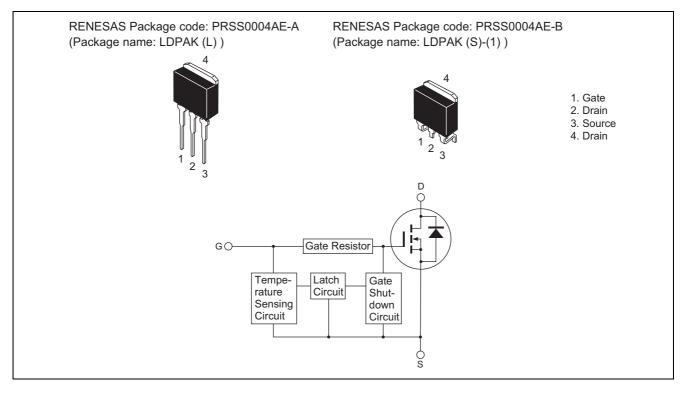
RENESAS

HAF2011(L), HAF2011(S)

Silicon N Channel MOS FET Series Power Switching

> REJ03G1138-0500 Rev.5.00 Aug 21, 2007

Description


This FET has the over temperature shut-down capability sensing to the junction temperature.

This FET has the built-in over temperature shut-down circuit in the gate area. And this circuit operation to shut-down the gate voltage in case of high junction temperature like applying over power consumption, over current etc.

Features

- Logic level operation (4 to 6 V Gate drive)
- High endurance capability against to the short circuit
- Built-in the over temperature shut-down circuit
- Latch type shut-down operation (Need 0 voltage recovery)

Outline

Absolute Maximum Ratings

		$(Ta = 25^{\circ}C)$
Symbol	Value	Unit
V _{DSS}	60	V
V _{GSS}	16	V
V _{GSS}	-2.5	V
ID	40	А
I _{D (pulse)} Note 1	80	А
I _{DR}	40	А
Pch Note 2	50	W
Tch	150	٥C
Tstg	-55 to +150	٥C
	VDSS VGSS VGSS ID ID (pulse) Note 1 IDR IDR Pch Note 2 Tch	VDSS 60 VGSS 16 VGSS -2.5 ID 40 ID (pulse) 80 IDR 40 Pch 50 Tch 150

Notes: 1. PW \leq 10 μ s, duty cycle \leq 1%

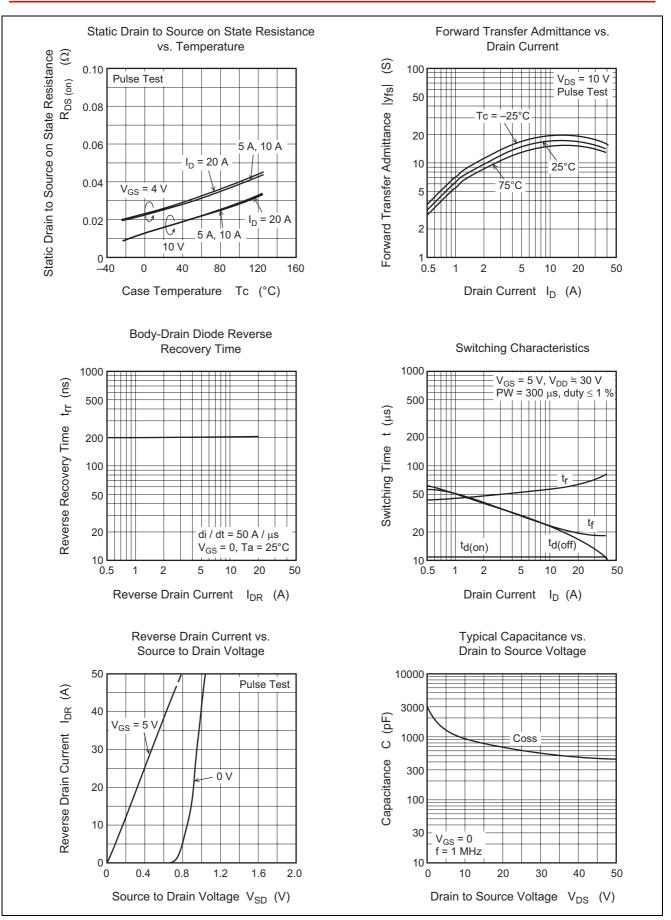
2. Value at Tc = 25° C

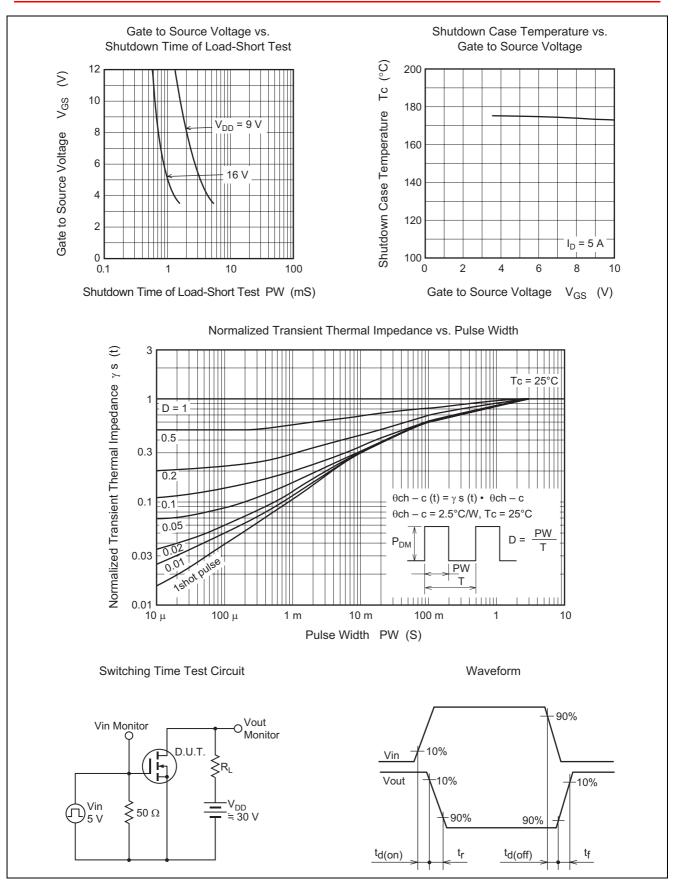
Typical Operation Characteristics

						$(Ta = 25^{\circ}C)$
Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Input voltage	V _{IH}	3.5	—	—	V	
	VIL	—	—	1.2	V	
Input current	I _{IH1}	—	—	100	μΑ	Vi = 8 V, V _{DS} = 0
(Gate non shut down)	I _{IH2}	—	—	50	μΑ	$Vi = 3.5 V, V_{DS} = 0$
	IIL	—	—	1	μΑ	Vi = 1.2 V, V _{DS} = 0
Input current	I _{IH (sd) 1}	—	0.8	—	mA	Vi = 8 V, V _{DS} = 0
(Gate shut down)	I _{IH (sd) 2}	—	0.35	—	mA	$Vi = 3.5 V, V_{DS} = 0$
Shut down temperature	Tsd	_	175	—	°C	Channel temperature
Gate operation voltage	V _{OP}	3.5	—	12	V	

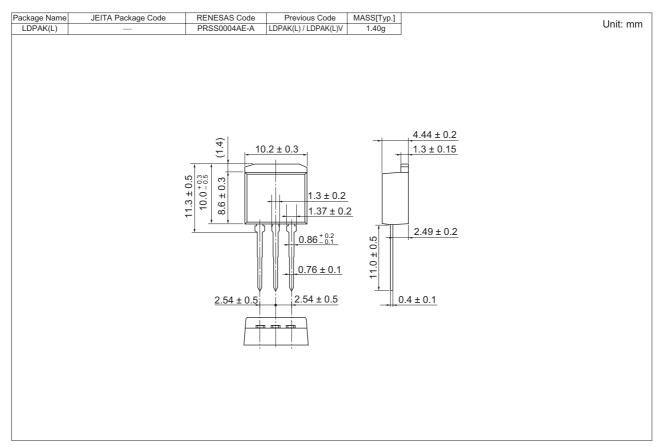
25°C) (To

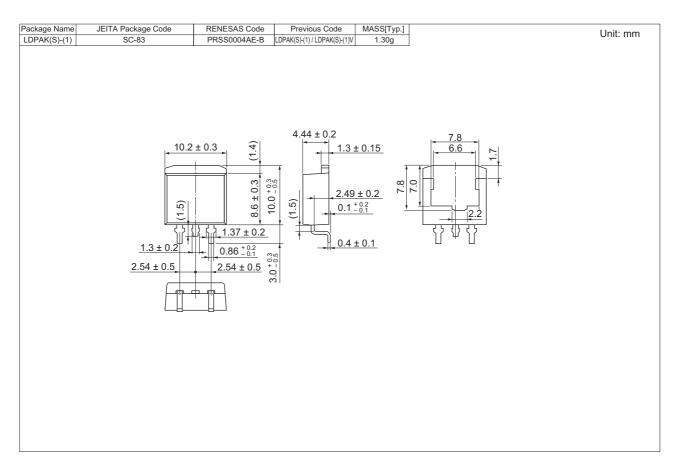

Electrical Characteristics


Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Drain current	I _{D1}	15	_	—	А	$V_{GS} = 3.5 \text{ V}, V_{DS} = 2 \text{ V}$
	I _{D2}	—	_	10	mA	$V_{GS} = 1.2 \text{ V}, V_{DS} = 2 \text{ V}$
Drain to source breakdown voltage	V (BR) DSS	60	_	—	V	$I_D = 10 \text{ mA}, V_{GS} = 0$
Gate to source breakdown voltage	V (BR) GSS	16	—	—	V	$I_G = 300 \ \mu A, \ V_{DS} = 0$
	V (BR) GSS	-2.5	—	—	V	$I_G = -100 \ \mu A, \ V_{DS} = 0$
Gate to source leak current	I _{GSS1}	—	—	100	μA	$V_{GS} = 8 V, V_{DS} = 0$
	I _{GSS2}	—	—	50	μA	$V_{GS} = 3.5 \text{ V}, V_{DS} = 0$
	I _{GSS3}	—	—	1	μA	$V_{GS} = 1.2 V, V_{DS} = 0$
	I _{GSS4}	—	—	-100	μA	$V_{GS} = -2.4 \text{ V}, V_{DS} = 0$
Input current (shut down)	I _{GS (op) 1}	—	0.8	—	mA	$V_{GS} = 8 V, V_{DS} = 0$
	I _{GS (op) 2}	—	0.35	—	mA	$V_{GS} = 3.5 \text{ V}, V_{DS} = 0$
Zero gate voltage drain current	I _{DSS}	—	_	10	μΑ	$V_{DS} = 60 \text{ V}, V_{GS} = 0$
Gate to source cutoff voltage	V _{GS (off)}	1.0	—	2.25	V	$I_D = 1 \text{ mA}, V_{DS} = 10 \text{ V}$
Static drain to source on state resistance	R _{DS (on)}	—	25	33	mΩ	$I_D = 20 \text{ A}, V_{GS} = 4 \text{ V}^{Note 3}$
	R _{DS (on)}	—	15	20	mΩ	$I_D = 20 \text{ A}, V_{GS} = 10 \text{ V}^{Note 3}$
Forward transfer admittance	y _{fs}	8	16	—	S	$I_D = 20 \text{ A}, V_{DS} = 10 \text{ V}^{\text{Note 3}}$
Output capacitance	Coss	—	940	—	pF	$V_{DS} = 10 V, V_{GS} = 0$
						f = 1 MHz
Turn-on delay time	t _{d (on)}	—	10.7	_	μs	I _D = 20 A
Rise time	tr	_	66	_	μs	$V_{GS} = 5 V$
Turn-off delay time	t _{d (off)}	—	15.5	—	μs	$R_L = 1.5 \Omega$
Fall time	t _f	—	19	—	μs]
Body-drain diode forward voltage	V _{DF}	—	1	—	V	$I_F = 40 \text{ A}, V_{GS} = 0$
Body-drain diode reverse recovery time	t _{rr}	—	200	—	ns	$I_F = 40 \text{ A}, V_{GS} = 0$
						di _F /dt = 50 A/µs
Over load shut down operation time Note4	t _{os1}	_	1	_	ms	$V_{GS} = 5 \text{ V}, V_{DD} = 16 \text{ V}$


Notes: 3. Pulse test

4. Including the junction temperature rise of the over loaded condition.


Main Characteristics



Package Dimensions

Ordering Information

Part No.	Quantity	Shipping Container
HAF2011-90L	Max: 50 pcs/sack	Sack
HAF2011-90S	Max: 50 pcs/sack	Sack
HAF2011-90STL	1000 pcs/Reel	Embossed tape
HAF2011-90STR	1000 pcs/Reel	Embossed tape

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scule as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in the burgose of any other military use. When exporting the products or the technology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 All information included in this document, buch as product data, diagrams, charts, programs, algorithms, and application oracit useraphes, is current as of the date this document, buch as product data, diagrams, charts, programs, algorithms, and application incuit examples, is current as of the date the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a set of easonable care in compiling the information in this document. Dut Renesas assumes no liability whatsoever for any damages incurred as a factor to the singer of the singer product as a factor data disterior throne and the product specific data data and regulations.
 When using or otherwise requires the fault counter of the purposes as products are not designed on the information in this document. Dut Renesas assumes no liability whatsoever for any damages incurred as a factor the site of the date the information in the date this document.
 When using or otherwise in systems the failure on mation included in this document. Dut Renesas as products are not designed on the information in the

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com