

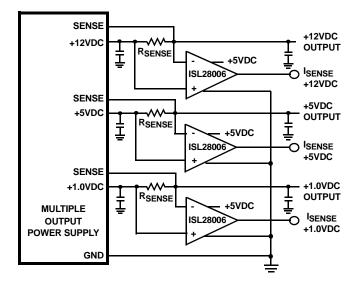
Micropower, Rail to Rail Input Current Sense Amplifier with Voltage Output

ISL28006

The ISL28006 is a micropower, uni-directional high-side and low-side current sense amplifier featuring a proprietary rail-to-rail input current sensing amplifier. The ISL28006 is ideal for high-side current sense applications where the sense voltage is usually much higher than the amplifier supply voltage. The device can be used to sense voltages as high as 28V when operating from a supply voltage as low as 2.7V. The micropower ISL28006 consumes only $50\mu A$ of supply current when operating from a 2.7V to 28V supply.

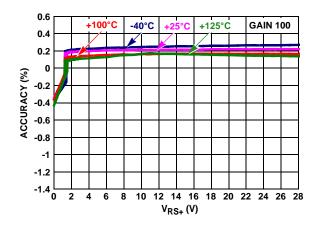
The ISL28006 features a common-mode input voltage range from 0V to 28V. The proprietary architecture extends the input voltage sensing range down to 0V, making it an excellent choice for low-side ground sensing applications. The benefit of this architecture is that a high degree of total output accuracy is maintained over the entire 0V to 28V common mode input voltage range.

The ISL28006 is available in fixed (100V/V, 50V/V, 20V/V and Adjustable) gains in the space saving 5 Ld SOT-23 package and the 6 Ld SOT-23 package for the adjustable gain part. The parts operate over the extended temperature range from -40°C to +125°C.

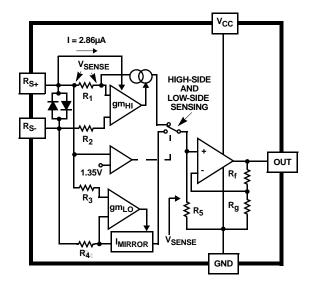

Features

• Low Power Consumption 50μA,Typ
• Supply Range 2.7V to 28V
• Wide Common Mode Input0V to 28V
Gain Versions
- ISL28006-100 100V/V
- ISL28006-50 50V/V
- ISL28006-20
- ISL28006-ADJADJ (Min Gain = 20V/V)
• Operating Temperature Range40°C to +125°C
• Packages 5 Ld SOT-23, 6 Ld SOT-23

Applications*(see page 22)


- Power Management/Monitors
- Power Distribution and Safety
- DC/DC, AC/DC Converters
- Battery Management/Charging
- Automotive Power Distribution

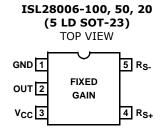
Typical Application

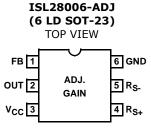


1

Gain Accuracy vs $V_{RS+} = 0V$ to 28V

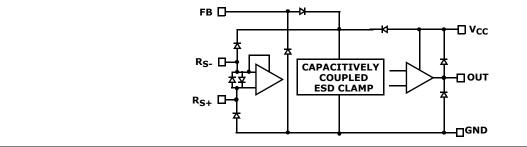
Block Diagram




v_{cc} I = 2.86μA VSENSE HIGH-SIDE AND LOW-SIDE SENSING R_{S+} R_1 R_S. R₂ OUT 1.35V R_f F_{B} R_3 $R_{\boldsymbol{g}}$ R₅ VSENSE Imirror R₄ GND

FIXED GAIN PARTS

ADJUSTABLE GAIN PART


Pin Configurations

Pin Descriptions

ISL28006-100, 50, 20 (5 LD SOT-23)	ISL28006-ADJ (6 LD SOT-23)	PIN NAME	DESCRIPTION	
1	6	GND	Power Ground	
	1	FB	Input Pin for External Resistors	
2	2	OUT	Amplifier Output	
3	3	V _{CC}	Positive Power Supply	
4	4	R _{S+}	Sense Voltage Non-inverting Input	
5	5	R _{S-}	Sense Voltage Inverting Input	

Ordering Information

PART NUMBER (Notes 1, 2, 3)	GAIN	PART MARKING	PACKAGE Tape & Reel (Pb-Free)	PKG. DWG. #		
ISL28006FH100Z-T7	100V/V	BDJA	5 Ld SOT-23	MDP0038		
ISL28006FH50Z-T7	50V/V	BDHA	5 Ld SOT-23	MDP0038		
ISL28006FH20Z-T7	20V/V	BDGA	5 Ld SOT-23	MDP0038		
ISL28006FHADJZ-T7	ADJ	BDFA	6 Ld SOT-23	P6.064		
Coming Soon ISL28006FH-100EVAL1Z	100V/V Evaluation Board					
Coming Soon ISL28006FH-50EVAL1Z	50V/V Evaluation Board					
Coming Soon ISL28006FH-20EVAL1Z	20V/V Evaluation Board					
Coming Soon ISL28006FH-ADJEVAL1Z	Adjustable Evaluation Board					

NOTES:

- 1. Please refer to TB347 for details on reel specifications.
- 2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
- 3. For Moisture Sensitivity Level (MSL), please see device information page for <u>ISL28006</u>. For more information on MSL please see techbrief <u>TB363</u>.

ISL28006

Absolute Maximum Ratings

Max Supply Voltage
Max Differential Input Current20mA
Max Differential Input Voltage
Max Input Voltage (R_{S+} , R_{S-} , FB) GND - 0.5V to 30V
Max Input Current for Input Voltage <gnd -="" 0.5v="" td="" ±20ma<=""></gnd>
Output Short-Circuit Duration Indefinite
Di-Electrically Isolated PR40 Process Latch-up free
ESD Rating
Human Body Model (Tested per JESD22-A114F) 4kV
Machine Model (Tested per EIA/JESD22-A115-A) 200V

Charged Device Model (Tested per JESD22-C101D) . . . 1.5kV

Thermal Information

Thermal Resistance (Typical)	θ_{JA} (°C/W)	θ_{JC} (°C/W)
5 Ld SOT-23 (Notes 4, 5)	. 190	90
6 Ld SOT-23 (Notes 4, 5)	. 180	90
Maximum Storage Temperature Rang	je −65°	C to +150°C
Maximum Junction Temperature (T _{JM}	_{AX})	+150°C
Pb-Free Reflow Profile		ee link below
http://www.intersil.com/pbfree/Pb-	-FreeReflow.	<u>asp</u>

Recommended Operating Conditions

Ambient Temperature Range (T_A) -40°C to +125°C

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTES

- 4. θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
- 5. For θ_{1C} , the "case temp" location is taken at the package top center.

Electrical Specifications $V_{CC} = 12V$, $V_{RS+} = 0V$ to 28V, $V_{SENSE} = 0V$, $R_{LOAD} = 1M\Omega$, $T_A = +25^{\circ}C$ unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +125°C. Temperature data established by characterization.

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 6)	ТҮР	MAX (Note 6)	UNIT
V _{OS} (Input Offset Voltage)	Gain = 100	$V_{CC} = V_{RS} + = 12V$, $V_{SENSE} = 20$ mV to	-250	60	250	μV
	(Notes 7, 8)	100mV	-300		300	μV
		$V_{CC} = 12V$, $V_{RS} + = 0.2V$, $V_{SENSE} = 20$ mV to	-2.5	-1.2	2.5	mV
		100mV	-2.8		2.8	mV
	Gain = 50, Gain = 20 (Notes 7, 8)	$V_{CC} = V_{RS} + = 12V$, $V_{SENSE} = 20$ mV to	-300	60	300	μV
		100mV	-450		450	μV
		$V_{CC} = 12V$, $V_{RS} + = 0.2V$, $V_{SENSE} = 20$ mV to 100 mV	-2.8	-1.2	2.8	mV
			-3.2		3.2	mV
	Adjustable, Gain = 21 $R_f = 100k\Omega$, $R_g = 5k\Omega$ (Notes 7, 8)	$V_{CC} = V_{RS} + = 12V$, $V_{SENSE} = 20$ mV to 100mV	-300	60	300	μV
			-450		450	μV
	(Hotes // o)	$V_{CC} = 12V$, $V_{RS} + = 0.2V$, $V_{SENSE} = 20$ mV to	-3.1	-1.2	3.1	mV
		100mV	-3.4		3.4	mV
I _{RS} +, I _{RS} -	Leakage Current	V _{CC} = 0V, V _{RS+} = 28V		0.041	1.2	μΑ
					1.5	μΑ

intersil

ISL28006

Electrical Specifications V_{CC} = 12V, V_{RS+} = 0V to 28V, V_{SENSE} = 0V, R_{LOAD} = 1M Ω , T_A = +25°C unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +125°C. Temperature data established by characterization. (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 6)	ТҮР	MAX (Note 6)	UNIT
I _{RS} +	Gain = 100	V_{RS} + = 2V, V_{SENSE} = 5mV		4.7	6	μΑ
(+ Input Bias Current)					7	μΑ
		V_{RS} + = 0V, V_{SENSE} = 5mV	-500	-432		nA
			-600			nA
	Gain = 50, Gain = 20	V_{RS} + = 2V, V_{SENSE} = 5mV		4.7	6	μΑ
					8	μΑ
		V_{RS} + = 0V, V_{SENSE} = 5mV	-700	-432		nA
			-840			nA
	ADJ Gain = 101	V_{RS} + = 2V, V_{SENSE} = 5mV		4.7	6	μΑ
	$R_f = 100k\Omega$, $R_g = 1k\Omega$				7	μA
		V_{RS} + = 0V, V_{SENSE} = 5mV	-500	-432		nA
			-600			nA
I _{RS} -	G = 100, 50, 20, ADJ	V_{RS} + = 2V, V_{SENSE} = 5mV		5	50	nA
(- Input Bias Current)		, SENSE			75	nA
		V_{RS} + = 0V, V_{SENSE} = 5mV	-125	-45		nA
			-130			nA
CMRR	Common Mode Rejection Ratio	V_{RS} + = 2V to 28V	105	115		dB
PSRR	Power Supply Rejection Ratio	$V_{CC} = 2.7V \text{ to } 28V, V_{RS} + = 2V$	90	105		dB
V _{FS}	Full-scale Sense Voltage	V _{CC} = 28V, V _{RS} + = 0.2V, 12V	200			mV
G	(Note 7)	ISL28006-100		100		V/V
(Gain)		ISL28006-50		50		V/V
		ISL28006-20		20		V/V
		ISL28006-ADJ	20			V/V
G _A	Gain = 100 (Note 9)	V _{CC} = V _{RS} + = 12V, V _{SENSE} = 20mV to 100mV	-0.2		0.7	%
(Gain Accuracy)			-1		1	%
		$V_{CC} = 12V$, $V_{RS} + = 0.1V$, $V_{SENSE} = 20$ mV to 100mV		-0.25		%
	Gain = 50, Gain = 20	$V_{CC} = V_{RS} + = 12V$, $V_{SENSE} = 20$ mV to	-0.35		0.7	%
	(Note 9)	100mV	-1		1	%
		V _{CC} = 12V, V _{RS} + = 0.1V, V _{SENSE} = 20mV to 100mV	-2.2	-0.33	2.2	%
			-2.3		2.3	%
	ADJ Gain = 21 $R_f = 100k\Omega$, $R_g = 5k\Omega$	$V_{CC} = V_{RS} + = 12V$, $V_{SENSE} = 20$ mV to	-0.65		1	%
		100mV	-1		1.05	%
	(Note 9)	$V_{CC} = 12V$, $V_{RS} + = 0.1V$, $V_{SENSE} = 20$ mV to	-2.2	-0.33	2.2	%
		100mV	-2.3		2.3	<u> </u>

ISL28006

Electrical Specifications V_{CC} = 12V, V_{RS+} = 0V to 28V, V_{SENSE} = 0V, R_{LOAD} = 1M Ω , T_A = +25°C unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +125°C. Temperature data established by characterization. (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 6)	ТҮР	MAX (Note 6)	UNIT
V _{OA}	Gain = 100	V _{CC} = V _{RS} + = 12V, V _{SENSE} = 100mV	-0.7		0.7	%
(Total Output Accuracy)	(Note 10)		-0.9		0.9	%
		V _{CC} = 12V, V _{RS} + = 0.1V, V _{SENSE} = 100mV		-1.25		%
	Gain = 50, Gain = 20	$V_{CC} = V_{RS} + = 12V$, $V_{SENSE} = 100$ mV	-0.7		0.7	%
	(Note 10)		-0.9		0.9	%
		V _{CC} = 12V, V _{RS} + = 0.1V, V _{SENSE} = 100mV	-4.7	-1.41	1.8	%
			-5.2		2.3	%
	ADJ Gain = 21	$V_{CC} = V_{RS} + = 12V$, $V_{SENSE} = 100$ mV	-0.7		1.05	%
	$R_f = 100k\Omega$, $R_g = 5k\Omega$ (Note 10)		-0.9		1.2	%
		V _{CC} = 12V, V _{RS} + = 0.1V, V _{SENSE} = 100mV	-4.7	-1.41	1.8	%
			-5.2		2.3	%
V _{OH}	Output Voltage Swing, High V _{CC} - V _{OUT}	$I_O = -500\mu A$, $V_{CC} = 2.7V$, $V_{SENSE} = 100 \text{mV}$, $V_{RS} + = 2V$		39	50	mV
V _{OL}	Output Voltage Swing, Low Vout	$I_O = 500\mu A$, $V_{CC} = 2.7V$ $V_{SENSE} = 0V$, $V_{RS} + = 2V$		30	50	mV
R _{OUT}	Output Resistance	$V_{CC} = V_{RS} + = 12V$, $V_{SENSE} = 100$ mV $I_{OUT} = 10$ µA to 1mA		6.5		Ω
I _{SC+}	Short Circuit Sourcing Current	$V_{CC} = V_{RS} + = 5V$, $R_L = 10\Omega$		4.8		mA
I _{SC} -	Short Circuit Sinking Current	$V_{CC} = V_{RS} + = 5V$, $R_L = 10\Omega$		8.7		mA
I _S	Gain = 100	$V_{RS}+ > 2V$, $V_{SENSE} = 5mV$		50	59	μΑ
					62	μΑ
	Gain = 50, 20,	V _{RS} + > 2V, V _{SENSE} = 5mV		50	62	μΑ
					63	μΑ
	ADJ Gain = 21	V _{RS} + > 2V, V _{SENSE} = 5mV		50	62	μΑ
	$R_f = 100k\Omega$, $R_g = 5k\Omega$				63	μA
V _{CC}	Supply Voltage	Guaranteed by PSRR	2.7		28	V
Slew Rate	Gain = 100	Pulse on R_{S+} pin, $V_{OUT} = 8V_{P-P}$ (Figure 65)	0.58	0.76		V/µs
	Gain = 50	Pulse on R_{S+} pin, $V_{OUT} = 8V_{P-P}$ (Figure 65)	0.58	0.67		V/µs
	Gain = 20	Pulse on R_{S+} pin, $V_{OUT} = 3.5V_{P-P}$ (Figure 65)	0.50	0.67		V/µs
	ADJ Gain = 21 $R_f = 100k\Omega$, $R_g = 5k\Omega$	Pulse on R_{S+} pin, $V_{OUT} = 3.5V_{P-P}$ (Figure 65)	0.50	0.67		V/µs

Electrical Specifications V_{CC} = 12V, V_{RS+} = 0V to 28V, V_{SENSE} = 0V, R_{LOAD} = 1M Ω , T_A = +25°C unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +125°C. Temperature data established by characterization. (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 6)	ТҮР	MAX (Note 6)	UNIT
BW-3dB	Gain = 100	V _{RS} + = 12V, 0.1V, V _{SENSE} = 100mV		110		kHz
	Gain = 50	V _{RS} + = 12V, 0.1V, V _{SENSE} = 100mV		160		kHz
	Gain = 20	V _{RS} + = 12V, 0.1V, V _{SENSE} = 100mV		180		kHz
	ADJ, Gain = 101 (Figure 57)	$V_{RS}+ = 12V, 0.1V, V_{SENSE} = 100$ mV, $R_f = 100$ k $\Omega, R_g = 1$ k Ω		40		kHz
	ADJ, Gain = 51 (Figure 57)	$V_{RS}+$ = 12V, V_{SENSE} = 100mV, R_f = 100k Ω , R_g = 2k Ω		78		kHz
		$V_{RS}+$ = 0.1V, V_{SENSE} = 100mV, R_f = 100k Ω , R_g = 2k Ω		122		kHz
	ADJ, Gain = 21 (Figure 57)	$V_{RS}+$ = 12V, V_{SENSE} = 100mV, R_f = 100k Ω , R_g = 5k Ω		131		kHz
		$V_{RS}+$ = 0.1V, V_{SENSE} = 100mV, R_f = 100k Ω , R_g = 5k Ω		237		kHz
t _S	Output Settling Time to 1% of Final Value	$V_{CC} = V_{RS} + = 12V$, $V_{OUT} = 10V$ step, $V_{SENSE} > 7mV$		15		μs
		$V_{CC} = V_{RS} + = 0.2V$, $V_{OUT} = 10V$ step, $V_{SENSE} > 7mV$		20		μs
	Capacitive-Load Stability	No sustained oscillations		300		pF
t _{S Power-up}		V _{CC} = V _{RS} + = 12V, V _{SENSE} = 100mV		15		μs
	Value	V _{CC} = 12V, V _{RS} + = 0.2V V _{SENSE} = 100mV		50		μs
	Saturation Recovery Time	$V_{CC} = V_{RS} + = 12V$, $V_{SENSE} = 100$ mV, overdrive		10		μs

NOTES:

- 6. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization and are not production tested.
- 7. DEFINITION OF TERMS:
 - V_{SENSE}A = V_{SENSE} @ 100mV
 - V_{SENSE}B = V_{SENSE} @ 20mV
 - V_{OUT}A = V_{OUT} @ V_{SENSE}A = 100mV
 - V_{OUT}B = V_{OUT} @ V_{SENSE}B = 20mV

$$\bullet \ G = \ GAIN = \left(\frac{V_{OUT}A - V_{OUT}B}{V_{SENSE}A - V_{SENSE}B} \right)$$

- 8. V_{OS} is extrapolated from the gain measurement. $V_{OS} = V_{SENSE}A \frac{V_{OUT}A}{G}$
- 9. % Gain Accuracy = $G_A = \left(\frac{G_{MEASURED} G_{EXPECTED}}{G_{EXPECTED}}\right) \times 100$
- 10. Output Accuracy % VOA = $\left(\frac{\text{VOUT}_{\text{MEASURED}} \text{VOUT}_{\text{EXPECTED}}}{\text{VOUT}_{\text{EXPECTED}}}\right) \times 100 \text{ where V}_{\text{OUT}} = \text{V}_{\text{SENSE}} \text{ X GAIN and V}_{\text{SENSE}} = 100 \text{mV}$

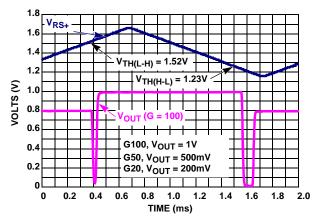


FIGURE 1. HIGH-SIDE and LOW-SIDE THRESHOLD VOLTAGE $V_{RS+(L-H)}$ and $V_{RS+(H-L)}$, $V_{SENSE}=10 mV$

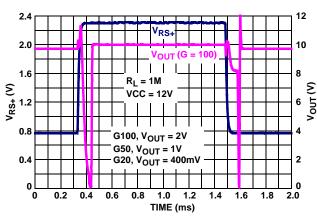


FIGURE 2. V_{OUT} vs V_{RS+} , $V_{SENSE} = 20$ mV TRANSIENT RESPONSE

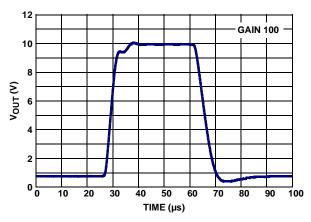


FIGURE 3. LARGE SIGNAL TRANSIENT RESPONSE $V_{RS+} = 0.2V, V_{SENSE} = 100 \text{mV}$

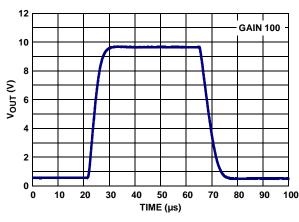


FIGURE 4. LARGE SIGNAL TRANSIENT RESPONSE $V_{RS+} = 12V$, $V_{SENSE} = 100$ mV

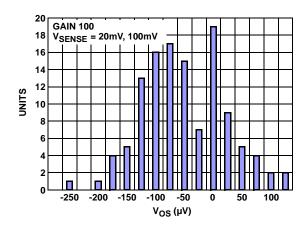


FIGURE 5. V_{OS} (μ V) DISTRIBUTION AT +25°C, V_{RS+} = 12V, QUANTITY: 100

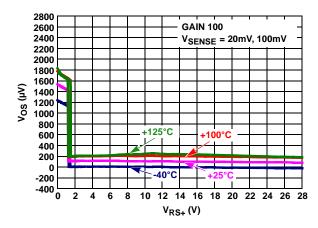


FIGURE 6. VOS vs VRS+



FIGURE 7. VOS vs VRS+

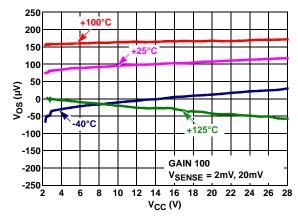


FIGURE 8. V_{OS} vs V_{CC} , V_{RS+} = 12V

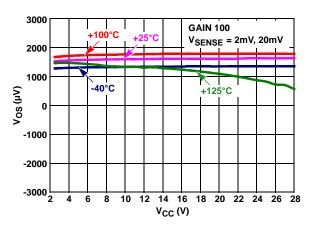


FIGURE 9. V_{OS} vs V_{CC} , $V_{RS+} = 0.1V$

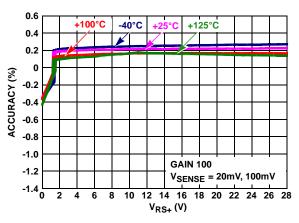


FIGURE 10. GAIN ACCURACY vs $V_{RS+} = 0V TO 28V$

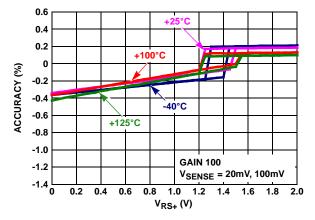


FIGURE 11. GAIN ACCURACY vs $V_{RS+} = 0V TO 2V$

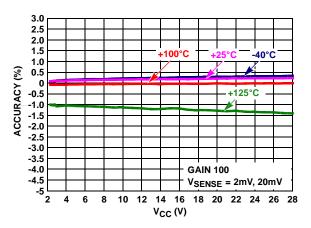


FIGURE 12. GAIN ACCURACY vs V_{CC} , $V_{RS+} = 12V$

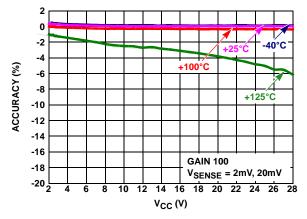


FIGURE 13. GAIN ACCURACY vs V_{CC} , $V_{RS+} = 0.1V$

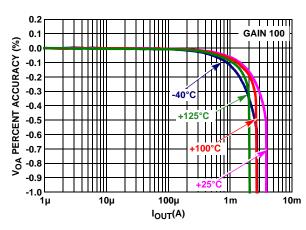


FIGURE 14. NORMALIZED V_{OA} vs I_{OUT}

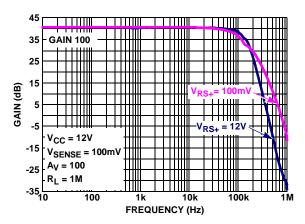


FIGURE 15. GAIN vs FREQUENCY $V_{RS+} = 100 \text{mV}/12 \text{V},$ $V_{SENSE} = 100 \text{mV}, V_{OUT} = 50 \text{mV}_{P-P}$

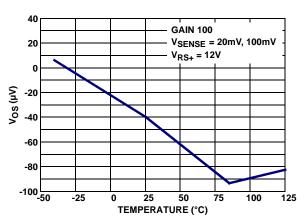


FIGURE 16. V_{OS} (μV) vs TEMPERATURE

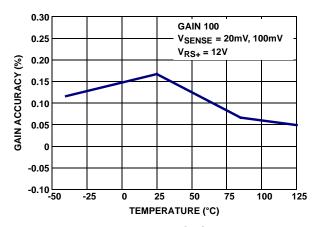


FIGURE 17. GAIN ACCURACY (%) vs TEMPERATURE

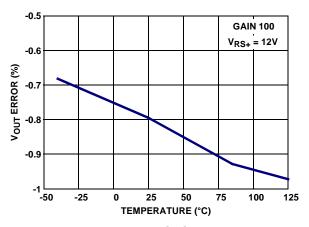


FIGURE 18. V_{OUT} ERROR (%) vs TEMPERATURE

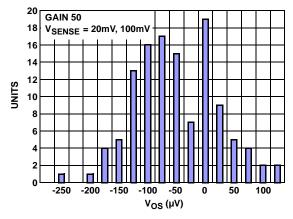


FIGURE 19. V_{OS} (μ V) DISTRIBUTION AT +25°C, V_{RS+} = 12V, QUANTITY: 100

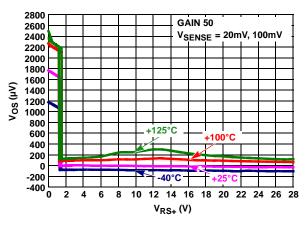


FIGURE 20. V_{OS} vs V_{RS+}

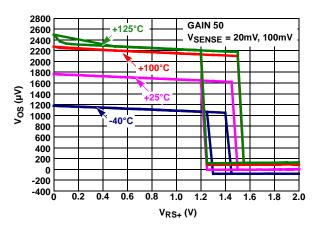


FIGURE 21. V_{OS} vs V_{RS+}

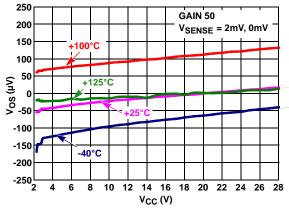


FIGURE 22. V_{OS} vs V_{CC} , $V_{RS+} = 12V$

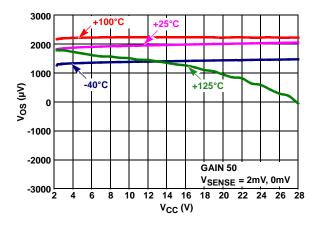


FIGURE 23. V_{OS} vs V_{CC} , $V_{RS+} = V_{RS+} = 0.1V$

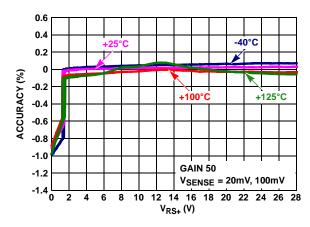


FIGURE 24. GAIN ACCURACY vs $V_{RS+} = 0V TO 28V$

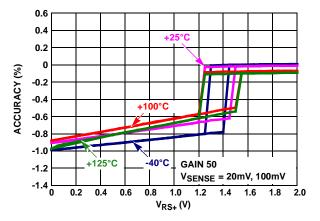


FIGURE 25. GAIN ACCURACY vs $V_{RS+} = 0V TO 2V$

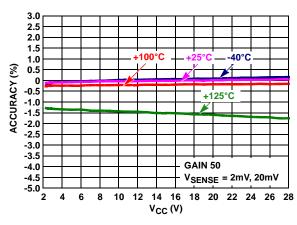


FIGURE 26. GAIN ACCURACY vs V_{CC}, HIGH-SIDE

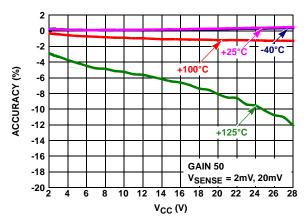


FIGURE 27. GAIN ACCURACY vs V_{CC} , LOW-SIDE

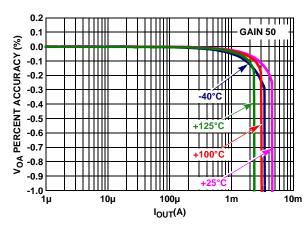


FIGURE 28. NORMALIZED VOA vs IOUT

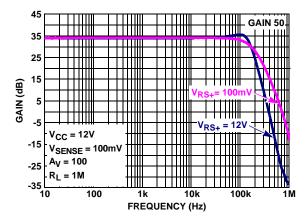


FIGURE 29. GAIN vs FREQUENCY $V_{RS+} = 100 \text{mV}/12 \text{V},$ $V_{SENSE} = 100 \text{mV}, V_{OUT} = 50 \text{mV}_{P-P}$

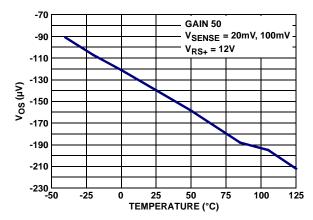


FIGURE 30. V_{OS} (μV) vs TEMPERATURE

FN6548.2 March 22, 2010

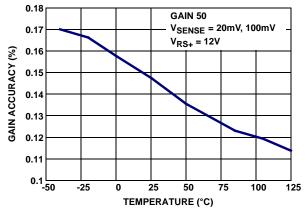


FIGURE 31. GAIN ACCURACY (%) vs TEMPERATURE

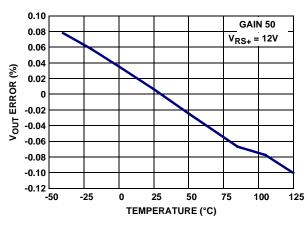


FIGURE 32. V_{OUT} ERROR (%) vs TEMPERATURE

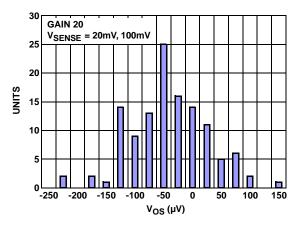


FIGURE 33. V_{OS} (μV) DISTRIBUTION AT +25°C, V_{RS+} = 12V, QUANTITY: 100

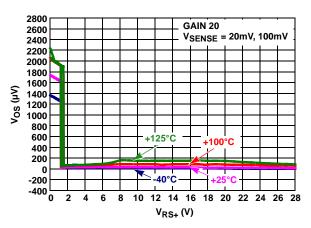


FIGURE 34. V_{OS} vs V_{RS+}

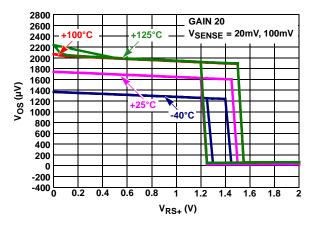


FIGURE 35. V_{OS} vs V_{RS+}

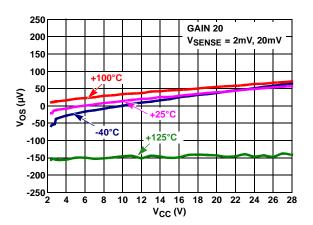


FIGURE 36. V_{OS} vs V_{CC} , $V_{RS+} = 12V$

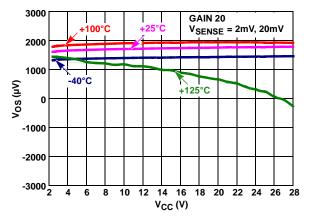


FIGURE 37. V_{OS} vs V_{CC} , $V_{RS+} = 0.1V$

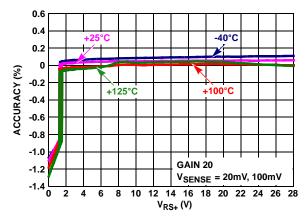


FIGURE 38. GAIN ACCURACY vs V_{RS+} = 0V TO 28V

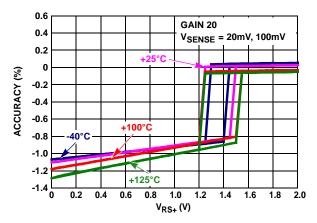


FIGURE 39. GAIN ACCURACY vs $V_{RS+} = 0V TO 2V$

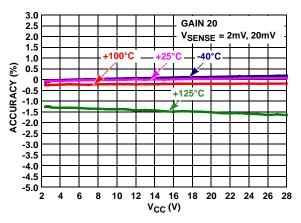


FIGURE 40. GAIN ACCURACY vs V_{CC} , HIGH-SIDE

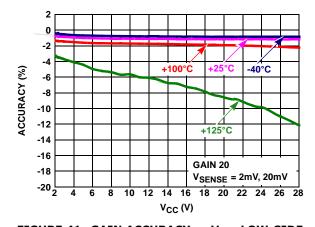


FIGURE 41. GAIN ACCURACY vs V_{CC} , LOW-SIDE

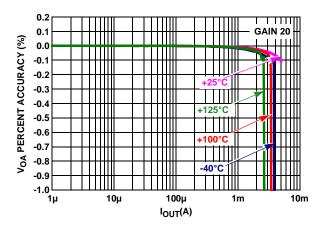


FIGURE 42. NORMALIZED VOA vs IOUT

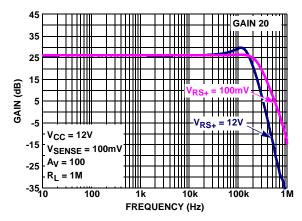


FIGURE 43. GAIN vs FREQUENCY $V_{RS+} = 100 \text{mV}/12 \text{V},$ $V_{SENSE} = 100 \text{mV}, V_{OUT} = 50 \text{mV}_{P-P}$

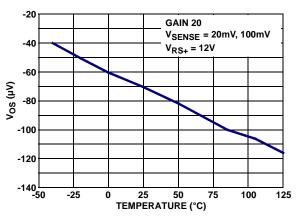


FIGURE 44. V_{OS} (μV) vs TEMPERATURE

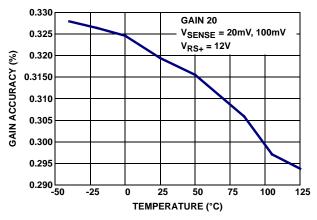


FIGURE 45. GAIN ACCURACY (%) vs TEMPERATURE

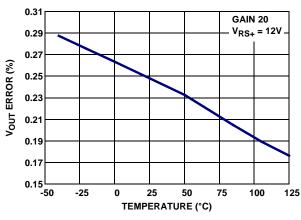


FIGURE 46. V_{OUT} ERROR (%) vs TEMPERATURE

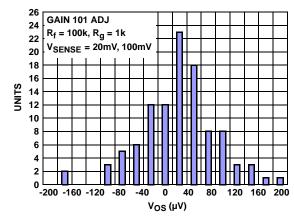


FIGURE 47. V_{OS} (μ V) DISTRIBUTION AT +25°C, V_{RS+} = 12V, QUANTITY: 100

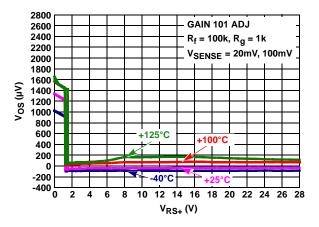


FIGURE 48. V_{OS} vs V_{RS+}

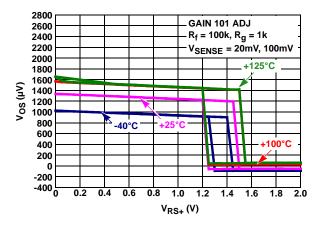


FIGURE 49. V_{OS} vs V_{RS+}

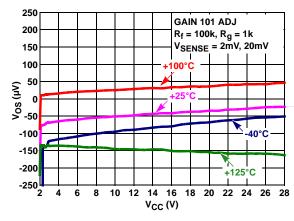


FIGURE 50. V_{OS} vs V_{CC}, HIGH-SIDE

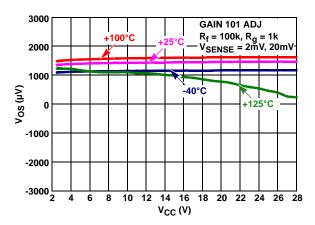


FIGURE 51. V_{OS} vs V_{CC} , LOW-SIDE

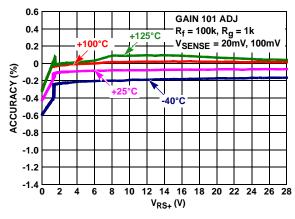


FIGURE 52. GAIN ACCURACY vs $V_{RS+} = 0V TO 28V$

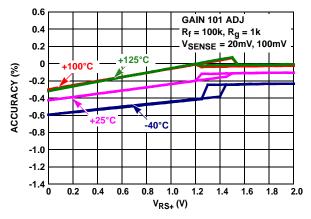


FIGURE 53. GAIN ACCURACY vs $V_{RS+} = 0V TO 2V$

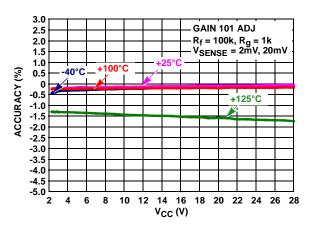


FIGURE 54. GAIN ACCURACY vs V_{CC} , $V_{RS+} = 12V$

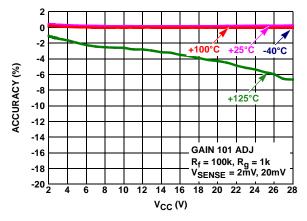


FIGURE 55. GAIN ACCURACY vs V_{CC} , $V_{RS+} = 0.1V$

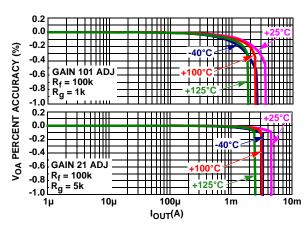


FIGURE 56. NORMALIZED VOA vs IOUT

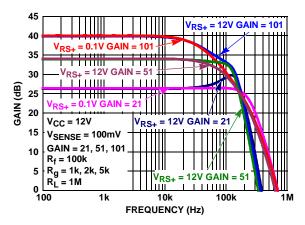


FIGURE 57. GAIN vs FREQUENCY $V_{RS+} = 100 \text{mV}/12 \text{V},$ $V_{SENSE} = 100 \text{mV}, V_{OUT} = 50 \text{mV}_{P-P}$

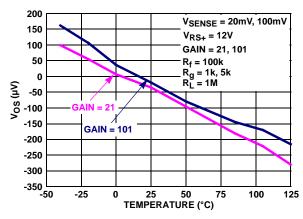


FIGURE 58. V_{OS} (μV) vs TEMPERATURE

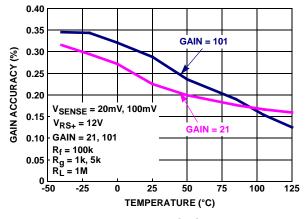


FIGURE 59. GAIN ACCURACY (%) vs TEMPERATURE

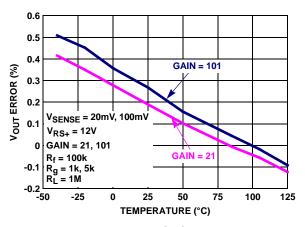


FIGURE 60. V_{OUT} ERROR (%) vs TEMPERATURE

Test Circuits and Waveforms

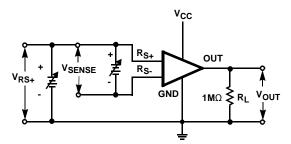


FIGURE 61. I_{S_r} V_{OS} , V_{OA} , CMRR, PSRR, GAIN ACCURACY

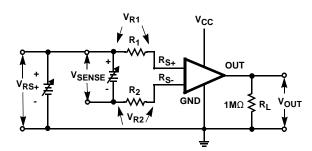


FIGURE 62. INPUT BIAS CURRENT, LEAKAGE CURRENT

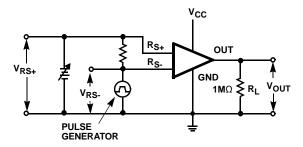


FIGURE 63. t_s, SATURATION RECOVERY TIME

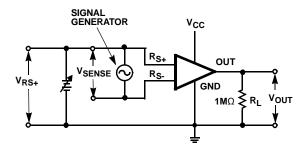
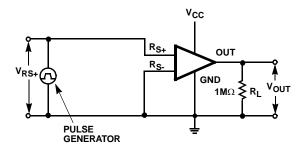



FIGURE 64. GAIN vs FREQUENCY

FIGURE 65. SLEW RATE

Applications Information

Functional Description

The ISL28006-20, ISL28006-50 and ISL28006-100 are single supply, uni-directional current sense amplifiers with fixed gains of 20V/V, 50V/V and 100V/V respectively. The ISL28006-ADJ is single supply, uni-directional current sense amplifier with an adjustable gain via external resistors (see Figure 70). The ISL28006-ADJ is stable for gains of 20 and higher.

The ISL28006 is a 2-stage amplifier. Figure 66 shows the active circuitry for high-side current sense applications where the sense voltage is between 1.35V to 28V. Figure 67 shows the active circuitry for ground sense applications where the sense voltage is between 0V to 1.35V.

The first stage is a bi-level trans-conductance amp and level translator. The gm stage converts the low voltage drop (V_{SENSE}) sensed across an external milli-ohm sense resistor, to a current (@ gm = 21.3μ A/V). The trans-conductance amplifier forces a current through R_1

18

intersil

resulting to a voltage drop across R_1 that is equal to the sense voltage (V_{SENSE}). The current through R_1 is mirrored across R_5 creating a ground-referenced voltage at the input of the second amplifier equal to V_{SENSE} .

The second stage is responsible for the overall gain and frequency response performance of the device. The fixed gains (20, 50, 100) are set with internal resistors R_f and R_g . The variable gain (ADJ) has an additional FB pin and uses external gain resistors to set the gain of the output. For the fixed gain amps the only external component needed is a current sense resistor (typically 0.001Ω to $0.01\Omega,\,1W$ to 2W).

The transfer function for the fixed gain parts is given in Equation 1.

$$V_{OUT} = GAIN \times (I_S R_S + V_{OS})$$
 (EQ. 1)

The transfer function for the adjustable gain part is given in Equation 2.

$$V_{OUT} = \left(1 + \frac{R_F}{R_G}\right) (I_S R_S + V_{OS})$$
 (EQ. 2)

FN6548.2

March 22, 2010

es a current unough K₁

The input gm stage derives its ~2.86 μ A supply current from the input source through the R_{S+} terminal as long as the sensed voltage at the R_{S+} pin is >1.35V and the gm_{HI} amplifier is selected. When the sense voltage at

 R_{S+} drops below the 1.35V threshold, the gm_{LO} amplifier kicks in and the gm_{LO} output current reverses, flowing out of the R_{S-} pin.

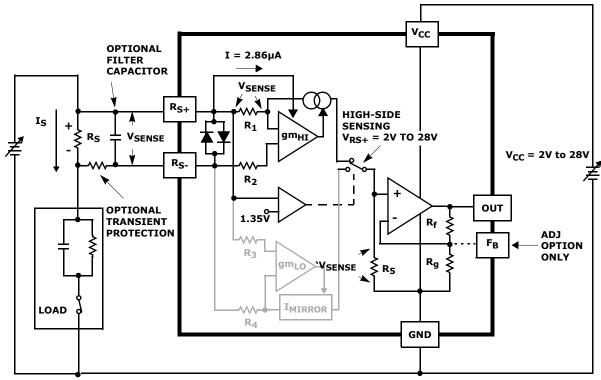


FIGURE 66. HIGH-SIDE CURRENT DETECTION

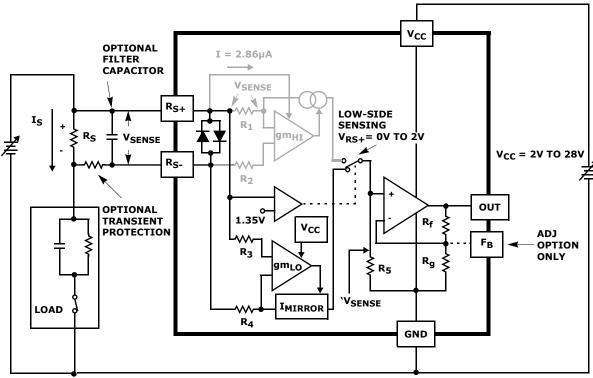


FIGURE 67. LOW-SIDE CURRENT DETECTION

Hysteretic Comparator

The input trans-conductance amps are under control of a hysteretic comparator operating from the incoming source voltage on the R_{S+} pin (Figure 66). The comparator monitors the voltage on R_{S+} and switches the sense amplifier from the low-side gm amp to the high-side gm amplifier whenever the input voltage at R_{S+} increases above the 1.35V threshold. Conversely, a decreasing voltage on the R_{S+} pin, causes the hysteric comparator to switch from the high-side gm amp to the low-side gm amp as the voltage decreases below 1.35V. It is that low-side sense gm amplifier that gives the ISL28006 the proprietary ability to sense current all the way to 0V. Negative voltages on the R_{S+} or R_{S-} are beyond the sensing voltage range of this amplifier.

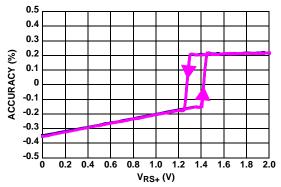


FIGURE 68. GAIN ACCURACY vs $V_{RS+} = 0V TO 2V$

Typical Application Circuit

Figure 70 shows the basic application circuit and optional protection components for switched-load applications. For applications where the load and the power source is permanently connected, only an external sense resistor is needed. For applications where fast transients are caused by hot plugging the source or load, external protection components may be needed. The external current limiting resistor (Rp) in Figure 70 may be required to limit the peak current through the internal ESD diodes to <20mA. This condition can occur in applications that experience high levels of in-rush current causing high peak voltages that can damage the internal ESD diodes. An Rp resistor value of 100Ω will provide

protection for a 2V transient with the maximum of 20mA flowing through the input while adding only an additional $13\mu V$ (worse case over-temperature) of $V_{\mbox{OS}}$. Refer to Equation 3:

$$((R_P \times I_{RS}) = (100\Omega \times 130 \text{ nA}) = 13 \mu\text{V})$$
 (EQ. 3)

Switching applications can generate voltage spikes that can overdrive the amplifier input and drive the output of the amplifier into the rails, resulting in a long overload recover time. Capacitors C_M and C_D filter the common mode and differential voltage spikes.

Error Sources

There are 3 dominant error sources: gain error, input offset voltage error and Kelvin voltage error (see Figure 69). The gain error is dominated by the internal resistance matching tolerances. The remaining errors appear as sense voltage errors at the input to the amplifier. They are V_{OS} of the amplifier and Kelvin voltage errors. If the transient protection resistor is added, an additional V_{OS} error can result from the IxR voltage due to input bias current. The limiting resistor should only be added to the R_{S-} input, due to the high-side gm amplifier (gm $_{HI}$) sinking several micro amps of current through the R_{S+} pin.

Layout Guidelines

The Kelvin Connected Sense Resistor

The source of Kelvin voltage errors is illustrated in Figure 69. The resistance of 1/2 Oz copper is $\sim 1 \text{m}\Omega$ per square with a TC of ~3900ppm/°C (0.39%/°C). When you compare this unwanted parasitic resistance with the total $1m\Omega$ to $10m\Omega$ resistance of the sense resistor, it is easy to see why the sense connection must be chosen very carefully. For example, consider a maximum current of 20A through a 0.005Ω sense resistor, generating a V_{SENSE} = 0.1 and a full scale output voltage of 10V (G = 100). Two side contacts of only 0.25 square per contact puts the $V_{\mbox{\footnotesize SENSE}}$ input about 0.5 x $1m\Omega$ away from the resistor end capacitor. If only 10A the 20A total current flows through the kelvin path to the resistor, you get an error voltage of 10mV (10A x 0.5sg x $0.001\Omega/sg$. = 10mV) added to the 100mV sense voltage for a sense voltage error of 10% (0.110V-0.1)/0.1V)x 100.

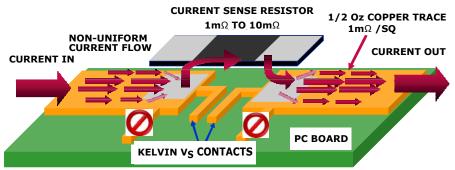


FIGURE 69. PC BOARD CURRENT SENSE KELVIN CONNECTION

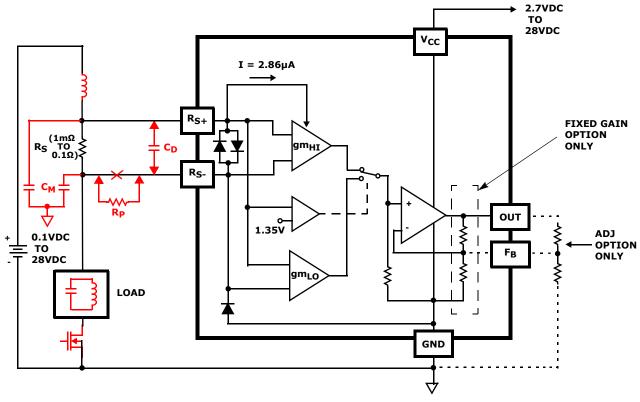


FIGURE 70. TYPICAL APPLICATION CIRCUIT

Overall Accuracy (VOA %)

 $V_{\mbox{\scriptsize OA}}$ is defined as the total output accuracy Referred-to-Output (RTO). The output accuracy contains all offset and gain errors, at a single output voltage. Equation 4 is used to calculate the % total output accuracy.

$$V_{OA} = 100 \times \left(\frac{V_{OUT} actual - V_{OUT} expected}{V_{OUT} expected} \right)$$
 (EQ. 4)

where

 V_{OUT} Actual = V_{SENSE} x GAIN Example: Gain = 100, For 100mV V_{SENSE} input we measure 10.1V. The overall accuracy (V_{OA}) is 1% as shown in Equation 5.

$$V_{OA} = 100 \times \left(\frac{10.1 - 10}{10}\right) = 1\%$$
 (EQ. 5)

Power Dissipation

It is possible to exceed the $+150^{\circ}\text{C}$ maximum junction temperatures under certain load and power supply conditions. It is therefore important to calculate the maximum junction temperature (T_{JMAX}) for all applications to determine if power supply voltages, load conditions, or package type need to be modified to remain in the safe operating area. These parameters are related using Equation 6:

$$T_{JMAX} = T_{MAX} + \theta_{JA} x PD_{MAXTOTAL}$$
 (EQ. 6)

where:

- P_{DMAXTOTAL} is the sum of the maximum power dissipation of each amplifier in the package (PD_{MAX})
- PD_{MAX} for each amplifier can be calculated using Equation 7:

$$PD_{MAX} = V_S \times I_{qMAX} + (V_S - V_{OUTMAX}) \times \frac{V_{OUTMAX}}{R_I}$$
 (EQ.7)

where:

- T_{MAX} = Maximum ambient temperature
- θ_{JA} = Thermal resistance of the package
- PD_{MAX} = Maximum power dissipation of 1 amplifier
- V_{CC} = Total supply voltage
- I_{qMAX} = Maximum quiescent supply current of 1 amplifier
- V_{OUTMAX} = Maximum output voltage swing of the application

 R_L = Load resistance

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest Rev.

DATE	REVISION	CHANGE
3/10/10	FN6548.2	Releasing adjustable gain option. Added adjustable block diagram (Page 2), Added adjustable gain limits to electrical spec table, added Figures 47 through 60, Added +85°C curves to Figures 6 thru 14, 20 thru 28, 34 thru 42, and Figures 48 thru 56. Modified Figure 70.
2/4/10	FN6548.1	Page1: Edited last sentence of paragraph 2. Moved order of GAIN listings from 20, 50, 100 to 100, 50, 20 in the 3rd paragraph. Under Featuresremoved "Low Input Offset Voltage 250μV, max" Under Features moved order of parts listing from 20, 50, 100 (from top to bottom) to 100, 50, 20Page 3: Removed coming soon on ISL28006FH50Z and ISL28006FH20Z and changes the order or listing them to 100, 50, 20Page 5: VOA test. Under conditions columndeleted 20mV to. It now reads Vsense = 100mV SR test. Under conditions columndeleted what was there. It now reads Pulse on RS+pin, See Figure 51 -Page 6: ts test. Removed Gain = 100 and Gain = 100V/V in both description and conditions columns respectivelyPage 9: Added VRS+= 12V to Figures 16, 17, 18Page 11: Added VRS+= 12V to Figures 30, 31, 32Page 13 & 14: Added VRS+= 12V to Figures 44, 45, 46Page 14 Added Figure 51 and adjusted figure numbers to account for the added figureFigs 8, 26, and 40 change "HIGH SIDE" to "VRS = 12V", where RS is subscriptFigs 9, 27, and 41 change "LOW SIDE" to "VRS = 0.1V", where RS is subscript.
12/14/09	FN6548.0	Initial Release

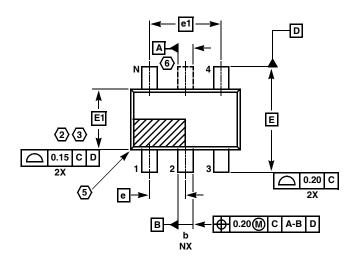
Products

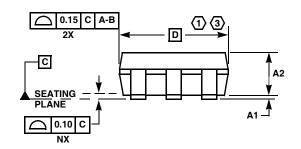
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks. Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a complete list of Intersil product families.

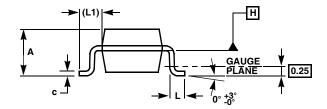
*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on intersil.com: ISL28006

To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff

FITs are available from our website at http://rel.intersil.com/reports/search.php


For additional products, see www.intersil.com/product_tree


Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted in the quality certifications found at www.intersil.com/design/quality


Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

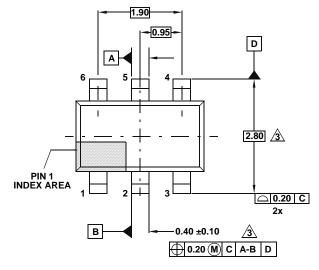
SOT-23 Package Family

MDP0038

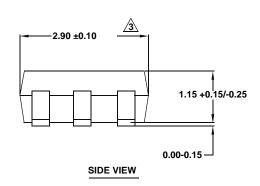
SOT-23 PACKAGE FAMILY

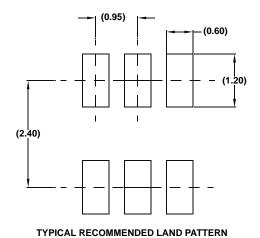
	MILLIN		
SYMBOL	SOT23-5	SOT23-6	TOLERANCE
Α	1.45	1.45	MAX
A1	0.10	0.10	±0.05
A2	1.14	1.14	±0.15
b	0.40	0.40	±0.05
С	0.14	0.14	±0.06
D	2.90	2.90	Basic
E	2.80	2.80	Basic
E1	1.60	1.60	Basic
е	0.95	0.95	Basic
e1	1.90	1.90	Basic
L,	0.45	0.45	±0.10
L1	0.60	0.60	Reference
N	5	6	Reference

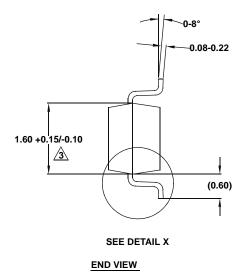
Rev. F 2/07

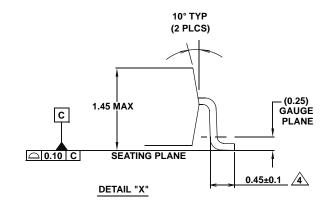

NOTES:

- 1. Plastic or metal protrusions of 0.25mm maximum per side are not included.
- Plastic interlead protrusions of 0.25mm maximum per side are not included.
- 3. This dimension is measured at Datum Plane "H".
- 4. Dimensioning and tolerancing per ASME Y14.5M-1994.
- 5. Index area Pin #1 I.D. will be located within the indicated zone (SOT23-6 only).
- 6. SOT23-5 version has no center lead (shown as a dashed line).


Package Outline Drawing


P6.064


6 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE Rev 4, 2/10



TOP VIEW

NOTES:

- Dimensions are in millimeters.
 Dimensions in () for Reference Only.
- 2. Dimensioning and tolerancing conform to ASME Y14.5M-1994.
- 3. Dimension is exclusive of mold flash, protrusions or gate burrs.
- 4. Foot length is measured at reference to guage plane.
- 5. Package conforms to JEDEC MO-178AB.