

4M High Speed SRAM (256-kword × 16-bit)

REJ03C0107-0200 Rev. 2.00 Dec.12.2008

Description

The R1RW0416D is a 4-Mbit high speed static RAM organized 256-kword \times 16-bit. It has realized high speed access time by employing CMOS process (6-transistor memory cell) and high speed circuit designing technology. It is most appropriate for the application which requires high speed, high density memory and wide bit width configuration, such as cache and buffer memory in system. Especially, L-Version and S-Version are low power consumption and it is the best for the battery backup system. The package prepares 400-mil 44-pin SOJ and 400-mil 44-pin plastic TSOPII for high density surface mounting.

Features

Single 3.3 V supply: 3.3 V ± 0.3 V
 Access time: 10 ns / 12 ns (max)

• Completely static memory

- No clock or timing strobe required

• Equal access and cycle times

• Directly TTL compatible

— All inputs and outputs

• Operating current: 145 / 130mA (max)

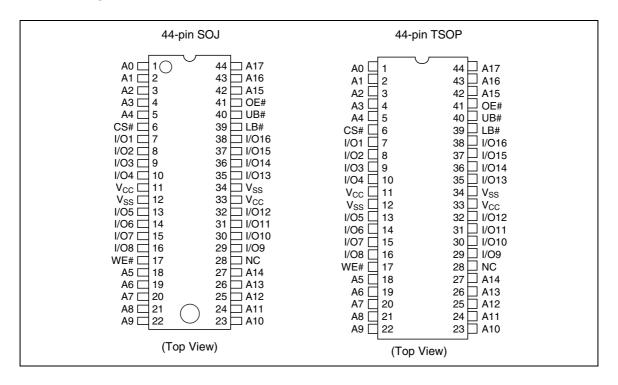
TTL standby current: 40 mA (max)
 CMOS standby current: 5 mA (max)

: 0.8 mA (max) (L-version)

: 0.5 mA (max) (S-version)

• Data retention current : 0.4 mA (max) (L-version)

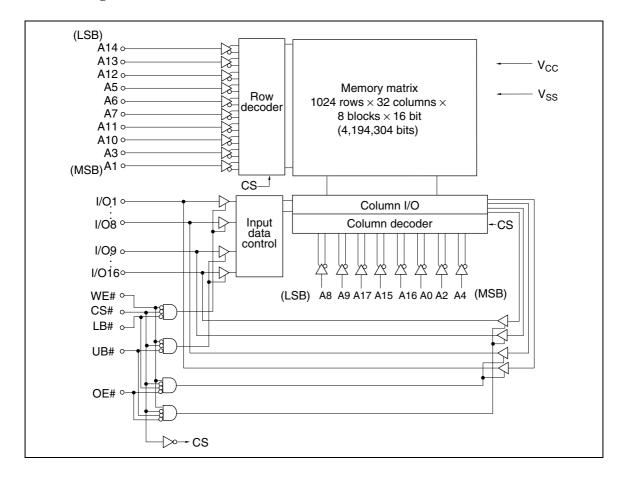
:0.2 mA (max) (S-version)


• Data retention voltage: 2.0 V (min) (L-version, S-version)

• Center V_{CC} and V_{SS} type pin out

Ordering Information

Type No.	Access time	Package
R1RW0416DGE-0PR	10 ns	
R1RW0416DGE-2PR	12 ns	400-mil 44-pin plastic SOJ (44P0K)
R1RW0416DGE-2LR	12 ns	
R1RW0416DGE-2SR	12 ns	
R1RW0416DSB-0PR	10 ns	
R1RW0416DSB-2PR	12 ns	400-mil 44-pin plastic TSOPII (44P3W-H)
R1RW0416DSB-2LR	12 ns	
R1RW0416DSB-2SR	12 ns	


Pin Arrangement

Pin Description

Pin name	Function
A0 to A17	Address input
I/O1 to I/O16	Data input/output
CS#	Chip select
OE#	Output enable
WE#	Write enable
UB#	Upper byte select
LB#	Lower byte select
V _{CC}	Power supply
V _{SS}	Ground
NC	No connection

Block Diagram

Operation Table

CS#	OE#	WE#	LB#	UB#	Mode	V _{CC} current	I/O1–I/O8	I/O9–I/O16	Ref. cycle
Н	×	×	×	×	Standby	I_{SB}, I_{SB1}	High-Z	High-Z	_
L	Н	Н	×	×	Output disable	I _{CC}	High-Z	High-Z	_
L	L	Н	L	L	Read	I _{CC}	Output	Output	Read cycle
L	L	Н	L	Н	Lower byte read	I _{CC}	Output	High-Z	Read cycle
L	L	Н	Н	L	Upper byte read	I _{CC}	High-Z	Output	Read cycle
L	L	Н	Н	Н	_	I _{CC}	High-Z	High-Z	_
L	×	L	L	L	Write	I _{CC}	Input	Input	Write cycle
L	×	L	L	Н	Lower byte write	I _{CC}	Input	High-Z	Write cycle
L	×	L	Н	L	Upper byte write	I _{CC}	High-Z	Input	Write cycle
L	×	L	Н	Н	_	I _{cc}	High-Z	High-Z	_

Note: H: V_{IH} , L: V_{IL} , \times : V_{IH} or V_{IL}

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply voltage relative to V _{SS}	V _{CC}	-0.5 to +4.6	V
Voltage on any pin relative to V _{SS}	V _T	-0.5^{*1} to $V_{CC} + 0.5^{*2}$	V
Power dissipation	P _T	1.0	W
Operating temperature	Topr	0 to +70	°C
Storage temperature	Tstg	-55 to +125	°C
Storage temperature under bias	Tbias	-10 to +85	°C

Notes: 1. V_T (min) = -2.0 V for pulse width (under shoot) ≤ 6 ns.

2. V_T (max) = V_{CC} + 2.0 V for pulse width (over shoot) \leq 6 ns.

Recommended DC Operating Conditions

 $(Ta = 0 \text{ to } +70^{\circ}C)$

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC} *3	3.0	3.3	3.6	V
	Vss*4	0	0	0	V
Input voltage	V _{IH}	2.0	_	$V_{CC} + 0.5*^2$	V
	V _{IL}	-0.5* ¹		0.8	V

Notes: 1. V_{IL} (min) = -2.0 V for pulse width (under shoot) \leq 6 ns.

- 2. V_{IH} (max) = V_{CC} + 2.0 V for pulse width (over shoot) \leq 6 ns.
- 3. The supply voltage with all $V_{\text{\footnotesize{CC}}}$ pins must be on the same level.
- 4. The supply voltage with all $V_{\mbox{\scriptsize SS}}$ pins must be on the same level.

DC Characteristics

(Ta = 0 to +70°C, V_{CC} = 3.3 V \pm 0.3 V, V_{SS} = 0 V)

Parameter		Symbol	Min	Max	Unit	Test conditions
Input leakage current		I _{LI}	_	2	μΑ	$V_{IN} = V_{SS}$ to V_{CC}
Output leakage current		I _{LO}	_	2	μΑ	$V_{IN} = V_{SS}$ to V_{CC}
Operating power supply current	10 ns cycle	I _{cc}	_	145	mA	Min cycle $CS\# = V_{IL}, I_{OUT} = 0 \text{ mA}$ Other inputs = V_{IH}/V_{IL}
	12 ns cycle	I _{CC}		130	mA	
Standby power supply current		I _{SB}	_	40	mA	Min cycle, $CS\# = V_{IH}$, Other inputs = V_{IH}/V_{IL}
		I _{SB1}	_	5	mA	$ \begin{split} &f = 0 \text{ MHz} \\ &V_{CC} \geq CS\# \geq V_{CC} - 0.2 \text{ V}, \\ &(1) & 0 \text{ V} \leq V_{IN} \leq 0.2 \text{ V or} \\ &(2) & V_{CC} \geq V_{IN} \geq V_{CC} - 0.2 \text{ V} \end{split} $
			1	0.8^{1}	mA	
			2	0.5^{2}	mA	
Output voltage		V _{OL}		0.4	V	I _{OL} = 8 mA
		V _{OH}	2.4	_	V	$I_{OH} = -4 \text{ mA}$

Note: 1. This characteristics is guaranteed only for L-version.

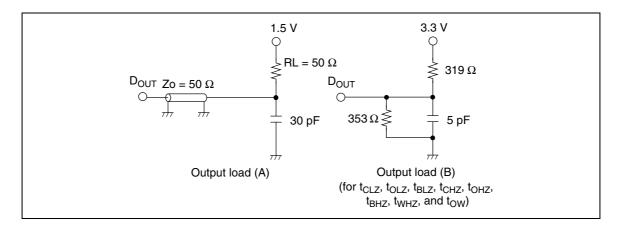
2. This characteristics is guaranteed only for S-version.

Capacitance

 $(Ta = +25^{\circ}C, f = 1.0 \text{ MHz})$

Parameter	Symbol	Min	Max	Unit	Test conditions
Input capacitance*1	C _{IN}	_	6	pF	$V_{IN} = 0 V$
Input/output capacitance*1	C _{I/O}	_	8	pF	V _{I/O} = 0 V

Note: 1. This parameter is sampled and not 100% tested.


AC Characteristics

(Ta = 0 to +70°C, V_{CC} = 3.3 V \pm 0.3 V, unless otherwise noted.)

Test Conditions

Input pulse levels: 3.0 V/0.0 VInput rise and fall time: 3 ns

Input and output timing reference levels: 1.5 V
Output load: See figures (Including scope and jig)

Read Cycle

R1RW0416D

		10ns Version		12ns Version				
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes	
Read cycle time	t _{RC}	10	_	12	_	ns	-	
Address access time	t _{AA}	_	10	_	12	ns		
Chip select access time	t _{ACS}	_	10	_	12	ns		
Output enable to output valid	t _{OE}	_	5	_	6	ns		
Byte select to output valid	t _{BA}	_	5	_	6	ns		
Output hold from address change	t _{OH}	3	_	3	_	ns		
Chip select to output in low-Z	t _{CLZ}	3	_	3	_	ns	1	
Output enable to output in low-Z	t _{OLZ}	0	_	0	_	ns	1	
Byte select to output in low-Z	t _{BLZ}	0	_	0	_	ns	1	
Chip deselect to output in high-Z	t _{CHZ}		5		6	ns	1	
Output disable to output in high-Z	t _{OHZ}	_	5	_	6	ns	1	
Byte deselect to output in high-Z	t _{BHZ}		5	_	6	ns	1	

REJ03C0107-0200 Rev.2.00,

Dec.12.2008, page 8 of 15

Write Cycle

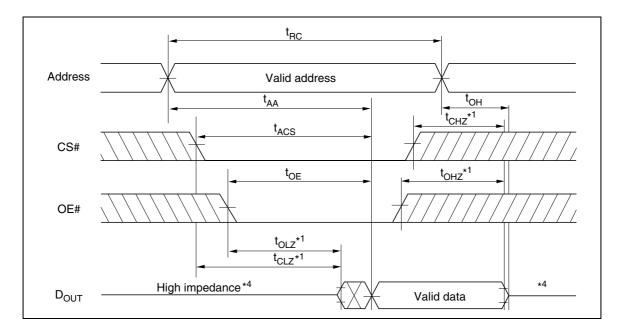
R1RW0416D

n 12ns Min 12 8	S Version Max	Unit	Notes
12	Max —		Notes
	_	ns	
8			
	_	ns	
8	_	ns	8
8	_	ns	7
8	_	ns	
0	_	ns	5
0	_	ns	6
6	_	ns	
0	_	ns	
3	_	ns	1
_	6	ns	1
	6	ns	1
	8 0 0 6 0	8 — 0 — 0 — 6 — 0 — 3 —	8 — ns 0 — ns 0 — ns 6 — ns 0 — ns - ns - ns - 6 ns

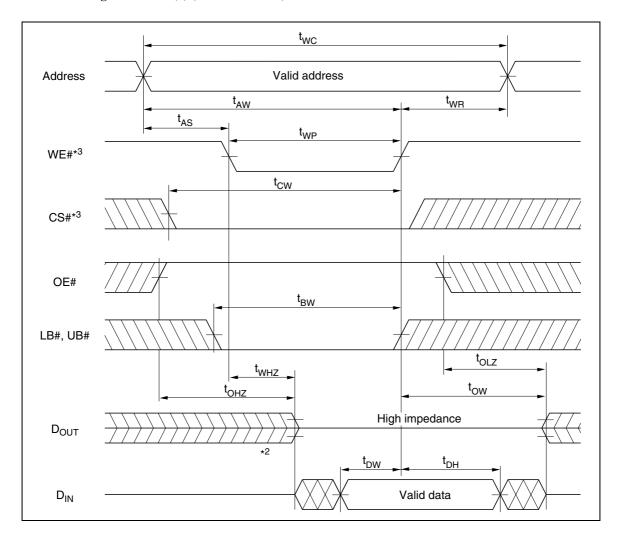
Notes: 1. Transition is measured ±200 mV from steady voltage with output load (B). This parameter is sampled and not 100% tested.

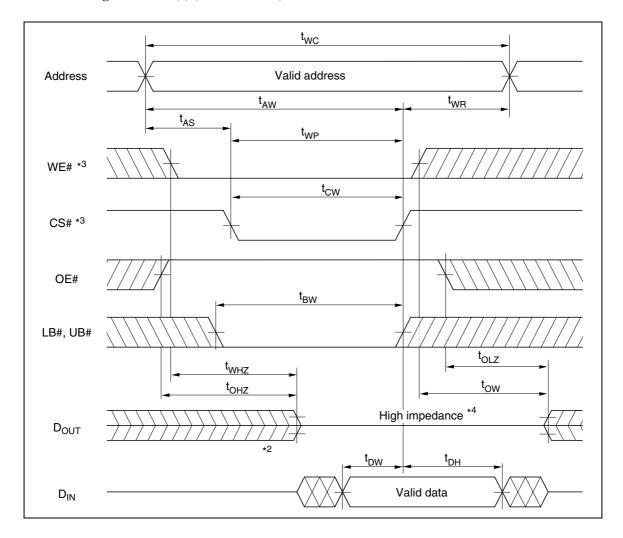

- 2. If the CS# or LB# or UB# low transition occurs simultaneously with the WE# low transition or after the WE# transition, output remains a high impedance state.
- 3. WE# and/or CS# must be high during address transition time.
- 4. If CS#, OE#, LB# and UB# are low during this period, I/O pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.
- 5. t_{AS} is measured from the latest address transition to the latest of CS#, WE#, LB# or UB# going low.
- 6. t_{WR} is measured from the earliest of CS#, WE#, LB# or UB# going high to the first address transition.
- 7. A write occurs during the overlap of a low CS#, a low WE# and a low LB# or a low UB# (t_{WP}). A write begins at the latest transition among CS# going low, WE# going low and LB# going low or UB# going low. A write ends at the earliest transition among CS# going high, WE# going high and LB# going high or UB# going high.
- 8. t_{CW} is measured from the later of CS# going low to the end of write.

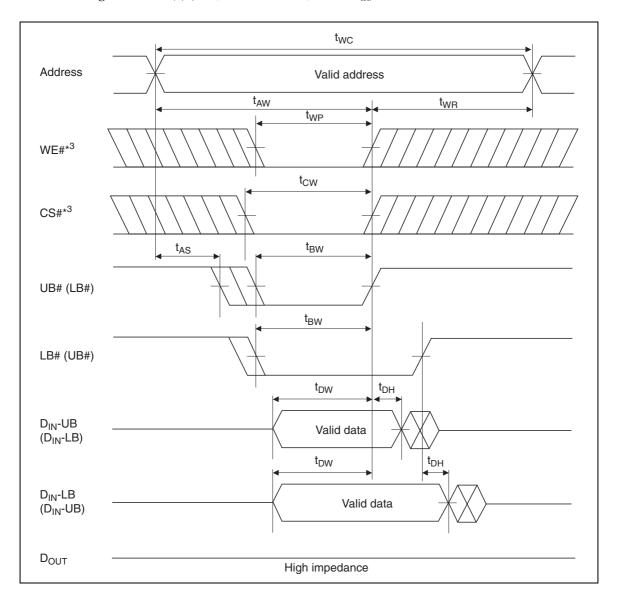
Dec.12.2008, page 9 of 15



Timing Waveforms

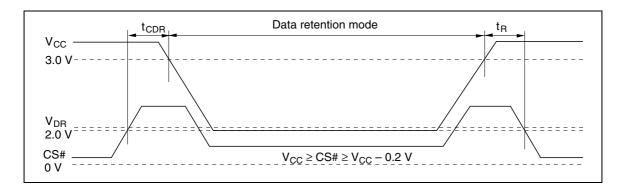

Read Timing Waveform (1) (WE# = V_{IH})


Read Timing Waveform (2) (WE# = $V_{IH},\,LB\# = V_{IL},\,UB\# = V_{IL})$


Write Timing Waveform (1) (WE# Controlled)

Write Timing Waveform (2) (CS# Controlled)

Write Timing Waveform (3) (LB#, UB# Controlled, OE# = V_{IH})


Low V_{CC} Data Retention Characteristics

 $(Ta = 0 \text{ to } +70^{\circ}\text{C})$

This characteristics is guaranteed only for L-version and S-version.

Parameter	Symbol	Min	Max	Unit	Test conditions
V _{CC} for data retention	V_{DR}	2.0	_	V	$\begin{split} &V_{CC} \geq CS\# \geq V_{CC} - 0.2 \text{ V},\\ &(1) 0 \ V \leq V_{IN} \leq 0.2 \ V \text{ or}\\ &(2) V_{CC} \geq V_{IN} \geq V_{CC} - 0.2 \ V \end{split}$
Data retention current L-Version	I _{CCDR}	_	400	μΑ	V _{CC} = 3 V
0.1/2			000		$V_{CC} \ge CS\# \ge V_{CC} - 0.2 \text{ V},$ (1) $0 \text{ V} \le V_{IN} \le 0.2 \text{ V or}$
S-Version			200		(1) $V \le V_{IN} \le 0.2 \text{ V or}$ (2) $V_{CC} \ge V_{IN} \ge V_{CC} - 0.2 \text{ V}$
Chip deselect to data retention time	t _{CDR}	0	_	ns	See retention waveform
Operation recovery time	t _R	5	_	ms	

Low V_{CC} Data Retention Timing Waveform

Revision History

R1RW0416D Series Data Sheet

Rev.	Date	Conte	nts of Modification
		Page	Description
0.01	Sep. 30, 2003	_	Initial issue
1.00	Mar.12.2004	_	Deletion of Preliminary
2.00	Dec.12.2008	_	Addition of access grade 10ns version and S-version.
		P2	The product lineup :R1RW0416DSB-0PR/DGE-0PR is added.
		P2	The product lineup :R1RW0416DSB-2SR/DGE-2SR is added.
		P7	Operating power supply current of 10ns cycle version is described to the
			DC characteristic.
			ISB1 of S-Version is described to the DC characteristic.
		P8/P9	The timing standard of 10ns version is described at the read cycle
			The timing standard of 10ns version is described at the write cycle
		P15	ICCDR of S-version is described to the low Vcc data retention characteristic.

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the such procedure in the procedure of the development of the development of the development of the procedure of the development of the de

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510