oper		
		Description			e after POF instruction
			or POF2 in EPOF inst		valid by executing the
			EPOF IIISI	ruction.	
IAPO (Inpu	ut Accumulator from port P0)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 0 0 0 0 0 2 6 0	words	cycles		·
	16	1	1	_	_
Operation:	$(A) \leftarrow (P0)$	Grouping:	Input/Outp		
		Description	: Transfers	the input o	f port P0 to register A.
IAP1 (Inpu	ut Accumulator from port P1)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 0 0 0 1 2 6 1	words	cycles		·
	16	1	1	_	_
Operation:	(A) ← (P1)	Grouping:	Input/Outp	ut operation	
•	• • • •				f port P1 to register A.
					-

	t Accumulator from port P2)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 0 0 0 1 0 2 2 6 2 16	words 1	cycles 1	_	_
Operation:	(A) (P2)	Grouping	Input/Outp	ut operatio	un.
орегацоп.	$(A) \leftarrow (P2)$	Grouping:			port P2 to register A.
INY (INcre	ment register Y)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	(Y) = 0
Operation:	$(Y) \leftarrow (Y) + 1$	Grouping:	RAM addre	esses	
			register \ skipped. V	is 0, the When the c	hen the contents on the contents of register Y is contents of register Y is content is executed.
	In in Accumulator)			EL 01/	01:
Instruction code	D9 D0 0 0 1 1 1 1 n n n n 0 7 n 10	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	_	Continuous description
Operation:	$(A) \leftarrow n$	Grouping:	Arithmetic	operation	
	n = 0 to 15	Description		value n in	the immediate field to
			register A.	I A inatriia	tions are continuously
			When the		•
			When the coded and struction	l executed	tions are continuously I, only the first LA in- uted and other LA d continuously are
LXY x, y (Load register X and Y with x and y)		When the coded and struction instruction	l executed	l, only the first LA in- uted and other LA
LXY x, y (Instruction code	Load register X and Y with x and y) D9 D0 1 1 2 3 2 2 1 70 73 72 71 70 3 7 7	Number of words	When the coded and struction instruction	l executed	l, only the first LA in- uted and other LA
Instruction	· · · · · · · · · · · · · · · · · · ·		When the coded and struction instruction skipped.	l executed is execu ns coded	l, only the first LA in- uted and other LA d continuously are
Instruction	D9 D0 1 1 $x_3 x_2 x_1 x_0 y_3 y_2 y_1 y_0$ (X) $\leftarrow x x = 0 \text{ to } 15$	words 1 Grouping:	When the coded and struction instruction skipped. Number of cycles 1 RAM addr	Flag CY esses	Skip condition Continuous description
Instruction code	D9 D0 1 1 1 x3 x2 x1 x0 y3 y2 y1 y0 2 3 x y 16	words 1 Grouping:	When the coded and struction instruction skipped. Number of cycles 1 RAM addra: Loads the	Flag CY esses value x in	I, only the first LA in the dand other LA discontinuously are Skip condition Continuous description the immediate field t
Instruction code	D9 D0 1 1 $x_3 x_2 x_1 x_0 y_3 y_2 y_1 y_0$ (X) $\leftarrow x x = 0 \text{ to } 15$	words 1 Grouping:	When the coded and struction instruction skipped. Number of cycles 1 RAM addr 1: Loads the register X,	Flag CY esses value x in and the value and the value x in a x in x in x in x in x in x in x	Skip condition Continuous description the immediate field talue y in the immediate
Instruction code	D9 D0 1 1 $x_3 x_2 x_1 x_0 y_3 y_2 y_1 y_0$ (X) $\leftarrow x x = 0 \text{ to } 15$	words 1 Grouping:	When the coded and struction instruction skipped. Number of cycles 1 RAM addr RAM addr 1: Loads the register X, field to re	Flag CY esses value x in and the vagister Y. V	Skip condition Continuous description the immediate field talue y in the immediate
Instruction code	D9 D0 1 1 $x_3 x_2 x_1 x_0 y_3 y_2 y_1 y_0$ (X) $\leftarrow x x = 0 \text{ to } 15$	words 1 Grouping:	When the coded and struction instruction skipped. Number of cycles 1 RAM addr 1: Loads the register X, field to re tions are conly the f	Flag CY esses value x in and the vagister Y. Vontinuouslirst LXY in	Skip condition Continuous description the immediate field to the i
Instruction code	D9 D0 1 1 $x_3 x_2 x_1 x_0 y_3 y_2 y_1 y_0$ (X) $\leftarrow x x = 0 \text{ to } 15$	words 1 Grouping:	When the coded and struction instruction skipped. Number of cycles 1 RAM addr 1: Loads the register X, field to re tions are conly the f	Flag CY esses value x in and the value first LXY in LXY instru	Skip condition Continuous description the immediate field talue y in the immediate y coded and executed

LZ z (Load	register Z with z)				
Instruction code	D9 D0 0 0 1 0 0 1 0 21 20 0 4 8 15 16	Number of words	Number of cycles	Flag CY	Skip condition
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1	_	-
Operation:	$(Z) \leftarrow z z = 0 \text{ to } 3$	Grouping:	RAM addr		
		Description	: Loads the register Z.	value z in	the immediate field to
NOP (No C	DPeration)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 0 0 0 0 0 0 0 0 16	1	1	_	-
Operation:	(PC) ← (PC) + 1	Grouping:	Other ope		
		Description			1 to program counte
OP0A (Ou	tput port P0 from Accumulator)				
Instruction code	D9 D0 1 0 0 1 0 0 0 0 0 0 0 2 2 2 0 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	_
Operation:	(P0) ← (A)	Grouping:	Input/Outp		
		Description	P0.	ne conteni	s of register A to por
OP1A (Ou	tput port P1 from Accumulator)				
Instruction	D9 Do	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 1 0 0 0 1 1 2 2 2 1 1 16	1	1	_	_
Operation:	(P1) ← (A)	Grouping: Description	Input/Outp n: Outputs the P1.		on s of register A to por

tout part D2 from Accumulator				
	Number of	Number of	Flag CV	Skip condition
	words	cycles	riag C1	Skip condition
1 0 0 0 1 0 0 0 1 0 2 2 2 2 16	1	1	_	_
(P2) ← (A)	Groupina:	Input/Outp	ut operation	n
			•	s of register A to port
I OP between accumulator and memory)				
• • • • • • • • • • • • • • • • • • • •	Number of	Number of	Flog CV	Chin condition
	words	cycles	_	Skip condition
	1	1	_	
$(A) \leftarrow (A) OR (M(DP))$	Grouping:	Arithmetic	operation	
	Description	tents of r	egister A	and the contents of
er OFf)				
D9 D0 0 0 0 0 0 0 1 0 0 0 2	Number of words	Number of cycles	Flag CY	Skip condition
	1	1	_	
Transition to clock operating mode	Grouping:	Other oper	ation	
	Description Note:	executing ecuting the If the EPOF executing to	the POF2 EPOF instruction	n is not executed before stion, this instruction is
ver OFf2)				_
D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
0 0 0 0 0 1 0 0 0 2	1	1	-	-
Transition to RAM back-up mode	Grouping: Description Note:	executing ecuting the If the EPOI executing	ystem in I the POF2 EPOF ins instruction this instruc	n is not executed before ction, this instruction is
	(P2) ← (A) I OR between accumulator and memory) D9	Do	OR between accumulator and memory OR between accumulator and memory OR Description: Outputs the P2.	OR between accumulator and memory Do

RAR (Rota	ate Accumulator Right)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 1 0 1 2 0 1 D 16	words	cycles		
		1	1	0/1	_
Operation:	→[CY]→[A3A2A1A0] _]	Grouping:	Arithmetic	operation	
		Description			ontents of register A in- of carry flag CY to the
RB j (Rese	et Bit)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	$(Mj(DP)) \leftarrow 0$	Grouping:	Bit operation	on_	
	j = 0 to 3		: Clears (0)	the conten	ts of bit j (bit specified e immediate field) o
RC (Reset	Carry flag)				
Instruction code	D9 D0 0 0 0 0 0 1 1 0 0 0 6 40	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	0	-
Operation:	$(CY) \leftarrow 0$	Grouping:	Arithmetic		
			: Clears (0)		
RCP (Rese	•	Number of	Number of	Flog CV	Chin condition
code	D9 D0 1 0 0 0 1 1 0 0 2 8 C	Number of words	cycles	Flag CY	Skip condition
0000	16	1	1	0	-
Operation:	(C) ← 0	Grouping: Description	Input/Outp : Clears (0)	•	

RD (Reset	port D specified by register Y)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 0 1 0 0 2 0 1 4	words 1	cycles 1	_	_
		,	•		
Operation:	$(D(Y)) \leftarrow 0$	Grouping:	Input/Outp		
	However,	Description		to a bit of p	oort D specified by reg
	(Y) = 0 to 7		ister Y.		
RT (ReTur	n from subroutine)				
Instruction	D9 D0 0 0 1 0 0 0 1 0 0 0 4 4 4 40	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	2	-	-
Operation:	$(PC) \leftarrow (SK(SP))$	Grouping:	Return ope		
	(SP) ← (SP) – 1	Description: Returns from subroutine to the			outine to the routin
<u> </u>	rn from Interrupt)	Newhort	North	FI OV	01:2
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	ſ
Operation:	$(PC) \leftarrow (SK(SP))$	Grouping:	Return ope	eration	
	$(SP) \leftarrow (SP) - 1$	Description			upt service routine to
			main routir		
					of data pointer (X, Y, Z) s, NOP mode status b
					iption of the LA/LXY in
					and register B to the
			states just	before inte	errupt.
RTS (ReTu	urn from subroutine and Skip)			before inte	errupt.
Instruction	D9 D0	Number of words	states just	Flag CY	Skip condition
	.,		states just		
Instruction code	D9	words 1	Number of cycles	Flag CY	Skip condition
Instruction	D9 D0 D0	words 1 Grouping:	Number of cycles 2 Return ope	Flag CY - eration	Skip condition
Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping:	Number of cycles 2 Return open: Returns f	Flag CY eration rom subressubroutine	Skip condition Skip at uncondition outine to the routine, and skips the next in

RUPT (Res	set UPTF flag)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 1 1 0 1 1 0 0 0 0 2	1	1	-	-
Operation:	(UPTF) ← 0	Grouping:	Other ope	ration	
				to the hig	h-order bit referenc
SB j (Set E	Bit)				
Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words	Number of cycles	Flag CY	Skip condition
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	-	-
Operation:	(Mj(DP)) ← 1	Grouping:	Bit operati	on	
	j = 0 to 3	Description			of bit j (bit specified b ediate field) of M(DP)
SC (Set Ca			1	11	
Instruction code	D9 D0 0 0 0 0 0 1 1 1 1 0 0 0 7	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	1	-
Operation:	(CY) ← 1	Grouping:	Arithmetic	operation	
			n: Sets (1) to	,g	
SCP (Set F	•		Nembers	FI 01/	01: 1:::
Instruction code	D9 D0 1 0 0 0 1 1 0 1 2 8 D	Number of words	Number of cycles	Flag CY	Skip condition
code		1	1	_	-
Operation:	(C) ← 1	Grouping: Description	Input/Outp :: Sets (1) to	ut operation port C.	n

SD (Set po	ort D specified by register Y)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 0 1 0 1 2 0 1 5	words 1	cycles 1	_	_
Operation:	(D(Y)) ← 1	Grouping:	Input/Outp	ut operation	on
Operation.	(Y) = 0 to 7				rt D specified by regis
			ter Y.		
SEA n (Sk	rip Equal, Accumulator with immediate data n)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
		2	2	_	(A) = n
	0 0 0 1 1 1 1 n n n n 2 0 7 n 16				n = 0 to 15
		Grouping: Description	Compariso		on ruction when the con
Operation:	(A) = n ? n = 0 to 15	2001.	tents of re the immed Executes	gister A is liate field. the next in gister A is	equal to the value n in struction when the con not equal to the value in
<u>`</u>	ip Equal, Accumulator with Memory)	1	I	1	
Instruction code	D9 D0 0 0 1 0 0 1 1 0 0 2 6	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	(A) = (M(DP))
Operation:	(A) = (M(DP))?	Grouping:	Compariso	on operatio	on
		Description	tents of re M(DP). Executes	gister A is of the next in register A	ruction when the contequal to the contents of struction when the contents is not equal to the
SNZ0 (Ski	p if Non Zero condition of external 0 interrupt reques	st flag)			
Instruction	D9 D0 0 0 1 1 1 0 0 0 0 3 8 4c	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 1 1 1 0 0 0 2	1	1	_	V10 = 0: (EXF0) = 1
Operation:	V10 = 0: (EXF0) = 1 ? (EXF0) \leftarrow 0 V10 = 1: SNZ0 = NOP (V10 : bit 0 of the interrupt control register V1)	Grouping: Description	and skips to the extraction.	= 0 : Cleathe next instance request f flag is "0,"	ars (0) to the EXF0 flag struction when external ag EXF0 is "1." When executes the next in a instruction is equivaluction.

D9	Number of words	Number of cycles	Flag CY	Skip condition I12 = 0 : (INT) = "L"
I12 = 0 : (INT) = "L" ?	1	•	_	112 – 0 · (INIT) – "I "
	0			
		L		I12 = 1 : (INT) = "H"
	Grouping:	Interrupt of		- the second feeting the
I12 = 1 : (INT) = "H" ?	Description			s the next instruction
(I12: bit 2 of the interrupt control register I1)				T pin is "L." Execute:
			struction	when the level of IN
		pin is "H."	_ 1 · Ckin	o the next instruction
				s the next instruction T pin is "H." Execute:
if Non Zero condition of Power down flag)		•		
D9 D0	Number of	Number of	Flag CY	Skip condition
0 0 0 0 0 0 0 1 1 0 0 3	words	cycles		
	1	1	_	(P) = 1
(D) 4.0		0.1	<u></u>	
(P) = 1 ?				Caraban da B flancia
	Description		iext instruc	tion when the P flag is
			ning the	D flag romains un
			ping, me	r nag remains un
		J	the next is	netruction when the F
			ine next ii	istruction when the r
		nag is 0.		
ip if Non Zero condition of Timer 1 interrupt request	 : flag)			
D9 D0	Number of	Number of	Flag CY	Skip condition
1 0 1 0 0 0 0 0 0 0 2 8 0	words	cycles		
16	1	1	-	V12 = 0: (T1F) = 1
V12 = 0: (T1F) = 1 ?	Grouping:	Timer ope	ration	
$(T1F) \leftarrow 0$	Description	: When V12	= 0 : Cle	ars (0) to the T1F flag
V12 = 1: SNZT1 = NOP		and skips	the next ir	struction when timer
(V12 = bit 2 of interrupt control register V1)		interrupt re	equest flag	g T1F is "1." When the
		T1F flag is	s "0," exec	cutes the next instruc
		tion.		
		When V12	: = 1 : This	s instruction is equiva
		lent to the	NOP instr	uction.
ip if Non Zero condition of Timer 2 interrupt request	flag)			
D9 D0	Number of	Number of	Flag CY	Skip condition
1 0 1 0 0 0 0 0 1 2 8 1	words	cycles		
	1	1	_	V13 = 0: (T2F) = 1
V13 = 0: (T2F) = 1 ?	Grouping:	Timer one	ration	
• •				ars (0) to the T2F flag
	2 cccpc.			
(1.15 - Sit 5 of interrupt control regional vi)				cutes the next instru
	1	izi nag i	, o, oxer	Jacob the Heat Histiat
		tion		
		tion. When V13	= 1 · This	s instruction is equiva
	(P) = 1 ? (ip if Non Zero condition of Timer 1 interrupt requesting the property of the prope		the next in pin is "L." Description: Skips the next in pin is "L." After skip changed.	the next instruction pin is "L." Description: Skips the next instruction pin is "L." Number of words Number of words Number of cycles Number of words Number of words Number of cycles Number of words Number of words Number of words Number of words Number of cycles Number of words Number of yords Number of words Number of words Number of yords Number of

SNZT3 (Sk	rip if Non Zero condition of Timer 3 interrupt request	flag)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 0 0 0 1 0 2 8 2	words	cycles		·
	16	1	1	-	V20 = 0: (T3F) = 1
Operation:	V20 = 0: (T3F) = 1 ?	Grouping:	Timer ope	ration	
•	(T3F) ← 0	Description			ars (0) to the T3F flag
	V20 = 1: SNZT3 = NOP	_	and skips	the next in	struction when timer 3
	(V20 = bit 0 of interrupt control register V2)		interrupt re	equest flag	g T3F is "1." When the
			T3F flag is	s "0," exec	cutes the next instruc-
			tion.		
			When V20	= 1 : This	s instruction is equiva-
			lent to the	NOP instru	uction.
	stem ReSeT)		1		
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 0 0 0 0 0 1 2 0 0 1 16	words	cycles		
		1	1	_	-
Operation:	System reset occurrence	Grouping:	Other oper	ation	
		Description	: System res	set occurs.	
SUPT (Set	UPTF flag)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 1 1 0 1 1 0 0 1 2 0 5 9 16	words	cycles		
		1	1	_	-
Operation:	(UPTF) ← 1	Grouping:	Other oper		
		Description	, ,	high-orde	er bit reference enable
			flag.		
	Voltage Detector Enable flag)	Ni perle con of	Ni per le como d	Fle = OV	Olsin annalitica
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 0 0 1 0 0 1 1 2 2 9 3 16		-		
		1	1	_	
Operation:	Voltage drop detection circuit valid at powerdown mode.	Grouping:	Other oper		
		Description			tion circuit is valid at
					clock operating mode,
			RAM back		
		Note: This i	nstruction car	n be used o	only for H version.

SZB j (Skip			1			
Instruction code	D9 D0	2 i 10	Number of words	Number of cycles	Flag CY	Skip condition
		²	1	1	_	(Mj(DP)) = 0 j = 0 to 3
Operation:	(Mj(DP)) = 0 ?		Grouping:	Bit operation	on	
	j = 0 to 3		Description	: Skips the	next instr	uction when the con
				the immed	iate field) on the next ins	cified by the value j in of M(DP) is "0." struction when the con is "1."
SZC (Skip	if Zero, Carry flag)					
Instruction code	D9 D0 0 0 0 0 1 0 1 1 1 1 0 0	2 F ₁₆	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	_	(CY) = 0
Operation:	(CY) = 0?		Grouping:	Arithmetic	operation	
			Description	tents of ca After skip changed.	try flag C\ ping, the	CY flag remains un struction when the con
	f Zero, port D specified by register Y)		1	T	1	
Instruction code	D9 D0 0 0 1 0 0 1 0 0 2 0 2	2 4	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 1 0 1 0 1 1 2 0 2	2 B ₁₆	2	2	_	(D(Y)) = 0 (Y) = 0 to 7
Operation:	(D(Y)) = 0?		Grouping:	Input/Outp	ut operation	n
	(Y) = 0 to 7		Description Note:	D specified next instru-	d by registe ction wher 5. ecute this i	ction when a bit of por er Y is "0." Executes the the bit is "1." Instruction if values ex- register Y.
T1AB (Tra	nsfer data to timer 1 and register R1 from A	ccumul	ator and reg	jister B)		
Instruction code	D9 D0 D0 1 1 0 0 0 0 2	3 0 40	Number of words	Number of cycles	Flag CY	Skip condition
		16	1	1	_	_
Operation:	$(T17-T14) \leftarrow (B)$ $(R17-R14) \leftarrow (B)$ $(T13-T10) \leftarrow (A)$ $(R13-R10) \leftarrow (A)$		Grouping: Description	high-orde load regis	the conte r 4 bits of ter R1. Tra to the low	nts of register B to the timer 1 and timer 1 re ansfers the contents of timer 4 bits of timer egister R1.

,	nsfer data to timer 2 and register R2L from Accumul	ator and re	gister B)		
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 1 0 0 0 1 2 2 3 1 16	words 1	cycles 1	_	
		·	·		
Operation:	$(R2L7-R2L4) \leftarrow (B)$	Grouping:	Timer oper		
	$(T27\text{-}T24) \leftarrow (B)$	Description	: Transfers	the conten	ts of register B to the
	$(R2L3-R2L0) \leftarrow (A)$		high-order	4 bits of ti	mer 2 and timer 2 re
	$(T23-\mathsf{T20}) \leftarrow (A)$		load regist	er R2L. Tra	ansfers the contents o
			register A	to the low-	order 4 bits of timer 2
			and timer 2	2 reload reg	gister R2L.
T2HAB (Tr	ansfer data to register R2H from Accumulator and re	egister B)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 0 1 0 0 1 0 1 0 0 2 2 9 4	words 1	cycles 1	_	_
Onenetien	(DOUG DOUG) . (D)	Grouping:	Timer opei	ation	
Operation:	$(R2H7-R2H4) \leftarrow (B)$	Description			ts of register B to the
	$(R2H3-R2H0) \leftarrow (A)$	Description			imer 2 and timer 2 re
			-		ansfers the contents o
			-		order 4 bits of timer 2
			-		gister R2H.
			and timer z	z reioau re	gister NZTT.
T2R2L (Tra	ansfer data to timer 2 from register R2L)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 0 1 0 1 0 1 2 2 9 5	words	cycles		
		1	1	-	_
			Timer ope		
Operation:	$(T27\text{-}T20) \leftarrow (R2L7\text{-}R2L0)$	Grouping:		the cente	
Operation:	$(T27\text{-}T20) \leftarrow (R2L7\text{-}R2L0)$	Grouping: Description		the conte	nts of reload registe
Operation:	$(T27\text{-}T20) \leftarrow (R2L7\text{-}R2L0)$				nts of reload registe
Operation:	$(T27\text{-}T20) \leftarrow (R2L7\text{-}R2L0)$: Transfers		nts of reload registe
Operation:	(T27–T20) ← (R2L7–R2L0)		: Transfers		nts of reload registe
Operation:	(T27–T20) ← (R2L7–R2L0)		: Transfers		nts of reload registe
Operation:	(T27–T20) ← (R2L7–R2L0)		: Transfers		nts of reload registe
Operation:	(T27–T20) ← (R2L7–R2L0)		: Transfers		nts of reload registe
			: Transfers		nts of reload registe
TAB (Trans	sfer data to Accumulator from register B)	Description	: Transfers R2L to tim	er 2.	
TAB (Trans	ofer data to Accumulator from register B) Do Do	Description Number of	R2L to tim		Skip condition
TAB (Trans	sfer data to Accumulator from register B)	Number of words	R2L to tim Number of cycles	Flag CY	_
TAB (Trans	sfer data to Accumulator from register B) D9 D0	Description Number of	R2L to tim	er 2.	_
TAB (Trans Instruction code	Sefer data to Accumulator from register B) D9 D0 0 0 0 0 0 1 1 1 1 0 0 0 1 E 0 16	Number of words	Number of cycles	Flag CY	Skip condition
TAB (Trans Instruction code	sfer data to Accumulator from register B) D9 D0	Number of words 1 Grouping:	Number of cycles Register to	Flag CY - register tr	Skip condition – ansfer
TAB (Trans Instruction code	Sefer data to Accumulator from register B) D9 D0 0 0 0 0 0 1 1 1 1 0 0 0 1 E 0 16	Number of words 1 Grouping:	Number of cycles 1 Register to: Transfers	Flag CY - register tr	Skip condition
TAB (Trans	Sefer data to Accumulator from register B) D9 D0 0 0 0 0 0 1 1 1 1 0 0 0 1 E 0 16	Number of words 1 Grouping:	Number of cycles Register to	Flag CY - register tr	Skip condition – ansfer
TAB (Trans Instruction code	Sefer data to Accumulator from register B) D9 D0 0 0 0 0 0 1 1 1 1 0 0 0 1 E 0 16	Number of words 1 Grouping:	Number of cycles 1 Register to: Transfers	Flag CY - register tr	Skip condition – ansfer
TAB (Trans Instruction code	Sefer data to Accumulator from register B) D9 D0 0 0 0 0 0 1 1 1 1 0 0 0 1 E 0 16	Number of words 1 Grouping:	Number of cycles 1 Register to: Transfers	Flag CY - register tr	Skip condition – ansfer
TAB (Trans Instruction code	Sefer data to Accumulator from register B) D9 D0 0 0 0 0 0 1 1 1 1 0 0 0 1 E 0 16	Number of words 1 Grouping:	Number of cycles 1 Register to: Transfers	Flag CY - register tr	Skip condition – ansfer
TAB (Trans Instruction code	Sefer data to Accumulator from register B) D9 D0 0 0 0 0 0 1 1 1 1 0 0 0 1 E 0 16	Number of words 1 Grouping:	Number of cycles 1 Register to: Transfers	Flag CY - register tr	Skip condition – ansfer

TAD4 /T		4)			
	nsfer data to Accumulator and register B from timer			T	
Instruction code	D9 D0 1 1 1 0 0 0 0 0 2 7 0 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	(B) ← (T17–T14)	Grouping:	Timer ope	ration	
•	$(A) \leftarrow (T13-T10)$				rder 4 bits (T17-T14) o
		_	timer 1 to		
			Transfers	the low-or	der 4 bits (T13-T10) o
			timer 1 to		,
TAB2 (Tra	nsfer data to Accumulator and register B from timer	2)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 1 0 0 0 1 2 2 7 1 16	words 1	cycles 1	_	_
		'	ı		_
Operation:	$(B) \leftarrow (T27 - T24)$	Grouping:	Timer ope		
	$(A) \leftarrow (T23 - T20)$	Description		_	rder 4 bits (T27-T24) o
			timer 2 to	-	der 4 bits (T23-T20) o
			timer 2 to		doi 1 bito (120 120) o
				Ü	
TABE (Tra	nsfer data to Accumulator and register B from regist	er E)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 0 1 0 1 0 ₂ 0 2 A ₁₆	words	cycles		
		1	1	_	
Operation:	(B) ← (E7–E4)	Grouping:	Register to	reaister t	ransfer
•	$(A) \leftarrow (E_3-E_0)$				order 4 bits (E7-E4) of
			register E t	to register	B, and low-order 4 bits
			of register	E to regist	er A.
TABP n (T	ransfer data to Accumulator and register B from Pro	dram mem	ory in page	. b)	
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 1 0 p5 p4 p3 p2 p1 p0 2 0 8 p p 16	words	cycles		
	[1	1	3	_	_
Operation:	Grouping: Arithme	tic operation		1	
$(SP) \leftarrow (SP) \leftarrow (SK(SP)) \leftarrow (SK(SP)) \leftarrow (SP) \leftarrow$	Description.				
$(PCH) \leftarrow p(N)$	Note)				
at $(UPTF) = ($	o at (UPTF) = 1 registers A and D in page	ge p.	`		, ,
(B) ← (RÓM)	(PC))7-4 $(DR_2) \leftarrow (0)$ UPTF = 1: Transfers by	ts 9, 8 to regis 7 to 0 are the	ster D, bits 7 t ROM pattern	o 4 to regi	ster B and bits 3 to 0 to s (DR2 DR1 DRn A3 A3
$(A) \leftarrow (KOM($	(B) \leftarrow (ROM(PC))7-4 A1 A0)2 specified by reg	gisters A and	D in page p.		
	$(A) \leftarrow (ROM(PC))_{3-0}$ Note: p is 0 to 31 for M	34552M4/M4	H, and p is 0 t	o 63 for Ma	34552M8/M8H/G8/G8H ver the stack because
	$(PC) \leftarrow (SK(SP))$ When this instru $(SP) \leftarrow (SP) - 1$ stage of stack re-		nou, be calely	a. 1101 10 0	voi ille stack because
	, , , ,	-			

TABPS (T	ransfer data to Accumulator and register B from Pre	Scaler)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 1 0 1 0 1 2 7 5 16	words	cycles		
		1	1	_	_
Operation:	(B) ← (TPS7–TPS4)	Grouping:	Timer oper	ation	
	$(A) \leftarrow (TPS3-TPS0)$	Description	TPS4) of	prescale he low-ord	order 4 bits (TPS7- r to register B, and er 4 bits (TPS3-TPS0) er A.
TAD (Trans	sfer data to Accumulator from register D)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 1 0 1 0 0 1 2	1	1	_	-
Operation:	$(A2-A0) \leftarrow (DR2-DR0)$	Grouping:	ansfer		
	(A3) ← 0	Description: Transfers the contents of register			ts of register D to the
					Ao) of register A.
		Note:			n is executed, "0" is a) of register A.
TAI1 (Trans	sfer data to Accumulator from register I1)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 0 1 0 1 1 2 2 5 3	1	1	_	-
Operation:	(A) ← (I1)	Grouping:	Interrupt of	peration	
		Description			ts of interrupt control
			register I1	to register	A.
	nsfer data to Accumulator from register K0)				
Instruction code	D9 D0 1 0 1 0 1 1 0 2 5 6 46	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 0 1 0 1 0 1 0 1 0 1 0 2 2 5 6 16	1	1	_	-
Operation:	(A) ← (K0)	Grouping:	Input/Outp	ut operatio	n
		Description: Transfers the contents of key-on wak control register K0 to register A.			

TAK1 (Tra	nsfer data to Accumulator from register K1)	(continu			
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
0000	1 0 0 1 0 1 1 0 1 1 2 2 5 9 16	1	1	-	-
Operation:	(A) ← (K1)	Grouping: Description		the conte	on nts of key-on wakeup register A.
TAK2 /Tran	nsfer data to Accumulator from register K2)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	-
Operation:	$(A) \leftarrow (K2)$	Grouping:	Input/Outpu		
		Description	: Transfers t control regi		its of key-on wakeup register A.
TAL1 (Trai	nsfer data to Accumulator from register L1)	<u> </u>			
Instruction code	D9 D0 1 0 1 0 1 0 1 0 2 2 4 A 16	Number of words	Number of cycles	Flag CY	Skip condition
	·	1	1	_	_
Operation:	(A) ← (L1)	Grouping: Description	LCD contr Transfers ter L1 to re	the conten	n ts of LCD control regis-
TAM j (Trar	nsfer data to Accumulator from Memory)				
Instruction code	D9 D0 1 1 0 0 j j j j 2 C j 40	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 1 1 0 0 j j j j ₂ 2 C j ₁₆	1	1	-	-
Operation:	$(A) \leftarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$ j = 0 to 15	Grouping: RAM to register transfer Description: After transferring the contents of M(DP) register A, an exclusive OR operation performed between register X and the value is in the immediate field, and stores the result in register X.			contents of M(DP) to sive OR operation is gister X and the value

TAMR (Tra	nsfer data to Accumulator from register MR)						
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition		
code	1 0 0 1 0 1 0 1 0 0 1 0 2	1	1	_	_		
		0	011				
Operation:	$(A) \leftarrow (MR)$	Grouping: Description	Clock oper		ts of clock control reg		
		J 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ister MR to		-		
TAPU0 (Tra	ansfer data to Accumulator from register PU0)						
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition		
	1 0 0 1 0 1 0 1 1 1	1	1	_	_		
Operation:	(A) ← (PU0)	Grouping:	Input/Outp	ut operatio	n		
	` , ` ` ,		: Transfers register Pl		nts of pull-up contro er A.		
TAPU1 (Tr Instruction code	ansfer data to Accumulator from register PU1) D9 D0 1 0 0 1 0 1 1 1 1 0 2 2 5 E 16	Number of words	Number of cycles	Flag CY	Skip condition		
Operations	(A) . (DIM)	Grouping:	Input/Outp	ut operatio	ın		
Operation:	(A) ← (PU1)	Description			eration contents of pull-up control		
			register Pl	J1 to regist	er A.		
	nsfer data to Accumulator from Stack Pointer)		N	lei ovi	01: 1:::		
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition		
oodo	0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 1 0 1 1 0	1	1	_	-		
Operation:	(A2–A0) ← (SP2–SP0)	Grouping:	Register to	register tr	ansfer		
•	$(A3) \leftarrow 0$				s of stack pointer (SP		
					s (A2–A0) of register A		
		Note:			n is executed, "0" i o) of register A.		

V1 (Tran	nsfer data to Accumulator from register V1)					
truction le	D9 D0 0 0 1 0 1 0 1 0 0 0 5 4 40	Number of words	Number of cycles	Flag CY	Skip condition	
.0	0 0 0 1 0 1 0 1 0 0 2	1	1	-	-	
eration:	(A) ← (V1)	Grouping:	Interrupt o	peration		
			: Transfers		nts of interrupt contro r A.	
V2 (Trar	nsfer data to Accumulator from register V2)					
truction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
	0 0 0 1 0 1 0 1 0 1 2 0 0 1 16	1	1	_	-	
eration:	(A) ← (V2)	Grouping: Interrupt operation				
		Description		the conter 2 to registe	nts of interrupt contro	
W1 (Tra	nsfer data to Accumulator from register W1)					
truction le	D9 D0 1 0 0 1 0 1 1 2 2 4 B 16	Number of words	Number of cycles	Flag CY	Skip condition	
		1	1	_	_	
eration:	$(A) \leftarrow (W1)$	Grouping:	Timer ope			
		Description: Transfers the contents of timer control register W1 to register A.				
•	nsfer data to Accumulator from register W2)					
truction le	D9 D0 1 0 0 1 1 0 0 2 2 4 C 16	Number of words	Number of cycles	Flag CY	Skip condition	
	116	1	1	_	_	
· ·				the conten	ts of timer control reg	
		Descripti	or		ion: Transfers the conten ister W2 to register A	

TAW3 (Tra	nsfer data to Accumulator from register W3)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 0 1 1 0 0 1 ₂ 2 4 D ₁₆	words	cycles		
		1	1	_	_
Operation:	(A) ← (W3)	Grouping:	Timer oper	ration	
					ts of timer control reg
			ister W3 to	register A	•
TAW4 (Tra	unsfer data to Accumulator from register W4)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	(A) ← (W4)	Grouping:	Timer ope		
		Description		the conten register A	ts of timer control reg
TAX (Trans	Sefer data to Accumulator from register X) D9 D0 0 0 0 1 0 1 0 0 1 0 2 0 5 2 16	Number of words	Number of cycles	Flag CY	Skip condition
Operations	(A) , (V)	Grouping:	Register to	register tr	anefer
Operation:	$(A) \leftarrow (X)$				ts of register X to reg
			ister A.		
	sfer data to Accumulator from register Y)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	$(A) \leftarrow (Y)$	Grouping:	Register to		
		Description	ter A.	the content	s of register Y to regis

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (CONTINUED)							
	sfer data to Accumulator from register Z)						
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition		
code	0 0 0 1 0 1 0 1 1 2 0 5 3	1	1	_	_		
TBA (Translinstruction code	$(A_1, A_0) \leftarrow (Z_1, Z_0) \\ (A_3, A_2) \leftarrow 0$ Sefer data to register B from Accumulator) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Grouping:	Register to : Transfers low-order 2 After this	register tr the conter 2 bits (A1, 7 instructio	ansfer Its of register Z to the Ao) of register A. In is executed, "0" is order 2 bits (A3, A2) of Skip condition		
Operation:	(B) ← (A)	Grouping: Description	Register to Transfers t ter B.		ansfer s of register A to regis-		
TC1A (Tra	nsfer data to register C1 from Accumulator)						
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition		
	(0)						
Operation:	(C1) ← (A)	Grouping: Description	LCD contr 1: Transfers LCD contr	the conte	nts of register A to the		
TC2A (Tra	nsfer data to register C2 from Accumulator)	•					
Instruction	D9 D0 1 0 1 0 1 0 0 1 0 2 A 9 40	Number of words	Number of cycles	Flag CY	Skip condition		
-	1 0 1 0 1 0 1 0 1 1 2 2 7 3 16	1	1	-	-		
Operation:	(C2) ← (A)	Grouping: LCD control operation Description: Transfers the contents of register A to the LCD control register C2.					

TDA (Tran	sfer data to register D from Accumulator and registe	r B)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 0 1 0 1 0 0 1 2 0 2 9 16	words 1	cycles		
		'	1	_	_
Operation:	$(DR_2-DR_0) \leftarrow (A_2-A_0)$	Grouping:	Register to	register t	ransfer
		Description	n: Transfers	the low-o	rder 3 bits (A2-A0) of
			register A	to register	D.
TEAB (Tra	ansfer data to register E from Accumulator and regist	ter B)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 0 1 0 2 0 1 A	words	cycles		
	10	1	1	_	_
Operation:	(E7–E4) ← (B)	Grouping:	Register t	o register t	ransfer
o por accom	$(E3-E0) \leftarrow (A)$	Descriptio			nts of register B to the
		high-order 4 bits (E7–E4) of regis			_
			the conte	nts of regis	ter A to the low-order
			bits (E3-E	0) of regist	ter E.
TFR0A (Tr	ransfer data to register FR0 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 1 0 0 0 2 2 2 8 16	words	cycles		
		1	1	_	
Operation:	(FR0) ← (A)	Grouping:	Innut/Outr	out operation	nn
Operation.	$(i \land i) \leftarrow (A)$	Description			nts of register A to the
		2 ccci iptio			control register FR0.
					3
TFR1A (Tr	ransfer data to register FR1 from Accumulator)	•			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 1 0 0 1 2 2 9	words	cycles		
	16	1	1	_	_
0	(FD4) (A)	0			
Operation:	$(FR1) \leftarrow (A)$	Grouping: Description		out operation	on hts of register A to the
		Description			control register FR1.
		ροπ σαιρα	i siruciule	CONTROL TEGISTEL FK I.	

TFR2A (Tr	ansfer data to register FR2 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 1 0 1 0 ₂ 2 2 A ₁₆	words	cycles		
	10	1	1	_	_
Operation:	(FR2) ← (A)	Grouping:	Input/Outp	ut operatio	n
орогинон.	()				ts of register A to the
			port output	structure (control register FR2.
TI1A (Tran	sfer data to register I1 from Accumulator)				
Instruction	D9 D0	Number of words	Number of	Flag CY	Skip condition
code	1 0 0 0 0 1 0 1 1 1 1 2 2 1 7	words 1	cycles 1	_	_
Operation:	$(11) \leftarrow (A)$	Grouping:	Interrupt o		
		Description			ts of register A to inter-
			rupt contro	ol register I	1.
TK0A (Tra	nsfer data to register K0 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 0 1 1 0 1 1 2 1 B	words	cycles		
oouc	16	1	1	_	-
0	(1/0) (1/1)	0			-
Operation:	$(K0) \leftarrow (A)$	Grouping:		out operation	
		Description			ts of register A to key-
			on wakeup	control re	gister K0.
TIZA A /Tue	restant data to manistra IVA franco A communication)				
	nsfer data to register K1 from Accumulator)	Number of	Number of	Flag CY	Ckin condition
Instruction	D9 D0	Number of words	cycles	riag CY	Skip condition
code	1 0 0 0 0 1 0 1 0 0 2 2 1 4 16				
		1	1	_	_
Operation:	(K1) ← (A)	Grouping:	Input/Outp	ut operatio	n
		Description	: Transfers	the conten	ts of register A to key-
		<u> </u>	on wakeup		
					-

TK2Δ (Tra	nsfer data to register K2 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 1 2 1 5	words	cycles		
	16	1	1	-	_
Operation:	(K2) ← (A)	Grouping:	Input/Outp	ut operation	n
		Description	: Transfers to on wakeup	the content o control reg	s of register A to key- gister K2.
TL1A (Tran	nsfer data to register L1 from Accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	_
Operation:	(L1) ← (A)	Grouping:	LCD contro	ol operation	1
		Description	control reg		s of register A to LCD
	nsfer data to register L2 from Accumulator)				
Instruction code	D9 D0 1 0 0 0 0 1 0 1 1 2 2 0 B 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	_
Operation:	$(L2) \leftarrow (A)$	Grouping:	LCD contro		
		Description	: Transfers t control reg		s of register A to LCD
	nsfer data to register L3 from Accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 0 0 1 1 0 0 ₂ 2 0 C ₁₆	1	1	_	_
Operation:	(L3) ← (A)	Grouping: Description	LCD control: Transfers to control reg	the content	s of register A to LCD

TLCA (Tra	nsfer data to register LC from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 0 0 1 1 0 1 2 2 0 D 16	words	cycles		
	10	1	1	_	_
Operation:	(LC) ← (A)	Grouping:	Timer ope	ration	
оролишот.	$(RLC) \leftarrow (A)$				ts of register A to timer
			LC and rel	oad registe	er RLC.
TMA j (Tra	nsfer data to Memory from Accumulator)				
Instruction code	D9 D0 1 0 1 1 j j j j 2 2 B j 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	$(M(DP)) \leftarrow (A)$	Grouping: RAM to register transfer			
	$(X) \leftarrow (X)EXOR(j)$ j = 0 to 15	Description	to M(DP), formed be	an exclusivetween reg nediate field	e contents of register A ve OR operation is per- ister X and the value d, and stores the result
TMRA (Tra	ansfer data to register MR from Accumulator) D9	Number of words	Number of cycles	Flag CY	Skip condition
Operation:	$(MR) \leftarrow (A)$	Grouping:	Other oper	ration	
		Description	: Transfers		ts of register A to clock
TPAA (Tra	nsfer data to register PA from Accumulator)				
Instruction code	D9 D0 1 0 1 0 1 0 1 0 2 A A 40	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	(PA ₀) ← (A ₀)	Grouping: Timer operation Description: Transfers the contents of lowermost bit (A register A to timer control register PA.			

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)								
TPSAB (Tr	ransfer data to Pre-Scaler from Accumulator and reg	jister B)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition			
code	1 0 0 0 1 1 0 1 0 1 2 2 3 5 16	words 1	cycles					
		1	1	_	_			
Operation:	$(RPS7\text{-}RPS4) \leftarrow (B)$	Grouping:	Timer oper	ration				
	(TPS7–TPS4) ← (B) (RPS3–RPS0) ← (A) (TPS3–TPS0) ← (A)	Description	high-order reload regi tents of re	4 bits of p ister RPS, gister A to	nts of register B to the rescaler and prescaler and transfers the con- the low-order 4 bits of caler reload register			
TPU0A (Tr	ansfer data to register PU0 from Accumulator)	1						
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition			
code	1 0 0 0 1 0 1 1 0 1 ₂ 2 2 D ₁₆	1	1	_	_			
Operation:	(PU0) ← (A)	Grouping:	Input/Outp	ut operation	in			
•		Description		•	ts of register A to pull-			
TPU1A (Tr	ansfer data to register PU1 from Accumulator)							
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition			
code	1 0 0 0 1 0 1 1 1 1 0 ₂ 2 2 E ₁₆	1	1	_	_			
Operation:	(PU1) ← (A)	Grouping:	Input/Outp	ut operation	on .			
		Description	: Transfers	the conten	ts of register A to pull-			
			up control	register Pl	J1.			
<u> </u>	ransfer data to register R1 from Accumulator and reg	· · · ·	1	T				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition			
code	1 0 0 0 1 1 1 1 1 1 ₂ 2 3 F ₁₆	1	1	_	_			
Operation:	(R17–R14) ← (B)	Grouping:	Timer ope	ration				
·	$(R13-R10) \leftarrow (A)$	Description: Transfers the contents of register E						
			-		17-R14) of timer 1 re-			
		load register R1, and the co						
			of timer 1		order 4 bits (R13–R10) ster R1.			

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Number of words 1 Grouping: Description Number of words 1	Number of cycles 1 Interrupt o : Transfers	Flag CY	Skip condition - ts of register A to inte	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words Number of words Number of words 1 Number of words 1	Clock cont : Transfers to ter RG. Number of cycles 1 Interrupt o : Transfers to rupt control Number of cycles	Flag CY peration the content	Skip condition - ts of register A to inte	
Sifer data to register V1 from Accumulator) D9 D0 0 0 0 0 1 1 1 1 1 1 1 1 $_{2}$ 0 3 F $_{16}$ (V1) \leftarrow (A) Sifer data to register V2 from Accumulator) D9 D0 0 0 0 0 1 1 1 1 1 1 0 0 0 3 E 0 16	Number of words 1 Grouping: Description Number of words 1	Number of cycles Interrupt o Transfers to the RG. Number of cycles Number of cycles	Flag CY - peration the content of register V	Skip condition - ts of register A to inte	
Sifer data to register V1 from Accumulator) D9 D0 0 0 0 0 1 1 1 1 1 1 1 1 $_{2}$ 0 3 F $_{16}$ (V1) \leftarrow (A) Sifer data to register V2 from Accumulator) D9 D0 0 0 0 0 1 1 1 1 1 1 0 0 0 3 E 0 16	Number of words 1 Grouping: Description Number of words 1	Number of cycles Interrupt o Transfers to the RG. Number of cycles Number of cycles	Flag CY - peration the content of register V	Skip condition - Its of register A to inte	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words 1 Grouping: Description Number of words 1	Number of cycles 1 Interrupt o : Transfers rupt contro	Flag CY peration the content of register V	Skip condition - ts of register A to inte	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping: Description Number of words 1	Interrupt o Transfers rupt contro	peration the content of register V	ts of register A to into	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1 Grouping: Description Number of words 1	Interrupt o Transfers rupt contro	peration the content of register V	ts of register A to into	
$(V1) \leftarrow (A)$ Sifer data to register V2 from Accumulator) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Orouping: Description Number of words 1	Interrupt o : Transfers i rupt contro Number of cycles	the content	/1.	
Sifer data to register V2 from Accumulator) D9	Number of words	: Transfers rupt contro	the content	/1.	
Sifer data to register V2 from Accumulator) D9	Number of words	Number of cycles	ol register V	/1.	
D9	words 1	Number of cycles			
		1	1		
$(\sqrt{2}) \leftarrow (A)$	Grouping	ı ı	_	-	
* - / \	Grouping: Interrupt operation Description: Transfers the contents of register A to interrupt control register V2.				
sfer data to register W1 from Accumulator)					
D9 D0 1 1 1 0 0 E 40	Number of words	Number of cycles	Flag CY	Skip condition	
16	1	1	-	_	
$(W1) \leftarrow (A)$	Grouping: Timer operation				
	Description: Transfers the contents of register A to time control register W1.				
	D9 D0 1 0 0 0 0 1 1 1 0 0 2 2 0 E 16	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

TW2A (Tra	nsfer data to register W2 from Accumulator)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 0 0 0 0 1 1 1 1 ₂ 2 0 F ₁₆	words 1	cycles 1	_		
Operation:	(W2) ← (A)	Grouping:	Timer opei	rotion		
Operation:	$(VVZ) \leftarrow (A)$	Description			s of register A to time	
			control reg	ister W2.		
TW3A (Tra	nsfer data to register W3 from Accumulator)					
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition	
	16	1	1	_	-	
Operation:	(W3) ← (A)	Grouping: Timer operation				
		Description: Transfers the contents of register A to time control register W3.				
TW4A (Tra	ansfer data to register W4 from Accumulator)					
Instruction code	D9	Number of words	Number of cycles	Flag CY	Skip condition	
		1	1	_	-	
Operation:	(W4) ← (A)	Grouping:	Timer ope	ration		
		Description: Transfers the contents of register A to time control register W4.				
TYA (Trans	sfer data to register Y from Accumulator)					
Instruction code	D9 D0 0 0 0 0 1 1 0 0 0 0 C	Number of words	Number of cycles	Flag CY	Skip condition	
	0 0 0 0 0 0 1 1 1 0 0 2 0 0 6 16	1	1	_	-	
Operation:	$(Y) \leftarrow (A)$	Grouping: Register to register transfer				
		Description: Transfers the contents of register A to register Y.				

WRST (Wa	atchdog timer ReSeT)							
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition			
code	1 0 1 0 1 0 0 0 0 0 0 ₂ 2 A 0 ₁₆	words 1	cycles 1	_	(WDF1) = 1			
Operation:	(WDF1) = 1 ?	Grouping:	Other oper					
	(WDF1) ← 0	Description	next instru WDF1 is "" ecutes the watchdog	uction whe 1." When the next instraction in struction in	DF1 flag and skips the en watchdog timer flag in WDF1 flag is "0," excution. Also, stops the ion when executing the immediately after the			
XAM j (eX	change Accumulator and Memory data)							
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition			
		1	1	_	-			
Operation:	$(A) \longleftrightarrow (M(DP))$	Grouping:	RAM to reg	gister trans	sfer			
	$(X) \leftarrow (X)EXOR(j)$ j = 0 to 15	Description	with the co OR operat ter X and t	nanging the ontents of ration is perf the value j	ne contents of M(DP) register A, an exclusive formed between regis- in the immediate field, in register X.			
	Xchange Accumulator and Memory data and Decrer				01: 1::			
Instruction code		Number of words	Number of cycles	Flag CY	Skip condition			
	16	1	1	_	(Y) = 15			
Operation:	$(A) \longleftrightarrow (M(DP))$ $(X) \longleftrightarrow (X) EXOR(j)$ $j = 0 \text{ to } 15$ $(Y) \longleftrightarrow (Y) - 1$	Grouping: Description	with the co OR operat ter X and t and stores Subtracts As a resul tents of reg is skipped.	nanging the ntents of recording to the value jethe result from the tof subtragister Y is when the	efer te contents of M(DP) egister A, an exclusive ormed between regis- in the immediate field, in register X. contents of register Y. action, when the con- 15, the next instruction e contents of register Y etruction is executed.			
XAMI j (eX	Change Accumulator and Memory data and Increme	ent register	Y and skip)				
Instruction code	D9 D0 1 0 1 1 1 0 j j j j 2 2 E j 16	Number of words	Number of cycles	Flag CY	Skip condition			
	16	1	1	_	(Y) = 0			
Operation:	$(A) \leftarrow \rightarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$ $j = 0 \text{ to } 15$ $(Y) \leftarrow (Y) + 1$	Grouping: RAM to register transfer After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. when the contents of register Y is not 0, the next instruction is executed.						

MACHINE INSTRUCTIONS (INDEX BY TYPES)

MACIII	NE INS				143						1 6	_3)					
Parameter	Parameter Mnemonic					In	nstru	ction	cod	e		1			umber of words	umber of cycles	Function
Type of instructions	Minemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀		ade otati	cimal on	Number words	Number of cycles	T dilonon
	TAB	0	0	0	0	0	1	1	1	1	0	0	1	E	1	1	$(A) \leftarrow (B)$
	ТВА	0	0	0	0	0	0	1	1	1	0	0	0	Е	1	1	(B) ← (A)
	TAY	0	0	0	0	0	1	1	1	1	1	0	1	F	1	1	(A) ← (Y)
	TYA	0	0	0	0	0	0	1	1	0	0	0	0	С	1	1	(Y) ← (A)
Register to register transfer	TEAB	0	0	0	0	0	1	1	0	1	0	0	1	Α	1	1	(E7–E4) ← (B) (E3–E0) ← (A)
egister	TABE	0	0	0	0	1	0	1	0	1	0	0	2	Α	1	1	(B) ← (E7–E4) (A) ← (E3–E0)
er to r	TDA	0	0	0	0	1	0	1	0	0	1	0	2	9	1	1	(DR2−DR0) ← (A2−A0)
Registe	TAD	0	0	0	1	0	1	0	0	0	1	0	5	1	1	1	$ \begin{array}{l} (A2-A0) \leftarrow (DR2-DR0) \\ (A3) \leftarrow 0 \end{array} $
	TAZ	0	0	0	1	0	1	0	0	1	1	0	5	3	1	1	$(A_1, A_0) \leftarrow (Z_1, Z_0)$ $(A_3, A_2) \leftarrow 0$
	TAX	0	0	0	1	0	1	0	0	1	0	0	5	2	1	1	$(A) \leftarrow (X)$
	TASP	0	0	0	1	0	1	0	0	0	0	0	5	0	1	1	(A2–A0) ← (SP2–SP0) (A3) ← 0
	LXY x, y	1	1	х3	X2	X1	X 0	уз	y 2	y1	у0	3	х	у	1	1	$(X) \leftarrow x \ x = 0 \text{ to } 15$ $(Y) \leftarrow y \ y = 0 \text{ to } 15$
resses	LZ z	0	0	0	1	0	0	1	0	Z1	Z0	0	4	8 +z	1	1	$(Z) \leftarrow z z = 0 \text{ to } 3$
RAM addresses	INY	0	0	0	0	0	1	0	0	1	1	0	1	3	1	1	$(Y) \leftarrow (Y) + 1$
<u>~</u>	DEY	0	0	0	0	0	1	0	1	1	1	0	1	7	1	1	$(Y) \leftarrow (Y) - 1$
	ТАМ ј	1	0	1	1	0	0	j	j	j	j	2	С	j	1	1	$ \begin{array}{l} (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array} $
	XAM j	1	0	1	1	0	1	j	j	j	j	2	D	j	1	1	$ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array} $
ister transf	XAMD j	1	0	1	1	1	1	j	j	j	j	2	F	j	1	1	$ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) - 1 \end{array} $
RAM to register transfer	XAMI j	1	0	1	1	1	0	j	j	j	j	2	E	j	1	1	$ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) + 1 \end{array} $
	ТМА ј	1	0	1	0	1	1	j	j	j	j	2	В	j	1	1	$(M(DP)) \leftarrow (A)$ $(X) \leftarrow (X)EXOR(j)$ j = 0 to 15
		1												•	1	1	$ \begin{aligned} &(X) \leftarrow (X) EXOR(j) \\ &j = 0 \text{ to } 15 \\ &(Y) \leftarrow (Y) + 1 \\ &(M(DP)) \leftarrow (A) \\ &(X) \leftarrow (X) EXOR(j) \end{aligned} $

Skip condition	Carry flag CY	Datailed description
-	-	Transfers the contents of register B to register A.
_	-	Transfers the contents of register A to register B.
-	-	Transfers the contents of register Y to register A.
-	-	Transfers the contents of register A to register Y.
-	-	Transfers the contents of register B to the high-order 4 bits (E7–E4) of register E, and the contents of register A to the low-order 4 bits (E3–E0) of register E.
-	-	Transfers the high-order 4 bits (E7–E4) of register E to register B, and low-order 4 bits (E3–E0) of register E to register A.
_	-	Transfers the contents of the low-order 3 bits (A2-A0) of register A to register D.
-	_	Transfers the contents of register D to the low-order 3 bits (A2-A0) of register A.
-	-	Transfers the contents of register Z to the low-order 2 bits (A ₁ , A ₀) of register A.
-	_	Transfers the contents of register X to register A.
-	-	Transfers the contents of stack pointer (SP) to the low-order 3 bits (A2–A0) of register A.
Continuous description	-	Loads the value x in the immediate field to register X, and the value y in the immediate field to register Y. When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped.
-	-	Loads the value z in the immediate field to register Z.
(Y) = 0	-	Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. When the contents of register Y is not 0, the next instruction is executed.
(Y) = 15	-	Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
_	-	After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
_	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
(Y) = 15	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
(Y) = 0	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. When the contents of register Y is not 0, the next instruction is executed.
-	-	After transferring the contents of register A to M(DP), an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.

Parameter							nstru						_		Jo	**************************************	
	Mnemonic											Lla	0.51		ber	Number of cycles	Function
Type of \ instructions		D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀			cimal ion	Z N	N (2)	
	LA n	0	0	0	1	1	1	n	n	n	n	0	7	n	1	1	(A) ← n n = 0 to 15
	TABP p	0	0	1	0	p5	p4	p3	p2	p1	ро	0	8 +¦	р	1	3	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note)$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ at $(UPTF) = 0$ $(PCH) \leftarrow (ROM(PC))7-4$ $(A) \leftarrow (ROM(PC))3-0$ at $(UPTF) = 1$ $(DR2) \leftarrow (0)$ $(DR1, DR0) \leftarrow (ROM(PC))9, 8$ $(B) \leftarrow (ROM(PC))7-4$ $(A) \leftarrow (ROM(PC))7-4$ $(A) \leftarrow (ROM(PC))3-0$ $(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$
ration	AM	0	0	0	0	0	0	1	0	1	0	0	0	Α	1	1	$(A) \leftarrow (A) + (M(DP))$
Arithmetic operation	AMC	0	0	0	0	0	0	1	0	1	1	0	0	В	1	1	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$
Arithm	A n	0	0	0	1	1	0	n	n	n	n	0	6	n	1	1	(A) ← (A) + n n = 0 to 15
	AND	0	0	0	0	0	1	1	0	0	0	0	1	8	1	1	$(A) \leftarrow (A) \text{ AND } (M(DP))$
	OR	0	0	0	0	0	1	1	0	0	1	0	1	9	1	1	$(A) \leftarrow (A) OR (M(DP))$
	sc	0	0	0	0	0	0	0	1	1	1	0	0	7	1	1	(CY) ← 1
	RC	0	0	0	0	0	0	0	1	1	0	0	0	6	1	1	(CY) ← 0
	szc	0	0	0	0	1	0	1	1	1	1	0	2	F	1	1	(CY) = 0 ?
	СМА	0	0	0	0	0	1	1	1	0	0	0	1	С	1	1	$(A) \leftarrow (\overline{A})$
	RAR	0	0	0	0	0	1	1	1	0	1	0	1	D	1	1	CY A3A2A1A0
ď	SB j	0	0	0	1	0	1	1	1	j	j	0	5	C +j	1	1	(Mj(DP)) ← 1 j = 0 to 3
Bit operation	RB j	0	0	0	1	0	0	1	1	j	j	0	4	C +j	1	1	$(Mj(DP)) \leftarrow 0$ j = 0 to 3
Bit	SZB j	0	0	0	0	1	0	0	0	j	j	0	2	j	1	1	(Mj(DP)) = 0 ? j = 0 to 3
son	SEAM	0	0	0	0	1	0	0	1	1	0	0	2	6	1	1	(A) = (M(DP))?
Comparison operation	SEA n	0	0	0	0	1	0	0 n	1 n	0 n	1 n			5 n	2	2	(A) = n? n = 0 to 15
	0 to 24 for M2				•	<u> </u>					11/00/			• • •			

Note: p is 0 to 31 for M34552M4/M4H. p is 0 to 63 for M34552M8/M8H/G8/G8H.

Skip condition	Carry flag CY	Datailed description
Continuous description	_	Loads the value n in the immediate field to register A. When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped.
_	_	UPTF = 0: Transfers bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 9 to 0 are the ROM pattern in address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers A and D in page p. When this instruction is executed, be careful not to over the stack because 1 stage of stack register is used. UPTF = 1: Transfers bits 9, 8 to register D, bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 7 to 0 are the ROM pattern in address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers A and D in page p. When this instruction is executed, be careful not to over the stack because 1 stage of stack register is used.
-	_	Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.
-	0/1	Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.
Overflow = 0	_	Adds the value n in the immediate field to register A, and stores a result in register A. The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation. Executes the next instruction when there is overflow as the result of operation.
-	-	Takes the AND operation between the contents of register A and the contents of M(DP), and stores the result in register A.
-	-	Takes the OR operation between the contents of register A and the contents of M(DP), and stores the result in register A.
_	1	Sets (1) to carry flag CY.
-	0	Clears (0) to carry flag CY.
(CY) = 0	-	Skips the next instruction when the contents of carry flag CY is "0."
_	-	Stores the one's complement for register A's contents in register A.
_	0/1	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.
-	-	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
-	_	Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
(Mj(DP)) = 0 j = 0 to 3	-	Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of M(DP) is "0." Executes the next instruction when the contents of bit j of M(DP) is "1."
(A) = (M(DP))	_	Skips the next instruction when the contents of register A is equal to the contents of M(DP). Executes the next instruction when the contents of register A is not equal to the contents of M(DP).
(A) = n	_	Skips the next instruction when the contents of register A is equal to the value n in the immediate field. Executes the next instruction when the contents of register A is not equal to the value n in the immediate field.

Parameter						In	stru	ction	cod	le		- / (r of s	r of s	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀	Hexadecimal notation	Number of words	Number of cycles	Function
	Ва	0	1	1	a6	a 5	a4	аз	a2	a1	a ₀	1 8 a +a	1	1	(PCL) ← a6-a0
ration	BL p, a	0	0	1	1	1	p4	рз	p2	р1	po	0 E p +p	2		(PCH) ← p (Note) (PCL) ← a6–a0
Branch operation		1	p6	p 5	a 6	a 5	a 4	аз	a2	a1	a 0	2 p a +p+a			
Bran	BLA p	0	0	0	0	0	1	0	0	0	0	0 1 0	2		(PCH) ← p (Note) (PCL) ← (DR2–DR0, A3–A0)
		1	p6	p 5	p4	0	0	рз	p2	р1	po	2 p p +p			
	ВМ а	0	1	0	a 6	a 5	a4	a 3	a2	a1	a 0	1 a a	1	1	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow 2$ $(PCL) \leftarrow a6-a0$
Subroutine operation	BML p, a	0	0	1	1	0	p4	рз	p2	р1	po	0 C p +p	2	2	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note)$
outine		1	p6	p5	a6	a 5	a 4	аз	a2	a 1	a ₀	2 p a +p+a			(PCL) ← a6–a0
Subr	BMLA p	0	0	0	0	1	1	0	0	0	0	0 3 0	2	2	(SP) ← (SP) + 1 (SK(SP)) ← (PC)
		1	p6	p5	p4	0	0	рз	p2	p1	po	2 p p +p			$(PCH) \leftarrow p \text{ (Note)}$ $(PCL) \leftarrow (DR2-DR0,A3-A0)$
	RTI	0	0	0	1	0	0	0	1	1	0	0 4 6	1	1	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$
Return operation	RT	0	0	0	1	0	0	0	1	0	0	0 4 4	1		(PC) ← (SK(SP)) (SP) ← (SP) – 1
Retui	RTS	0	0	0	1	0	0	0	1	0	1	0 4 5	1	2	(PC) ← (SK(SP)) (SP) ← (SP) – 1

Note: p is 0 to 31 for M34552M4/M4H.

p is 0 to 63 for M34552M8/M8H/G8/G8H.

Skip condition	Carry flag CY	Datailed description
_	_	Branch within a page : Branches to address a in the identical page.
-	_	Branch out of a page : Branches to address a in page p.
-	_	Branch out of a page: Branches to address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
-	-	Call the subroutine in page 2 : Calls the subroutine at address a in page 2.
_	_	Call the subroutine : Calls the subroutine at address a in page p.
-		Call the subroutine: Calls the subroutine at address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
_		Returns from interrupt service routine to main routine. Returns each value of data pointer (X, Y, Z), carry flag, skip status, NOP mode status by the continuous de-
_		scription of the LA/LXY instruction, register A and register B to the states just before interrupt. Returns from subroutine to the routine called the subroutine.
Skip at uncondition	_	Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition.

Parameter						In	stru	ctior	coc	le					er of Is	er of	F.v. etica
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀		ade otat	cimal	Number words	Number cycles	Function
	DI	0	0	0	0	0	0	0	1	0	0	0	0	4	1	1	(INTE) ← 0
	EI	0	0	0	0	0	0	0	1	0	1	0	0	5	1	1	(INTE) ← 1
	SNZ0	0	0	0	0	1	1	1	0	0	0	0	3	8	1	1	V10 = 0: (EXF0) = 1 ? (EXF0) ← 0 V10 = 1: SNZ0 = NOP
	SNZI0	0	0	0	0	1	1	1	0	1	0	0	3	Α	1	1	I12 = 1 : (INT) = "H" ?
Interrupt operation																	l12 = 0 : (INT) = "L" ?
errup	TAV1	0	0	0	1	0	1	0	1	0	0	0	5	4	1	1	(A) ← (V1)
Int	TV1A	0	0	0	0	1	1	1	1	1	1	0	3	F	1	1	(V1) ← (A)
	TAV2	0	0	0	1	0	1	0	1	0	1	0	5	5	1	1	(A) ← (V2)
	TV2A	0	0	0	0	1	1	1	1	1	0	0	3	E	1	1	(V2) ← (A)
	TAI1	1	0	0	1	0	1	0	0	1	1	2	5	3	1	1	(A) ← (I1)
	TI1A	1	0	0	0	0	1	0	1	1	1	2	1	7	1	1	(I1) ← (A)

Note: p is 0 to 31 for M34552M4/M4H.

p is 0 to 63 for M34552M8/M8H/G8/G8H.

Skip condition	Carry flag CY	Datailed description
-	_	Clears (0) to interrupt enable flag INTE, and disables the interrupt.
_	_	Sets (1) to interrupt enable flag INTE, and enables the interrupt.
V10 = 0: (EXF0) = 1	-	When V10 = 0 : Clears (0) to the EXF0 flag and skips the next instruction when external 0 interrupt request flag EXF0 is "1." When the EXF0 flag is "0," executes the next instruction. When V10 = 1 : This instruction is equivalent to the NOP instruction. (V10: bit 0 of interrupt control register V1)
(INT) = "H" However, I12 = 1	_	When I12 = 1 : Skips the next instruction when the level of INT pin is "H." (I12: bit 2 of interrupt control register I1)
(INT) = "L" However, I12 = 0	_	When I12 = 0 : Skips the next instruction when the level of INT pin is "L."
_	_	Transfers the contents of interrupt control register V1 to register A.
_	_	Transfers the contents of register A to interrupt control register V1.
_	_	Transfers the contents of interrupt control register V2 to register A.
_	_	Transfers the contents of register A to interrupt control register V2.
_	_	Transfers the contents of interrupt control register I1 to register A.
_	_	Transfers the contents of register A to interrupt control register I1.

Parameter	INC INS							ction							JC	± .	
Type of \	Mnemonic		_	_	_	_	_	_	_	_	_	Hexa	ade	cimal	Number words	Number of cycles	Function
instructions		D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀	no	otati	on	ž	ž	
	TPAA	1	0	1	0	1	0	1	0	1	0	2	Α	Α	1	1	$(PA) \leftarrow (A)$
	TAW1	1	0	0	1	0	0	1	0	1	1	2	4	В	1	1	(A) ← (W1)
	TW1A	1	0	0	0	0	0	1	1	1	0	2	0	Е	1	1	(W1) ← (A)
	TAW2	1	0	0	1	0	0	1	1	0	0	2	4	С	1	1	(A) ← (W2)
	TW2A	1	0	0	0	0	0	1	1	1	1	2	0	F	1	1	(W2) ← (A)
	TAW3	1	0	0	1	0	0	1	1	0	1	2	4	D	1	1	(A) ← (W3)
	TW3A	1	0	0	0	0	1	0	0	0	0	2	1	0	1	1	(W3) ← (A)
	TAW4	1	0	0	1	0	0	1	1	1	0	2	4	E	1	1	(A) ← (W4)
	TW4A	1	0	0	0	0	1	0	0	0	1	2	1	1	1	1	(W4) ← (A)
	TABPS	1	0	0	1	1	1	0	1	0	1	2	7	5	1	1	$ \begin{array}{l} (B) \leftarrow (TPS7\text{-}TPS4) \\ (A) \leftarrow (TPS3\text{-}TPS0) \end{array} $
	TPSAB	1	0	0	0	1	1	0	1	0	1	2	3	5	1	1	$ \begin{array}{l} (RPS7\text{-}RPS4) \leftarrow (B) \\ (TPS7\text{-}TPS4) \leftarrow (B) \\ (RPS3\text{-}RPS0) \leftarrow (A) \\ (TPS3\text{-}TPS0) \leftarrow (A) \end{array} $
	TAB1	1	0	0	1	1	1	0	0	0	0	2	7	0	1	1	(B) ← (T17–T14) (A) ← (T13–T10)
Timer operation	T1AB	1	0	0	0	1	1	0	0	0	0	2	3	0	1	1	$(R17-R14) \leftarrow (B)$ $(T17-T14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$ $(T13-T10) \leftarrow (A)$
Ĕ	TAB2	1	0	0	1	1	1	0	0	0	1	2	7	1	1	1	(B) ← (T27–T24) (A) ← (T23–T20)
	T2AB	1	0	0	0	1	1	0	0	0	1	2	3	1	1	1	$(R2L7-R2L4) \leftarrow (B)$ $(T27-T24) \leftarrow (B)$ $(R2L3-R2L0) \leftarrow (A)$ $(T23-T20) \leftarrow (A)$
	T2HAB	1	0	1	0	0	1	0	1	0	0	2	9	4	1	1	(R2H7–R2H4) ← (B) (R2H3–R2H0) ← (A)
	TR1AB	1	0	0	0	1	1	1	1	1	1	2	3	F	1	1	$(R17-R14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$
	T2R2L	1	0	1	0	0	1	0	1	0	1	2	9	5	1	1	(T27−T20) ← (R2L7−R2L0)
	TLCA	1	0	0	0	0	0	1	1	0	1	2	0	D	1	1	$(LC) \leftarrow (A)$ $(RLC) \leftarrow (A)$
	SNZT1	1	0	1	0	0	0	0	0	0	0	2	8	0	1	1	V12 = 0: $(T1F) = 1$? $(T1F) \leftarrow 0$ V12 = 1: SNZT1 = NOP
	SNZT2	1	0	1	0	0	0	0	0	0	1	2	8	1	1	1	V13 = 0: $(T2F) = 1$? $(T2F) \leftarrow 0$ V13 = 1: $SNZT2 = NOP$
	SNZT3	1	0	1	0	0	0	0	0	1	0	2	8	2	1	1	V20 = 0: (T3F) = 1 ? (T3F) \leftarrow 0 V20 = 1: SNZT3 = NOP

Skip condition	Carry flag CY	Datailed description
-	-	Transfers the contents of register A to timer control register PA.
_	_	Transfers the contents of timer control register W1 to register A.
-	-	Transfers the contents of register A to timer control register W1.
-	-	Transfers the contents of timer control register W2 to register A.
-	-	Transfers the contents of register A to timer control register W2.
-	_	Transfers the contents of timer control register W3 to register A.
-	_	Transfers the contents of register A to timer control register W3.
-	_	Transfers the contents of timer control register W4 to register A.
-	_	Transfers the contents of register A to timer control register W4.
-	_	Transfers the high-order 4 bits of prescaler to register B, and transfers the low-order 4 bits of prescaler to register A.
-	_	Transfers the contents of register B to the high-order 4 bits of prescaler and prescaler reload register RPS, and transfers the contents of register A to the low-order 4 bits of prescaler and prescaler reload register RPS.
-	_	Transfers the high-order 4 bits of timer 1 to register B, and transfers the low-order 4 bits of timer 1 to register A.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 1 and timer 1 reload register R1, and transfers the contents of register A to the low-order 4 bits of timer 1 and timer 1 reload register R1.
-	-	Transfers the high-order 4 bits of timer 2 to register B, and transfers the low-order 4 bits of timer 2 to register A.
-	-	Transfers the contents of register B to the high-order 4 bits of timer 2 and timer 2 reload register R2L, and transfers the contents of register A to the low-order 4 bits of timer 2 and timer 2 reload register R2L.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 2 reload register R2H, and transfers the contents of register A to the low-order 4 bits of timer 2 reload register R2H.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 1 reload register R1, and transfers the contents of register A to the low-order 4 bits of timer 1 reload register R1.
_	_	Transfers the contents of timer 2 reload register R2L to timer 2.
-	_	Transfers the contents of register A to timer LC and timer LC reload register RLC.
V12 = 0: (T1F) = 1	_	When V12 = 0 : Clears (0) to the T1F flag and skips the next instruction when timer 1 interrupt request flag T1F is "1". When the T1F flag is "0", executes the next instruction. When V12 = 1 : This instruction is equivalent to the NOP instruction. (V12: bit 2 of interrupt control register V1)
V13 = 0: (T2F) =1	_	When V13 = 0 : Clears (0) to the T2F flag and skips the next instruction when timer 2 interrupt request flag T2F is "1". When the T2F flag is "0", executes the next instruction. When V13 = 1 : This instruction is equivalent to the NOP instruction. (V13: bit 3 of interrupt control register V1)
V20 = 0: (T3F) = 1	_	When V20 = 0 : Clears (0) to the T3F flag and skips the next instruction when timer 3 interrupt request flag T3F is "1". When the T3F flag is "0", executes the next instruction. When V20 = 1 : This instruction is equivalent to the NOP instruction. (V20: bit 0 of interrupt control register V2)

Parameter		Instruction code '												er of	er of	Function	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀			ecima tion	Number of words	Number of cycles	Function
	IAP0	1	0	0	1	1	0	0	0	0	0	2	6	0	1	1	(A) ← (P0)
	OP0A	1	0	0	0	1	0	0	0	0	0	2	2	0	1	1	(P0) ← (A)
	IAP1	1	0	0	1	1	0	0	0	0	1	2	6	1	1	1	(A) ← (P1)
	OP1A	1	0	0	0	1	0	0	0	0	1	2	2	1	1	1	(P1) ← (A)
	IAP2	1	0	0	1	1	0	0	0	1	0	2	6	2	1	1	(A) ← (P2)
	OP2A	1	0	0	0	1	0	0	0	1	0	2	2	2	1	1	(P2) ← (A)
	CLD	0	0	0	0	0	1	0	0	0	1	0	1	1	1	1	(D) ← 1
	RD	0	0	0	0	0	1	0	1	0	0	0	1	4	1	1	$ \begin{array}{l} (D(Y)) \leftarrow 0 \\ (Y) = 0 \text{ to } 7 \end{array} $
	SD	0	0	0	0	0	1	0	1	0	1	0	1	5	1	1	$(D(Y)) \leftarrow 1$ (Y) = 0 to 7
	SZD	0	0	0	0	1	0	0	1	0	0	0	2	4	1	1	(D(Y)) = 0?
u _C		0	0	0	0	1	0	1	0	1	1	0	2	В	1	1	(Y) = 0 to 5
Input/Output operation	RCP	1	0	1	0	0	0	1	1	0	0	2	8	С	1	1	(C) ← 0
out op	SCP	1	0	1	0	0	0	1	1	0	1	2	8	D	1	1	(C) ← 1
/Outp	TAPU0	1	0	0	1	0	1	0	1	1	1	2	5	7	1	1	(A) ← (PU0)
Input	TPU0A	1	0	0	0	1	0	1	1	0	1	2	2	D	1	1	(PU0) ← (A)
	TAPU1	1	0	0	1	0	1	1	1	1	0	2	5	Ε	1	1	(A) ← (PU1)
	TPU1A	1	0	0	0	1	0	1	1	1	0	2	2	Ε	1	1	(PU1) ← (A)
	TAK0	1	0	0	1	0	1	0	1	1	0	2	5	6	1	1	(A) ← (K0)
	TK0A	1	0	0	0	0	1	1	0	1	1	2	1	В	1	1	(K0) ← (A)
	TAK1	1	0	0	1	0	1	1	0	0	1	2	5	9	1	1	(A) ← (K1)
	TK1A	1	0	0	0	0	1	0	1	0	0	2	1	4	1	1	(K1) ← (A)
	TAK2	1	0	0	1	0	1	1	0	1	0	2	5	Α	1	1	(A) ← (K2)
	TK2A	1	0	0	0	0	1	0	1	0	1	2	1	5	1	1	(K2) ← (A)
	TFR0A	1	0	0	0	1	0	1	0	0	0	2	2	8	1	1	(FR0) ← (A)
	TFR1A	1	0	0	0	1	0	1	0	0	1	2	2	9	1	1	(FR1) ← (A)
	TFR2A	1	0	0	0	1	0	1	0	1	0	2	2	Α	1	1	(FR2) ← (A)

Skip condition	Carry flag CY	Datailed description
_	-	Transfers the input of port P0 to register A.
_	-	Outputs the contents of register A to port P0.
_	_	Transfers the input of port P1 to register A.
-	_	Outputs the contents of register A to port P1.
-	_	Transfers the input of port P2 to register A.
_	-	Outputs the contents of register A to port P2.
_	-	Sets (1) to all port D.
_	_	Clears (0) to a bit of port D specified by register Y.
_	_	Sets (1) to a bit of port D specified by register Y.
(D(Y)) = 0 However, (Y)=0 to 5	_	Skips the next instruction when a bit of port D specified by register Y is "0." Executes the next instruction when a bit of port D specified by register Y is "1."
_	_	Clears (0) to port C.
_	_	Sets (1) to port C.
_	_	Transfers the contents of pull-up control register PU0 to register A.
_	_	Transfers the contents of register A to pull-up control register PU0.
_	_	Transfers the contents of pull-up control register PU1 to register A.
_	-	Transfers the contents of register A to pull-up control register PU1.
_	_	Transfers the contents of key-on wakeup control register K0 to register A.
_	_	Transfers the contents of register A to key-on wakeup control register K0.
_	_	Transfers the contents of key-on wakeup control register K1 to register A.
_	_	Transfers the contents of register A to key-on wakeup control register K1.
_	_	Transfers the contents of key-on wakeup control register K2 to register A.
_	_	Transfers the contents of register A to key-on wakeup control register K2.
_	_	Transferts the contents of register A to port output structure control register FR0.
_	_	Transferts the contents of register A to port output structure control register FR1.
_	_	Transferts the contents of register A to port output structure control register FR2.

Parameter						Ir	nstru	ctior	cod	le					er of ds	er of			
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	D ₀		ade otat	cimal ion	Number of words	Number of cycles	Function		
	TAL1	1	0	0	1	0	0	1	0	1	0	2	4	Α	1	1	(A) ← (L1)		
_	TL1A	1	0	0	0	0	0	1	0	1	0	2	0	Α	1	1	(L1) ← (A)		
LCD operation	TL2A	1	0	0	0	0	0	1	0	1	1	2	0	В	1	1	(L2) ← (A)		
ope C	TL3A	1	0	0	0	0	0	1	1	0	0	2	0	С	1	1	(L3) ← (A)		
	TC1A	1	0	1	0	1	0	1	0	0	0	2	Α	8	1	1	(C1) ← (A)		
	TC2A	1	0	1	0	1	0	1	0	0	1	2	Α	9	1	1	(C2) ← (A)		
uo	CRCK	1	0	1	0	0	1	1	0	1	1	2	9	В	1	1	RC oscillator selected		
Clock operation	TAMR	1	0	0	1	0	1	0	0	1	0	2	5	2	1	1	$(A) \leftarrow (MR)$		
용	TMRA	1	0	0	0	0	1	0	1	1	0	2	1	6	1	1	$(MR) \leftarrow (A)$		
င္ပ	TRGA	1	0	0	0	0	0	1	0	0	1	2	0	9	1	1	$(RG) \leftarrow (A)$		
	NOP	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	(PC) ← (PC) + 1		
	POF	0	0	0	0	0	0	0	0	1	0	0	0	2	1	1	Transition to clock operating mode		
	POF2	0	0	0	0	0	0	1	0	0	0	0	0	8	1	1	Transition to RAM back-up mode		
	EPOF	0	0	0	1	0	1	1	0	1	1	0	5	В	1	1	POF, POF2 instructions valid		
	SNZP	0	0	0	0	0	0	0	0	1	1	0	0	3	1	1	(P) = 1 ?		
Other operation	WRST	1	0	1	0	1	0	0	0	0	0	2	Α	0	1	1	(WDF1) = 1 ? (WDF1) ← 0		
her o	DWDT	1	0	1	0	0	1	1	1	0	0	2	9	С	1	1	Stop of watchdog timer function enabled		
Ď	SRST	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1	System reset		
	RUPT	0	0	0	1	0	1	1	0	0	0	0	5	8	1	1	(UPTF) ← 0		
	SUPT	0	0	0	1	0	1	1	0	0	1	0	5	9	1	1	(UPTF) ← 1		
	SVDE	1	0	1	0	0	1	0	0	1	1	2	9	3	1	1	At power down mode, voltage drop detection circuit valid		

Note: SVDE instruction can be used only in H version.

	<u> </u>	
Skip condition	Carry flag CY	Datailed description
-	_	Transfers the contents of LCD control register L1 to register A.
-	_	Transfers the contents of register A to LCD control register L1.
-	_	Transfers the contents of register A to LCD control register L2.
-	_	Transfers the contents of register A to LCD control register L3.
-	_	Transfers the contents of register A to LCD control register C1.
-	_	Transfers the contents of register A to LCD control register C2.
_	_	Selects the RC oscillation circuit for main clock, stops the on-chip oscillator (internal oscillator).
_	_	Transfers the contents of clock control regiser MR to register A.
_	_	Transfers the contents of register A to clock control register MR.
_	_	Transfers the contents of register A to clock control register RG.
-	-	No operation; Adds 1 to program counter value, and others remain unchanged.
-	_	Puts the system in clock operating mode by executing the POF instruction after executing the EPOF instruction.
-	_	Puts the system in RAM back-up mode by executing the POF2 instruction after executing the EPOF instruction.
-	_	Makes the immediate after POF or POF2 instruction valid by executing the EPOF instruction.
(P) = 1	_	Skips the next instruction when the P flag is "1". After skipping, the P flag remains unchanged.
(WDF1) = 1	_	Clears (0) to the WDF1 flag and skips the next instruction when watchdog timer flag WDF1 is "1." When the WDF1 flag is "0", executes the next instruction. Also, stops the watchdog timer function when executing the WRST instruction immediately after the DWDT instruction.
_	_	Stops the watchdog timer function by the WRST instruction.
_	_	System reset occurs.
_	_	Clears (0) to the high-order bit reference enable flag UPTF.
_	_	Sets (1) to the high-order bit reference enable flag UPTF.
_	_	Validates the voltage drop detection circuit at power down (clock operating mode and RAM back-up mode).

INSTRUCTION CODE TABLE

1100	11011	<u> </u>	<u> </u>	DLL														
D9-D4	000000	000001	000010	000011	000100	000101	000110	000111	001000	001001	001010	001011	001100	001101	001110	001111	010000 010111	
Hex. notation	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10–17	18–1F
0	NOP	BLA	SZB 0	BMLA	_	TASP	A 0	LA 0	TABP 0	TABP 16	TABP 32*	TABP 48*	BML	BML	BL	BL	ВМ	В
1	SRST	CLD	SZB 1	_	_	TAD	A 1	LA 1	TABP 1	TABP 17	TABP 33*	TABP 49*	BML	BML	BL	BL	ВМ	В
2	POF	-	SZB 2	-	-	TAX	A 2	LA 2	TABP 2	TABP 18	TABP 34*	TABP 50*	BML	BML	BL	BL	ВМ	В
3	SNZP	INY	SZB 3	_	_	TAZ	A 3	LA 3	TABP 3	TABP 19	TABP 35*	TABP 51*	BML	BML	BL	BL	вм	В
4	DI	RD	SZD	_	RT	TAV1	A 4	LA 4	TABP 4	TABP 20	TABP 36*	TABP 52*	BML	BML	BL	BL	ВМ	В
5	EI	SD	SEAn	_	RTS	TAV2	A 5	LA 5	TABP 5	TABP 21	TABP 37*	TABP 53*	BML	BML	BL	BL	ВМ	В
6	RC	1	SEAM	-	RTI	-	A 6	LA 6	TABP 6	TABP 22	TABP 38*	TABP 54*	BML	BML	BL	BL	ВМ	В
7	sc	DEY	_	-	_	-	A 7	LA 7	TABP 7	TABP 23	TABP 39*	TABP 55*	BML	BML	BL	BL	ВМ	В
8	POF2	AND	_	SNZ0	LZ 0	RUPT	A 8	LA 8	TABP 8	TABP 24	TABP 40*	TABP 56*	BML	BML	BL	BL	ВМ	В
9	-	OR	TDA	_	LZ 1	SUPT	A 9	LA 9	TABP 9	TABP 25	TABP 41*	TABP 57*	BML	BML	BL	BL	ВМ	В
Α	AM	TEAB	TABE	SNZI0	LZ 2	-	A 10	LA 10	TABP 10	TABP 26	TABP 42*	TABP 58*	BML	BML	BL	BL	вм	В
В	AMC	-	_	_	LZ 3	EPOF	A 11	LA 11	TABP 11	TABP 27	TABP 43*	TABP 59*	BML	BML	BL	BL	ВМ	В
С	TYA	СМА	_	-	RB 0	SB 0	A 12	LA 12	TABP 12	TABP 28	TABP 44*	TABP 60*	BML	BML	BL	BL	ВМ	В
D	-	RAR	_	_	RB 1	SB 1	A 13	LA 13	TABP 13	TABP 29	TABP 45*	TABP 61*	BML	BML	BL	BL	ВМ	В
Е	ТВА	TAB	_	TV2A	RB 2	SB 2	A 14	LA 14	TABP 14	TABP 30	TABP 46*	TABP 62*	BML	BML	BL	BL	вм	В
F	_	TAY	szc	TV1A	RB 3	SB 3	A 15	LA 15	TABP 15	TABP 31	TABP 47*	TABP 63*	BML	BML	BL	BL	ВМ	В
	D9-D4 Hex. notation 0 1 2 3 4 5 6 7 8 9 A B C D	D9-D4 000000 Hex.	D9-D4 000000 000001 Hex. O0	D9-D4 O00000 000001 000010 Hex. notation 00 01 02 0 NOP BLA O SZB O SZB O 1 SRST CLD SZB 1 SZB O SZB O 2 POF - SZB 2 SZB O SZB O 3 SNZP INY SZB 3 SZD O SEAN 5 EI SD SEAN SEAN SEAN 6 RC - SEAM SEAM SEAM 7 SC DEY - SEAM SEAM SEAM 9 - OR TDA SEAM SEAM A AM TEAB TABE TABE TABE B AMC C TYA CMA - SEAM SEAM C TYA CMA - SEAM SEAM SEAM	Hex. O0	D9-D4 000000 000001 000010 000011 000100 000011 000011 000100 000011 000100 000011 000100 000011 000100 000011 000100 000011 000100 000011 000100 00011 000100 000100 000011 0000100 000011 0000100 000011 0000100 000011 000011 0000100 000011 000011 0000100 000011 000010001	D9-D4 000000 00001 000011 000101 000	D9-D4 000000 000001 000011 000110 00	D9-D4 000000 00001 000011 000101 000111 000	Day	Day	Dep-Day 000000 000001 000011 000101 000111 000111 001000 001001 00101 000111 000111 001000 001001 00101 000111 000111 001000 001001 00101 00101 000111 000111 000101 00101	Dep-D4 000000 000001 000010 000101 000101 000111 001000 001001 001010 001011 0	Dep-D4 000000 000001 000011 000110 000111 001101 001010 001011 001101 0	Dep-D4 000000 000001 000011 000110 000111 001010 001011 001011 001101 0	Dep-Diagram Dep-Diagram	Dept Dept	Dep-Day 000000 00001 000011 000101 000111 001011 001011 001011 001011 001111 0

The above table shows the relationship between machine language codes and machine language instructions. D3–D0 show the low-order 4 bits of the machine language code, and D9–D4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below.

	The	The second word									
BL	1р	paaa	aaaa								
BML	1p	paaa	aaaa								
BLA	1p	pp00	pppp								
BMLA	1p	pp00	pppp								
SEA	00	0111	nnnn								
SZD	00	0010	1011								

• * cannot be used in the M3455xM4/M4H.

INSTRUCTION CODE TABLE (continued)

11401	NUC	HOIN	COL	<u> </u>	ABLE	(COII	itiliue	; u)										
1	D9-D4	100000	100001	100010	100011	100100	100101	100110	100111	101000	101001	101010	101011	101100	101101	101110	101111	110000 111111
D3-D0	Hex. notation	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F	30–3F
0000	0	_	TW3A	OP0A	T1AB	_	-	IAP0	TAB1	SNZT1	_	WRST	TMA 0	TAM 0	XAM 0	XAMI 0	XAMD 0	LXY
0001	1	_	TW4A	OP1A	T2AB	-	_	IAP1	TAB2	SNZT2	-	-	TMA 1	TAM 1	XAM 1	XAMI 1	XAMD 1	LXY
0010	2	_	-	OP2A	-	_	TAMR	IAP2	_	SNZT3	-	_	TMA 2	TAM 2	XAM 2	XAMI 2	XAMD 2	LXY
0011	3	_	-	_	-	_	TAI1	-	_	_	SVDE**	_	TMA 3	TAM 3	XAM 3	XAMI 3	XAMD 3	LXY
0100	4	_	TK1A	_	-	_	-	_	_	_	T2HAB	_	TMA 4	TAM 4	XAM 4	XAMI 4	XAMD 4	LXY
0101	5	_	TK2A	_	TPSAB	-	-	-	TABPS	_	T2R2L	_	TMA 5	TAM 5	XAM 5	XAMI 5	XAMD 5	LXY
0110	6	_	TMRA	_	_	_	TAK0	_	_	_	_	_	TMA 6	TAM 6	XAM 6	XAMI 6	XAMD 6	LXY
0111	7	_	TI1A	_	-	_	TAPU0	_	_	_	_	_	TMA 7	TAM 7	XAM 7	XAMI 7	XAMD 7	LXY
1000	8	_	-	TFR0A	_	-	-	-	_	_	-	TC1A	TMA 8	TAM 8	XAM 8	XAMI 8	XAMD 8	LXY
1001	9	TRGA	_	TFR1A	_	_	TAK1	_	_	_	_	TC2A	TMA 9	TAM 9	XAM 9	XAMI 9	XAMD 9	LXY
1010	Α	TL1A	_	TFR2A	_	TAL1	TAK2	_	_	_	_	TPAA	TMA 10	TAM 10	XAM 10	XAMI 10	XAMD 10	LXY
1011	В	TL2A	TK0A	_		TAW1	_	_	_	_	CRCK		TMA 11	TAM 11	XAM 11	XAMI 11	XAMD 11	LXY
1100	С	TL3A	ı	_		TAW2	_	Ī	_	RCP	DWDT	_	TMA 12	TAM 12	XAM 12	XAMI 12	XAMD 12	LXY
1101	D	TLCA	ı	TPU0A	_	TAW3	_	1	_	SCP	_	_	TMA 13	TAM 13	XAM 13	XAMI 13	XAMD 13	LXY
1110	Е	TW1A	İ	TPU1A	_	TAW4	TAPU1	1	_	_	-	-	TMA 14	TAM 14	XAM 14	XAMI 14	XAMD 14	LXY
1111	F	TW2A	ı	_	TR1AB	-	_	_	_	_	-	_	TMA 15	TAM 15	XAM 15	XAMI 15	XAMD 15	LXY

The above table shows the relationship between machine language codes and machine language instructions. D3–D0 show the low-order 4 bits of the machine language code, and D9–D4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below.

	The	The second word									
BL	1p	paaa	aaaa								
BML	1p	paaa	aaaa								
BLA	1р	pp00	pppp								
BMLA	1p	pp00	pppp								
SEA	00	0111	nnnn								
SZD	00	0010	1011								

• ** can be used only in the M3455xM4H/M8H/G8H.

ELECTRICAL CHARACTERISTICS

(1) Mask ROM version

ABSOLUTE MAXIMUM RATINGS (Mask ROM version)

Symbol	Parameter	Conditions	Ratings	Unit
VDD	Supply voltage		-0.3 to 6.5	V
Vı	Input voltage P0, P1, P2, D0–D5, RESET, INT, XIN, XCIN		-0.3 to VDD+0.3	V
Vı	Input voltage CNTR		-0.3 to VDD+0.3	V
Vo	Output voltage P0, P1, P2, D0-D7, RESET, CNTR	Output transistors in cut-off state	-0.3 to VDD+0.3	V
Vo	Output voltage C, Xout, Xcout		-0.3 to VDD+0.3	V
Vo	Output voltage SEG0-SEG28, COM0-COM3 (Note)		-0.3 to VDD+0.3	V
Pd	Power dissipation	Ta = 25 °C	300	mW
Topr	Operating temperature range		-20 to 85	°C
Tstg	Storage temperature range		-40 to 125	°C

Note: SEG13 pin is not equipped with the 4552 Group.

RECOMMENDED OPERATING CONDITIONS 1

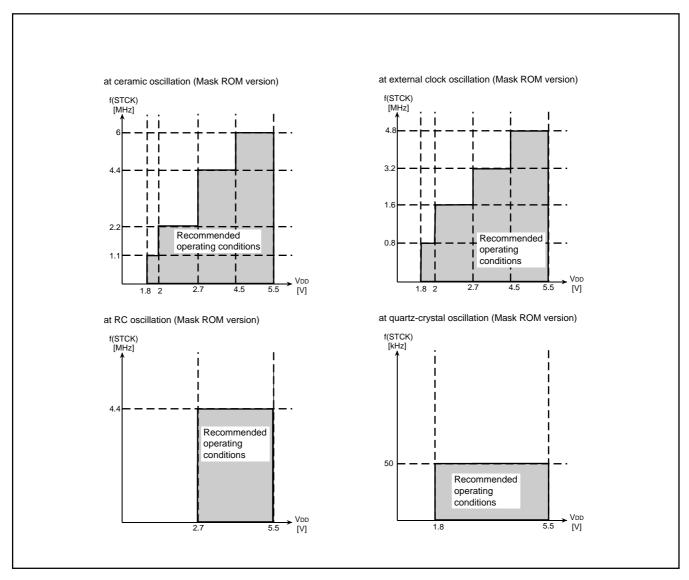
(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted)

Cumbal	Doromotor	Condi	tions		Limits		Unit
Symbol	Parameter	Condi	tions	Min.	Тур.	Max.	Uni
VDD	Supply voltage	f(STCK) ≤ 6 MHz		4		5.5	V
	(when ceramic resonator is used)	f(STCK) ≤ 4.4 MHz		2.7		5.5	1
		f(STCK) ≤ 2.2 MHz		2		5.5	1
		f(STCK) ≤ 1.1 MHz		1.8		5.5	1
VDD	Supply voltage			1.8		5.5	V
	(when quartz-crystal/on-chip						
	oscillation is used)						
VDD	Supply voltage	f(STCK) ≤ 4.4 MHz		2.7		5.5	V
	(when RC oscillation is used)						
VRAM	RAM back-up voltage	at RAM back-up mode		1.6			V
Vss	Supply voltage				0		V
VLC3	LCD power supply (Note 1)			1.8		VDD	V
ViH	"H" level input voltage	P0, P1, P2, D0-D5		0.8VDD		VDD	V
		XIN, XCIN		0.7Vdd		VDD]
		RESET		0.85Vpd		VDD	
		INT		0.85Vpd		VDD VDD VDD VDD VDD VDD O.2VDD 0.3VDD 0.15VDD 0.15VDD -20 -10 -30 -15	1
		CNTR		0.8VDD		VDD	
VIL "L" le	"L" level input voltage	P0, P1, P2, D0-D5		0		0.2VDD	V
	, -	XIN, XCIN		0		0.3VDD	1
		RESET		0		0.3VDD	1
		INT	0 0.3VDD 0 0.3VDD 0 0.15VDD	1			
		CNTR		0		0.15VDD	1
Iон(peak)	"H" level peak output current	P0, P1, P2, D0-D5	VDD = 5 V			-20	mA
			VDD = 3 V			-10	
		С	VDD = 5 V			-30	
		CNTR	VDD = 3 V			-15	
Iон(avg)	"H" level average output current	P0, P1, P2, D0-D5	VDD = 5 V			-10	mA
, ,,	(Note 2)		VDD = 3 V			-5	1
		С	VDD = 5 V			-20	
		CNTR	VDD = 3 V			-10	
IoL(peak)	"L" level peak output current	P0, P1, P2, D0-D7, C	VDD = 5 V			24	mA
		CNTR	VDD = 3 V			12	
		RESET	VDD = 5 V			10	1
			VDD = 3 V			4	1
IoL(avg)	"L" level average output current	P0, P1, P2, D0-D7, C	VDD = 5 V			15	mA
	(Note 2)	CNTR	VDD = 3 V			7	
		RESET	VDD = 5 V			5	1
			VDD = 3 V			2	1
Σloн(avg)	"H" level total average current	P0, P1, P2, D0–D5, C, C	NTR			-40	mA
ΣloL(avg)	"L" level total average current	P0, P1, P2, D0–D5, C, C			60	mA	
	-	D6, D7, RESET				60	1

Notes 1: At 1/2 bias: VLC1 = VLC2 = (1/2)•VLC3

At 1/3 bias: VLC1 = (1/3)•VLC3, VLC2 = (2/3)•VLC3

^{2:} The average output current is the average value during 100 ms.


RECOMMENDED OPERATING CONDITIONS 2

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted)

Symbol	Parameter		Conditions		Limits		Unit
Cymbol	raiancei			Min.	Тур.	Max.	01111
f(XIN)	Oscillation frequency	Through mode	VDD = 4 to 5.5 V			6	MHz
	(with a ceramic resonator)		VDD = 2.7 to 5.5	/		4.4	
			VDD = 2 to 5.5 V			2.2	
			VDD = 1.8 to 5.5	/		1.1	
		Frequency/2 mode	VDD = 2.7 to 5.5 \	/		6	1
			VDD = 2 to 5.5 V			4.4	
			VDD = 1.8 to 5.5	/		2.2	
		Frequency/4 mode	VDD = 2 to 5.5 V			6	
			VDD = 1.8 to 5.5	/		4.4	
		Frequency/8 mode	VDD = 1.8 to 5.5	/		6	
f(XIN)	Oscillation frequency	VDD = 2.7 to 5.5 V				4.4	MHz
	(at RC oscillation) (Note)						
f(XIN) Oscillation frequency	Oscillation frequency	Through mode	VDD = 4 to 5.5 V			4.8	MHz
	(with a ceramic oscillation selected,		VDD = 2.7 to 5.5	/		3.2	
	external clock input)		VDD = 2 to 5.5 V			1.6	
			VDD = 1.8 to 5.5 \	/		0.8	
		Frequency/2 mode	VDD = 2.7 to 5.5	/		4.8	
			VDD = 2 to 5.5 V			3.2	
			VDD = 1.8 to 5.5 \	/		1.6]
		Frequency/4 mode	VDD = 2 to 5.5 V			4.8	
			VDD = 1.8 to 5.5	/		3.2	1
		Frequency/8 mode	VDD = 1.8 to 5.5 \	/		4.8	
f(XCIN)	Oscillation frequency (sub-clock)	Quartz-crystal oscillator	'			50	kHz
f(CNTR)	Timer external input frequency	CNTR				f(STCK)/6	Hz
tw(CNTR)	Timer external input period	CNTR		3/f(STCK)			s
	("H" and "L" pulse width)			`			
TPON	Power-on reset circuit	VDD = 0 → 1.8 V				100	μs
	valid supply voltage rising time						

Note: The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

System clock (STCK) operating condition map (Mask ROM version)

ELECTRICAL CHARACTERISTICS 1

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted)

Symbol	Parameter	Test	conditions		Limits		Unit
				Min.	Тур.	Max.	
Voh	"H" level output voltage	VDD = 5 V	IOH = -10 mA	3			V
	P0, P1, P2, D0–D5		IOH = −3 mA	4.1			
		VDD = 3 V	IOH = -5 mA	2.1			
			IOH = −1 mA	2.4			
Voh	"H" level output voltage	VDD = 5 V	IOH = −20 mA	3			V
	C, CNTR		IOH = -6 mA	4.1			
		VDD = 3 V	IOH = -10 mA	2.1			
			IOH = -3 mA	2.4			
Vol	"L" level output voltage	VDD = 5 V	IOL = 15 mA			2	V
	P0, P1, P2, D0–D7, C, CNTR		IOL = 5 mA			0.9	
		VDD = 3 V	IOL = 9 mA			1.4	
			IOL = 3 mA			0.9	
VOL	<u>"L" level</u> output voltage	VDD = 5 V	IOL = 5 mA			2	V
	RESET		IOL = 1 mA			0.6	
		VDD = 3 V	IOL = 2 mA			0.9	
IIН	"H" level input current P0, P1, P2, D0–D5, XIN, XCIN, RESET	VI = VDD				2	μΑ
	CNTR, INT						
lıL	"L" level input current	VI = 0 V P0, P1 No pi			-2	μΑ	
	P0, P1, P2, D0–D5, XIN, XCIN, RESET CNTR, INT						
Rpu	Pull-up resistor value	VI = 0 V	VDD = 5 V	30	60	125	kΩ
0	P0, P1, RESET		VDD = 3 V	50	120	250	
VT+ – VT–	Hysteresis RESET	VDD = 5 V	1		1	200	V
• • • • • • • • • • • • • • • • • • • •	Tryotorodio NEGET	VDD = 3 V			0.4		
VT+ - VT-	Hysteresis INT	VDD = 5 V			0.6		V
	Tryotorodio IIII	VDD = 3 V			0.3		
VT+ – VT–	Hysteresis CNTR	VDD = 5 V			0.2		V
	,	VDD = 3 V			0.2		
f(RING)	On-chip oscillator clock frequency	VDD = 5 V		200	500	700	kHz
(- /		VDD = 3 V		100	250	400	
Δf(XIN)	Frequency error	VDD = 5 V ± 10 %, Ta	= 25 °C			±17	%
	(with RC oscillation,	\/pp 2\/ : 40.0/ T-	25.00			. 47	
	error of external R, C not included) (Note 1)	VDD = 3 V ± 10 %, Ta	1 = 25 °C			±17	
RCOM	COM output impedance	VDD = 5 V			1.5	7.5	kΩ
	(Note 2)	VDD = 3 V			2	10	
RSEG	SEG output impedance	VDD = 5 V			1.5	7.5	kΩ
	(Note 2)	VDD = 3 V			2	10	
RVLC	Internal resistor for LCD power supply	When dividing resisto	300	480	960	kΩ	
		When dividing resisto	or 2r X 2 selected	200	320	640	
		When dividing resisto	150	240	480		
		When dividing resisto	100	160	320]	

Notes 1: When RC oscillation is used, use the external 33 pF capacitor (C).

^{2:} The impedance state is the resistor value of the output voltage.

at VLC3 level output: VO = 0.8 VLC3

at VLC2 level output: VO = 0.8 VLC2

at VLC1 level output: Vo = 0.2 VLC2 + VLC1

at Vss level output: Vo = 0.2 Vss

ELECTRICAL CHARACTERISTICS 2

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted)

Symbol		Parameter	Test	conditions		Limits		Unit
Cymbol		Tarameter		Conditions	Min.	Тур.	Max.	Offic
lDD	Supply current	at active mode	VDD = 5 V	f(STCK) = f(XIN)/8		1.2	2.4	mA
		(with a ceramic resonator)	f(XIN) = 6 MHz	f(STCK) = f(XIN)/4		1.3	2.6	
			f(RING) = stop	f(STCK) = f(XIN)/2		1.6	3.2	
			f(XCIN) = stop	f(STCK) = f(XIN)		2.2	4.4	
			VDD = 5 V	f(STCK) = f(XIN)/8		0.9	1.8	m/
			f(XIN) = 4 MHz	f(STCK) = f(XIN)/4		1	2	
			f(RING) = stop	f(STCK) = f(XIN)/2		1.2	2.4	
			f(XCIN) = stop	f(STCK) = f(XIN)		1.6	3.2	
			VDD = 3 V	f(STCK) = f(XIN)/8		0.3	0.6	m/
			f(XIN) = 4 MHz	f(STCK) = f(XIN)/4		0.4	0.8	
			f(RING) = stop	f(STCK) = f(XIN)/2		0.5	1.0	
			f(XCIN) = stop	f(STCK) = f(XIN)		0.7	1.4	1
		at active mode	VDD = 5 V	f(STCK) = f(RING)/8		50	100	μΑ
		(with an on-chip oscillator)	f(XIN) = stop	f(STCK) = f(RING)/4		60	120	
			f(RING) = active	f(STCK) = f(RING)/2		80	160	1
			f(XCIN) = stop	f(STCK) = f(RING)		120	240	
			VDD = 3 V	f(STCK) = f(RING)/8		10	20	μΑ
			f(XIN) = stop	f(STCK) = f(RING)/4		13	26	
			f(RING) = active	f(STCK) = f(RING)/2		19	38	1
			f(XCIN) = stop	f(STCK) = f(RING)		31	62	
		at active mode	VDD = 5 V	f(STCK) = f(XCIN)/8		7	14	μΑ
		(with a quartz-crystal	f(XIN) = stop	f(STCK) = f(XCIN)/4		8	16	1
		oscillator)	f(RING) = stop	f(STCK) = f(XCIN)/2		10	20	1
		,	f(Xcin) = 32 kHz	f(STCK) = f(XCIN)		14	28	1
			VDD = 3 V	f(STCK) = f(XCIN)/8		5	10	μΑ
			f(XIN) = stop	f(STCK) = f(XCIN)/4		6	12	1
			f(RING) = stop	f(STCK) = f(XCIN)/2		7	14	1
			f(XCIN) = 32 kHz	f(STCK) = f(XCIN)		8	16	1
		at clock operation mode	f(XCIN) = 32 kHz	VDD = 5 V		6	12	μF
		(POF instruction execution)	,	VDD = 3 V		5	10	1 '
		at RAM back-up mode	Ta = 25 °C			0.1	2	μA
		(POF2 instruction execution)	VDD = 5 V				10	"
		. I I mondenon oxocation	VDD = 3 V				6	1

VOLTAGE DROP DETECTION CIRCUIT CHARACTERISTICS

(Mask ROM version: Ta = -20 °C to 85 °C, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits			
	Parameter	rest conditions	Min.	Тур.	Max.	Unit	
Vrst-	Detection voltage	Ta = 25 °C	1.6	1.8	2	V	
	(reset occurs) (Note 2)	-20 °C ≤ Ta < 0 °C	1.7		2.3		
		0 °C ≤ Ta < 50 °C	1.4		2.2		
		50 °C ≤ Ta ≤ 85 °C	1.2		1.9		
VRST+	Detection voltage	Ta = 25 °C	1.7	1.9	2.1	V	
	(reset release) (Note 3)	-20 °C ≤ Ta < 0 °C	1.8		2.4		
		0 °C ≤ Ta < 50 °C	1.5		2.3		
		50 °C ≤ Ta ≤ 85 °C	1.3		2		
VRST+-	Detection voltage hysteresis			0.1		V	
VRST-							
IRST	Operation current (Note 4)	VDD = 5 V		50	100	μΑ	
		VDD = 3 V		30	60	1	
Trst	Detection time (Note 5)	$VDD \rightarrow (VRST^ 0.1 V)$		0.2	1.2	ms	

Notes 1: The voltage drop detection circuit is equipped with only the H version.

^{2:} The detection voltage (VRST) is defined as the voltage when reset occurs when the supply voltage (VDD) is falling.

^{3:} The detection voltage (VRST+) is defined as the voltage when reset is released when the supply voltage (VDD) is rising from reset occurs.

^{4:} In the H version, IRST is added to IDD (supply current).

^{5:} The detection time (TRST) is defined as the time until reset occurs when the supply voltage (VDD) is falling to [$VRST^- - 0.1 V$].

^{6:} The detection voltages (VRST+, VRST-) are set up lower than the minimum value of the supply voltage of the recommended operating conditions. As for details, refer to the LIST OF PRECAUTIONS.

(2) One Time PROM version

ABSOLUTE MAXIMUM RATINGS (One Time PROM version)

Symbol	Parameter	Conditions	Ratings	Unit
VDD	Supply voltage		-0.3 to 4.0	V
Vı	Input voltage P0, P1, P2, D0-D5, RESET, INT, XIN, XCIN		-0.3 to VDD+0.3	V
Vı	Input voltage CNTR		-0.3 to VDD+0.3	V
Vo	Output voltage P0, P1, P2, D0-D7, RESET, CNTR	Output transistors in cut-off state	-0.3 to VDD+0.3	V
Vo	Output voltage C, Xout, Xcout		-0.3 to VDD+0.3	V
Vo	Output voltage SEG0-SEG28, COM0-COM3 (Note)		-0.3 to VDD+0.3	V
Pd	Power dissipation	Ta = 25 °C	300	mW
Topr	Operating temperature range		-20 to 85	ů
Tstg	Storage temperature range		-40 to 125	°C

Note: SEG₁₃ pin is not equipped with the 4552 Group.

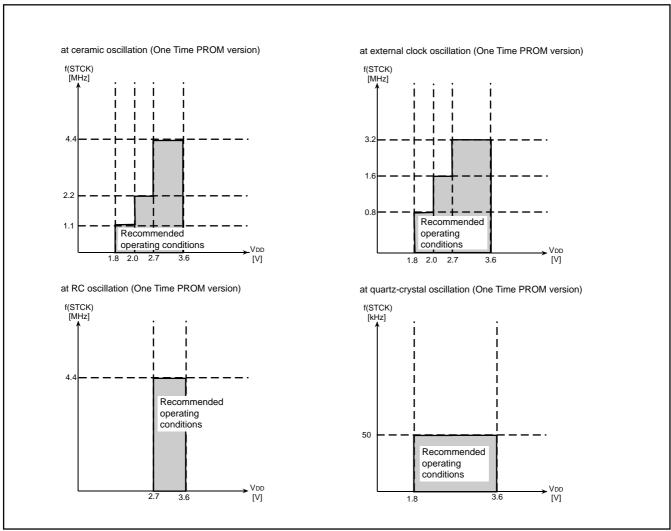
RECOMMENDED OPERATING CONDITIONS 1

(One Time PROM version: Ta = -20 °C to 85 °C, VDD = 1.8 to 3.6 V, unless otherwise noted)

Comple at	Danamatan	Conditions			Limits			
Symbol	Parameter			Min.	Тур.	Max.	Uni	
Vdd	Supply voltage	f(STCK) ≤ 4.4 MHz		2.7		3.6	V	
	(when ceramic resonator is used)	f(STCK) ≤ 2.2 MHz		2		3.6		
		f(STCK) ≤ 1.1 MHz		1.8		3.6		
Vdd	Supply voltage			1.8		3.6	V	
	(when quartz-crystal/on-chip							
	oscillator is used)							
Vdd	Supply voltage	f(STCK) ≤ 4.4 MHz		2.7		3.6	V	
	(when RC oscillation is used)							
VRAM	RAM back-up voltage	at RAM back-up mode		1.6			V	
Vss	Supply voltage				0		V	
VLC3	LCD power supply (Note 1)			1.8		VDD	V	
ViH	"H" level input voltage	P0, P1, P2, D0-D5		0.8VDD		VDD	V	
		XIN, XCIN	0.7Vdd		VDD			
		RESET		0.85VDD		VDD		
		INT		0.85VDD		VDD]	
		CNTR		0.8VDD		VDD		
VIL	"L" level input voltage	P0, P1, P2, D0–D5		0		0.2Vdd	V	
		XIN, XCIN RESET INT		0		0.3Vdd		
				0		0.3Vdd		
				0		0.15VDD		
		CNTR		0		0.15VDD		
Іон(peak)	"H" level peak output current	P0, P1, P2, D0-D5	VDD = 3 V			-10	mA	
		C, CNTR	VDD = 3 V			-15		
Iон(avg)	"H" level average output current	P0, P1, P2, D0–D5	VDD = 3 V			-5	mA	
	(Note 2)	C, CNTR	VDD = 3 V			-10		
IoL(peak)	"L" level peak output current	P0, P1, P2, D0-D7,	VDD = 3 V			12	mA	
		C, CNTR						
		RESET	VDD = 3 V			4		
IoL(avg)	"L" level average output current	P0, P1, P2, D0-D7,	VDD = 3 V			7	mA	
	(Note 2)	C, CNTR						
		RESET	VDD = 3 V			2		
ΣIOH(avg)	"H" level total average current	P0, P1, P2, D0-D5, C,	CNTR			-40	mA	
Σlo _L (avg)	"L" level total average current	P0, P1, P2, D0–D5, C, CNTR				60	mA	
. 5/	-	D6, D7, RESET				60	1	

Notes 1: At 1/2 bias: VLC1 = VLC2 = (1/2)•VLC3 At 1/3 bias: VLC1 = (1/3)•VLC3, VLC2 = (2/3)•VLC3

^{2:} The average output current is the average value during 100 ms.


RECOMMENDED OPERATING CONDITIONS 2

(One Time PROM version: Ta = -20 °C to 85 °C, VDD = 1.8 to 3.6 V, unless otherwise noted)

Symbol	Parameter	Conc	Conditions			Limits		
Cymbol	1 diameter	Conc	Min.	Тур.	Max.	Uni		
f(XIN)	Oscillation frequency	Through mode	VDD = 2.7 to 3.6 V			4.4	MH	
	(with a ceramic resonator)		VDD = 2 to 3.6 V			2.2		
			VDD = 1.8 to 3.6 V			1.1		
		Frequency/2 mode	VDD = 2.7 to 3.6 V			6		
			VDD = 2 to 3.6 V			4.4]	
			VDD = 1.8 to 3.6 V			2.2		
		Frequency/4 mode	VDD = 2 to 3.6 V			6		
			VDD = 1.8 to 3.6 V			4.4		
		Frequency/8 mode	VDD = 1.8 to 3.6 V			6		
f(XIN)	Oscillation frequency	VDD = 2.7 to 3.6 V				4.4	MHz	
	(at RC oscillation) (Note)							
f(XIN)	Oscillation frequency	Through mode	VDD = 2.7 to 3.6 V			3.2	MHz	
	(with a ceramic oscillation circuit		VDD = 2 to 3.6 V			1.6		
	selected, external clock input)		VDD = 1.8 to 3.6 V			0.8		
		Frequency/2 mode	VDD = 2.7 to 3.6 V			4.8		
			VDD = 2 to 3.6 V			3.2]	
			VDD = 1.8 to 3.6 V			1.6	1	
		Frequency/4 mode	VDD = 2 to 3.6 V			4.8]	
			VDD = 1.8 to 3.6 V			3.2	1	
		Frequency/8 mode	VDD = 1.8 to 3.6 V			4.8		
f(XCIN)	Oscillation frequency	Quartz-crystal oscillator	<u> </u>			50	kHz	
	(with a quartz-crystal oscillator)							
f(CNTR)	Timer external input frequency	CNTR				f(STCK)/6	Hz	
tw(CNTR)	Timer external input period	CNTR		3/f(STCK)			s	
	("H" and "L" pulse width)							
TPON	Power-on reset circuit	$VDD = 0 \rightarrow 1.8 \text{ V}$				100	μs	
	valid supply voltage rising time							

Note: The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

System clock (STCK) operating condition map (One Time PROM version)

ELECTRICAL CHARACTERISTICS

(One Time PROM version: Ta = -20 °C to 85 °C, VDD = 1.8 to 3.6 V, unless otherwise noted)

Symbol		Parameter	Test	conditions	Limits			
Cyllibol		Tarameter			Min.	Тур.	Max.	Unit
Vон	"H" level output voltage		VDD = 3 V	IOH = −5 mA	2.1			V
	P0, P1, P2, D0-	-D5		IOH = −1 mA	2.4			
Vон	"H" level output	voltage	VDD = 3 V	IOH = -10 mA	2.1			V
	C, CNTR			IOH = -3 mA	2.4			
VOL	"L" level output	voltage	VDD = 3 V	IOL = 9 mA			1.4	V
	P0, P1, P2, D0-	-D7, C, CNTR		IOL = 3 mA			0.9	
Vol	"L" level output voltage RESET		VDD = 3 V	IOL = 2 mA			0.9	V
Iн	"H" level input of	current	VI = VDD	<u>'</u>			2	μΑ
	1	-D5, XIN, XCIN, RESET						'
	CNTR, INT							
lıL	"L" level input c	urrent	VI = 0 V P0, P1 No pt	ull-up			-2	μΑ
		-D ₅ , XIN, XCIN, RESET	•	•				ļ .
	CNTR, INT							
Rpu	Pull-up resistor value		VI = 0 V		50	120	250	kΩ
	P0, P1, RESET		VDD = 3 V					
VT+ - VT-	Hysteresis RES	ET	VDD = 3 V			0.4		V
VT+ - VT-	ļ ,		VDD = 3 V			0.3		V
VT+ - VT-	-	R	VDD = 3 V			0.2		V
f(RING)	+ -	or clock frequency	VDD = 3 V			250	400	kHz
Δf(XIN)	Frequency erro		VDD = 3 V ± 10 %, Ta	= 25 °C	100		±17	%
()	(with RC oscilla							
	error of external R, C not included)							
	(Note 1)	, •						
RCOM		pedance (Note 2)	VDD = 3 V			2	10	kΩ
RSEG	· ·	pedance (Note 2)	VDD = 3 V			2	10	kΩ
RVLC	 	for LCD power supply	When dividing resisto	or 2r X 3 selected	300	480	960	kΩ
0	Internal register	Tor Lob power suppry	When dividing resistor 2r X 2 selected			320	640	
			When dividing resistor r X 3 selected			240	480	
			When dividing resistor r X 2 selected			160	320	
IDD	Supply current	at active mode	VDD = 3 V	f(STCK) = f(XIN)/8	100	0.3	0.6	mA
.50	Cuppiy current	(with a ceramic resonator)	f(XIN) = 4 MHz	f(STCK) = f(XIN)/4	1	0.4	0.8	''''`
		(a co.a.mo roconator)	f(RING) = stop	f(STCK) = f(XIN)/2		0.6	1.2	1
			f(XCIN) = stop	f(STCK) = f(XIN)	+	0.9	1.8	1
		at active mode	VDD = 3 V	f(STCK) = f(RING)/8		12	24	μΑ
					1	17	34	μ''
		(with an on-chip oscillator)	f(X N) = stop	f(STCK) = f(RING)/4			, J	1
		(with an on-chip oscillator)	f(XIN) = stop f(RING) = active	f(STCK) = f(RING)/4 f(STCK) = f(RING)/2			54	
		(with an on-chip oscillator)	f(RING) = active	f(STCK) = f(RING)/2		27	54 96	
		, ,	f(RING) = active f(XCIN) = stop	f(STCK) = f(RING)/2 f(STCK) = f(RING)		27 48	96	ıμΑ
		at active mode	f(RING) = active f(XCIN) = stop VDD = 3 V	f(STCK) = f(RING)/2 $f(STCK) = f(RING)$ $f(STCK) = f(XCIN)/8$		27 48 5	96 10	μΑ
		at active mode (with a quartz-crystal	f(RING) = active f(XCIN) = stop VDD = 3 V f(XIN) = stop	f(STCK) = f(RING)/2 $f(STCK) = f(RING)$ $f(STCK) = f(XCIN)/8$ $f(STCK) = f(XCIN)/4$		27 48 5 6	96 10 12	μΑ
		at active mode	f(RING) = active f(XCIN) = stop VDD = 3 V f(XIN) = stop f(RING) = stop	f(STCK) = f(RING)/2 $f(STCK) = f(RING)$ $f(STCK) = f(XCIN)/8$ $f(STCK) = f(XCIN)/4$ $f(STCK) = f(XCIN)/2$		27 48 5 6 7	96 10 12 14	μΑ
		at active mode (with a quartz-crystal oscillator)	f(RING) = active f(XCIN) = stop VDD = 3 V f(XIN) = stop f(RING) = stop f(XCIN) = 32 kHz	f(STCK) = f(RING)/2 $f(STCK) = f(RING)$ $f(STCK) = f(XCIN)/8$ $f(STCK) = f(XCIN)/4$		27 48 5 6 7 9	96 10 12 14 18	·
		at active mode (with a quartz-crystal oscillator) at clock operation mode	f(RING) = active f(XCIN) = stop VDD = 3 V f(XIN) = stop f(RING) = stop f(XCIN) = 32 kHz VDD = 3 V	f(STCK) = f(RING)/2 $f(STCK) = f(RING)$ $f(STCK) = f(XCIN)/8$ $f(STCK) = f(XCIN)/4$ $f(STCK) = f(XCIN)/2$		27 48 5 6 7	96 10 12 14	μΑ
		at active mode (with a quartz-crystal oscillator)	f(RING) = active f(XCIN) = stop VDD = 3 V f(XIN) = stop f(RING) = stop f(XCIN) = 32 kHz	f(STCK) = f(RING)/2 $f(STCK) = f(RING)$ $f(STCK) = f(XCIN)/8$ $f(STCK) = f(XCIN)/4$ $f(STCK) = f(XCIN)/2$		27 48 5 6 7 9	96 10 12 14 18	·

Notes 1: When RC oscillation is used, use the external 33 pF capacitor (C).

^{2:} The impedance state is the resistor value of the output voltage.

at VLC3 level output: VO = 0.8 VLC3

at VLC2 level output: VO = 0.8 VLC2

at VLC1 level output: Vo = 0.2 VLC2 + VLC1

at Vss level output: Vo = 0.2 Vss

VOLTAGE DROP DETECTION CIRCUIT CHARACTERISTICS

(One Time PROM version: Ta = -20 °C to 85 °C, unless otherwise noted)

Cumbal	Parameter	Test conditions		Limits			
Symbol	Parameter	rest conditions	Min.	Тур.	Max.	Unit	
VRST-	Detection voltage	Ta = 25 °C	1.6	1.8	2	V	
	(reset occurs) (Note 2)	-20 °C ≤ Ta < 0 °C	1.7		2.3		
		0 °C ≤ Ta < 50 °C	1.4		2.2	1	
		50 °C ≤ Ta ≤ 85 °C	1.2		1.9	7	
VRST+	Detection voltage	Ta = 25 °C	1.7	1.9	2.1	V	
	(reset release) (Note 3)	-20 °C ≤ Ta < 0 °C	1.8		2.4		
		0 °C ≤ Ta < 50 °C	1.5		2.3		
		50 °C ≤ Ta ≤ 85 °C	1.3		2		
VRST+-	Detection voltage hysteresis			0.1		V	
VRST-							
IRST	Operation current (Note 4)	VDD = 3 V		30	60	μΑ	
TRST	Detection time (Note 5)	$VDD \rightarrow (VRST^ 0.1 V)$		0.2	1.2	ms	

Notes 1: The voltage drop detection circuit is equipped with only the H version.

^{2:} The detection voltage (VRST⁻) is defined as the voltage when reset occurs when the supply voltage (VDD) is falling.

^{3:} The detection voltage (VRST*) is defined as the voltage when reset is released when the supply voltage (VDD) is rising from reset occurs.

^{4:} In the H version, IRST is added to IDD (supply current).

^{5:} The detection time (TRST) is defined as the time until reset occurs when the supply voltage (VDD) is falling to [VRST – 0.1 V].

^{6:} The detection voltages (VRST⁺, VRST⁻) are set up lower than the minimum value of the supply voltage of the recommended operating conditions.

As for details, refer to the LIST OF PRECAUTIONS.

BASIC TIMING DIAGRAM

Parameter	Machine cycle	Mi		Mi+1	
System clock	STCK				
Port D output	D ₀ –D ₇	X			
Port D input	D ₀ –D ₅		X		
Ports P0, P1, P2 output	P00-P03 P10-P13 P20-P23	X			
Ports P0, P1, P2 input	P00-P03 P10-P13 P20-P23		X		
Interrupt input	INT		X		

BUILT-IN PROM VERSION

In addition to the mask ROM versions, the 4552 Group has the One Time PROM versions whose PROMs can only be written to and not be erased.

The built-in PROM version has functions similar to those of the mask ROM versions, but it has PROM mode that enables writing to built-in PROM.

Table 19 shows the product of built-in PROM version. Figure 61 shows the pin configurations of built-in PROM versions.

The One Time PROM version has pin-compatibility with the mask ROM version.

Table 19 Product of built-in PROM version

Part number	PROM size (X 10 bits)	RAM size (X 4 bits)	Package	ROM type
M34552G8FP	8192 words	288 words	48P6S-A	One Time PROM [shipped in blank]
M34552G8HFP				

(1) PROM mode

The 4552 Group has a PROM mode in addition to a normal operation mode. It has a function to serially input/output the command codes, addresses, and data required for operation (e.g., read and program) on the built-in PROM using only a few pins. This mode can be selected by muddog entry after powering on the VDD pin. In the PROM mode, three types of software commands (read, program, and program verify) can be used. Clock-synchronous serial I/O is used, beginning from the LSB (LSB first).

(2) Notes on handling

①For the One Time PROM version shipped in blank, Renesas corp. does not perform PROM writing test and screening in the assembly process and following processes. In order to improve reliability after writing, performing writing and test according to the flow shown in Figure 60 before using is recommended (Products shipped in blank: PROM contents is not written in factory when shipped).

(3) Difference between Mask ROM version and One Time PROM version

Mask ROM version and One Time PROM version have some difference of the following characteristics within the limits of an electrical property by difference of a manufacture process, builtin ROM, and a layout pattern.

- a characteristic value
- a margin of operation
- the amount of noise-proof
- noise radiation, etc.,

Accordingly, be careful of them when swithcing.

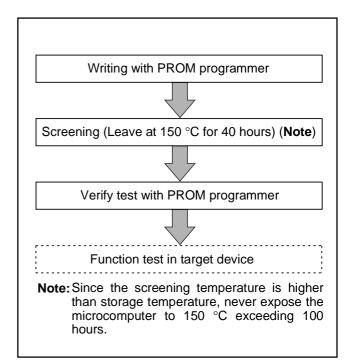


Fig. 68 Flow of writing and test of the product shipped in blank

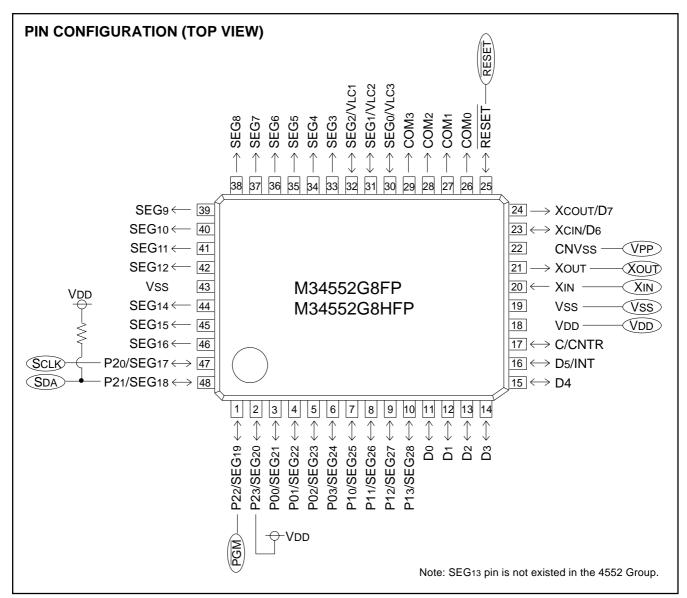


Fig. 69 Pin configuration of built-in PROM version

ROM CODE ACCESS PROTECTION

We would like to support a simple ROM code protection function that prevents a party other than the ROM-code owner to read and reprogram the built-in PROM code of the MCU.

First, Programmers must check the ID-code of the MCU.

If the ID-code is not blank, Programmer verifies it with the input IDcode. When the ID-codes do not match, Programmer will reject all further operations.

The MCU has each 10 bits of dedicated ROM spaces in address 009016 to 009616, as an ID-code (referred to as "the ID-code") enabling a Programmer to verify with the input ID-code and validate further operations.

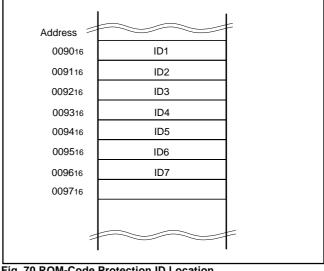
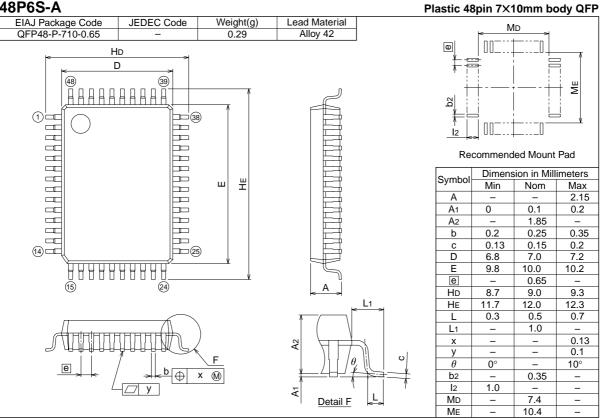



Fig. 70 ROM-Code Protection ID Location

PACKAGE OUTLINE

48P6S-A

REVISION HISTORY

4552 Group Data Sheet

Rev.	Date		Description
		Page	Summary
1.00	Jul. 23, 2003	_	First edition issued
1.01	Sep. 17, 2003	50	Voltage drop detection circuit (only in H version) revised.
		51	Table 15 revised.
			Timer functions, Timer control registers, Port level, and Notes 6 and 7)
		61	(19) Voltage drop detection circuit (only in H version) revised.
		128	Fig.57 revised.
2.00	Feb. 24, 2004	1	FEATURES:
			• Minimum instruction execution time: time for One Time PROM version added.
			 Supply voltage of One Time PROM version revised.
		2	PIN CONFIGURATION: Note added.
		4	PERFORMANCE OVERVIEW:
			Minimum instruction execution time: time for One Time PROM version added.
			Supply voltage of One Time PROM version revised.
			Power dissipation: Values only for Mask ROM version are listed.
		29	Table 9: Timer 3; Count source and Use of output signal revised.
		48	(1) Power-on reset : "(only for H version)" eliminated.
			Description revised.
			Fig.37: "(only for H version)" added to Voltage drop detection circuit.
		50	Fig.40: Note revised.
		58	ROM ORDERING METHOD revised.
		61	Note on ® Power-on reset : revised.
		120 to 132	
			The table is separated to Mask ROM version and One Time PROM version.
			Supply voltage and supply current revised mainly.
			Note 6 is added to VOLTAGE DTOP DETECTION CIRCUIT CHARACTERISTICS.
		135	Fig.57: Note added.
3.00	Jul. 09, 2004	All pages	Words standardized: On-chip oscillator
		5	Description of RESET pin revised.
		31	Fig.23: Note added.
		39	Some description revised.
		40	Fig.28: "DI" instruction added.
		46	(5) LCD power supply circuit
			Internal dividing resistor revised.
			Fig.34 d): "VLC3, VLC2, VLC1" added.
		47	Fig.35, Fig.36: Count revised.
		49	Fig.38: State of quartz-crystal oscillator added.
		61	Note on Power Source Voltage added.
		128	RECOMMENDED OPERATING CONDITIONS 1
			VDD (RC oscillation)
			Max.: 3.6

REVISION HISTORY

4552 Group Data Sheet

Dov.	Doto		Description
Rev.	Date	Dage	Description
		Page	Summary
3.01	Jun.15, 2005		Delete the following: "PRELIMINARY".
		36	 Prescaler and Timer 1 count start timing and count time when operation starts, Timer 2 and Timer LC count start timing and count time when operation starts
			added.
		61	(3) Prescaler and Timer 1 count start timing and count time when operation starts,
			Timer and Timer LC count start timing and count time when operation starts
2.00		00.00	added.
3.02	Dec. 22, 2006	29, 33 30, 31	Use of output signal of prescaler: LC eliminated. Fig.22, Fig.23: Note added.
		30, 31	Fig.23: INSTCK (wrong) → INTSNC (correct)
		32, 69	PA ₀ : Stop (state <u>initialized</u>) → (state <u>retained</u>)
		,	W31 W30: Timer 3 count source selection bits → Timer 3 count value selection
			bits
		33	(2) Prescaler (interrupt function): PRS (wrong) → RPS (correct)
		34 48	(5) Timer 3 (interrupt function): Description added.Fig.37: Clock (wrong) → f(RING) (correct)
		52	Table 15
			Timer 3 function (RAM back-up): O → (Note 3)
			Timer interrupt request flag (RAM back-up): $O \rightarrow (Note 3)$
		54	Fig.44: Note 1 added.
		55, 73 60 to 63	Table 17: Notes 2 and 3 added. NOTES ON NOISE added.
		64	Noise and latch-up prevention: Description added.
		77, 120,	SZD: (Y) = 0 to $\underline{7} \rightarrow 0$ to $\underline{5}$
		121	
		93	SZD: Detailed description revised.
		132 132, 138	VRST ⁻ , VRST ⁺ : Test condition revised. Note 4: (<u>power</u> current) → (<u>supply</u> current)
		\rightarrow	Pages 16 to 18, 20, 27, 54, 66: RAM back-up mode → power down mode
			Pages 77, 90 to 92, 116 to 119: SNZ0, SNZT1, SNZT2, SNZT3 revised.
			Pages 78, 109, 122, 123: WRST revised.

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the development is satisfied. The procedure is such as the development of the dev

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510