

4571 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

REJ03B0179-0102 Rev.1.02 May 25, 2007

DESCRIPTION

The 4571 Group is a 4-bit single-chip microcomputer designed with CMOS technology. Its CPU is that of the 4500 series using a simple, high-speed instruction set. The computer is equipped with three 8-bit timers (each timer has one or two reload registers), interrupts, and voltage drop detection circuit.

The various microcomputers in the 4571 Group include variations of the built-in memory size as shown in the table below.

FEATURES

Minimum instruction execution time	0.5 µs
(at 6 MHz oscillation frequency, in	through-mode
Supply voltage	1.8 to 5.5 V
(It depends on oscillation frequency and o	peration mode
• Timers	
Timer 18-bit timer with a	reload register
and carrier wave output auto-c	ontrol function
Timer 28-bit timer with a	reload register
Timer 3 8-bit timer with two reloa	d registers and
carrier wave ger	neration circuit

• Interrupt	6 sources
Key-on wakeup function pins	12
• I/O port	17
Output port	1
• Input port	1
Voltage drop detection circuit	

- - Reset occurrence......Typ. 1.65 V (Ta = 25 °C) Reset releaseTyp. 1.75 V (Ta = 25 °C) Interrupt occurrence......Typ. 1.85 V (Ta = 25 °C)
- · Watchdog timer
- Power-on reset circuit
- Clock generating circuit (ceramic resonator)

APPLICATION

Remote control transmitter

Table 1 **Support Product**

Part number	ROM size (× 10 bits)	RAM size (× 4 bits)	Package	ROM type
M34571G4FP (Note 1)	4096 words	128 words	PRSP0024GA-A	QzROM
M34571G4-XXXFP	4096 words	128 words	PRSP0024GA-A	QzROM
M34571G6FP (Note 1)	6144 words	128 words	PRSP0024GA-A	QzROM
M34571G6-XXXFP	6144 words	128 words	PRSP0024GA-A	QzROM
M34571GDFP (Note 1)	16384 words	128 words	PRSP0024GA-A	QzROM
M34571GD-XXXFP	16384 words	128 words	PRSP0024GA-A	QzROM

Note 1.Shipped in blank

PIN CONFIGURATION

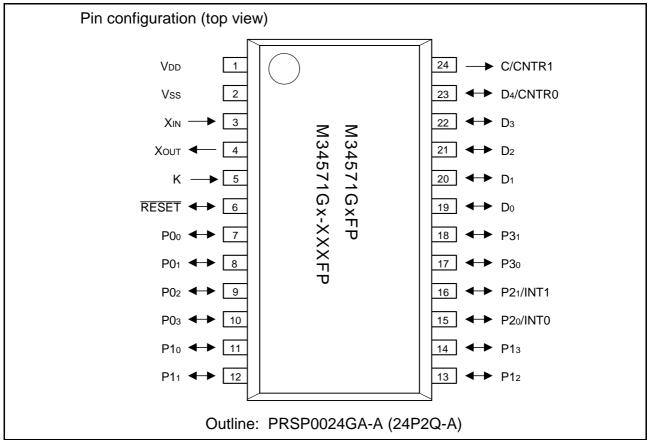
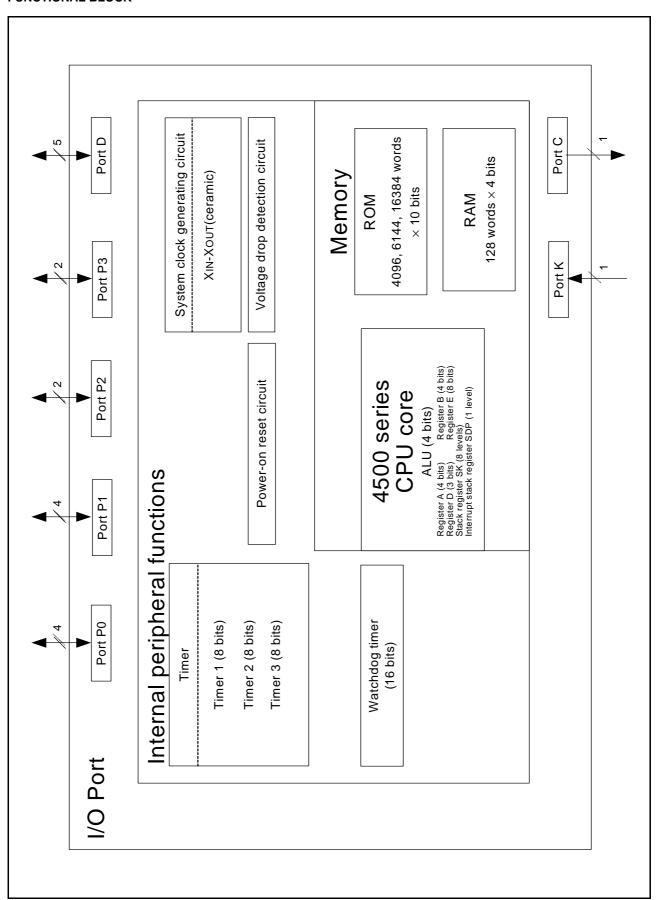



Fig 1. Pin configuration (PRSP0024GA-A type)

FUNCTIONAL BLOCK

Functional block diagram (PRSP0024GA-A type)

PERFORMANCE OVERVIEW

Table 2 Performance overview

	Parameter		Function	
Number of	basic instructions	M34571G4/G6	126	
		M34571GD	128	
Minimum instruction execution time		time	0.5 μs (Oscillation frequency 6 MHz: through mode)	
Memory siz	Memory sizes ROM M3457		4096 words × 10 bits	
		M34571G6	6144 words × 10 bits	
		M34571GD	16384 words × 10 bits	
	RAM		128 words × 4 bits	
I/O port	D0-D4	I/O (Input is	Five independent I/O ports;	
		examined by	The output structure of ports Do-D3 is switched by software.	
		skip decision)	Port D4 is also used as CNTR0, respectively.	
	P00-P03	I/O	4-bit I/O port; a pull-up function and a key-on wakeup function can be switched by software.	
	P10-P13	I/O	4-bit I/O port; a pull-up function and a key-on wakeup function can be switched by software.	
	P20, P21	I/O	2-bit I/O port; a pull-up function and a key-on wakeup function can be switched by software. Ports P20 and P21 are also used as INT0 and INT1, respectively.	
	P30, P31	I/O	2-bit I/O port; the output structure is switched by software.	
	С	Output	1-bit output port (CMOS output only); port C is also used as CNTR1 pin.	
	K	Input	1-bit input port; a key-on wakeup function can be switched by software.	
CNTR0		Timer I/O	1-bit I/O port; CNTR0 pin is also used as port D4.	
	CNTR1	Timer output	1-bit output port; CNTR1 pin is also used as port C.	
	INTO, INT	1 Interrupt input	1-bit input port; INT0 and INT1 are also used as ports P20 and P21, respectively.	
Timer	Timer 1	•	8-bit timer with a reload register and carrier wave output auto-control function, and has	
			an event counter.	
	Timer 2		8-bit timer with a reload register.	
	Timer 3		8-bit timer with two reload registers and carrier wave generation function.	
	Watchdog	timer	16-bit timer, fixed dividing frequency (timer for monitor)	
Power-on r	eset circuit		Built-in	
Voltage dro	p Reset occ	urrence	Typ. 1.65 V (Ta=25 °C)	
detection ci	rcuit Reset rele	ase	Typ. 1.75 V (Ta=25 °C)	
	Interrupt of	occurrence	Typ. 1.85 V (Ta=25 °C)	
Interrupt	Source		6 sources (two for external, three for timers, voltage drop detection circuit)	
	Nesting		1 level	
Subroutine	nesting		8 levels	
Device stru	cture		CMOS sillicon gate	
Package			24-pin plastic molded SSOP (PRSP0024GA-A)	
Operating t	emperature range		-20 to 85 °C	
Power sour	Power source voltage		1.8 to 5.5 V (It depends on oscillation frequency and operation mode)	
Power	At active mode		0.3 mA (Ta = 25 °C, VDD = 3.0 V, f(XIN)=4 MHz, f(STCK)=f(XIN)/8)	
dissipation (Typ. value)	At RAM back-up		0.1 μA (Ta = 25 °C, output transistor is cut-off state)	

PIN DESCRIPTION

Table 3 Pin description

Pin	Name	Input/Output	Function
Vdd	Power source	_	Connected to a plus power supply.
Vss	Power source	_	Connected to a 0 V power supply.
RESET	Reset I/O	I/O	An N-channel open-drain I/O pin for a system reset. When the SRST instruction, watchdog timer, or the built-in power-on reset causes the system to be reset, the RESET pin outputs "L" level.
XIN	Main clock input	Input	I/O pins of the main clock generating circuit. Connect a ceramic resonator between pins
Xout	Main clock output	Output	XIN and XOUT. A feedback resistor is built-in between them.
D0-D4	I/O port D (Input is examined by skip decision.)	I/O	Each pin of port D has an independent 1-bit wide I/O function. The output structure of ports D ₀ -D ₃ can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port D ₄ is also used as CNTR0 pin.
P00-P03	I/O port P0	I/O	Port P0 serves as a 4-bit I/O port. The output structure is N-channel open-drain. Port P0 has a key-on wakeup function and a pull-up function. Both functions can be switched by software.
P10-P13	I/O port P1	I/O	Port P1 serves as a 4-bit I/O port. The output structure is N-channel open-drain. Port P1 has a key-on wakeup function and a pull-up function. Both functions can be switched by software.
P20, P21	I/O port P2	I/O	Port P2 serves as a 2-bit I/O port. The output structure is N-channel open-drain. For input use, set the latch of the specified bit to "1". Ports P2o and P21 are also used as INTO pin and INT1 pin, respectively.
P30, P31	I/O port P3	I/O	Port P3 serves as a 2-bit I/O port. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1".
С	Output port C	Output	Port C serves as a 1-bit output port. The output structure is CMOS. Port C is also used as CNTR1.
К	Input port K	Input	Port K serves as a 1-bit input port. It has the key-on wakeup function which can be switched by software. When port K is used for the input of key matrix, connect a pull-up resistor to it externally.
CNTR0, CNTR1	Timer I/O	I/O	CNTR0 pin has the function to input the clock for the timer 1 event counter, and to output the timer 1 or timer 2 underflow signal divided by 2. CNTR1 pin has the function to output the PWM signal generated by timer 3. CNTR0 pin and CNTR1 pin are also used as Ports D4 and C, respectively.
INT0, INT1	Interrupt input	Input	INT0 pin and INT1 pin accept external interrupts. They have the key-on wakeup function which can be switched by software. INT0 pin and INT1 pin are also used as Ports P20 and P21, respectively.

MULTIFUNCTION

Table 4 Pin description

Pin	Multifunction	Pin	Multifunction	Pin	Multifunction	Pin	Multifunction
С	CNTR1	P20	INT0	CNTR1	С	INT0	P20
D4	CNTR0	P21	INT1	CNTR0	D4	INT1	P21

Note 1.Pins except above have just single function.

Note 2.The input of D4 can be used even when CNTR0 (output) is selected.

The input/output of D4 can be used even when CNTR0 (input) is selected.

Be careful when using inputs of both CNTR0 and D4 since the input threshold value of CNTR0 pin is different from that of port D4.

Note 3."H" output function of port C can be used even when INT0 is used.

Note 4.The input/output of P20 can be used even when INT0 is used.

Be careful when using inputs of both INT0 and P20 since the input threshold value of INT0 pin is different from that of port P20. Note 5.The input/output of P21 can be used even when INT1 is used.

Be careful when using inputs of both INT1 and P21 since the input threshold value of INT1 pin is different from that of port P21.

PORT FUNCTION

Table 5 Port function

Port	Pin	Input Output	Output structure	I/O unit	Control instructions	Control registers	Remark
Port D	D0-D3	I/O (5)	N-channel open-drain/ CMOS	1 bit	SD, RD SZD, CLD	FR1	Programmable output structure selection function
	D4/CNTR0		N-channel open-drain			W1 W2 W5	-
Port P0	P00 P01 P02 P03	I/O (4)	N-channel open-drain	4 bits	OP0A IAP0	PU0 K0	Programmable pull-up and key-on wakeup function
Port P1	P10 P11 P12 P13	I/O (4)	N-channel open-drain	4 bits	OP1A IAP1	PU1 K1	Programmable pull-up and key-on wakeup function
Port P2	P20/INT0 P21/INT1	I/O (2)	N-channel open-drain	2 bits	OP2A IAP2	PU2 K2, I1, I2, L1	Programmable pull-up and key-on wakeup function
Port P3	P30 P31	I/O (2)	N-channel open-drain/ CMOS	2 bits	OP3A IAP3	FR0	Programmable output structure selection function
Port C	C/CNTR1	Output (1)	CMOS	1 bit	RCP SCP	W1, W3, W5	_
Port K	К	Input (1)	-	1 bit	IAK	K2	Programmable key-on wakeup function

DEFINITION OF CLOCK AND CYCLE

· Operation source clock

The operation source clock is the source clock to operate this product. In this product, the following clocks are used.

- Clock (f(XIN)) by the external ceramic resonator
- \bullet Clock (f(XIN)) by the external input
- · System clock

The system clock is the basic clock for controlling this product. The system clock is selected by the register MR.

· Instruction clock

The instruction clock is a signal derived by dividing the system clock by 3. The one instruction clock cycle generates the one machine cycle.

• Machine cycle

The machine cycle is the standard cycle required to execute the instruction.

Table 6 Table Selection of system clock

Register MR		System clock	Operation mode	
MRз	MR ₂	System clock	Operation mode	
1	1	f(STCK) = f(XIN)/8	Frequency divided by 8 mode	
1	0	f(STCK) = f(XIN)/4	Frequency divided by 4 mode	
0	1	f(STCK) = f(XIN)/2	Frequency divided by 2 mode	
0	0	f(STCK) = f(XIN)	Frequency through mode	

Note 1.The frequency divided by 8 is selected after system is released from reset.

CONNECTIONS OF UNUSED PINS

Table 7 Port function

		Usage condition						
Pin	Connection	Output structure	Pull-up transistor	Key-on wakeup	Value of output latch	Others		
D0-D3	Open.	N-channel open-drain	_	_	0/1	(Note 1)		
P30, P31		CMOS	_	_	0/1	_		
	Connect to Vss.	N-channel open-drain	_	-	0/1	=		
		CMOS	_	-	0	=		
	Connect to VDD.	N-channel open-drain	_	-	1	=		
		CMOS	-	_	1	_		
D4/CNTR0	Open.	N-channel open-drain	-	_	0/1	(Notes 1, 2)		
	Connect to Vss.	N-channel open-drain	_	-	0/1	(Note 2)		
	Connect to VDD.	N-channel open-drain	_	-	1	(Note 2)		
P00-P03,	Open.	N-channel open-drain	OFF	Invalid	0/1	(Note 1)		
P10-P13			ON	Invalid	1	_		
	Connect to Vss.	N-channel open-drain	OFF	Invalid	0/1	_		
	Connect to VDD.	N-channel open-drain	ON/OFF	Valid/Invalid	1	_		
P2o/INT0	Open.	N-channel open-drain	OFF	Invalid	0/1	(Notes 1, 3)		
P2 ₁ /INT1			ON	Invalid	1	(Note 3)		
	Connect to Vss.	N-channel open-drain	OFF	Invalid	0/1	(Note 3)		
	Connect to VDD.	N-channel open-drain	ON/OFF	Valid/Invalid	1	(Note 3)		
C/CNTR1	Open.	CMOS	_	=	0/1	_		
	Connect to Vss.	CMOS	_	=	0	(Note 4)		
K	Connect to Vss.	_	_	Invalid	-	_		
	Connect to VDD.	_	_	Valid/Invalid	_	_		

Note 1.If a port input instruction (SZD, IAP0, IAP1, IAP2, IAP3) is executed when the output latch is 1, the supply voltage may be increased in the instruction execution cycle by the through current.

Note 2.Do not select the CNTR0 input as the timer 1 count source. (W1₁ W1₀≠11)

Note 3.Set the input of INT0 pin or INT1 pin to be disabled. (I1₃=0, I2₃=0)

Note 4.Set the output of the CNTR1 pin to be invalid. (W3₃=0)

(Note when connecting to $Vss\ or\ Vdd$)

Connect the unused pins to Vss using the thickest wire at the shortest distance against noise.

PORT BLOCK DIAGRAM

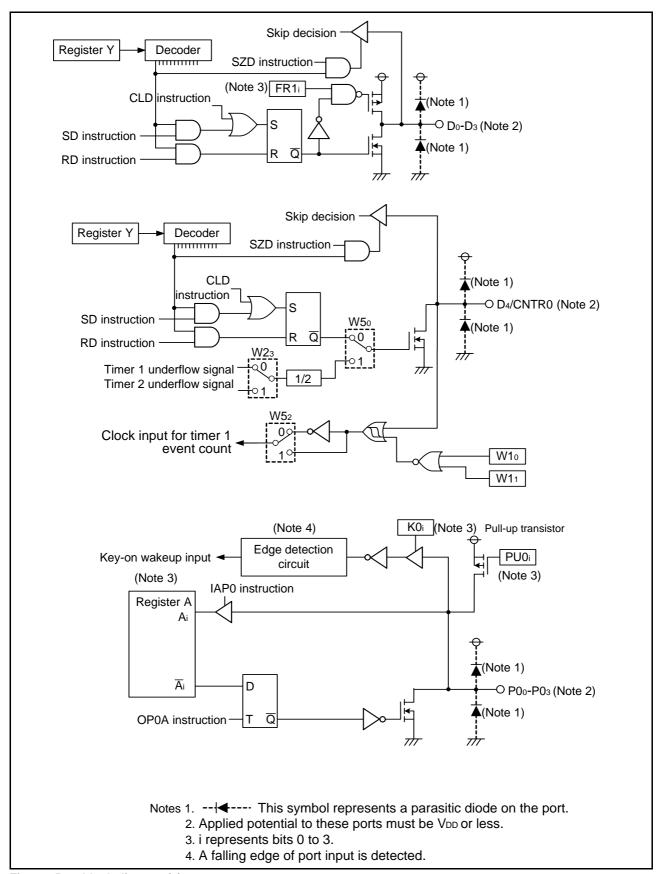


Fig 3. Port block diagram (1)

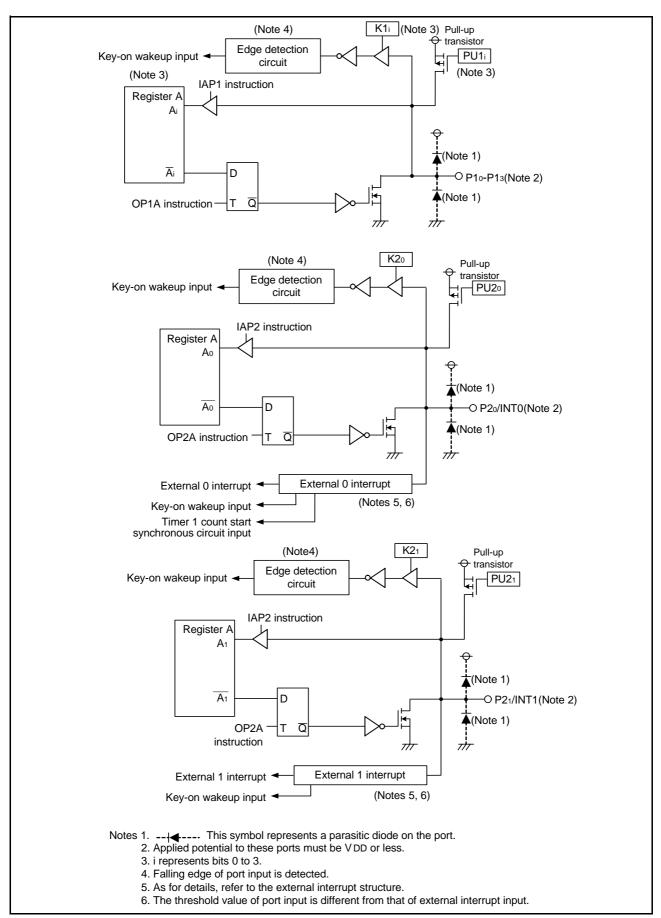


Fig 4. Port block diagram (2)

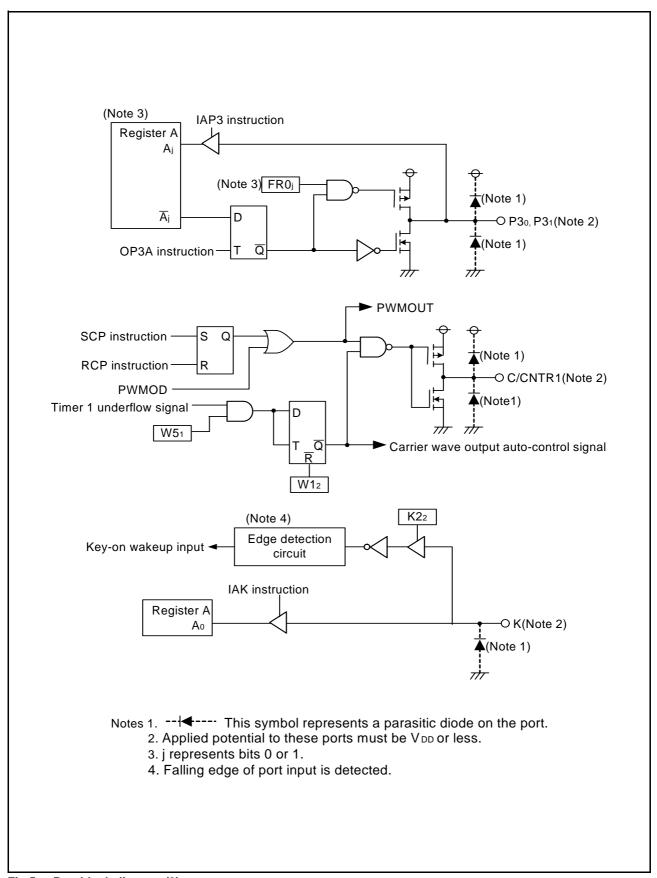
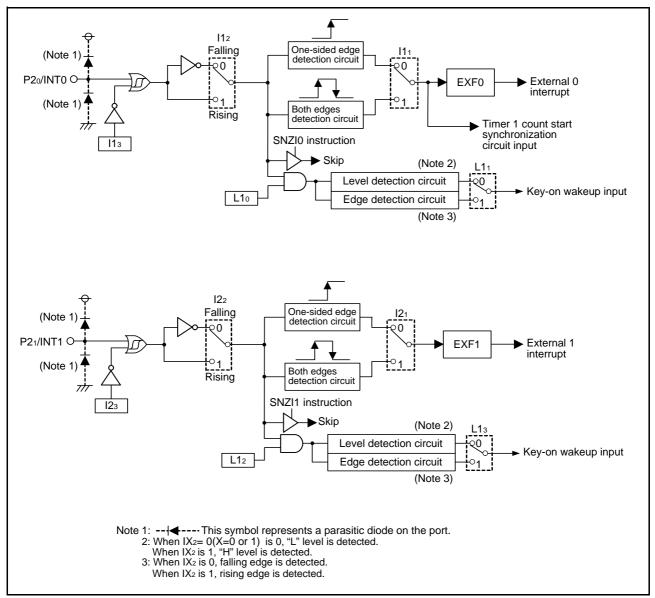



Fig 5. Port block diagram (3)

Port block diagram (4) Fig 6.

FUNCTION BLOCK OPERATIONS

CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4-bit data addition, comparison, AND operation, OR operation, and bit manipulation.

(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.

Carry flag CY is a 1-bit flag that is set to "1" when there is a carry with the AMC instruction (Figure 7).

It is unchanged with both A n instruction and AM instruction. The value of A0 is stored in carry flag CY with the RAR instruction (Figure 8).

Carry flag CY can be set to "1" with the SC instruction and cleared to "0" with the RC instruction.

(3) Registers B and E

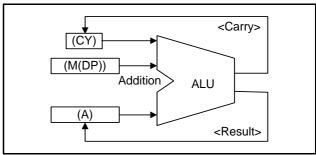
Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8-bit data transfer together with register A.

Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 9).

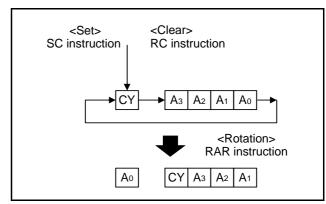
Register E is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

(4) Register D

Register D is a 3-bit register.


It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 10).

Also, when the TABP p instruction is executed at UPTF flag = "1", the high-order 2 bits of ROM reference data is stored to the low-order 2 bits of register D, the high-order 1 bit of register D is "0".


When the TABP p instruction is executed at UPTF flag = "0", the contents of register D remains unchanged. The UPTF flag is set to "1" with the SUPT instruction and cleared to "0" with the RUPT instruction.

The initial value of UPTF flag is "0".

Register D is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

AMC instruction execution example

RAR instruction execution example Fig 8.

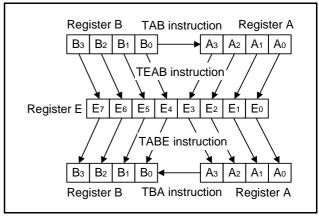


Fig 9. Registers A, B and register E

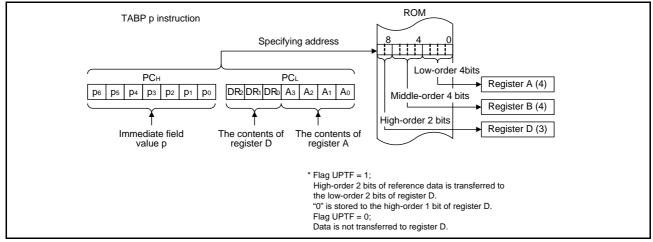


Fig 10. TABP p instruction execution example

(5) Stack registers (SKS) and stack pointer (SP)

Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

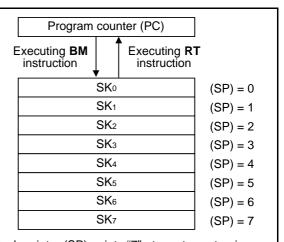
- branching to an interrupt service routine (referred to as an interrupt service routine),
- performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together. The contents of registers SKs are destroyed when 8 levels are exceeded.

The register SK nesting level is pointed automatically by 3-bit stack pointer (SP). The contents of the stack pointer (SP) can be transferred to register A with the TASP instruction.

Figure 11 shows the stack registers (SKs) structure.

Figure 12 shows the example of operation at subroutine call.


(6) Interrupt stack register (SDP)

Interrupt stack register (SDP) is a 1-stage register. When an interrupt occurs, this register (SDP) is used to temporarily store the contents of data pointer, carry flag, skip flag, register A, and register B just before an interrupt until returning to the original routine.

Unlike the stack registers (SKs), this register (SDP) is not used when executing the subroutine call instruction and the table reference instruction.

(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions. When an interrupt occurs, the contents of skip flag is stored automatically in the interrupt stack register (SDP) and the skip condition is retained.

Stack pointer (SP) points "7" at reset or returning from RAM back-up mode. It points "0" by executing the first BM instruction, and the contents of program counter is stored in SKo. When the BM instruction is executed after eight stack registers are used ((SP) = 7), (SP) = 0 and the contents of SK₀ is destroyed.

Fig 11. Stack registers (SKs) structure

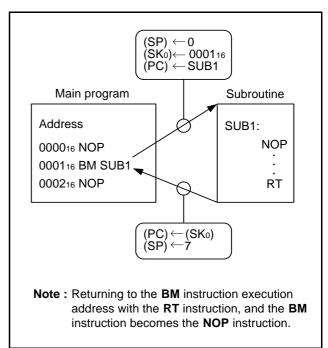


Fig 12. Example of operation at subroutine call

(8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.

Program counter consists of PCH (most significant bit to bit 7) which specifies to a ROM page and PCL (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 13).

Make sure that the PCH does not specify after the last page of the built-in ROM.

(9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers Z, X, and Y. Register Z specifies a RAM file group, register X specifies a file, and register Y specifies a RAM digit (Figure 14).

Register Y is also used to specify the port D bit position.

When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 15).

• Note

Register Z of data pointer is undefined after system is released from reset.

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

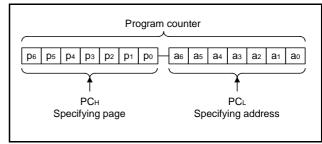


Fig 13. Program counter (PC) structure

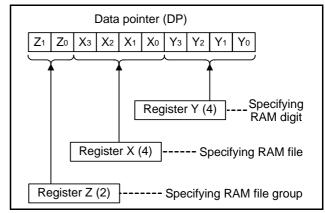


Fig 14. Data pointer (DP) structure

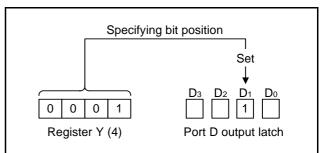


Fig 15. SD instruction execution example

PROGRAM MEMORY (ROM)

The program memory is a mask ROM. 1 word of ROM is composed of 10 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127). Table 1 shows the ROM size and pages. Figure 16 shows the ROM map of M34571G6.

Table 8 ROM size and pages

Part number	ROM (PROM) size (× 10 bits)	Pages
M34571G4	4096 words	32 (0 to 31)
M34571G6	6144 words	48 (0 to 47)
M34571GD	16384 words	128 (0 to 127)

Note 1.Data in pages 64 to 127 can be referred with the TABP p instruction after the SBK instruction is executed. Data in pages 0 to 63 can be referred with the TABP p instruction after the RBK instruction is executed.

A part of page 1 (addresses 008016 to 00FF16) is reserved for interrupt addresses (Figure 17). When an interrupt occurs, the address (interrupt address) corresponding to each interrupt is set in the program counter, and the instruction at the interrupt address is executed. When using an interrupt service routine, write the instruction generating the branch to that routine at an interrupt address.

Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1-word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.

ROM pattern (bits 9 to 0) of all addresses can be used as data areas with the TABP p instruction.

ROM Code Protect Address

When selecting the protect bit write by using a serial programmer or selecting protect enabled for writing shipment by Renesas Technology corp., reading or writing from/to QzROM is disabled by a serial programmer.

As for the QzROM product in blank, the ROM code is protected by selecting the protect bit write at ROM writing with a serial programmer.

As for the QzROM product shipped after writing, whether the ROM code protect is used or not can be selected as ROM option setup ("MASK option" written in the mask file converter) when ordering.

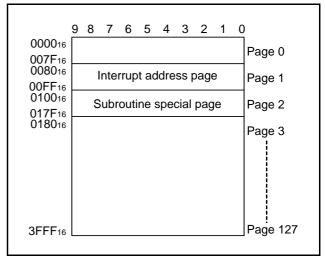


Fig 16. ROM map of M34571GD

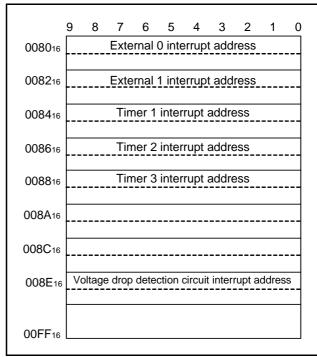


Fig 17. Page 1 (addresses 008016 to 00FF16) structure

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers Z, X, and Y. Set a value to the data pointer certainly when executing an instruction to access RAM (also, set a value after system returns from RAM back-up).

Table 9 shows the RAM size. Figure 18 shows the RAM map.

• Note

Register Z of data pointer is undefined after system is released from reset.

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

Table 9 **RAM** size and pages

Part number	RAM size
M34571G4	
M34571G6	128 words × 4 bits (512 bits)
M34571GD	

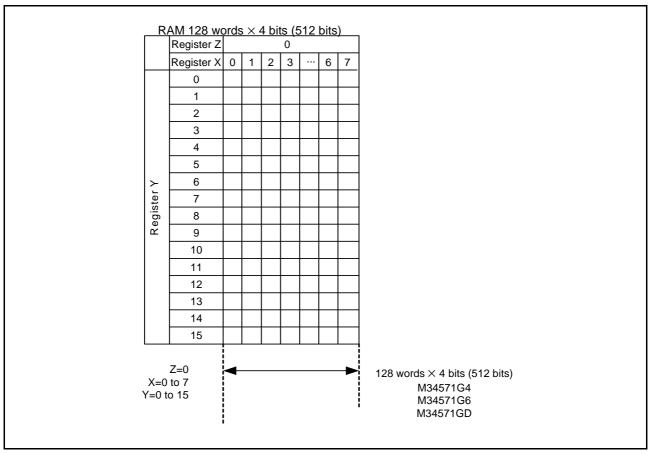


Fig 18. RAM map

INTERRUPT FUNCTION

The interrupt type is a vectored interrupt branching to an individual address (interrupt address) according to each interrupt source. An interrupt occurs when the following 3 conditions are

- An interrupt activated condition is satisfied (request flag = "1")
- Interrupt enable bit is enabled ("1")
- Interrupt enable flag is enabled (INTE = "1")

Table 10 shows interrupt sources. (Refer to each interrupt request flag for details of activated conditions.)

(1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable. Interrupts are enabled when INTE flag is set to "1" with the EI instruction and disabled when INTE flag is cleared to "0" with the DI instruction. When any interrupt occurs, the INTE flag is automatically cleared to "0," so that other interrupts are disabled until the EI instruction is executed.

(2) Interrupt enable bit

Use an interrupt enable bit of interrupt control registers V1 and V2 to select the corresponding interrupt or skip instruction.

Table 11 shows the interrupt request flag, interrupt enable bit and skip instruction.

Table 12 shows the interrupt enable bit function.

(3) Interrupt request flag

When the activated condition for each interrupt is satisfied, the corresponding interrupt request flag is set to "1." Each interrupt request flag except the voltage drop detection circuit interrupt request flag is cleared to "0" when either;

- · an interrupt occurs, or
- the next instruction is skipped with a skip instruction.

The voltage drop detection circuit interrupt request flag cannot be cleared to "0" at the state that the activated condition is satisfied.

Each interrupt request flag is set when the activated condition is satisfied even if the interrupt is disabled by the INTE flag or its interrupt enable bit. Once set, the interrupt request flag retains set until a clear condition is satisfied.

Accordingly, an interrupt occurs when the interrupt disable state is released while the interrupt request flag is set.

If more than one interrupt request flag is set when the interrupt disable state is released, the interrupt priority level is as follows shown in Table 10.

Table 10 Interrupt sources

Priority	Interrup	t source	Interrupt
level	Interrupt name	Activated condition	Interrupt address
1	Voltage drop detection circuit interrupt	when supply voltage goes lower than specified value	Address E in page 1
2	External 0 interrupt	Level change of INT0 pin	Address 0 in page 1
3	External 1 interrupt	Level change of INT1 pin	Address 2 in page 1
4	Timer 1 interrupt	Timer 1 underflow	Address 4 in page 1
5	Timer 2 interrupt	Timer 2 underflow	Address 6 in page 1
6	Timer 3 interrupt	Timer 3 underflow	Address 8 in page 1

Table 11 Interrupt request flag, interrupt enable bit and skip instruction

Interrupt name	Interrupt request flag	Skip instruction	Interrupt enable bit
Voltage drop detection circuit interrupt	VDF	SNZVD	V23
External 0 interrupt	EXF0	SNZ0	V10
External 1 interrupt	EXF1	SNZ1	V11
Timer 1 interrupt	T1F	SNZT1	V12
Timer 2 interrupt	T2F	SNZT2	V13
Timer 3 interrupt	T3F	SNZT3	V20

Table 12 Interrupt enable bit function

Interrupt enable bit	Occurrence of interrupt	Skip instruction		
1	Enabled	Invalid		
0	Disabled	Valid		

(4) Internal state during an interrupt

The internal state of the microcomputer during an interrupt is as follows (Figure 20).

- Program counter (PC)
 - An interrupt address is set in program counter. The address to be executed when returning to the main routine is automatically stored in the stack register (SK).
- Interrupt enable flag (INTE) INTE flag is cleared to "0" so that interrupts are disabled.
- · Interrupt request flag Only the request flag for the current interrupt source is cleared to "0" (the voltage drop detection circuit interrupt request flag is excluded)
- Data pointer, carry flag, skip flag, registers A and B The contents of these registers and flags are stored automatically in the interrupt stack register (SDP).

(5) Interrupt processing

When an interrupt occurs, a program at an interrupt address is executed after branching a data store sequence to stack register. Write the branch instruction to an interrupt service routine at an interrupt address. Use the RTI instruction to return from an interrupt service routine.

Interrupt enabled by executing the EI instruction is performed after executing 1 instruction (just after the next instruction is executed). Accordingly, when the EI instruction is executed just before the RTI instruction, interrupts are enabled after returning the main routine. (Refer to Figure 19)

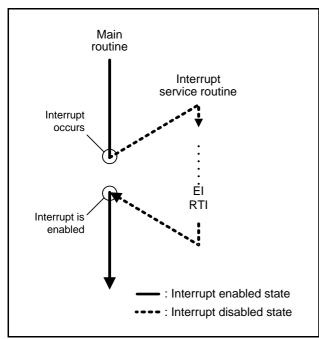


Fig 19. Program example of interrupt processing

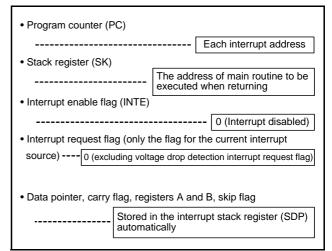


Fig 20. Internal state when interrupt occurs

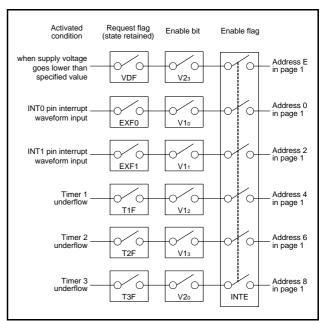


Fig 21. Interrupt system diagram

(6) Interrupt control registers

• Interrupt control register V1

Interrupt enable bits of external 0, external 1, timer 1 and timer 2 are assigned to register V1. Set the contents of this register through register A with the TV1A instruction. The TAV1 instruction can be used to transfer the contents of register V1 to register A.

• Interrupt control register V2

The voltage drop detection circuit interrupt enable bit and timer 3 interrupt enable bit are assigned to register V2. Set the contents of this register through register A with the TV2A instruction. The TAV2 instruction can be used to transfer the contents of register V2 to register A.

Table 13 Interrupt control registers

	Interrupt control register V1	at reset : 00002		at RAM back-up : 00002	R/W TAV1/TV1A		
V13	Timer 2 interrupt enable hit	0 Interrupt disabl		SNZT2 instruction is valid)			
V 13	V13 Timer 2 interrupt enable bit		Interrupt enabled (S	SNZT2 instruction is invalid)			
V12	Ma. Timon d interment analys bit		Interrupt disabled (SNZT1 instruction is valid)				
V 12	Timer 1 interrupt enable bit	1	Interrupt enabled (SNZT1 instruction is invalid)				
V11	External 4 interment analyse hit	0	Interrupt disabled (\$	SNZ1 instruction is valid)			
V 11	External 1 interrupt enable bit	1	Interrupt enabled (S	SNZ1 instruction is invalid)			
V10	External O interrupt anable hit	0	Interrupt disabled (S	SNZ0 instruction is valid)			
V 10	External 0 interrupt enable bit	1	Interrupt enabled (S	SNZ0 instruction is invalid)			

	Interrupt control register V2		at reset: 00002	at RAM back-up : 00002	R/W TAV2/TV2A	
V23	Voltage drep detector interrupt enable bit	0	Interrupt disabled (\$	SNZVD instruction is valid)		
V Z 3	V23 Voltage drop detector interrupt enable bit		Interrupt enabled (S	SNZVD instruction is invalid)		
V22	V22 Not used		This bit has no function, but read/write is enabled.			
V Z Z	Not used	1	This bit has no function, but read/write is enabled.			
V21	21 Not used		This bit has no function, but read/write is enabled.			
VZI	Not used	1	This bit has no function, but read/write is enabled.			
V20	V/2s Timer 2 interrupt enable hit		Interrupt disabled (\$	SNZT3 instruction is valid)		
V Z0	Timer 3 interrupt enable bit	1	Interrupt enabled (S	SNZT3 instruction is invalid)		

Note 1."R" represents read enabled, and "W" represents write enabled.

(7) Interrupt sequence

Interrupts only occur when the respective INTE flag, interrupt enable bits (V10-V13, V20, V23), and interrupt request flag are "1." The interrupt actually occurs 2 to 3 machine cycles after the cycle in which all three conditions are satisfied. The interrupt occurs after 3 machine cycles only when the three interrupt conditions are satisfied on execution of other than one-cycle instructions (Refer to Figure 22).

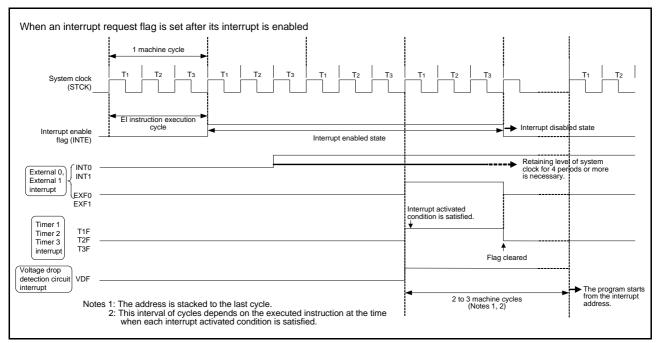


Fig 22. Interrupt sequence

EXTERNAL INTERRUPTS

The 4571 Group has the external 0 interrupt and external 1 interrupt. An external interrupt request occurs when a valid waveform is input to an interrupt input pin (edge detection). The external interrupt can be controlled with the interrupt control registers I1 and I2.

Table 14 External interrupt activated conditions

Name	Input pin	Activated condition	Valid waveform selection bit
External 0 interrupt	P20/INT0	When the next waveform is input to P2o/INT0 pin • Falling waveform ("H" → "L") • Rising waveform ("L" → "H") • Both rising and falling waveforms	11 ₁ 11 ₂
External 1 interrupt	P21/INT1	 When the next waveform is input to P2₁/INT1 pin Falling waveform ("H" → "L") Rising waveform ("L" → "H") Both rising and falling waveforms 	21 122

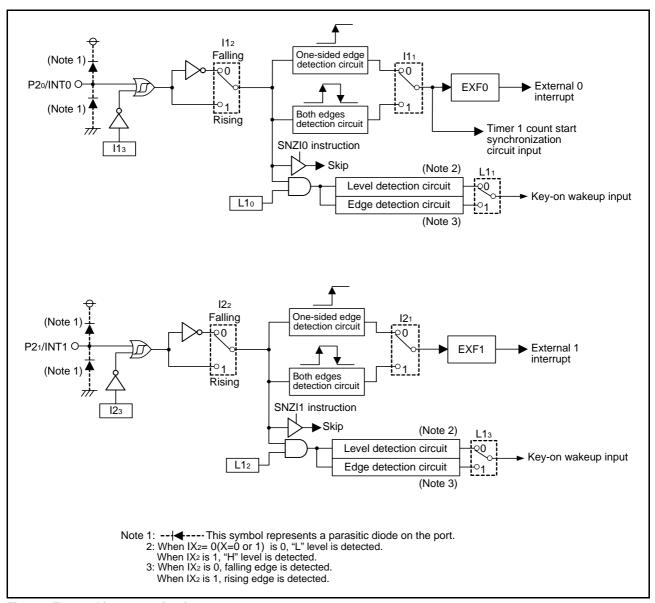


Fig 23. External interrupt circuit structure

(1) External 0 interrupt request flag (EXF0)

External 0 interrupt request flag (EXF0) is set to "1" when a valid waveform is input to P20/INT0 pin.

The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 22).

The state of EXF0 flag can be examined with the skip instruction (SNZ0). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF0 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction.

- External 0 interrupt activated condition
 - External 0 interrupt activated condition is satisfied when a valid waveform is input to P20/INT0 pin.
 - The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 0 interrupt is as follows.
- (1) Set the bit 3 of register I1 to "1" for the INTO pin to be in the input enabled state.
- (2) Select the valid waveform with the bits 1 and 2 of register
- (3) Clear the EXF0 flag to "0" with the SNZ0 instruction.
- (4) Set the NOP instruction for the case when a skip is performed with the SNZ0 instruction.
- (5) Set both the external 0 interrupt enable bit (V10) and the INTE flag to "1."

The external 0 interrupt is now enabled. Now when a valid waveform is input to the P20/INT0 pin, the EXF0 flag is set to "1" and the external 0 interrupt occurs.

(2) External 1 interrupt request flag (EXF1)

External 1 interrupt request flag (EXF1) is set to "1" when a valid waveform is input to P21/INT1 pin.

The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 22).

The state of EXF1 flag can be examined with the skip instruction (SNZ1). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF1 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction.

- External 1 interrupt activated condition
- External 1 interrupt activated condition is satisfied when a valid waveform is input to P21/INT1 pin.
- The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 1 interrupt is as follows.
- (1) Set the bit 3 of register I2 to "1" for the INT1 pin to be in the input enabled state.
- (2) Select the valid waveform with the bits 1 and 2 of register I2.
- (3) Clear the EXF1 flag to "0" with the SNZ1 instruction.
- (4) Set the NOP instruction for the case when a skip is performed with the SNZ1 instruction.
- (5) Set both the external 1 interrupt enable bit (V11) and the INTE flag to "1."

The external 1 interrupt is now enabled. Now when a valid waveform is input to the P21/INT1 pin, the EXF1 flag is set to "1" and the external 1 interrupt occurs.

(3) External interrupt control registers

(1) Interrupt control register I1

Register I1 controls the valid waveform for the external 0 interrupt. Set the contents of this register through register A with the TI1A instruction. The TAI1 instruction can be used to transfer the contents of register I1 to register A.

(2) Interrupt control register I2

Register I2 controls the valid waveform for the external 1 interrupt. Set the contents of this register through register A with the TI2A instruction. The TAI2 instruction can be used to transfer the contents of register I2 to register A.

Table 15 External interrupt control register

	Interrupt control register I1		at reset: 00002	at RAM back-up : state retained	R/W TAI1/TI1A		
l13	IA. INITO min imput acceptal bit (Nata 2)		INT0 pin input disal	INT0 pin input disabled			
113	INT0 pin input control bit (Note 2)	1	INT0 pin input enab	oled			
112	Interrupt valid waveform for INT0 pin/ return level selection bit (Note 2)	0	Falling waveform ("L" level of INT0 pin is recognized with the SNZI instruction)/"L" level				
112		1	Rising waveform instruction)/"H" leve	("H" level of INTO pin is recognize !	d with the SNZIO		
l1 ₁	INT0 pin edge detection circuit control bit	0	One-sided edge detected				
111	INTO pin eage detection circuit control bit	1	Both edges detected				
I1 0	INT0 pin	0	Timer 1 disabled				
110	timer 1 control enable bit		Timer 1 enabled				

	Interrupt control register I2		at reset: 00002	at RAM back-up : state retained	R/W TAI2/TI2A		
123	INT1 pin input control bit (Note 3)	0	INT0 pin input disat	INT0 pin input disabled			
123	INT pin input control bit (Note 3)	1	INT0 pin input enab	led			
120	Interrupt valid waveform for INT1 pin/ return level selection bit (Note 3)	0	Falling waveform ("L" level of INT0 pin is recognized with the SNZ instruction)/"L" level				
122		1	•	Rising waveform ("H" level of INT0 pin is recognized with the SNZI1 instruction)/"H" level			
I2 ₁	INT1 pin edge detection circuit control bit	0	One-sided edge de	tected			
121	INT I pin eage detection circuit control bit	1	Both edges detected				
120	Not used	0	This hit has no function, but read/write is enabled				
120		1	This bit has no function, but read/write is enabled.				

Note 1."R" represents read enabled, and "W" represents write enabled.

Note 2.When the contents of I12 and I13 are changed, the external interrupt request flag EXF0 may be set.

Note 3.When the contents of I22 and I23 are changed, the external interrupt request flag EXF1 may be set.

(4) Notes on interrupts

- (1) Bit 3 of register I1
 - When the input of the P20/INT0 pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.
- Depending on the input state of the P20/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to (1) in Figure 24) and then, change the bit 3 of register I1. In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to (2) in Figure 24).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to (3) in Figure 24).

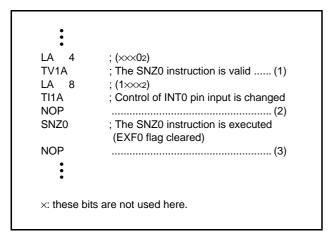


Fig 24. External 0 interrupt program example-1

- (2) Bit 3 of register I1
 - When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INTO pin is disabled, be careful about the following notes.
- When the INTO pin input is disabled (register I13 = "0"), set the key-on wakeup of INT0 pin to be invalid (register L10 = "0") before system enters to the RAM back-up mode. (refer to (1) in Figure 25).

```
LA 0
             : (×××02)
              ; INT0 key-on wakeup disabled .....(1)
TI 1A
DI
FPOF
POF
              ; RAM back-up
x: these bits are not used here.
```

Fig 25. External 0 interrupt program example-2

- (3) Bit 2 of register I1
 - When the interrupt valid waveform of the P20/INT0 pin is changed with the bit 2 of register I1 in software, be careful about the following notes.
- Depending on the input state of the P20/INT0 pin, the external 1 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to (1) in Figure 26) and then, change the bit 2 of register I1 is changed.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to (2) in Figure 26).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to (3) in Figure

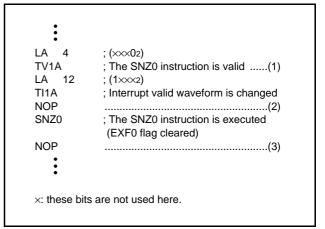


Fig 26. External 0 interrupt program example-3

- (4) Bit 3 of register I2
 - When the input of the P21/INT1 pin is controlled with the bit 3 of register I2 in software, be careful about the following notes.
- Depending on the input state of the P21/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 3 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to (1) in Figure 27) and then, change the bit 3 of register I2. In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to (2) in Figure 27).

Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to (3) in Figure 27).

```
; (xx0x2)
ΙΔ
    4
TV1A
            ; The SNZ1 instruction is valid ..... (1)
LA 8
            ; (1 \times \times \times 2)
TI1A
            ; Control of INT1 pin input is changed
NOP
            .....(2)
SNZ0
            ; The SNZ1 instruction is executed
             (EXF1 flag cleared)
NOP
             .....(3)
x: these bits are not used here.
```

Fig 27. External 1 interrupt program example-1

(5) Bit 3 of register I2

When the bit 3 of register I2 is cleared to "0", the RAM back-up mode is selected and the input of INT1 pin is disabled, be careful about the following notes.

• When the INT1 pin input is disabled (register I23 = "0"), set the key-on wakeup of INT1 pin to be invalid (register L20 = "0") before system enters to the RAM back-up mode. (refer to (1) in Figure 28)

```
LA 0
             ; (×0××2)
TL1A
             ; INT1 key-on wakeup disabled .....(1)
DΙ
EPOF
POF
             ; RAM back-up
x: these bits are not used here.
```

Fig 28. External 1 interrupt program example-2

(6) Bit 2 of register I2

When the interrupt valid waveform of the P21/INT1 pin is changed with the bit 2 of register I2 in software, be careful about the following notes.

• Depending on the input state of the P21/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 2 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to (1) in Figure 29) and then, change the bit 2 of register I2 is changed.

In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to (2)

Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to (3) in Figure

```
LA 4
            ; (xx0x2)
            ; The SNZ1 instruction is valid .....(1)
TV1A
LA 12
            : (1 \times \times \times 2)
TI1A
            ; Interrupt valid waveform is changed
NOP
             .....(2)
            ; The SNZ1 instruction is executed
SNZ0
            (EXF1 flag cleared)
NOP
            .....(3)
x: these bits are not used here.
```

Fig 29. External 1 interrupt program example-3

TIMERS

The 4571 Group has the following timers.

- · Programmable timer
 - The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to n+1), a timer interrupt request flag is set to "1," new data is loaded from the reload register, and count continues (auto-reload function).
- Fixed dividing frequency timer The fixed dividing frequency timer has the fixed frequency dividing ratio (n). An interrupt request flag is set to "1" after every n count of a count pulse.

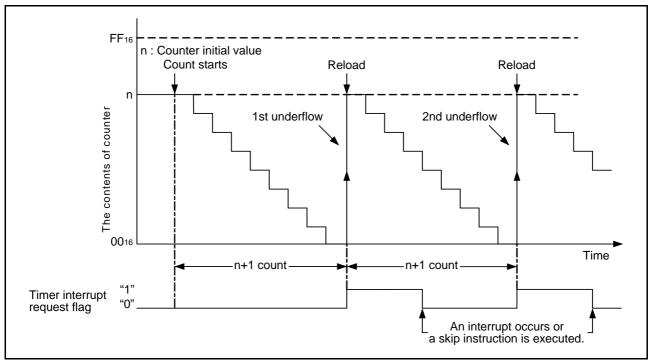


Fig 30. Auto-reload function

The 4571 Group timer consists of the following circuits.

- Prescaler : 8-bit programmable timer
- Timer 1 : 8-bit programmable timer
- Timer 2: 8-bit programmable timer
- Timer 3 : 8-bit programmable timer
- Watchdog timer: 16-bit fixed frequency timer

(Timers 1, 2 and 3 have the interrupt function, respectively)

Prescaler, timer 1, timer 2 and timer 3 can be controlled with the timer control registers PA, W1, W2, W3 and W5. The watchdog timer is a free counter which is not controlled with the control register.

Each function is described below.

Table 16 Function related timers

Circuit	Structure	Count source	Frequency dividing ratio	Use of output signal	Control register
Prescaler	8-bit programmable binary down counter	Instruction clock (INSTCK) Instruction clock divided by 4 (INSTCK/4)	1 to 256	Timer 1 count source Timer 2 count source Timer 3 count source	PA
Timer 1	8-bit programmable binary down counter (link to INT0 input) (carrier wave output auto- control function)	PWM signal (PWMOUT) Prescaler output (ORCLK) CNTR0 input (CNTR0IN) System clock (STCK)	1 to 256	Timer 2 count source CNTR0 output Carrier wave output autocontrol Timer 1 interrupt	W1 W5
Timer 2	8-bit programmable binary down counter	PWM signal (PWMOUT) Timer 1 underflow (T1UDF) Prescaler output (ORCLK) System clock (STCK)	1 to 256	CNTR0 output Timer 2 interrupt	W2 W5
Timer 3	8-bit programmable binary down counter (with carrier wave generation function)	XIN input Prescaler output divided by 2 (ORCLK/2)	1 to 256	Timer 1 count source Timer 2 count source CNTR1 output Timer 3 interrupt	W1 W3 W5
Watchdog timer	16-bit fixed dividing frequency	Instruction clock (INSTCK)	65536	System reset (counting twice) Decision of flag WDF1	-

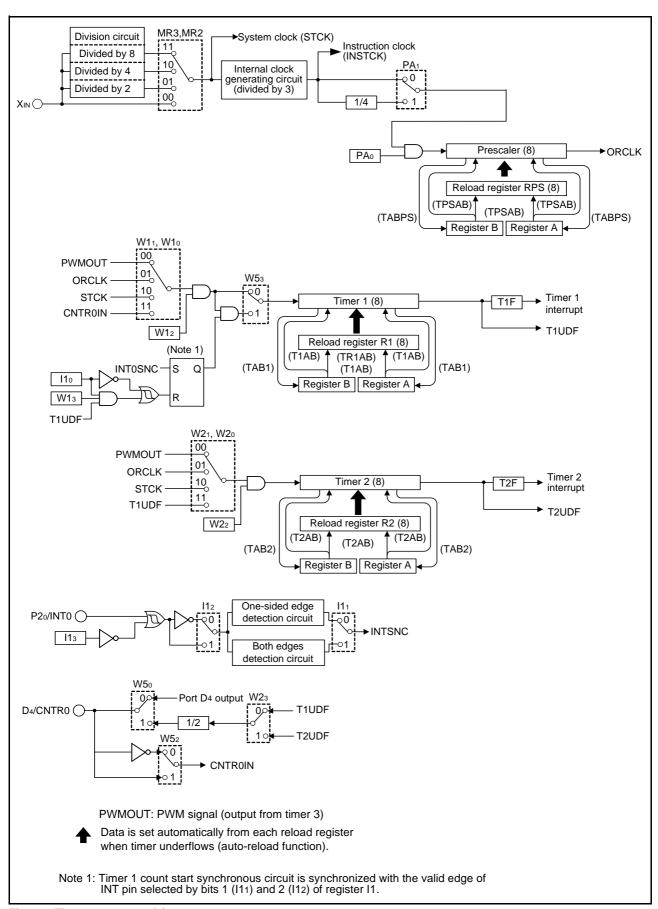


Fig 31. Timers structure (1)

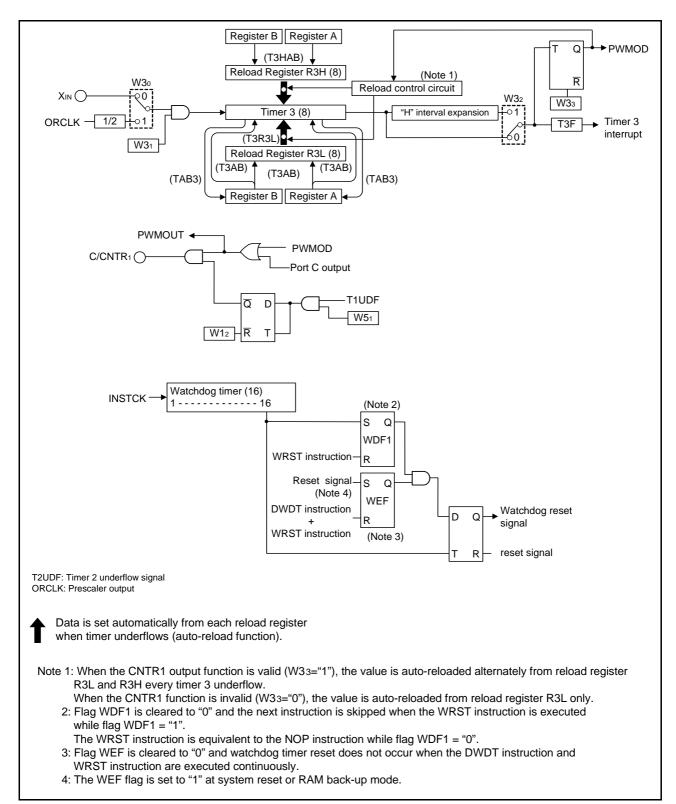


Fig 32. Timers structure (2)

Table 17 Timer control registers

	Timer control register PA		at reset : 002	at RAM back-up : 002	W TPAA	
DΛ4	PA1 Prescaler count source selection bit		Instruction clock (INSTCK)			
FAI			Instruction clock divided by 4 (INSTCK/4)			
PA ₀	DA December control bit		Stop (state initialized)			
FA0	Prescaler control bit	1	Operating			

Timer control register W1		at res		eset: 00002	at RAM back-up : state retained	R/W TAW1/TW1A	
W13	Timer 1 count auto-stop circuit selection bit	0	Timer 1 count auto-st		circuit not selected		
VV 13	(Note 2)	1	Time	r 1 count auto-stop	circuit selected		
\\/1a	W12 Timer 1 control bit		Stop	Stop (state retained)			
VV 12			Oper	Operating			
		W1 ₁	W10	10 Count source			
W11		0	0	0 PWM signal (PWMOUT)			
	Timer 1 count source selection bits		1	Prescaler output (ORCLK)			
W10		1	0	System clock (STCK)			
VV 10		1	1	CNTR0 input			

Timer control register W2		at reset : 00002		eset: 00002	at RAM back-up : state retained	R/W TAW2/TW2A
W23	CNTR0 pin function selection bit	0	Time	r 1 underflow signa	I divided by 2 output	
VVZ3	CIVI NO piir iuriciion selection bit	1	Time	r 2 underflow signa	I divided by 2 output	
W22	Timer 2 control bit	0	Stop (state retained)			
V V Z Z	VVZZ Timer Z control bit		Oper	Operating		
		W21	W20	Count source		
W21		0	0	0 PWM signal (PWMOUT)		
	Timer 2 count source selection bits		1	1 Prescaler output (ORCLK)		
W20		1	0	System clock (ST	CK)	
VVZ0		1	1	Timer 1 underflow signal (T1UDF)		

Timer control register W3		at reset : 00002		at RAM back-up : 00002	R/W TAW3/TW3A	
W/O- CNITD4 min putrout pointral hit		0	CNTR1 pin output i	nvalid		
VV J 3	W33 CNTR1 pin output control bit		CNTR1 pin output v	valid		
W32	PWM signal		PWM signal "H" interval expansion function invalid			
VV 32	"H" interval expansion function control bit	1	PWM signal "H" int	erval expansion function valid		
W2.	Timer 2 central hit	0	Stop (state retained)		
VV 31	W31 Timer 3 control bit		Operating			
W/2°	Times 2 count course colection hit	0	XIN input			
W30	Timer 3 count source selection bit	1	Prescaler output (O	RCLK)/2		

Timer control register W5		at reset : 00002		at RAM back-up : state retained	R/W TAW5/TW5A
W53	Timer 1 count start synchronous circuit selection bit (Note 3)	0	Count start synchronous circuit not selected		
		1	Count start synchronous circuit selected		
W52	CNTR0 pin input count edge selection bit	0	Falling edge		
		1	Rising edge		
W51	CNTR 1 pin output auto-control circuit selection bit	0	Output auto-control circuit not selected		
		1	Output auto-control circuit selected		
W50	D4/CNTR0 pin function selection bit	0	D4 (I/O) / CNTR0 (input)		
		1	D4 (input) /CNTR0 (I/O)		

Note 1."R" represents read enabled, and "W" represents write enabled.

Note 2.This function is valid only when the INT0 pin/timer 1 control is enabled (I10 ="1") and the timer 1 count start synchronous circuit is selected (W53 ="1").

Note 3.This function is valid only when the INT0 pin/timer 1 control is enabled (I10 ="1").

(1) Timer control registers

· Timer control register PA

Register PA controls the count operation and count source of prescaler. Set the contents of this register through register A with the TPAA instruction.

Timer control register W1

Register W1 controls the count operation and count source of timer 1, and timer 1 count auto-stop circuit. Set the contents of this register through register A with the TW1A instruction. The TAW1 instruction can be used to transfer the contents of register W1 to register A.

Timer control register W2

Register W2 controls the count operation and count source of timer 2, and CNTR0 pin output signal function. Set the contents of this register through register A with the TW2A instruction. The TAW2 instruction can be used to transfer the contents of register W2 to register A.

• Timer control register W3

Register W3 controls timer 3 count source, timer 3 count operation, CNTR1 pin output and PWM signal "H" interval expansion function. Set the contents of this register through register A with the TW3A instruction. The TAW3 instruction can be used to transfer the contents of register W3 to register A.

· Timer control register W5

Register W5 controls the input count edge of CNTR0 pin, the timer 1 count start synchronous circuit, CNTR1 pin output auto-control circuit and the D4/CNTR1 pin function. Set the contents of this register through register A with the TW5A instruction. The TAW5 instruction can be used to transfer the contents of register W5 to register A.

(2) Prescaler

Prescaler is an 8-bit binary down counter with the prescaler reload register RPS. Data can be set simultaneously in prescaler and the reload register RPS with the TPSAB instruction. Data can be read from reload register RPS with the TABPS instruction.

Stop counting and then execute the TPSAB or TABPS instruction to read or set prescaler data.

Prescaler starts counting after the following process;

- (1) set data in prescaler, and
- (2) set the bit 0 of register PA to "1."

When a value set in reload register RPS is n, prescaler divides the count source signal by n + 1 (n = 0 to 255).

Count source for prescaler can be selected the instruction clock (INSTCK) or the instruction clock (INSTCK)/4.

Once count is started, when prescaler underflows (the next count pulse is input after the contents of prescaler becomes "0"), new data is loaded from reload register RPS, and count continues (auto-reload function).

The output signal (ORCLK) of prescaler can be used for timer 1 and 2 count sources.

(3) Timer 1 (interrupt function)

Timer 1 is an 8-bit binary down counter with a timer 1 reload register (R1). Data can be set simultaneously in timer 1 and the reload register R1 with the TR1AB instruction. Data can be read from timer 1 with the TAB1 instruction.

Stop counting and then execute the T1AB or TAB1 instruction to read or set timer 1 data.

When executing the TR1AB instruction to set data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.

Timer 1 starts counting after the following process;

- (1) set data in timer 1
- (2) set count source by bits 0 and 1 of register W1, and
- (3) set the bit 2 of register W1 to "1."

When a value set in reload register R1 is n, timer 1 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes "0"), the timer 1 interrupt request flag (T1F) is set to "1," new data is loaded from reload register R1, and count continues (auto-reload

After timer 1 control by INT0 pin is enabled by setting the bit 0 of register I1 to "1", INTO pin input can be used as the start trigger for timer 1 count operation by setting the bit 3 of register W5 to "1"

Also, in this time, the auto-stop function by timer 1 underflow can be performed by setting the bit 3 of register W1 to "1."

The timer 1 underflow signal divided by 2 can be output from the CNTR0 pin by setting the bit 0 of register W5 to "1" and bit 3 of register W2 to "0".

(4) Timer 2 (interrupt function)

Timer 2 is an 8-bit binary down counter with timer 2 reload register (R2). Data can be set simultaneously in timer 2 and the reload register R2 with the T2AB instruction. Data can be read from timer 2 with the TAB2 instruction.

Stop counting and then execute the T2AB or TAB2 instruction to read or set timer 2 data.

Timer 2 starts counting after the following process;

- (1) set data in timer 2
- (2) set count source by bits 0 and 1 of register W2, and
- (3) set the bit 2 of register W2 to "1."

When a value set in reload register R2 is n, timer 2 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes "0"), the timer 2 interrupt request flag (T2F) is set to "1," new data is loaded from reload register R2, and count continues (auto-reload

The timer 2 underflow signal divided by 2 can be output from the CNTR0 pin by setting the bit 0 of register W5 to "1" and bit 3 of register W2 to "1".

(5) Timer 3 (interrupt function)

Timer 3 is an 8-bit binary down counter with two timer 3 reload registers (R3L, R3H). Data can be set simultaneously in timer 3 and the reload register R3L with the T3AB instruction. Data can be set in the reload register R3H with the T3HAB instruction. The contents of reload register R3L set with the T3AB instruction can be set to timer 3 again with the T3R3L instruction. Data can be read from timer 3 with the TAB3

Stop counting and then execute the T3AB or TAB3 instruction to read or set timer 3 data.

When executing the T3HAB instruction to set data to reload register R3H while timer 3 is operating, avoid a timing when timer 3 underflows.

Timer 3 starts counting after the following process;

- (1) set data in timer 3
- (2) set count source by bit 0 of register W3, and
- (3) set the bit 1 of register W3 to "1."

When a value set in reload register R3L is n and a value set in reload register R3H is m, timer 3 divides the count source signal by n + 1 or m + 1 (n = 0 to 255, m = 0 to 255).

<Bit 3 of register W3 = "0" (CNTR1 pin output invalid)>

Once count is started, when timer 3 underflows (the next count pulse is input after the contents of timer 3 becomes "0"), the timer 3 interrupt request flag (T3F) is set to "1," new data is loaded from reload register R3L, and count continues (autoreload function).

<Bit 3 of register W3 = "1" (CNTR1 pin output valid)>

Timer 3 generates the PWM signal of the "L" interval set as reload register R3L, and the "H" interval set as reload register R3H. The PWM (PWMOD) signal generated by timer 3 is output from CNTR1 pin.

When bit 2 of register W3 is set to "1" at this time, timer 3 extends the interval set to reload register R3H for a half period of count source. When a value set in reload register R3H is n, timer 3 divides the count source signal by m + 1.5 (m = 1 to 255).

When this function is used, set "1" or more to reload register R3H.

When bit 1 of register W5 is set to "1", the PWM signal output to CNTR1 pin is switched to valid/invalid each timer 1 underflow. However, when timer 3 is stopped, this function is canceled.

Even when bit 1 of a register W3 is cleared to "0" in the "H" interval of PWM signal, timer 3 does not stop until it next timer 3

When bit 1 of register W3 is cleared to "0" in order to stop timer 3 while the PWM output is used, avoid a timing when timer 3

If these timings overlap, a hazard may occur in a CNTR1 output waveform.

(6) Count start synchronization circuit (timer 1)

Timer 1 has the count start synchronous circuit which synchronizes the input of INT0 pin, and can start the timer count operation.

Timer 1 count start synchronous circuit function can be selected after timer 1 control by INT0 pin is enabled by setting the bit 0 of register I1 to "1" and its function is selected by setting the bit 3 of register W5 to "1".

When timer 1 count start synchronous circuit is used, the count start synchronous circuit is set, the count source is input to timer by inputting valid waveform to INT0 pin.

The valid waveform of INTO pin to set the count start synchronous circuit is the same as the external interrupt activated

Once set, the count start synchronous circuit is cleared by clearing the bit I10 to "0" or system reset.

However, when the count auto-stop circuit is selected, the count start synchronous circuit is cleared (auto-stop) at the timer 1 underflow.

(7) Count auto-stop circuit (timer 1)

Timer 1 has the count auto-stop circuit which is used to stop timer 1 automatically by the timer 1 underflow when the count start synchronous circuit is used.

The count auto-stop circuit is valid by setting the bit 3 of register W1 to "1". It is cleared by the timer 1 underflow and the count source to timer 1 is stopped.

This function is valid only when the timer 1 count start synchronous circuit is selected.

(8) Timer input/output pin (D4/CNTR0)

CNTR0 pin is used to input the timer 1 count source and output the timer 1 or timer 2 underflow signal/2.

The D4/CNTR0 pin function can be selected by bit 0 of register W5.

The output signal can be selected by bit 0 of register W2.

When the CNTR0 input is selected for timer 1 count source, timer 1 counts the falling or rising waveform of CNTR0 input. The count edge is selected by bit 2 of register W5.

(9) PWM signal output function (C/CNTR1, timer 1,

The C/CNTR1 pin is also used to output the PWM signal generated by timer 3.

When the bit 3 of register W3 is set to "1", the PWM signal can be output from the C/CNTR1 pin. In this time, set the output latch of port C to "1."

(10)Timer interrupt request flags (T1F, T2F, T3F)

Each timer interrupt request flag is set to "1" when each timer underflows. The state of these flags can be examined with the skip instructions (SNZT1, SNZT2, SNZT3).

Use the interrupt control register V1, V2 to select an interrupt or a skip instruction.

An interrupt request flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with a skip instruction.

(11) Precautions

• Prescaler

Stop prescaler counting and then execute the TABPS instruction to read its data.

Stop prescaler counting and then execute the TPSAB instruction to write data to prescaler.

Stop prescaler counting to change its count source.

· Timer count source

Stop timer 1, 2 or 3 counting to change its count source.

· Reading the count value

Stop timer 1, 2 or 3 counting and then execute the TAB1, TAB2 or TAB3 instruction to read its data.

Writing to the timer

Stop timer 1, 2 or 3 counting and then execute the T1AB, T2AB, T3AB or T3R3L instruction to write data to timer.

· Writing to reload register

In order to write a data to the reload register R1 while the timer 1 is operating, execute the TR1AB instruction except a timing of the timer 1 underflow.

In order to write a data to the reload register R3H while the timer 3 is operating, execute the T3HAB instruction except a timing of the timer 3 underflow.

· PWM signal

If the timer 3 count stop timing and the timer 3 underflow timing overlap during output of the PWM signal, a hazard may occur in the PWM output waveform.

When "H" interval expansion function of the PWM signal is used, set "1" or more to reload register R3H.

Set the port C output latch to "0" to output the PWM signal from C/CNTR1 pin.

• Prescaler, timer 1, timer 2 and timer 3 count start timing and count time when operation starts

Count starts from the first rising edge of the count source (2) in Figure 33 after prescaler and timer operations start (1) in

Time to first underflow (3) in Figure 33 is shorter (for up to 1 period of the count source) than time among next underflow (4) in Figure 33 by the timing to start the timer and count source operations after count starts.

When selecting CNTR0 input as the count source of timer 1, timer 1 operates synchronizing with the count edge (falling edge or rising edge) of CNTR0 input selected by software.

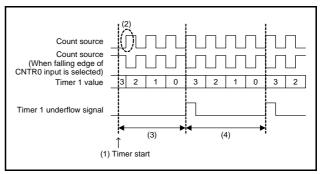


Fig 33. Timer count start timing and count time when operation starts

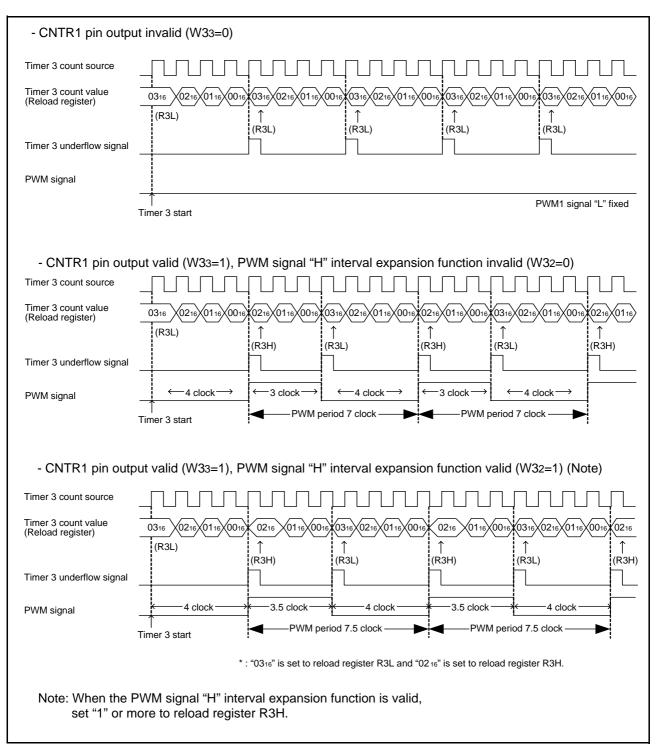


Fig 34. Timer 3 operation example

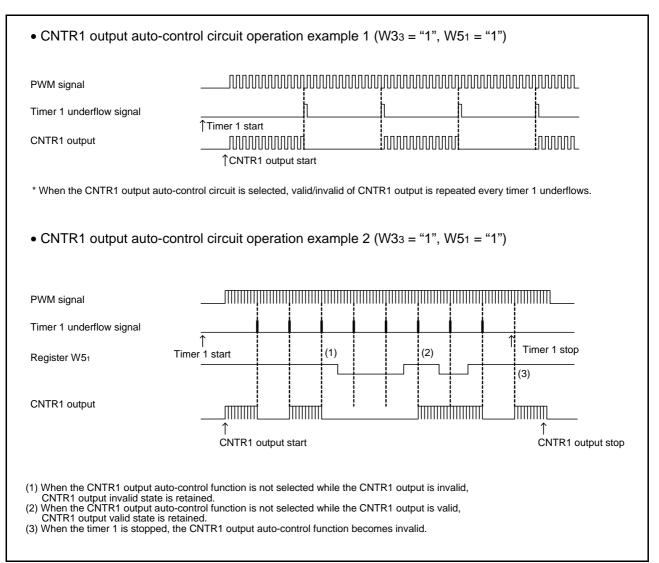


Fig 35. CNTR1 output auto-control function by timer 1

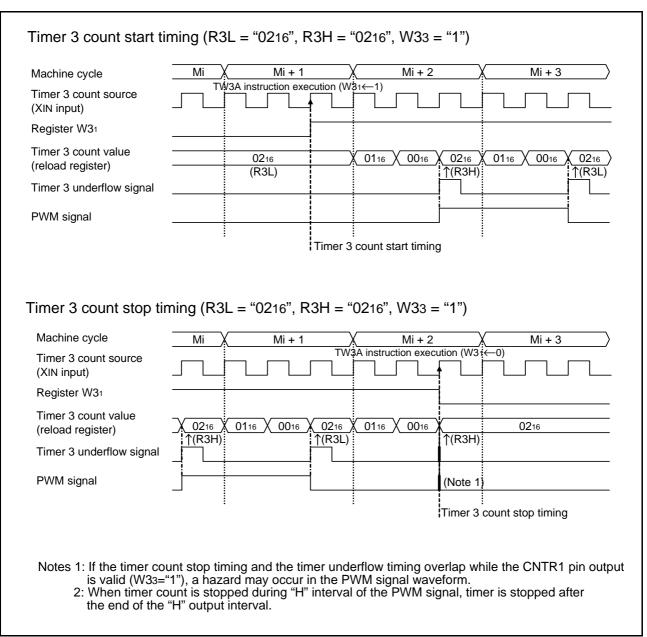


Fig 36. Timer count start/stop timing

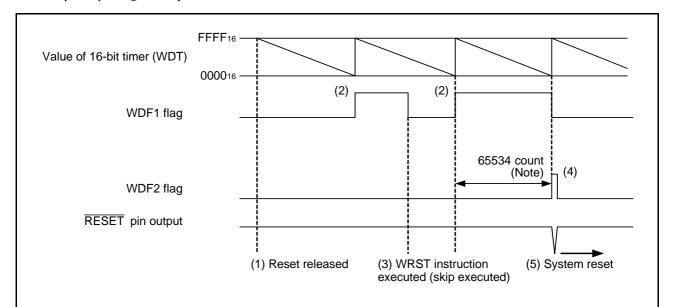
WATCHDOG TIMER

Watchdog timer provides a method to reset the system when a program run-away occurs. Watchdog timer consists of timer WDT(16-bit binary counter), watchdog timer enable flag (WEF), and watchdog timer flags (WDF1, WDF2).

The timer WDT downcounts the instruction clocks as the count source from "FFFF16" after system is released from reset.

After the count is started, when the timer WDT underflow occurs (after the count value of timer WDT reaches "000016," the next count pulse is input), the WDF1 flag is set to "1." If the WRST instruction is never executed until the timer WDT underflow occurs (until timer WDT counts 65534), WDF2 flag is set to "1," and the RESET pin outputs "L" level to reset the microcomputer. Execute the WRST instruction at each period of 65534 machine cycle or less by software when using watchdog timer to keep the microcomputer operating normally.

When the WEF flag is set to "1" after system is released from reset, the watchdog timer function is valid.


When the DWDT instruction and the WRST instruction are executed continuously, the WEF flag is cleared to "0" and the watchdog timer function is invalid.

The WEF flag is initialized to "1" at system reset or RAM back-

The WRST instruction has the skip function. When the WRST instruction is executed while the WDF1 flag is "1", the WDF1 flag is cleared to "0" and the next instruction is skipped.

When the WRST instruction is executed while the WDF1 flag is "0", the next instruction is not skipped.

The skip function of the WRST instruction can be used even when the watchdog timer function is invalid.

- (1) After system is released from reset (= after program is started), timer WDT starts count down. (2) When timer WDT underflow occurs, WDF1 flag is set to "1".
- (3) When the WRST instruction is executed while the WDF1 flag is "1", WDF1 flag is cleared to "0", the next instruction is skipped.
- When timer WDT underflow occurs while WDF1 flag is "1", WDF2 flag is set to "1" and the watchdog reset signal is output.
- (5) The output transistor of RESET pin is turned "ON" by the watchdog reset signal and system reset is executed.

Note: The number of count is equal to the number of machine cycle because the count source of watchdog timer is the instruction clock.

Fig 37. Watchdog timer function

When the watchdog timer is used, clear the WDF1 flag at the period of 65534 machine cycles or less with the WRST instruction.

When the watchdog timer is not used, execute the DWDT instruction and the WRST instruction continuously (refer to Figure 38).

The watchdog timer is not stopped with only the DWDT instruction.

The contents of WDF1 flag and timer WDT are initialized at the RAM back-up mode.

When using the watchdog timer and the RAM back-up mode, initialize the WDF1 flag with the WRST instruction just before the microcomputer enters the RAM back-up state. Also, set the NOP instruction after the WRST instruction, for the case when a skip is performed with the WRST instruction (refer to Figure 39).

```
WRST
            ; WDF1 flag cleared
DI
DWDT
            ; Watchdog timer function enabled/disabled
WRST
            ; WEF and WDF1 flags cleared
```

Fig 38. Program example to start/stop watchdog timer

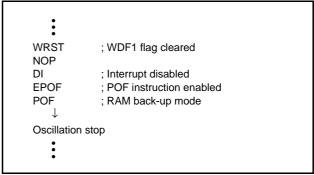


Fig 39. Program example when using the watchdog

RESET FUNCTION

System reset is performed by the followings:

- "L" level is applied to the RESET pin externally,
- System reset instruction (SRST) is executed,
- · Reset occurs by watchdog timer,
- Reset occurs by built-in power-on reset
- Reset occurs by voltage drop detection circuit

Then when "H" level is applied to \overline{RESET} pin, software starts from address 0 in page 0.

(1) RESET pin input

System reset is performed certainly by applying "L" level to RESET pin for 1 machine cycle or more when the following condition is satisfied;

the value of supply voltage is the minimum value or more of the recommended operating conditions.

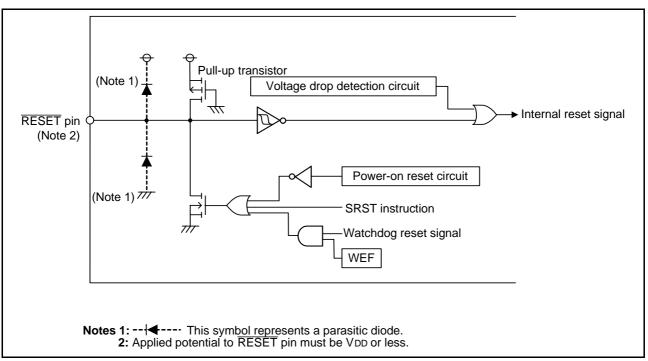


Fig 40. Structure of reset pin and its peripherals

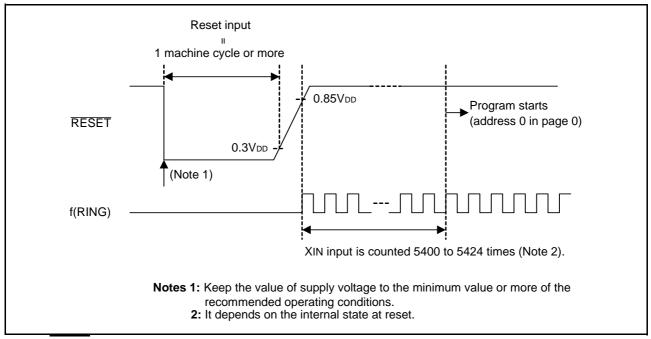


Fig 41. RESET pin input waveform and reset release timing

(2) Power-on reset

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, set the time for the supply voltage to rise from 0 V to the minimum voltage of recommended operating conditions to 100 μ s or less.

If the rising time exceeds 100 μ s, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

(3) System reset instruction (SRST)

By executing the SRST instruction, "L" level is output to RESET pin and system reset is performed.

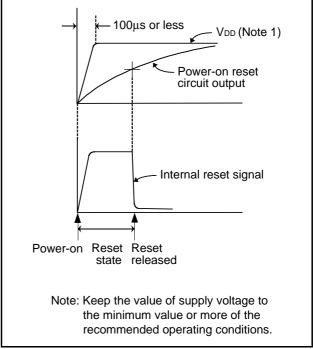


Fig 42. Power-on reset operation

Table 18 Port state at reset

Name	Function	State
D0-D3	D0-D3	High-impedance (Notes 1, 2)
D4/CNTR0	D4	High-impedance (Note 1)
P00-P03	P00-P03	High-impedance (Notes 1, 3)
P10-P13	P10-P13	High-impedance (Notes 1, 3)
P20/INT0, P21/INT1	P20, P21	High-impedance (Notes 1, 3)
P30, P31	P30, P31	High-impedance (Notes 1, 2)
C/CNTR1	C/CNTR1	(Vss)
K	К	High-impedance

Note 1.Output latch is set to "1."
Note 2.The output structure is N-channel open-drain.
Note 3.Pull-up transistor is turned OFF.

(4) Internal state at reset

Figure 43 shows internal state at reset (they are the same after system is released from reset). The contents of timers, registers, flags and RAM except shown in Figure 43 are undefined, so set the initial value to them.

Program counter (PC) Address 0 is a set to a second solution.	0 0 0 0 0 0 0 0 0 0 0 0 0 0
Address 0 in page 0 is set to program counter.	
Interrupt enable flag (INTE)	<u> </u>
Power down flag (P)	
External 0 interrupt request flag (EXF0)	U
External 1 interrupt request flag (EXF1)	
Interrupt control register V1	
Interrupt control register V2	0 0 0 0 (Interrupt disabled)
Interrupt control register I1	0 0 0 0
Interrupt control register I2	0 0 0 0
Timer 1 interrupt request flag (T1F)	0
Timer 2 interrupt request flag (T2F)	0
Timer 3 interrupt request flag (T3F)	0
Watchdog timer flags (WDF1, WDF2)	0
Watchdog timer enable flag (WEF)	<u>1</u>
Timer control register PA	0 0 (Prescaler stopped)
Timer control register W1	0 0 0 0 Timer 1 stopped)
Timer control register W2	0 0 0 0 Timer 2 stopped)
•Timer control register W3	0 0 0 0 (Timer 3 stopped)
Timer control register W5	
Clock control register MR	
Key-on wakeup control register K0	
Key-on wakeup control register K1	
Key-on wakeup control register K2	
Key-on wakeup control register L1	
Pull-up control register PU0	
Pull-up control register PU1	
Pull-up control register PU2	
Port output structure control register FR0	
Port output structure control register FR1	
• Carry flag (CY)	
• Register A	
• Register B	
Register D Reaister D Reaister D	
• Register E ×	[X X X]
• Register X	
• Register Y	
• Register Z	[X X]
Stack pointer (SP)	1 1 1
	"X" represents undefined.

Fig 43. Internal state at reset

VOLTAGE DROP DETECTION CIRCUIT

The built-in voltage drop detection circuit is used to set the voltage drop detection circuit interrupt request flag (VDF) or to perform system reset.

The voltage drop detection circuit stops at RAM back-up mode.

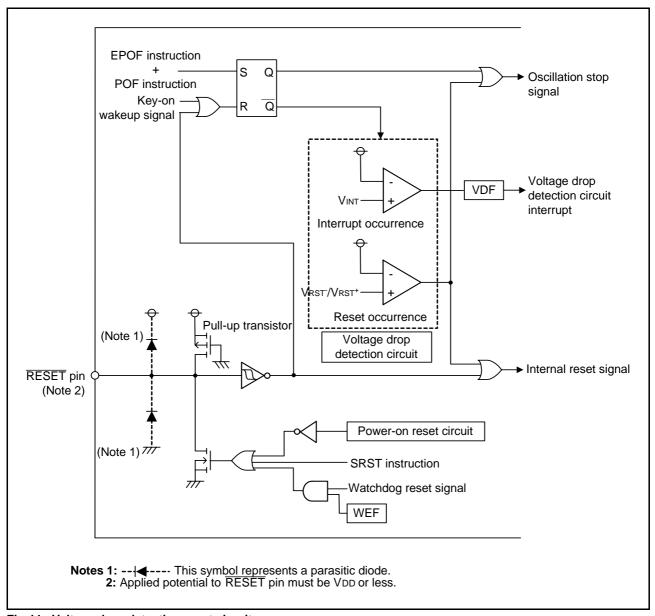


Fig 44. Voltage drop detection reset circuit

(1) Voltage drop detection circuit interrupt request flag

Voltage drop detection circuit interrupt request flag (VDF) is set to "1" when the supply voltage goes the defined value (VINT) or less. Moreover, voltage drop detection circuit interrupt request flag (VDF) is cleared to "0" when the supply voltage goes the defined value (VINT) or more. The state of the interrupt request flag can be examined with the skip instruction (SNZVD). Use the interrupt control register V2 to select an interrupt or a skip instruction. Unlike other interrupt request flags, even when the interrupt occurs or the skip instruction is executed, the voltage drop detection circuit interrupt request flag is not cleared to "0".

(2) Voltage drop detection circuit reset

System reset is performed when the supply voltage goes the defined value (VRST) or less ("L" level is not output to RESET pin.). However, unlike the normal system reset, the oscillation circuit is stopped.

When the supply voltage goes the defined value (VRST) or more, the oscillation circuit goes to be in the operating enabled state and system reset is released.

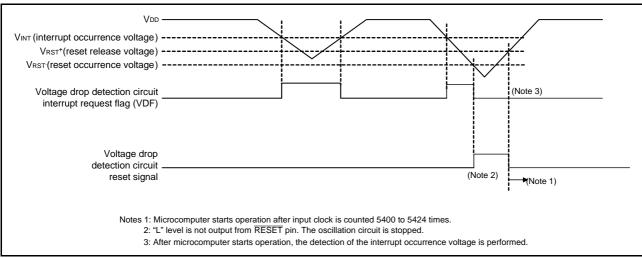


Fig 45. Voltage drop detection circuit operation waveform

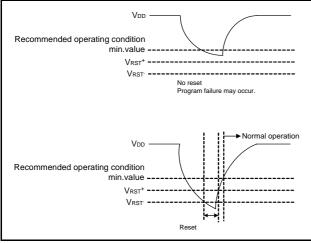


Fig 46. VDD and VRST

(3) Note on voltage drop detection circuit

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.

When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and rises again, depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 46);

supply voltage does not fall below to VRST, and its voltage rises again with no reset.

In such a case, please design a system which supply voltage is once reduced below to VRST and re-goes up after that.

RAM BACK-UP MODE

The 4571 Group has the RAM back-up mode.

When the POF instruction is executed continuously after the EPOF instruction, system enters the RAM back-up state.

The POF instruction is equal to the NOP instruction when the EPOF instruction is not executed before the POF instruction.

As oscillation stops retaining RAM, the function of reset circuit and states at RAM back-up mode, current dissipation can be reduced without losing the contents of RAM.

Table 19 shows the function and states retained at RAM back-up. Figure 47 shows the state transition.

(1) Identification of the start condition

Warm start (return from the RAM back-up state) or cold start (return from the normal reset state) can be identified by examining the state of the power down flag (P) with the SNZP instruction.

(2) Warm start condition

When the external wakeup signal is input after the system enters the RAM back-up state by executing the EPOF instruction and POF instruction continuously, the CPU starts executing the program from address 0 in page 0. In this case, the P flag is "1."

(3) Cold start condition

The CPU starts executing the program from address 0 in page 0

- "L" level is applied to RESET pin,
- system reset (SRST) is performed,
- · reset by watchdog timer is performed,
- reset by the built-in power-on reset circuit is performed, or
- reset by the voltage drop detection circuit is performed. In this case, the P flag is "0."

Table 19 Functions and states retained at RAM back-up

Function	RAM back-up
Program counter (PC), stack pointer (SP) (Table 2), carry flag (CY), registers A, B	×
Contents of RAM	0
Interrupt control registers V1, V2	×
Interrupt control registers I1, I2	0
Clock control register MR	×
Timer 1, Timer 2, Timer 3 function	(Note 3)
Watchdog timer function	× (Note 4)
Timer control registers PA, W3	×
Timer control registers W1, W2, W5	0
Voltage drop detection circuit	(Note 5)
Port level	(Note 6)
Key-on wakeup control registers K0 to K2, L1	0
Pull-up control registers PU0 to PU2	0
Port output structure control registers FR0, FR1	0
External interrupt request flags (EXF0, EXF1)	×
Timer interrupt request flags (T1F, T2F, T3F)	(Note 3)
Voltage drop detection circuit interrupt request flag (VDF)	×
Interrupt enable flag (INTE)	×
Watchdog timer flags (WDF1, WDF2)	× (Note 4)
Watchdog timer enable flag (WEF)	× (Note 4)

Note 1."O" represents that the function can be retained, and "x" represents that the function is initialized. Registers and flags other than the above are undefined at

RAM back-up, and set an initial value after returning. Note 2. The stack pointer (SP) points the level of the stack register and is initialized to "7" at RAM back-up.

Note 3. The state of the timer is undefined.

Note 4.Initialize the watchdog timer flag WDF1 with the WRST instruction, and then set the system to be in the RAM back-up mode.

Note 5. The voltage drop detection circuit is invalid.

Note 6.C/CNTR pin outputs "L" level. Other ports retain their output levels.

(4) Return signal

An external wakeup signal is used to return from the RAM backup mode because the oscillation is stopped. Table 20 shows the return condition for each return source.

(5) Control registers

- Key-on wakeup control register K0 Register K0 controls the port P0 key-on wakeup function. Set the contents of this register through register A with the TK0A instruction. In addition, the TAKO instruction can be used to transfer the contents of register K0 to register A.
- Key-on wakeup control register K1 Register K1 controls the port P1 key-on wakeup function. Set the contents of this register through register A with the TK1A instruction. In addition, the TAK1 instruction can be used to transfer the contents of register K1 to register A.
- Key-on wakeup control register K2 Register K2 controls the ports K and P2 key-on wakeup function. Set the contents of this register through register A with the TK2A instruction. In addition, the TAK2 instruction can be used to transfer the contents of register K2 to register A.
- Key-on wakeup control register L1 Register L1 controls the selection of the selection of the INTO pin return condition and INTO pin key-on wakeup function and the selection of the INT1 pin return condition and INT1 pin key-on wakeup function. Set the contents of this register through register A with the TL1A instruction. In addition, the TAL1 instruction can be used to transfer the contents of register L1 to register A.

- Pull-up control register PU0
- Register PU0 controls the ON/OFF of the port P0 pull-up transistor. Set the contents of this register through register A with the TPU0A instruction. In addition, the TAPU0 instruction can be used to transfer the contents of register PU0 to register A.
- Pull-up control register PU1 Register PU1 controls the ON/OFF of the port P1 pull-up transistor. Set the contents of this register through register A with the TPU1A instruction. In addition, the TAPU1
- instruction can be used to transfer the contents of register PU1 to register A.
- Pull-up control register PU2 Register PU2 controls the ON/OFF of the ports P2 pull-up transistor. Set the contents of this register through register A with the TPU2A instruction. In addition, the TAPU2 instruction can be used to transfer the contents of register PU2 to register A.
- Interrupt control register I1 Register I1 controls the valid waveform/level of the INT0 pin and the input control of INT0 pin. Set the contents of this register through register A with the TI1A instruction. In addition, the TAI1 instruction can be used to transfer the contents of register I1 to register A.

Table 20 Return source and return condition

	Return source	Return condition	Remarks
up signal	Port P00–P03 Port P10–P13 Port P20, P21 Port K	Return by an external falling edge ("H" \rightarrow "L") input.	The key-on wakeup function can be selected by one port unit. Set the port using the key-on wakeup function to "H" level before going into the RAM back-up state.
External wakeup	INT pin	Return by an external "H" level or "L" level input, or falling edge ("H" \rightarrow "L") or rising edge ("L" \rightarrow "H"). When the return level is input, the EXF0 flag is not set.	The key-on wakeup function can be selected by one port unit. Select the return level ("L" level or "H" level) with the register I1 and return condition (level or edge) with the register L1 according to the external state before going into the RAM back-up state.

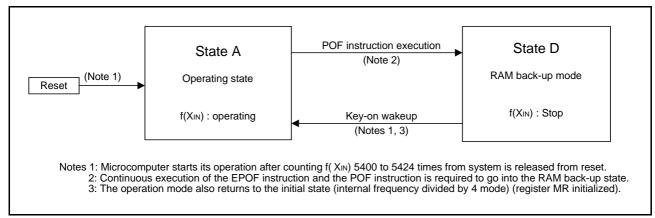


Fig 47. State transition

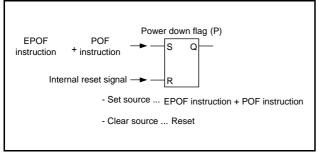


Fig 48. Set source and clear source of the P flag

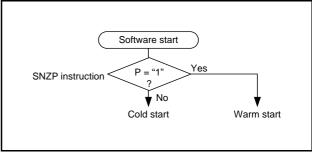


Fig 49. Start condition identified example using the **SNZP** instruction

Table 21 Key-on wakeup control registers

	Key-on wakeup control register K0		at reset : 00002	at RAM back-up : state retained	R/W TAK0/TK0A		
K0°	K03 Port P03 key-on wakeup control bit		Key-on wakeup not used				
NU3			Key-on wakeup used				
K02	Port P02 key-on wakeup	0	Key-on wakeup not used				
N U2	control bit	1	Key-on wakeup used				
KO.	Port P0 ₁ key-on wakeup	0	Key-on wakeup not	used			
KU1	control bit		Key-on wakeup used				
K0 0	Port P0 ₀ key-on wakeup		0 Key-on wakeup not used				
NU0	control bit	1	Key-on wakeup used				

	Key-on wakeup control register K1	at reset : 00002		at RAM back-up : state retained	R/W TAK1/TK1A		
K13	Port P13 key-on wakeup		Key-on wakeup not	used			
K13	control bit	1 Key-on wakeup use		ed			
K12	Port P12 key-on wakeup	0	Key-on wakeup not used				
K12	control bit	1	Key-on wakeup used				
K11	Port P11 key-on wakeup	0	Key-on wakeup not used				
KII	control bit	1	Key-on wakeup use	used			
K10	K10 Port P10 key-on wakeup control bit		Key-on wakeup not used				
KIU			Key-on wakeup used				

	Key-on wakeup control register K2	i	at reset : 00002	at RAM back-up : state retained	R/W TAK2/TK2A	
K23	K23 Not used		This bit has no function, but read/write is enabled.			
1123	1401 0300	1 This bit has no functi		nion, but read, write is enabled.		
K2 2	Port K key-on wakeup	0 Key-on wakeup not ι		used		
I\ZZ	control bit		Key-on wakeup used			
K21	Port P21 key-on wakeup	0	Key-on wakeup not used			
r\z1	control bit	1 Key-on wakeup used				
K2 0	Port P20 key-on wakeup		Key-on wakeup not used			
K 20	ontrol bit	1	Key-on wakeup use	ed		

	Key-on wakeup control register L1	at reset : 00002		at RAM back-up : state retained	R/W TAL1/TL1A		
L13	INT1 pin return condition selection	0 Return by level 1 Return by edge					
LI3	bit						
1.10	INT1 pin valid waveform/	0	Key-on wakeup not used				
LIZ	level selection bit	1	Key-on wakeup used				
L11	INT0 pin	0	Return by level				
LII	return condition selection bit	1 Return by edge					
1.10	L10 INT0 pin key-on wakeup control bit		Key-on wakeup not used				
LIU			Key-on wakeup used				

Note 1."R" represents read enabled, and "W" represents write enabled.

Table 22 Pull-up control registers

	Pull-up control register PU0		at reset : 00002	at RAM back-up : state retained	R/W TAPU0/TPU0A		
PU03	Port P03 pull-up transistor	0	Pull-up transistor O	FF			
FU03	control bit		Pull-up transistor O	Pull-up transistor ON			
PU02	Port P02 pull-up transistor		Pull-up transistor OFF				
F U U 2	control bit	1	Pull-up transistor ON				
DLIO	PU01 Port P01 pull-up transistor control bit		Pull-up transistor O	FF			
PU01			Pull-up transistor ON				
PU00	Port P0 ₀ pull-up transistor		Pull-up transistor O	FF			
F U 0 0	control bit	1	Pull-up transistor O	N			

Pull-up control register PU1		at reset : 00002		at RAM back-up : state retained	R/W TAPU1/TPU1A		
DI 11a	PU13 Port P13 pull-up transistor control bit		Pull-up transistor OFF				
F U 13			Pull-up transistor ON				
PU12	Port P12 pull-up transistor		Pull-up transistor OFF				
F U 12	control bit	1	Pull-up transistor ON				
PU1 ₁	Port P11 pull-up transistor		Pull-up transistor OFF				
FUII	control bit		Pull-up transistor ON				
PU10	Port P1o pull-up transistor	0	Pull-up transistor O	FF			
F U 10	control bit	1	Pull-up transistor ON				

Pull-up control register PU2		at reset : 00002	at RAM back-up : state retained	R/W TAPU2/TPU2A		
DLI2a Not used		This bit has no function, but read/write is enabled				
Not used	1	This bit has no function, but read/write is enabled.				
PU22 Not used		This bit has no function, but road/write is enabled				
Not used	1	This bit has no function, but read/write is enabled.				
Port P21 pull-up transistor	0	0 Pull-up transistor OFF				
control bit	1	Pull-up transistor O	ON			
PU20 Port P20 pull-up transistor		Pull-up transistor O	FF			
control bit	1	Pull-up transistor O	N			
	Not used Not used Port P21 pull-up transistor control bit Port P20 pull-up transistor	Not used 0 1 1 Not used 0 1 1 Port P21 pull-up transistor control bit 0 Port P20 pull-up transistor 0	Not used O This bit has no function	Not used O This bit has no function, but read/write is enabled.		

Note 1."R" represents read enabled, and "W" represents write enabled.

CLOCK CONTROL

The clock control circuit consists of the following circuits.

- Ceramic oscillation circuit
- · Frequency divider
- Internal clock generating circuit

The system clock and the instruction clock are generated as the source clock for operation by these circuits.

Figure 50 shows the structure of the clock control circuit.

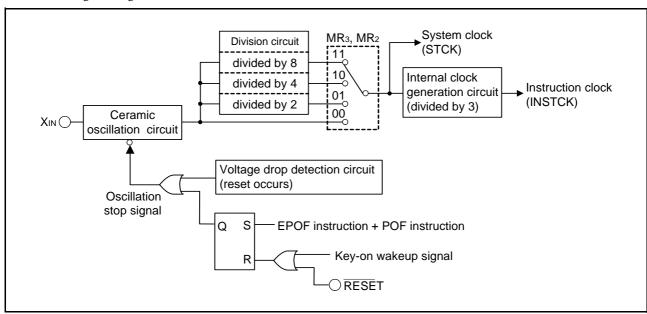


Fig 50. Clock control circuit structure

(1) Ceramic resonator

When the ceramic resonator is used as the main clock (f(XIN)), connect the ceramic resonator and the external circuit to pins XIN and XOUT at the shortest distance. A feedback resistor is built in between pins XIN and XOUT (Figure 51).

(2) External clock

When the external signal clock is used for the main clock (f(XIN)), connect the XIN pin to the clock source and leave XOUT pin open (Figure 52).

Be careful that the maximum value of the oscillation frequency when using the external clock differs from the value when using the ceramic resonator (refer to the recommended operating condition).

Also, note that the RAM back-up mode (POF instruction) cannot be used when using the external clock.

(3) Clock control register MR

Register MR controls the selection of operation mode. Set the contents of this register through register A with the TMRA instruction. In addition, the TAMR instruction can be used to transfer the contents of register MR to register A.

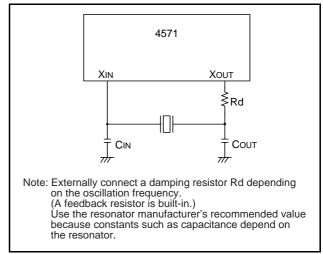


Fig 51. Ceramic resonator external circuit

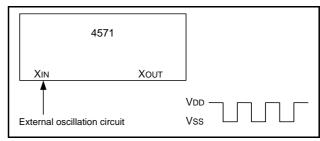


Fig 52. External clock input circuit

Table 23 Return source and return condition

	Clock control register MR		at r	eset : 11112	at RAM back-up : 11112	R/W TAMR/TMRA
MR ₃		MRз	MR ₂		Operation mode	
IVIIX3		0	0	Through mode (free	uency not divided)	
	Operation mode selection bits	0	1	Frequency divided by 2 mode		
MR ₂	MR ₂	1	0	Frequency divided by 4 mode		
		1	1	Frequency divided I	by 8 mode	
MR ₁	Not used	0	Thio	oit has no function. h	ut road/write is enabled	
IVIK	Not used	1	This bit has no function, but read/write is enabled.			
MRo	Not used	This hit has no function, but road/write is enabled				
IVIK0	Not used	1	THIS	This bit has no function, but read/write is enabled.		

Note 1."R" represents read enabled, and "W" represents write enabled.

QzROM Writing Mode

In the QzROM writing mode, the user ROM area can be rewritten while the microcomputer is mounted on-board by using a serial pro-grammer which is applicable for this microcomputer. Table 24 lists the pin description (QzROM writing mode) and Figure 53 shows the pin connections.

Refer to Figure 54 for examples of a connection with a serial programmer.

Contact the manufacturer of your serial programmer for serial pro-grammer. Refer to the user's manual of your serial programmer for details on how to use it.

Table 24 Pin description (QzROM writing mode)

Pin	Name	I/O	Function
Vdd	Power source	_	Power supply voltage pin.
Vss	GND	-	GND pin.
K	VPP input	-	QzROM programmable power source pin.
P01	SDA input/output	I/O	QzROM serial data I/O pin.
P0o	SCLK input	Input	QzROM serial clock input pin.
P10	PGM input	Input	QzROM read/program pulse input pin.
RESET	Reset input	Input	Reset input pin. Input "L" level signal.
Xin	Clock input	=	• Either connect an oscillation circuit or connect XIN pin to Vss and leave
Хоит	Clock output	=	the Xout pin open.
P02, P03, P11–P13, P20/INT0, P21/INT1, P30, P31, D0–D3, D4/CNTR0, C/CNTR1	I/O port	I/O	Input "H" or "L" level signal or leave the pin open.

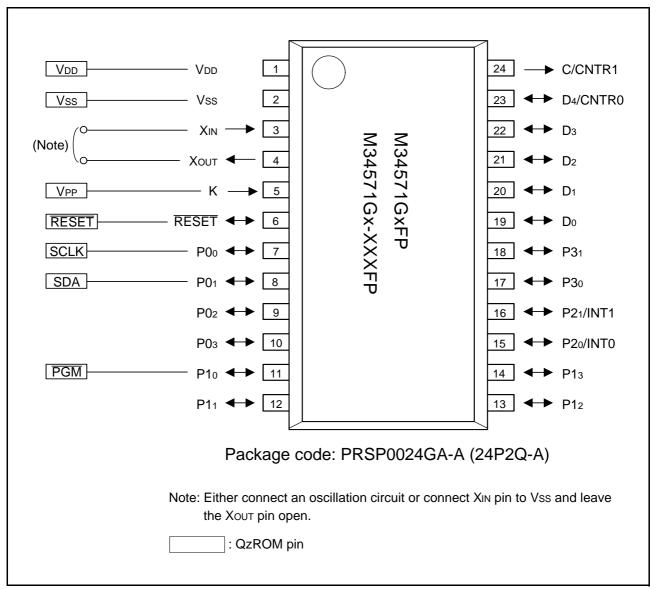


Fig 53. Pin connection diagram

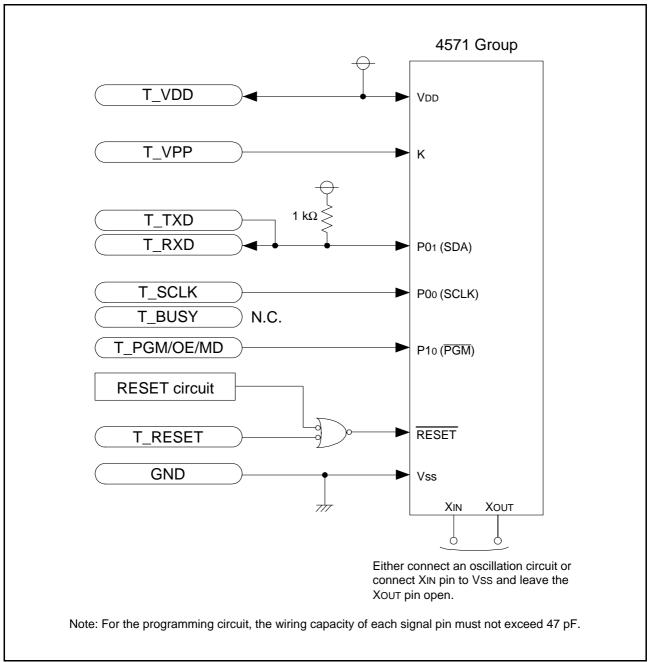


Fig 54. When using programmer of Suisei Electronics System Co., LTD, connection example

DATA REQUIRED FOR QZROM WRITING ORDERS

The following are necessary when ordering a QzROM product shipped after writing:

- 1. QzROM Writing Confirmation Form*
- 2. Mark Specification Form*
- 3. ROM data.....Mask file
- * For the QzROM writing confirmation form and the mark specification form, refer to the "Renesas Technology Corp." Homepage (http://www.renesas.com/homepage.jsp).

Note that we cannot deal with special font marking (customer's trademark etc.) in QzROM microcomputer.

LIST OF PRECAUTIONS

(1) Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise

- connect a bypass capacitor (approx. $0.1 \mu F$) between pins VDD and Vss at the shortest distance,
- equalize its wiring in width and length, and
- use relatively thick wire.

Port K is also used as VPP pin. Accordingly, when using this pin, connect this pin to Vss or VDD. Do not leave this pin open. When port is used for key matrix, connect it to VDD through a pull-up

(2) Note on Power Source Voltage

When the power source voltage value of a microcomputer is less than the value which is indicated as the recommended operating conditions, the microcomputer does not operate normally and may perform unstable operation.

In a system where the power source voltage drops slowly when the power source voltage drops or the power supply is turned off, reset a microcomputer when the supply voltage is less than the recommended operating conditions and design a system not to cause errors to the system by this unstable operation.

(3) Register initial values 1

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)

(4) Register initial values 2

The initial value of the following registers are undefined at RAM back-up. After system is returned from RAM back-up, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)

(5) Program counter

Make sure that the PCH does not specify after the last page of the built-in ROM.

(6) Stack registers (SKS)

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together.

(7) Multifunction

- The input of D₄ can be used even when CNTRO (output) is selected. The input/output of D4 can be used even when CNTR0 (input) is selected. Be careful when using inputs of both CNTR0 and D4 since the input threshold value of CNTR0 pin is different from that of port D4.
- "H" output function of port C can be used even when the CNTR1 (output) is used.
- The input/output of P20 can be used even when INT0 is used. Be careful when using inputs of both INTO and P20 since the input threshold value of INT0 pin is different from that of port P20.
- The input/output of P21 can be used even when INT1 is used. Be careful when using inputs of both INT1 and P21 since the input threshold value of INT1 pin is different from that of port P21.

(8) Power-on reset

When the built-in power-on reset circuit is used, set the time for the supply voltage to rise from 0 V to the minimum voltage of recommended operating conditions to 100 μ s or less.

If the rising time exceeds 100 μ s, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

(9) POF instruction

When the POF instruction is executed continuously after the EPOF instruction, system enters the RAM back-up state.

Note that system cannot enter the RAM back-up state when executing only the POF instruction.

Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction and the POF instruction continuously.

(10)P2₀/INT₀ pin

- (1) Bit 3 of register I1
 - When the input of the P20/INT0 pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.
- Depending on the input state of the P20/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to (1) in Figure 55) and then, change the bit 3 of register I1. In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to (2) in Figure 55).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to (3) in Figure 55).

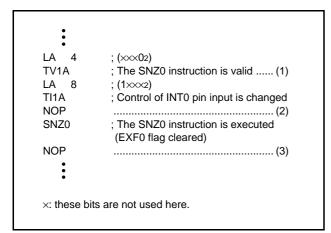


Fig 55. External 0 interrupt program example-1

- (2) Bit 3 of register I1
 - When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INTO pin is disabled, be careful about the following notes.
- When the INTO pin input is disabled (register I13 = "0"), set the key-on wakeup of INT0 pin to be invalid (register L10 = "0") before system enters to the RAM back-up mode. (refer to (1) in Figure 56).

```
LA 0
             : (×××02)
TI 1A
              ; INT0 key-on wakeup disabled .....(1)
DI
FPOF
POF
              ; RAM back-up
x: these bits are not used here.
```

Fig 56. External 0 interrupt program example-2

- (3) Bit 2 of register I1
 - When the interrupt valid waveform of the P20/INT0 pin is changed with the bit 2 of register I1 in software, be careful about the following notes.
- Depending on the input state of the P20/INT0 pin, the external 1 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to (1) in Figure 57) and then, change the bit 2 of register I1 is changed.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to (2) in Figure 57).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to (3) in Figure

```
; (xxx02)
TV1A
            ; The SNZ0 instruction is valid .....(1)
IA 12
             ; (1×××2)
TI1A
            ; Interrupt valid waveform is changed
NOP
SNZ0
            ; The SNZ0 instruction is executed
             (EXF0 flag cleared)
NOP
             .....(3)
x: these bits are not used here.
```

Fig 57. External 0 interrupt program example-3

(11)P2₁/INT1 pin

- (1) Bit 3 of register I2
 - When the input of the P21/INT1 pin is controlled with the bit 3 of register I2 in software, be careful about the following notes.
- Depending on the input state of the P21/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 3 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to (1) in Figure 58) and then, change the bit 3 of register I2. In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to (2) in Figure 58).

Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to (3) in Figure 58).

```
ΙΑ
            ; (××0×2)
TV1A
            ; The SNZ1 instruction is valid ..... (1)
IA 8
            ; (1×××2)
TI1A
            ; Control of INT1 pin input is changed
NOP
SNZ0
            ; The SNZ1 instruction is executed
             (EXF1 flag cleared)
NOP
             .....(3)
x: these bits are not used here.
```

Fig 58. External 1 interrupt program example-1

- (2) Bit 3 of register I2
 - When the bit 3 of register I2 is cleared to "0", the RAM back-up mode is selected and the input of INT1 pin is disabled, be careful about the following notes.
- When the INT1 pin input is disabled (register I23 = "0"), set the key-on wakeup of INT1 pin to be invalid (register L20 = "0") before system enters to the RAM back-up mode. (refer to (1) in Figure 59)

```
LA 0
             ; (×0××2)
TI 1A
              ; INT1 key-on wakeup disabled .....(1)
DI
FPOF
POF
              ; RAM back-up
x: these bits are not used here.
```

Fig 59. External 1 interrupt program example-2

- (3) Bit 2 of register I2
 - When the interrupt valid waveform of the P21/INT1 pin is changed with the bit 2 of register I2 in software, be careful about the following notes.
- Depending on the input state of the P21/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 2 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to (1) in Figure 60) and then, change the bit 2 of register I2 is changed.

In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to (2) in Figure 60).

Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to (3) in Figure

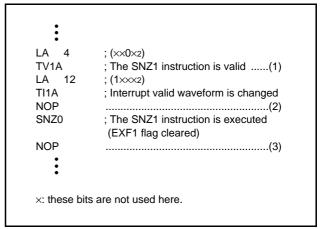


Fig 60. External 1 interrupt program example-3

(12)Prescaler

Stop prescaler counting and then execute the TABPS instruction to read its data.

Stop prescaler counting and then execute the TPSAB instruction to write data to prescaler.

(13)Timer count source

Stop timer 1, 2 or 3 counting to change its count source.

(14)Reading the count value

Stop timer 1, 2 or 3 counting and then execute the TAB1, TAB2 or TAB3 instruction to read its data.

(15)Writing to the timer

Stop timer 1, 2 or 3 counting and then execute the T1AB, T2AB, T3AB or T3R3L instruction to write data to timer.

(16)Writing to reload register

In order to write a data to the reload register R1 while the timer 1 is operating, execute the TR1AB instruction except a timing of the timer 1 underflow.

In order to write a data to the reload register R3H while the timer 3 is operating, execute the T3HAB instruction except a timing of the timer 3 underflow.

(17)PWM signal

If the timer 3 count stop timing and the timer 3 underflow timing overlap during output of the PWM signal, a hazard may occur in the PWM output waveform.

When "H" interval expansion function of the PWM signal is used, set "1" or more to reload register R3H.

Set the port C output latch to "0" to output the PWM signal from C/CNTR1 pin.

(18)Prescaler, timer 1, timer 2 and timer 3 count start timing and count time when operation starts

Count starts from the first rising edge of the count source (2) in Figure 61 after prescaler and timer operations start (1) in Figure 61.

Time to first underflow (3) in Figure 61 is shorter (for up to 1 period of the count source) than time among next underflow (4) in Figure 61 by the timing to start the timer and count source operations after count starts.

When selecting CNTR0 input as the count source of timer 1, timer 1 operates synchronizing with the count edge (falling edge or rising edge) of CNTR0 input selected by software.

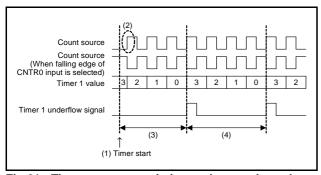


Fig 61. Timer count start timing and count time when operation starts

(19)Watchdog timer

- The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously, and clear the WEF flag to "0" to stop the watchdog timer function.
- The contents of WDF1 flag and timer WDT are initialized at the RAM back-up mode.
- When using the watchdog timer and the RAM back-up mode, initialize the WDF1 flag with the WRST instruction just before the microcomputer enters the RAM back-up state. Also, set the NOP instruction after the WRST instruction, for the case when a skip is performed with the WRST instruction.

(20)External clock

Be careful that the maximum value of the oscillation frequency when using the external clock differs from the value when using the ceramic resonator (refer to the recommended operating condition).

Also, note that the RAM back-up mode (POF instruction) cannot be used when using the external clock.

(21)QzROM

- (1) Be careful not to apply overvoltage to MCU. The contents of QzROM may be overwritten because of overvoltage. Take care especially at turning on the power.
- (2) As for the product shipped in blank, Renesas does not perform the writing test to user ROM area after the assembly process though the QzROM writing test is performed enough before the assembly process. Therefore, a writing error of approx.0.1 % may occur. Moreover, please note the contact of cables and foreign bodies on a socket, etc. because a writing environment may cause some writing

(22)Notes On ROM Code Protect (QzROM product shipped after writing)

As for the QzROM product shipped after writing, the ROM code protect is specified according to the ROM option setup data in the mask file which is submitted at ordering.

The ROM option setup data in the mask file is "0016" for protect enabled or "FF16" for protect disabled.

Note that the mask file which has nothing at the ROM option data or has the data other than "0016" and "FF16" can not be accepted.

NOTES ON NOISE

Countermeasures against noise are described below.

The following countermeasures are effective against noise in theory, however, it is necessary not only to take measures as follows but to evaluate before actual use.

1. Shortest wiring length

(1) Wiring for RESET pin

Make the length of wiring which is connected to the \overline{RESET} pin as short as possible. Especially, connect a capacitor across the RESET pin and the Vss pin with the shortest possible wiring.

In order to reset a microcomputer correctly, 1 machine cycle or more of the width of a pulse input into the RESET pin is required

If noise having a shorter pulse width than this is input to the RESET input pin, the reset is released before the internal state of the microcomputer is completely initialized.

This may cause a program runaway.

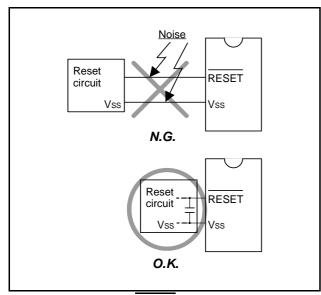


Fig 62. Wiring for the RESET pin

(2) Wiring for clock input/output pins

- Make the length of wiring which is connected to clock I/O pins as short as possible.
- Make the length of wiring across the grounding lead of a capacitor which is connected to an oscillator and the Vss pin of a microcomputer as short as possible.
- Separate the Vss pattern only for oscillation from other Vss patterns.

<Reason>

If noise enters clock I/O pins, clock waveforms may be deformed. This may cause a program failure or program runaway. Also, if a potential difference is caused by the noise between the Vss level of a microcomputer and the Vss level of an oscillator, the correct clock will not be input in the microcomputer.

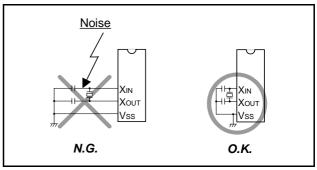


Fig 63. Wiring for clock I/O pins

(3) Port K Wiring

Do not leave port K open. Always connect it to the VDD pin or Vss pin using the thickest wire at the shortest distance.

When port K is used for key matrix, connect it to the VDD pin through a pull-up resistor.

In that case too, place a pull-up resistor close to port K and connect it to port K or the VDD pin using the thickest wire at the shortest distance as above.

<Reason>

Port K is also used as the power source input pin (VPP pin) for the built-in QzROM.

When programming to the QzROM, the impedance of port K is low so that the electric writing current will flow into the QzROM. This allows noise to enter easily. If noise enters from port K, abnormal instruction codes or data are read from the QzROM, which may cause a program runaway.

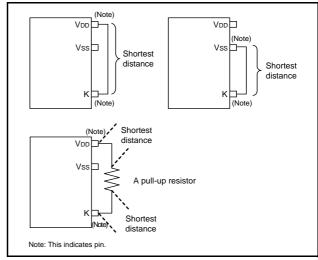


Fig 64. Wiring for port K

2. Connection of bypass capacitor across Vss line and V_{DD} line

Connect an approximately 0.1 µF bypass capacitor across the Vss line and the VDD line as follows:

- Connect a bypass capacitor across the Vss pin and the VDD pin at equal length.
- Connect a bypass capacitor across the Vss pin and the VDD pin with the shortest possible wiring.
- Use lines with a larger diameter than other signal lines for Vss line and VDD line.
- Connect the power source wiring via a bypass capacitor to the Vss pin and the VDD pin.

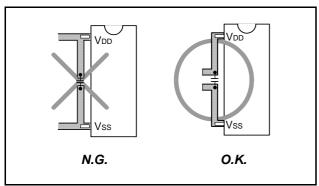


Fig 65. Bypass capacitor across the Vss line and the **VDD line**

3. Wiring to analog input pins

- Connect an approximately 100Ω to $1 k\Omega$ resistor to an analog signal line which is connected to an analog input pin in series. Besides, connect the resistor to the microcomputer as close as possible.
- Connect an approximately 1000 pF capacitor across the Vss pin and the analog input pin. Besides, connect the capacitor to the Vss pin as close as possible. Also, connect the capacitor across the analog input pin and the Vss pin at equal length.

Signals which is input in an analog input pin (such as an A/D converter/comparator input pin) are usually output signals from sensor. The sensor which detects a change of event is installed far from the printed circuit board with a microcomputer, the wiring to an analog input pin is longer necessarily. This long wiring functions as an antenna which feeds noise into the microcomputer, which causes noise to an analog input pin.

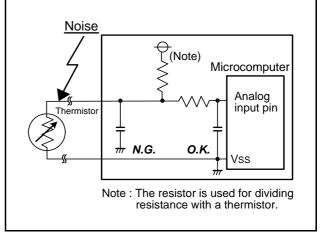


Fig 66. Analog signal line and a resistor and a capacitor

4. Oscillator concerns

Take care to prevent an oscillator that generates clocks for a microcomputer operation from being affected by other signals.

(1) Keeping oscillator away from large current signal lines Install a microcomputer (and especially an oscillator) as far as possible from signal lines where a current larger than the tolerance of current value flows.

In the system using a microcomputer, there are signal lines for controlling motors, LEDs, and thermal heads or others. When a large current flows through those signal lines, strong noise occurs because of mutual inductance.

(2) Installing oscillator away from signal lines where potential levels change frequently

Install an oscillator and a connecting pattern of an oscillator away from signal lines where potential levels change frequently. Also, do not cross such signal lines over the clock lines or the signal lines which are sensitive to noise.

<Reason>

Signal lines where potential levels change frequently (such as the CNTR pin signal line) may affect other lines at signal rising edge or falling edge. If such lines cross over a clock line, clock waveforms may be deformed, which causes a microcomputer failure or a program runaway.

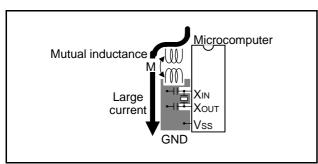


Fig 67. Wiring for a large current signal line

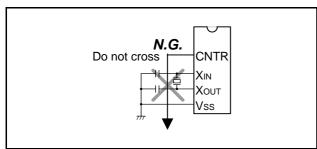


Fig 68. Wiring to a signal line where potential levels change frequently

(3) Oscillator protection using Vss pattern

As for a two-sided printed circuit board, print a Vss pattern on the underside (soldering side) of the position (on the component side) where an oscillator is mounted.

Connect the Vss pattern to the microcomputer Vss pin with the shortest possible wiring. Besides, separate this Vss pattern from other Vss patterns.

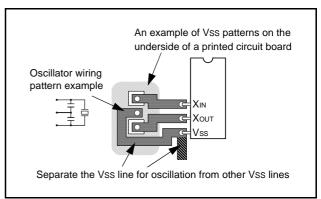


Fig 69. Vss pattern on the underside of an oscillator

5. Setup for I/O ports

Setup I/O ports using hardware and software as follows:

<Hardware>

• Connect a resistor of 100 Ω or more to an I/O port in series.

<Software>

- As for an input port, read data several times by a program for checking whether input levels are equal or not.
- As for an output port or an I/O port, since the output data may reverse because of noise, rewrite data to its port latch at fixed periods.
- Rewrite data to pull-up control registers at fixed periods.

6. Providing of watchdog timer function by software

If a microcomputer runs away because of noise or others, it can be detected by a software watchdog timer and the microcomputer can be reset to normal operation. This is equal to or more effective than program runaway detection by a hardware watchdog timer. The following shows an example of a watchdog timer provided by software. In the following example, to reset a microcomputer to normal operation, the main routine detects errors of the interrupt processing routine and the interrupt processing routine detects errors of the main routine.

This example assumes that interrupt processing is repeated multiple times in a single main routine processing.

<The main routine>

· Assigns a single word of RAM to a software watchdog timer (SWDT) and writes the initial value N in the SWDT once at each execution of the main routine. The initial value N should satisfy the following condition:

 $N+1 \ge$ (Counts of interrupt processing executed in each main

As the main routine execution cycle may change because of an interrupt processing or others, the initial value N should have a margin.

- · Watches the operation of the interrupt processing routine by comparing the SWDT contents with counts of interrupt processing after the initial value N has been set.
- · Detects that the interrupt processing routine has failed and deter-mines to branch to the program initialization routine for recovery processing in the following case:

If the SWDT contents do not change after interrupt processing.

<The interrupt processing routine>

- Decrements the SWDT contents by 1 at each interrupt processing.
- · Determines that the main routine operates normally when the SWDT contents are reset to the initial value N at almost fixed cycles (at the fixed interrupt processing count).
- · Detects that the main routine has failed and determines to branch to the program initialization routine for recovery processing in the following case:

If the SWDT contents are not initialized to the initial value N but continued to decrement and if they reach 0 or less.

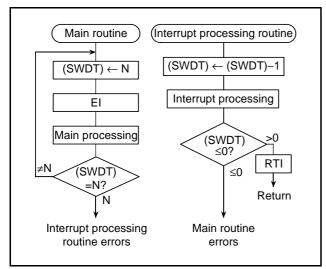


Fig 70. Watchdog timer by software

CONTROL REGISTERS

	Interrupt control register V1	at reset : 00002		at RAM back-up : 00002	R/W TAV1/TV1A
V13	VA. Torra O'retament anabla bit		Interrupt disabled (\$	SNZT2 instruction is valid)	
V 13	V13 Timer 2 interrupt enable bit	1	Interrupt enabled (S	SNZT2 instruction is invalid)	
V12	V/4 Times 4 interment analyse hit	0	Interrupt disabled (\$	SNZT1 instruction is valid)	
V 12	Timer 1 interrupt enable bit	1	Interrupt enabled (S	SNZT1 instruction is invalid)	
V11	External 1 interrupt anable bit	0	Interrupt disabled (\$	SNZ1 instruction is valid)	
V 11	External 1 interrupt enable bit	1	Interrupt enabled (S	SNZ1 instruction is invalid)	
V10	Mar Fadamad O'adamant anabla bit	0	Interrupt disabled (S	SNZ0 instruction is valid)	
V 10	External 0 interrupt enable bit	1	Interrupt enabled (S	SNZ0 instruction is invalid)	

	Interrupt control register V2	;	at reset : 00002	at RAM back-up : 00002	R/W TAV2/TV2A	
V23	Voltage drop detector interrupt enable bit	0	Interrupt disabled (\$	SNZVD instruction is valid)		
V Z 3	Voltage drop detector interrupt enable bit	1	Interrupt enabled (S	NZVD instruction is invalid)		
1/20	V22 Not used	0	This bit has no function, but read/write is enabled.			
V Z Z		1	This bit has no function, but read/write is enabled.			
V21	Not used	0	This bit has no function, but read/write is enabled.			
VZI	Not used	1	THIS DIL HAS HO TUHC	tion, but read/write is enabled.		
1/20	V20 Timer 3 interrupt enable bit	0	Interrupt disabled (\$	SNZT3 instruction is valid)		
V Z0		1	Interrupt enabled (S	SNZT3 instruction is invalid)		

Interrupt control register I1		at reset : 00002		at RAM back-up : state retained	R/W TAI1/TI1A
113	IA- INITO min input control bit (Note 2)		INT0 pin input disal	oled	
113	INT0 pin input control bit (Note 2)	1	INT0 pin input enab	oled	
112	Interrupt valid waveform for INT0 pin/	0	Falling waveform (" instruction)/"L" leve	L" level of INT0 pin is recognized with t	he SNZI0
112	return level selection bit (Note 2)	1	Rising waveform ("I instruction)/"H" leve	H" level of INT0 pin is recognized with t	he SNZI0
l1 ₁	INT0 pin edge detection circuit control bit	0	One-sided edge detected		
1111	INTO pin eage detection circuit control bit	1	Both edges detected		
110	I10 INT0 pin timer 1 control enable bit		Timer 1 disabled		
110			Timer 1 enabled		

Interrupt control register I2		at reset : 00002		at RAM back-up : state retained	R/W TAI2/TI2A
123	IO. INITA min input agents bit (Nets 2)		INT0 pin input disal	oled	
123	INT1 pin input control bit (Note 3)	1	INT0 pin input enab	oled	
120	Interrupt valid waveform for INT1 pin/ return level selection bit (Note 3)	0	Falling waveform (" instruction)/"L" leve	L" level of INT0 pin is recognized with t	he SNZI1
122		1	Rising waveform ("I instruction)/"H" leve	H" level of INTO pin is recognized with tel	he SNZI1
I2 ₁	INIT1 pip adda detection circuit control bit	0	One-sided edge detected		
121	INT1 pin edge detection circuit control bit		Both edges detected		
120	Not used	0	This hit has no fund	tion but road/write is enabled	
12 0	Not used	1	THIS DIL HAS NO TUNC	This bit has no function, but read/write is enabled.	

Note 1."R" represents read enabled, and "W" represents write enabled.

Note 2.When the contents of I12 and I13 are changed, the external interrupt request flag EXF0 may be set.

Note 3.When the contents of I22 and I23 are changed, the external interrupt request flag EXF1 may be set.

	Timer control register PA		at reset : 002	at RAM back-up: 002	W TPAA	
PA ₁	PA1 Prescaler count source selection bit	0	Instruction clock (INSTCK)			
FAI	Frescaler count source selection bit	1	Instruction clock div	rided by 4 (INSTCK)/4		
PA ₀	PAo Prescaler control bit	0	Stop (state initialize	d)		
PAU PIESCA	Frescaler control bit	1	Operating			

	Timer control register W1		at re	set: 00002	at RAM back-up : state retained	R/W TAW1/TW1A
W13	Timer 1 count auto-stop circuit selection bit	0	Time	r 1 count auto-stop	circuit not selected	
VV 13	(Note 2)	1	Time	r 1 count auto-stop	circuit selected	
\\/10	W12 Timer 1 control bit		Stop	(state retained)		
VVIZ			Oper	Operating		
		W11	W10		Count source	
W11		0	0	PWM output (PWI	MOUT)	
	Timer 1 count source selection bits	0	1	Prescaler output (ORCLK)	
W10		1	0	System clock (ST	CK)	
V V 10		1	1	CNTR0 input		

Timer control register W2		at reset : 00002		eset: 00002	at RAM back-up : state retained	R/W TAW2/TW2A
W23	CNTR0 pin function selection bit	0	Time	r 1 underflow signal	divided by 2 output	
VVZ3	CIVI NO piir function selection bit	1	Time	r 2 underflow signal	divided by 2 output	
W22	N22 Timer 2 control bit		Stop	(state retained)		
V V Z Z	Time: 2 control bit	1	Oper	Operating Section 2015		
		W21	W20		Count source	
W21		0	0	PWM output (PWN	MOUT)	
	Timer 2 count source selection bits	0	1	Prescaler output (ORCLK)		
W20		1	0	System clock (STC	CK)	
VVZ0		1	1	Timer 1 underflow	signal (T1UDF)	

Timer control register W3		at reset : 00002		at RAM back-up : 00002	R/W TAW3/TW3A		
W33	CNTR1 pin output control bit	0	CNTR1 pin output i	nvalid			
VV 33	VV33 CIVER E PILI OULPUL CONTROL DIT	1	CNTR1 pin output v	/alid			
W32	PWM signal	0	PWM signal "H" inte	PWM signal "H" interval expansion function invalid			
VV 32	"H" interval expansion function control bit	1	PWM signal "H" inte	erval expansion function valid			
W31	Timer 3 control bit	0	Stop (state retained	1)			
VVST	Timer 3 control bit	1	Operating				
W/30	W30 Timer 3 count source selection bit	0	XIN input				
VV 30		1	Prescaler output/	2			

Timer control register W5		at reset : 00002		at RAM back-up : state retained	R/W TAW5/TW5A
W53	Timer 1 count start synchronous circuit	0	Count start synchro	nous circuit not selected	
VV 33	selection bit (Note 3)	1	Count start synchro	nous circuit selected	
MEO	W52 CNTR0 pin input count edge selection bit	0	Falling edge		
VV32	CIVI RO piri iriput count eage selection bit	1	Rising edge		
W51	CNTR 1 pin output auto-control circuit	0	Output auto-control	circuit not selected	
VVSI	selection bit	1	Output auto-control	circuit selected	
W50	D4/CNTR0 pin function selection bit	0	D4 (I/O) / CNTR0 (ii	nput)	
VV30	W50 D4/CN FRO pin function selection bit	1	D4 (input) /CNTR0	(I/O)	

Note 3. This function is valid only when the INT0 pin/timer 1 control is enabled (I10 = "1").

Note 1. "R" represents read enabled, and "W" represents write enabled.

Note 2. This function is valid only when the INTO pin/timer 1 control is enabled (I10 = "1") and the timer 1 count start synchronous circuit is selected (W53 = "1").

	Clock control register MR	at re		eset : 11112	at RAM back-up : 11112	R/W TAMR/TMRA	
	MR3 Operation mode selection bits	MRз	MR ₂		Operation mode		
МРз		0	0	Through mode (fro	equency not divided)		
		0	1	Frequency divided	d by 2 mode		
MR ₂		1	0	Frequency divided	d by 4 mode		
IVIIXZ		1	1	Frequency divided	d by 8 mode		
MR ₁	Not used	0	Thie	hit has no function	hut read/write is enabled		
IVIIXI	Not used	1	11113	This bit has no function, but read/write is enabled.			
MRo	Not used	0	This hit has no function, but read/write is enabled				
IVIIXU	Not used	1	11113	This bit has no function, but read/write is enabled.			

	Key-on wakeup control register K0		at reset : 00002	at RAM back-up : state retained	R/W TAK0/TK0A
K03	Port POs kov on wakoup control hit	0	Key-on wakeup not	used	
IXU3	K03 Port P03 key-on wakeup control bit	1	Key-on wakeup use	ed	
K02	KOO Dort DOO koy on wakeyn control hit	0	Key-on wakeup not	used	
KU2	Port P02 key-on wakeup control bit	1	Key-on wakeup use	ed	
K01	Port P01 key-on wakeup control bit	0	Key-on wakeup not	used	
KUI	Port Por key-orr wakeup control bit	1	Key-on wakeup use	ed	
K00	Port P0 ₀ key-on wakeup control bit	0	Key-on wakeup not	used	
KU0	For Fourey-on wakeup control bit	1	Key-on wakeup use	ed	

Key-on wakeup control register K1		at reset : 00002		at RAM back-up : state retained	R/W TAK1/TK1A	
K13	K4. Dort D4. how on walveys control bit		Key-on wakeup not	used		
IX 13	K13 Port P13 key-on wakeup control bit	1	Key-on wakeup use	ed		
K10	K12 Port P12 key-on wakeup control bit	0	Key-on wakeup not used			
IN 12		1	Key-on wakeup used			
K11	Port P11 key-on wakeup control bit	0	Key-on wakeup not used			
IN IT	Port P 11 key-on wakeup control bit	1 Key-on wakeup used				
K10	Port P1o key-on wakeup control bit	0	Key-on wakeup not used			
1/10		1	Key-on wakeup use	ed		

Key-on wakeup control register K2		at reset : 00002		at RAM back-up : state retained	R/W TAK2/TK2A			
K23 Not used		0	This hit has no fund	This hit has no function, but read/write is enabled				
I\Z3	N23 Not used	1	THIS DIL HAS HO TUHC	This bit has no function, but read/write is enabled.				
K2 2	Port K key-on wakeup control bit	0	Key-on wakeup not used					
NZ2	Port K key-on wakeup control bit	1	Key-on wakeup used					
K21	Port P21 key-on wakeup control bit	0	Key-on wakeup not used					
NZ1	Port P21 key-on wakeup control bit	1	Key-on wakeup used					
K20 F	Port P20 key-on wakeup control bit	0	Key-on wakeup not	used				
		1	Key-on wakeup use	ed				

Key-on wakeup control register L1		at reset : 00002		at RAM back-up : state retained	R/W TAL1/TL1A			
L13	I de UNITA nin naturn condition colortion hit		Return by level	Return by level				
LIS	INT1 pin return condition selection bit	1	Return by edge	Return by edge				
L12	INT1 pin valid waveform/		Falling waveform/"L" level					
LIZ	level selection bit	1	Rising waveform/"H" level					
L11	INT0 pin	0	Return by level					
L 11	return condition selection bit	1	Return by edge					
L10	INT0 pin	0	Key-on wakeup not used					
L10	key-on wakeup control bit	1	Key-on wakeup used					

Note 1."R" represents read enabled, and "W" represents write enabled.

Pull-up control register PU0		at reset : 00002		at RAM back-up : state retained	R/W TAPU0/TPU0A	
PU03	Port P03 pull-up transistor	0	Pull-up transistor O	FF		
F 003	control bit	1	Pull-up transistor O	N		
PU02	Port P02 pull-up transistor	0	Pull-up transistor OFF			
F U U 2	control bit	1	Pull-up transistor O	N		
PU01	Port P0 ₁ pull-up transistor	0	Pull-up transistor OFF			
P001	control bit	1	Pull-up transistor ON			
PU00	Port P0o pull-up transistor control bit	0	Pull-up transistor O	FF		
F U 000		1	Pull-up transistor O	N		

Pull-up control register PU1		at reset : 00002		at RAM back-up : state retained	R/W TAPU1/TPU1A	
PU13	Port P13 pull-up transistor	0	Pull-up transistor O	FF		
control bit	control bit	1	Pull-up transistor ON			
PU12	Port P12 pull-up transistor	0	Pull-up transistor OFF			
FU12	control bit	1	Pull-up transistor O	N		
PU1 ₁	Port P1 ₁ pull-up transistor	0	Pull-up transistor OFF			
FUII	control bit	1	Pull-up transistor ON			
PU10	Port P10 pull-up transistor control bit	0	Pull-up transistor O	FF		
PU10		1	Pull-up transistor O	N		

Pull-up control register PU2		at reset : 00002		at RAM back-up : state retained	R/W TAPU2/TPU2A		
PU23	PU23 Not used		This bit has no function, but read/write is enabled.				
		1	, , , , , , , , , , , , , , , , , , , ,				
PU22	PU22 Not used		This bit has no function, but read/write is enabled.				
1 022	Not used	1	This bit has no function, but read/write is eliabled.				
PU21	Port P2 ₁ pull-up transistor	0	Pull-up transistor OFF				
FUZI	control bit	1	Pull-up transistor ON				
PU20	Port P20 pull-up transistor control bit	0	Pull-up transistor OFF				
PU20		1	Pull-up transistor O	N			

Port output structure control register FR0		at reset : 00002		at RAM back-up : state retained	W TFR0A
FR03	FR03 Not used		This bit has no function, but read/write is enabled.		
				,	
FR02	FR02 Not used		This bit has no function, but read/write is enabled.		
FK02	Not used	1	THIS DIL HAS HO TUHO		
FR01	Port P31 output structure selection bit	0	N-channel open-drain output		
FKU	Fort F31 output structure selection bit	1	CMOS output		
FR00	Port P3o output structure selection bit	0	N-channel open-drain output		
FKU0		1	CMOS output		

Port output structure control register FR1		at reset : 00002		at RAM back-up : state retained	W TFR1A		
ED1a	FR13 Port D3 output structure selection bit		N-channel open-dra	ain output			
FK13			CMOS output				
ED1a	FR12 Port D2 output structure selection bit	0	N-channel open-drain output				
FK12		1	CMOS output				
ED14	Part D4 output atructure releation bit	0	N-channel open-drain output				
FKII	Port D1 output structure selection bit		CMOS output				
ED1a	Port Do output structure selection bit	0	N-channel open-drain output				
FK10		1	CMOS output				

Note 1. "R" represents read enabled, and "W" represents write enabled.

INSTRUCTIONS

The symbols shown below are used in the following list of instruction function and the machine instructions.

Each instruction is described as follows;

- 1. Index list of instruction function
- 2. Machine instructions (index by alphabet)
- 3. Machine instructions (index by function)
- 4. Instruction code table

SYMBOL

Symbol	Contents	Symbol	Contents
Α	Register A (4 bits)	T1F	Timer 1 interrupt request flag
В	Register B (4 bits)	T2F	Timer 2 interrupt request flag
DR	Register DR (3 bits)	T3F	Timer 3 interrupt request flag
E	Register E (8 bits)	WDF1	Watchdog timer flag
V1	Interrupt control register V1 (4 bits)	WEF	Watchdog timer enable flag
V2	Interrupt control register V2 (4 bits)	INTE	Interrupt enable flag
11	Interrupt control register I1 (4 bits)	EXF0	External 0 interrupt request flag
12	Interrupt control register I2 (4 bits)	EXF1	External 1 interrupt request flag
PA	Timer control register PA (2 bits)	VDF	Voltage drop detection circuit interrupt request flag
W1	Timer control register W1 (4 bits)	Р	Power down flag
W2	Timer control register W2 (4 bits)	D	Port D (5 bits)
W3	Timer control register W3 (4 bits)	P0	Port P0 (4 bits)
W5	Timer control register W5 (4 bits)	P1	Port P1 (4 bits)
MR	Clock control register MR (4 bits)	P2	Port P2 (2 bits)
K0	Key-on wakeup control register K0 (4 bits)	P3	Port P3 (2 bits)
K1	Key-on wakeup control register K1 (4 bits)		,
K2	Key-on wakeup control register K2 (4 bits)	х	Hexadecimal variable
L1	Key-on wakeup control register L1 (4 bits)	у	Hexadecimal variable
PU0	Pull-up control register PU0 (4 bits)	Z	Hexadecimal variable
PU1	Pull-up control register PU1 (4 bits)	р	Hexadecimal variable
PU2	Pull-up control register PU2 (4 bits)	n	Hexadecimal constant
FR0	Port output structure control register FR0 (4 bits)	i	Hexadecimal constant
FR1	Port output structure control register FR1 (4 bits)	l i	Hexadecimal constant
x	Register X (4 bits)	A3 A2 A1 A0	Binary notation of hexadecimal variable A
Υ	Register Y (4 bits)		(same for others)
Z	Register Z (2 bits)		
DP	Data pointer (10 bits)	←	Direction of data movement
	(It consists of registers X, Y, and Z)	()	Contents of registers and memories
PC	Program counter (14 bits)		Negate, Flag unchanged after executing instruction
РСн	High-order 7 bits of program counter	M (DP)	RAM address pointed by the data pointer
PCL	Low-order 7 bits of program counter	a	Label indicating address as a
SK	Stack register (14 bits × 8)	р, а	Label indicating address as a
SP	Stack pointer (3 bits)		p6 p5 p4 p3 p2 p1 p0
CY	Carry flag		
RPS	Prescaler reload register (8 bits)	С	Hex. C + Hex. number x (also same for others)
R1L	Timer 1 reload register (8 bits)	+	,
R2	Timer 2 reload register (8 bits)	х	
R3L	Timer 3 reload register (8 bits)	?	Decision of state shown before "?"
R3H	Timer 3 reload register (8 bits)	$\leftarrow \rightarrow$	Data exchange between a register and memory
PS	Prescaler		,
T1	Timer 1	AND	Logical multiplication
T2	Timer 2	OR	Logical addition
T3	Timer 3		
	571 Group just invalidates the post instruction when a	U	L

Note 1.The 4571 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

INDEX LIST OF INSTRUCTION FUNCTION

Group ing	Mnemonic	Function	Page	
	TAB	(A) ← (B)	88, 103	
	TBA	$(B) \leftarrow (A)$	95, 103	
	TAY	$(A) \leftarrow (Y)$	95, 103	
	TYA	$(Y) \leftarrow (A)$	101, 103	
ransfer	TEAB	(E7–E4) ← (B) (E3–E0) ← (A)	96, 103	
Register to register transfer	TABE	$ \begin{array}{l} (B) \leftarrow (E7\text{-}E4) \\ (A) \leftarrow (E3\text{-}E0) \end{array} $	89, 103	
er to re	TDA	$(DR2-DR0) \leftarrow (A2-A0)$	95, 103	
Registe	TAD	$(A_2-A_0) \leftarrow (DR_2-DR_0)$ $(A_3) \leftarrow 0$	90, 103	
	TAZ	$(A_1, A_0) \leftarrow (Z_1, Z_0)$ $(A_3, A_2) \leftarrow 0$	95, 103	
	TAX	$(A) \leftarrow (X)$	94, 103	
	TASP	$(A_2-A_0) \leftarrow (SP_2-SP_0)$ $(A_3) \leftarrow 0$	93, 103	
ses	LXY x, y	$(X) \leftarrow x, x = 0 \text{ to } 15$ $(Y) \leftarrow y, y = 0 \text{ to } 15$	77, 103	
dress	LZ z	$(Z) \leftarrow z$, $z = 0$ to 3	77, 103	
RAM addresses	INY	$(Y) \leftarrow (Y) + 1$	76, 103	
& ⊗	DEY	$(Y) \leftarrow (Y) - 1$	74, 103	
	ТАМ ј	$ \begin{aligned} (A) &\leftarrow (M(DP)) \\ (X) &\leftarrow (X)EXOR(j) \\ j &= 0 \text{ to } 15 \end{aligned} $	91, 103	
fer	XAM j	$ \begin{aligned} & (A) \longleftrightarrow (M(DP)) \\ & (X) \longleftrightarrow (X)EXOR(j) \\ & j = 0 \text{ to } 15 \end{aligned} $	102, 103	
RAM to register transfer	XAMD j	$ \begin{array}{l} (A) \longleftrightarrow (M(DP)) \\ (X) \longleftrightarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \longleftrightarrow (Y) - 1 \end{array} $	102, 103	
RAM to re	XAMI j	$(A) \longleftrightarrow (M(DP))$ $(X) \longleftrightarrow (X) \to (X) \to (X)$ $j = 0 \text{ to } 15$ $(Y) \longleftrightarrow (Y) + 1$	102, 103	
	ТМА ј	$(M(DP)) \leftarrow (A)$ $(X) \leftarrow (X)EXOR(j)$ j = 0 to 15	98, 103	

M34571G4: p=0 to 31 M34571G6: p=0 to 47 M34571GD: p=0 to 127

Group ing	Mnemonic	Function	Page
	LA n	(A) ← n n = 0 to 15	76, 105
	ТАВР р	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow (DR_2-DR_0, A_3-A_0)$ (UPTF) = 1, $(DR_2) \leftarrow 0$ $(DR_1, DR_0) \leftarrow (ROM(PC))_9, 8$ $(B) \leftarrow (ROM(PC))_{7-4}$ $(A) \leftarrow (ROM(PC))_{3-0}$ $(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	89, 105
uoi	AM	$(A) \leftarrow (A) + (M(DP))$	71, 105
Arithmetic operation	AMC	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$	71, 105
ithmeti	A n	$ (A) \leftarrow (A) + n $ $ n = 0 \text{ to } 15 $	71, 105
Ā	AND	$(A) \leftarrow (A) AND(M(DP))$	71, 105
	OR	$(A) \leftarrow (A) OR(M(DP))$	78, 105
	SC	(CY) ← 1	82, 105
	RC	$(CY) \leftarrow 0$	80, 105
	SZC	(CY) = 0 ?	86, 105
	CMA	$(A) \leftarrow \overline{(A)}$	73, 105
	RAR	CY → A3A2A1A0	79, 105
	SBj	$(Mj(DP)) \leftarrow 1$ j = 0 to 3	81, 105
operation	RB j	$(Mj(DP)) \leftarrow 0$ j = 0 to 3	79, 105
Bito	SZB j	(Mj(DP)) = 0 ? j = 0 to 3	86, 105
son	SEAM	(A) = (M(DP)) ?	83, 107
Comparison operation	SEA n	(A) = n n = 0 to 15	83, 107
	Ва	(PCL) ← a6–a0	72, 107
Branch operation	BL p, a	$(PCH) \leftarrow p$ $(PCL) \leftarrow a6-a0$	72, 107
Branch	BLA p	$ \begin{array}{l} (PCH) \leftarrow p \\ (PCL) \leftarrow (DR_2 – DR_0, A_3 – A_0) \end{array} $	72, 107

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Group ing	Mnemonic	Function	Page
ion	ВМа	$ \begin{aligned} & (SP) \leftarrow (SP) + 1 \\ & (SK(SP)) \leftarrow (PC) \\ & (PCH) \leftarrow 2 \\ & (PCL) \leftarrow a6-a0 \end{aligned} $	72, 107
Subroutine operation	BML p, a	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow a6-a0$	73, 107
Subr	BMLA p	$ \begin{aligned} &(SP) \leftarrow (SP) + 1 \\ &(SK(SP)) \leftarrow (PC) \\ &(PCH) \leftarrow p \\ &(PCL) \leftarrow (DR_2 – DR_0, A_3 – A_0) \end{aligned} $	73, 107
ion	RTI	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	81, 107
Return operation	RT	$ (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP) - 1 $	80, 107
Retur	RTS	$ (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP) - 1 $	81, 107
	DI	(INTE) ← 0	74, 109
	EI	(INTE) ← 1	74, 109
	SNZ0	$V_{10} = 0$: (EXF0) = 1 ? (EXF0) \leftarrow 0 $V_{10} = 1$: NOP	83, 109
	SNZI0	I12 = 0 : (INT0) = "L" ? I12 = 1 : (INT0) = "H" ?	84, 109
Ē	SNZ1	V11 = 0: (EXF1) = 1 ? (EXF1) \leftarrow 0 V11 = 1: NOP	83, 109
Interrupt operation	SNZI1	I22 = 0 : (INT1) = "L" ? I22 = 1 : (INT1) = "H" ?	84, 109
rupt	TAV1	(A) ← (V1)	93, 109
Inter	TV1A	$(V1) \leftarrow (A)$	100, 109
	TAV2	$(A) \leftarrow (V2)$	93, 109
	TV2A	(V2) ← (A)	100, 109
	TAI1	(A) ← (I1)	90, 109
	TI1A	$(I1) \leftarrow (A)$	96, 109
	TAI2	(A) ← (I2)	90, 109
	TI2A	(I2) ← (A)	97, 109

Group ing	Mnemonic	Function	Page
	TPAA	$(PA_0) \leftarrow (A_0)$	98, 109
	TAW1	(A) ← (W1)	93, 109
	TW1A	(W1) ← (A)	100, 109
	TAW2	(A) ← (W2)	94, 109
	TW2A	(W2) ← (A)	101, 109
	TAW3	(A) ← (W3)	94, 109
	TW3A	(W3) ← (A)	101, 109
	TAW5	(A) ← (W5)	94, 109
	TW5A	(W5) ← (A)	101, 109
	TABPS	$\begin{array}{l} \text{(B)} \leftarrow \text{(TPS7-TPS4)} \\ \text{(A)} \leftarrow \text{(TPS3-TPS0)} \end{array}$	89, 111
د	TPSAB	$ \begin{array}{l} (RPS7\text{-}RPS4) \leftarrow (B) \\ (TPS7\text{-}TPS4) \leftarrow (B) \\ (RPS3\text{-}RPS0) \leftarrow (A) \\ (TPS3\text{-}TPS0) \leftarrow (A) \end{array} $	99, 111
Timer operation	TAB1	$ (B) \leftarrow (T17-T14) $ $ (A) \leftarrow (T13-T10) $	88, 111
Timer	T1AB	$(R17-R14) \leftarrow (B)$ $(T17-T14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$ $(T13-T10) \leftarrow (A)$	87, 111
	TR1AB	$(R17-R14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$	100, 111
	TAB2	(B) \leftarrow (T27–T24) (A) \leftarrow (T23–T20)	88, 111
	T2AB	$(R27-R24) \leftarrow (B)$ $(T27-T24) \leftarrow (B)$ $(R23-R20) \leftarrow (A)$ $(T23-T20) \leftarrow (A)$	87, 111
	TAB3	(B) \leftarrow (T37–T34) (A) \leftarrow (T33–T30)	89, 111
	ТЗАВ	$(R3L7-R3L4) \leftarrow (B)$ $(T37-T34) \leftarrow (B)$ $(R3L3-R3L0) \leftarrow (A)$ $(T33-T30) \leftarrow (A)$	87, 111
	T3R3L	$(T37-T30) \leftarrow (R3L7-R3L0)$	88, 111
	ТЗНАВ	$(R3H7-R3H4) \leftarrow (B)$ $(R3H3-R3H0) \leftarrow (A)$	87, 111
M34571	G4: p=0 to 3	31	

M34571G4: p=0 to 31 M34571G6: p=0 to 47 M34571GD: p=0 to 127

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Group ing	Mnemonic	Function	Page
	SNZT1	V12 = 0 : (T1F) = 1 ? $(T1F) \leftarrow 0$ V12 = 1 : SNZT1 = NOP	84, 111
Timer operation	SNZT2	V13 = 0 : (T2F) = 1 ? $(T2F) \leftarrow 0$ V13 = 1 : SNZT2=NOP	85, 111
Time	SNZT3	V20 = 0: $(T3F) = 1$? $(T3F) \leftarrow 0$ V20 = 1: SNZT3=NOP	85, 111
	IAP0	(A) ← (P0)	75, 113
	OP0A	(P0) ← (A)	77, 113
	IAP1	(A) ←(P1)	75, 113
	OP1A	(P1) ← (A)	78, 113
	IAP2	$(A_1, A_0) \leftarrow (P2_1, P2_0)$ $(A_3, A_2) \leftarrow 0$	76, 113
	OP2A	$(P21,P20) \leftarrow (A1,A0)$	78, 113
	IAP3	$(A_1, A_0) \leftarrow (P3_1, P3_0)$ $(A_3, A_2) \leftarrow 0$	76, 113
	ОРЗА	$(P31, P30) \leftarrow (A1, A0)$	78, 113
	CLD	(D) ← 1	73, 113
uc	RD	$ (D(Y)) \leftarrow 0 $ $ (Y) = 0 \text{ to } 4 $	80, 113
Input/Output operation	SD	$ (D(Y)) \leftarrow 1 $ $ (Y) = 0 \text{ to } 4 $	82, 113
Output	SZD	(D(Y)) = 0? (Y) = 0 to 4	86, 113
/Indul	RCP	(C) ← (0)	80, 113
	SCP	(C) ← (1)	82, 113
	IAK	$ (A_0) \leftarrow (K) \\ (A_3 - A_1) \leftarrow 0 $	75, 113
	TFR0A	$(FR0) \leftarrow (A)$	96, 113
	TFR1A	$(FR1) \leftarrow (A)$	96, 113
	TAPU0	$(A) \leftarrow (PU0)$	92, 113
	TPU0A	$(PU0) \leftarrow (A)$	99, 113
	TAPU1	$(A) \leftarrow (PU1)$	92, 113
	TPU1A	(PU1) ← (A)	99, 113
	TAPU2	$(A) \leftarrow (PU2)$	92, 113
	TPU2A	(PU2) ← (A)	99, 113

Group ing	Mnemonic	Function	Page
	TAK0	(A) ← (K0)	90, 115
Input/Output operation	TK0A	$(K0) \leftarrow (A)$	97, 115
	TAK1	$(A) \leftarrow (K1)$	91, 115
	TK1A	$(K1) \leftarrow (A)$	97, 115
	TAK2	$(A) \leftarrow (K2)$	91, 115
	TK2A	$(K2) \leftarrow (A)$	97, 115
	TAL1	$(A) \leftarrow (L1)$	91, 115
	TL1A	(L1) ← (A)	98, 115
	TAMR	$(A) \leftarrow (MR)$	92, 115
	TMRA	$(MR) \leftarrow (A)$	98, 115
	NOP	(PC) ← (PC)+1	77, 115
	POF	RAM back-up	79, 115
	EPOF	POF instruction valid	75, 115
	SNZP	(P) = 1 ?	84, 115
Other operation	SNZVD	V23 = 0 : (VDF) = 1? V23 = 0 : NOP	85, 115
	WRST	(WDF1) = 1 ? $(WDF1) \leftarrow 0$	102, 115
	DWDT	Stop of watchdog timer function enabled	74, 115
	SRST	System reset	85, 115
	RUPT	(UPTF) ←0	81, 115
	SUPT	(UPTF) ←1	86, 115
	RBK	$p_6 \leftarrow 0$ when TABP p instruction is executed	79, 115
	SBK	$p_{\theta}\!\leftarrow\!1$ when TABP p instruction is executed	82, 115

MACHINE INSTRUCTIONS (INDEX BY ALPHABET)

Inctrile	dd n and accumulator)	I Nimet 1	Monet		
Instruc-	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 1 0 n n n n 2 0 6 n 16	1	1	-	Overflow = 0
)pera-	(A) ← (A) + n n = 0 to 15	Grouping: A	Arithmetic opera	ation	
ion:	11 = 0 10 15				diate field to register A, and
			stores a result i		
					remains unchanged. n there is no overflow as the
			esult of operati		
					when there is overflow as the
		r	esult of operati	on.	
AM (Ac	dd accumulator and Memory)				
nstruc-	, , , , , , , , , , , , , , , , , , ,	Number of	Number of	Flag CY	Skip condition
ion code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words	cycles		Chap containen
		1	1	=	-
Opera- tion:	$(A) \leftarrow (A)\mathring{A}\{(M(DP))$		Arithmetic opera		
1011.			Adds the conter		register A. The contents of carry flag
			CY remains und		The contents of carry hag
				G	
AMC (A	Add accumulator, Memory and Carry)				
nstruc-	7,	Number of	Number of	Flag CY	Skip condition
tion	D9 D0	words	cycles	1 lag O1	OKIP CONDITION
code		1	1	0/1	
	0 0 0 0 0 0 1 0 1 1 2 0 0 B 16	!	•	-, .	-
	$(A) \leftarrow (A) + (M(DP)) + (CY)$		Arithmetic opera		
		Grouping: A Description: A	Arithmetic opera Adds the conte	ation nts of M(DP) a	nd carry flag CY to register
	$(A) \leftarrow (A) + (M(DP)) + (CY)$	Grouping: A Description: A	Arithmetic opera Adds the conte	ation nts of M(DP) a	nd carry flag CY to register A and carry flag CY.
	$(A) \leftarrow (A) + (M(DP)) + (CY)$	Grouping: A Description: A	Arithmetic opera Adds the conte	ation nts of M(DP) a	
	$(A) \leftarrow (A) + (M(DP)) + (CY)$	Grouping: A Description: A	Arithmetic opera Adds the conte	ation nts of M(DP) a	
	$(A) \leftarrow (A) + (M(DP)) + (CY)$	Grouping: A Description: A	Arithmetic opera Adds the conte	ation nts of M(DP) a	
	$(A) \leftarrow (A) + (M(DP)) + (CY)$	Grouping: A Description: A	Arithmetic opera Adds the conte	ation nts of M(DP) a	
	$(A) \leftarrow (A) + (M(DP)) + (CY)$	Grouping: A Description: A	Arithmetic opera Adds the conte	ation nts of M(DP) a	
ion:	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$	Grouping: A Description: A	Arithmetic opera Adds the conte	ation nts of M(DP) a	
ion:	$(A) \leftarrow (A) + (M(DP)) + (CY)$	Grouping: A Description: A	Arithmetic opera Adds the conter A. Stores the re	ation nts of M(DP) a sult in register	
AND (lanstruc-	(A) ← (A) + (M(DP)) + (CY) (CY) ← Carry ogical AND between accumulator and memory)	Grouping: A Description: A	Arithmetic opera Adds the conter A. Stores the re	ation nts of M(DP) a	
AND (lenstruction	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$ D_{9} D_{0}	Grouping: A Description: A A Number of words	Arithmetic opera Adds the conter A. Stores the re Number of cycles	ation nts of M(DP) a sult in register	A and carry flag CY.
AND (lanstruction)	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$ $(CY) \leftarrow Carry$ $(CY) \leftarrow D_0$ $(CY) \leftarrow D_$	Grouping: A Description: A	Arithmetic opera Adds the conter A. Stores the re	ation nts of M(DP) a sult in register	A and carry flag CY.
AND (lanstruction code	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$ D_{9} D_{0}	Rumber of words Grouping: A Grouping: A Grouping: A	Arithmetic opera Adds the content A. Stores the re Number of cycles 1 Arithmetic opera	ation hts of M(DP) all sult in register Flag CY - ation	A and carry flag CY. Skip condition
AND (lonstruction code	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$ $(CY) \leftarrow Carry$ $(CY) \leftarrow D_0$ $(CY) \leftarrow D_$	Number of words Grouping: A Description: A Grouping: A Description: 1	Arithmetic opera Adds the content A. Stores the re Number of cycles 1 Arithmetic opera Takes the AND	Flag CY - ation register	A and carry flag CY. Skip condition - ween the contents of register
AND (lonstruction code	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$ $(CY) \leftarrow Carry$ $(CY) \leftarrow D_0$ $(CY) \leftarrow D_$	Number of words Grouping: A Description: A Grouping: A Description: 7	Arithmetic opera Adds the content A. Stores the re Number of cycles 1 Arithmetic opera Takes the AND A and the conte	Flag CY - ation register	A and carry flag CY. Skip condition
AND (lonstruction)	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$ $(CY) \leftarrow Carry$ $(CY) \leftarrow D_0$ $(CY) \leftarrow D_$	Number of words Grouping: A Description: A Grouping: A Description: 7	Arithmetic opera Adds the content A. Stores the re Number of cycles 1 Arithmetic opera Takes the AND	Flag CY - ation register	A and carry flag CY. Skip condition - ween the contents of registe
AND (lonstruction code	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$ $(CY) \leftarrow Carry$ $(CY) \leftarrow D_0$ $(CY) \leftarrow D_$	Number of words Grouping: A Description: A Grouping: A Description: 7	Arithmetic opera Adds the content A. Stores the re Number of cycles 1 Arithmetic opera Takes the AND A and the conte	Flag CY - ation register	A and carry flag CY. Skip condition - ween the contents of registe
AND (lonstruction code	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$ $(CY) \leftarrow Carry$ $(CY) \leftarrow D_0$ $(CY) \leftarrow D_$	Number of words Grouping: A Description: A Grouping: A Description: 7	Arithmetic opera Adds the content A. Stores the re Number of cycles 1 Arithmetic opera Takes the AND A and the conte	Flag CY - ation register	A and carry flag CY. Skip condition - ween the contents of register
AND (lanstruction code	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$ $(CY) \leftarrow Carry$ $(CY) \leftarrow D_0$ $(CY) \leftarrow D_$	Number of words Grouping: A Description: A Grouping: A Description: 7	Arithmetic opera Adds the content A. Stores the re Number of cycles 1 Arithmetic opera Takes the AND A and the conte	Flag CY - ation register	A and carry flag CY. Skip condition - ween the contents of registi
AND (lanstruction) ode	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$ $(CY) \leftarrow Carry$ $(CY) \leftarrow D_0$ $(CY) \leftarrow D_$	Number of words Grouping: A Description: A Grouping: A Description: 7	Arithmetic opera Adds the content A. Stores the re Number of cycles 1 Arithmetic opera Takes the AND A and the conte	Flag CY - ation register	A and carry flag CY. Skip condition - ween the contents of regist
ND (lostruction ode	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$ $(CY) \leftarrow Carry$ $(CY) \leftarrow D_0$ $(CY) \leftarrow D_$	Number of words Grouping: A Description: A Grouping: A Description: 7	Arithmetic opera Adds the content A. Stores the re Number of cycles 1 Arithmetic opera Takes the AND A and the conte	Flag CY - ation register	A and carry flag CY. Skip condition - veen the contents of regist

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

•	anch to address a)				
nstruc- ion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
ode	0 1 1 8 8 8 16	1	1	-	-
Opera-	(PCL) ← a6 to a0	Grouping: I	Branch operation	n	
ion:		Note:	cal page.		nes to address a in the identi
BL p,a	(Branch Long to address a in page p)				
Instruc-	(Number of	Number of	Flag CY	Skip condition
tion code	D ₉ D ₀ D ₀ D ₀ D ₀ D ₁	words	cycles		ONE CONTRIBUTE
		2	2	-	-
	1 p6 p5 a6 a5 a4 a3 a2 a1 a0 2 2 a a a 16		Branch operation		nos to address a in name =
Opera- tion:	(PCH) ← p (PCL) ← a6 to a0	Description: Branch out of a page : Branches to address a in page Note: M34571G4 : p = 0 to 31			
Instruc- tion	(Branch Long to address (D)+(A) in page p) D ₉ D ₀	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 1 0 0 0 2 0 1 0 16	2	2	-	-
	1 p6 p5 p4 0 0 p3 p2 p1 p0 2 2 p p 16	Grouping: I	Branch operation	n	
Opera- tion:	(PCH) ← p (PCL) ← (DR2–R0, A3–A0)	Description: Branch out of a page: Branches to address (DR2 DR1 A3 A2 A1 A0)2 specified by registers D and A in page p Note: M34571G4: p = 0 to 31 M34571G6: p = 0 to 47 M34571GD: p = 0 to 127			
	Branch and Mark to address a in page 2)	•			
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 1 0 a6 a5 a4 a3 a2 a1 a0 2 1 a a 16	1	1	-	-
Opera-	(SP) ← (SP) + 1 (SK(SP)) ← (PC)	. 0	Subroutine call	•	: Calls the subroutine at

Instruc-		Number of	Number of	Elea CV	Clain annellater
ion	D ₀	words	cycles	Flag CY	Skip condition
ode		16 2	2	-	-
	1 p6 p5 a6 a5 a4 a3 a2 a1 a0 2 2 a a a	16 Grouping:	Subroutine call	•	
Opera- ion:	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$ $(PCL) \leftarrow a6-a0$	Note:	page p. M34571G4 : p = M34571G6 : p = M34571GD : p =	= 0 to 31 = 0 to 47 = 0 to 127 o over the stac	subroutine at address a in k because the maximum
BMLA i	o (Branch and Mark Long to address (D)+(A) i	n page p)			
nstruc-		Number of	Number of	Flag CY	Skip condition
ion code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 16 2	cycles 2	-	<u> </u>
	1 p6 p5 p4 0 0 p3 p2 p1 p0 2 2 p p	16 Grouping:	Subroutine call	operation	
Opera- ion:	$ \begin{aligned} & (SP) \leftarrow (SP) + 1 \\ & (SK(SP)) \leftarrow (PC) \\ & (PCH) \leftarrow p \\ & (PCL) \leftarrow (DR_2 \text{-} DR_0, A_3 \text{-} A_0) \end{aligned} $	Note:	DR1 DR0 A3 A2 page p. M34571G4 : p = M34571G6 : p = M34571GD : p =	A1 A0)2 specifi = 0 to 31 = 0 to 47 = 0 to 127 o over the stac	subroutine at address (DR ed by registers D and A in A in A because the maximum becaus
CLD (C	Lear port D)				
nstruc- ion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
ode		16 1	1	-	-
Opera- ion:	(D) ← (1)		Input/Output op Sets (1) to port		
	CoMplement of Accumulator)				
nstruc- ion	D ₉ D ₀	Number of words	Number of cycles	Flag CY	Skip condition
ode		16 1	1	-	-
Opera- ion:	$(A) \leftarrow (\overline{A})$	Grouping:	Arithmetic opera		
		Description.	register A.	o complement i	for register A's contents in

· · · · · · · · · · · · · · · · · · ·	crement register Y)	1				
. –	D ₀	Number of words	Number of cycles	Flag CY	Skip condition	
<u>L</u>	0 0 0 0 0 1 0 1 1 1 1 2 0 1 7 16	1	1	-	(Y) = 15	
pera- (` on:	Y) ← (Y) −1	Grouping: I	RAM addresses	}		
OII.		i	is 15, the next ir	ıbtraction, whe nstruction is sk	of register Y. In the contents of register Y.	
	le Interrupt)					
	Do	Number of words	Number of cycles	Flag CY	Skip condition	
	0 0 0 0 0 0 0 1 0 2 0 0 4 16	1	1	=	-	
Opera- (I on:	INTE) ← 0	Grouping: Interrupt control operation				
OII.		Description: Clears (0) to interrupt enable flag INTE, and disa interrupt.				
		Note: Interrupt is disabled by executing the DI instruction executing 1 machine cycle.				
ion D	Disable WatchDog Timer) Do	Number of words	Number of cycles	Flag CY	Skip condition	
Opera- S on:	Stop of watchdog timer function enabled		Other operation		tion by the WRST instructio	
- I (Fnahl	e Interrupt)		after executing t			
nstruc-	e.,	Number of	Number of	Flag CY	Skip condition	
	D ₉ D ₀	words	cycles		C.ap condition	
		1	1	-	-	
)pera- (I on:	INTE) ← 1		Interrupt control		- INITE and a 11 d	
···		Note: i	interrupt.	oled by executi	g INTE, and enables the ing the El instruction after	
		Note: i	nterrupt. Interrupt is enat	oled by executi		

EPOF ((Enable POF instruction)	ontinuea)			
Instruc- tion	· · · · · · · · · · · · · · · · · · ·	Number of words	Number of	Flag CY	Skip condition
code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1	cycles 1	-	-
Opera-	POF instruction valid	Grouping: (L Other operation		
tion:		Description: N		ediate after PC	OF instruction valid by exe-
AK (In	put Accumulator from port K)				
nstruc- ion	D9 Do	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 1 0 1 1 1 1 2 2 6 F 16	1	1	-	-
Opera-	$ (A_0) \leftarrow (K) $ $ (A_3 - A_1) \leftarrow 0 $	Grouping: I	nput/Output op	eration	
			of register A. U	is stored to tr	ne high-order 3 bits (A3–A1)
	nput Accumulator from port P0)				
nstruc-	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 1 0 0 0 0 0 2 2 6 0 16	1	1	-	-
Opera- tion:	(A) ← (P0)		nput/Output op Fransfers the in		
IAP1 (II	nput Accumulator from port P1)				
nstruc- ion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 1 0 0 0 0 1 2 2 6 1 16	1	1	-	-
Opera-	(A) ← (P1)	Grouping: I	nput/Output op	eration	
tion:		Description: 1	Γransfers the in	put of port P1	to register A.

nstruc-	Input Accumulator from port P2)	Number of	Number of		
on	D9 D0	words	cycles	Flag CY	Skip condition
ode	1 0 0 1 1 0 0 0 1 0 2 2 6 2 16	1	1	-	-
pera- n:	$(A_1, A_0) \leftarrow (P2_1, P2_0)$ $(A_3, A_2) \leftarrow 0$		nput/Output op		
		l A	A ₀) of register A	١.	o the low-order 2 bits (A1, 2 bits (A3, A2) of register A
P3 (I	Input Accumulator from port P3)				
nstruc- on	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
ode	1 0 0 1 1 0 0 0 1 1 2 2 6 3 16	1	1	-	-
pera- on:			nput/Output op		
			A ₀) of register A	λ.	o the low-order 2 bits (A1, 2 bits (A3, A2) of register A
	Ncrement register Y)	Number	Numberet		
nstruc- on ode	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
pera-	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1	-	(Y) = 0
on:		Description: A	when the conte	ontents of register \ the contents of	ter Y. As a result of additio is 0, the next instruction register Y is not 0, the ne
	Load n in Accumulator)	Number of	Number of		
•		words	cycles	Flag CY	Skip condition
nstruc- on	D ₉ D ₀	words	,		
nstruc- on		1	1	-	Continuous description
An(lastruc- on ode Opera- on:	D9 D0	1 Grouping: A	1 Arithmetic opera		Continuous

LXY x,y (Load register X and Y with x and y)				
Instruction D ₉ D ₀	Number of words	Number of cycles	Flag CY	Skip condition
code 1 1 x3 x2 x1 x0 y3 y2 y1 y0 2 3 x y 16	1	1	-	Continuous description
Opera- $(X) \leftarrow x \times = 0$ to 15 tion: $(Y) \leftarrow y \times y = 0$ to 15	Description: L	he value y in th XY instructions	x in the imme e immediate fic s are continuou Y instruction is	diate field to register X, and eld to register Y. When the isly coded and executed, executed and other LXY y are skipped.
LZ z (Load register Z with z)				
Instruc- tion D ₉ D ₀	Number of words	Number of cycles	Flag CY	Skip condition
code 0 0 0 1 0 0 1 0 21 Z0 2 0 4 8 +z 16	1	1	-	-
Opera- $(Z) \leftarrow z z = 0 \text{ to } 3$ tion:		RAM addresses		diate field to register Z.
NOP (No OPeration) Instruction D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code 0 0 0 0 0 0 0 0 0 0 2 0 0 0 16	1	1	-	-
Opera- $(PC) \leftarrow (PC) + 1$ tion:	Description: N	Other operation No operation; A emain unchanç	dds 1 to progra	m counter value, and others
OP0A (Output port P0 from Accumulator)	Number of	Number of	ı	
tion D ₉ D ₀	words	cycles	Flag CY	Skip condition
1 0 0 0 1 0 0 0 0 0 2 2 2 2 0 16	1	1	- oration	-
Opera- (P0) ← (A) tion:		nput/Output op Outputs the con		er A to port P0.

nstruc-		Number of	Number of		
on	D9 D0	words	cycles	Flag CY	Skip condition
ode	1 0 0 0 1 0 0 0 1 1 2 2 1 16	1	1	-	-
oera-	(P1) ← (A)		nput/Output op		
n:		Description: 0	Outputs the con	tents of registe	r A to port P1.
	(Output port P2 from Accumulator)				
nstruc- on	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
ode	1 0 0 0 1 0 0 0 1 0 2 2 2 16	1	1	-	<u>-</u>
)pera-	$(P21, P20) \leftarrow (A1, A0)$	Grouping: I	 nput/Output op	eration	
ion:		Description: Outputs the contents of the low-order 2 bits (
		į.	ster A to port P	2.	
DP3A	(Output port P3 from Accumulator)				
nstruc-		Number of	Number of	Flag CY	Skip condition
ion code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words	cycles		
		1	1	-	-
Opera-	$(P31, P30) \leftarrow (A1, A0)$		nput/Output op		
on:					ander 2 hite (A. As) of re
on:			ster A to port P		v-order 2 bits (A ₁ , A ₀) of re
ion:					v-order 2 bits (A1, A0) of re
on:					v-order 2 bits (A1, A0) of re
ion:					v-order 2 bits (A1, A0) of re
on:					v-order 2 bits (A1, A0) of re
ion:					v-order 2 bits (A1, A0) of re
OR (lo	gical OR between accumulator and memory)	į:	ster A to port P	3.	v-order 2 bits (A1, A0) of re
DR (loganstruc-					v-order 2 bits (A1, A0) of re
OR (logostruction	-	Number of	ster A to port P	3.	
OR (logastruction)	D ₉ D ₀	Number of words	Number of cycles	Flag CY	Skip condition
OR (logarithms)	D ₉ D ₀ D ₀ 0 0 0 1 1 0 0 1 2 0 1 9 16	Number of words 1 Grouping: A Description: 3	Number of cycles 1 Arithmetic opera	Flag CY - ation peration between	Skip condition - en the contents of register
OR (logistruction code	D ₉ D ₀ D ₀ 0 0 0 1 1 0 0 1 2 0 1 9 16	Number of words 1 Grouping: A Description: 3	Number of cycles 1 Arithmetic operatives the OR operation of the contents	Flag CY - ation peration between	Skip condition
	D ₉ D ₀ D ₀ 0 0 0 1 1 0 0 1 2 0 1 9 16	Number of words 1 Grouping: A Description: 3	Number of cycles 1 Arithmetic opera	Flag CY - ation peration between	Skip condition - en the contents of register
OR (logistruction code	D ₉ D ₀ D ₀ 0 0 0 1 1 0 0 1 2 0 1 9 16	Number of words 1 Grouping: A Description: 3	Number of cycles 1 Arithmetic operatives the OR operation of the contents	Flag CY - ation peration between	Skip condition - en the contents of register
OR (logostruction) one one one	D ₉ D ₀ D ₀ 0 0 0 1 1 0 0 1 2 0 1 9 16	Number of words 1 Grouping: A Description: 3	Number of cycles 1 Arithmetic operatives the OR operation of the contents	Flag CY - ation peration between	Skip condition - en the contents of register

POF (F	Power OFf)				
nstruc- ion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
ode	0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 2 16	1	1	-	-
pera- on:	RAM back-up		Other operation		
ion.		Note: I	POF instruction f the EPOF inst	after executing ruction is not e	up state by executing the particular the the EPOF instruction. EPOF instruction the this quivalent to the NOP instruction.
	Rotate Accumulator Right)				
nstruc- ion	D ₉ D ₀	Number of words	Number of cycles	Flag CY	Skip condition
ode	0 0 0 0 0 1 1 1 1 2 0 1 6	1	1	0/1	-
Opera- ion:	CY - A3A2A1A0		Arithmetic opera		register A including the
			contents of carr	y nag OT to the	rigit.
	Reset Bit)	ı			
nstruc- ion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
ode	0 0 0 1 0 0 1 1 j j 2 0 4 C +j 16	1	1	-	-
Opera- ion:	$ (Mj(DP)) \leftarrow 0 j = 0 \text{ to } 3 $		Bit operation		bit specified by the value j ir
DRK (F	Reset BanK flag))	t	he immediate fi	eld) of M(DP).	
nstruc-	veset Barny nagy)	Number of	Number of	Flag CY	Skip condition
ion ode	D ₉ D ₀	words 1	cycles 1	1 lag C I	OKIP CONDITION
Opera-	$p_6 \leftarrow 0$ when TABP p instruction is executed.				<u>-</u>
on:	$p_6 \leftarrow 0$ when TABP p instruction is executed.	Description: S	nstruction is ex TABP p instructi	ata area to page ecuted. This instion.	es 0 to 63 when the TABP struction is valid only for the

	eset Carry flag)				
Instruc-		Number of	Number of	Flag CY	Skip condition
tion code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1	cycles 1	0	-
Opera-	(CY) ← 0		Arithmetic opera		
tion:			Clears (0) to ca		
RCP (F	Reset Port C)	ı			
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 0 0 0 1 1 0 0 2 2 8 C 16	1	1	-	-
Opera-	(C) ← 0	Grouping: I	nput/Output op	eration	
tion:		Description: 0			
RD (Re	eset port D specified by register Y)				
Instruc-		Number of	Number of	Flag CY	Skip condition
tion code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1	cycles 1	0	<u> </u>
Opera-	$(D(Y)) \leftarrow 0$				-
tion:	However,		nput/Output op		ecified by register Y.
	(Y) = 0 to 4	Note: ((Y) = 0 to 4.		
			Do not execute set to register Y		if values except above are
			· ·		
DT (Da	eTurn from subroutine)				
Instruc-	Turriori subiouille)	Number of	Number of	Flag CV	Skin condition
tion code	D9 D0	words	cycles	Flag CY	Skip condition
	0 0 0 1 0 0 1 0 0 1 0 0 2 0 4 4 16	1	2	-	-
Opera- tion:	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$		Return operatio		
	(6.) . (6.) .		Returns from su tine.	ibroutine to the	routine called the subrou-

RTI (R Instruc-	eTurn from Interrupt)	Number of	Number of		<u> </u>
on	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
ode	0 0 0 1 0 0 0 1 1 0 0 2 0 4 6 16	1	2	-	-
pera- n:	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	Grouping: F	Return operatio	n	
		Re sta th	eturns each val atus, NOP mod	ue of data poi de status by th ruction, regis	routine to main routine. nter (X, Y, Z), carry flag, sl ne continuous description ter A and register B to t
	ReTurn from subroutine and Skip)				
struc- on	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
ode	0 0 0 1 0 0 0 1 0 1 2 0 4 5 16	1	2	-	Skip at uncondition
pera- on:	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$		Return operatio		e routine called the subrou
UPT	(Reset UPT flag)	l			
nstruc- on	D ₉ D ₀	Number of words	Number of cycles	Flag CY	Skip condition
ode	0 0 0 1 0 1 1 0 2 0 5 8	1	1	-	-
Opera- ion:	(UPTF) ←0		Other operation		
OH.			Clears (0) to the UPTF.	e high-order bi	t reference enable flag
		Note: E	Even when the	order 2 bits of	e instruction (TABP p) is ex ROM reference data is not
	Set Bit)	1			
nstruc-	D ₉ D ₀	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
	0 0 0 1 0 1 1 1 1 j j 2 0 5 C +j 16				
on code Opera-	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Bit operation		oit specified by the value j in

SBK (S	Set BanK flag)	Number of	Number of		
on	D9 D0	words	cycles	Flag CY	Skip condition
ode	0 0 0 1 0 0 0 0 1 1 1 1 1 16	1	1	-	-
pera- on:	$p_6 \leftarrow 1$ when TABP p instruction is executed.		Other operation		
OII.		1	TABP p instruct only for the TAE	ion is executed BP p instruction	ges 64 to 127 when the d. This instruction is valid a. d for the M34571G4/G6.
	et Carry flag)				
nstruc- ion	D9 Do	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 0 0 1 1 1 2 0 0 7 16	1	1	1	-
Opera- tion:	(CY) ← 1		Arithmetic opera		
nstruc-	Set Port C)	Number of	Number of	Flag CY	Skip condition
tion code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1	cycles 1	-	-
Opera-	(C) ← 1	Grouping: I	nput/Output op	eration	
tion:			Sets (1) to port		
SD (Se	et port D specified by register Y)				
Instruc- tion		Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 1 0 1 0 1 2 0 1 5 16	1	1	-	-
Opera-	$(D(Y)) \leftarrow 1$	Grouping: I	nput/Output op	eration	
tion:	(Y) = 0 to 4	Note: (Y) = 0 to 4.	this instruction	ified by register Y. if values except above ar

	(Skip Equal, Accumulator with immediate data n)			
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 1 0 0 1 0 1 2 0 2 5 16	2	2	-	(A) = n n = 0 to 15
	0 0 0 1 1 1 1 n n n n 2 0 7 n 16	Grouping: 0	Comparison ope	eration	
Opera- tion:	(A) = n ? n = 0 to 15	E	equal to the value Executes the ne	ue n in the imn ext instruction v	n the contents of register A is nediate field. when the contents of register the immediate field.
SEAM	(Skip Equal, Accumulator with Memory)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 1 0 0 1 1 0 2 0 2 6 16	1	1	-	(A) = (M(DP))
Opera- tion:	(A) = (M(DP)) ?	Grouping: 0	Comparison ope	eration	
		E	equal to the cor	ntents of M(DP ext instruction v	when the contents of register
SNZ0 (Skip if Non Zero condition of external interrupt 0	request flag)			
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 1 1 1 0 0 0 2 0 3 8 16	1	1	-	V10 = 0 : (EXF0) = 1
Opera-	V10 = 0 : (EXF0) = 1 ? (EXF0) ← 0		nterrupt operati		
tion:			$v_{10} = 0$:	Clears (U) to t	
tion:	V10 = 1 : SNZ0 = NOP (V10 : bit 0 of the interrupt control register V1)	r E ii	EXF0 is "1". Wh	en the EXF0 f	he EXF0 flag and skips the 0 interrupt request flag lag is "0", executes the next n is equivalent to the NOP
SNZ1 (V10 = 1 : SNZ0 = NOP	request flag)	EXF0 is "1". Wh nstruction. When V10 = 1: nstruction.	en the EXF0 f	0 interrupt request flag lag is "0", executes the next
SNZ1 (nstruc- tion	V10 = 1 : SNZ0 = NOP (V10 : bit 0 of the interrupt control register V1) Skip if Non Zero condition of external interrupt 1	r E ii \	EXF0 is "1". Wh nstruction. When V10 = 1 :	en the EXF0 f	0 interrupt request flag lag is "0", executes the next
SNZ1 (Instruction code	V10 = 1 : SNZ0 = NOP (V10 : bit 0 of the interrupt control register V1) Skip if Non Zero condition of external interrupt 1 D9 D0 0 0 0 0 1 1 1 0 0 1 2 0 3 9 16	request flag) Number of words	EXF0 is "1". Whenstruction. When V10 = 1: Instruction. Number of cycles	en the EXF0 f This instructio	0 interrupt request flag lag is "0", executes the next n is equivalent to the NOP
	V10 = 1 : SNZ0 = NOP (V10 : bit 0 of the interrupt control register V1) Skip if Non Zero condition of external interrupt 1	request flag) Number of words 1 Grouping: I	EXF0 is "1". When struction. When V10 = 1: Instruction. Number of cycles 1 Interrupt operation.	Flag CY	0 interrupt request flag lag is "0", executes the next n is equivalent to the NOP Skip condition

	(Skip if Non Zero condition of external Interrupt 0		T		
nstruc- ion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
ode	0 0 0 0 1 1 1 0 1 0 2 0 3 A 16	1	1	-	I12 = 0 : (INT0) = "L" I12 = 1 : (INT0) = "H"
pera- on:	I12 = 0 : (INT0) = "L" ? I12 = 1 : (INT0) = "H" ?		nterrupt operat		
O. I.	(I12: bit 2 of the interrupt control register I1)		NT0 pin is "L". evel of INT0 pir When I12 = 1 : \$	Executes the none is "H". Skips the next is Executes the recours	nstruction when the level of ext instruction when the nstruction when the level of the ext instruction when the next instruction when the
NZI1	(Skip if Non Zero condition of external Interrupt 1				
nstruc- on	D ₉ D ₀	Number of words	Number of cycles	Flag CY	Skip condition
ode	0 0 0 0 1 1 1 0 1 1 ₂ 0 3 B ₁₆	1	1	-	I22 = 0 : (INT1) = "L" I22 = 1 : (INT1) = "H"
pera- on:	I22 = 0 : (INT1) = "L" ? I22 = 1 : (INT1) = "H" ?	Grouping: I	nterrupt operat	ion	
		 	evel of INT1 pir When I22 = 1 : \$	n is "H". Skips the next i Executes the r	ext instruction when the nstruction when the level onext instruction when the
NZP (Skip if Non Zero condition of Power down flag)	Number of	Number of		
on ode	D9 D0	words	cycles	Flag CY	Skip condition
pera-	(P) = 1 ?	1	1	-	(P) = 1
ion:		Description: S	After skipping, t	nstruction when	n the P flag is "1". ins unchanged. vhen the P flag is "0".
	(Skip if Non Zero condition of Timer 1 interrupt re				
nstruc- on	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
ode	V12 = 0: (T1F) = 1?	1	1	-	V12 = 0 : (T1F) = 1
pera- on:	V12 = 0 : (11F) = 1 ? $(T1F) \leftarrow 0$		Timer operation		- TAE 0-
	V1 ₂ = 1 : SNZT1 = NOP (V1 ₂ = bit 2 of interrupt control register V1)	r	next instruction 1". When the T	when timer 1 in 1F flag is "0," e	ne T1F flag and skips the nterrupt request flag T1F is executes the next instruction is equivalent to the NOP

	(Skip if Non Zero condition of Timer 2 interrupt re				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 0 0 0 0 0 1 2 2 8 1 16	1	1	-	V13 = 0 : (T2F) = 1
Opera- tion:	V13 = 0 : (T2F) = 1 ? (T2F) ← 0 V13 = 1 : SNZT2 = NOP (V13 = bit 3 of interrupt control register V1)	Description: V	next instruction 1". When the T	Clears (0) to the when timer 2 if 2F flag is "0", 6	he T2F flag and skips the interrupt request flag T2F is executes the next instruction in is equivalent to the NOP
SN7T3	(Skip if Non Zero condition of Timer 3 interrupt re	equest flag)			
nstruc-		Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 0 0 0 0 1 0 2 2 8 2 16	1	1	-	V20 = 0 : (T3F) = 1
Opera- tion:	V20 = 0: $(T3F) = 1$? $(T3F) \leftarrow 0$		imer operation		
	V20 = 1 : SNZT3 = NOP	r " V	next instruction 1". When the T	when timer 3 i 3F flag is "0", e	he T3F flag and skips the interrupt request flag T3F is executes the next instruction is equivalent to the NOP
SNZVE	O (Skip if Non Zero condition of Voltage Detector i	interrupt requ	est flag)		
nstruc- ion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
ode Opera-	1 0 1 0 0 0 1 0 1 0 2 2 8 A 16 V23 = 0: (VDF) = 1?	1	1	-	V23 = 0 : (VDF) = 1
ion:	V23 = 1 : SNZVD = NOP	Description: V	detector interrup clears (0) to the 0".	Skips the next pt request flag VDF flag. The	t instruction when voltage VDF is "1". After skipping, VDF flag is not cleared to in is equivalent to the NOP
	(System ReSet)				
SRST					
nstruc- ion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
nstruc- ion code	· ·			Flag CY	Skip condition

	(Set UPT flag)				
Instruc-	·	Number of words	Number of cycles	Flag CY	Skip condition
code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	-	-
Opera-	(UPTF) ←1	Grouping:	Other operation		
tion:		Note:	When the table	reference instr 2 bits of ROM r	eference enable flag UPTF. uction (TABP p) is executed, eference data is transferred ter D.
SZB j (Skip if Zero, Bit)				
Instruc- tion	Ds Do	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 1 0 0 0 j j 2 0 2 j 16	1	1	-	(Mj(DP)) = 0 $j = 0 to 3$
Opera- tion:	(Mj(DP)) = 0 ? j = 0 to 3	Grouping:	Bit operation		•
			"0".	•	immediate field) of M(DP) is when the contents of bit j of
SZC (S	Skip if Zero, Carry flag)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 1 0 1 1 1 1 1 2 0 2 F 16	1	1	-	(CY) = 0
Opera- tion:	(CY) = 0 ?		Arithmetic opera		
			CY is "0". After skipping, t	he CY flag ren	n the contents of carry flag nains unchanged. when the contents of the CY
	kip if Zero, port D specified by register Y)				
Instruc- tion	D ₉ D ₀	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 1 0 0 1 0 0 2 0 2 4 16	2	2	-	(D(Y)) = 0
	0 0 0 0 1 0 1 0 1 1 2 0 2 B 16		Input/Output op		
Operation:	(D(Y)) = 0? (Y) = 0 to 4	Note:	register Y is "0". is "1". (Y) = 0 to 4.	Executes the this instruction	n a bit of port D specified by next instruction when the bit if values except above are

T1AB ((Transfer data to timer 1 and register R1 from Acc		· · ·		
nstruc- on	D ₉ D ₀	Number of words	Number of cycles	Flag CY	Skip condition
ode	1 0 0 0 1 1 0 0 0 0 2 2 3 0 16	1	1	-	-
pera-	(T17−T14) ← (B)	Grouping: 1	Timer operation		l
on:	$(R17-R14) \leftarrow (B)$ $(T13-T10) \leftarrow (A)$ $(R13-R10) \leftarrow (A)$		of timer 1 and ti	mer 1 reload r ster A to the lo	ster B to the high-order 4 bi egister R1. Transfers the w-order 4 bits of timer 1 ar
2AB ((Transfer data to timer 2 and register R2 from Acc	cumulator and	d register B)		
nstruc- on	•	Number of words	Number of cycles	Flag CY	Skip condition
ode	1 0 0 0 1 1 0 0 0 1 2 2 3 1 16	1	1	-	-
pera-	$(T27-T24) \leftarrow (B)$	Grouping: 7	imer operation	1	
ion:	$(R27-R24) \leftarrow (B)$ $(T23-T20) \leftarrow (A)$ $(R23-R20) \leftarrow (A)$		of timer 2 and ti	mer 2 reload r ster A to the lo	ster B to the high-order 4 bi egister R2. Transfers the w-order 4 bits of timer 2 ar
	(Transfer data to timer 3 and register R3L from Ad	l ccumulator ar	<u> </u>		
nstruc- on	D ₉ D ₀	Number of words	Number of cycles	Flag CY	Skip condition
ode	1 0 0 0 1 1 0 0 1 0 2 2 3 2 16	1	1	-	-
)pera- on:	(T37–T34) ← (B) (R3L7–R3L4) ← (B)		Timer operation		
	(T33–T30) ← (A) (R3L3–R3L0) ← (A)		of timer 3 and ti	mer 3 reload r ster A to the lo	ster B to the high-order 4 bi egister R3L. Transfers the w-order 4 bits of timer 3 ar
	3 (Transfer data to register R3H from Accumulato				
nstruc- on	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
~d~	1 0 0 0 1 1 1 1 0 1 2 2 3 D 16	1	1	-	
ode Opera-	(R3H7−R3H4) ← (B)	Grouping: 1	I Timer operation		-

T3R3L	(Transfer data to timer 3 from register R3L)				
Instruc-	-	Number of	Number of	Flag CY	Skip condition
tion code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1	cycles 1	-	· -
Opera-	(T37–T30) ← (R3L7–R3L0)	Grouping:	Timer operation		
ion:	, , ,				ad register R3L to timer 3.
TAB (T	ransfer data to Accumulator from register B)				
nstruc-	D. D.	Number of	Number of	Flag CY	Skip condition
tion code	D ₉ D ₀	words 1	cycles 1	-	-
Opera-	(A) ← (B)	Grouping: F	Register to regis	ster transfer	
tion:		Description:	Transfers the co	ontents of regis	ster B to register A.
Instruc- tion code	Transfer data to Accumulator and register B from D9	Number of words	Number of cycles	Flag CY	Skip condition -
Opera- tion:	$(A) \leftarrow (117-114)$ $(A) \leftarrow (T13-T10)$		Franctors the bi		(T17–T14) of timer 1 to reg-
		i:	ster B.		(T13–T10) of timer 1 to regis-
TAB2 (Transfer data to Accumulator and register B from	n timer 2)			
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 1 1 0 0 0 1 2 2 7 1 16	1	1	-	-
Opera- tion:	(B) ← (T27–T24) (A) ← (T23–T20)		Timer operation		
	(1) (123 123)	Description: Transfers the high-order 4 bits (T27–T24) of timer 2 to register B. Transfers the low-order 4 bits (T23–T20) of timer 2 to register A.			

TAB3	(Transfer data to Accumulator an	d register B from	n timer 3)			
nstruc-			Number of	Number of	Flag CY	Skip condition
on ode	D9 D0 1 0 0 1 1 1 0 0 1 0		words 1	cycles 1	-	-
pera-	(B) ← (T37–T34)		Grouping:	 Timer operation	(
on:	(A) ← (T33–T30)		Description: 1	Fransfers the hister B.	gh-order 4 bits	s (T37–T34) of timer 3 to reg
	(Transfer data to Accumulator an	nd register B fron				
nstruc- on	D9 Dc)	Number of words	Number of cycles	Flag CY	Skip condition
ode	0 0 0 0 1 0 1 0 1 0	2 0 2 A 16	1	1	-	-
pera- on:	(B) ← (E7–E4) (A) ← (E3–E0)		Grouping: F	Register to regi	ster transfer	
A DD	m /Transfer data to Assumulator	and register D fr	om Drogram r	maman, in na	go n\	
	p (Transfer data to Accumulator	and register B fro	om Program r	memory in pa		
struc- on	D9 D0)	Number of words	Number of cycles	ge p) Flag CY	Skip condition
nstruc- on ode	D9 D0 0 0 1 0 p5 p4 p3 p2 p1 p0	2 0 8 p 16	Number of words	Number of cycles		Skip condition
struc- on ode pera-	D9 D0	Grouping: Aritt Description: Tran 0 ar regi orde bit (Whe Note: M32 Whe	Number of words 1 nmetic operation asfers bits 7 to be the ROM patsters A and D iter 2 bits (DR1, IDR2) of register this instruction at the sent this instructi	Number of cycles 3 n 4 to register B attern in address n page p. When page p. When page p. The properties of the prop	Flag CY and bits 3 to 0 (DR2 DR1 DR n UPTF is 1, T D, and "0" is s 1 stage of sta	to register A. These bits 7 to A3 A2 A1 A0)2 specified by ransfers bits 9, 8 to the low stored to the least significant ck register (SK) is used.
pera- on:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Grouping: Arith Description: Tran 0 ar regi orde bit (Whe Note: M32 Whe stag	Number of words 1 nemetic operation sfers bits 7 to be the ROM pat sters A and D i per 2 bits (DR1, IDR2) of registe en this instruction 1571G4: p = 0 1571GD: p = 0 en this instruction of the per	Number of cycles 3 n 4 to register B attern in address n page p. Whe DRo) of register r D. on is executed, to 31 to 47 to 127 on is executed, ster is used.	Flag CY and bits 3 to 0 (DR2 DR1 DR n UPTF is 1, T D, and "0" is s 1 stage of sta	to register A. These bits 7 to A3 A2 A1 A0)2 specified by ransfers bits 9, 8 to the low stored to the least significant ck register (SK) is used.
struc- on ode pera- on: ABPS struc-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Grouping: Ariti Description: Tran 0 ar regi orde bit (Whe Note: M34 M34 Whe stag	Number of words 1 nmetic operation affers bits 7 to be the ROM pat sters A and D iter 2 bits (DR1, IDR2) of registe en this instruction affers bits instruction affers be a stern affers be a	Number of cycles 3 n 4 to register B attern in address n page p. When page p. When page p. The properties of the prop	Flag CY and bits 3 to 0 (DR2 DR1 DR n UPTF is 1, T D, and "0" is s 1 stage of sta	to register A. These bits 7 to A3 A2 A1 A0)2 specified by ransfers bits 9, 8 to the low stored to the least significant ck register (SK) is used.
struc- on ode pera- on:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Grouping: Ariti Description: Tran 0 ar regi orde bit (Whe Note: M34 M34 Whe stag	Number of words 1 nmetic operation sfers bits 7 to be the ROM pat sters A and D i per 2 bits (DR1, IDR2) of registe per 10 per	Number of cycles 3 n 4 to register B attern in address n page p. Whe DRo) of register r D. on is executed, to 31 to 47 to 127 on is executed, ster is used. Number of	Flag CY - and bits 3 to 0 (DR2 DR1 DR n UPTF is 1, T D, and "0" is s 1 stage of sta be careful not	to register A. These bits 7 to A3 A2 A1 A0)2 specified by ransfers bits 9, 8 to the low stored to the least significant ck register (SK) is used.

nstruc-	ransfer data to Accumulator from register D)	Number of	Number of		
on	D ₉ D ₀	words	cycles	Flag CY	Skip condition
ode	0 0 0 1 0 1 0 0 0 1 2 0 5 1 16	1	1	-	-
pera-	$(A_2-A_0) \leftarrow (DR_2-DR_0)$	Grouping: F	Register to regis	ster transfer	
on:	(A ₃) ← 0	(Fransfers the co A2-A0) of regis '0" is stored to t	ter A.	ter D to the low-order 3 bit
Al1 (T	ransfer data to Accumulator from register I1)				
nstruc- on	D. D.	Number of words	Number of cycles	Flag CY	Skip condition
ode	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	-	-
pera-	(A) ← (I1)	Grouping: I	nterrupt operati	on	
on:		Description:			upt control register I1 to
nstruc- on	Transfer data to Accumulator from register I2) D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
ode	1 0 0 1 0 1 0 1 0 2 2 5 4 16	1	1	-	-
Opera- ion:	(A) ← (I2)	Description:	nterrupt operati Fransfers the co register A.		rupt control register I2 to
	Transfer data to Accumulator from register K0)				
nstruc- ion	D ₉ D ₀	Number of words	Number of cycles	Flag CY	Skip condition
ode	1 0 0 1 0 1 0 1 0 1 0 2 2 5 6 16	1	1	-	-
Opera- ion:	(A) ← (K0)		nput/Output op		
.5			Fransfers the co		on wakeup control register

Instruc-	Transfer data to Accumulator from register K1)	Number of	Number of	Г	
on	D9 D0	words	cycles	Flag CY	Skip condition
ode	1 0 0 1 0 1 1 0 1 1 2 2 5 9 16	1	1	-	-
pera- on:	(A) ← (K1)		nput/Output op		
			Transfers the co		n wakeup control registe
Γ ΑΚ2 (Transfer data to Accumulator from register K2)				
nstruc- ion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
ode	1 0 0 1 0 1 1 0 1 0 2 2 5 A 16	1	1	-	-
Opera- tion:	(A) ← (K2)	Grouping: I	nput/Output op	eration	
			I ransters the cα ⟨2 to register A		n wakeup control registe
	Transfer data to Accumulator from register L1)				
Instruc- tion code	D ₉ D ₀ 1 0 0 1 0 1 0 2 2 4 A 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	=
Opera- tion:	(A) ← (L1)	Description:	nput/Output op Transfers the co _1 to register A.	ontents of key-o	n wakeup control registe
TAM j	(Transfer data to Accumulator from Memory)	Number of	Number of		
tion	D ₉ D ₀	words	cycles	Flag CY	Skip condition
code	1 0 1 1 0 0 j j j j 2 2 C j 16	1	1	-	-
Opera- tion:	$(A) \leftarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$		RAM to register		
uon.	j = 0 to 15	6	exclusive OR or	peration is perfo	of M(DP) to register A, an ormed between register X e field, and stores the res

TAMR (Transfer data to Accumulator from register MR)				
Instruc-	Number of	Number of	Flag CY	Skip condition
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1	cycles 1	-	<u> </u>
Opera- (A) \leftarrow (MR)	Grouping: (Lock operation		
tion:	Description: 7			control register MR to reg-
TAPU0 (Transfer data to Accumulator from register PU0))			
Instruction D ₉ D ₀	Number of words	Number of cycles	Flag CY	Skip condition
code 1 0 0 1 0 1 0 1 1 1 1 2 2 5 7 16	1	1	-	-
Opera- (A) \leftarrow (PU0) tion:		nput/Output op		
	r	ransfers the co	ontents of pull-u	p control register PU0 to
TAPU1 (Transfer data to Accumulator from register PU1				
Instruction D ₉ D ₀	Number of words	Number of cycles	Flag CY	Skip condition
code	1	1	-	-
Opera- $(A) \leftarrow (PU1)$ tion:	Description: 7	nput/Output op Transfers the co egister A.		ip control register PU1 to
TAPU2 (Transfer data to Accumulator from register PU2	<u>'</u>			
Instruction D ₉ D ₀	Number of words	Number of cycles	Flag CY	Skip condition
code 1 0 0 1 0 1 1 1 1 1 2 2 5 F 16	1	1	-	-
Opera- $(A) \leftarrow (PU2)$ tion:	Description: 7	nput/Output op Transfers the co egister A.		p control register PU2 to

TASP (Transfer data to Accumulator from Stack Pointer)				
Instruc-		Number of	Number of	Floor CV	Chin condition
tion	D ₉ D ₀	words	cycles	Flag CY	Skip condition
code	0 0 0 1 0 1 0 0 0 0 2 0 5 0 16	1	1	-	-
Opera-	$(A_2-A_0) \leftarrow (SP_2-SP_0)$	Grouping: F	Register to regis	ster transfer	
tion:	(A ₃) ← 0	c	ransfers the co order 3 bits (A2- 0" is stored to t	-A ₀) of register	
TAV1 (Transfer data to Accumulator from register V1)				
Instruc- tion	D ₉ D ₀	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 1 0 1 0 0 2 0 5 4 16	1	1	-	-
Opera-	(A) ← (V1)	Grouping: In	nterrupt operati	on	
tion:			ransfers the co	ontents of inter	rupt control register V1 to
TAV2 (Tension Code	Transfer data to Accumulator from register V2) D9	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	(A) ← (V2)	Description: T	nterrupt operati		rupt control register V2 to
TAW1	Transfer data to Accumulator from register W1)				
Instruc- tion		Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 0 0 1 0 1 1 2 2 4 B 16	1	1	-	-
Operation:	(A) ← (W1)	Description: T	imer operation ransfers the co er A.		control register W1 to regis-

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (confidence of the confidence of the confid				
nstruc-	Number of	Number of	Flag CY	Skip condition
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	words 1	cycles 1	- lag O1	-
pera- (A) ← (W2)		Fimer operation		
on:		•		control register W2 to reg
	t	er A.		
TAW3 (Transfer data to Accumulator from register W3)				
nstruc- on D ₉ D ₀	Number of words	Number of cycles	Flag CY	Skip condition
ode	1	1	-	-
Opera- (A) ← (W3) on:		Timer operation		control register W3 to reg
AW5 (Transfer data to Accumulator from register W5)				
AW5 (Transfer data to Accumulator from register W5)	Number of	Number of		
on D ₉ D ₀	words	cycles	Flag CY	Skip condition
1 0 0 1 0 0 1 1 1 1 2 2 4 1 16	1	1	-	-
Opera- (A) ← (W5) on:	Description:	Fimer operation Fransfers the co er A.		control register W5 to reg
AX (Transfer data to Accumulator from register X)				
nstruc-	Number of words	Number of cycles	Flag CY	Skip condition
ode 0 0 0 1 0 1 0 0 1 0 2 0 5 2 16	1	1	-	-
Opera- $(A) \leftarrow (X)$ on:		Register to regis		wa Wita was alat
	Description:	ransters the co	ntents of registe	er X to register A.

ACHINE INSTRUCTIONS (INDEX BY ALPHABET) (AY (Transfer data to Accumulator from register Y)	Continuea)			
struc-	Number of	Number of	Flag CY	Skip condition
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 6 1	cycles 1	1 lag 01	ONP CONDITION
pera- $(A) \leftarrow (Y)$				-
$pera- (A) \leftarrow (T)$ on:		Register to regi		ster Y to register A.
AZ (Transfer data to Accumulator from register Z)				
struc- on D ₉ D ₀	Number of words	Number of cycles	Flag CY	Skip condition
ode 0 0 0 1 0 1 0 0 1 1 2 0 5 3 1	6 1	1	-	-
pera- $(A_1, A_0) \leftarrow (Z_1, Z_0)$ on: $(A_3, A_2) \leftarrow 0$		Register to regi		
	. (ster A. "0" is sto	ster Z to the low-order 2 bits pred to the high-order 2 bits
BA (Transfer data to register B from Accumulator)				
struc- on D ₉ D ₀	Number of words	Number of cycles	Flag CY	Skip condition
ode 0 0 0 0 0 0 1 1 1 0 2 0 0 E 1		1	-	-
pera- (B) ← (A) on:		Register to regi		ster A to register B.
DA (Transfer data to register D from Accumulator)				
struc-	Number of	Number of	Flag CY	Skip condition
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 6 1	cycles 1	-	-
pera- (DR2-DR0) ← (A2-A0)	Grouping: I	L Register to regi	L ster transfer	
on:	Description:		ontents of the I	ow-order 3 bits (A2-A0) of

TEAB (Transfer data to register E from Accumulator	and registe	r B)			
Instruc- tion	D9 D0	Numbe		Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 1 1 0 1 0 2 0 1 A	16 1		1	-	-
Opera-	(E7–E4) ← (B)	Groupin	g: F	Register to regis	ster transfer	
tion:	(E3–E0) ← (A)	Descrip	(ter E, and the	ter B to the high-order 4 bits contents of register A to the ister E.
	(Transfer data to register FR0 from Accumul					
Instruc- tion	D9 D0	Numbe		Number of cycles	Flag CY	Skip condition
code	1 0 0 0 1 0 1 0 0 0 2 2 2 8	16 1		1	-	-
Opera-	(FR0) ← (A)	Groupin	-	nput/Output op		
tion:		Descrip		ransfers the co ontrol register		ter A to port output structure
TFR1A Instruction code	(Transfer data to register FR1 from Accumul	Numbe		Number of cycles	Flag CY	Skip condition
Opera-	$(FR1) \leftarrow (A)$	16 1		1	-	<u>-</u>
tion:		Groupin Descrip	tion: T	nput/Output oper Transfers the co Control register	ntents of regis	ter A to port output structure
	ransfer data to register I1 from Accumulator)					
Instruc- tion	D9 D0	Numbe word		Number of cycles	Flag CY	Skip condition
code	1 0 0 0 0 1 0 1 1 1 2 2 1 7	16 1		1	-	-
Operation:	(I1) ← (A)	Groupin Descrip	tion: T	nterrupt operati Transfers the co ster I1.		ster A to interrupt control reg-

	Transfer data to register I2 from Accumulator)				
Instruc-	-	Number of	Number of	Flag CY	Skip condition
tion code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1	cycles 1	-	-
Opera-	$(12) \leftarrow (A)$				-
tion:	(12) ← (A)	Description:	nterrupt operati Fransfers the co ster I2.		ster A to interrupt control reg-
TK0A (Transfer data to register K0 from Accumulator)				
Instruc-	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 0 1 1 0 1 1 ₂ 2 1 _B ₁₆	1	1	-	-
Opera-	$(K0) \leftarrow (A)$	Grouping: I	nput/Output op	eration	
tion:			Fransfers the corrol register K0.	ontents of regis	ster A to key-on wakeup con-
TK1A (Transfer data to register K1 from Accumulator)				
Instruc- tion	D ₉ D ₀	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 0 1 0 1 0 0 2 2 1 4 16	1	1	-	-
Operation:	(K1) ← (A)	Description: 7	nput/Output op Fransfers the co rol register K1.		ster A to key-on wakeup con-
TK2A (Transfer data to register K2 from Accumulator)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 0 1 0 1 0 1 2 2 1 5 16	1	1	-	-
Opera-	(K2) ← (A)		nput/Output op		
tion:			Fransfers the corol register K2.	ontents of regis	ster A to key-on wakeup con-

	NE INSTRUCTIONS (INDEX BY ALPHABET) (co Transfer data to register L1 from Accumulator)				
Instruc-	Transfer data to register E1 from / tecamatator/	Number of	Number of	Flag CY	Skip condition
tion code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1	cycles 1	1 lag C1	OKIP COTTUINOTI
Opera-				-	-
opera- ion:	(L1) ← (A)		nput/Output op		ster A to key-on wakeup con
			rol register L1.	, , , , , , , , , , , , , , , , , , ,	
	Transfer data to Memory from Accumulator)				
Instruc- tion	D ₉ D ₀	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 1 0 1 1 j j j j 2 2 B j 16	1	1	-	-
Opera- tion:	$(M(DP)) \leftarrow (A)$ $(X) \leftarrow (X)EXOR(j)$		RAM to register		
	j = 0 to 15	6	exclusive OR o	peration is perf	of register A to M(DP), an formed between register X te field, and stores the result
	(Transfer data to register MR from Accumulator)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 0 1 0 1 1 0 2 2 1 6 16	1	1	-	-
Opera- tion:	$(MR) \leftarrow (A)$		Clock operation		ster A to clock control regis-
TDA A	Transfer data to register DA from Aggumulator)	t	er MR.		
IPAA (Instruc-	Transfer data to register PA from Accumulator)	Number of	Number of	Flag CY	Skip condition
tion code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1	cycles 1		- SKIP CONDITION
Oner-					-
Opera- ion:	$(PA_0) \leftarrow (A_0)$	Description:	Fimer operation Fransfers the le control register	ast significant	bit of register A (A ₀) to timer

TPSAB	(Transfer data to Prescaler and register RPS fro	m Accumulat	or and registe	er B)	
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 1 1 0 1 0 1 2 2 3 5 16	1	1	-	-
Opera-	$(RPS7-RPS4) \leftarrow (B)$	Grouping: T	imer operation		
tion:	$(TPS7-TPS4) \leftarrow (B)$ $(RPS3-RPS0) \leftarrow (A)$ $(TPS3-TPS0) \leftarrow (A)$	c ti	f prescaler and	prescaler relo	ter B to the high-order 4 bits bad register RPS. Transfers e low-order 4 bits of pres- ister RPS.
	(Transfer data to register PU0 from Accumulator	•			
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 1 0 1 1 0 1 2 2 2 D 16	1	1	-	-
Operation: TPU1A Instruction	(PU0) ← (A) (Transfer data to register PU1 from Accumulator D9 D0	Description: T	nput/Output oper ransfers the co er PU0. Number of cycles		ster A to pull-up control regis-
code	1 0 0 0 1 0 1 1 1 0 2 2 E 16	1	1	-	-
Operation:	(PU1) ← (A)	Description: T	nput/Output oper ransfers the co er PU1.		ter A to pull-up control regis-
	(Transfer data to register PU2 from Accumulator				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 1 0 1 1 1 1 1 2 2 2 F 16	1	1	-	-
Operation:	(PU2) ← (A)	Description: T	nput/Output ope Transfers the co er PU2.		ter A to pull-up control regis-

TR1AB	(Transfer data to register R1 from Accumulator	and register E	3)		
Instruc-	-	Number of	Number of	Flag CY	Skip condition
tion code	D ₉ D ₀ 1 0 0 0 1 1 1 1 1 1 2 2 3 F 16	words	cycles		<u> </u>
		1	1	-	<u>-</u>
Opera- tion:	(R17–R14) ← (B) (R13–R10) ← (A)		nput/Output op		to Die des bieb ender 4 bits
		(te	R17-R14) of re	load register R	ster B to the high-order 4 bits 11, and the contents of regis- 13–R10) of reload register
TV1A (Transfer data to register V1 from Accumulator)				_
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 1 1 1 1 1 1 2 0 3 F 16	1	1	-	-
Opera-	(V1) ← (A)	Grouping: I	nterrupt operat	ion	
tion:			ransfers the coster V1.	ontents of regis	ster A to interrupt control reg-
TV2A (Transfer data to register V2 from Accumulator)				
Instruc-		Number of	Number of	Flag CY	Skip condition
tion code	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 1	cycles 1	-	-
Opera-	(V2) ← (A)	Grouping: I	nterrupt operat	ion	
tion:			ransfers the co	ontents of regis	ster A to interrupt control reg-
TW1A	(Transfer data to register W1 from Accumulator)				
Instruc- tion	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 0 0 1 1 1 0 2 2 0 E 16	1	1	-	-
Operation:	(W1) ← (A)	Description: T	imer operation ransfers the co V1.		ter A to timer control register

TW2A (Transfer data to register W2 from Accumulator	·)			
Instruc- tion D₃ D₀	Number of words	Number of cycles	Flag CY	Skip condition
code 1 0 0 0 0 0 1 1 1 1 2 2 0 F 1		1	-	-
Dpera- (W2) ← (A)	Grouping:	Timer operation	<u> </u>	
ion:		Γransfers the co W2.	ontents of regis	ter A to timer control register
TW3A (Transfer data to register W3 from Accumulator	·)			
nstruc- ion D ₉ D ₀	Number of words	Number of cycles	Flag CY	Skip condition
ode 1 0 0 0 0 1 0 0 0 0 2 2 1 0 1	6 1	1	-	-
Opera- (W3) ← (A) tion:	Grouping:	Timer operation	l	
		W3.	intents of regis	ter A to timer control register
TW5A (Transfer data to register W5 from Accumulator	·)			
Instruc- tion D ₉ D ₀	Number of words	Number of cycles	Flag CY	Skip condition
1 0 0 0 0 1 0 0 1 0 2 2 1 2 1	6 1	1	-	-
Opera- (W5) ← (A) tion:		Timer operation		ter A to timer control register
TYA (Transfer data to register Y from Accumulator)		N5.		
nstruc-	Number of	Number of	Flag CY	Skip condition
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	words 6 1	cycles 1	-	-
Opera- $(Y) \leftarrow (A)$	Grouping: I	Register to regis	ster transfer	
ion:				ter A to register Y.

Instruc-	(Watchdog timer ReSeT)	Number of	Number of							
ion	D ₉ D ₀	words	cycles	Flag CY	Skip condition					
ode	1 0 1 0 1 0 0 0 0 0 2 2 A 0 16	1	1	-	(WDF1) = 1					
pera-	(WDF1) = 1 ?	Grouping: 0	Other operation	1						
on:	(WDF1) ← 0	f	when watchdog lag is "0", exec watchdog timer	timer flag WD utes the next in function when	nd skips the next instruction F1 is "1". When the WDF1 nstruction. Also, stops the executing the WRST ne DWDT instruction.					
ΣΑΜ j	(eXchange Accumulator and Memory data)									
nstruc- on	D ₉ D ₀	Number of words	Number of cycles	Flag CY	Skip condition					
ode	1 0 1 1 0 1 j j j 2 2 D j 16	1	1	-	-					
pera- on:	$ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \end{array} $	Grouping:	RAM to register	transfer						
	j = 0 to 15	:	petween register and stores the r	er X and the va	operation is performed lue j in the immediate fielder X.					
AMD	j (eXchange Accumulator and Memory data and	Decrement r	egister Y and	skip)						
nstruc- on	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition					
ode	1 0 1 1 1 1 j j j j 2 2 F j 16	1	1	-	(Y) = 15					
)pera-	$(A) \leftarrow \rightarrow (M(DP))$	Grouping:	RAM to register	transfer						
on:	$(X) \leftarrow (X)EXOR(j)$ $j = 0 \text{ to } 15$ $(Y) \leftarrow (Y) -1$	1	of register A, are petween register and stores the result and stores the result of subtracts 1 from As a result of substances 15, the next in	n exclusive OR er X and the varesult in registern the contents subtraction, when struction is sk						
(AMI j	(eXchange Accumulator and Memory data and	Increment rec	ister Y and sk	kip)						
nstruc- on		Number of words	Number of cycles	Flag CY	Skip condition					
ode	1 0 1 1 1 0 j j j j 2 2 E j 16	1	1	-	(Y) = 0					
on:	$(A) \leftarrow \rightarrow (M(DP))$ $(X) \leftarrow (X) \in (X) \in (X) \cap (X) $		RAM to register							
	$(X) \leftarrow (X)EXOR(j)$ j = 0 to 15 $(Y) \leftarrow (Y) + 1$		Description: After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition when the contents of register Y is 0, the next instruction is skipped. When the contents of register Y is not 0, the next instruction is executed.							

MACHINE INSTRUCTIONS (INDEX BY TYPES)

Para								ction		le					o	of	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀		kade notat		Number of words	Number of cycles	Function
	TAB	0	0	0	0	0	1	1	1	1	0	0	1	Е	1	1	(A) ← (B)
	ТВА	0	0	0	0	0	0	1	1	1	0	0	0	Ε	1	1	$(B) \leftarrow (A)$
	TAY	0	0	0	0	0	1	1	1	1	1	0	1	F	1	1	$(A) \leftarrow (Y)$
	TYA	0	0	0	0	0	0	1	1	0	0	0	0	С	1	1	$(Y) \leftarrow (A)$
ısfer	TEAB	0	0	0	0	0	1	1	0	1	0	0	1	Α	1	1	(E7–E4) ← (B) (E3–E0) ← (A)
Register to register transfer	TABE	0	0	0	0	1	0	1	0	1	0	0	2	Α	1	1	(B) ← (E7–E4) (A) ← (E3–E0)
to reç	TDA	0	0	0	0	1	0	1	0	0	1	0	2	9	1	1	$(DR_2-DR_0) \leftarrow (A_2-A_0)$
Register	TAD	0	0	0	1	0	1	0	0	0	1	0	5	1	1	1	$(A_2-A_0) \leftarrow (DR_2-DR_0)$ $(A_3) \leftarrow 0$
	TAZ	0	0	0	1	0	1	0	0	1	1	0	5	3	1	1	$(A_1, A_0) \leftarrow (Z_1, Z_0)$ $(A_3, A_2) \leftarrow 0$
	TAX	0	0	0	1	0	1	0	0	1	0	0	5	2	1	1	$(A) \leftarrow (X)$
	TASP	0	0	0	1	0	1	0	0	0	0	0	5	0	1	1	$ \begin{array}{l} (A_2-A_0) \leftarrow (SP_2-SP_0) \\ (A_3) \leftarrow 0 \end{array} $
	LXY x, y	1	1	X 3	X2	X 1	X 0	у3	y 2	y 1	y 0	3	Х	у	1	1	$(X) \leftarrow x \ x = 0 \text{ to } 15$ $(Y) \leftarrow y \ y = 0 \text{ to } 15$
RAM addresses	LZ z	0	0	0	1	0	0	1	0	Z 1	Z 0	0	4	8 +z	1	1	$(Z) \leftarrow z z = 0 \text{ to } 3$
RAM ad	INY	0	0	0	0	0	1	0	0	1	1	0	1	3	1	1	(Y) ← (Y) + 1
	DEY	0	0	0	0	0	1	0	1	1	1	0	1	7	1	1	$(Y) \leftarrow (Y) - 1$
	TAM j	1	0	1	1	0	0	j	j	j	j	2	С	j	1	1	$ \begin{array}{l} (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array} $
sfer	XAM j	1	0	1	1	0	1	j	j	j	j	2	D	j	1	1	$ \begin{array}{l} \text{(A)} \longleftrightarrow \text{(M(DP))} \\ \text{(X)} \longleftrightarrow \text{(X)EXOR(j)} \\ \text{j} = 0 \text{ to } 15 \end{array} $
RAM to register transfer	XAMD j	1	0	1	1	1	1	j	j	j	j	2	F	j	1	1	$ \begin{array}{l} (A) \longleftrightarrow (M(DP)) \\ (X) \longleftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \longleftarrow (Y) - 1 \end{array} $
RAM to	XAMI j	1	0	1	1	1	0	j	j	j	j	2	E	j	1	1	$ \begin{array}{l} (A) \longleftrightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) + 1 \end{array} $
	ТМА ј	1	0	1	0	1	1	j	j	j	j	2	В	j	1	1	$(M(DP)) \leftarrow (A)$ $(X) \leftarrow (X)EXOR(j)$ j = 0 to 15

		T
Skip condition	Carry flag CY	Detailed description
_	_	Transfers the contents of register B to register A.
-	_	Transfers the contents of register A to register B.
-	_	Transfers the contents of register Y to register A.
-	_	Transfers the contents of register A to register Y.
-	-	Transfers the contents of register B to the high-order 4 bits (E ₃ –E ₀) of register E, and the contents of register A to the low-order 4 bits (E ₃ –E ₀) of register E.
_	_	Transfers the high-order 4 bits (E7–E4) of register E to register B, and low-order 4 bits of register E to register A.
-	_	Transfers the contents of the low-order 3 bits (A2–A0) of register A to register D.
_	-	Transfers the contents of register D to the low-order 3 bits (A ₂ –A ₀) of register A. "0" is stored to the bit 3 (A ₃) of register A.
-	-	Transfers the contents of register Z to the low-order 2 bits (A ₁ , A ₀) of register A. "0" is stored to the high-order 2 bits (A ₃ , A ₂) of register A.
-	_	Transfers the contents of register X to register A.
_	_	Transfers the contents of stack pointer (SP) to the low-order 3 bits (A2–A0) of register A. "0" is stored to the bit 3 (A3) of register A.
Continuous description	-	Loads the value x in the immediate field to register X, and the value y in the immediate field to register Y. When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped.
_	_	Loads the value z in the immediate field to register Z.
(Y) = 0	_	Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. When the contents of register Y is not 0, the next instruction is executed.
(Y) = 15	_	Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
-	_	After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
-	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
(Y) = 15	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
(Y) = 0	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. when the contents of register Y is not 0, the next instruction is executed.
-	_	After transferring the contents of register A to M(DP), an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
L		ı

Para						lr	nstru	ction	coc	le					of	of	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D ₂	D1	D ₀		kade notat		Number of words	Number of cycles	Function
	LA n	0	0	0	1	1	1	n	n	n	n	0	7	n	1	1	(A) ← n
	TABP p	0	0	1	0	p 5	p4	рз	p2	p1	ро	0	8 +p	р	1	3	$\begin{array}{l} n = 0 \text{ to } 15 \\ \\ (SP) \leftarrow (SP) + 1 \\ (SK(SP)) \leftarrow (PC) \\ (PCH) \leftarrow p \text{ (Note 1)} \\ (PCL) \leftarrow (DR_2 - DR_0, A_3 - A_0) \\ (B) \leftarrow (ROM(PC))_{7^{-4}} \\ (A) \leftarrow (ROM(PC))_{3^{-0}} \\ (UPTF) = 1 \\ (DR_1, DR_0) \leftarrow (ROM(PC))_{9}, 8 \\ (DR_2) \leftarrow 0 \\ (PC) \leftarrow (SK(SP)) \end{array}$
	AM	0	0	0	0	0	0	1	0	1	0	0	0	Α	1	1	$(SP) \leftarrow (SP) - 1$ $(A) \leftarrow (A) + (M(DP))$
oeration	AMC	0	0	0	0	0	0	1	0	1	1	0	0	В	1	1	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$
Arithmetic operation	A n	0	0	0	1	1	0	n	n	n	n	0	6	n	1	1	$(A) \leftarrow (A) + n$ n = 0 to 15
	AND	0	0	0	0	0	1	1	0	0	0	0	1	8	1	1	$(A) \leftarrow (A) \text{ AND } (M(DP))$
	OR	0	0	0	0	0	1	1	0	0	1	0	1	9	1	1	$(A) \leftarrow (A) OR (M(DP))$
	SC	0	0	0	0	0	0	0	1	1	1	0	0	7	1	1	(CY) ← 1
	RC	0	0	0	0	0	0	0	1	1	0	0	0	6	1	1	(CY) ← 0
	SZC	0	0	0	0	1	0	1	1	1	1	0	2	F	1	1	(CY) = 0 ?
	СМА	0	0	0	0	0	1	1	1	0	0	0	1	С	1	1	$(A) \leftarrow \overline{(A)}$
	RAR	0	0	0	0	0	1	1	1	0	1	0	1	D	1	1	CY → A ₃ A ₂ A ₁ A ₀
	SB j	0	0	0	1	0	1	1	1	j	j	0	5	C +j	1	1	(Mj(DP)) ← 1 j = 0 to 3
Bit operation	RB j	0	0	0	1	0	0	1	1	j	j	0	4	C +j	1	1	$(Mj(DP)) \leftarrow 0$ j = 0 to 3
Bit op	SZB j	0	0	0	0	1	0	0	0	j	j	0	2	j	1	1	(Mj(DP)) = 0 ? j = 0 to 3

Note 1.M34571G4: p=0 to 31, M34571G6: p=0 to 47 and M34571GD: p=0 to 127.

Skip condition	Carry flag CY	Detailed description
Continuous description	_	Loads the value n in the immediate field to register A. When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped.
_	_	Transfers bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 7 to 0 are the ROM pattern in address (DR ₂ DR ₁ DR ₀ A ₃ A ₂ A ₁ A ₀) ₂ specified by registers A and D in page p. When UPTF is 1, Transfers bits 9, 8 to the low-order 2 bits (DR ₁ , DR ₀) of register D, and "0" is stored to the least significant bit (DR ₂) of register D. When this instruction is executed, 1 stage of stack register (SK) is used.
-	-	Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.
-	0/1	Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.
Overflow = 0	-	Adds the value n in the immediate field to register A, and stores a result in register A. The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation. Executes the next instruction when there is overflow as the result of operation.
-	_	Takes the AND operation between the contents of register A and the contents of M(DP), and stores the result in register A.
-	-	Takes the OR operation between the contents of register A and the contents of M(DP), and stores the result in register A.
-	1	Sets (1) to carry flag CY.
_	0	Clears (0) to carry flag CY.
(CY) = 0	-	Skips the next instruction when the contents of carry flag CY is "0". Executes the next instruction when the contents of carry flag CY is "1". The contents of carry flag CY remains unchanged.
-	_	Stores the one's complement for register A's contents in register A.
-	0/1	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.
_	-	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
_	_	Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
(Mj(DP)) = 0 j = 0 to 3	_	Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of M(DP) is "0". Executes the next instruction when the contents of bit j of M(DP) is "1".

Para						Ir	nstru	ction	cod	le					of	ţ	
meter	Mnemonic											He	kade	cim	umber c words	ber c	Function
Type of instructions		D9	D8	D7	D ₆	D ₅	D4	Дз	D ₂	D1	D ₀		notat		Number words	Number of cycles	
	SEAM	0	0	0	0	1	0	0	1	1	0	0	2	6	1	1	(A) = (M(DP)) ?
E .																	
oarison ratior	SEA n	0	0	0	0	1	0	0	1	0	1	0	2	5	2	2	(A) = n n = 0 to 15
Comparison operation																	11 = 0 to 15
		0	0	0	1	1	1	n	n	n	n	0	7	n			
	Ва	0	1	1	a 6	a 5	a 4	a 3	a 2	a1	a 0	1	8 +a	а	1	1	(PCL) ← a6–a0
		_										_					
ation	BL p, a	0	0	1	1	1	p4	рз	p2	p1	p ₀	0	E +p	р	2	2	(PCH) ←p (Note 1) (PCL) ← a6–a0
Branch operation		1	p 6	p 5	a 6	a 5	a 4	a 3	a 2	a ₁	a 0	2	а	а			
anch	BLA p	0	0	0	0	0	1	0	0		0	0	1	0	2	2	(РСн) ← p (Note 1)
Brit	БСА Р	U	U	U	U	U	'	U	U	0	U	U	'	U	2	_	$(PCH) \leftarrow \beta \text{ (Note 1)}$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$
		1	p 6	p 5	p 4	0	0	рз	p 2	p 1	p 0	2	р	р			
	BM a	0	1	0	a 6	a 5	a 4	a 3	a 2	a ₁	a 0	1	а	а	1	1	(SP) ← (SP) + 1
	J Q		•	Ü	u 0	u.o	σ.	u 0	<u> </u>	ω.	u 0	-	~	~	-		$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow 2$
_																	(PCL) ← a6–a0
Subroutine operation	BML p, a	0	0	1	1	0	p 4	рз	D 2	p 1	p 0	0	С	р	2	2	(SP) ← (SP) + 1
e obe	1,7.5												+p				$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note 1)$
outin		1	p ₆	p 5	a 6	a 5	a 4	аз	a 2	a1	a 0	2	а	а			$(PCL) \leftarrow a_6 - a_0$
Subr	BMLA p	0	0	0	0	1	1	0	0	0	0	0	3	0	2	2	(SP) ← (SP) + 1
						_	_					_					(SK(SP)) ← (PC) (PCн) ← p (Note 1)
		1	p ₆	p 5	p4	0	0	рз	p2	p1	p ₀	2	р	р			(PCL) ← (DR2–DR0, A3–A0)
	RTI	0	0	0	1	0	0	0	1	1	0	0	4	6	1	1	$(PC) \leftarrow (SK(SP))$
ion																	(SP) ← (SP) – 1
Return operation	RT	0	0	0	1	0	0	0	1	0	0	0	4	4	1	2	$(PC) \leftarrow (SK(SP))$
do uur			J	J		J	J	J		J	J		•	•		_	$(SP) \leftarrow (SP) - 1$
Retu	RTS	0	0	0	1	0	0	0	1	0	1	0	4	5	1	2	$(PC) \leftarrow (SK(SP))$
																	(SP) ← (SP) – 1

Note 1.M34571G4: p=0 to 31, M34571G6: p=0 to 47 and M34571GD: p=0 to 127.

Skip condition	Carry flag CY	Detailed description
(A) = (M(DP))	İ	Skips the next instruction when the contents of register A is equal to the contents of M(DP). Executes the next instruction when the contents of register A is not equal to the contents of M(DP).
(A) = n n = 0 to 15	-	Skips the next instruction when the contents of register A is equal to the value n in the immediate field. Executes the next instruction when the contents of register A is not equal to the value n in the immediate field.
-	_	Branch within a page : Branches to address a in the identical page.
-	_	Branch out of a page : Branches to address a in page p.
_	ı	Branch out of a page: Branches to address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
_	_	Call the subroutine in page 2 : Calls the subroutine at address a in page 2.
-	-	Call the subroutine : Calls the subroutine at address a in page p.
-	-	Call the subroutine : Calls the subroutine at address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
-	_	Returns from interrupt service routine to main routine. Returns each value of data pointer (X, Y, Z), carry flag, skip status, NOP mode status by the continuous description of the LA/LXY instruction, register A and register B to the states just before interrupt.
-	ı	Returns from subroutine to the routine called the subroutine.
No conditional skip	-	Returns from subroutine to the routine called the subroutine, and skips the next instruction at with no condition.

Para				•			stru					ieu)			o	ţ.	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D 3	D ₂	D1	D ₀		kade notat		Number o words	Number of cycles	Function
	DI	0	0	0	0	0	0	0	1	0	0	0	0	4	1	1	(INTE) ← 0
	EI	0	0	0	0	0	0	0	1	0	1	0	0	5	1	1	(INTE) ← 1
	SNZ0	0	0	0	0	1	1	1	0	0	0	0	3	8	1	1	V10 = 0: (EXF0) = 1 ? (EXF0) \leftarrow 0 V10 = 1: SNZ0 = NOP
	SNZI0	0	0	0	0	1	1	1	0	1	0	0	3	Α	1	1	I12 = 0 : (INT0) = "L"?
																	I12 = 1 : (INT0) = "H"?
ion	SNZ1	0	0	0	0	1	1	1	0	0	1	0	3	9	1	1	V11 = 0 : (EXF1) = 1 ? $(EXF1) \leftarrow 0$ V11 = 1 : SNZ1 = NOP
t operati	SNZI1	0	0	0	0	1	1	1	0	1	1	0	3	В	1	1	I22 = 0 : (INT1) = "L" ?
Interrupt operation																	I22 = 1 : (INT1) = "H" ?
	TAV1	0	0	0	1	0	1	0	1	0	0	0	5	4	1	1	(A) ← (V1)
	TV1A	0	0	0	0	1	1	1	1	1	1	0	3	F	1	1	(V1) ← (A)
	TAV2	0	0	0	1	0	1	0	1	0	1	0	5	5	1	1	(A) ← (V2)
	TV2A	0	0	0	0	1	1	1	1	1	0	0	3	Е	1	1	(V2) ← (A)
	TAI1	1	0	0	1	0	1	0	0	1	1	2	5	3	1	1	$(A) \leftarrow (I1)$
	TI1A	1	0	0	0	0	1	0	1	1	1	2	1	7	1	1	$(I1) \leftarrow (A)$
	TAI2	1	0	0	1	0	1	0	1	0	0	2	5	4	1	1	$(A) \leftarrow (I2)$
	TI2A	1	0	0	0	0	1	1	0	0	0	2	1	8	1	1	$(12) \leftarrow (A)$
	TPAA	1	0	1	0	1	0	1	0	1	0	2	Α	Α	1	1	$(PA_1,PA_0) \leftarrow (A_1,A_0)$
	TAW1	1	0	0	1	0	0	1	0	1	1	2	4	В	1	1	(A) ← (W1)
	TW1A	1	0	0	0	0	0	1	1	1	0	2	0	E	1	1	(W1) ← (A)
tion	TAW2	1	0	0	1	0	0	1	1	0	0	2	4	С	1	1	(A) ← (W2)
opera	TW2A	1	0	0	0	0	0	1	1	1	1	2	0	F	1	1	(W2) ← (A)
Timer operation	TAW3	1	0	0	1	0	0	1	1	0	1	2	4	D	1	1	(A) ← (W3)
	TW3A	1	0	0	0	0	1	0	0	0	0	2	1	0	1	1	(W3) ← (A)
	TAW5	1	0	0	1	0	0	1	1	1	1	2	4	F	1	1	(A) ← (W5)
	TW5A	1	0	0	0	0	1	0	0	1	0	2	1	2	1	1	$(W5) \leftarrow (A)$

Skip condition	Carry flag CY	Detailed description
-	_	Clears (0) to interrupt enable flag INTE, and disables the interrupt.
_	_	Sets (1) to interrupt enable flag INTE, and enables the interrupt.
V10 = 0 : (EXF0) = 1	-	When $V10 = 0$: Clears (0) to the EXF0 flag and skips the next instruction when external 0 interrupt request flag EXF0 is "1". When the EXF0 flag is "0", executes the next instruction. When $V10 = 1$: This instruction is equivalent to the NOP instruction. (V10: bit 0 of interrupt control register V1)
(INT0) = "L" However, I12 = 0	-	When I12 = 0: Skips the next instruction when the level of INT0 pin is "L". Executes the next instruction when the level of INT0 pin is "H".
(INT0) = "H" However, I12 = 1		When I12 = 1: Skips the next instruction when the level of INT0 pin is "H". Executes the next instruction when the level of INT0 pin is "L". (I12: bit 2 of interrupt control register I1)
V11 = 0 : (EXF1) = 1	_	When V11 = 0 : Clears (0) to the EXF1 flag and skips the next instruction when external 1 interrupt request flag EXF1 is "1". When the EXF1 flag is "0", executes the next instruction. When V11 = 1 : This instruction is equivalent to the NOP instruction. (V11: bit 1 of interrupt control register V1)
I22 = 0 : (INT1) = "L"	-	When I22 = 0: Skips the next instruction when the level of INT1 pin is "L". Executes the next instruction when the level of INT1 pin is "H".
I22 = 1 : (INT1) = "H"		When I22 = 1: Skips the next instruction when the level of INT1 pin is "H". Executes the next instruction when the level of INT1 pin is "L". (I22: bit 2 of interrupt control register I2)
-	_	Transfers the contents of interrupt control register V1 to register A.
-	_	Transfers the contents of register A to interrupt control register V1.
-	_	Transfers the contents of interrupt control register V2 to register A.
-	_	Transfers the contents of register A to interrupt control register V2.
_	-	Transfers the contents of interrupt control register I1 to register A.
-	-	Transfers the contents of register A to interrupt control register I1.
-	_	Transfers the contents of interrupt control register I2 to register A.
_	_	Transfers the contents of register A to interrupt control register I2.
-	_	Transfers the contents of register A (A ₁ , A ₀) to timer control register PA.
-	-	Transfers the contents of timer control register W1 to register A.
-	-	Transfers the contents of register A to timer control register W1.
-	-	Transfers the contents of timer control register W2 to register A.
_	-	Transfers the contents of register A to timer control register W2.
_	_	Transfers the contents of timer control register W3 to register A.
_	_	Transfers the contents of register A to timer control register W3.
_	_	Transfers the contents of timer control register W5 to register A.
-	-	Transfers the contents of register A to timer control register W5.

Para						lr	nstru	ction	coc	le					of	Jc				
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D ₂	D1	D ₀		kade notat		Number of words	Number of cycles	Function			
	TABPS	1	0	0	1	1	1	0	1	0	1	2	7	5	1	1	$ (B) \leftarrow (TPS7-TPS4) $ $ (A) \leftarrow (TPS3-TPS0) $			
	TPSAB	1	0	0	0	1	1	0	1	0	1	2	3	5	1	1	$(RPS7-RPS4) \leftarrow (B)$ $(TPS7-TPS4) \leftarrow (B)$ $(RPS3-RPS0) \leftarrow (A)$ $(TPS3-TPS0) \leftarrow (A)$			
	TAB1	1	0	0	1	1	1	0	0	0	0	2	7	0	1	1	(B) ← (T17–T14) (A) ← (T13–T10)			
	T1AB	1	0	0	0	1	1	0	0	0	0	2	3	0	1	1	$(R17-R14) \leftarrow (B)$ $(T17-T14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$ $(T13-T10) \leftarrow (A)$			
	TR1AB	1	0	0	0	1	1	1	1	1	1	2	3	F	1	1	$(R17-R14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$			
	TAB2	1	0	0	1	1	1	0	0	0	1	2	7	1	1	1	$ (B) \leftarrow (T27-T24) $ $ (A) \leftarrow (T23-T20) $			
Timer operation	T2AB	1	0	0	0	1	1	0	0	0	1	2	3	1	1	1	$(R27-R24) \leftarrow (B)$ $(T27-T24) \leftarrow (B)$ $(R23-R20) \leftarrow (A)$ $(T23-T20) \leftarrow (A)$			
Timer	TAB3	1	0	0	1	1	1	0	0	1	0	2	7	2	1	1	(B) ← (T37–T34) (A) ← (T33–T30)			
	ТЗАВ	1	0	0	0	1	1	0	0	1	0	2	3	2	1	1	$(R3L7-R3L4) \leftarrow (B)$ $(T37-T34) \leftarrow (B)$ $(R3L3-R3L0) \leftarrow (A)$ $(T33-T30) \leftarrow (A)$			
	ТЗНАВ	1	0	0	0	1	1	1	1	0	1	2	3	D	1	1	$(R3H7-R3H4) \leftarrow (B)$ $(R3H3-R3H0) \leftarrow (A)$			
	T3R3L	1	0	0	0	1	1	0	1	0	0	2	3	4	1	1	(T37) ← (R3L)			
	SNZT1	1	0	1	0	0	0	0	0	0	0	2	8	0	1	1	V12 = 0 : (T1F) = 1 ? After skipping, (T1F) \leftarrow 0 V12 = 1 : SNZT1=NOP			
	SNZT2	1	0	1	0	0	0	0	0	0	1	2	8	1	1	1	V13 = 0 : (T2F) = 1 ? After skipping, (T2F) \leftarrow 0 V13 = 1 : SNZT2=NOP			
	SNZT3	1	0	1	0	0	0	0	0	1	0	2	8	2	1	1	V20 = 0: (T3F) = 1 ? After skipping, (T3F) \leftarrow 0 V20 = 1: SNZT3=NOP			

Skip condition	Carry flag CY	Detailed description
-	_	Transfers the high-order 4 bits of prescaler to register B. Transfers the low-order 4 bits of prescaler to register A.
_	_	Transfers the contents of register B to the high-order 4 bits of prescaler and prescaler reload register RPS. Transfers the contents of register A to the low-order 4 bits of prescaler and prescaler reload register RPS.
_	_	Transfers the high-order 4 bits (T17–T14) of timer 1 to register B. Transfers the low-order 4 bits (T13–T10) of timer 1 to register A.
_	=	Transfers the contents of register B to the high-order 4 bits of timer 1 and timer 1 reload register R1L. Transfers the contents of register A to the low-order 4 bits of timer 1 and timer 1 reload register R1L.
_	_	Transfers the contents of register B to the high-order 4 bits (R17–R14) of reload register R1, and the contents of register A to the low-order 4 bits (R13–R10) of reload register R1.
-	-	Transfers the high-order 4 bits (T27–T24) of timer 2 to register B. Transfers the low-order 4 bits (T23–T20) of timer 2 to register A.
-	-	Transfers the contents of register B to the high-order 4 bits of timer 2 and timer 2 reload register R2L. Transfers the contents of register A to the low-order 4 bits of timer 2 and timer 2 reload register R2L.
-	_	Transfers the high-order 4 bits (T37–T34) of timer 3 to register B. Transfers the low-order 4 bits (T33–T30) of timer 3 to register A.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 3 and timer 3 reload register R3L. Transfers the contents of register A to the low-order 4 bits of timer 3 and timer 3 reload register R3L.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 3 reload register R3H. Transfers the contents of register A to the low-order 4 bits of timer 3 reload register R3H.
_	_	Transfers the contents of timer 3 reload register R3L to timer 3.
V12 = 0 : (T1F) = 1	_	When $V12 = 0$: Clears (0) to the T1F flag and skips the next instruction when timer 1 interrupt request flag T1F is "1". When the T1F flag is "0", executes the next instruction. When $V12 = 1$: This instruction is equivalent to the NOP instruction. (V12: bit 2 of interrupt control register V1)
V13 = 0 : (T2F) = 1	_	When V13 = 0 : Clears (0) to the T2F flag and skips the next instruction when timer 2 interrupt request flag T2F is "1". When the T2F flag is "0", executes the next instruction. When V13 = 1 : This instruction is equivalent to the NOP instruction. (V13: bit 3 of interrupt control register V1)
V20 = 0 : (T3F) = 1	_	When $V20 = 0$: Clears (0) to the T3F flag and skips the next instruction when timer 3 interrupt request flag T3F is "1". When the T3F flag is "0", executes the next instruction. When $V20 = 1$: This instruction is equivalent to the NOP instruction. (V20: bit 0 of interrupt control register V2)

Para						lr	nstru	ction	cod	e					of	Jc	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀		kade notat		Number of words	Number of cycles	Function
	IAP0	1	0	0	1	1	0	0	0	0	0	2	6	0	1	1	(A) ← (P0)
	OP0A	1	0	0	0	1	0	0	0	0	0	2	2	0	1	1	(P0) ← (A)
	IAP1	1	0	0	1	1	0	0	0	0	1	2	6	1	1	1	(A) ← (P1)
	OP1A	1	0	0	0	1	0	0	0	0	1	2	2	1	1	1	(P1) ← (A)
	IAP2	1	0	0	1	1	0	0	0	1	0	2	6	2	1	1	$(A_1, A_0) \leftarrow (P_{21}, P_{20})$ $(A_3, A_2) \leftarrow 0$
	OP2A	1	0	0	0	1	0	0	0	1	0	2	2	2	1	1	$(P21, P20) \leftarrow (A1, A0)$
	IAP3	1	0	0	1	1	0	0	0	1	1	2	6	3	1	1	$(A_1, A_0) \leftarrow (P3_1, P3_0)$ $(A_3, A_2) \leftarrow 0$
	ОРЗА	1	0	0	0	1	0	0	0	1	1	2	2	3	1	1	(P31, P30) ← (A1, A0)
	CLD	0	0	0	0	0	1	0	0	0	1	0	1	1	1	1	(D) ← 1
	RD	0	0	0	0	0	1	0	1	0	0	0	1	4	1	1	$(D(Y)) \leftarrow 0$ (Y) = 0 to 4
peration	SD	0	0	0	0	0	1	0	1	0	1	0	1	5	1	1	$(D(Y)) \leftarrow 1$ (Y) = 0 to 4
Input/Output operation	SZD	0	0	0	0	1	0	0	1	0	0	0	2	4	2	2	(D(Y)) = 0? (Y) = 0 to 4
O/tnc		0	0	0	0	1	0	1	0	1	1	0	2	В			
<u>=</u>	RCP	1	0	1	0	0	0	1	1	0	0	2	8	С	1	1	$(C) \leftarrow (0)$
	SCP	1	0	1	0	0	0	1	1	0	1	2	8	D	1	1	(C) ← (1)
	TFR0A	1	0	0	0	1	0	1	0	0	0	2	2	8	1	1	$(FR0) \leftarrow (A)$
	TFR1A	1	0	0	0	1	0	1	0	0	1	2	2	9	1	1	$(FR1) \leftarrow (A)$
	TAPU0	1	0	0	1	0	1	0	1	1	1	2	5	7	1	1	(A) ← (PU0)
	TPU0A	1	0	0	0	1	0	1	1	0	1	2	2	D	1	1	(PU0) ← (A)
	TAPU1	1	0	0	1	0	1	1	1	1	0	2	5	Е	1	1	(A) ← (PU1)
	TPU1A	1	0	0	0	1	0	1	1	1	0	2	2	E	1	1	(PU1) ← (A)
	TAPU2	1	0	0	1	0	1	1	1	1	1	2	5	F	1	1	(A) ← (PU2)
	TPU2A	1	0	0	0	1	0	1	1	1	1	2	2	F	1	1	(PU2) ← (A)
	IAK	1	0	0	1	1	0	1	1	1	1	2	6	F	1	1	(A0) ← (K) (A3–A1) ← 0

	ζ	
Skip condition	Carry flag C	Detailed description
_	-	Transfers the input of port P0 to register A.
-	-	Outputs the contents of register A to port P0.
-	_	Transfers the input of port P1 to register A.
-	_	Outputs the contents of register A to port P1.
-	-	Transfers the input of port P2 to the low-order 2 bits (A ₁ , A ₀) of register A. "0" is stored to the high-order 2 bits (A ₃ , A ₂) of register A.
-	-	Outputs the contents of the low-order 2 bits (A ₁ , A ₀) of register A to port P2.
_	_	Transfers the input of port P3 to the low-order 2 bits (A1, A0) of register A. "0" is stored to the high-order 2 bits (A3, A2) of register A.
_	_	Outputs the contents of the low-order 2 bits (A ₁ , A ₀) of register A to port P3.
-	_	Sets (1) to port D.
-	-	Clears (0) to a bit of port D specified by register Y.
-	-	Sets (1) to a bit of port D specified by register Y.
(D(Y)) = 0 Y = 0 to 4	_	Skips the next instruction when a bit of port D specified by register Y is "0". Executes the next instruction when a bit of port D specified by register Y is "1".
-	-	Clears (0) to port C.
-	_	Sets (1) to port C.
-	_	Transfers the contents of register A to port output structure control register FR0.
-	_	Transfers the contents of register A to port output structure control register FR1.
-	_	Transfers the contents of pull-up control register PU0 to register A.
-	_	Transfers the contents of register A to pull-up control register PU0.
-	-	Transfers the contents of pull-up control register PU1 to register A.
-	-	Transfers the contents of register A to pull-up control register PU1.
-	-	Transfers the contents of pull-up control register PU2 to register A.
-	-	Transfers the contents of register A to pull-up control register PU2.
-	_	Transfers the input of port K to the least significant bit (A ₀) of register A. "0" is stored to the high-order 3 bits (A ₃ –A ₁) of register A.

Para						Ir	stru	ction	cod	le					o o	o o o			
Type of instructions	Mnemonic	D9	D8	D7	D ₆	D ₅	D4	Dз	D ₂	D1	D ₀		cade notat		Number of words	Number of cycles	Function		
Olis	TAK0	1	0	0	1	0	1	0	1	1	0	2	5	6	1	1	(A) ← (K0)		
	TK0A	1	0	0	0	0	1	1	0	1	1	2	1	В	1	1	(K0) ← (A)		
uo	TAK1	1	0	0	1	0	1	1	0	0	1	2	5	9	1	1	(A) ← (K1)		
perati	TK1A	1	0	0	0	0	1	0	1	0	0	2	1	4	1	1	(K1) ← (A)		
put o	TAK2	1	0	0	1	0	1	1	0	1	0	2	5	A	1	1	$(A) \leftarrow (K2)$		
Input/Output operation	TK2A	1	0	0	0	0	1	0	1	0	1	2	1	5	1	1	(K2) ← (A)		
du	TAL1	1	0	0	1	0	0	1	0	1	0	2	4	A	1	1	$(A) \leftarrow (L1)$		
	TL1A	1	0	0	0	0	0	1	0	1	0	2	0	Α	1	1	(L1) ← (A)		
	TAMR			0			1			1			5				, , , ,		
		1	0		1	0		0	0		0	2		2	1	1	$(A) \leftarrow (MR)$		
	TMRA	1	0	0	0	0	1	0	1	1	0	2	1	6	1	1	$(MR) \leftarrow (A)$		
	NOP	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	(PC) ← (PC) + 1		
	POF	0	0	0	0	0	0	0	0	1	0	0	0	2	1	1	RAM back-up		
	EPOF	0	0	0	1	0	1	1	0	1	1	0	5	В	1	1	POF instruction valid		
	SNZP	0	0	0	0	0	0	0	0	1	1	0	0	3	1	1	(P) = 1 ?		
Other operation	WRST	1	0	1	0	1	0	0	0	0	0	2	Α	0	1	1	(WDF1) = 1 ? (WDF1) ← 0		
ther of	DWDT	1	0	1	0	0	1	1	1	0	0	2	9	С	1	1	Stop of watchdog timer function enabled		
	SRST	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1	System reset		
	RUPT	0	0	0	1	0	1	1	0	0	0	0	5	8	1	1	$(UPTF) \leftarrow 0$		
	SUPT	0	0	0	1	0	1	1	0	0	1	0	5	9	1	1	(UPTF) ← 1		
	SNZVD	1	0	1	0	0	0	1	0	1	0	2	8	Α	1	1	V23 = 0 : (VDF) = 1? V23 = 1 : SNZVD = NOP		
	RBK (Note 1)	0	0	0	1	0	0	0	0	0	0	0	4	0	1	1	$p_6 \leftarrow 0$ when TABP p instruction is executed.		
	SBK (Note 1)	0	0	0	1	0	0	0	0	0	1	0	4	1	1	1	$p_6 \leftarrow 1$ when TABP p instruction is executed.		

Note 1.This instruction cannot be used for the M34571G4/G6.

_		
Skip condition	Carry flag CY	Detailed description
_	_	Transfers the contents of key-on wakeup control register K0 to register A.
-	-	Transfers the contents of register A to key-on wakeup control register K0.
-	-	Transfers the contents of key-on wakeup control register K1 to register A.
-	-	Transfers the contents of register A to key-on wakeup control register K1.
-	-	Transfers the contents of key-on wakeup control register K2 to register A.
-	-	Transfers the contents of register A to key-on wakeup control register K2.
-	-	Transfers the contents of key-on wakeup control register L1 to register A.
-	-	Transfers the contents of register A to key-on wakeup control register L1.
_	-	Transfers the contents of clock control register MR to register A.
-	-	Transfers the contents of register A to clock control register MR.
-	-	No operation; Adds 1 to program counter value, and others remain unchanged.
-	-	Puts the system in RAM back-up state by executing the POF instruction after executing the EPOF instruction. Operations of all functions are stopped.
_	_	Makes the immediate after POF instruction valid by executing the EPOF instruction.
(P) = 1	-	Skips the next instruction when the P flag is "1". After skipping, the P flag remains unchanged. Executes the next instruction when the P flag is "0".
(WDF1) = 1		Clears (0) to the WDF1 flag and skips the next instruction when watchdog timer flag WDF1 is "1". When the WDF1 flag is "0", executes the next instruction. Also, stops the watchdog timer function when executing the WRST instruction immediately after the DWDT instruction.
-	-	Stops the watchdog timer function by the WRST instruction after executing the DWDT instruction.
-	_	System reset occurs.
-	_	Clears (0) to the high-order bit reference enable flag UPTF.
_	_	Sets (1) to the high-order bit reference enable flag UPTF.
V23 = 0 : (VDF) = 1	-	When $V23 = 0$: Skips the next instruction when voltage detector interrupt request flag VDF is "1". The VDF flag is not cleared to "0". When the VDF flag is "0", executes the next instruction. When $V23 = 1$: This instruction is equivalent to the NOP instruction.
_	-	Sets referring data area to pages 0 to 63 when the TABP p instruction is executed. This instruction is valid only for the TABP p instruction.
-	-	Sets referring data area to pages 64 to 127 when the TABP p instruction is executed. This instruction is valid only for the TABP p instruction.

INSTRUCTION CODE TABLE

	D9– D4	000000	000001	000010	000011	000100	000101	000110	000111	001000	001001	001010	001011	001100	001101	001110	001111	010000 to 010111	011000 to 011111
D3− \ D0	Hex, notation	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10–17	18–F
0000	0	NOP	BLA	SZB 0	BMLA	RBK ***	TASP	A 0	LA 0	TABP 0	TABP 16	TABP 32*	TABP 48**	BML	BML	BL	BL	ВМ	В
0001	1	SRST	CLD	SZB 1	_	SBK ***	TAD	A 1	LA 1	TABP 1	TABP 17	TABP 33*	TABP 49**	BML	BML	BL	BL	ВМ	В
0010	2	POF	-	SZB 2	-	-	TAX	A 2	LA 2	TABP 2	TABP 18	TABP 34*	TABP 50**	BML	BML	BL	BL	ВМ	В
0011	3	SNZP	INY	SZB 3	-	-	TAZ	A 3	LA 3	TABP 3	TABP 19	TABP 35*	TABP 51**	BML	BML	BL	BL	ВМ	В
0100	4	DI	RD	SZD	-	RT	TAV1	A 4	LA 4	TABP 4	TABP 20	TABP 36*	TABP 52**	BML	BML	BL	BL	ВМ	В
0101	5	EI	SD	SEAn	-	RTS	TAV2	A 5	LA 5	TABP 5	TABP 21	TABP 37*	TABP 53**	BML	BML	BL	BL	ВМ	В
0110	6	RC	-	SEAM	-	RTI	-	A 6	LA 6	TABP 6	TABP 22	TABP 38*	TABP 54**	BML	BML	BL	BL	ВМ	В
0111	7	SC	DEY	-	-	-	-	A 7	LA 7	TABP 7	TABP 23	TABP 39*	TABP 55**	BML	BML	BL	BL	ВМ	В
1000	8	-	AND	-	SNZ0	LZ 0	RUPT	A 8	LA 8	TABP 8	TABP 24	TABP 40*	TABP 56**	BML	BML	BL	BL	ВМ	В
1001	9	-	OR	TDA	SNZ1	LZ 1	SUPT	A 9	LA 9	TABP 9	TABP 25	TABP 41*	TABP 57**	BML	BML	BL	BL	ВМ	В
1010	Α	AM	TEAB	TABE	SNZI 0	LZ 2	-	A 10	LA 10	TABP 10	TABP 26	TABP 42*	TABP 58**	BML	BML	BL	BL	ВМ	В
1011	В	AMC	-	-	SNZI 1	LZ 3	EPOF	A 11	LA 11	TABP 11	TABP 27	TABP 43*	TABP 59**	BML	BML	BL	BL	ВМ	В
1100	С	TYA	СМА	-	-	RB 0	SB 0	A 12	LA 12	TABP 12	TABP 28	TABP 44*	TABP 60**	BML	BML	BL	BL	ВМ	В
1101	D	_	RAR	-	-	RB 1	SB 1	A 13	LA 13	TABP 13	TABP 29	TABP 45*	TABP 61**	BML	BML	BL	BL	ВМ	В
1110	Е	ТВА	TAB	-	TV2A	RB 2	SB 2	A 14	LA 14	TABP 14	TABP 30	TABP 46*	TABP 62**	BML	BML	BL	BL	ВМ	В
1111	F	-	TAY	SZC	TV1A	RB 3	SB 3	A 15	LA 15	TABP 15	TABP 31	TABP 47*	TABP 63**	BML	BML	BL	BL	ВМ	В

The above table shows the relationship between machine language codes and machine language instructions. D₃-D₀ show the low-order 4 bits of the machine language code, and D₉-D₄ show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "—."

The codes for the second word of a two-word instruction are described below.

	The second word
BL	10 0aaa aaaa
BML	10 0aaa aaaa
BLA	10 0p00 pppp
BMLA	10 0p00 pppp
SEA	00 0111 nnnn
SZD	00 0010 1011

- *, **, and *** cannot be used in the M34571G4.
- ** and *** cannot be used in the M34571G6.
- A page referred by the TABP instruction can be switched by the SBK and RBK instructions in the M34571GD.

The pages which can be referred by the TABP instruction after the RBK instruction is executed are 0 to 63.

The pages which can be referred by the TABP instruction after the SBK instruction is executed are 64 to 127 (Ex. TABP 0TABP 64).

When the SBK instruction is not used, the pages which can be referred by the TABP instruction are 0 to 63.

INSTRUCTION CODE TABLE

	D9- D4	100000	100001	100010	100011	100100	100101	100110	100111	101000	101001	101010	101011	101100	101101	101110	101111	110000 to 111111
D3− \ D0	Hex, notation	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F	30–3F
0000	0	_	TW3A	OP0A	T1AB	_	_	IAP0	TAB1	SNZT 1	-	WRST	TMA 0	TAM 0	XAM 0	XAMI 0	XAMD 0	LXY
0001	1	_	_	OP1A	T2AB	_	_	IAP1	TAB2	SNZT 2	-	-	TMA 1	TAM 1	XAM 1	XAMI 1	XAMD 1	LXY
0010	2	_	TW5A	OP2A	ТЗАВ	-	TAMR	IAP2	TAB3	SNZT 3	-	-	TMA 2	TAM 2	XAM 2	XAMI 2	XAMD 2	LXY
0011	3	_	_	ОР3А	_	_	TAI1	IAP3	-	-	-	-	TMA 3	TAM 3	XAM 3	XAMI 3	XAMD 3	LXY
0100	4	_	TK1A	_	T3R3L	_	TAI2	_	-	-	-	-	TMA 4	TAM 4	XAM 4	XAMI 4	XAMD 4	LXY
0101	5	_	TK2A	_	TPSAB	-	-	_	TABPS	_	-	-	TMA 5	TAM 5	XAM 5	XAMI 5	XAMD 5	LXY
0110	6	_	TMRA	_	-	-	TAK0	_	-	_	-	-	TMA 6	TAM 6	XAM 6	XAMI 6	XAMD 6	LXY
0111	7	_	TI1A	_	_	_	TAPU0	_	-	-	-	-	TMA 7	TAM 7	XAM 7	XAMI 7	XAMD 7	LXY
1000	8	_	TI2A	TFR0A	-	-	-	_	-	-	-	-	TMA 8	TAM 8	XAM 8	XAMI 8	XAMD 8	LXY
1001	9	_	-	TFR1A	-	-	TAK1	-	_	_	_	_	TMA 9	TAM 9	XAM 9	XAMI 9	XAMD 9	LXY
1010	Α	TL1A	_	_	-	TAL1	TAK2	_	-	SNZVD	-	TPAA	TMA 10	TAM 10	XAM 10	XAMI 10	XAMD 10	LXY
1011	В	_	TK0A	_	-	TAW1	-	_	-	-	-	-	TMA 11	TAM 11	XAM 11	XAMI 11	XAMD 11	LXY
1100	С	_	-	_	-	TAW2	-	_	-	RCP	DWDT	-	TMA 12	TAM 12	XAM 12	XAMI 12	XAMD 12	LXY
1101	D	_	_	TPU0A	ТЗНАВ	TAW3	-	_	-	SCP	-	-	TMA 13	TAM 13	XAM 13	XAMI 13	XAMD 13	LXY
1110	Е	TW1A	-	TPU1A	-	-	TAPU1	-	-	_	-	_	TMA 14	TAM 14	XAM 14	XAMI 14	XAMD 14	LXY
1111	F	TW2A	_	TPU2A	TR1AB	TAW5	TAPU2	IAK	-	_	-	-	TMA 15	TAM 15	XAM 15	XAMI 15	XAMD 15	LXY

The above table shows the relationship between machine language codes and machine language instructions. D₃–D₀ show the low-order 4 bits of the machine language code, and D₉–D₄ show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "—."

The codes for the second word of a two-word instruction are described below.

	The second word
BL	10 0aaa aaaa
BML	10 0aaa aaaa
BLA	10 0p00 pppp
BMLA	10 0p00 pppp
SEA	00 0111 nnnn
SZD	00 0010 1011

Electrical characteristics

Absolute maximum ratings

Table 25 Absolute maximum ratings

Symbol	Parameter	Conditions	Ratings	Unit
VDD	Supply voltage	-	-0.3 to 6.5	V
Vı	Input voltage P0, P1, P2 ₀ /INT0, P2 ₁ /INT1, P3, D ₀ -D ₃ , D ₄ /CNTR ₀ , K, RESET, X _{IN}	-	-0.3 to VDD+0.3	V
Vo	Output voltage P0, P1, P2, P3, D0-D3, D4/CNTR0, RESET	Output transistors in cut-off state	-0.3 to VDD+0.3	V
Vo	Output voltage C, XouT	-	-0.3 to VDD+0.3	V
Pd	Power dissipation	Ta = 25 °C	300	mW
Topr	Operating temperature range	-	-20 to 85	°C
Tstg	Storage temperature range	-	-40 to 125	°C

Recommended operating conditions

Table 26 Recommended operating conditions 1 (Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted)

Symbol	Parameter	Conditions			Limits			
Symbol	Falailletei			Min.	Тур.	Max.	Unit	
VDD	Supply voltage	f(STCK) ≤ 6MHz		4		5.5	V	
	(with a ceramic resonator)		2.7		5.5			
		$f(STCK) \le 2.2MHz$		2		5.5		
		f(STCK) ≤ 1.1MHz		1.8		5.5		
VDD	Supply voltage	f(STCK) ≤ 4.8MHz		4		5.5	V	
	(when an external clock is	$f(STCK) \le 3.2MHz$		2.7		5.5		
	used)	f(STCK) ≤ 1.6MHz		2		5.5		
		f(STCK) ≤ 0.8MHz		1.8		5.5		
VRAM	RAM back-up voltage	(at RAM back-up)		1.6		5.5	V	
Vss	Supply voltage				0		V	
VIH	"H" level input voltage	P0, P1, P2, P3, D0-D4, K		0.8Vpd		VDD	V	
		XIN		0.7Vdd		VDD		
		RESET, INTO, INT1		0.85VDD		VDD		
		CNTR0		0.85Vpd		Vdd		
VIL	"L" level input voltage	P0, P1, P2, P3, D0-D4, K	0		0.3VDD	mA		
		XIN		0			0.3Vdd	
	RESET, INTO, INT1			0			0.3Vpd	
			0		0.15Vpd			
IOH(peak)	"H" level peak output current	P3, D0-D3	VDD = 5V			-20	mA	
			VDD = 3V			-10	1	
		C, CNTR1	VDD = 5V			-30	1	
			VDD = 3V			-15	1	
IOH(avg)	"H" level average output current	P3, D0-D3	VDD = 5V			-10	mA	
	(Note 1)		VDD = 3V			-5	1	
		C, CNTR1	VDD = 5V			-15	1	
			VDD = 3V			-7	1	
IOL(peak)	"L" level peak output current	P0, P1, P2, P3, D0–D4, C,	VDD = 5V			24	l mA	
		RESET, CNTR0, CNTR1,	VDD = 3V			12		
IOL(avg)	vg) "L" level average output current	el average output current P0, P1, P2, P3, D0-D4, C, VDD	VDD = 5V			12	mA	
	(Note 1)	RESET, CNTR0, CNTR1, VDD = 3V				6		
ΣIOH(avg)	"H" level total average current	P3, D0-D3, C, CNTR1				-30	mA	
Σ IOL(avg)	"L" level total average current	P0, P10, P11, RESET			30	mA		
		P10, P11, P2, P3, D0–D4, C, Cl			30	1		

Note 1. The average output current is the average value during 100ms.

Table 27 Recommended operating conditions 2 (Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted)

Symbol	Parameter	Conditio			Limits		Unit
Symbol	Parameter	Conditions		Min.	Тур.	Max.	UTIIL
f(XIN)	Oscillation frequency	Through mode	VDD = 4.0 V to 5.5 V			6	MHz
	(with a ceramic resonator)		VDD = 2.7 V to 5.5 V			4.4	
			VDD = 2.0 V to 5.5 V			2.2	
			VDD = 1.8 V to 5.5 V			1.1	
		Internal frequency divided	VDD = 2.7 V to 5.5 V			6	
		by 2	VDD = 2.0 V to 5.5 V			4.4	
			VDD = 1.8 V to 5.5 V			2.2	
		Internal frequency divided	VDD = 2.0 V to 5.5 V			6	
		by 4, 8	VDD = 1.8 V to 5.5 V			4.4	
f(XIN)	Oscillation frequency	Through mode	VDD = 4.0 V to 5.5 V			4.8	MHz
	(with an external clock input)		VDD = 2.7 V to 5.5 V			3.2	
			VDD = 2.0 V to 5.5 V			1.6	
			VDD = 1.8 V to 5.5 V			0.8	
		Internal frequency divided	VDD = 2.7 V to 5.5 V			4.8	
		by 2	VDD = 2.0 V to 5.5 V			3.2	
			VDD = 1.8 V to 5.5 V			1.6	
		Internal frequency divided	VDD = 2.0 V to 5.5 V			4.8	
		by 4, 8	VDD = 1.8 V to 5.5 V			3.2	
f(CNTR)	Timer external input frequency	CNTR0, CNTR1				f(STCK)/6	Hz
tw(CNTR)	Timer external input period ("H" and "L" pulse width)	CNTR0, CNTR1		3/f(STCK)			S
TPON	Power-on reset circuit valid supply voltage rising time (Note 1)	$VDD = 0 \rightarrow 1.8V$				100	μs

Note 1. If the rising time exceeds the <u>maxim</u>um rating value, connect a capacitor between the <u>RESET</u> pin and Vss at the shortest distance, and input "L" level to <u>RESET</u> pin until the value of supply voltage reaches the minimum operating voltage.

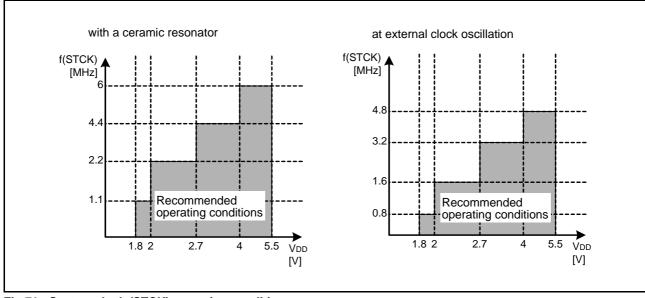


Fig 71. System clock (STCK) operating condition map

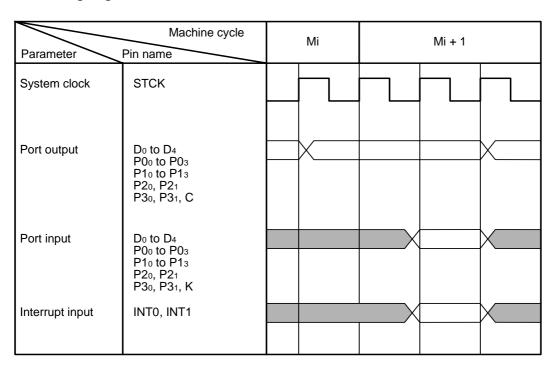
Electrical characteristics

Table 28 Electrical characteristics 1 (Ta = -20 °C to 85 °C, VDD = 1.8 to 5.5 V, unless otherwise noted)

Symbol	De	promotor	tor Tost cond	aanditiona		Limits		Unit
Symbol	Parameter		Test conditions		Min.	Тур.	Max.	Offic
Vон	"H" level output voltage	voltage P3, D0-D4	VDD = 5V	Iон = -10mA	3			V
		CNTR0		Iон = -3mA	4.1			
			VDD = 3V	Iон = -5mA	2.1			
				IOH = -1mA	2.4			
Vон	"H" level output voltage		VDD = 5V	IoL = -20mA	3			V
		CNTR1		IoL = -6mA	4.1			
			VDD = 3V	IoL =-10mA	2.1			
				IoL = -3mA	2.4			
Vol	"L" level output voltage		VDD = 5V	IoL = 15mA			2	V
		RESET, C, CNTR0, CNTR1		IoL = 5mA			0.9	
			VDD = 3V	IoL = 9mA			1.4	
				IoL = 3mA			0.9	
lін	"H" level input current	P0, P1, P2, P3, D0-D4, K RESET, INT0, INT1 CNTR0	VI = VDD				2	μΑ
lıL	"L" level input current	P0, P1, P2, P3, D0-D4, K RESET, INT0, INT1 CNTR0	VI = 0V P0, P1, P2 No pull-up				-2	μА
Rpu	Pull-up resistor value	P0, P1, P2 RESET	VI = 0V	VDD = 5V	30	60	125	kΩ
	'			VDD = 3V	50	120	250	
VT+-VT-	Hysteresis	RESET, INTO, INT1	VDD = 5V			1		V
			VDD = 3V			0.4		
VT+-VT-	Hysteresis	CNTR0	VDD = 5V			0.2		V
			VDD = 3V			0.2		
IDD	Supply current	at active mode	VDD = 5V	f(STCK) = f(XIN)/8		1.2	2.4	mA
		(with a ceramic resonator)	f(XIN) = 6MHz	f(STCK) = f(XIN)/4		1.3	2.6	
		(Note 1)	f(RING) = stop	f(STCK) = f(XIN)/2		1.6	3.2	1
				f(STCK) = f(XIN)		2.2	4.4	
			VDD = 3V	f(STCK) = f(XIN)/8		0.3	0.6	mA
			f(XIN) = 4MHz	f(STCK) = f(XIN)/4		0.4	0.8	
			f(RING) = stop	f(STCK) = f(XIN)/2		0.6	1.2	1
				f(STCK) = f(XIN)		0.8	1.6	
		at RAM back-up mode	Ta = 25°C			0.1	3	μΑ
		(POF instruction execution)	VDD = 5V				10	1
			VDD = 3V				6	1

Note 1.The voltage drop detection circuit operation current (IRST) is added.

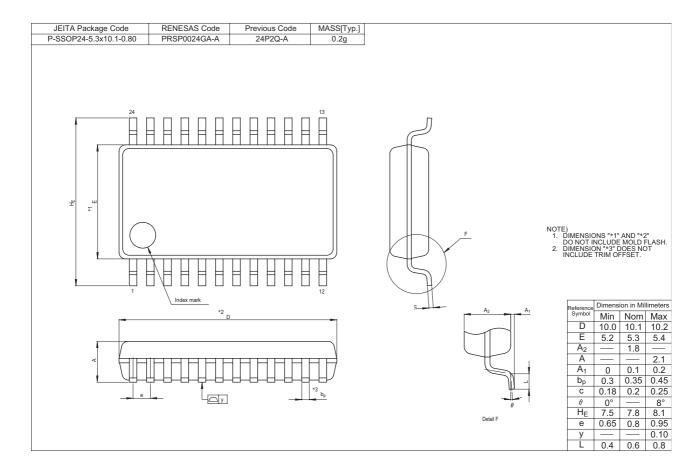
Voltage drop detection circuit characteristics


Table 29 Voltage drop detection circuit characteristics (Ta = −20 °C to 85 °C, unless otherwise noted)

Symbol	Dorometer	Test can dition a		Limits			
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
VRST-	Detection voltage	Ta = 25°C		1.65		V	
	(reset occurs) (Note 1)	–20°C≤ Ta < 0°C	1.6		2.2		
		0°C≤ Ta < 50°C	1.3		2.1		
		50°C≤ Ta ≤ 85°C	1.1		1.8		
VRST+	Detection voltage	Ta = 25°C		1.75		V	
	(reset release) (Note 2)	–20°C≤ Ta < 0°C	1.7		2.3		
		0°C≤ Ta < 50°C	1.4		2.2		
		50°C≤ Ta ≤ 85°C	1.2		1.9		
VINT	Detection voltage	Ta = 25°C		1.85		V	
	(Interrupt occurs) (Note 3)	–20°C≤ Ta < 0°C	1.8		2.4		
		0°C≤ Ta < 50°C	1.5		2.3		
		50°C≤ Ta ≤ 85°C	1.3		2.2		
VRST+ -VRST-	Detection voltage hysteresis			0.1		V	
IRST	Voltage drop detection circuit	VDD = 5V		40	80	μΑ	
	operation current (Note 4)	VDD = 3V		20	40		
		VDD = 1.65V		7	15		
Trst	Detection time (Note 5)	$VDD \rightarrow (VRST0.1V)$		0.2	1.2	ms	

Note 4.RsT is added to IDD (power current).

Note 5.The detection time (TRST) is defined as the time until reset occurs when the supply voltage (VDD) is falling to [VRST- -0.1V].


Basic timing diagram

Note 1.The detection voltage (VRST-) is defined as the voltage when reset occurs when the supply voltage (VDD) is falling. Note 2.The detection voltage (VRST+) is defined as the voltage when reset is released when the supply voltage (VDD) is rising from reset occurs.

Note 3. When the supply voltage goes lower than the detection voltage (VINT), the voltage drop detection circuit interrupt request flag (VDF) is set to "1".

PACKAGE OUTLINE

REVISION	HISTO	DRY
----------	-------	-----

4571 Group Datasheet

Rev.	Date		Description
		Page	Summary
1.00	Feb. 20, 2006	-	First edition issued
1.01	Apr. 18, 2007	1	FEATURES: Description revised
		4	Table 2: Subroutine nesting added
		6	Table 5: Port P2; P20 \rightarrow P20/INT0, P21 \rightarrow P21/INT1
		30	Table 17: Timer control register W1; CNTR1 input → CNTR0 input
		31	 Timer control register PA: Description revised Timer control register W3: Description revised (2) Prescaler: PRS → RPS
		32	(5) Timer 3: Description revised
		37	WATCHDOG TIMER: Description revised
		47	Table 21: Title revised
		48	Table 22: Title revised
		49	Fig 50: Ceramic resonator circuit → Ceramic oscillation circuit
		51	QzROM Writing Mode added
		59	NOTES ON NOISE added
		64	Timer control register W1: CNTR1 input → CNTR0 input
		69	SNZ1: $V1\underline{0} \rightarrow V1\underline{1}$
		86	SUPT: Description revised
		112	T3HAB: Description revised
		122	Table 28: IDD; (with a ceramic $\underline{\text{oscillator}}$) \rightarrow (with a ceramic $\underline{\text{resonator}}$)
1.02	May. 25, 2007	All pages	"PRELIMINARY" deleted

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect to the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the disclosed by Renesas as substance to change without any plan protein procedure and different information to the disclosed by Renesas and such as the disclosed through our website. (http://www.renesas.com/)

 3. Renesas has be used reasonable care in compling the information included in

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510