

ardware

 \leq

lanu

M32C/83 Group (M32C/83, M32C/83T) Hardware Manual

RENESAS 16/32-BIT SINGLE-CHIP MICROCOMPUTER M16C FAMILY / M32C/80 SERIES

Before using this material, please visit our website to verify that this is the most current document available.

Rev. 1.31 Revision Date: Jan. 31, 2006 RenesasTechnology www.renesas.com

Keep safety first in your circuit designs!

 Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

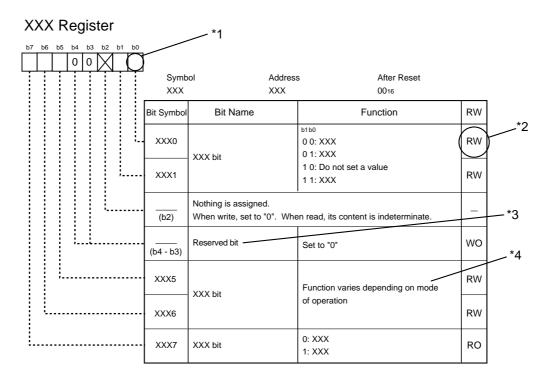
Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/ or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.


How to Use This Manual

1. Introduction

This hardware manual provides detailed information on the M32C/83 Group (M32C/83, M32C/83T) microcomputers. Users are expected to have basic knowledge of electric circuits, logical circuits and microcomputers.

2. Register Diagram

The symbols, and descriptions, used for bit function in each register are shown below.

*1

Blank: Set to "0" or "1" according to the application

- 0: Set to "0"
- 1: Set to "1"
- X: Nothing is assigned

*2

- RW: Read and write
- RO: Read only
- WO: Write only
- -: Nothing is assigned

*3

• Reserved bit

Reserved bit. Set to specified value.

*4

• Nothing is assigned

Nothing is assigned to the bit concerned. As the bit may be use for future functions, set to "0" when writing to this bit.

- Do not set a value
 - The operation is not guaranteed when a value is set.
- Function varies depending on mode of operation Bit function varies depending on peripheral function mode. Refer to respective register for each mode.

3. M16C Family Documents

The following documents were prepared for the M16C family. (1)

Document	Contents		
Short Sheet	Hardware overview		
Data Sheet	Hardware overview and electrical characteristics		
Hardware Manual Hardware specifications (pin assignments, memory maps, perip			
	specifications, electrical characteristics, timing charts)		
Software Manual	Detailed description of assembly instructions and microcomputer perfor-		
	mance of each instruction		
Application Note	Application examples of peripheral functions		
	Sample programs		
	 Introduction to the basic functions in the M16C family 		
	 Programming method with Assembly and C languages 		
RENESAS TECHNICAL UPDATE	Preliminary report about the specification of a product, a document, etc.		

NOTES :

1. Before using this material, please visit the our website to confirm that this is the most current document available.

Table of Contents

Quick Reference by Address	B-1
1. Overview	1
1.1 Applications	
1.2 Performance Overview	
1.3 Block Diagram	4
1.4 Product Information	
1.5 Pin Assignment	6
1.6 Pin Description	14
2. Central Processing Unit (CPU)	18
2.1 General Registers	19
2.1.1 Data Registers (R0, R1, R2 and R3)	19
2.1.2 Address Registers (A0 and A1)	19
2.1.3 Static Base Register (SB)	
2.1.4 Frame Base Register (FB)	
2.1.5 Program Counter (PC)	
2.1.6 Interrupt Table Register (INTB)	
2.1.7 User Stack Pointer (USP), Interrupt Stack Pointer (ISP	
2.1.8 Flag Register (FLG)	
2.2 High-Speed Interrupt Registers	
2.3 DMAC-Associated Registers	
3. Memory	21
4. Special Function Registers (SFR)	22
5. Reset	44
5.1 Hardware Reset	
5.1.1 Reset on a Stable Supply Voltage	
5.1.2 Power-on Reset	
5.2 Software Reset	
5.3 Watchdog Timer Reset	
5.4 Internal Space	
6. Processor Mode	48
6.1 Types of Processor Mode	
6.1.1 Single-chip Mode	
6.1.2 Memory Expansion Mode	
6.1.3 Microprocessor Mode	

9.	Protection	88
	8.5.3 Stop Mode	84
	8.5.2 Wait Mode	
	8.5.1 Normal Operation Mode	
	8.5 Power Consumption Control	
	8.4 Clock Output Function	80
	8.3.3 fC32	80
	8.3.2 fad	79
	8.3.1 f1, f8, f32 and f2n	79
	8.3 Peripheral Function Clock	79
	8.2 CPU Clock and BCLK	79
	8.1.4 PLL Clock	77
	8.1.3 On-chip Oscillator Clock	76
	8.1.2 Sub Clock	75
	8.1.1 Main Clock	
	8.1 Types of Clock Generation Circuits	
8.	Clock Generation Circuit	65
	7.2.10 DRAM Control Signals (RAS, CASL, CASH and DW)	64
	7.2.9 BCLK Output	64
	7.2.8 External Bus State when Accessing Internal Space	64
	7.2.7 HOLD Signal	63
	7.2.6 RDY Signal	
	7.2.5 ALE Signal	
	7.2.4 Bus Timing	
	7.2.3 Read and Write Signals	
	7.2.2 Chip-Select Signal	
	7.2.1 Address Bus and Data Bus	
	7.2 Bus Control	
	7.1.3 Selecting Separate/Multiplexed Bus	
	7.1.2 Selecting External Data Bus	
	7.1 Bus Settings 7.1.1 Selecting External Address Bus	
7	Bus	
	6.2.2 Applying VCC to CNVSS Pin	
	6.2.1 Applying VSS to CNVSS Pin	
	6.2 Setting Processor Mode	

10. Interrupts

10. Interrupts	89
10.1 Types of Interrupts	
10.2 Software Interrupts	
10.2.1 Undefined Instruction Interrupt	
10.2.2 Overflow Interrupt	
10.2.3 BRK Interrupt	
10.2.4 BRK2 Interrupt	90
10.2.5 INT Instruction Interrupt	90
10.3 Hardware Interrupts	90
10.3.1 Special Interrupts	90
10.3.2 Peripheral Function Interrupt	91
10.4 High-Speed Interrupt	91
10.5 Interrupts and Interrupt Vectors	91
10.5.1 Fixed Vector Tables	92
10.5.2 Relocatable Vector Tables	92
10.6 Interrupt Request Reception	95
10.6.1 I Flag and IPL	95
10.6.2 Interrupt Control Register and RLVL Register	95
10.6.3 Interrupt Sequence	
10.6.4 Interrupt Response Time	
10.6.5 IPL Change when Interrupt Request is Acknowledged	
10.6.6 Saving a Register	
10.6.7 Restoration from Interrupt Routine	
10.6.8 Interrupt Priority	
10.6.9 Interrupt Priority Level Select Circuit	
10.7 INT Interrupt	
10.8 NMI Interrupt	
10.9 Key Input Interrupt	
10.10 Address Match Interrupt	
10.11 Intelligent I/O Interrupt and CAN Interrupt	
11. Watchdog Timer	111
12. DMAC	
12.1 Transfer Cycles	
12.1.1 Effect of Source and Destination Addresses	
12.1.2 Effect of the DS Register	
12.1.3 Effect of Software Wait State	
12.1.4 Effect of RDY Signal	

12.2 DMAC Transfer Cycles	123
12.3 Channel Priority and DMA Transfer Timing	123
13. DMAC II	125
13.1 DMAC II Settings	
13.1.1 RLVL Register	
13.1.2 DMAC II Index	
13.1.3 Interrupt Control Register for the Peripheral Function	
13.1.4 Relocatable Vector Table for the Peripheral Function	
13.1.5 IRLT Bit in the IIOiIE Register (i=0 to 11)	
13.2 DMAC II Performance	
13.3 Transfer Data	129
13.3.1 Memory-to-Memory Transfer	129
13.3.2 Immediate Data Transfer	130
13.3.3 Calculation Transfer	130
13.4 Transfer Modes	130
13.4.1 Single Transfer	130
13.4.2 Burst Transfer	130
13.4.3 Multiple Transfer	130
13.4.4 Chained Transfer	131
13.4.5 End-of-Transfer Interrupt	131
13.5 Execution Time	132
14. Timer	133
14.1 Timer A	135
14.1.1 Timer Mode	141
14.1.2 Event Counter Mode	143
14.1.3 One-shot Timer Mode	147
14.1.4 Pulse Width Modulation Mode	149
14.2 Timer B	152
14.2.1 Timer Mode	155
14.2.2 Event Counter Mode	156
14.2.3 Pulse Period/Pulse Width Measurement Mode	158
15. Three-Phase Motor Control Timer Functions	161
16. Serial I/O	172
16.1 Clock Synchronous Serial I/O Mode	
16.1.1 Selecting CLK Polarity	
16.1.2 Selecting LSB First or MSB First	
16.1.3 Continuous Receive Mode	
16.1.4 Serial Data Logic Inverse	

16.2 Clo	ck Asynchronous Serial I/O (UART) Mode	
16.2.1	Bit Rate	
16.2.2	Selecting LSB First or MSB First	
16.2.3	Serial Data Logic Inverse	
16.2.4	TxD and RxD I/O Polarity Inverse	
16.3 Spe	cial Mode 1 (I ² C Mode)	195
16.3.1	Detecting Start Condition and Stop Condition	
16.3.2	Start Condition or Stop Condition Output	
16.3.3	Arbitration	
16.3.4	Transfer Clock	
16.3.5	SDA Output	
16.3.6	SDA Input	
16.3.7	ACK, NACK	
16.3.8	Transmit and Receive Reset	
16.4 Spe	cial Mode 2	
16.4.1	SSi Input Pin Function (i=0 to 4)	
16.4.2	Clock Phase Setting Function	
16.5 Spe	cial Mode 3 (GCI Mode)	
16.6 Spe	cial Mode 4 (IE Mode)	
16.7 Spe	cial Mode 5 (SIM Mode)	
16.7.1	Parity Error Signal	
	Parity Error Signal Format	
16.7.2		
16.7.2 17. A/D	Format	222
16.7.2 17. A/D 17.1 Mod	Format	222 223 224 234
16.7.2 17. A/D 17.1 Mod 17.1.1	Format Converter	222 223 223 224 234 234
16.7.2 17. A/D 17.1 Mod 17.1.1 17.1.2	Format Converter le Description One-shot Mode	222 223 223 224 234 234 234 234
16.7.2 17. A/D 17.1 Mod 17.1.1 17.1.2 17.1.3	Format Converter le Description One-shot Mode Repeat Mode	222 223 223 224 234 234 234 234 235
16.7.2 17. A/D 17.1 Mod 17.1.1 17.1.2 17.1.3 17.1.4	Format	222 223 223 224 234 234 234 234 235 235
16.7.2 17. A/D 17.1 Mod 17.1.1 17.1.2 17.1.3 17.1.4 17.1.5	Format	222 223 223 224 234 234 234 234 235 235 235 236
16.7.2 17. A/D 17.1 Mod 17.1.1 17.1.2 17.1.3 17.1.4 17.1.5 17.2 Fun	Format	222 223 223 224 234 234 234 234 235 235 235 236 236
16.7.2 17. A/D 17.1 Mod 17.1.1 17.1.2 17.1.3 17.1.4 17.1.5 17.2 Fun 17.2.1	Format	222 223 223 224 234 234 234 234 235 235 235 235 236 236 236
16.7.2 17. A/D 17.1 Mod 17.1.1 17.1.2 17.1.3 17.1.4 17.1.5 17.2 Fun 17.2.1 17.2.2	Format	222 223 223 224 234 234 234 235 235 235 235 236 236 236 236
16.7.2 17. A/D 17.1 Mod 17.1.1 17.1.2 17.1.3 17.1.4 17.1.5 17.2 Fun 17.2.1 17.2.2 17.2.3	Format	222 223 223 224 234 234 234 234 235 235 235 235 236 236 236 236 236 236
16.7.2 17. A/D 17.1 Mod 17.1.1 17.1.2 17.1.3 17.1.4 17.1.5 17.2 Fun 17.2.1 17.2.2 17.2.3 17.2.4	Format Converter le Description One-shot Mode Repeat Mode Single Sweep Mode Repeat Sweep Mode 0 Repeat Sweep Mode 1 ction Resolution Select Function Sample and Hold Trigger Select Function	222 223 223 224 234 234 234 234 235 235 235 235 236 236 236 236 236 236 236 236
16.7.2 17. A/D 17.1 Mod 17.1.1 17.1.2 17.1.3 17.1.4 17.1.5 17.2 Fun 17.2.1 17.2.2 17.2.3 17.2.4 17.2.5	Format Converter	222 223 223 224 234 234 234 234 235 235 235 235 236 236 236 236 236 236 236 237 237
16.7.2 17. A/D 17.1 Mod 17.1.1 17.1.2 17.1.3 17.1.4 17.1.5 17.2 Fun 17.2.1 17.2.2 17.2.3 17.2.4 17.2.5 17.2.6	Format	222 223 223 224 234 234 234 235 235 235 235 236 236 236 236 236 236 237 237 237
16.7.2 17. A/D 17.1 Mod 17.1.1 17.1.2 17.1.3 17.1.4 17.1.5 17.2 Fun 17.2.1 17.2.2 17.2.3 17.2.4 17.2.5 17.2.6 17.2.7	Format	222 223 223 224 234 234 234 235 235 235 235 236 236 236 236 236 236 236 236 237 237 237 237 238

18.	D/A Converter	240
19.	CRC Calculation	243
20.	X/Y Conversion	245
21.	Intelligent I/O	248
	1.1 Base Timer	
2	1.2 Time Measurement Function (Group 0 and 1)	269
2	1.3 Waveform Generation Function	274
	21.3.1 Single-Phase Waveform Output Mode (Group 0 to 3)	276
	21.3.2 Phase-Delayed Waveform Output Mode (Group 0 to 3)	
	21.3.3 Set/Reset Waveform Output (SR Waveform Output) Mode (Group 0 to 3)	280
	21.3.4 Bit Modulation PWM Output Mode (Group 2 and 3)	283
	21.3.5 Real-Time Port (RTP) Output Mode (Group 2 and 3)	285
	21.3.6 Parallel Real-Time Port Output Mode (Group 2 and 3)	287
2	1.4 Communication Unit 0 and 1 Communication Function	289
	21.4.1 Clock Synchronous Serial I/O Mode (Groups 0 and 1)	296
	21.4.2 Clock Asynchronous Serial I/O Mode (UART) (Groups 0 and 1)	299
	21.4.3 HDLC Data Processing Mode (Group 0 and 1)	303
2	1.5 Group 2 Communication Function	306
	21.5.1 Variable Clock Synchronous Serial I/O Mode (Group 2)	310
	21.5.2 IEBus Mode (Group 2)	314
2	1.6 Group 3 Communication Function	317
	21.6.1 8-bit or 16-bit Clock Synchronous Serial I/O Mode (Group 3)	320
22.	CAN Module	324
2	2.1 CAN-Associated Registers	326
2	2.1.1 CAN0 Control Register 0 (C0CTLR0 Register)	326
	22.1.2 CAN0 Control Register 1 (C0CTLR1 Register)	329
	22.1.3 CAN0 Sleep Control Register (C0SLPR Register)	330
	22.1.4 CAN0 Status Register (C0STR Register)	331
	22.1.5 CAN0 Extended ID Register (C0IDR Register)	333
	22.1.6 CAN0 Configuration Register (C0CONR Register)	334
	22.1.8 CAN0 Transmit Error Count Register (C0TEC Register)	
	22.1.7 CAN0 Time Stamp Register (C0TSR Register)	336
	22.1.9 CAN0 Receive Error Count Register (COREC Register)	337
	22.1.10 CAN0 Baud Rate Prescaler (C0BRP Register)	
	22.1.11 CAN0 Slot Interrupt Status Register (C0SISTR Register)	
	22.1.12 CAN0 Slot Interrupt Mask Register (C0SIMKR Register)	

22.1.13 CAN0 Error Interrupt Mask Register (C0EIMKR Register)	211
22.1.14 CANO Error Interrupt Status Register (C0EISTR Register)	
22.1.15 CANO Global Mask Register, CANO Local Mask Register A and CANO	
Register B (C0GMRj (j=0 to4), C0LMARj and C0LMBRj Register	
22.1.16 CAN0 Message Slot i Control Register (C0MCTLi Register) (i=0	,
22.1.17 CAN0 Slot Buffer Select Register (C0SBS Register)	
22.1.18 Message Slot Buffer	
22.1.19 CAN0 Acceptance Filter Support Register (C0AFS Register)	
22.2.2 CAN Transmit Timing	
22.2 Timing with CAN-Associated Registers	
22.2.1 CAN Module Reset Timing	355
22.2.3 CAN Receive Timing	356
22.2.4 CAN Bus Error Timing	357
22.3 CAN Interrupts	357
23. DRAMC	359
23.1 DRAMC Multiplexed Address Output	
23.2 Refresh	
23.2.1 Refresh	
23.2.2 Self-Refresh	
24. Programmable I/O Ports	366
24.1 Port Pi Direction Register (PDi Register, i=0 to 15)	
24.2 Port Pi Register (Pi Register, i=0 to 15)	
24.3 Function Select Register Aj (PSj Register) (j=0 to 3, 5 to 9)	
24.3 Function Select Register Aj (PSj Register) (j=0 to 3, 5 to 9) 24.4 Function Select Register Bk (PSLk Register) (k=0 to 3)	366 366
 24.3 Function Select Register Aj (PSj Register) (j=0 to 3, 5 to 9) 24.4 Function Select Register Bk (PSLk Register) (k=0 to 3) 24.5 Function Select Register C (PSC Register) 	366 366 367
 24.3 Function Select Register Aj (PSj Register) (j=0 to 3, 5 to 9) 24.4 Function Select Register Bk (PSLk Register) (k=0 to 3) 24.5 Function Select Register C (PSC Register) 24.6 Pull-up Control Register 0 to 4 (PUR0 to PUR4 Registers) 	
 24.3 Function Select Register Aj (PSj Register) (j=0 to 3, 5 to 9) 24.4 Function Select Register Bk (PSLk Register) (k=0 to 3) 24.5 Function Select Register C (PSC Register) 24.6 Pull-up Control Register 0 to 4 (PUR0 to PUR4 Registers) 24.7 Port Control Register (PCR Register) 	
 24.3 Function Select Register Aj (PSj Register) (j=0 to 3, 5 to 9) 24.4 Function Select Register Bk (PSLk Register) (k=0 to 3) 24.5 Function Select Register C (PSC Register) 24.6 Pull-up Control Register 0 to 4 (PUR0 to PUR4 Registers) 24.7 Port Control Register (PCR Register) 24.8 Input Function Select Register (IPS Register) 	
 24.3 Function Select Register Aj (PSj Register) (j=0 to 3, 5 to 9) 24.4 Function Select Register Bk (PSLk Register) (k=0 to 3) 24.5 Function Select Register C (PSC Register) 24.6 Pull-up Control Register 0 to 4 (PUR0 to PUR4 Registers) 24.7 Port Control Register (PCR Register) 24.8 Input Function Select Register (IPS Register) 24.9 Analog Input and Other Peripheral Function Input 	
 24.3 Function Select Register Aj (PSj Register) (j=0 to 3, 5 to 9) 24.4 Function Select Register Bk (PSLk Register) (k=0 to 3)	
 24.3 Function Select Register Aj (PSj Register) (j=0 to 3, 5 to 9) 24.4 Function Select Register Bk (PSLk Register) (k=0 to 3)	
 24.3 Function Select Register Aj (PSj Register) (j=0 to 3, 5 to 9)	
 24.3 Function Select Register Aj (PSj Register) (j=0 to 3, 5 to 9)	
 24.3 Function Select Register Aj (PSj Register) (j=0 to 3, 5 to 9)	

25.3 CPU Rewrite Mode	
25.3.1 Flash Memory Control Register 0 (FMR0 Register)	
25.3.2 Status Register	
25.3.3 Data Protect Function	
25.3.4 How to Enter and Exit CPU Rewrite Mode	
25.3.5 Software Commands	400
25.3.6 Full Status Check	406
25.3.7 Precautions in CPU Rewrite Mode	408
25.4 Standard Serial I/O Mode	409
25.4.1 Pin Function	409
25.4.2 ID Code Verify Function	409
25.4.3 Precautions in Standard Serial I/O Mode	414
25.4.4 Circuit Application in Standard Serial I/O Mode	414
25.5 Parallel I/O Mode	415
25.5.1 Boot ROM Area	415
25.5.2 ROM Code Protect Function	415
25.5.3 Precautions on Parallel I/O Mode	415
26. Electrical Characteristics	416
26.1 Electrical Characteristics (M32C/83)	416
26.2 Electrical Characteristics (M32C/83T)	453
27. Precautions	462
27.1 Processor Mode	
27.1.1 Microprocessor Mode	
27.2 Bus	
27.2.1 HOLD Signal	
27.2.2 External Bus	
27.3 SFR	
27.3.1 100-Pin Package	
27.3.2 Register Settings	
27.4 Clock Generation Circuit	465
27.4.1 PLL Frequency Synthesizer	465
27.4.2 Power Consumption Control	
27.4.3 Wait Mode	
27.4.4 Stop Mode	
27.5 Protection	
27.6 Interrupts	
27.6.1 ISP Setting	

27.6.3 INT Interrupt	468
27.6.4 Watchdog Timer Interrupt	469
27.6.5 Changing Interrupt Control Register	469
27.6.6 Changing IIOiIR Register (i = 0 to 11)	469
27.6.7 Changing RLVL Register	469
27.7 DMAC	470
27.8 Timer	471
27.8.1 Timers A and B	471
27.8.2 Timer A	471
27.8.3 Timer B	
27.9 Three-Phase Motor Control Timer Functions	474
27.9.1 Changing TAi and TAi1 (i=1, 2, 4) Registers	474
27.10 Serial I/O	
27.10.1 Clock Synchronous Serial I/O Mode	
27.10.2 UART Mode	
27.10.3 Special Mode 2	
27.11 A/D Converter	
27.12 Intelligent I/O	
27.12.1 Register Setting	
27.12.2 BTSR Register Setting	
27.13 Programmable I/O Port	
27.14 Flash Memory Version	
27.14.1 Differences Between Flash Memory Version and Masked ROM Version 4	
27.15 Noise	
27.16 Low Voltage Operations	483
Package Dimensions 4	84
Register Index4	86

Address	Register	Page	Address	Register	Page
000016			003016	-	
000116			003116		
000216			003216		
000316			003316		
000416	Processor Mode Register 0 (PM0)	49	003416		
000516	Processor Mode Register 1 (PM1)	50	003516		-
000616	System Clock Control Register 0 (CM0)	67	003616		
000716	System Clock Control Register 1 (CM1)	68	003716		-
000816	Wait Control Register 1 (WCR)	58	003816		-
000916	Address Match Interrupt Enable Register (AIER)	107	003916		-
000A16	Protect Register (PRCR)	88	003A16		-
	External Data Bus Width Control Register (DS)	52	003B16		-
000C16		69	003C16		-
000D16		70	003D16		
000E16	Watchdog Timer Start Register (WDTS)		003E16		-
000F16	Watchdog Timer Control Register (WDC)	112	003F16		-
001016		<u> </u>	004016	DRAM Control Register (DRAMCONT)	-
001116	Address Match Interrupt Register 0 (RMAD0)	107	004116	DRAM Refresh Interval Set Register (REFCNT)	360
001216			004216		
001210			004316		-
001316			004016		-
001516	Address Match Interrupt Register 1 (RMAD1)	107	004516		-
001616		107	004616		-
001716	VDC Control Register for PLL (PLV)	72	004010		-
001718		12	004716		-
001916	Address Match Interrupt Register 2 (RMAD2)	107	004016		-
001916 001A16		107	004918 004A16		-
	VPC Control Bogistor 0 (V/DC0)		004A16		-
001B16	VDC Control Register 0 (VDC0)		004B16 004C16		-
001C16	Address Match Interrupt Deviator 2 (DMAD2)	407	-		-
001D16	Address Match Interrupt Register 3 (RMAD3)	107	004D16		-
001E16			004E16		_
001F16			004F16		_
002016			005016		_
002116			005116		_
002216			005216		_
002316			005316		4
002416			005416		4
002516			005516		4
002616			005616		-
002716			005716	Flash Memory Control Register 0 (FMR0)	395
002816			005816		_
002916			005916		_
002A16			005A16		4
002B16			005B16		
002C16			005C16		
002D16			005D16		
002E16			005E16		
002F16			005F16		

Blank spaces are reserved. No access is allowed.

Address	Register	Page	Address	Register	Page
006016			009016	UART0 Transmit /NACK Interrupt Control Register (S0TIC)	
006116			0004.5	UART1 Bus Conflict Detect Interrupt Control Register (BCN1IC)/	
006216			009116	UART4 Bus Conflict Detect Interrupt Control Register (BCN4IC)	
006316			009216	UART1 Transmit/NACK Interrupt Control Register (S1TIC)	-
006416			009316	Key Input Interrupt Control Register (KUPIC)	-
006516			009416	Timer B0 Interrupt Control Register (TB0IC)	
006616			009516	Intelligent I/O Interrupt Control Register 1 (IIO1IC)	96
006716			009616	Timer B2 Interrupt Control Register (TB2IC)	-
006816	DMA0 Interrupt Control Register (DM0IC)		009716	Intelligent I/O Interrupt Control Register 3 (IIO3IC)	-
006916	Timer B5 Interrupt Control Register (TB5IC)		009816	Timer B4 Interrupt Control Register (TB4IC)	-
006A16	DMA2 Interrupt Control Register (DM2IC)		009916	Intelligent I/O Interrupt Control Register 5 (IIO5IC)	
006B16			009A16	INT4 Interrupt Control Register (INT4IC)	97
006C16			009B16	Intelligent I/O Interrupt Control Register 7 (IIO7IC)	96
006D16			009C16	INT2 Interrupt Control Register (INT2IC)	97
006E16				Intelligent I/O Interrupt Control Register 9 (IIO9IC)/	r
006F16	UART4 Receive /ACK Interrupt Control Register (S4RIC)		009D16	CAN Interrupt 0 Control Register (CAN0IC)	96
007016	Timer A4 Interrupt Control Register (TA4IC)		009E16		97
	UART0 Bus Conflict Detect Interrupt Control Register (BCN0IC)/		009F16		98
007116	UART3 Bus Conflict Detect Interrupt Control Register (BCN3IC)	96	00A016	Interrupt Request Register 0 (IIO0IR)	
007216	UARTO Receive/ACK Interrupt Control Register (SORIC)			Interrupt Request Register 1 (IIO1IR)	-
007316	A/D0 Conversion Interrupt Control Register (AD0IC)			Interrupt Request Register 2 (IIO2IR)	-
007416	UART1 Receive/ACK Interrupt Control Register (S1RIC)			Interrupt Request Register 3 (IIO3IR)	-
007516	Intelligent I/O Interrupt Control Register 0 (IIO0IC)			Interrupt Request Register 4 (IIO4IR)	-
007616	Timer B1 Interrupt Control Register (TB1IC)			Interrupt Request Register 5 (IIO5IR)	100
007716	Intelligent I/O Interrupt Control Register 2 (IIO2IC)			Interrupt Request Register 6 (IIO6IR)	109
007816	Timer B3 Interrupt Control Register (TB3IC)			Interrupt Request Register 7 (IIO7IR)	-
007916	Intelligent I/O Interrupt Control Register 4 (IIO4IC)			Interrupt Request Register 8 (IIO8IR)	-
		97		Interrupt Request Register 9 (IIO9IR)	-
		96		Interrupt Request Register 10 (IIO10IR)	-
		97		Interrupt Request Register 11 (IIO11IR)	-
		96	00AC16		
		97	00AD16		-
	Intelligent I/O Interrupt Control Register 10 (IIO10IC)/		00AE16		-
007F16	CAN Interrupt 1 Control Register (CAN1IC)	96	00AF16		-
008016				Interrupt Enable Register 0 (IIO0IE)	
000010	Intelligent I/O Interrupt Control Register 11 (IIO11IC)/			Interrupt Enable Register 1 (IIO1IE)	-
008116	CAN Interrupt 2 Control Register (CAN2IC)	96		Interrupt Enable Register 2 (IIO2IE)	-
008216				Interrupt Enable Register 3 (IIO3IE)	-
008316				Interrupt Enable Register 4 (IIO4IE)	-
008416				Interrupt Enable Register 5 (IIO5IE)	-
008516				Interrupt Enable Register 6 (IIO6IE)	110
008616	A/D1 Conversion Interrupt Control Register (AD1IC)	96		Interrupt Enable Register 7 (IIO7IE)	-
008716				Interrupt Enable Register 8 (IIO8IE)	-
008716	DMA1 Interrupt Control Register (DM1IC)			Interrupt Enable Register 9 (IIO9IE)	-
008916	UART2 Transmit /NACK Interrupt Control Register (S2TIC)			Interrupt Enable Register 10 (IIO10IE)	-
				Interrupt Enable Register 10 (IIO10IE)	-
			00BB16 00BC16		
	Timer A1 Interrupt Control Register (TA1IC)	96	00BC16 00BD16		-
			00BD16 00BE16		-
	Timer A3 Interrupt Control Register (TA3IC)		00BE16 00BF16		-
	Timer As Interrupt Control Register (TASIC)				

Blank spaces are reserved. No access is allowed.

Address	Register	Page	Address	Register	Page
00C016	Group 0 Time Measurement Register 0 (G0TM0)/		00F016	Group 0 Data Compare Register 0 (G0CMP0)	
00C116	Group 0 Waveform Generation Register 0 (G0PO0)		00F116	Group 0 Data Compare Register 1 (G0CMP1)	
00C216	Group 0 Time Measurement Register 1 (G0TM1)/		00F216	Group 0 Data Compare Register 2 (G0CMP2)	0.05
00C316	Group 0 Waveform Generation Register 1 (G0PO1)		00F316	Group 0 Data Compare Register 3 (G0CMP3)	295
00C416	Group 0 Time Measurement Register 2 (G0TM2)/		00F416	Group 0 Data Mask Register 0 (G0MSK0)]
00C516	Group 0 Waveform Generation Register 2 (G0PO2)		00F516	Group 0 Data Mask Register 1 (G0MSK1)	1
00C616	Group 0 Time Measurement Register 3 (G0TM3)/		00F616		
00C716	Group 0 Waveform Generation Register 3 (G0PO3)	259/	00F716		1
00C816	Group 0 Time Measurement Register 4 (G0TM4)/	261	00F816		
00C916	Group 0 Waveform Generation Register 4 (G0PO4)		00F916	Group 0 Receive CRC Code Register (G0RCRC)	
00CA16	Group 0 Time Measurement Register 5 (G0TM5)/		00FA16		295
	Group 0 Waveform Generation Register 5 (G0PO5)		00FB16	Group 0 Transmit CRC Code Register (G0TCRC)	
	Group 0 Time Measurement Register 6 (G0TM6)/		00FC16	Group 0 SI/O Extended Mode Register (G0EMR)	292
	Group 0 Waveform Generation Register 6 (G0PO6)		00FD16	Group 0 SI/O Extended Receive Control Register (G0ERC)	293
	Group 0 Time Measurement Register 7 (G0TM7)/		00FE16	Group 0 SI/O Special Communication Interrupt Detect Register (G0IRF)	294
	Group 0 Waveform Generation Register 7 (G0PO7)		00FF16	Group 0 SI/O Extended Transmit Control Register (G0ETC)	
	Group 0 Waveform Generation Control Register 0 (G0POCR0)		010016	Group 1 Time Measurement Register 0 (G1TM0)/	
	Group 0 Waveform Generation Control Register 1 (G0POCR1)		010116	Group 1 Waveform Generation Register 0 (G1PO0)	
00D216	Group 0 Waveform Generation Control Register 2 (G0POCR2)		010216	Group 1 Time Measurement Register 1 (G1TM1)/	-
00D316	Group 0 Waveform Generation Control Register 3 (G0POCR3)	250	010316	Group 1 Waveform Generation Register 1 (G1PO1)	
00D416	Group 0 Waveform Generation Control Register 4 (G0POCR4)	259	010416	Group 1 Time Measurement Register 2 (G1TM2)/	1
00D516	Group 0 Waveform Generation Control Register 5 (G0POCR5)		010516	Group 1 Waveform Generation Register 2 (G1PO2)	
00D616	Group 0 Waveform Generation Control Register 6 (G0POCR6)		010616	Group 1 Time Measurement Register 3 (G1TM3)/	-
00D716	Group 0 Waveform Generation Control Register 7 (G0POCR7)		010716	Group 1 Waveform Generation Register 3 (G1PO3)	
00D816	Group 0 Time Measurement Control Register 0 (G0TMCR0)		010816	Group 1 Time Measurement Register 4 (G1TM4)/	261
00D916	Group 0 Time Measurement Control Register 1 (G0TMCR1)		010916	Group 1 Waveform Generation Register 4 (G1PO4)	
	Group 0 Time Measurement Control Register 2 (G0TMCR2)		010A16	Group 1 Time Measurement Register 5 (G1TM5)/	-
	Group 0 Time Measurement Control Register 3 (G0TMCR3)		010B16		
	Group 0 Time Measurement Control Register 4 (G0TMCR4)	258	010C16		-
	Group 0 Time Measurement Control Register 5 (G0TMCR5)		010D16		
	Group 0 Time Measurement Control Register 6 (G0TMCR6)		010E16		-
	Group 0 Time Measurement Control Register 7 (G0TMCR7)		010F16	Group 1 Waveform Generation Register 7 (G1PO7)	
00E016			011016	Group 1 Waveform Generation Control Register 0 (G1POCR0)	
00E016	Group 0 Base Timer Register (G0BT)	253	011010	Group 1 Waveform Generation Control Register 1 (G1POCR1)	-
	Group 0 Base Timer Control Register 0 (G0BCR0)	200	011216	Group 1 Waveform Generation Control Register 2 (G1POCR2)	-
	Group 0 Base Timer Control Register 0 (CoBCR0) Group 0 Base Timer Control Register 1 (G0BCR1)	254	011216	Group 1 Waveform Generation Control Register 3 (G1POCR3)	-
	Group 0 Time Measurement Prescaler Register 6 (G0TPR6)		011010	Group 1 Waveform Generation Control Register 4 (G1POCR4)	259
00E416	Group 0 Time Measurement Prescaler Register 0 (G0TPR0) Group 0 Time Measurement Prescaler Register 7 (G0TPR7)	258	011516	Group 1 Waveform Generation Control Register 5 (G1POCR5)	-
00E516	Group 0 Function Enable Register (G0FE)		011616	Group 1 Waveform Generation Control Register 6 (G1POCR6)	-
00E018	Group 0 Function Select Register (G0FS)	262	011716	Group 1 Waveform Generation Control Register 7 (G1POCR7)	-
00E716			011716	Group 1 Time Measurement Control Register 0 (G1TMCR0)	
00E016	Group 0 SI/O Receive Buffer Register (G0RB)	291	011016	Group 1 Time Measurement Control Register 0 (GTTMCR0)	-
00E916	Group 0 Transmit Buffer/Receive Data Register (G0TB/G0DR)	294	011916 011A16	Group 1 Time Measurement Control Register 1 (GTTMCR1)	-
	Goup o Transmit Buller/Receive Data Register (GOTB/GODR)	294	011A16	Group 1 Time Measurement Control Register 2 (GTTMCR2)	-
00EB16	Group & Receive Input Pagistor (COPI)	200	011B16 011C16		258
	Group 0 Receive Input Register (G0RI)	289			-
	Group 0 SI/O Communication Mode Register (G0MR)	291	011D16		-
	Group 0 Transmit Output Register (G0TO)	289	011E16	Group 1 Time Measurement Control Register 6 (G1TMCR6)	-
00EF16	Group 0 SI/O Communication Control Register (G0CR)	290	011F16	Group 1 Time Measurement Control Register 7 (G1TMCR7)	

Address	Register	Page	Address	Register	Page
012016			015016	Group 2 Waveform Generation Control Register 0 (G2POCR0)	
012116	Group 1 Base Timer Register (G1BT)	253	015116	Group 2 Waveform Generation Control Register 1 (G2POCR1)	
012216	Group 1 Base Timer Control Register 0 (G1BCR0)		015216	Group 2 Waveform Generation Control Register 2 (G2POCR2)	
012316	Group 1 Base Timer Control Register 1 (G1BCR1)	254	015316	Group 2 Waveform Generation Control Register 3 (G2POCR3)	260
012416	Group 1 Time Measurement Prescaler Register 6 (G1TPR6)		015416	Group 2 Waveform Generation Control Register 4 (G2POCR4)	200
012516	Group 1 Time Measurement Prescaler Register 7 (G1TPR7)	258	015516	Group 2 Waveform Generation Control Register 5 (G2POCR5)	
012616	Group 1 Function Enable Register (G1FE)	2022	015616	Group 2 Waveform Generation Control Register 6 (G2POCR6)	
012716	Group 1 Function Select Register (G1FS)	262	015716	Group 2 Waveform Generation Control Register 7 (G2POCR7)	
012816			015816		
012916	Group 1 SI/O Receive Buffer Register (G1RB)	291	015916		
012A16	Group 1 Transmit Buffer/Receive Data Register (G1TB/G1DR)	294	015A16		
012B16		201	015B16		
012D10	Group 1 Receive Input Register (G1RI)	289	015C16		
012D16	Group 1 SI/O Communication Mode Register (G1MR)	203	015D16		
012D16	Group 1 Transmit Output Register (G1TO)	289	015E16		
			015E16		
012F16	Group 1 SI/O Communication Control Register (G1CR)	290			
013016	Group 1 Data Compare Register 0 (G1CMP0)		016016	Group 2 Base Timer Register (G2BT)	050
013116	Group 1 Data Compare Register 1 (G1CMP1)		016116		253
013216	Group 1 Data Compare Register 2 (G1CMP2)	295	016216	Group 2 Base Timer Control Register 0 (G2BCR0)	0.5.5
013316	Group 1 Data Compare Register 3 (G1CMP3)		016316	Group 2 Base Timer Control Register 1 (G2BCR1)	255
013416	Group 1 Data Mask Register 0 (G1MSK0)		016416	Base Timer Start Register (BTSR)	257
013516	Group 1 Data Mask Register 1 (G1MSK1)		016516		
013616			016616	Group 2 Function Enable Register (G2FE)	262
013716			016716	Group 2 RTP Output Buffer Register (G2RTP)	263
013816	Crown 4 Descrive CDC Code Desister (C4DCDC)		016816		
013916	Group 1 Receive CRC Code Register (G1RCRC)	005	016916		
013A16		295	016A16	Group 2 SI/O Communication Mode Register (G2MR)	0.07
013B16	Group 1 Transmit CRC Code Register (G1TCRC)		016B16	Group 2 SI/O Communication Control Register (G2CR)	307
013C16	Group 1 SI/O Extended Mode Register (G1EMR)	292	016C16		
013D16	Group 1 SI/O Extended Receive Control Register (G1ERC)	293	016D16	Group 2 SI/O Transmit Buffer Register (G2TB)	306
013E16	Group 1 SI/O Special Communication Interrupt Detect Register (G1IRF)	294	016E16		
013F16	Group 1 SI/O Extended Transmit Control Register (G1ETC)	292	016F16	Group 2 SI/O Receive Buffer Register (G2RB)	
014016			017016		
014116	Group 2 Waveform Generation Register 0 (G2PO0)		017116	Group 2 IEBus Address Register (IEAR)	308
014216			017216	Group 2 IEBus Control Register (IECR)	
014316	Group 2 Waveform Generation Register 1 (G2PO1)		017316	Group 2 IEBus Transmit Interrupt Cause Detect Register (IETIF)	309
014416			017416	Group 2 IEBus Receive Interrupt Cause Detect Register (IERIF)	309
014516	Group 2 Waveform Generation Register 2 (G2PO2)		017516		
014616			017616		
014716	Group 2 Waveform Generation Register 3 (G2PO3)		017716		
014816		261	017816	Input Function Select Register (IPS)	383
014016	Group 2 Waveform Generation Register 4 (G2PO4)		017916		000
014918 014A16			017916 017A16	Group 3 SI/O Communication Mode Register (G3MR)	
	Group 2 Waveform Generation Register 5 (G2PO5)		017A16	Group 3 SI/O Communication Mode Register (G30K) Group 3 SI/O Communication Control Register (G3CR)	318
014B16			017B16	Group 5 51/0 Communication Control (Cegister (CSCR)	
014C16	Group 2 Waveform Generation Register 6 (G2PO6)			Group 3 SI/O Transmit Buffer Register (G3TB)	
014D16	,		017D16		317
014E16	Group 2 Waveform Generation Register 7 (G2PO7)		017E16	Group 3 SI/O Receive Buffer Register (G3RB)	
014F16			017F16	, , , ,	

Blank spaces are reserved. No access is allowed.

Address	Register	Page	Address	Register	Page
018016	Crown 2 Would are Conception Desister 0 (C2DO0)		01B016		
018116	Group 3 Waveform Generation Register 0 (G3PO0)		01B116		
018216	Crown 2 Mayoform Concretion Register 1 (C2R01)		01B216		
018316	Group 3 Waveform Generation Register 1 (G3PO1)		01B316		
018416	Course 2 Manuatare Concertion Register 2 (C2RO2)		01B416		
018516	Group 3 Waveform Generation Register 2 (G3PO2)		01B516		
018616			01B616		
018716	Group 3 Waveform Generation Register 3 (G3PO3)	261	01B716		
018816		201	01B816		
018916	Group 3 Waveform Generation Register 4 (G3PO4)		01B916		
018A16			01BA16		
018B16	Group 3 Waveform Generation Register 5 (G3PO5)		01BB16		
018C16			01BC16		
018D16	Group 3 Waveform Generation Register 6 (G3PO6)		01BD16		
018E16			01BE16		
018F16	Group 3 Waveform Generation Register 7 (G3PO7)		01BF16		
019016	Group 3 Waveform Generation Control Register 0 (G3POCR0)		01C016		
019116	Group 3 Waveform Generation Control Register 1 (G3POCR1)		01C116	A/D1 Register 0 (AD10)	
019216	Group 3 Waveform Generation Control Register 2 (G3POCR2)		01C216		
019316	Group 3 Waveform Generation Control Register 3 (G3POCR3)	260	01C316	A/D1 Register 1 (AD11)	
019416	Group 3 Waveform Generation Control Register 4 (G3POCR4)	260	01C416		
019516	Group 3 Waveform Generation Control Register 5 (G3POCR5)		01C516	A/D1 Register 2 (AD12)	
019616	Group 3 Waveform Generation Control Register 6 (G3POCR6)		01C616		
019716	Group 3 Waveform Generation Control Register 7 (G3POCR7)		01C716	A/D1 Register 3 (AD13)	
019816			01C816		233
019916	Group 3 Waveform Generation Mask Register 4 (G3MK4)		01C916	A/D1 Register 4 (AD14)	
019A16			01CA16		
019B16	Group 3 Waveform Generation Mask Register 5 (G3MK5)	261	01CB16	A/D1 Register 5 (AD15)	
019C16		261	01CC16		
019D16	Group 3 Waveform Generation Mask Register 6 (G3MK6)		01CD16	A/D1 Register 6 (AD16)	
019E16			01CE16		
019F16	Group 3 Waveform Generation Mask Register 7 (G3MK7)		01CF16	A/D1 Register 7 (AD17)	
01A016			01D016		
01A116	Group 3 Base Timer Register (G3BT)	253	01D116		
01A216	Group 3 Base Timer Control Register 0 (G3BCR0)		01D216		
	Group 3 Base Timer Control Register 1 (G3BCR1)	256	01D316		
01A416				A/D1 Control Register 2 (AD1CON2)	233
01A516			01D516		
	Group 3 Function Enable Register 1 (G3FE)	262		A/D1 Control Register 0 (AD1CON0)	231
01A716	Group 3 RTP Output Buffer Register 1 (G3RTP)	263	01D716	A/D1 Control Register 1 (AD1CON1)	232
01A816			01D816		
01A916			01D916		
01AA16			01DA16		
01AB16			01DB16		———
01AC16			01DC16		———
	Group 3 SI/O Communication Flag Register (G3FLG)	319	01DD16		
01AE16			01DE16		
01AF16			01DF16		
				1	

Address	Register	Page	Address	Register	Page
01E016			021016	-	
01E116	CAN0 Message Slot Buffer 0 Standard ID1 (C0SLOT0_1)	350	021116	CAN0 Slot Interrupt Mask Register (C0SIMKR)	340
01E216	CAN0 Message Slot Buffer 0 Extended ID0 (C0SLOT0_2)		021216		
01E316	CAN0 Message Slot Buffer 0 Extended ID1 (C0SLOT0_3)	351	021316		-
01E416	CAN0 Message Slot Buffer 0 Extended ID2 (C0SLOT0_4)		021416	CAN0 Error Interrupt Mask Register (C0EIMKR)	341
01E516	CAN0 Message Slot Buffer 0 Data Length Code (C0SLOT0_5)	352	021516	CAN0 Error Interrupt Status Register (C0EISTR)	342
01E616	CAN0 Message Slot Buffer 0 Data 0 (C0SLOT0_6)		021616		-
01E716	CAN0 Message Slot Buffer 0 Data 1 (C0SLOT0_7)		021716	CAN0 Baud Rate Prescaler (C0BPR)	337
01E816	CAN0 Message Slot Buffer 0 Data 2 (C0SLOT0_8)		021816		
01E916	CAN0 Message Slot Buffer 0 Data 3 (C0SLOT0_9)		021916		-
	CAN0 Message Slot Buffer 0 Data 4 (C0SLOT0_10)		021A16		-
	CANO Message Slot Buffer 0 Data 5 (COSLOT0_11)	353	021B16		-
	CANO Message Slot Buffer 0 Data 6 (COSLOT0_12)		021C16		-
	CANO Message Slot Buffer 0 Data 7 (COSLOT0_13)		021016		-
	CANO Message Slot Buffer 0 Time Stamp High-Order (COSLOT0_14)		021E16		-
01EF16			021E16		-
01F016	CANO Message Slot Buffer 1 Standard ID0 (C0SLOT1_0)		022016		-
01F116	CANO Message Slot Buffer 1 Standard ID0 (C0SLOT1_0) CANO Message Slot Buffer 1 Standard ID1 (C0SLOT1_1)	350	022016		-
01F216	CANO Message Slot Buffer 1 Standard ID1 (COSLOT1_1) CANO Message Slot Buffer 1 Extended ID0 (COSLOT1_2)		022116		-
01F316	CANO Message Slot Buller 1 Extended ID0 (COSLOT1_2) CANO Message Slot Buller 1 Extended ID1 (COSLOT1_3)	351	022216		-
01F316	CANO Message Slot Buffer 1 Extended ID1 (C03LOT1_3) CANO Message Slot Buffer 1 Extended ID2 (C0SLOT1_4)		022316		-
01F416	CANO Message Slot Buffer 1 Data Length Code (COSLOT1_4)	352	022416		-
	CANO Message Slot Buffer 1 Data 20 (COSLOTI_5)				-
01F616			022616		-
01F716	CANO Message Slot Buffer 1 Data 1 (COSLOT1_7)		022716	CANO Clabel Mark Desister Standard (DO (COOMDO)	0.40
01F816	CANO Message Slot Buffer 1 Data 2 (COSLOT1_8)		022816	CANO Global Mask Register Standard ID0 (COGMR0)	343
01F916	CANO Message Slot Buffer 1 Data 3 (COSLOT1_9)		022916	CAN0 Global Mask Register Standard ID1 (C0GMR1)	344
01FA16	· · · · · · · · · · · · · · · · · · ·	353	022A16	3	
01FB16	· · · · · · · · · · · · · · · · · · ·		022B16	3	345
	CANO Message Slot Buffer 1 Data 6 (COSLOT1_12)		022C16	CAN0 Global Mask Register Extended ID2 (C0GMR4)	
01FD16	• • • • • • • • • • • • • • • • • • •		022D16		-
01FE16	CANO Message Slot Buffer 1 Time Stamp High-Order (COSLOT1_14)		022E16		-
01FF16	CAN0 Message Slot Buffer 1 Time Stamp Low-Order (C0SLOT1_15)		022F16		
020016	CAN0 Control Register0 (C0CTLR0)	326	023016	CAN0 Message Slot 0 Control Register (C0MCTL0)/	346/
020116				CAN0 Local Mask Register A Standard ID0 (C0LMAR0)	343
020216	CAN0 Status Register (C0STR)	331	023116	CAN0 Message Slot 1 Control Register (C0MCTL1)/	
020316			020110	CAN0 Local Mask Register A Standard ID1 (C0LMAR1)	344/
020416	CAN0 Extended ID Register (C0IDR)	333	023216	CAN0 Message Slot 2 Control Register (C0MCTL2)/	346/
020516	CANG Extended ib Register (COIDR)		020210	CAN0 Local Mask Register A Extended ID0 (C0LMAR2)	
020616	CAND Configuration Productor (COCONP)	224	023316	CAN0 Message Slot 3 Control Register (C0MCTL3)/	
020716	CAN0 Configuration Register (C0CONR)	334	023316	CAN0 Local Mask Register A Extended ID1 (C0LMAR3)	345
020816	CANO Timo Stamp Projector (COTSP)		022440	CAN0 Message Slot 4 Control Register (C0MCTL4)/	346/
020916	CAN0 Time Stamp Register (C0TSR)	336	023416	CAN0 Local Mask Register A Extended ID2 (C0LMAR4)	
020A16	CAN0 Transmit Error Count Register (C0TEC)		023516	CAN0 Message Slot 5 Control Register (C0MCTL5)	
020B16	CAN0 Receive Error Count Register (C0REC)	337	023616	CAN0 Message Slot 6 Control Register (C0MCTL6)	346
020C16			023716	CAN0 Message Slot 7 Control Register (C0MCTL7)	1
020D16	CAN0 Slot Interrupt Status Register (C0SISTR)	338		CAN0 Message Slot 8 Control Register (C0MCTL8)/	346/
020E16			023816	CAN0 Local Mask Register B Standard ID0 (C0LMBR0)	343
020F16			L	I	1

Address	Register	Page	Address	Register	Page
000040	CAN0 Message Slot 9 Control Register (C0MCTL9)/		02C016	X0 Register Y0 Register (X0R,Y0R)	
023916	CAN0 Local Mask Register B Standard ID1 (C0LMBR1)	344	02C116		
000440	CAN0 Message Slot 10 Control Register (C0MCTL10)/	346/	02C216	X1 Register Y1 Register (X1R,Y1R)	
023A16	CAN0 Local Mask Register B Extended ID0 (C0LMBR2)		02C316		
000040	CAN0 Message Slot 11 Control Register (C0MCTL11)/		02C416	X2 Register Y2 Register (X2R,Y2R)	
023B16	CAN0 Local Mask Register B Extended ID1 (C0LMBR3)	345	02C516		
000040	CAN0 Message Slot 12 Control Register (C0MCTL12)/	346/	02C616	X3 Register Y3 Register (X3R,Y3R)	
023C16	CAN0 Local Mask Register B Extended ID2 (C0LMBR4)		02C716		
	CAN0 Message Slot 13 Control Register (C0MCTL13)		02C816	X4 Register Y4 Register (X4R,Y4R)	
	CAN0 Message Slot 14 Control Register (C0MCTL14)	346	02C916		
023F16	CAN0 Message Slot 15 Control Register(C0MCTL15)		02CA16	X5 Register Y5 Register (X5R,Y5R)	
024016	CAN0 Slot Buffer Select Register (C0SBS)	349	02CB16		
024116	CAN0 Control Register 1 (C0CTLR1)	329	02CC16	X6 Register Y6 Register (X6R,Y6R)	
024216	CAN0 Sleep Control Register (C0SLPR)	330	02CD16		
024316			02CE16	X7 Register Y7 Register (X7R,Y7R)	
024416	CANO Accontance Eilter Support Pogister (COAES)	354	02CF16		246
024516	CAN0 Acceptance Filter Support Register (C0AFS)	304	02D016	X8 Register Y8 Register (X8R,Y8R)	240
			02D116		
			02D216	X9 Register Y9 Register (X9R,Y9R)	
			02D316		
			02D416	X10 Register Y10 Register (X10R,Y10R)	
			02D516		
			02D616 02D716	X11 Register Y11 Register (X11R,Y11R)	
			02D816		
			02D916	X12 Register Y12 Register (X12R,Y12R)	
			02DA16		
			02DB16	X13 Register Y13 Register (X13R,Y13R)	
			02DC16	V14 Degister, V14 Degister (V14D V14D)	
			02DD16	X14 Register Y14 Register (X14R,Y14R)	
			02DE16	X15 Degister, X15 Degister (X15D X15D)	
			02DF16	X15 Register Y15 Register (X15R,Y15R)	
			02E016	XY Control Register (XYC)	245
			02E116		
			02E216		
			02E316		
			02E416		180
			02E516	UART1 Special Mode Register 3 (U1SMR3)	179
			02E616		178
			02E716		177
			02E816	3 ()	175
			02E916	UART1 Baud Rate Register (U1BRG)	
			02EA16 02EB16	UART1 Transmit Buffer Register (U1TB)	174
			02EC16	UART1 Transmit/Receive Control Register 0 (U1C0)	176
			02ED16		177
			02EE16		
	I		02EF16	UART1 Receive Buffer Register (U1RB)	174

Address	Register	Page	Address	Register	Page
02F016			032016		- aga
02F116			032116		1
02F216			032216		1
02F316			032316		1
02F416	UART4 Special Mode Register 4 (U4SMR4)	180	032416	UART3 Special Mode Register 4 (U3SMR4)	180
02F516	UART4 Special Mode Register 3 (U4SMR3)	179	032516	UART3 Special Mode Register 3 (U3SMR3)	179
02F616	UART4 Special Mode Register 2 (U4SMR2)	178	032616	UART3 Special Mode Register 2 (U3SMR2)	178
02F716	UART4 Special Mode Register (U4SMR)	177	032716	UART3 Special Mode Register (U3SMR)	177
02F816	UART4 Transmit/Receive Mode Register (U4MR)		032816	UART3 Transmit/Receive Mode Register (U3MR)	
02F916	UART4 Baud Rate Register (U4BRG)	175	032916	UART3 Baud Rate Register (U3BRG)	175
02FA16			032A16		
02FB16	UART4 Transmit Buffer Register (U4TB)	174	032B16	UART3 Transmit Buffer Register (U3TB)	174
	UART4 Transmit/Receive Control Register 0 (U4C0)	176	032D16	UART3 Transmit/Receive Control Register 0 (U3C0)	176
02FD16	UART4 Transmit/Receive Control Register 1 (U4C1)	170	032D16		
02FD16	OART4 Transmit/Receive Control Register 1 (04C1)	177	032D16		
02FE16	UART4 Receive Buffer Register (U4RB)	174	032E16	UART3 Receive Buffer Register (U3RB)	174
030016	Timer B3,B4,B5 Count Start Flag (TBSR)	154	033016		
030116	Timer D3, D4, D3 Count Start Flag (TDOR)	134	033116		-
030216			033216		-
030216	Timer A1-1 Register (TA11)		033216		-
030318			033416	UART2 Special Mode Register 4 (U2SMR4)	180
030418	Timer A2-1 Register (TA21)	167	033516	UART2 Special Mode Register 3 (U2SMR4)	179
030616			033616	UART2 Special Mode Register 2 (U2SMR3)	179
030716	Timer A4-1 Register (TA41)		033716	UART2 Special Mode Register 2 (02SMR2)	177
030816	Three-Phase PWM Control Register 0 (INVC0)	164	033816	UART2 Transmit/Receive Mode Register (U2MR)	
030916	Three-Phase PWM Control Register 0 (INVC0)	165	033916	UART2 Baud Rate Register (U2BRG)	175
030918 030A16	Three-Phase Output Buffer Register 0 (IDB0)	105	033A16	OARTZ Baud Rate Register (OZDRO)	
030B16	Three-Phase Output Buffer Register 0 (IDB0)	166	033B16	UART2 Transmit Buffer Register (U2TB)	174
030D16	Dead Time Timer (DTT)	100	033C16	UART2 Transmit/Receive Control Register 0 (U2C0)	176
030D16	Timer B2 Interrupt Generation Frequency Set Counter (ICTB2)	167	033D16		
030E16	Timer bz interrupt Generation Frequency Set Counter (ICTbz)	107	033E16	OARTZ Hansmit/Receive Control Register 1 (0201)	
030E16			033E16	UART2 Receive Buffer Register (U2RB)	174
031016			034016	Count Stort Flog (TARSP)	137
	Timer B3 Register (TB3)			Count Start Flag (TABSR)	
031116 031216			034116	Clock Prescaler Reset Flag (CPSRF)	71
	Timer B4 Register (TB4)	152	034216	One-Shot Start Flag (ONSF)	138
031316				Trigger Select Register (TRGSR)	139
031416	Timer B5 Register (TB5)		034416	Up-Down Flag (UDF)	138
031516	,		034516		
031616			034616	Timer A0 Register (TA0)	
031716			034716	, ,	-
031816			034816	Timer A1 Register (TA1)	
031916			034916	, ,	-
031A16			034A16	Timer A2 Register (TA2)	136
031B16	Timer B3 Mode Register (TB3MR)		034B16		
031C16	Timer B4 Mode Register (TB4MR)	153	034C16	Timer A3 Register (TA3)	
031D16	Timer B5 Mode Register (TB5MR)		034D16		-
031E16			034E16	Timer A4 Register (TA4)	
031F16	External Interrupt Cause Select Register (IFSR)	105	034F16		

Address	Register	Page	Address	Register
035016	Timer DO Degister (TDO)		038016	A/DO Destintaro (ADOO)
035116	Timer B0 Register (TB0)		038116	A/D0 Register0 (AD00)
035216	Timer D4 Desister (TD4)	450	038216	
035316	Timer B1 Register (TB1)	152	038316	A/D0 Register1 (AD01)
035416	Timer D2 Desister (TD2)		038416	A/DO Descietor2 (AD02)
035516	Timer B2 Register (TB2)		038516	A/D0 Register2 (AD02)
035616	Timer A0 Mode Register (TA0MR)		038616	
035716	Timer A1 Mode Register (TA1MR)		038716	A/D0 Register3 (AD03)
035816	Timer A2 Mode Register (TA2MR)	137	038816	
035916	Timer A3 Mode Register (TA3MR)		038916	A/D0 Register4 (AD04)
035A16	Timer A4 Mode Register (TA4MR)		038A16	
035B16	Timer B0 Mode Register (TB0MR)		038B16	A/D0 Register5 (AD05)
035C16	Timer B1 Mode Register (TB1MR)	153	038C16	
035D16	Timer B2 Mode Register (TB2MR)		038D16	A/D0 Register6 (AD06)
035E16	Timer B2 Special Mode Register (TB2SC)	167	038E16	
035F16	Count Source Prescaler Register (TCSPR)	71	038F16	A/D0 Register7 (AD07)
036016			039016	
036116			039116	
036216			039216	
036316			039316	
036416	UART0 Special Mode Register 4 (U0SMR4)	180	039416	A/D0 Control Register 2 (AD0CON2)
036516	UART0 Special Mode Register 3 (U0SMR3)	179	039516	
036616	UART0 Special Mode Register 2 (U0SMR2)	178	039616	A/D0 Control Register 0 (AD0CON0)
036716	UART0 Special Mode Register (U0SMR)	177	039716	A/D0 Control Register 1 (AD0CON1)
036816	UART0 Transmit/Receive Mode Register (U0MR)		039816	D/A Register 0 (DA0)
036916	UART0 Baud Rate Register (U0BRG)	175	039916	
036A16			039A16	D/A Register 1 (DA1)
036B16	UART0 Transmit Buffer Register (U0TB)	174	039B16	`
036C16	UART0 Transmit/Receive Control Register 0 (U0C0)	176	039C16	D/A Control Register (DACON)
036D16	UART0 Transmit/Receive Control Register 1 (U0C1)		039D16	
036E16			039E16	
036F16	UART0 Receive Buffer Register (U0RB)	174	039F16	
037016				
037116				
037216				
037316				
037416				
037516				
037616	PLL Control Register 0 (PLC0)	72		
037716	PLL Control Register 1 (PLC1)	73		
037816	DMA0 Cause Select Register (DM0SL)			
037916	DMA1 Cause Select Register (DM1SL)			
037A16	DMA2 Cause Select Register (DM2SL)	116		
037B16	DMA3 Cause Select Register (DM3SL)			
037C16				
037D16	CRC Data Register (CRCD)	243		
037E16	CRC Input Register (CRCIN)	273		
037E16				
001110				

Page

Address	Register	Page	Address		Page
03A016	Function Select Register A8 (PS8)	376	03D016	Port P14 Register (P14)	372
03A116	Function Select Register A9 (PS9)	377	03D116	Port P15 Register (P15)	512
03A216			03D216	Port P14 Direction Register (PD14)	371
03A316			03D316	Port P15 Direction Register (PD15)	371
03A416			03D416		
03A516			03D516		
03A616			03D616		
03A716			03D716		
03A816			03D816		
03A916			03D916		
03AA16			03DA16	Pull-Up Control Register 2 (PUR2)	381
03AB16			03DB16	Pull-Up Control Register 3 (PUR3)	
03AC16			03DC16	Pull-Up Control Register 4 (PUR4)	382
03AD16			03DD16		
03AE16			03DE16		
	Function Select Register C (PSC)	380	03DF16		
	Function Select Register A0 (PS0)			Port P14 Register (P0)	
	Function Select Register A1 (PS1)	373		Port P14 Register (P1)	372
	Function Select Register B0 (PSL0)			Port P14 Direction Register (PD0)	
	Function Select Register B1 (PSL1)	378		Port P14 Direction Register (PD1)	371
	Function Select Register A2 (PS2)			Port P14 Register (P2)	
	Function Select Register A3 (PS3)	374		Port P14 Register (P3)	372
	Function Select Register B2 (PSL2)			Port P14 Direction Register (PD2)	
	Function Select Register B3 (PSL3)	379		Port P14 Direction Register (PD3)	371
03B816				Port P14 Register (P4)	
	Function Select Register A5 (PS5)	375		Port P14 Register (P5)	372
03BA16				Port P14 Direction Register (PD4)	
03BB16				Port P14 Direction Register (PD5)	371
	Function Select Register A6 (PS6)	375	03EC16		
	Function Select Register A7 (PS7)	376	03ED16		
03BE16	· • • • • • • • • • • • • • • • • • • •		03EE16		
03BF16			03EF16		
	Port P6 Register (P6)			Pull-Up Control Register 0 (PUR0)	
	Port P7 Register (P7)	372	03F116		381
	Port P6 Direction Register (PD6)		03F216		
	Port P7 Direction Register (PD7)	371	03F316		
	Port P8 Register (P8)		03F416		
	Port P9 Register (P9)	372	03F516		———————————————————————————————————————
	Port P8 Direction Register (PD8)		03F616		———————————————————————————————————————
	Port P9 Direction Register (PD9)	371	03F716		———————————————————————————————————————
	Port P10 Register (P10)		03F816		———————————————————————————————————————
	Port P11 Register (P11)	372	03F916		———————————————————————————————————————
	Port P10 Direction Register (PD10)		03F916 03FA16		———————————————————————————————————————
	Port P11 Direction Register (PD10)	371	03FA16		———————————————————————————————————————
	Port P12 Register (P12)		03FD16		
		372			
	Port P13 rRegister (P13)		03FD16		
	Port P12 Direction Register (PD12)	371	03FE16		
03CF16	Port P13 Direction Register (PD13)		U3FF16	Port Control Register (PCR)	383

Blank spaces are reserved. No access is allowed.

RENESAS

M32C/83 Group (M32C/83, M32C/83T) SINGLE-CHIP 16/32-BIT CMOS MICROCOMPUTER

1. Overview

The M32C/83 Group (M32C/83, M32C/83T) microcomputer is a single-chip control unit that utilizes highperformance silicon gate CMOS technology with the M32C/80 Series CPU core. The M32C/83 Group (M32C/83, M32C/83T) is available in 144-pin and 100-pin plastic molded LQFP/QFP packages. With a 16-Mbyte address space, this microcomputer combines advanced instruction manipulation capabilities to process complex instructions by less bytes and execute instructions at higher speed. It includes a multiplier and DMAC adequate for office automation, communication devices and industrial equipments, and other high-speed processing applications.

1.1 Applications

Automobiles, audio, cameras, office equipment, communications equipment, portable equipment, etc.

1.2 Performance Overview

Tables 1.1 and 1.2 list performance overview of the M32C/83 Group (M32C/83, M32C/83T).

Table 1.1 M32C/83 Group (M32C/83, M32C/83T) Performance (144-Pin Package)

	Characteristic	Performa M32C/83	ance M32C/83T				
CPU	Basic Instructions	108 instructions	101320/831				
CFU	Minimum Instruction Execution Time	31.3 ns (f(BCLK)=32 MHz, Vcc=4.2 to 5.5 V) ⁽³ 50 ns (f(BCLK)=20 MHz, Vcc=3.0 to 5.5 V))31.3 ns (f(BCLK)=32 MHz, Vcc=4.2 to 5.5 V) ⁽³⁾				
	Operating Mode	Single-chip mode, Memory expansion mode and Microprocessor mode	Single-chip mode				
	Address Space	16 Mbytes	1				
	Memory Capacity	See Table 1.3					
Peripheral		123 I/O pins and 1 input pin					
Function	Multifunction Timer	Timer A: 16 bits x 5 channels, Timer B: 16 bits x 6 channels Three-phase motor control circuit					
	Intelligent I/O	Time measurement function: 16 bits x 12 Waveform generating function: 16 bits x 2 Communication function (Clock synchron rial I/O, HDLC data processing, Clock s IEBus ⁽¹⁾ , 8-bit or 16-bit Clock synchronou	8 channels ous serial I/O, Clock asynchronous se- ynchronous variable length serial I/O,				
	Serial I/O	5 Channels Clock synchronous serial I/O, Clock async					
	CAN Module	1 channel Supporting CAN 2.0B specifi					
	A/D Converter	10-bit A/D converter: 2 circuit, 34 channel					
	D/A Converter	8 bits x 2 channels	5				
	DMAC	4 channels					
	DMAC II						
		Can be activated by all peripheral function interrupt sources Immediate transfer, Calculation transfer and Chain transfer functions					
	DRAM	CAS before RAS refresh, Self-reflesh, ED	O, EP				
	CRC Calculation Circuit	CRC-CCITT					
	X/Y Converter	16 bits x 16 bits					
	Watchdog Timer	15 bits x 1 channel (with prescaler)					
	Interrupt	42 internal and 8 external sources, 5 software	are sources, Interrupt priority level: 7				
	Clock Generation Circuit	4 circuits Main clock oscillation circuit(*), Sub clock PLL frequency synthesizer (*)Equipped with a built-in feedback resist tor must be connected externally	or. Ceramic resonator or crystal oscilla-				
	Oscillation Stop Detect Function	Main clock oscillation stop detect function					
Electrical Charact- eristics	Supply Voltage	4.2 to 5.5 V (f(BCLK)=32 MHz) 3.0 to 5.5 V (f(BCLK)=20 MHz, through VDC) 3.0 to 3.6 V (f(BCLK)=20 MHz, not through VDC)					
	Power Consumption	41 mA (Vcc=5 V, f(BCLK)=32 MHz) 38 mA (Vcc=5 V, f(BCLK)=30 MHz) 26 mA (Vcc=3.3 V, f(BCLK)=20 MHz) 470 μ A (Vcc=5 V, f(XcIN)=32 kHz, in wait mode) 340 μ A (Vcc=3.3 V, f(XcIN)=32 kHz, through VDC, in wait mode) 5.0 μ A (Vcc=3.3 V, f(XcIN)=32 kHz, not through VDC, in wait mode) 0.4 μ A (Vcc=5 V, stop mode) 0.4 μ A (Vcc=3.3 V, stop mode)	41 mA (Vcc=5 V, f(BCLK)=32 MHz) 38 mA (Vcc=5 V, Vf(BCLK)=30 MHz) 470 μA (Vcc=5 V, f(Xcin)=32 kHz, in wait mode) 0.4 μA (Vcc=5 V, stop mode)				
Flash	Program/Erase Supply Voltage	3.3 ± 0.3 V or 5.0 ± 0.5 V	5.0 ± 0.5 V				
Memory	Program and Erase Endurance	100 times					
Operating	Ambient Temperature	-20 to 85°C, -40 to 85°C (optional)	-40 to 85°C (T version)				
Package		144-pin plastic molded LQFP	•				

NOTES:

1. IEBus is a trademark of NEC Electronics Corporation.

2. I²C bus is a trademark of Koninklijke Philips Electronics N. V.
 3. Contact our sales office if 30-MHz or higher frequency is required.

All options are on a request basis.

Table 1.2 M32C/83 Group (M32C/83, M32C/83T) Performance (100-Pin Package)

	Characteristic	M32C/83	M32C/83T					
CPU	Basic Instructions	108 instructions	M32C/831					
	Minimum Instruction Execution Time	31.3 ns (f(BCLK) = 32 MHz, Vcc = 4.2 to 5.5 V)	31.3 ns (f(BCLK) = 32 MHz, Vcc=4.2 to 5.5 V)					
			$31.3 \text{ II} (100 \text{ LV}) = 32 \text{ IVI 12}, \ 700 \text{ - 4.2 to } 3.3 \text{ V})$					
	On exerting a Manda	50 ns (f(BCLK) = 20 MHz, Vcc = 3.0 to 5.5 V)	Cinala akin mada					
	Operating Mode	Single-chip mode, Memory expansion	Single-chip mode					
		mode and Microprocessor mode						
	Address Space	16 Mbytes						
	Memory Capacity	See Table 1.3						
Peripheral	I/O Port	87 I/O pins and 1 input pin						
Function	Multifunction Timer	Timer A: 16 bits x 5 channels, Timer B: 1	6 bits x 6 channels					
		Three-phase motor control circuit						
	Intelligent I/O	Time measurement function: 16 bits x 5 of						
		Waveform generating function: 16 bits x	10 channels					
		Communication function (Clock synchro	nous serial I/O, Clock asynchronous se					
		rial I/O, HDLC data processing, Clock	synchronous variable length serial I/C					
		IEBus ⁽¹⁾)						
	Serial I/O	5 Channels						
		Clock synchronous serial I/O, Clock asy	nchronous serial I/O. IEBus ⁽¹⁾ . I ² C bus ⁽¹⁾					
	CAN Module	1 channel Supporting CAN 2.0B speci						
	A/D Converter	10-bit A/D converter: 2 circuits, 26 chann						
	D/A Converter	8 bits x 2 channels						
	DMAC	4 channels						
	DMAC II	Can be activated by all peripheral function	n interrupt cources					
	DMAC II							
		Immediate transfer, Calculation transfer						
	CRC Calculation Circuit	CRC-CCITT						
	X/Y Converter	16 bits x 16 bits						
	Watchdog Timer	15 bits x 1 channel (with prescaler)						
	Interrupt	42 internal and 8 external sources, 5 soft	ware sources					
		Interrupt priority level: 7						
	Clock Generation Circuit	4 circuits						
		Main clock oscillation circuit(*), Sub cloc	k oscillation circuit(*), On-chip oscillato					
		PLL frequency synthesizer						
			or Ceramic resonator or crystal oscillato					
		(*)Equipped with a built-in feedback resistor. Ceramic resonator or crystal oscillat must be connected externally						
	Oppillation Stan Data at Evention		-					
<u> </u>	Oscillation Stop Detect Function	Main clock oscillation stop detect function						
Electrical	Supply Voltage	4.2 to 5.5 V (f(BCLK)=32 MHz)	4.2 to 5.5 V (f(BCLK)=32 MHz)					
Charact-		3.0 to 5.5 V (f(BCLK)=20 MHz, through VDC)						
eristics		3.0 to 3.6 V (f(BCLK)=20 MHz, not through VDC)						
	Power Consumption	41 mA (Vcc=5 V, f(BCLK)=32 MHz)	41 mA (Vcc=5 V, f(BCLK)=32 MHz)					
		38 mA (Vcc=5 V, f(BCLK)=30 MHz)	38 mA (Vcc=5 V, Vf(BCLK)=30 MHz)					
		26 mA (Vcc=3.3 V, f(BCLK)=20 MHz)	470 μA (Vcc=5 V, f(Xcin)=32 kHz,					
		470 μA (Vcc=5 V, f(Xcin)=32 kHz,	in wait mode)					
		in wait mode)	0.4 μA (Vcc=5 V, stop mode)					
		340 μA (Vcc=3.3 V, f(Xcin)=32 kHz,						
		through VDC, in wait mode)						
		5.0 μA (Vcc=3.3 V, f(Xcin)=32 kHz,						
		not through VDC, in wait mode)						
		$0.4 \mu\text{A} (\text{Vcc}=5 \text{ V, stop mode})$						
		$0.4 \mu\text{A} (\text{VCC}=3.3 \text{ V}, \text{ stop mode})$						
Flash	Program/Erase Supply Voltage	3.3 ± 0.3 V or 5.0 ± 0.5 V	5.0 ± 0.5 V					
Memory	Program and Erase Endurance	100 times	0.0±0.3 v					
,								
	Ambient Temperature	-20 to 85°C, -40 to 85°C (optional)	-40 to 85°C (T version)					
Package		100-pin plastic molded LQFP/QFP						

NOTES:

1. IEBus is a trademark of NEC Electronics Corporation.

2. I²C bus is a trademark of Koninklijke Philips Electronics N. V.

3. Contact our sales office if 30-MHz or higher frequency is required.

All options are on a request basis.

RENESAS

1.3 Block Diagram

Figure 1.1 shows a block diagram of the M32C/83 Group (M32C/83, M32C/83T) microcomputer.

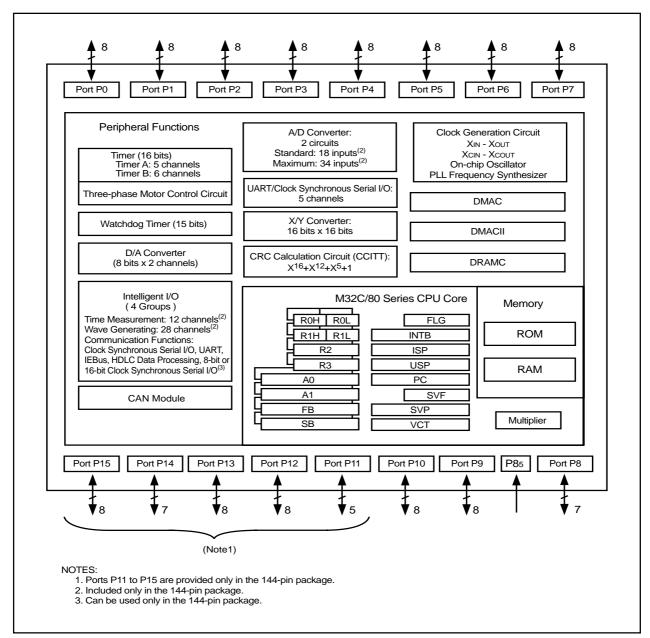


Figure 1.1 M32C/83 Group (M32C/83, M32C/83T) Block Diagram

1.4 Product Information

Table 1.3 lists the product information. Figure 1.2 shows the product numbering system.

Table 1.3 M32C/83 Group	(1) (M32C/83)		As	s of January, 2006
Type Number	Package Type	ROM Capacity	RAM Capacity	Remarks
M30835FJGP	PLQP0144KA-A (144P6Q-A)			
M30833FJGP	PLQP0100KB-A (100P6Q-A)	512K	31K	Flash Memory
M30833FJFP	PRQP0100JB-A (100P6S-A)			

Table 1.3 M32C/83 Group (1) (M32C/83)

Table 1.3 M32C/83 Group (2) (T Version, M32C/83T)

As of January, 2006

Type Number	Package Type	ROM Capacity	RAM Capacity	Remarks
M30833FJTGP	PLQP0100KB-A (100P6Q-A)	512K	31K	Flash Memory T Version (High-reliability 85℃ Version)

Please contact our sales office for V version information.

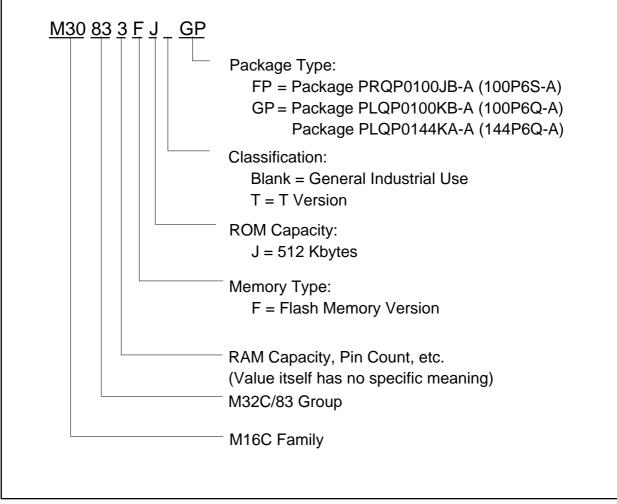


Figure 1.2 Product Numbering System

1.5 Pin Assignment

Figures 1.3 to 1.5 show pin assignments (top view).

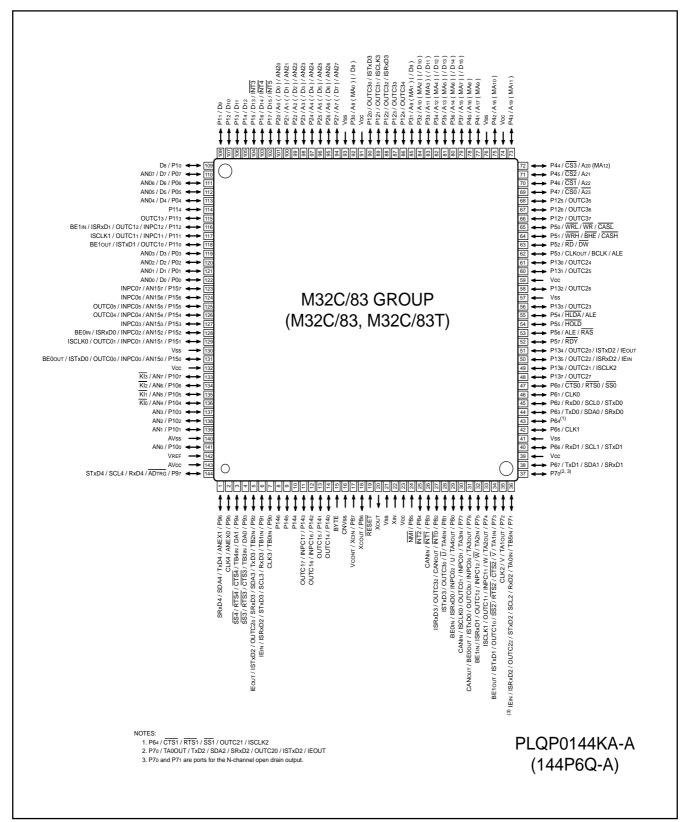


Figure 1.3 Pin Assignment for 144-Pin Package

Pin No	Control Pin	Port	Interrupt Pin	Timer Pin	UART/CAN Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin ⁽¹⁾
1		P96			TxD4/SDA4/SRxD4		ANEX1	
2		P95			CLK4		ANEX0	
3		P94		TB4IN	CTS4/RTS4/SS4		DA1	
4		P93		TB3IN	CTS3/RTS3/SS3		DA0	
5		P92		TB2IN	TxD3/SDA3/SRxD3	OUTC20/IEOUT/ISTxD2		
6		P91		TB1IN	RxD3/SCL3/STxD3	IEIN/ISRxD2		
7		P90		TB0in	CLK3			
8		P146		-				
9		P145						
10		P144						
11		P143				INPC17/OUTC17		
12		P142				INPC16/OUTC16		
13		P141				OUTC15		
13		P140				OUTC14		
14	BYTE	1 1 40						
16	CNVss							
10	XCIN/VCONT	P87						
	XCOUT	P86						
	RESET	100						
19	XOUT							
20	Vss							
21	Xin							
22	Vcc							
23	VCC	D0-	NMI					
24		P85						
25		P84			O A N IIII			
26		P83	INT1					
27		P82	INTO	TA 4 /17	CANOUT	OUTC32/ISRxD3		
28		P81				OUTC30/ISTxD3		
29		P80		TA4out/U	0.00			
30		P77		TA3IN	CANIN	INPC01/OUTC01/ISCLK0		
31		P76		TA3OUT	CANout	INPC00/OUTC00/ISTxD0/BE0out		
32		P75		TA2IN/W		INPC12/OUTC12/ISRxD1/BE1IN		
33		P74		TA2OUT/W	0700/0700/0700	INPC11/OUTC11/ISCLK1		
34		P73			CTS2/RTS2/SS2	OUTC10/ISTxD1/BE1out		
35		P72		TA1out/V	CLK2			
36		P71		TB5IN/TA0IN	RxD2/SCL2/STxD2	OUTC22/ISRxD2/IEIN		
37		P70		TA0out	TxD2/SDA2/SRxD2	OUTC20/ISTxD2/IEOUT		
38		P67			TxD1/SDA1/SRxD1			
39	Vcc							
40		P66			RxD1/SCL1/STxD1			
41	Vss							
42		P65			CLK1			
43		P64			CTS1/RTS1/SS1	OUTC21/ISCLK2		
44		P63			TxD0/SDA0/SRxD0			
45		P62			RxD0/SCL0/STxD0			
46		P61			CLK0			
47		P60			CTS0/RTS0/SS0			
48		P137				OUTC27		

Table 1.4 Pin Characteristics for 144-Pin Package

NOTES:

Pin No	Control Pin	Port	Interrupt Pin	Timer Pin	UART/CAN Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin ⁽¹⁾
49		P136				OUTC21/ISCLK2		
50		P135				OUTC22/ISRxD2/IEIN		
51		P134				OUTC20/ISTxD2/IEOUT		
52		P57						RDY
53		P56						ALE/RAS
54		P55						HOLD
55		P54						HLDA/ALE
56		P133				OUTC23		
57	Vss							
58		P132				OUTC26		
59	Vcc	1 102						
60	100	P131				OUTC25		
61		P130				OUTC24		
62		P53				001024		CLKout/BCLK/ALE
		P52						RD/DW
63 64		P52 P51						WRH/BHE/CASH
65		P50				0.1700		WRL/WR/CASL
66		P127				OUTC37		
67		P126				OUTC36		
68		P125				OUTC35		<u> </u>
69		P47						<u>CS0</u> /A23
70		P46						CS1/A22
71		P45						CS2/A21
72		P44						CS3/A20(MA12)
73		P43						A19(MA11)
74	Vcc							
75		P42						A18(MA10)
76	Vss							
77		P41						A17(MA9)
78		P40						A16(MA8)
79		P37						A15(MA7)(/D15)
80		P36						A14(MA6)(/D14)
81		P35						A13(MA5)(/D13)
82		P34						A12(MA4)(/D12)
83		P33						A11(MA3)(/D11)
84		P32						A10(MA2)(/D10)
85		P31						A9(MA1)(/D9)
86		P124				OUTC34		
87		P124				OUTC33		
<u>88</u>		P123				OUTC32/ISRxD3		
00 89		P122				OUTC31/ISCLK3		
<u>89</u> 90		P121 P120				OUTC30/ISTxD3		
	1/00	F120				001030/131XD3		
91	Vcc	D 0						
92		P30						A8(MA0)(/D8)
93	Vss	-						
94		P27					AN27	A7(/D7)
95		P26					AN26	A6(/D6)
96		P25					AN25	A5(/D5)

Table 1.4 Pin Characteristics for 144-Pin Package (Continued)

NOTES:

Pin No	Control Pin	Port	Interrupt Pin	Timer Pin	UART/CAN Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin ⁽¹⁾
97		P24					AN24	A4(/D4)
98		P23					AN23	A3(/D3)
99		P22					AN22	A2(/D2)
100		P21					AN21	A1(/D1)
101		P20					AN20	Ao(/Do)
102		P17	INT5					D15
103		P16	INT4					D14
104		P15	INT3					D13
105		P14						D12
106		P13						D11
107		P12						D10
108		P11						D9
109		P10						D8
110		P07					AN07	D7
111		P06					AN06	D6
112		P05					AN05	D5
113		P04					AN04	D4
114		P114						
115		P113				OUTC13		
116		P112				INPC12/OUTC12/ISRxD1/BE1IN		
117		P111				INPC11/OUTC11/ISCLK1		
118		P110				OUTC10/ISTxD1/BE1out		
119		P03					AN03	D3
120		P02					AN02	D2
121		P01					AN01	D1
122		P00					AN00	Do
123		P157				INPC07	AN157	
124		P156				INPC06	AN156	
125		P155				INPC05/OUTC05	AN155	
126		P154				INPC04/OUTC04	AN154	
127		P153				INPC03	AN153	
128		P152				INPC02/ISRxD0/BE0IN	AN152	
129		P151				INPC01/OUTC01/ISCLK0	AN151	
130	Vss							
131		P150				INPC00/OUTC00/ISTxD0/BE0out	AN150	
132	Vcc							
133		P107	KIз				AN7	
134		P106	Kl ₂				AN6	
135		P105	KI1				AN5	
136		P104	Klo				AN4	
137		P103					AN3	
138		P102					AN ₂	
139		P101					AN1	
	AVss							
141		P100					AN ₀	
142	Vref							
	AVcc							
144		P97			RxD4/SCL4/STxD4		ADTRG	

Table 1.4 Pin Characteristics for 144-Pin Package (Continued)

NOTES:

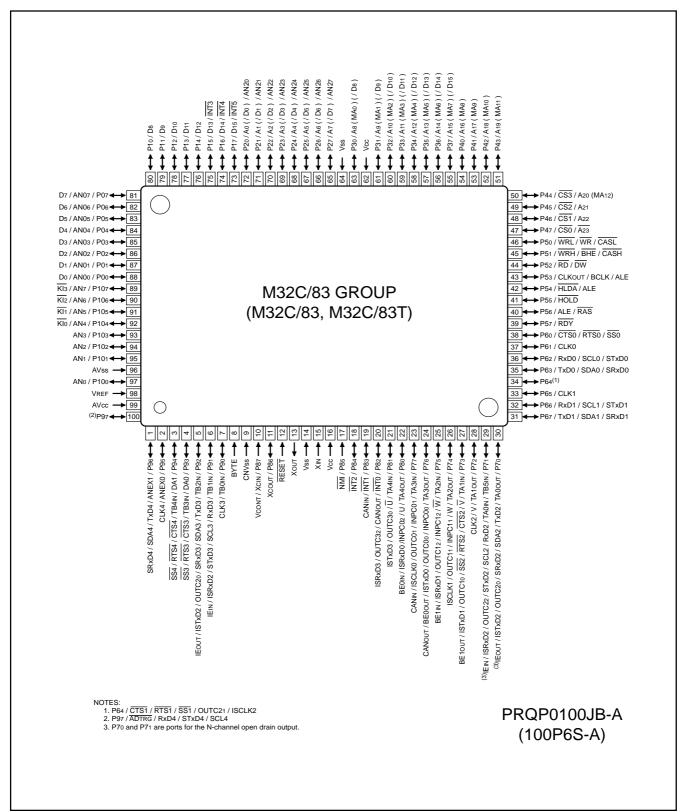


Figure 1.4 Pin Assignment for 100-Pin Package

RENESAS

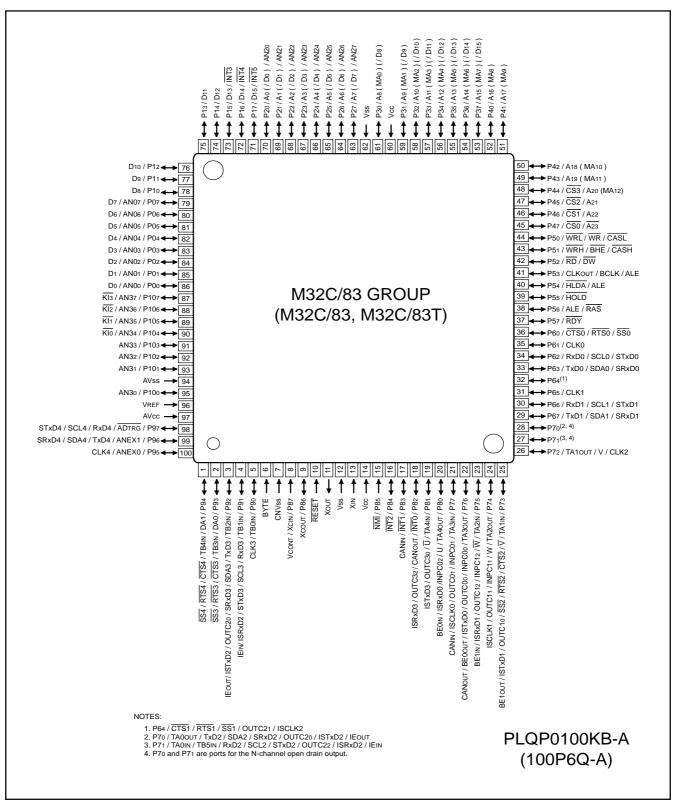


Figure 1.5 Pin Assignment for 100-Pin Package

RENESAS

Pac Pir	kage No	Control Pin	Port	Interrupt Pin	Timer Pin	UART/CAN Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin ⁽¹
FP	GP	ГШ					-		
1	99		P96			TxD4/SDA4/SRxD4		ANEX1	
2	100		P95			CLK4		ANEX0	
3	1		P94		TB4IN	CTS4/RTS4/SS4		DA1	
4	2		P93		TB3IN	CTS3/RTS3/SS3		DA0	
5	3		P92		TB2IN	TxD3/SDA3/SRxD3	OUTC20/IEout/ISTxD2	27.10	
6	4		P91		TB1IN	RxD3/SCL3/STxD3	IEIN/ISRxD2		
7	5		P90		TB0IN	CLK3			
8	6	BYTE							
9	7	CNVss							
10	8	XCIN/VCONT	P87						
10 11	9	XCIN/VCONT XCOUT	P86						
	10	RESET	100						
12									
13	11	Хоит							
14	12	Vss							
15	13	Xin							
16	14	Vcc	50						
17	15		P85	NMI					
18	16		P84	INT2					
19	17		P83	INT1		CANIN			
20	18		P82	ĪNT0		CANout	OUTC32/ISRxD3		
21	19		P81		TA4IN/Ū		OUTC30/ISTxD3		
22	20		P80		TA4out/U		INPC02/ISRxD0/BE0IN		
23	21		P77		ΤΑ3ιΝ	CANIN	INPC01/OUTC01/ISCLK0		
24	22		P76		ΤΑ3ουτ	CANOUT	INPC00/OUTC00/ISTxD0/BE0out		
25	23		P75		TA2IN/W		INPC12/OUTC12/ISRxD1/BE1IN		
26	24		P74		TA2out/W		INPC11/OUTC11/ISCLK1		
27	25		P73		TA1IN/V	CTS2/RTS2/SS2	OUTC10/ISTxD1/BE1out		
28	26		P72		TA1out/V	CLK2			
29	27		P71		TB5IN/TA0IN	RxD2/SCL2/STxD2	OUTC22/ISRxD2/IEIN		
30	28		P70		ΤΑθουτ	TxD2/SDA2/SRxD2	OUTC20/ISTxD2/IEout		
31	29		P67			TxD1/SDA1/SRxD1			
32	30		P66			RxD1/SCL1/STxD1			
33	31		P65			CLK1			
34	32		P64			CTS1/RTS1/SS1	OUTC21/ISCLK2		
35	33		P63			TxD0/SDA0/SRxD0			
36	34		P62			RxD0/SCL0/STxD0			
30 37	35		P61			CLK0			
	35		P60			CTS0/RTS0/SS0			
38			P60 P57	-		0100/1100/000			
39	37		P57 P56						RDY
40	38								ALE/RAS
41	39		P55						HOLD
42	40		P54						HLDA/ALE
43	41		P53						CLKOUT/BCLK/AL
44	42		P52						RD/DW
45	43		P51						WRH/BHE/CASH
46	44		P50						WRL/WR/CASL
47	45		P47						CS0/A23
48	46		P46						CS1/A22
49	47		P45						CS2/A21
50	48		P44						CS3/A20(MA12)

NOTES:

Table 1.5 Pin Characteristics for 100-Pin Package (Co

Pack Pin	No	Control Pin	Port	Interrupt Pin	Timer Pin	UART/CAN Pin	Intelligent I/O Pin	Analog Pin	Bus Control Pin ⁽¹⁾
FP	GP								
51	49		P43						A19(MA11)
52	50		P42						A18(MA10)
53	51		P41						A17(MA9)
54	52		P40						A16(MA8)
55	53		P37						A15(MA7)(/D15)
56	54		P36						A14(MA6)(/D14)
57	55		P35						A13(MA5)(/D13)
58	56		P34						A12(MA4)(/D12)
59	57		P33						A11(MA3)(/D11)
60	58		P32						A10(MA2)(/D10)
61	59		P31						A9(MA1)(/D9)
62	60	Vcc							
63	61		P30						A8(MA0)(/D8)
64	62	Vss							
65	63		P27					AN27	A7(/D7)
66	64		P26					AN26	A6(/D6)
67	65		P25					AN25	A5(/D5)
68	66		P24					AN24	A4(/D4)
69	67		P23					AN23	A3(/D3)
70	68		P22					AN22	A2(/D2)
71	69		P21					AN21	A1(/D1)
72	70		P20					AN20	A0(/D0)
73	71		P17	INT5					D15
74	72		P16	INT4					D13
74	73		P15	INT3					D14
76	74		P14	11113					D13 D12
77	74		P13						D12
	75		P13 P12						D11 D10
78			P12 P11						
79	77								D9
80	78		P10					4.110	D8
81	79		P07					AN07	D7
82	80		P06					AN06	D6
83	81		P05					AN05	D5
84	82		P04					AN04	D4
85	83		P03					AN03	D3
86	84		P02					AN02	D2
87	85		P01					AN01	D1
88	86		P00					AN00	Do
89	87		P107	Kl3				AN7	
90	88		P106	Kl2				AN6	
91	89		P105	KI1				AN5	
92	90		P104	Klo				AN4	
93	91		P103					AN3	
94	92		P102					AN2	
95	93		P101					AN1	
96	94	AVss							
97	95		P100					AN ₀	
98	96	Vref							
99	97	AVcc							
100	98		P97			RxD4/SCL4/STxD4		ADTRG	
NOTE			I			I		1	1

NOTES:

1.6 Pin Description

Table 1.6 Pin Description (100-Pin and 144-Pin Packages)

Classsfication	Symbol	I/O Type	Function	
Power Supply	Vcc	I	Apply 3.0 to 5.5V to both VCC pin.	
	Vss		Apply 0V to the Vss pin. ⁽¹⁾	
Analog Power	AVcc	I	Supplies power to the A/D converter. Connect the AVcc pin to Vcc and the	
Supply	AVss		AVss pin to Vss	
Reset Input	RESET	I	The microcomputer is in a reset state when "L" is applied to the RESET pin	
CNVss	CNVss	I	Switches processor mode. Connect the CNVss pin to Vss to start up in single-	
			chip mode or to Vcc to start up in microprocessor mode	
Input to Switch	BYTE	I	Switches data bus width in external memory space 3. The data bus is 16	
External Data Bus			bits wide when the BYTE pin is held "L" and 8 bits wide when it is held "H".	
Width ⁽²⁾			Set to either. Connect the BYTE pin to Vss to use the microcomputer in	
			single-chip mode	
Bus Control	Do to D7	I/O	Inputs and outputs data (Do to D7) while accessing an external memory	
Pins ⁽²⁾			space with separate bus	
	D8 to D15	I/O	Inputs and outputs data (D8 to D15) while accessing an external memory	
			space with 16-bit separate bus	
	Ao to A22	0	Outputs address bits A0 to A22	
	A23	0	Outputs inversed address bit A23	
	A0/D0 to	I/O	Inputs and outputs data (Do to D7) and outputs 8 low-order address bits (Ao	
	A7/D7		to A7) by time-sharing while accessing an external memory space with	
			multiplexed bus	
	A8/D8 to	I/O	Inputs and outputs data (D8 to D15) and outputs 8 middle-order address bits	
	A15/D15		(A8 to A15) by time-sharing while accessing an external memory space with	
			16-bit multiplexed bus	
	CS0 to CS3	0	Outputs CS0 to CS3 that are chip-select signals specifying an external space	
	WRL/WR	0	Outputs WRL, WRH, (WR, BHE) and RD signals. WRL and WRH can be	
	WRH / BHE	_	switched with WR and BHE by program	
	RD		■ WRL, WRH and RD selected:	
			If external data bus is 16 bits wide, data is written to an even address in	
			external memory space when \overline{WRL} is held "L".	
			Data is written to an odd address when WRH is held "L".	
			Data is read when \overline{RD} is held "L".	
			■ WR, BHE and RD selected:	
			Data is written to external memory space when WR is held "L".	
			Data in an external memory space is read when RD is held "L".	
			An odd address is accessed when BHE is held "L".	
			Select \overline{WR} , \overline{BHE} and \overline{RD} for external 8-bit data bus.	
	ALE	0	ALE is a signal latching the address	
	HOLD	1	The microcomputer is placed in a hold state while the $\overline{\text{HOLD}}$ pin is held "L"	
	HLDA	0	Outputs an "L" signal while the microcomputer is placed in a hold state	
	RDY	1	Bus is placed in a wait state while the \overline{RDY} pin is held "L"	
DRAM Bus	MA0 to MA12	0	When DRAM area is accessed, outputs column and row addresses by time-sharing.	
Control Pin ⁽²⁾	DW	0	The DW signal becomes "L" when data is written to the DRAM area. CASL and CASH are	
	CASL		signals indicating the timing to latch column addresses. The CASL signal becomes "L" when	
			an even address is accessed. The CASH signal becomes "L" when an odd address is	
	RAS		accessed. RAS is a signal latching row addresses.	
		put and o	10000000. TV 10 10 a bigital latoring 10 w addresses.	

 ${\sf I}: {\sf Input} \qquad {\sf O}: {\sf Output} \qquad {\sf I} / {\sf O}: {\sf Input} \text{ and output}$

NOTES:

1. Apply 4.2 to 5.5V to the Vcc pin when using M32C/83T.

2. Bus control pins in M32C/83T cannot be used.

Table 1.6	Pin Description	(100-Pin and 144-Pin	Packages) (Continued)
		(100 1 11 41 4 1 1 1 1 1 1	· aonagoo) (oonanaoa)

Classsfication	Symbol	I/O Type	Function	
Main Clock Input	Xin	I	I/O pins for the main clock oscillation circuit. Connect a ceramic resonator	
Main Cleak Output	Vout	0	or crystal oscillator between XIN and XOUT. To apply external clock, apply it to XIN and leave XOUT open	
Main Clock Output	2001	0		
Sub Clock Input	XCIN	I	I/O pins for the sub clock oscillation circuit. Connect a crystal oscillator	
Sub Clock Output	Хсоит	0	between XCIN and XCOUT. To apply external clock, apply it to XCIN and leave XCOUT open	
Low-Pass Filter	VCONT		Connects the low-pass filter to the VCONT pin when using the PLL fre-	
Connect			quency synthesizer. Connect P86 to VSS to stabilize the PLL frequency.	
Pin for PLL				
Frequency				
Synthesizer Pin				
BCLK Output ⁽¹⁾	BCLK	0	Outputs BCLK signal	
Clock Output	CLKOUT	0	Outputs the clock having the same frequency as fC, f8 or f32	
INT Interrupt Input	INT0 to INT5	I	Input pins for the INT interrupt	
NMI Interrupt Input	NMI	I	Input pin for the NMI interrupt	
Key Input Interrupt	KI0 to KI3	I	Input pins for the key input interrupt	
Timer A	TA0OUT to	I/O	I/O pins for the timer A0 to A4	
	TA40UT		(TA0OUT is a pin for the N-channel open drain output.)	
	TA0IN to	I	Input pins for the timer A0 to A4	
	TA4IN			
Timer B	TB0IN to	I	Input pins for the timer B0 to B5	
	TB5IN			
Three-phase Motor	$U, \overline{U}, V, \overline{V},$	0	Output pins for the three-phase motor control timer	
Control Timer Output	W, \overline{W}			
Serial I/O	CTS0 to CTS4	I	Input pins for data transmission control	
	RTS0 to RTS4	0	Output pins for data reception control	
	CLK0 to CLK4	I/O	Inputs and outputs the transfer clock	
	RxD0 to RxD4	I	Inputs serial data	
	TxD0 to TxD4	0	Outputs serial data	
			(TxD2 is a pin for the N-channel open drain output.)	
I ² C Mode	SDA0 to	I/O	Inputs and outputs serial data	
	SDA4		(SDA2 is a pin for the N-channel open drain output.)	
	SCL0 to	1	Inputs and outputs the transfer clock	
	SCL4		(SCL2 is a pin for the N-channel open drain output.)	

I : Input O : Output I/O : Input and output

NOTE:

1. Bus control pins in M32C/83T cannot be used.

Classsfication	Symbol	I/О Туре	Function	
Serial I/O	STxD0 to	0	Outputs serial data when slave mode is selected	
Special Function	STxD4			
	SRxD0 to	I	Inputs serial data when slave mode is selected	
	SRxD4			
	SS0 to SS4	I	Input pins to control serial I/O special function	
Reference	Vref	I	Applies reference voltage to the A/D converter and D/A converter	
Voltage Input				
A/D Converter	AN0 to AN7	I	Analog input pins for the A/D converter	
	AN00 to AN07			
	AN20 to AN27			
	AN150 to AN157			
	ADTRG	I	Input pin for an external A/D trigger	
	ANEX0	I/O	Extended analog input pin for the A/D converter and output pin in external	
			op-amp connection mode	
	ANEX1	I	Extended analog input pin for the A/D converter	
D/A Converter	DA0, DA1	0	Output pin for the D/A converter	
Intelligent I/O	INPC00 to INPC02	I	Input pins for the time measurement function	
	INPC03 to			
	INPC07 ⁽¹⁾			
	INPC11 to INPC12			
	INPC16 to			
	INPC17 ⁽¹⁾			
	OUTC00 to OUTC02	0	Output pins for the waveform generating function	
	OUTC04 to		(OUTC20 and OUTC22 assigned to P70 and P71 are pins for the N-channel open drain output.)	
	OUTC05 ⁽¹⁾			
	OUTC10 to OUTC12			
	OUTC13 to			
	OUTC17 ⁽¹⁾			
	OUTC20 to OUTC22			
	OUTC23 to			
	OUTC27 ⁽¹⁾			
	OUTC30 to OUTC32			
	OUTC31, OUTC33			
	to OUTC37(1)			
	ISCLK0 to ISCLK2	I/O	Inputs and outputs the clock for the intelligent I/O communication function	
	ISCLK3 ⁽¹⁾			
	ISRXD0 to ISRXD3	I	Inputs data for the intelligent I/O communication function	
	ISTXD0 to ISTXD3		Outputs data for the intelligent I/O communication function	
	BE0IN, BE1IN		Inputs data for the intelligent I/O communication function	
	BE0out, BE1out	0	Outputs data for the intelligent I/O communication function	
	IEIN		Inputs data for the intelligent I/O communication function	
	IEOUT	0	Outputs data for the intelligent I/O communication function	
CAN			Input pin for the CAN communication function	
	CANOUT	0	Output pin for the CAN communication function	

Table 1.6 Pin Description (100-Pin and 144-Pin Packages) (Continued)

I : Input O : Output I/O : Input and output

NOTE:

1. Available in the 144-pin package only.

Classsfication	Symbol	I/O Type	Function
I/O Ports	P00 to P07	I/O	8-bit I/O ports for CMOS. Each port can be programmed for input or output
	P10 to P17		under the control of the direction register. An input port can be set, by
	P20 to P27		program, for a pull-up resistor available or for no pull-up resister available in
	P30 to P37		4-bit units
	P40 to P47		(P70 and P71 are ports for the N-channel open drain output.)
	P50 to P57		
	P60 to P67		
	P70 to P77		
	P90 to P97		
	P100 to P107		
	P110 to P114	I/O	I/O ports having equivalent functions to P0
	P120 to P127		
	P130 to P137		
	P140 to P146		
	P150 to P157		
	(1)		
	P80 to P84	I/O	I/O ports having equivalent functions to P0
	P86, P87		
Input Port	P85	I	Shares a pin with $\overline{\text{NMI}}$. $\overline{\text{NMI}}$ input state can be got by reading P85

Table 1.6 Pin Description (144-Pin Package only) (Continued)

I : Input O : Output I/O : Input and output

NOTE:

1. Available in the 144-pin package only.

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU registers.

A register bank comprises 8 registers (R0, R1, R2, R3, A0, A1, SB and FB) out of 28 CPU registers. Two sets of register banks are provided.

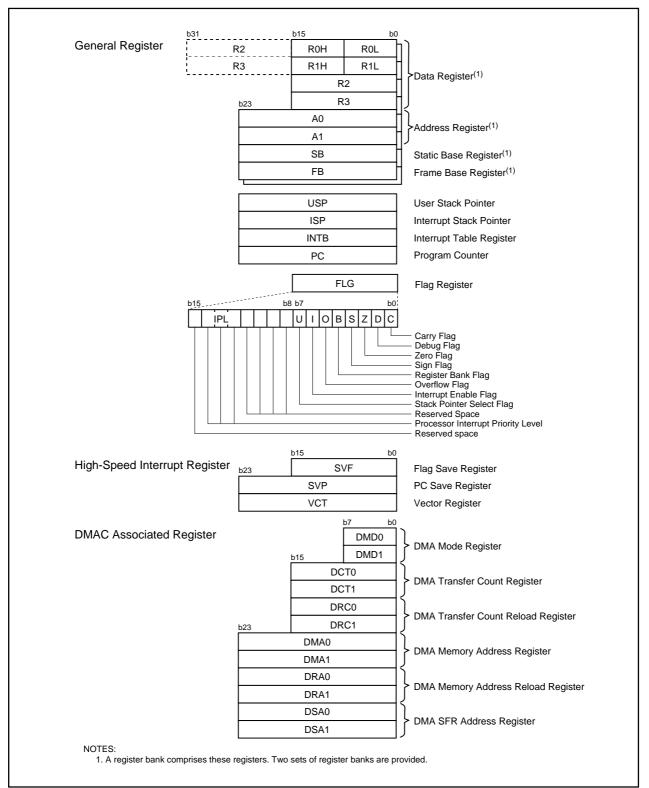


Figure 2.1 CPU Register

2.1 General Registers

2.1.1 Data Registers (R0, R1, R2 and R3)

R0, R1, R2 and R3 are 16-bit registers for transfer, arithmetic and logic operations. R0 and R1 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R0 can be combined with R2 to be used as a 32-bit data register (R2R0). The same applies to R1 and R3.

2.1.2 Address Registers (A0 and A1)

A0 and A1 are 24-bit registers for A0-/A1-indirect addressing, A0-/A1-relative addressing, transfer, arithmetic and logic operations.

2.1.3 Static Base Register (SB)

SB is a 24-bit register for SB-relative addressing.

2.1.4 Frame Base Register (FB)

FB is a 24-bit register for FB-relative addressing.

2.1.5 Program Counter (PC)

PC, 24 bits wide, indicates the address of an instruction to be executed.

2.1.6 Interrupt Table Register (INTB)

INTB is a 24-bit register indicating the starting address of an interrupt vector table.

2.1.7 User Stack Pointer (USP), Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP and ISP, are 24 bits wide each. The U flag is used to switch between USP and ISP. Refer to "2.1.8 Flag Register (FLG)" for details on the U flag. Set USP and ISP to even addresses to execute an interrupt sequence efficiently.

2.1.8 Flag Register (FLG)

FLG is a 16-bit register indicating a CPU state.

2.1.8.1 Carry Flag (C)

The C flag indicates whether carry or borrow has occurred after executing an instruction.

2.1.8.2 Debug Flag (D)

The D flag is for debug only. Set to "0".

2.1.8.3 Zero Flag (Z)

The Z flag is set to "1" when the value of zero is obtained from an arithmetic calculation; otherwise "0".

2.1.8.4 Sign Flag (S)

The S flag is set to "1" when a negative value is obtained from an arithmetic calculation; otherwise "0".

2.1.8.5 Register Bank Select Flag (B)

The register bank 0 is selected when the B flag is set to "0". The register bank 1 is selected when this flag is set to "1".

2.1.8.6 Overflow Flag (O)

The O flag is set to "1" when the result of an arithmetic operation overflows; otherwise "0".

2.1.8.7 Interrupt Enable Flag (I)

The I flag enables a maskable interrupt.

An interrupt is disabled when the I flag is set to "0" and enabled when the I flag is set to "1". The I flag is set to "0" when an interrupt is acknowledged.

2.1.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to "0". USP is selected when this flag is set to "1". The U flag is set to "0" when a hardware interrupt is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.1.8.9 Processor Interrupt Priority Level (IPL)

IPL, 3 bits wide, assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has greater priority than IPL, the interrupt is enabled.

2.1.8.10 Reserved Space

When writing to a reserved space, set to "0". When read, its content is indeterminate.

2.2 High-Speed Interrupt Registers

Registers associated with the high-speed interrupt are as follows. Refer to **10.4 High-Speed Interrupt** for details.

- Flag save register (SVF)
- PC save register (SVP)
- Vector register (VCT)

2.3 DMAC-Associated Registers

Registers associated with DMAC are as follows. Refer to **12. DMAC** for details.

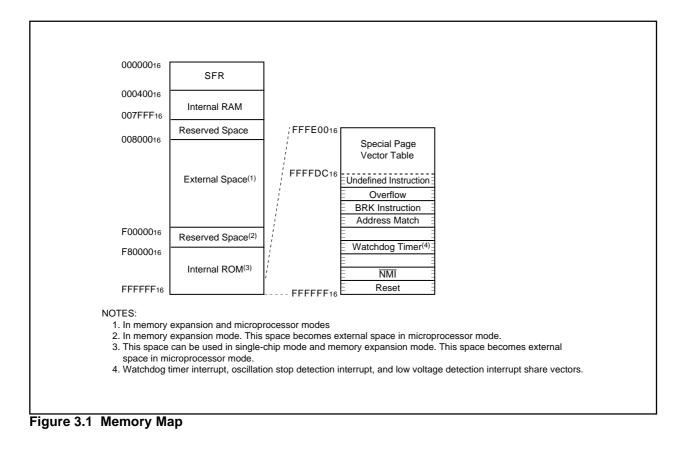
- DMA mode register (DMD0, DMD1)
- DMA transfer count register (DCT0, DCT1)
- DMA transfer count reload register (DRC0, DRC1)
- DMA memory address register (DMA0, DMA1)
- DMA SFR address register (DSA0, DSA1)
- DMA memory address reload register (DRA0, DRA1)

3. Memory

Figure 3.1 shows a memory map of the M32C/83 group (M32C/83, M32C/83T).

M32C/83 group (M32C/83, M32C/83T) provides 16-Mbyte address space from addresses 00000016 to FFFFF16.

The internal ROM is allocated lower addresses beginning with address FFFFFF16. For example, a 64-Kbyte internal ROM is allocated addresses FF000016 to FFFFF16.


The fixed interrupt vectors are allocated addresses FFFFDC16 to FFFFF16. It stores the starting address of each interrupt routine. Refer to **10. Interrupts** for details.

The internal RAM is allocated higher addresses beginning with address 00040016. For example, a 10-Kbyte internal RAM is allocated addresses 00040016 to 002BFF16. Besides storing data, it becomes stacks when the subroutine is called or an interrupt is acknowledged.

SFR, consisting of control registers for peripheral functions such as I/O port, A/D conversion, serial I/O, and timers, is allocated addresses 00000016 to 0003FF16. All addresses, which have nothing allocated within SFR, are reserved space and cannot be accessed by users.

The special page vectors are allocated addresses FFFE0016 to FFFFDB16. It is used for the JMPS instruction and JSRS instruction. Refer to the Renesas publication **Software Manual** for details.

In memory expansion mode and microprocessor mode, some space are reserved and cannot be accessed by users.

4. Special Function Registers (SFR)

Address	Register	Symbol	Value after RESET
000016			
000116			
000216			
000316			
000416	Processor Mode Register 0 ⁽¹⁾	PM0	1000 00002 (CNVss pin ="L") 0000 00112 (CNVss pin ="H")
000516	Dragger Made Degister 1	PM1	0000 00112 (CNVSS pirl = H) 0X00 00002
000516	Processor Mode Register 1		
	System Clock Control Register 0	CM0	0000 X0002
000716	System Clock Control Register 1	CM1	0010 00002
000816	Wait Control Register ⁽²⁾	WCR	1111 11112
000916	Address Match Interrupt Enable Register	AIER	XXXX 00002
000A16	Protect Register	PRCR	XXXX 00002
000B16	External Data Bus Width Control Register ⁽²⁾	DS	XXXX 10002 (BYTE pin ="L") XXXX 00002 (BYTE pin ="H")
000C16	Main Clock Division Register	MCD	XXX0 10002
000D16	Oscillation Stop Detection Register	CM2	0016
000E16	Watchdog Timer Start Register	WDTS	XX16
000F16	Watchdog Timer Control Register	WDC	000X XXXX2
001016	о С		
001116	Address Match Interrupt Register 0	RMAD0	00 00 0016
001216			
001316			
001416			
001516	Address Match Interrupt Register 1	RMAD1	00 00 0016
001616			
001016	VDC Control Register for PLL	PLV	XXXX XX012
001716	VDC Control Register for FEE		
001016	Address Match Interrupt Register 2	RMAD2	00 00 0016
001310 001A16	Address Match Interrupt Register 2	INWAD2	00 00 0018
	V/DC Constral Deviator 0)/DC0	0010
001B16 001C16	VDC Control Register 0	VDC0	0016
	Address Match Internet Desister 2	DMADO	00.00.0010
001D16	Address Match Interrupt Register 3	RMAD3	00 00 0016
001E16			
001F16			
002016			
002116			
002216			
002316			
002416			
002516			
002616			
002716			
002816			
002916			
002A16			
002B16			
002C16			
002D16			
002E16			
002F16			
	erminate	1	1

X: Indeterminate

Blank spaces are reserved. No access is allowed.

NOTES:

The PM00 and PM01 bits in the PM1 register maintain values set before reset even if software reset or watchdog timer reset is performed.
 These registers in M32C/83T cannot be used.

Address	Register	Symbol	Value after RESET
003016			
003116			
003216			
003316			
003416			
003516			
003616			
003716			
003816			
003916			
003A16			
003B16			
003C16			
003D16			
003E16			
003F16			
004016	DRAM Control Register ⁽¹⁾	DRAMCONT	XX16
004116	DRAM Refresh Interval Set Register ⁽¹⁾	REFCNT	XX16
004216	5		
004316			
004416			
004516			
004616			
004716			
004816			
004916			
004A16			
004B16			
004C16			
004D16			
004E16			
004F16			
005016			
005116			
005216			
005316			
005416			
005516			
005616			
005716	Flash Memory Control Register 0	FMR0	XX00 00012
005816			
005916			
005A16			
005B16			
005C16			
005D16			
005E16			
005F16			
3001 10			

Blank spaces are reserved. No access is allowed.

NOTES:

1. These registers in M32C/83T cannot be used.

Address	Register	Symbol	Value after RESET
006016			
006116			
006216			
006316			
006416			
006516			
006616			
006716			
006816	DMA0 Interrupt Control Register	DM0IC	XXXX X0002
006916	Timer B5 Interrupt Control Register	TB5IC	XXXX X0002
006A16	DMA2 Interrupt Control Register	DM2IC	XXXX X0002
006B16	UART2 Receive /ACK Interrupt Control Register	S2RIC	XXXX X0002
006C16	Timer A0 Interrupt Control Register	TA0IC	XXXX X0002
006D16	UART3 Receive /ACK Interrupt Control Register	S3RIC	XXXX X0002
006E16	Timer A2 Interrupt Control Register	TA2IC	XXXX X0002
006F16	UART4 Receive /ACK Interrupt Control Register	S4RIC	XXXX X0002
007016	Timer A4 Interrupt Control Register	TA4IC	XXXX X0002
007116	UART0/UART3 Bus Conflict Detect Interrupt Control Register	BCN0IC/BCN3IC	XXXX X0002
007216	UART0 Receive/ACK Interrupt Control Register	SORIC	XXXX X0002
007316	A/D0 Conversion Interrupt Control Register	AD0IC	XXXX X0002
007416	UART1 Receive/ACK Interrupt Control Register	S1RIC	XXXX X0002
007516	Intelligent I/O Interrupt Control Register 0	IIO0IC	XXXX X0002
007616	Timer B1 Interrupt Control Register	TB1IC	XXXX X0002
007716	Intelligent I/O Interrupt Control Register 2	IIO2IC	XXXX X0002
007816	Timer B3 Interrupt Control Register	TB3IC	XXXX X0002
007916	Intelligent I/O Interrupt Control Register 4	IIO4IC	XXXX X0002
007A16	INT5 Interrupt Control Register	INT5IC	XX00 X0002
007B16	Intelligent I/O Interrupt Control Register 6	IIO6IC	XXXX X0002
007C16	INT3 Interrupt Control Register	INT3IC	XX00 X0002
007D16	Intelligent I/O Interrupt Control Register 8	IIO8IC	XXXX X0002
007E16	INT1 Interrupt Control Register	INT1IC	XX00 X0002
	Intelligent I/O Interrupt Control Register 10/	IIO10IC	
007F16	CAN Interrupt 1 Control Register	CAN1IC	XXXX X0002
008016			
	Intelligent I/O Interrupt Control Register 11/	IIO11IC	
008116	CAN Interrupt 2 Control Register	CAN2IC	XXXX X0002
008216			
008316			
008416			
008516			
008616	A/D1 Conversion Interrupt Control Register	AD1IC	XXXX X0002
008716			
008816	DMA1 Interrupt Control Register	DM1IC	XXXX X0002
008916	UART2 Transmit /NACK Interrupt Control Register	S2TIC	XXXX X0002
008A16	DMA3 Interrupt Control Register	DM3IC	XXXX X0002
008B16	UART3 Transmit /NACK Interrupt Control Register	S3TIC	XXXX X0002
008C16	Timer A1 Interrupt Control Register	TA1IC	XXXX X0002
008D16	UART4 Transmit /NACK Interrupt Control Register	S4TIC	XXXX X0002
008E16	Timer A3 Interrupt Control Register	TA3IC	XXXX X0002
008F16	UART2 Bus Conflict Detect Interrupt Control Register	BCN2IC	XXXX X0002

Address	Register	Symbol	Value after RESET
009016	UART0 Transmit /NACK Interrupt Control Register	SOTIC	XXXX X0002
009116	UART1/UART4 Bus Conflict Detect Interrupt Control Register	BCN1IC/BCN4IC	XXXX X0002
009216	UART1 Transmit/NACK Interrupt Control Register	S1TIC	XXXX X0002
009316	Key Input Interrupt Control Register	KUPIC	XXXX X0002
009416	Timer B0 Interrupt Control Register	TB0IC	XXXX X0002
009516	Intelligent I/O Interrupt Control Register 1	llO1IC	XXXX X0002
009616	Timer B2 Interrupt Control Register	TB2IC	XXXX X0002
009716	Intelligent I/O Interrupt Control Register 3	IIO3IC	XXXX X0002
009816	Timer B4 Interrupt Control Register	TB4IC	XXXX X0002
009916	Intelligent I/O Interrupt Control Register 5	IIO5IC	XXXX X0002
009A16	INT4 Interrupt Control Register	INT4IC	XX00 X0002
009B16	Intelligent I/O Interrupt Control Register 7	IIO7IC	XXXX X0002
009C16	INT2 Interrupt Control Register	INT2IC	XX00 X0002
	Intelligent I/O Interrupt Control Register 9/	IIO9IC	
009D16	CAN Interrupt 0 Control Register	CANOIC	XXXX X0002
009E16	INTO Interrupt Control Register	INTOIC	XX00 X0002
009F16	Exit Priority Control Register	RLVL	XXXX 00002
00A016	Interrupt Request Register 0	IIO0IR	0000 000X2
00A116	Interrupt Request Register 1	IIO1IR	0000 000X2
00A216	Interrupt Request Register 2	IIO2IR	0000 000X2
00A316	Interrupt Request Register 3	IIO3IR	0000 000X2
00A416	Interrupt Request Register 4	IIO4IR	0000 000X2
00A516	Interrupt Request Register 5	IIO5IR	0000 000X2
00A616	Interrupt Request Register 6	IIO6IR	0000 000X2
00A716	Interrupt Request Register 7	IIO7IR	0000 000X2
00A816	Interrupt Request Register 8	IIO8IR	0000 000X2
00A916	Interrupt Request Register 9	IIO9IR	0000 000X2
00AA16	Interrupt Request Register 10	IIO10IR	0000 000X2
00AB16	Interrupt Request Register 11	IIO11IR	0000 000X2
00AC16			0000 000//2
00AD16			
00AE16			
00/\E16			
00B016	Interrupt Enable Register 0	IIO0IE	0016
00B010	Interrupt Enable Register 1	IIO1IE	0016
00B110	Interrupt Enable Register 2	IIO2IE	0016
00B210	Interrupt Enable Register 3	IIO3IE	0016
00B316	Interrupt Enable Register 4	IIO4IE	0016
00B416	Interrupt Enable Register 5	IIO5IE	0018
00B516 00B616	Interrupt Enable Register 6	IIO6IE	0018
00B016	Interrupt Enable Register 7	IIO7IE	0018
00B716 00B816	Interrupt Enable Register 8	IIO8IE	0016
00B816 00B916	Interrupt Enable Register 9	IIO9IE	0016
00B916 00BA16	Interrupt Enable Register 10		
00BA16	Interrupt Enable Register 11	IIO10IE IIO11IE	0016
			0016
00BC16			
00BD16			
00BE16			
00BF16			

Address	Register	Symbol	Value after RESET
00C016			XX16
00C116	Group 0 Time Measurement/Waveform Generating Register 0	G0TM0/G0PO0	XX16
00C216			XX16
00C316	Group 0 Time Measurement/Waveform Generating Register 1	G0TM1/G0PO1	XX16
00C416			XX16
00C516	Group 0 Time Measurement/Waveform Generating Register 2	G0TM2/G0PO2	XX16
00C616			XX16
00C716	Group 0 Time Measurement/Waveform Generating Register 3	G0TM3/G0PO3	XX16
00C816			XX16
00C916	Group 0 Time Measurement/Waveform Generating Register 4	G0TM4/G0PO4	XX16
00CA16			XX16
00CB16	Group 0 Time Measurement/Waveform Generating Register 5	G0TM5/G0PO5	XX16
00CC16			XX16
00CD16	Group 0 Time Measurement/Waveform Generating Register 6	G0TM6/G0PO6	XX16
00CE16			XX16
00CF16	Group 0 Time Measurement/Waveform Generating Register 7	G0TM7/G0PO7	XX16
00D016	Group 0 Waveform Generating Control Register 0	G0POCR0	0X00 X0002
00D010	Group 0 Waveform Generating Control Register 1	G0POCR1	0X00 X0002
00D216	Group 0 Waveform Generating Control Register 2	G0POCR2	0X00 X0002
00D210	Group 0 Waveform Generating Control Register 3	G0POCR3	0X00 X0002
00D316	Group 0 Waveform Generating Control Register 3	G0POCR4	0X00 X0002 0X00 X0002
00D416	Group 0 Waveform Generating Control Register 5	G0POCR5	0X00 X0002 0X00 X0002
00D516	Group 0 Waveform Generating Control Register 6	G0POCR6	0X00 X0002 0X00 X0002
00D016	Group 0 Waveform Generating Control Register 7	G0POCR7	0X00 X0002 0X00 X0002
00D716	Group 0 Time Measurement Control Register 0	GOTMCR0	0016
00D816			0016
	Group 0 Time Measurement Control Register 1	G0TMCR1	
00DA16	Group 0 Time Measurement Control Register 2	G0TMCR2	0016
00DB16	Group 0 Time Measurement Control Register 3	G0TMCR3	0016
00DC16	Group 0 Time Measurement Control Register 4	G0TMCR4	0016
00DD16	Group 0 Time Measurement Control Register 5	G0TMCR5	0016
00DE16	Group 0 Time Measurement Control Register 6	G0TMCR6	0016
00DF16	Group 0 Time Measurement Control Register 7	G0TMCR7	0016
00E016	Group 0 Base Timer Register	G0BT	XX16
00E116			XX16
00E216	Group 0 Base Timer Control Register 0	G0BCR0	0016
00E316	Group 0 Base Timer Control Register 1	G0BCR1	0016
00E416	Group 0 Time Measurement Prescaler Register 6	G0TPR6	0016
00E516	Group 0 Time Measurement Prescaler Register 7	G0TPR7	0016
00E616	Group 0 Function Enable Register	G0FE	0016
00E716	Group 0 Function Select Register	G0FS	0016
00E816	Group 0 SI/O Receive Buffer Register	GORB	XXXX XXXX2
00E916		GUND	XX00 XXXX2
00EA16	Group 0 Transmit Buffer/Receive Data Register	G0TB/G0DR	XX16
00EB16			
00EC16	Group 0 Receive Input Register	G0RI	XX16
00ED16	Group 0 SI/O Communication Mode Register	G0MR	0016
00EE16	Group 0 Transmit Output Register	G0TO	XX16
00EF16	Group 0 SI/O Communication Control Register	G0CR	0000 X0002

Address	Register	Symbol	Value after RESET
00F016	Group 0 Data Compare Register 0	G0CMP0	XX16
00F116	Group 0 Data Compare Register 1	G0CMP1	XX16
00F216	Group 0 Data Compare Register 2	G0CMP2	XX16
00F316	Group 0 Data Compare Register 3	G0CMP3	XX16
00F416	Group 0 Data Mask Register 0	G0MSK0	XX16
00F516	Group 0 Data Mask Register 1	G0MSK1	XX16
00F616			
00F716			
00F816			XX16
00F916	Group 0 Receive CRC Code Register	GORCRC	XX16
00FA16		0.707.0	0016
00FB16	Group 0 Transmit CRC Code Register	GOTCRC	0016
00FC16	Group 0 SI/O Extended Mode Register	G0EMR	0016
00FD16	Group 0 SI/O Extended Receive Control Register	G0ERC	0016
00FE16	Group 0 SI/O Special Communication Interrupt Detect Register	G0IRF	0000 00XX2
00FF16	Group 0 SI/O Extended Transmit Control Register	G0ETC	0000 0XXX2
010016			XX16
010116	Group 1 Time Measurement/Waveform Generating Register 0	G1TM0/G1PO0	XX16
010216			XX16
010316	Group 1 Time Measurement/Waveform Generating Register 1	G1TM1/G1PO1	XX16
010416			XX16
010516	Group 1 Time Measurement/Waveform Generating Register 2	G1TM2/G1PO2	XX16
010616			XX16
010716	Group 1 Time Measurement/Waveform Generating Register 3	G1TM3/G1PO3	XX16
010816			XX16
010916	Group 1 Time Measurement/Waveform Generating Register 4	G1TM4/G1PO4	XX16
010A16			XX16
010B16	Group 1 Time Measurement/Waveform Generating Register 5	G1TM5/G1PO5	XX16
010C16			XX16
010D16	Group 1 Time Measurement/Waveform Generating Register 6	G1TM6/G1PO6	XX16
010E16			XX16
010F16	Group 1 Time Measurement/Waveform Generating Register 7	G1TM7/G1PO7	XX16
011016	Group 1 Waveform Generating Control Register 0	G1POCR0	0X00 X0002
011116	Group 1 Waveform Generating Control Register 1	G1POCR1	0X00 X0002
011216	Group 1 Waveform Generating Control Register 2	G1POCR2	0X00 X0002
011316	Group 1 Waveform Generating Control Register 3	G1POCR3	0X00 X0002
011416	Group 1 Waveform Generating Control Register 4	G1POCR4	0X00 X0002
011516	Group 1 Waveform Generating Control Register 5	G1POCR5	0X00 X0002
011616	Group 1 Waveform Generating Control Register 6	G1POCR6	0X00 X0002
011716	Group 1 Waveform Generating Control Register 7	G1POCR7	0X00 X0002
011816	Group 1 Time Measurement Control Register 0	G1TMCR0	0016
011916	Group 1 Time Measurement Control Register 1	G1TMCR1	0016
011A16	Group 1 Time Measurement Control Register 2	G1TMCR2	0016
011B16	Group 1 Time Measurement Control Register 3	G1TMCR3	0016
011C16	Group 1 Time Measurement Control Register 4	G1TMCR4	0016
011D16	Group 1 Time Measurement Control Register 5	G1TMCR5	0016
011E16	Group 1 Time Measurement Control Register 6	G1TMCR6	0016
011F16	Group 1 Time Measurement Control Register 7	G1TMCR7	0016

Address	Register	Symbol	Value after RESET
012016			XX16
012116	Group 1 Base Timer Register	G1BT	XX16
012216	Group 1 Base Timer Control Register 0	G1BCR0	0016
012316	Group 1 Base Timer Control Register 1	G1BCR1	0016
012416	Group 1 Time Measurement Prescaler Register 6	G1TPR6	0016
012516	Group 1 Time Measurement Prescaler Register 7	G1TPR7	0016
012616	Group 1 Function Enable Register	G1FE	0016
012716	Group 1 Function Select Register	G1FS	0016
012816			XXXX XXXX2
012916	Group 1 SI/O Receive Buffer Register	G1RB	XX00 XXXX2
012A16	Group 1 Transmit Buffer/Receive Data Register	G1TB/G1DR	XX16
012B16			
012C16	Group 1 Receive Input Register	G1RI	XX16
012D16	Group 1 SI/O Communication Mode Register	G1MR	0016
012E16	Group 1 Transmit Output Register	G1TO	XX16
012E10	Group 1 SI/O Communication Control Register	G1CR	0000 X0002
012110	Group 1 Data Compare Register 0	G1CMP0	XX16
013018	Group 1 Data Compare Register 1	G1CMP0	XX16
		G1CMP1 G1CMP2	
013216	Group 1 Data Compare Register 2		XX16
013316	Group 1 Data Compare Register 3	G1CMP3	XX16
013416	Group 1 Data Mask Register 0	G1MSK0	XX16
013516	Group 1 Data Mask Register 1	G1MSK1	XX16
013616			
013716			
013816	Group 1 Receive CRC Code Register	G1RCRC	XX16
013916			XX16
013A16	Group 1 Transmit CRC Code Register	G1TCRC	0016
013B16			0016
013C16	Group 1 SI/O Extended Mode Register	G1EMR	0016
013D16	Group 1 SI/O Extended Receive Control Register	G1ERC	0016
013E16	Group 1 SI/O Special Communication Interrupt Detect Register	G1IRF	0000 00XX2
013F16	Group 1 SI/O Extended Transmit Control Register	G1ETC	0000 0XXX2
014016	Crown 2 Wousform Constrating Desigter 0	C2D00	XX16
014116	Group 2 Waveform Generating Register 0	G2PO0	XX16
014216	Orange Olivier (and Orangetian Deviation 1	00004	XX16
014316	Group 2 Waveform Generating Register 1	G2PO1	XX16
014416		0.000	XX16
014516	Group 2 Waveform Generating Register 2	G2PO2	XX16
014616			XX16
014716	Group 2 Waveform Generating Register 3	G2PO3	XX16
014816			XX16
014916	Group 2 Waveform Generating Register 4	G2PO4	XX16
014A16			XX16
014B16	Group 2 Waveform Generating Register 5	G2PO5	XX16
014C16			XX16
014D16	Group 2 Waveform Generating Register 6	G2PO6	XX16
014E16			XX16
014F16	Group 2 Waveform Generating Register 7	G2PO7	XX16
511110			

Address	Register	Symbol	Value after RESET
015016	Group 2 Waveform Generating Control Register 0	G2POCR0	0016
015116	Group 2 Waveform Generating Control Register 1	G2POCR1	0016
015216	Group 2 Waveform Generating Control Register 2	G2POCR2	0016
015316	Group 2 Waveform Generating Control Register 3	G2POCR3	0016
015416	Group 2 Waveform Generating Control Register 4	G2POCR4	0016
015516	Group 2 Waveform Generating Control Register 5	G2POCR5	0016
015616	Group 2 Waveform Generating Control Register 6	G2POCR6	0016
015716	Group 2 Waveform Generating Control Register 7	G2POCR7	0016
015816			
015916			
015A16			
015B16			
015C16			
015D16			
015E16			
015F16			
016016			XX16
016116	Group 2 Base Timer Register	G2BT	XX16
016216	Group 2 Base Timer Control Register 0	G2BCR0	0016
016316	Group 2 Base Timer Control Register 1	G2BCR1	0016
016416	Base Timer Start Register	BTSR	XXXX 00002
016516			
016616	Group 2 Function Enable Register	G2FE	0016
016716	Group 2 RTP Output Buffer Register	G2RTP	0016
016816			
016916			
016A16	Group 2 SI/O Communication Mode Register	G2MR	00XX X0002
016B16	Group 2 SI/O Communication Control Register	G2CR	0000 X0002
016C16	<u> </u>		XX16
016D16	Group 2 SI/O Transmit Buffer Register	G2TB	XX16
016E16			XX16
016F16	Group 2 SI/O Receive Buffer Register	G2RB	XX16
017016			XX16
017116	Group 2 IEBus Address Register	IEAR	XX16
017216	Group 2 IEBus Control Register	IECR	00XX X0002
017316	Group 2 IEBus Transmit Interrupt Cause Detect Register	IETIF	XXX0 00002
017416	Group 2 IEBus Receive Interrupt Cause Detect Register	IERIF	XXX0 00002
017516			
017616			
017716			
017816	Input Function Select Register	IPS	0016
017916			
017A16	Group 3 SI/O Communication Mode Register	G3MR	00XX 00002
017B16	Group 3 SI/O Communication Control Register	G3CR	0000 X0002
017C16			XX16
017D16	Group 3 SI/O Transmit Buffer Register	G3TB	XX16
2			
017E16			XX16

Address	Register	Symbol	Value after RESET
018016	Crown 2 Waysform Concreting Devictor 0	0200	XX16
018116	Group 3 Waveform Generating Register 0	G3PO0	XX16
018216	Crown 2 Waysform Concerting Deviator 4	02004	XX16
018316	Group 3 Waveform Generating Register 1	G3PO1	XX16
018416	Crown 2 Mountains Constating Register 2	02002	XX16
018516	Group 3 Waveform Generating Register 2	G3PO2	XX16
018616	Crown 2 Waysform Concerting Deviator 2	03003	XX16
018716	Group 3 Waveform Generating Register 3	G3PO3	XX16
018816	Crown 2 Woveform Congrating Register 4	G3PO4	XX16
018916	Group 3 Waveform Generating Register 4	G3F04	XX16
018A16	Group 3 Waveform Generating Register 5	G3PO5	XX16
018B16	Gloup 5 Wavelorm Generating Register 5	G3F03	XX16
018C16	Group 3 Waveform Generating Register 6	G3PO6	XX16
018D16	Gloup 5 Wavelorm Generating Register o	65F00	XX16
018E16	Group 3 Waveform Generating Register 7	G3PO7	XX16
018F16			XX16
019016	Group 3 Waveform Generating Control Register 0	G3POCR0	0016
019116	Group 3 Waveform Generating Control Register 1	G3POCR1	0016
019216	Group 3 Waveform Generating Control Register 2	G3POCR2	0016
019316	Group 3 Waveform Generating Control Register 3	G3POCR3	0016
019416	Group 3 Waveform Generating Control Register 4	G3POCR4	0016
019516	Group 3 Waveform Generating Control Register 5	G3POCR5	0016
019616	Group 3 Waveform Generating Control Register 6	G3POCR6	0016
019716	Group 3 Waveform Generating Control Register 7	G3POCR7	0016
019816	Group 3 Waveform Generating Mask Register 4	G3MK4	XX16
019916			XX16
019A16	Group 3 Waveform Generating Mask Register 5	G3MK5	XX16
019B16			XX16
019C16	Group 3 Waveform Generating Mask Register 6	G3MK6	XX16
019D16			XX16
019E16	Group 3 Waveform Generating Mask Register 7	G3MK7	XX16
019F16	1 0 0		XX16
01A016	Group 3 Base Timer Register	G3BT	XX16
01A116 01A216	· · · · · · · · · · · · · · · · · · ·	CORCEO	XX16
01A216 01A316	Group 3 Base Timer Control Register 0	G3BCR0	0016
01A316 01A416	Group 3 Base Timer Control Register 1	G3BCR1	
01A416 01A516			
01A516 01A616	Group 3 Function Enable Register	G3FE	0016
01A016	Group 3 RTP Output Buffer Register	G3RTP	0016
01A716 01A816		00000	
01A016			
01A316			
01AB16			
01AD16			
01AD16	Group 3 SI/O Communication Flag Register	G3FLG	XXXX XXX02
01AE16			///////////////////////////////////////
01AE16			
0.7.1 10			

O4 DO 1-		Symbol	Value after RESET
01B016			
01B116			
01B216			
01B316			
01B416			
01B516			
01B616			
01B716			
01B816			
01B916			
01BA16			
01BB16			
01BC16			
01BD16			
01BE16			
01BF16			
01C016			XX16
01C116	A/D1 Register 0	AD10	XX16
01C216			XX16
01C316		AD11	XX16
01C416			XX16
01C516		AD12	XX16
01C616			XX16
01C716	A/D1 Register 3	AD13	XX16
01C816			XX16
01C916	A/D1 Register 4	AD14	XX16
01CA16			XX16
01CB16	A/D1 Register 5	AD15	XX16
01CC16		12/2	XX16
01CD16	A/D1 Register 6	AD16	XX16
01CE16			XX16
01CF16	A/D1 Register 7	AD17	XX16
01D016			
01D116			
01D216			
01D316			
01D416	A/D1 Control Register 2	AD1CON2	X00X X0002
01D516			
01D616	A/D1 Control Register 0	AD1CON0	0016
	A/D1 Control Register 1	AD1CON1	XX00 00002
01D816			
01D916			
01DA16			
01DB16			
01DC16			
01DD16			
01DE16			

Address	Register	Symbol	Value after RESET
01E016	CAN0 Message Slot Buffer 0 Standard ID0	COSLOT0_0	XX16
01E116	CAN0 Message Slot Buffer 0 Standard ID1	 C0SLOT0_1	XX16
01E216	CAN0 Message Slot Buffer 0 Extended ID0	C0SLOT0_2	XX16
01E316	CAN0 Message Slot Buffer 0 Extended ID1	COSLOT0_3	XX16
01E416	CAN0 Message Slot Buffer 0 Extended ID2	COSLOTO 4	XX16
01E516	CAN0 Message Slot Buffer 0 Data Length Code	C0SLOT0_5	XX16
01E616	CAN0 Message Slot Buffer 0 Data 0	C0SLOT0_6	XX16
01E716	CAN0 Message Slot Buffer 0 Data 1	COSLOT0_7	XX16
01E816	CAN0 Message Slot Buffer 0 Data 2	COSLOTO_8	XX16
01E916	CANO Message Slot Buffer 0 Data 3	C0SLOT0_9	XX16
01EA16	CANO Message Slot Buffer 0 Data 4	C0SLOT0_10	XX16
01EB16	CANO Message Slot Buffer 0 Data 5	C0SLOT0_11	XX16
01EC16	CANO Message Slot Buffer 0 Data 6	C0SLOT0_12	XX16
01ED16	CANO Message Slot Buffer 0 Data 7	C0SLOT0_13	XX16
01EE16	CAN0 Message Slot Buffer 0 Time Stamp High-Order	C0SLOT0_14	XX16
01EF16	CANO Message Slot Buffer 0 Time Stamp Low-Order	C0SLOT0_15	XX16
01F016	CANO Message Slot Buffer 1 Standard ID0	C0SLOT1_0	XX16
01F116	CANO Message Slot Buffer 1 Standard ID0	COSLOT1 1	XX16
01F216	CANO Message Slot Buffer 1 Extended ID0	C0SLOT1_1	XX16
01F316	CANO Message Slot Buffer 1 Extended ID0	C0SLOT1_2	XX16
01F316	CANO Message Slot Buffer 1 Extended ID1	C0SLOT1_4	XX16
01F516	CANO Message Slot Buffer 1 Data Length Code	C0SLOT1_4	XX16
01F516	CANO Message Slot Buffer 1 Data Length Code	C0SLOT1_6	XX16
01F716			XX16
01F716	CANO Message Slot Buffer 1 Data 1	COSLOT1_7	XX16
	CANO Message Slot Buffer 1 Data 2	COSLOT1_8	XX16
01F916	CANO Message Slot Buffer 1 Data 3	C0SLOT1_9	XX16
01FA16	CANO Message Slot Buffer 1 Data 4	COSLOT1_10	
01FB16	CANO Message Slot Buffer 1 Data 5	COSLOT1_11	XX16
01FC16	CANO Message Slot Buffer 1 Data 6	C0SLOT1_12	XX16
01FD16	CANO Message Slot Buffer 1 Data 7	C0SLOT1_13	XX16
01FE16	CAN0 Message Slot Buffer 1 Time Stamp High-Order	C0SLOT1_14	XX16
01FF16	CAN0 Message Slot Buffer 1 Time Stamp Low-Order	C0SLOT1_15	XX16 XX01 0X012 ⁽¹⁾
020016	CAN0 Control Register 0	COCTLRO	
020116	5		XXXX 00002 ⁽¹⁾
020216	CAN0 Status Register	COSTR	0000 00002 ⁽¹⁾
020316			X000 0X012 ⁽¹⁾
020416	CAN0 Extended ID Register	COIDR	0016 ⁽¹⁾
020516			0016 ⁽¹⁾
020616	CAN0 Configuration Register	COCONR	0000 XXXX ₂ ⁽¹⁾
020716			0000 00002 ⁽¹⁾
020816	CAN0 Time Stamp Register	COTSR	0016 ¹⁾
020916			0016 ⁽¹⁾
020A16	CANO Transmit Error Count Register	COTEC	0016 ⁽¹⁾
020B16	CAN0 Receive Error Count Register	COREC	0016 ⁽¹⁾
020C16	CAN0 Slot Interrupt Status Register	COSISTR	0016 ⁽¹⁾
020D16			0016 ⁽¹⁾
020E16			
020F16			

Blank spaces are reserved. No access is allowed.

NOTES:

1. Values are obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) and supplying a clock to the CAN module after reset.

RENESAS

Address	Register	Symbol	Value after RESET	
021016	CANO Slot Interrunt Maak Desister	COSIMKR	0016 ⁽²⁾	
021116	CAN0 Slot Interrupt Mask Register	COSIMKR	0016 ⁽²⁾	
021216				
021316				
021416	CAN0 Error Interrupt Mask Register	C0EIMKR	XXXX X0002 ⁽²⁾	
021516	CAN0 Error Interrupt Status Register	COEISTR	XXXX X0002 ⁽²⁾	
021616				
021716	CAN0 Baud Rate Prescaler	COBRP	0000 00012 ⁽²⁾	
021816				
021916				
021A16				
021B16				
021C16				
021D16	1			
021E16	1			
021F16				
022016	1			
022116				_ ↓
022216				
022316				
022416				
022516				
022616				
022716				
022816	CAN0 Global Mask Register Standard ID0	COGMRO	XXX0 00002 ⁽²⁾	
022916	CANO Global Mask Register Standard ID1	C0GMR1	XX00 00002 ⁽²⁾	
022A16	CANO Global Mask Register Extended ID0	C0GMR2	XXXX 00002 ⁽²⁾	
022B16	CANO Global Mask Register Extended ID1	C0GMR3	0016 ⁽²⁾	
022C16	CANO Global Mask Register Extended ID2	C0GMR4	XX00 00002 ⁽²⁾	
022D16				
022E16				
022F16				(Note 1)
0	CAN0 Message Slot 0 Control Register /	COMCTL0/	0000 00002 ⁽²⁾	
023016	CAN0 Local Mask Register A Standard ID0	COLMARO	XXX0 00002 ⁽²⁾	
	CANO Message Slot 1 Control Register /	COMCTL1/	0000 00002 ⁽²⁾	
023116	CAN0 Local Mask Register A Standard ID1	COLMAR1	XX00 00002 ⁽²⁾	
	CANO Message Slot 2 Control Register /	COMCTL2/	0000 00002 ⁽²⁾	_
023216	CANO Local Mask Register A Extended ID0	COLMAR2	XXXX 00002 ⁽²⁾	
	CANO Message Slot 3 Control Register /	COMCTL3/	0016 ⁽²⁾	
023316	CANO Local Mask Register A Extended ID1	COLMAR3	0016 ⁽²⁾	
	CANO LOCAL Mask Register A Extended ID T	COMCTL4/	0000 00002 ⁽²⁾	_
023416	CANO Message Slot 4 Control Register / CANO Local Mask Register A Extended ID2	COLMAR4	XX00 00002 ⁽²⁾	
			0016 ⁽²⁾	_
023516	CANO Message Slot 5 Control Register	COMCTL5		
023616	CANO Message Slot 6 Control Register	COMCTL6	0016 ⁽²⁾	
023716	CANO Message Slot 7 Control Register	COMCTL7	0016 ⁽²⁾	
023816	CANO Message Slot 8 Control Register /	COMCTL8/	$0000\ 00002^{(2)}$	
	CAN0 Local Mask Register B Standard ID0	C0LMBR0	XXX0 00002 ⁽²⁾	

Blank spaces are reserved. No access is allowed.

NOTES:

- 1. The BANKSEL bit in the COCTLR1 register switches functions for addresses 022016 to 023F16.
- 2. Values are obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) and supplying a clock to the CAN module after reset.

023916	CAN0 Message Slot 9 Control Register / CAN0 Local Mask Register B Standard ID1	COMCTL9/	0000 00002 ⁽²⁾	
022440	CANO Logal Maak Degister D. Standard ID1		0000 00002	
000040	CANO LOCALMASK REGISTER & Standard ID I	C0LMBR1	XX00 00002 ⁽²⁾	
023A16	CAN0 Message Slot 10 Control Register /	C0MCTL10/	0000 00002 ⁽²⁾	
	CAN0 Local Mask Register B Extended ID0	C0LMBR2	XXXX 00002 ⁽²⁾	
(CAN0 Message Slot 11 Control Register /	C0MCTL11/	0016 ⁽²⁾	
023B16	CAN0 Local Mask Register B Extended ID1	C0LMBR3	0016 ⁽²⁾	(Note 1)
(CAN0 Message Slot 12 Control Register /	C0MCTL12/	0000 00002 ⁽²⁾	
023C16	CAN0 Local Mask Register B Extended ID2	C0LMBR4	XX00 00002 ⁽²⁾	
023D16	CAN0 Message Slot 13 Control Register	C0MCTL13	0016 ⁽²⁾	-
023E16 (CAN0 Message Slot 14 Control Register	C0MCTL14	0016 ⁽²⁾	
023F16 (CAN0 Message Slot 15 Control Register	C0MCTL15	0016 ⁽²⁾	
024016 (CAN0 Slot Buffer Select Register	COSBS	0016 ⁽²⁾	
	CAN0 Control Register 1	C0CTLR1	XX00 00XX2 ⁽²⁾	-
	CAN0 Sleep Control Register	COSLPR	XXXX XXX02	-
024316				-
024416			0016 ⁽²⁾	_
024516	CAN0 Acceptance Filter Support Register	COAFS	0116 ⁽²⁾	
024616				_
024716				_
024816				_
024916				_
024A16				_
024B16				_
024C16				-
024D16				-
024E16				-
024F16				-
025016				-
025116				-
025216				-
025316				_
025416				_
025516				-
025616				-
025716				-
025816				-
025916				-
025A16				-
025B16				-
025C16				-
025D16				-
025E16				-
025E16				-
026016				-
026116				-
				1
to				1

Blank spaces are reserved. No access is allowed.

NOTES:

- 1. The BANKSEL bit in the C0CTLR1 register switches functions for addresses 022016 to 023F16.
- 2. Values are obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) and supplying a clock to the CAN module after reset.

Address	Register	Symbol	Value after RESET
02C016			XX16
02C116	X0 Register Y0 Register	X0R,Y0R	XX16
02C216			XX16
02C316	X1 Register Y1 Register	X1R,Y1R	XX16
02C416			XX16
02C516	X2 Register Y2 Register	X2R,Y2R	XX16
02C616			XX16
02C716	X3 Register Y3 Register	X3R,Y3R	XX16
02C816			XX16
02C916	X4 Register Y4 Register	X4R,Y4R	XX16
02CA16			XX16
02CB16	X5 Register Y5 Register	X5R,Y5R	XX16
02CC16			XX16
02CD16	X6 Register Y6 Register	X6R,Y6R	XX16
02CE16			XX16
02CF16	X7 Register Y7 Register	X7R,Y7R	XX16
02D016			XX16
02D116	X8 Register Y8 Register	X8R,Y8R	XX16
02D216			XX16
02D316	X9 Register Y9 Register	X9R,Y9R	XX16
02D416			XX16
02D516	X10 Register Y10 Register	X10R,Y10R	XX16
02D616			XX16
02D716	V11 Pogistor V11 Pogistor	X11R,Y11R	XX16
02D816			XX16
02D916	X12 Register Y12 Register	X12R,Y12R	XX16
02DA16			XX16
02DB16	X13 Register Y13 Register	X13R,Y13R	XX16
02DC16			XX16
02DD16	X14 Register Y14 Register	X14R,Y14R	XX16
02DE16			XX16
02DF16	X15 Register Y15 Register	X15R,Y15R	XX16
02E016	XY Control Register	XYC	XXXX XX002
02E116			70000002
02E110			
02E210			
02E010	UART1 Special Mode Register 4	U1SMR4	0016
02E516	UART1 Special Mode Register 3	U1SMR3	0016
02E616	UART1 Special Mode Register 2	U1SMR2	0016
02E716	UART1 Special Mode Register	U1SMR	0016
02E816	UART1 Transmit/Receive Mode Register	U1MR	0016
02E916	UART1 Baud Rate Register	U1BRG	XX16
02E010			XX16
02ER16	UART1 Transmit Buffer Register	U1TB	XX16
02ED10	UART1 Transmit/Receive Control Register 0	U1C0	0000 10002
02ED16	UART1 Transmit/Receive Control Register 0	U1C1	0000 00102
02ED16			XX16
02EE16	UART1 Receive Buffer Register	U1RB	XX16 XX16
UZEF10			

Address	Register	Symbol	Value after RESET
02F016			
02F116			
02F216			
02F316			
02F416	UART4 Special Mode Register 4	U4SMR4	0016
02F516	UART4 Special Mode Register 3	U4SMR3	0016
02F616	UART4 Special Mode Register 2	U4SMR2	0016
02F716	UART4 Special Mode Register	U4SMR	0016
02F816	UART4 Transmit/Receive Mode Register	U4MR	0016
02F916	UART4 Baud Rate Register	U4BRG	XX16
02FA16			XX16
02FB16	UART4 Transmit Buffer Register	U4TB	XX16
02FC16	UART4 Transmit/Receive Control Register 0	U4C0	0000 10002
02FD16	UART4 Transmit/Receive Control Register 1	U4C1	0000 00102
02FE16			XX16
02FF16	UART4 Receive Buffer Register	U4RB	XX16
030016	Timer B3, B4, B5 Count Start Flag	TBSR	000X XXXX2
030116		-	
030216			XX16
030316	Timer A1-1 Register	TA11	XX16
030416			XX16
030516	Timer A2-1 Register	TA21	XX16
030616			XX16
030716	Timer A4-1 Register	TA41	XX16
030816	Three-Phase PWM Control Register 0	INVC0	0016
030916	Three-Phase PWM Control Register 1	INVC1	0016
030A16	Three-Phase output Buffer Register 0	IDB0	XX11 11112
030B16	Three-Phase output Buffer Register 1	IDB1	XX11 11112
030C16	Dead Time Timer	DTT	XX16
030D16	Timer B2 Interrupt Generating Frequency Set Counter	ICTB2	XX16
030E16			
030F16			
031016			XX16
031116	Timer B3 Register	TB3	XX16
031216			XX16
031316	Timer B4 Register	TB4	XX16
031416			XX16
031516	Timer B5 Register	TB5	XX16
031616			-
031716			
031816			
031916			
031A16			
031B16	Timer B3 Mode Register	TB3MR	00XX 00002
031C16	Timer B4 Mode Register	TB4MR	00XX 00002
031D16	Timer B5 Mode Register	TB5MR	00XX 00002
031E16			
031F16	External Interrupt Cause Select Register	IFSR	0016
301110			

Address	Register	Symbol	Value after RESET
032016			
032116			
032216			
032316			
032416	UART3 Special Mode Register 4	U3SMR4	0016
032516	UART3 Special Mode Register 3	U3SMR3	0016
032616	UART3 Special Mode Register 2	U3SMR2	0016
032716	UART3 Special Mode Register	U3SMR	0016
032816	UART3 Transmit/Receive Mode Register	U3MR	0016
032916	UART3 Baud Rate Register	U3BRG	XX16
032A16			XX16
032B16	UART3 Transmit Buffer Register	U3TB	XX16
032C16	UART3 Transmit/Receive Control Register 0	U3C0	0000 10002
032D16	UART3 Transmit/Receive Control Register 1	U3C1	0000 00102
032E16			XX16
032F16	UART3 Receive Buffer Register	U3RB	XX16
033016			
033116			
033216			
033316			
033416	UART2 Special Mode Register 4	U2SMR4	0016
033516	UART2 Special Mode Register 3	U2SMR3	0016
033616	UART2 Special Mode Register 2	U2SMR2	0016
033716	UART2 Special Mode Register	U2SMR	0016
033816	UART2 Transmit/Receive Mode Register	U2MR	0016
033916	UART2 Baud Rate Register	U2BRG	XX16
033A16			XX16
033B16	UART2 Transmit Buffer Register	U2TB	XX16
033C16	UART2 Transmit/Receive Control Register 0	U2C0	0000 10002
033D16	UART2 Transmit/Receive Control Register 1	U2C1	0000 00102
033E16			XX16
033F16	UART2 Receive Buffer Register	U2RB	XX16
034016	Count Start Flag	TABSR	0016
034116	Clock Prescaler Reset Flag	CPSRF	0XXX XXXX2
034216	One-Shot Start Flag	ONSF	0016
034316	Trigger Select Register	TRGSR	0016
034416	Up-Down Flag	UDF	0016
034516			
034616			XX16
034716	Timer A0 Register	TA0	XX16
034816			XX16
034916	Timer A1 Register	TA1	XX16
034A16			XX16
034B16	Timer A2 Register	TA2	XX16
034C16			XX16
034D16	Timer A3 Register	TA3	XX16
034E16			XX16
034F16	Timer A4 Register	TA4	XX16

Address	Register	Symbol	Value after RESET
035016			XX16
035116	Timer B0 Register	TB0	XX16
035216			XX16
035316	Timer B1 Register	TB1	XX16
035416			XX16
035516	Timer B2 Register	TB2	XX16
035616	Timer A0 Mode Register	TA0MR	0000 0X002
035716	Timer A1 Mode Register	TA1MR	0000 0X002
035816	Timer A2 Mode Register	TA2MR	0000 0X002
035916	Timer A3 Mode Register	TA3MR	0000 0X002
035A16	Timer A4 Mode Register	TA4MR	0000 0X002
035B16	Timer B0 Mode Register	TB0MR	00XX 00002
035C16	Timer B1 Mode register	TB1MR	00XX 00002
035D16	Timer B2 Mode Register	TB2MR	00XX 00002
035E16	Timer B2 Special Mode Register	TB2SC	XXXX XXX02
035F16	Count Source Prescaler Register ⁽¹⁾	TCSPR	0XXX 00002
036016	<u> </u>		
036116			
036216			
036316			
036416	UART0 Special Mode Register 4	U0SMR4	0016
036516	UART0 Special Mode Register 3	U0SMR3	0016
036616	UART0 Special Mode Register 2	U0SMR2	0016
036716	UARTO Special Mode Register	U0SMR	0016
036816	UART0 Transmit/Receive Mode Register	U0MR	0016
036916	UART0 Baud Rate Register	U0BRG	XX16
036A16			XX16
036B16	UART0 Transmit Buffer Register	U0TB	XX16
036C16	UART0 Transmit/Receive Control Register 0	U0C0	0000 10002
036D16	UART0 Transmit/Receive Control Register 1	U0C1	0000 00102
036E16	-		XX16
036F16	UART0 Receive Buffer Register	UORB	XX16
037016			-
037116			
037216			
037316			
037416			
037516			
037616	PLL Control Register 0	PLC0	0011 X1002
037716	PLL Control Register 1	PLC1	XXXX 00002
037816	DMA0 Cause Select Register	DM0SL	0X00 00002
037916	DMA1 Cause Select Register	DM1SL	0X00 00002
037A16	DMA2 Cause Select Register	DM2SL	0X00 00002
037B16	DMA3 Cause Select Register	DM3SL	0X00 00002
037C16			XX16
037D16	CRC Data Register	CRCD	XX16
037E16	CRC Input Register	CRCIN	XX16
037F16			

Blank spaces are reserved. No access is allowed.

NOTES:

1. The TCSPR register maintains the values set before reset even if software reset or watchdog timer reset is performed.

RENESAS

Address	Register	Symbol	Value after RESET
	register	Cymbol	
038016 038116	A/D0 Register 0	AD00	XX16 XX16
038116			XX16 XX16
038316	A/D0 Register 1	AD01	XX16 XX16
038416			XX16
038516	A/D0 Register 2	AD02	XX16
038616			XX16
038716	A/D0 Register 3	AD03	XX16
038816			XX16
038916	A/D0 Register 4	AD04	XX16
038A16			XX16
038B16	A/D0 Register 5	AD05	XX16
038C16			XX16
038D16	A/D0 Register 6	AD06	XX16 XX16
038E16			XX16
038F16	A/D0 Register 7	AD07	XX16
039016			
039116			
039216			
039316			
039416	A/D0 Control Register 2	AD0CON2	X000 00002
039516			
039616	A/D0 Control Register 0	AD0CON0	0016
039716	A/D0 Control Register 1	AD0CON1	0016
039816	D/A Register 0	DA0	XX16
039916	•		
039A16	D/A Register 1	DA1	XX16
039B16	-		
039C16	D/A Control Register	DACON	XXXX XX002
039D16	-		
039E16			
039F16			

<144-pin package>

Address	Register	Symbol	Value after RESET
03A016	Function Select Register A8	PS8	X000 00002
03A116	Function Select Register A9	PS9	0016
03A216			
03A316			
03A416			
03A516			
03A616			
03A716			
03A816			
03A916			
03AA16			
03AB16			
03AC16			
03AD16			
03AE16			
03AF16	Function Select Register C	PSC	00X0 00002
03B016	Function Select Register A0	PS0	0016
03B116	Function Select Register A1	PS1	0016
03B216	Function Select Register B0	PSL0	0016
03B316	Function Select Register B1	PSL1	0016
03B416	Function Select Register A2	PS2	00X0 00002
03B516	Function Select Register A3	PS3	0016
03B616	Function Select Register B2	PSL2	00X0 00002
03B716	Function Select Register B3	PSL3	0016
03B816	Tunction Select Register DS	1 323	0018
03B916	Function Select Register A5	PS5	XXX0 00002
03BA16		1 33	7770 00002
03BB16			
03BC16	Function Select Register A6	PS6	0016
03BD16	Function Select Register A7	PS7	0016
03BE16		F 57	0016
03BF16			
03DF16	Dart DC Dagistar	De	XX40
	Port P6 Register	P6	XX16
03C116	Port P7 Register	P7	XX16
03C216	Port P6 Direction Register	PD6	0016
03C316	Port P7 Direction Register	PD7	0016
03C416	Port P8 Register	P8	XX16
03C516	Port P9 Register	P9	XX16
03C616	Port P8 Direction Register	PD8	00X0 00002
03C716	Port P9 Direction Register	PD9	0016
03C816	Port P10 Register	P10	XX16
03C916	Port P11 Register	P11	XX16
03CA16	Port P10 Direction Register	PD10	0016
03CB16	Port P11 Direction Register	PD11	XXX0 00002
03CC16	Port P12 Register	P12	XX16
03CD16	Port P13 Register	P13	XX16
03CE16	Port P12 Direction Register	PD12	0016
03CF16	Port P13 Direction Register	PD13	0016

X: Indeterminate

<144-pin package>

Address	Register	Symbol	Value after RESET
03D016	Port P14 Register	P14	XX16
03D116	Port P15 Register	P15	XX16
03D216	Port P14 Direction Register	PD14	X000 00002
03D316	Port P15 Direction Register	PD15	0016
03D416			
03D516			
03D616			
03D716			
03D816			
03D916			
03DA16	Pull-Up Control Register 2	PUR2	0016
03DB16	Pull-Up Control Register 3	PUR3	0016
03DC16	Pull-Up Control Register 4	PUR4	XXXX 00002
03DD16			
03DE16			
03DF16			
03E016	Port P0 Register	P0	XX16
03E116	Port P1 Register	P1	XX16
03E216	Port P0 Direction Register	PD0	0016
03E316	Port P1 Direction Register	PD1	0016
03E416	Port P2 Register	P2	XX16
03E516	Port P3 Register	P3	XX16
03E616	Port P2 Direction Register	PD2	0016
03E716	Port P3 Direction Register	PD3	0016
03E816	Port P4 Register	P4	XX16
03E916	Port P5 Register	P5	XX16
03EA16	Port P4 Direction Register	PD4	0016
03EB16	Port P5 Direction Register	PD5	0016
03EC16		1 20	0010
03ED16			
03EE16			
03EF16			
03F016	Pull-Up Control Register 0	PUR0	0016
03F116	Pull-Up Control Register 1	PUR1	XXXX 00002
03F216			
03F316			
03F416			
03F516			
03F616			
03F716			
03F816			
03F916			
03FA16			
03FB16			
03FC16			
03FD16			
03FE16			
03FF16	Port Control Register	PCR	XXXX XXX02

X: Indeterminate

<100-pin package>

Address	Register	Symbol	Value after RESET
03A016			
03A116			
03A216			
03A316			
03A416			
03A516			
03A616			
03A716			
03A816			
03A916			
03AA16			
03AB16			
03AC16			
03AD16			
03AE16			
03AF16	Function Select Register C	PSC	0X00 00002
03B016	Function Select Register A0	PS0	0016
03B116	Function Select Register A1	PS1	0016
03B216	Function Select Register B0	PSL0	0016
03B316	Function Select Register B1	PSL1	0016
03B416	Function Select Register A2	PS2	00X0 00002
03B516	Function Select Register A3	PS3	0016
03B616	Function Select Register B2	PSL2	00X0 00002
03B716	Function Select Register B3	PSL3	0016
03B816			
03B916			
03BA16			
03BB16			
03BC16			
03BD16			
03BE16			
03BF16			
03C016	Port P6 Register	P6	XX16
03C116	Port P7 Register	P7	XX16
	Port P6 Direction Register	PD6	0016
	Port P7 Direction Register	PD7	0016
03C416	Port P8 Register	P8	XX16
03C516	Port P9 Register	P9	XX16
03C616	Port P8 Direction Register	PD8	00X0 00002
03C716	Port P9 Direction Register	PD9	0016
03C816	Port P10 Register	P10	XX16
03C916			
03CA16	Port P10 Direction Register	PD10	0016
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	///////////////////////////////////////	
03CB16			
03CB16 03CC16			
03CB16			

X: Indeterminate

Blank spaces are reserved. No access is allowed.

NOTES:

- 1. ZZZZ Set address spaces 03CB16, 03CE16 and 03CF16 to "FF16" in the 100-pin package.
- 2. Address spaces 03A016, 03A116, 03B916, 03BC16, 03BD16, 03C916, 03CC16 and 03CD16 are not provided in the 100-pin package.

RENESAS

<100-pin package>

Value after RESET	
	(Note
	(Note
0016	
0016	
	(Note
XX16	
XX16	
0016	-
0016	-
XX16	-
XX16	-
0016	-
0016	-
XX16	-
XX16	-
0016	-
0016	-
	-
	-
	-
	-
0016	-
XXXX 00002	-
///////////////////////////////////////	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	_
	_
	XXXX XXX02

X: Indeterminate

Blank spaces are reserved. No access is allowed.

NOTES:

- 1. Zet address spaces 03D216 and 03D316 to "FF16" in the 100-pin package.
- 2. \fbox Set address spaces 03DC16 to "0016" in the 100-pin package.
- 3. \square Address spaces 03D016 and 03D116 are not provided in the 100-pin package.

5. Reset

Hardware reset, software reset, and watchdog timer reset are available to reset the microcomputer.

5.1 Hardware Reset

5.1.1 Reset on a Stable Supply Voltage

The microcomputer resets pins, the CPU and SFR when the supply voltage meets the recommended performance conditions while an "L" signal is applied to the RESET pin (see **Table 5.1**). Apply an "H" signal to the RESET pin again after 20 or more clock cycles are input to the XIN pin while applying an "L" to the RESET pin. The CPU and SFR are reset and programs run from the address indicated by the reset vector.

The internal RAM is not reset. When the RESET pin becomes "L" while writing data to the internal RAM, the internal RAM is in an indeterminate state.

5.1.2 Power-on Reset

The microcomputer resets pins, the CPU and SFR when the supply voltage applied to the Vcc pin meets the recommended performance conditions while an "L" signal is applied to the RESET pin. (See **Table 5.1**.)

The CPU and SFR are reset when the signal applied to the RESET pin changes low ("L") to high ("H") after the main clock oscillation stabilizes and 20 or more clock cycles are applied to the XIN pin. Programs run from the address indicated by the reset vector. The internal RAM is in a indeterminate state

Figure 5.1 shows a reset circuit. Figure 5.2 shows a reset sequence. Figure 5.3 shows CPU register conditions after reset. Table 5.1 lists pin states while the RESET pin is held "L". Refer to **4. SFR** for SFR states after reset.

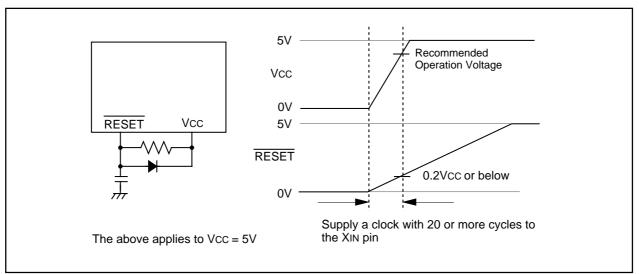


Figure 5.1 Reset Circuit

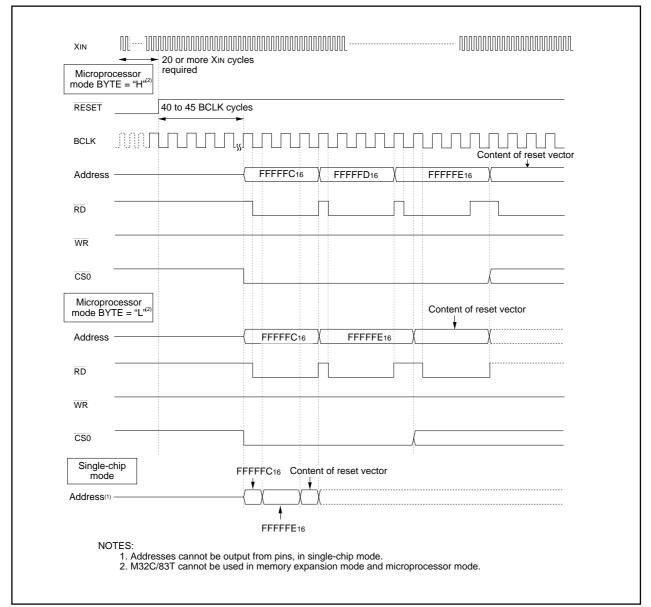


Figure 5.2 Reset Sequence

		Pin States		
Pin Name	e CNVss = Vss	CNVss = Vcc		
	CINVSS = VSS	BYTE = Vss	BYTE = VCC	
P0	Input port (high-impedance)	Data input (high-impedance)		
P1	Input port (high-impedance)	Data input (high-impedance)	Input port (high-impedance)	
P2, P3, P4	Input port (high-impedance)	Address output (indeterminate)		
P50	Input port (high-impedance)	WR output (output "H")		
P51	Input port (high-impedance)	BHE output (indeterminate)		
P52	Input port (high-impedance)	RD output (output "H")		
P53	Input port (high-impedance)	BCLK output		
P54	Input port (high-impedance)	HLDA output (output value depe	ends on an input to HOLD pin)	
P55	Input port (high-impedance)	HOLD input (high-impedance)		
P56	Input port (high-impedance)	RAS output		
P57	Input port (high-impedance)	RDY input (high-impedance)		
P6 to P15 ⁽¹⁾	Input port (high-impedance)	Input port (high-impedance)		

Table 5.1 Pin States while RESET Pin is Hel	ld "L"
---	--------

NOTES:

1. Ports P11 to P15 are provided in the 144-pin package.

5.2 Software Reset

When the PM03 bit in the PM0 register is set to "1" (microcomputer reset), pins, the CPU and SFR are reset. Then the microcomputer executes the program from an address determined by the reset vector. When software reset is performed, some registers in the SFR are not reset. Refer to **4. SFR** for details. Set the PM03 bit to "1" while the main clock is selected as the CPU clock and the main clock oscillation is stable.

5.3 Watchdog Timer Reset

The microcomputer resets pins, the CPU and the SFR when the watchdog timer underflows while the CM06 bit in the CM0 register is set to "1" (reset). Then the microcomputer executes the program from an address indicated by the reset vector.

When watchdog timer reset is performed, some registers in the SFR are not reset. Refer to **4. SFR** for details. Because the PM01 to PM00 bits in the PM0 register are not reset, the processor mode remains unchanged.

5.4 Internal Space

Figure 5.3 shows CPU register states after reset. Refer to 4. SFR for SFR states after reset.

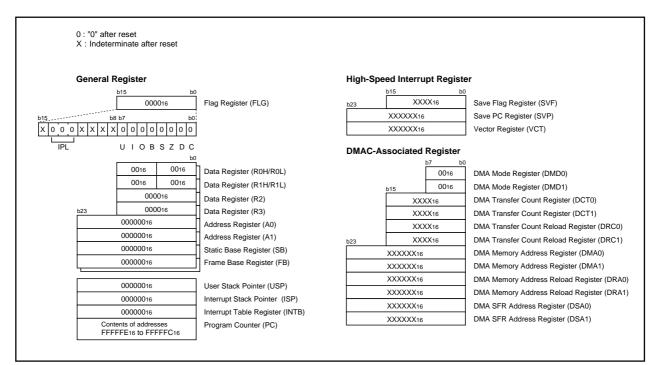


Figure 5.3 CPU Register after Reset

6. Processor Mode

NOTE

M32C/83T can be used in single-chip mode.

M32C/83T cannot be used in memory expansion mode and microprocessor mode.

6.1 Types of Processor Mode

Single-chip mode, memory expansion mode, or microprocessor mode can be selected as processor mode. Pin functions, memory map and accessible space vary depending on the selected processor mode.

6.1.1 Single-chip Mode

In single-chip mode, internal memory space (the SFR, internal RAM and internal ROM) can be accessed. All I/O ports can be used.

6.1.2 Memory Expansion Mode

In memory expansion mode, both external memory space and internal memory space can be accessed. Some pins function as pins for bus control signals. The BYTE pin and register settings determine how many pins are assigned for these pin functions. Refer to **7. Bus** for details.

6.1.3 Microprocessor Mode

In microprocessor mode, SFR, internal RAM and external memory space can be accessed. Internal ROM cannot be accessed.

Some pins function as pins for bus control signals. The BYTE pin and register settings determine how many pins are assigned for these pin functions. (Refer to **7. Bus** for details.)

6.2 Setting Processor Mode

The processor mode is set by the combination of CNVss pin and the PM01 to PM00 bit settings in the PM0 register. Do not set the PM01 to PM00 bits to "102".

If the PM01 to PM00 bits are rewritten, the mode corresponding to the PM01 to PM00 bits is selected regardless of CNVss pin level.

Do not change the PM01 to PM00 bits when the PM02 to PM07 bits in the PM0 register are being rewritten. Do not enter microprocessor mode while the CPU is executing a program in the internal ROM. Do not enter single-chip mode while the CPU is executing a program in an external memory space.

Figures 6.1 and 6.2 show the PM0 register and PM1 register. Figure 6.3 shows a memory map in each processor mode.

6.2.1 Applying VSS to CNVSS Pin

The microcomputer enters single-chip mode after reset. Set the PM01 to PM00 bits to "012" (memory expansion mode) to switch to memory expansion mode after the microcomputer starts operating.

6.2.2 Applying VCC to CNVSS Pin

The microcomputer enters microprocessor mode after reset. When using the flash memory version, apply Vcc to P55 (HOLD) as well as to the CNVss.

b7 b6 b5 b	04 b3 b2 b1 b0	Symb PM0	ol Address 0004 ₁₆	After Reset 1000 00002 (CNVss = "L") 0000 00112 (CNVss = "H")	
		Bit Symbol	Bit Name	Function	RW
		PM00	Processor Mode Bit ^(2, 3)	0 0: Single-chip mode 0 1: Memory expansion mode ⁽⁹⁾	RW
	·	PM01	Processor Mode Bit(2, 3)	1 0: Do not set to this value 1 1: Microprocessor mode ⁽⁹⁾	RW
	·	PM02	R/W Mode Select Bit ⁽⁴⁾	0: RD / BHE / WR 1: RD / WRH / WRL	RW
		PM03	Software Reset Bit	The microcomputer is reset when this bit is set to "1". When read, its content is "0".	RW
			Multiplexed Bus Space	$_{b5 b4}$ 0 0 : Multiplexed bus is not used 0 1 : Access the CS2 area with the bus	RW
		PM05	Select Bit ⁽⁵⁾	0 1 : Access the $\overline{CS1}$ area with the bus 1 1 : Access all \overline{CS} areas with the bus ⁽⁶⁾	RW
		(b6)	Reserved Bit	Set to "0"	RW
		PM07	BCLK Output Disable Bit ⁽⁷⁾	 0 : BCLK is output⁽⁸⁾ 1 : BCLK is not output The CM01 and CM00 bits in the CM0 register determine pin functions. 	RW

- 4. When using the 16-bit data bus in the DRAMC, set the PM02 bit to "1".
- 5. The PM05 to PM04 bits are available in memory expansion mode or microprocessor mode.
 - Set the PM05 to PM04 bits to "002" in mode 0.
 - Do not set the PM05 to PM04 bits to "012" in mode 2.
- 6. The PM05 to PM04 bits cannot be set to "112" in microprocessor mode because the microcomputer starts operation using the separate bus after reset.

When the PM05 to PM04 bits are set to "112" in memory expansion mode, the microcomputer can access each 64-Kbyte chip-select-assigned address space. The multiplexed bus is not available in mode 0. The microcomputer accesses $\overline{CS0}$ to $\overline{CS2}$ in mode 1, $\overline{CS0}$ and $\overline{CS1}$ in mode 2 and $\overline{CS0}$ to $\overline{CS3}$ in mode 3.

- 7. No BCLK is output in single-chip mode even if the PM07 bit is set to "0". When a clock output is terminated in microprocessor mode or memory expansion mode, set the PM07 bit to "1" and the CM01 to CM00 bits in the CM0 register to "002" (I/O port P53). P53 outputs "L".
- 8. When the PM07 bit is set to "0" (BCLK output), set the CM01 and CM00 bits to "002".
- 9. M32C/83T cannot be used in memory expansion mode and microprocessor mode.

Figure 6.1 PM0 Register

b7 b6 b5	b4 b3 b2 b1 b0	Sy PM	mbol Address 11 000516	s After Reset 0X00 00002	
		Bit Symbol	Bit Name	Function	RW
		PM10 External Memory Space		^{b1 b0} 0 0 : Mode 0 (A20 to A23 for P44 to P47) 0 1 : Mode 1 (A20 for P44, CS2 to CS0 for P45 to P47)	
		PM11	Mode Bit ^(2, 6)	1 0 : Mode 2 (A20, A21 for P44, P45, $\overline{CS1}$, $\overline{CS0}$ for P46, P47) 1 1 : Mode 3 ⁽³⁾ ($\overline{CS3}$ to $\overline{CS0}$ for P44 to P47)	
		PM12	Internal Memory Wait Bit	0 : No wait state 1 : Wait state	RW
		PM13	SFR Area Wait Bit 0	0 : 1 wait state 1 : 2 wait states ⁽⁴⁾	RW
		PM14	ALE Pin Select Bit ^(2, 6)	^{b5 b4} 0 0 : No ALE 0 1 : P53/BCLK ⁽⁵⁾	RW
		PM15		1 0 : P56/RAS 1 1 : P54/HLDA	RW
		(b6)	Nothing is assigned. When read, its content is	indeterminate.	_
		(b7)	Reserved Bit	Set to "0"	RW

4. Set the PM13 bit to "1" (2 wait states) to access CAN-associated registers (addresses 01E016 to 024516).

5. Set the CM01 and CM00 bits in the CM0 register to "002" (I/O port P53) when the PM15 and PM14 bits are set to "012" (P53/BCLK select).

6. M32C/83T cannot be used in memory expansion mode and microprocessor mode.

Figure 6.2 PM1 Register

Mode 3	SFR	Internal RAM	Reserved Space	Not Used CS1, 1M byte External Space 0	D CS2, 1M byte External Space 1 Not Used		Not Used	<u>0</u>	connectable space or external space)		CS3, 1M byte External Space 2	No.1		CS0. 1M bvte	External Space 3
Mode 2	SFR	Internal RAM	Reserved Space	CS1 4M bvtes ⁽²⁾	External Space 0	DRAM-	Connectable Space 0,	0.5 to 8M bytes (Remaining space cannot be used if	empty space is less than 8M bytes)	(External Space 2)		\overline{cso}	4M bytes External Space 3		
Sor Mode	SFR	Internal RAM	Reserved Space	CS1 2M bytes ⁽¹⁾ External Space 0	CS2 2M bytes External Space 1	DRAM-	Connectable Space 0,	0.5 to 8M bytes(Remaining space cannot be used if	empty space is less than 8M bytes)	(External Space 2)	Not I Ised	200	<u>CS0</u>	2M bytes	External Space 3
Microprocessor Mode 1 Mode 0 Mode 1	SFR	Internal RAM	Keserved Space	External Space 0	External Space 1	DRAM-	Connectable Space 0,	0.5 to 8M bytes(Available as external space	when DRAM is not used)	(External Space 2)		Evenuel Creece 2			
Mode 3	SFR	Internal RAM	Keserved Space	Not Used CS1, 1M byte External Space 0	CS2, 1M byte External Space 1 Not Used		Not Used	(Cannot be used as DRAM-	connectable space or external space)		CS3, 1M byte External Space 2	Not Used	CS0, 1M byte External Space 3	Reserved Space	Internal ROM
Mode 2	SFR	Internal RAM	Keserved Space	CS1 AM hvtes (2)	External Space 0	DRAM-	Connectable Space 0,	0.5 to 8M bytes(Remaining space cannot be used if	empty space is less than 8M bytes)	(External Space 2)		3M bytes	External Space 3	Reserved Space	Internal ROM
Insion Mode Mode 1	SFR	Internal RAM		CS1 2M bytes ⁽¹⁾ External Space 0	<u>CS2</u> 2M bytes External Space 1	DRAM-	Connectable Space 0,	0.5 to 8M bytes (Remaining space cannot be used if	empty space is less than 8M bytes)	(External Space 2)	CS0 2M hvtes	External Space 3	Not Used	Reserved Space	Internal ROM
Memory Expansion Mode Mode 0 Mode 1	SFR	Internal RAM	Keserved Space	External Space 0	External Space 1	DRAM-	Connectable Space 0,	0.5 to 8M byte (Available as external space	when DRAM is not used)	(External Space 2)		External Space 3	1	Reserved Space	Internal ROM
Single-Chip Mode	SFR	Internal RAM						Not Used							Internal ROM
	00000016	00040016	00080016	10000016	30000016	4000016					C0000016		EUUUUU16	F0000016	FFFFF16

Figure 6.3 Memory Map in Each Processor Mode

RENESAS

7. Bus

In memory expansion mode or microprocessor mode, some pins function as bus control pins to input and output data from external devices. Ao to A22, A23, Do to D15, MA0 to MA12, CS0 to CS3, WRL/WR/CASL, WRH/BHE/CASH, RD/DW, BCLK/ALE, HLDA/ALE, HOLD, ALE/RAS, and RDY are used as bus control pins.

NOTE

Bus control pins in M32C/83T cannot be used.

7.1 Bus Settings

The BYTE pin, the DS register, the PM05 to PM04 bits in the PM0 register and the PM11 to PM10 bits in the PM1 register determine bus settings.

Table 7.1 lists how to change a bus setting. Figure 7.1 shows the DS register.

Table 7.1 Bus Settings

Bus Setting	Changed By
Selecting external address bus width	DS register
Setting bus width after reset	BYTE pin (external space 3 only)
Switching between separate bus or multiplexed bus	PM05 to PM04 bits in PM0 register
Number of chip-select	PM11 to PM10 bits in PM1 register

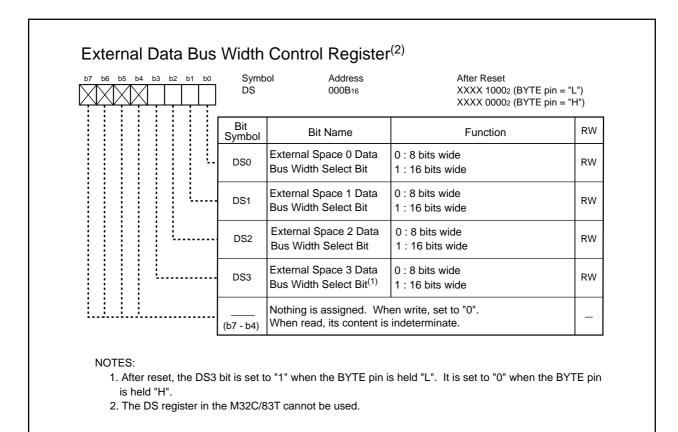


Figure 7.1 DS Register

7.1.1 Selecting External Address Bus

The number of externally-output address bus, chip-select signals and chip-select-assigned address space (\overline{CS} area) varies depending on each external space mode. The PM11 to PM10 bits in the PM1 register determine the external space mode.

When using the DRAMC, row addresses and column addresses are multiplexed to output in the DRAM area.

7.1.2 Selecting External Data Bus

The DS register selects either external 8-bit or 16-bit data bus per external space. The data bus in the external space 3, after reset, becomes 16 bits wide when an "L" signal is applied to the BYTE pin and 8 bits wide when an "H" signal is applied. Do not change the BYTE pin level while the microcomputer is operating. The internal bus is always 16 bits wide.

7.1.3 Selecting Separate/Multiplexed Bus

The PM05 to PM04 bits in the PM0 register determine either a separate or multiplexed bus as bus format .

7.1.3.1 Separate Bus

The separate bus is a bus format which allows the microcomputer to input and output data and address using separate buses. The DS register selects 8-bit or 16-bit data bus as the external data bus per external space. If all DSi bits in the DS register (i=0 to 3) are set to "0" (8-bit data bus), port P0 becomes the data bus and port P1 becomes the programmable I/O port. If one of the DSi bits is set to "1" (16-bit data bus), ports P0 and P1 become the data bus. When the microcomputer accesses a space while the DSi bit set to "0", port P1 is indeterminate.

If the microcomputer accesses a space with the separate bus, the WCR register determines the number of software wait states inserted.

7.1.3.2 Multiplexed Bus

The multiplexed bus is a bus format which allows the microcomputer to input and output data and address via bus by timesharing. Do to D7 are multiplexed with A0 to A7 in space accessed by the 8-bit data bus. Do to D15 are multiplexed with A0 to A15 in space accessed by the 16-bit data bus. If the microcomputer accesses a space with the multiplexed bus, the WCR register can be set to either two wait states or three wait states. Two-wait-state access is automatically selected if the WCR register is set to no wait state or one wait state. Refer to **7.2.4 Bus Timing** for details.

The microcomputer starts operation using the separate bus after reset. Therefore, the multiplexed bus can be assigned to access the $\overline{CS1}$ area, the $\overline{CS2}$ area, or all \overline{CS} areas. However, the multiplexed bus cannot be assigned to access all \overline{CS} areas in microprocessor mode. When the PM05 and PM04 bits in the PM0 register are set to "112" (access all \overline{CS} areas with the bus), only 16 low-order bits, from A0 to A15, of an address are output. See Table 7.2 for details.

	10065501	wode and Po	Function					
Processor Mode	Single- Chip Mode	Memo	ry Expansion Mo	ode/ Microproces	sor Mode	Memory Exp	ansion Mode	
PM05 to PM04 Bits in PM0 Register		the Multip Access All Othe	"102" or CS2 using Ilexed Bus r CS Areas using arate Bus	(Access all C	02" S Areas using arate Bus	"112" ⁽¹⁾ (Access all CS Areas using the Multiplexed Bus		
Data Bus Width		Access all external space with 8-bit data bus	Access one or more external space with 16-bit data bus	Access all external space with 8-bit data bus	Access one or more external space with 16-bit data bus	Access all external space with 8-bit data bus	Access one or more external space with 16-bit data bus	
P00 to P07	I/O port	Data bus Do to D7	Data bus Do to D7	Data bus D0 to D7	Data bus Do to D7	I/O port	I/O port	
P10 to P17	I/O port	I/O port	Data bus D8 to D15	I/O port	Data bus D8 to D15	I/O port	I/O port	
P20 to P27	I/O port	Address bus/ Data bus ⁽²⁾ A0/D0 to A7/D7	Address bus/ Data bus ⁽²⁾ A0/D0 to A7/D7	Address bus Ao to A7	Address bus Ao to A7	Address bus/ Data bus Ao/Do to A7/D7	Address bus/ Data bus A0/D0 to A7/D7	
P30 to P37	I/O port	Address bus A8 to A15	Address bus/ Data bus ⁽²⁾ A8/D8 to A15/D15	Address bus A8 to A15	Address bus A8 to A15	Address bus A8 to A15	Address bus/ Data bus A8/D8 to A15/D15	
P40 to P43	I/O port	Address bus A16 to A19	Address bus A16 to A19	Address bus A16 to A19	Address bus A16 to A19	I/O port	I/O port	
P44 to P46	I/O port	CS (Chip-sele	ct signal) or Addr (Refer	ess bus (A20 to to 7.2 Bus Contr				
P47	I/O port	CS (Chip-seled	ct signal) or Addr (Refer to 7.2 B	ess bus (A23) us Control for de	tails) ⁽⁴⁾			
P50 to P53	I/O port		VRL, WRH and E to 7.2 Bus Contro		RD, BHE, WR and	d BCLK		
P54	I/O port	HLDA (3)	HLDA (3)	HLDA (3)	HLDA (3)	HLDA (3)	HLDA (3)	
P55	I/O port	HOLD	HOLD	HOLD	HOLD	HOLD	HOLD	
P56	I/O port	RAS (3)	RAS (3)	RAS (3)	RAS (3)	RAS (3)	RAS (3)	
P57	I/O port	RDY	RDY	RDY	RDY	RDY	RDY	

Table 7.2 Processor Mode and Port Function

NOTES:

 The PM05 to PM04 bits cannot be set to "112" (access all CS areas using multiplexed bus) in microprocessor mode because the microcomputer starts operation using the separate bus after reset. When the PM05 to PM04 bits are set to "112" in memory expansion mode, the microcomputer accesses 64K-byte memory space per chip select using the address bus .

The PM15 to PM14 bits in the PM1 register determine which pin outputs the ALE signal. The PM02 bit in the PM0 register selects either "WRL,WRH" or "BHE,WR" combination. P56 provides an indeterminate output when the PM15 and PM14 bits to "002" (no ALE). It cannot be used as an I/O port.
 When DRAMC is selected to access DRAM area, CASL, CASH, DW, BCLK become output pins.

5. The PM11 to PM10 bits in the PM1 register determine the \overline{CS} signal and address bus.

7.2 Bus Control

Signals required to access external devices are provided and software wait states are inserted as follows. The signals are available in memory expansion mode and microprocessor mode only.

7.2.1 Address Bus and Data Bus

The address bus is a signal accessing 16M-byte space and uses 24 control pins; A0 to A22 and $\overline{A23}$. $\overline{A23}$ is the inversed output signal of the highest-order address bit.

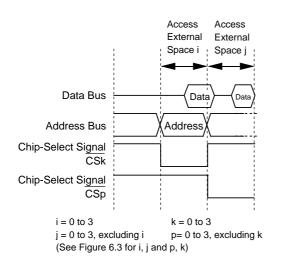
The data bus is a signal which inputs and outputs data. The DS register selects the 8-bit data bus from Do to D7 or the 16-bit data bus from D0 to D15 for each external space. When applying an "H" signal to the BYTE pin, the data bus accessing the external memory space 3 becomes the 8-bit data bus after reset. When applying an "L" signal to the BYTE pin, the data bus accessing the external memory space 3 becomes the external memory space 3 becomes the 16-bit data bus.

When changing single-chip mode to memory expansion mode, the address bus is in an indeterminate state until the microcomputer accesses an external memory space.

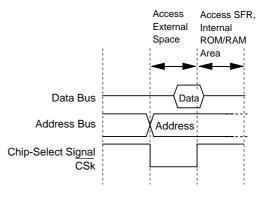
When using the DRAMC to access DRAM area, row addresses and column addresses are multiplexed and output via A8 to A20.

7.2.2 Chip-Select Signal

The chip-select signal shares ports with A0 to A22 and $\overline{A23}$. The PM11 to PM10 bits in the PM1 register determine which \overline{CS} area is accessed and how many chip-select signals are output. A maximum of four chip-select signals can be output.


In microprocessor mode, the chip-select signal is not output after reset. A23, however, can perform as the chip-signal signal.

The chip-select signal becomes "L" while the microcomputer accesses the external \overline{CSi} area (i=0 to 3). It becomes high ("H") when the microcomputer accesses another external memory space or an internal memory space. Figure 7.2 shows an example of the address bus and chip-select signal output.


Example 1:

When the microcomputer accesses the external space j specified by another chip-select signal in the next cycle after having accessed the external space i, both address bus and chip-select signal change.

Example 2:

When the microcomputer accesses the SFR or the internal ROM/RAM area in the next cycle after having accessed an external space, the chip-select signal changes but the address bus does not.

Example 3:

When the microcomputer accesses the space i specified by the same chip-select signal in the next cycle after having accessed the external space i, the address bus changes but the chip-select signal does not.

Example 4:

When the microcomputer does not access any space in the next cycle after having accessed an external space (no pre-fetch of an instruction is generated), neither address bus nor chip-select signal changes.

Figure 7.2 Address Bus and Chip-Select Signal Outputs (Separate bus)

RENESAS

7.2.3 Read and Write Signals

When set to the 16-bit data bus, the PM02 bit in the PM0 register selects a combination of the RD, $\overline{\text{WR}}$ and $\overline{\text{BHE}}$ signals or the RD, $\overline{\text{WRL}}$ and $\overline{\text{WRH}}$ signals to determine the read or write signal. When the DS3 to DS0 bits in the DS register are set to "0" (8-bit data bus), set the PM02 bit to "0" ($\overline{\text{RD}}/\overline{\text{WR}}/\overline{\text{BHE}}$). If any of the DS3 to DS0 bits are set to "1" (16-bit data bus) when accessing an 8-bit space, the combination of RD, $\overline{\text{WR}}$ and $\overline{\text{BHE}}$ is automatically selected regardless of the PM02 bit setting. Tables 7.3 and 7.4 list each signal operations.

The \overline{RD} , \overline{WR} and \overline{BHE} signals are combined for the read or write signal after reset.

When changing the combination to \overline{RD} , \overline{WRL} and \overline{WRH} , set the PM02 bit before writing data to an external memory.

When using the DRAMC to access the DRAM with the 16-bit bus, set the PM02 bit to "1" ($\overline{RD}/\overline{WRL}/WRH$).

Data Bus	RD	WRL	WRH	Status of External Data Bus
	L	Н	Н	Read data
16 Bits	Н	L	Н	Write 1-byte data to even address
	Н	Н	L	Write 1-byte data to odd address
	Н	L	L	Write data to both even and odd addresses
8 Bits	Н	L(1)	Not used	Write 1-byte data
0 DIIS	L	H ⁽¹⁾	Not used	Read 1-byte data

Table 7.3 RD, WRL and WRH Signals

NOTES:

1. The \overline{WR} signal is used instead of the \overline{WRL} signal.

Data Bus	RD	WR	BHE	Ao	Status of External Data Bus
	Н	L	L	Н	Write 1-byte data to odd address
	L	Н	L	Н	Read 1-byte data from odd address
16 Bits	Н	L	Н	L	Write 1-byte data to even address
TO DIIS	L	Н	Н	L	Read 1-byte data from even address
	Н	L	L	L	Write data to both even and odd addresses
	L	Н	L	L	Read data from both even and odd addresses
8 Bits	Н	L	Not used	H/L	Write 1-byte data
O DILS	L	Н	Not used	H/L	Read 1-byte data

Table 7.4 RD, WR and BHE Signals

7.2.4 Bus Timing

Bus cycle for the internal ROM and internal RAM are basically one BCLK cycle. When the PM12 bit in the PM1 register is set to "1" (wait state), the bus cycles are two BCLK cycles.

Bus cycles for the SFR are basically two BCLK cycles. When the PM13 bit in the PM1 register is set to "1" (2 wait states), the bus cycles are three BCLK cycles. To access CAN-associated registers (addresses 01E016 to 024516), set the PM13 bit to "1".

Bus cycle for an external space is basically one BCLK cycle for a read operation and two BCLK cycles for a write operation. The WCR register inserts wait states equivalent to one to three BCLK cycles into an external space. Bus cycles are two BCLK cycles if selecting one wait state. Bus cycles are four BCLK cycles if selecting three wait states.

If applicable to the followings, bus cycles vary from those selected by the WCR register. Figure 7.5 shows each bit status and bus cycle.

- Write cycle with the separate bus and no wait state
- Read cycle and write cycle with the multiplexed bus and no wait state.
- Read cycle and write cycle with the multiplexed bus and one wait state.

Figure 7.3 shows the WCR register. Figures 7.4 and 7.5 show bus timing in an external space.

7 b6 b5 b4 b3 b2 b1 b	Symbox WCR		After Reset 1111 11112	
	Bit Symbol	Bit Name	Function	RW
	WCR0	External Space 0	0 0: No wait state 0 1: 1 wait state	RW
	WCR1	Wait Bit	1 0: 2 wait states 1 1: 3 wait states	RW
	WCR2	External Space 1	^{b3 b2} 0 0: No wait state 0 1: 1 wait state	RW
	WCR3	Wait Bit	1 0: 2 wait states 1 1: 3 wait states	RW
	- WCR4	External Space 2	^{b5 b4} 0 0: No wait state 0 1: 1 wait state	RW
	WCR5	Wait Bit	1 0: 2 wait states 1 1: 3 wait states	RW
	- WCR6	External Space 3	^{b7 b6} 0 0: No wait state 0 1: 1 wait state	RW
	WCR7	Wait Bit	1 0: 2 wait states 1 1: 3 wait states	RW
wait state) or "01 2. When using the	2" (1 wait st separate bu wait state) if	ate). "102" (2 wait states, the read bus runs on the WCR register is se	ed even if the WCR register is set to es) and "112" (3 wait states) can be s e BCLK cycle and the write bus runs t to "002".	selected.

Figure 7.3 WCR Register

Table 7.5 Software Wait State and Bus Cycle

0	External	PM1 Re	egister	WCR Register	Due Quela	
Space	Bus Status	PM13 Bit	PM13 Bit PM12 Bit WCRj to		Bus Cycle	
000		0			2 BCLK cycles	
SFR		1			3 BCLK cycles	
Internal		0 1		1 BCLK cycle		
ROM/RAM				2 BCLK cycles		
				002	Read :1 BCLK cycle	
				002	Write : 2 BCLK cycles	
	Separate Bus			012	2 BCLK cycles	
				102	3 BCLK cycles	
External				112	4 BCLK cycles	
Memory				002	3 BCLK cycle	
				012	3 BCLK cycles	
	Multiplexed Bus			102	3 BCLK cycles	
				112	4 BCLK cycles	

i = 0, 2, 4, 6 j = i + 1

			cycle ⁽¹⁾	-	\	•		
BCLK								
Write Signal								-
Read Signal								-
Data Bus			Output	`}	{Inp	 put }		-
Address Bus ⁽²⁾		Add	ress	Ϊχ	Addres	s	χ	_
Chip-Select Signal ^{(2, 3})				1		<u> </u>	-
					-			
(2) Separate Bus with 1 V	Vait State	Bus	cycle ⁽¹⁾			Bus	cycle ⁽¹⁾	
BCLK								
Write Signal								
-								
Read Signal								
Data Bus		—	Output	<u>}</u>		_	{Inpu	t)
Address Bus ⁽²⁾		Ado	dress	X		Ado	dress	X
Chip-Select Signal ^(2, 3))							
(3) Separate Bus with 2 V	Vait State	s		1		I	1	
(-)		Bus cycle	(1)	-	-	Bus cycle	(1)	I
					È.			
BCLK								
Write Signal								
Read Signal								
Data Bus	(Data Outp	out	}			Inpu	r}
Address Bus ⁽²⁾	<u></u> А	ddress		γ	V	Address		<u>\</u>
	\							/
Chip-Select Signal ^(2, 3)				<u> </u>				
NOTES: 1. This example illust 2. The address bus a instruction queue b	nd chip-se	cycle leng lect signa	th. Read al may be	cycle and extended	write cycl dependin	e may occu g on CPU s	ur consecu state such	tively. as an

Figure 7.4 External Bus Operation with Software Wait State (1)

RENESAS

	th 3 Wait	States Bus cycle	_€ (1)	I	I	Bus cycle	(1)
BCLK							
Write Signal							
Read Signal							
Data Bus		Data	output	X	<u>}</u>		Input
Address Bus ⁽²⁾	Χ	Addres	S	X	χ	Address	>
Chip-Select Signal ^(2, 3)							
) Multiplexed Bus	with 2 Wa	ait States	D (1)			D (1)	
			Bus cycle ⁽¹⁾	_>		Bus cycle ⁽¹⁾	
BCLK							
Write Signal		_					
Read Signal							
ALE							
Address Bus			Address	χ	X	Address	
Address Bus/Da	ata Bus ⁽²⁾	Address	Data out	tput	Addr	ess / Inf	put)
Chip-Select Sig	nal ^(2, 3)						
) Multiplexed Bus	with 3 Wa						
		Bus cycle) (1)			Bus cycle ⁽¹⁾	
BCLK							
DOLIN							
Write Signal							
Write Signal	<	Address		[Х		Address	
Write Signal Read Signal	Address	V	s ta output	[X	X		
Write Signal Read Signal Address Bus Address Bus/	Address	V		X X	X		
Write Signal Read Signal Address Bus Address Bus/ Data Bus ⁽²⁾	Address	V		 X X	X XAddre:		
Write Signal Read Signal Address Bus Address Bus/ Data Bus ⁽²⁾ ALE Chip-Select Signal ^(2, 3)		X Dat	ta output				

Figure 7.5 External Bus Operation with Software Wait State (2)

RENESAS

7.2.5 ALE Signal

The ALE signal latches an address of the multiplexed bus. Latch an address on the falling edge of the ALE signal. The PM15 to PM14 bits in the PM1 register determine the output pin for the ALE signal. The ALE signal is output to an internal space and external space.

(1) 8-Bit Data	Bus	(2) 16-Bit D	ata Bus
ALE	<u></u>	ALE _	
D0/A0 to D7/A7	Address Data ⁽¹⁾	D0/A0 to D15/A15	Address Data ⁽¹⁾
A8 to A15	X Address X		
A16 to A19	Address ⁽²⁾	A16 to A19	Address ⁽²⁾
A20/ <u>CS3</u> A21/ <u>CS2</u> <u>A22/CS1</u> A23/CS0	Address or CS	A20/ <u>CS3</u> A21/ <u>CS2</u> A22/ <u>CS1</u> A23/CS0	Address or CS
	NOTES: 1. Do/Ao to D7/A7 are placed in high-imp 2. When the multiplexed bus is selected		

Figure 7.6 ALE Signal and Address/Data Bus

7.2.6 RDY Signal

The \overline{RDY} signal facilitates access to external devices which need longer access time. When an "L" signal is applied to the \overline{RDY} pin on the falling edge of last BCLK of the bus cycle, wait states are inserted into the bus cycle. When an "H" signal is applied to the \overline{RDY} pin on the falling edge of the BCLK, the bus cycle starts running again.

Table 7.6 lists microcomputer states when the \overline{RDY} signal inserts wait states into the bus cycle. Figure 7.7 shows an example of the \overline{RD} signal extended by the \overline{RDY} signal.

Table 7.6	Microcomputer	States	in a	Wait	State ⁽¹⁾
-----------	---------------	--------	------	------	----------------------

State
On
Maintains the same state as when RDY signal
was received
On

NOTES:

1. The RDY signal cannot be accepted immediately before software wait states are inserted.



Figure 7.7 RD Signal Output Extended by RDY Signal

7.2.7 HOLD Signal

The $\overline{\text{HOLD}}$ signal transfers bus privileges from the CPU to external circuits. When an "L" signal is applied to the $\overline{\text{HOLD}}$ pin , the microcomputer enters a hold state after bus access is completed. While the $\overline{\text{HOLD}}$ pin is held "L", the microcomputer is in a hold state and the $\overline{\text{HLDA}}$ pin outputs an "L" signal. Table 7.7 shows the microcomputer status in a hold state.

Bus is used in the following order of priority: HOLD, DMAC, CPU.

\overline{HOLD} > DMAC > CPU

Figure 7.8 Order of Bus Priority

Table 7.7 Microcomputer Status in a Hold State

Item	Status
Oscillation	On
RD Signal, WR Signal, Address Bus, Data Bus, BHE,	High-impedance
$\overline{\text{CS0}}$ to $\overline{\text{CS3}}$	
Programmable I/O Ports: P0 to P15	Maintains the same state as when HOLD signal
	is received
HLDA	Output "L"
Internal Peripheral Circuits	On (excluding the watchdog timer)
ALE Signal	Output "L"

7.2.8 External Bus State when Accessing Internal Space

Table 7.8 shows external bus states when an internal space is accessed.

Table 7.8	External Bus State	when Accessing Internal Space
-----------	--------------------	-------------------------------

Item		State when accessing SFR, internal ROM and internal RAM		
Address bus		Holds an address of an external space accessed just before		
Data Bus	a Bus When Read High-impedance			
	When Write	High-impedance		
RD, WR, WR	RL, WRH	Output "H"		
BHE		Holds state of external space last accessed		
$\overline{\text{CS0}}$ to $\overline{\text{CS3}}$		Output "H"		
ALE		Output ALE		

7.2.9 BCLK Output

The CPU clock operates the CPU. When combining the PM07 bit in the PM0 register set to "0" (BCLK output) and the CM01 to CM00 bits in the CM0 register set to "002", the CPU clock signal is output from P53 as BCLK.

No BCLK is output in single-chip mode. Refer to 8. Clock Generating Circuit for details.

7.2.10 DRAM Control Signals (RAS, CASL, CASH and DW)

The DRAM control signals control the DRAM. The DRAM control signals are output when the DRAM area, determined by the AR0 to AR2 bits in the DRAMCONT register, is output. Table 7.9 lists each signal operation.

			0		
Data Bus Width	RAS	CASL	CASH	DW	Data Bus State
	L	L	L	Н	Read data from both even and odd addresses
	L	L	Н	Н	Read 1-byte data from even address
16 bits	L	Н	L	Н	Read 1-byte data from odd address
	L	L	L	L	Write data to both even and odd addresses
	L	L	Н	L	Write 1-byte data to even address
	L	Н	L	L	Write 1-byte data to odd address
0 hita	L	L	Not used	Н	Read 1-byte data
8 bits	L	L	Not used	L	Write 1-byte data

Table 7.9 RAS, CASL, CASH and DW Signals

8. Clock Generation Circuit

8.1 Types of Clock Generation Circuits

Four circuits are incorporated to generate the system clock signal :

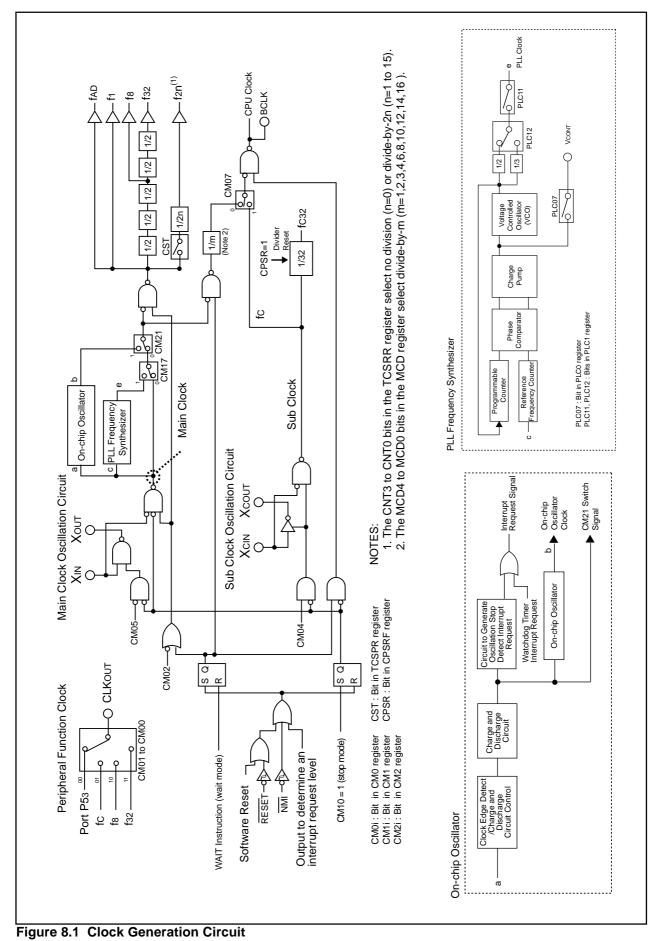

- Main clock oscillation circuit
- Sub clock oscillation circuit
- On-chip oscillator
- PLL frequency synthesizer

Table 8.1 lists specifications of the clock generation circuit. Figure 8.1 shows a block diagram of the clock generation circuit. Figures 8.2 to 8.8 show registers controlling the clock.

Item	Main Clock Oscillation Circuit	Sub Clock Oscillation Circuit	On-chip Oscillator	PLL Frequency Synthesizer
Use	 CPU clock source Peripheral function clock source 	CPU clock source Timer A and B clock source	CPU clock source Peripheral function clock source	CPU clock source Peripheral function clock source
Clock Frequency	Up to 32 MHz	32.768 kHz	Approximatly 1 MHz	20 MHz to 32 MHz (See Table 8.2)
Connectable Oscillator or Additional Circuit	Ceramic resonatorCrystal oscillator	Crystal oscillator		 Low pass filter
Pins for Oscillator or for Additional Circuit	Xin, Xout	XCIN, XCOUT		VCOUT (connect to low pass filter) P86 (connect to Vss)
Oscillation Stop/ Restart Function	Available	Available	Available	Available
Oscillator State After Reset	Oscillating	Stopped	Stopped	Stopped
Other	External clock can be input	External clock can be input. The PLL frequency synthesizer cannot be used when using the sub clock oscillation circuit.	When the main clock stops oscillating, the on-chip oscillator starts oscillating automatically and becomes the clock source for the CPU and peripheral functions	The sub clock cannot be used when using the PLL frequency synthesizer

Table 8.1 Clock Generation Circuit Specifications

M32C/83 Group (M32C/83, M32C/83T)

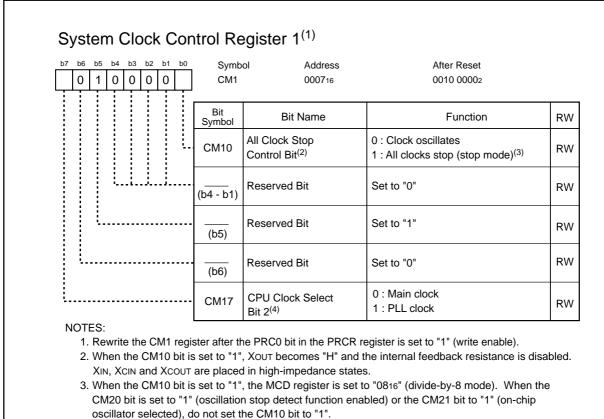
Rev. 1.31 Jan.31, 2006 Page 66 of 488 REJ09B0034-0131 RENESAS

b7 b6 b5	b4 b	озы 1	2 b'	1 b0	Symb CM0	ol Address 000616	After Reset 0000 X0002	
					Bit Symbol	Bit Name	Function	RV
				CM00	Clock Output Function	b1 b0 0 0 : I/O port P53 0 1 : Outputs fc	RV	
			CM01	Select Bit ⁽²⁾	1 0 : Outputs f8 1 1 : Outputs f32	RV		
				CM02	In Wait Mode, Peripheral Function Clock Stop Bit	 0 : Peripheral clock does not stop in wait mode 1 : Peripheral clock stops in wait mode⁽³⁾ 	RV	
					(b3)	Reserved Bit	Set to "1"	RV
					CM04	Port Xc Switch Bit	0 : I/O port function 1 : XCIN-XCOUT oscillation function ⁽⁴⁾	R٧
					CM05	Main Clock (XIN-XOUT) Stop Bit ⁽⁵⁾	0 : Main clock oscillates 1 : Main clock stops ⁽⁶⁾	RV
			CM06	Watchdog Timer Function Select Bit	0 : Watchdog timer interrupt 1 : Reset ⁽⁷⁾	RW		
					CM07	System Clock Select Bit ⁽⁸⁾	0: Clock selected by the CM21 bit divided by MCD register setting1: Sub clock	RV

1. Rewrite the CM0 register after the PRC0 bit in the PRCR register is set to "1" (write enable).

2. When the PM07 bit in the PM0 register is set to "0" (BCLK output), set the CM01 to CM00 bits to "002". When the PM15 to PM14 bits in the PM1 register is set to "012" (ALE output to P53), set the CM01 to CM00 bits to "002". When the PM07 bit is set to "1" (function selected in the CM01 to CM00 bits) in microprocessor or memory expansion mode, and the CM01 to CM00 bits are set to "002", an "L" signal is output from port P53 (port P53 does not function as an I/O port).

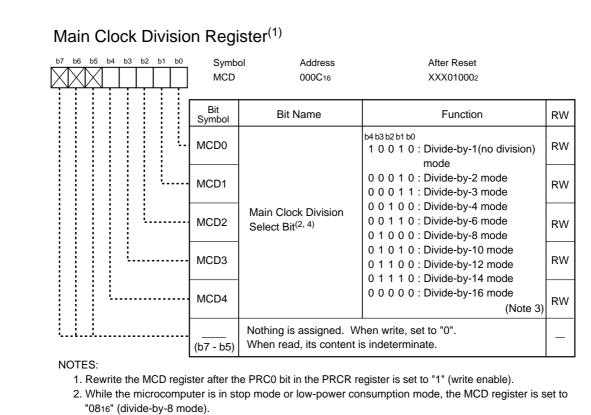
3. fc32 does not stop. When the CM02 bit is set to "1", the PLL clock cannot be used in wait mode.


- 4. When setting the CM04 bit to "1" (XCIN-XCOUT oscillation), set the PD8_7 to PD8_6 bits to "002" (with port P87 and P86 input mode) and the PU25 bit in the PUR2 register to "0" (no pull-up).
- 5. When entering the low-power consumption mode or on-chip oscillator low-power consumption mode, the CM05 bit stops the main clock. The CM05 bit cannot detect whether the main clock stops or not. To stop the main clock, set the CM05 bit to "1" after the CM07 bit is set to "1" with a stable sub clock oscillation or after the CM21 bit in the CM2 register is set to "1" (on-chip oscillator clock). When the CM05 bit is set to "1", XOUT becomes "H". The built-in feedback resistor remains on. XIN is pulled up to XOUT ("H" level) via the feedback resistor.

6. When the CM05 bit is set to "1", the MCD register is set to "0816" (divide-by-8 mode). In on-chip oscillation mode, the MCD register is not divided by eight even if the CM05 bit terminates XIN-XOUT.
7. Once the CM05 bit is set to "1", it expects the set "0" by program.

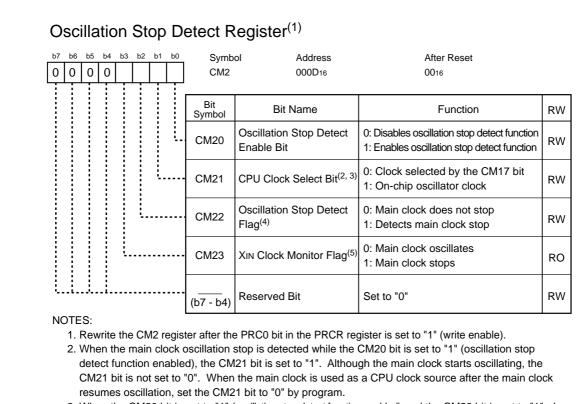
- 7. Once the CM06 bit is set to "1", it cannot be set "0" by program.
- 8. After the CM04 bit is set to "1" with a stable sub clock oscillation, set the CM07 bit to "1" from "0". After the CM05 bit is set to "0" with a stable main clock oscillation, set the CM07 bit to "0" from "1". Do not set the CM07 bit and CM04 or CM05 bits simultaneously.

Figure 8.2 CM0 Register



4. CM17 bit is enabled only when the CM21 bit in the CM2 register is set to "0". Use the procedure shown in Figure 8.13 to set the CM17 bit to "1".

Figure 8.3 CM1 Register

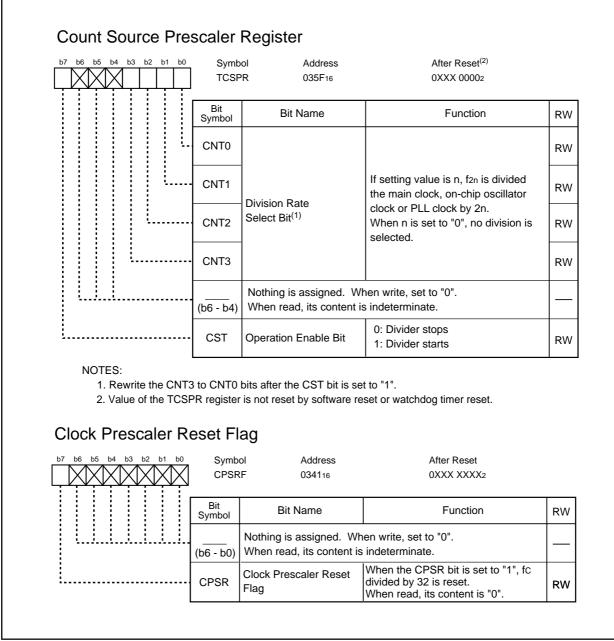


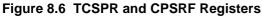
In on-chip oscillator mode, divide-by-8 mode cannot be entered even if the CM05 bit in the CM0 register is set to "1"(XIN-XOUT stopped).

- 3. Do not set to bit combinations not listed above.
- 4. Access CAN-associated register addresses (addresses 01E016 to 024516) after setting the MCD register to "1216" (no division mode).

Figure 8.4 MCD Register

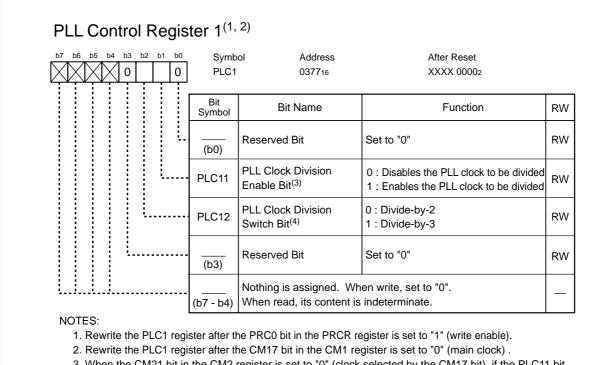
3. When the CM20 bit is set to "1" (oscillation stop detect function enabled) and the CM22 bit is set to "1", do not set the CM21 bit to "0".


4. When a main clock stop is detected, the CM22 bit is set to "1". The CM22 bit can only be set to "0", not "1", by program.


If the CM22 bit is set to "0" by program while the main clock is stopped, the CM22 bit cannot be set to "1" until the next main clock stop is detected.

5. Determine the main clock state by reading the CM23 bit several times after the oscillation stop interrupt is generated.

Figure 8.5 CM2 Register



b7 b6 b5 b4 b3 b2 b1 b0	Symb PLC0		After Reset 0011 X1002	
	Bit Symbol	Bit Name	Function	R
	PLC00			R
	PLC01	Programmable Counter Select Bit ⁽²⁾	See Table 8.2	R
	PLC02			R
	(b3)	Nothing is assigned. Wh When read, its content is		-
	(b4)	Reserved Bit ⁽²⁾	Set to "1"	R
	(b5)	Reserved Bit ⁽²⁾	Set to "0"	R
	(b6)	Reserved Bit	Set to "0"	R
 Set these bits when the set of the set of	he PLC07 on, the PD "0" (I/O po	bit is set to "0". Once the 8_7 bit in the PD8 registe	0: PLL is Off 1: PLL is On register is set to "1" (write enable). se bits are set, they cannot be ch r is set to "0" (input) and the CM0 the PD8 register to "0" (input) bef	anged. 14 bit in tl
 Rewrite the PLC0 reg Set these bits when the set of the set of	ister after t he PLC07 on, the PD "0" (I/O po s. puter entel it to "0" an ster for Symb	he PRC0 bit in the PRC1 bit is set to "0". Once the 8_7 bit in the PD8 registe ort). Set the PD8_6 bit in the rs wait or stop mode, set the d PLV00 bit to "0" (cut off • PLL ⁽¹⁾ ol Address	1: PLL is On register is set to "1" (write enable). se bits are set, they cannot be ch r is set to "0" (input) and the CM0 the PD8 register to "0" (input) bef ne CM17 bit to "0" (main clock as power to PLL) in this order. After Reset	anged. 4 bit in th ore
 Rewrite the PLC0 reg Set these bits when the set of the set of	ister after t he PLC07 on, the PD "0" (I/O po s. puter enter it to "0" an ster for Symb PLV	he PRC0 bit in the PRCR r bit is set to "0". Once the 8_7 bit in the PD8 registe ort). Set the PD8_6 bit in t rs wait or stop mode, set th d PLV00 bit to "0" (cut off • PLL ⁽¹⁾ ol Address 001716	1: PLL is On register is set to "1" (write enable). se bits are set, they cannot be ch r is set to "0" (input) and the CM0 the PD8 register to "0" (input) bef ne CM17 bit to "0" (main clock as power to PLL) in this order. After Reset XXXX XX012	anged. 4 bit in th ore
 Rewrite the PLC0 reg Set these bits when the set of the set of	ister after t he PLC07 on, the PD "0" (I/O po s. puter entel it to "0" an ster for Symb	he PRC0 bit in the PRC1 bit is set to "0". Once the 8_7 bit in the PD8 registe ort). Set the PD8_6 bit in the rs wait or stop mode, set the d PLV00 bit to "0" (cut off • PLL ⁽¹⁾ ol Address	1: PLL is On register is set to "1" (write enable). se bits are set, they cannot be ch r is set to "0" (input) and the CM0 the PD8 register to "0" (input) bef ne CM17 bit to "0" (main clock as power to PLL) in this order. After Reset XXXX XX012 Function	anged. 4 bit in th ore
 Rewrite the PLC0 reg Set these bits when the set of the set of	ister after t he PLC07 on, the PD "0" (I/O po s. puter enter it to "0" an ster for Symb PLV	he PRC0 bit in the PRCR r bit is set to "0". Once the 8_7 bit in the PD8 registe ort). Set the PD8_6 bit in t rs wait or stop mode, set th d PLV00 bit to "0" (cut off • PLL ⁽¹⁾ ol Address 001716	1: PLL is On register is set to "1" (write enable). se bits are set, they cannot be ch r is set to "0" (input) and the CM0 the PD8 register to "0" (input) bef ne CM17 bit to "0" (main clock as power to PLL) in this order. After Reset XXXX XX012	anged. 4 bit in th ore CPU clc
 Rewrite the PLC0 reg Set these bits when the set of the set of	ister after t he PLC07 on, the PD "0" (I/O po s. puter enter it to "0" an ster for Symb PLV	he PRC0 bit in the PRCR r bit is set to "0". Once the 8_7 bit in the PD8 registe ort). Set the PD8_6 bit in f rs wait or stop mode, set th d PLV00 bit to "0" (cut off PLL ⁽¹⁾ ol Address 0017 ₁₆ Bit Name	1: PLL is On register is set to "1" (write enable). se bits are set, they cannot be ch r is set to "0" (input) and the CM0 the PD8 register to "0" (input) bef ne CM17 bit to "0" (main clock as power to PLL) in this order. After Reset XXXX XX012 Function 0 : Cut off power to PLL	anged. 4 bit in th ore CPU clc
 Rewrite the PLC0 reg Set these bits when the set of the set of	ister after t he PLC07 on, the PD "0" (I/O po s. puter enter it to "0" an ster for Symb PLV Bit Symbol PLV00	he PRC0 bit in the PRCR r bit is set to "0". Once the 8_7 bit in the PD8 registe ort). Set the PD8_6 bit in t s wait or stop mode, set tl d PLV00 bit to "0" (cut off PLL(1) ol Address 001716 Bit Name PLL VDC Enable Bit ⁽²⁾	1: PLL is On register is set to "1" (write enable). se bits are set, they cannot be ch r is set to "0" (input) and the CM0 the PD8 register to "0" (input) bef ne CM17 bit to "0" (main clock as power to PLL) in this order. After Reset XXXX XX012 Function 0 : Cut off power to PLL 1 : Power to PLL Set to "0" nen write, set to "0".	anged. 4 bit in thore CPU clc

Figure 8.7 PLC0 and PLV Registers

RENESAS

- 3. When the CM21 bit in the CM2 register is set to "0" (clock selected by the CM17 bit), if the PLC11 bit is set to "1" before the CM17 bit is set to "1" (PLL clock as CPU clock source), the PLL clock dividedby-2 or divided-by-3 becomes the clock source of the CPU clock and peripheral function clock.
- 4. Do not rewrite the PLC12 bit if the PLL clock is the CPU clock source.

Figure 8.8 PLC1 Register

8.1.1 Main Clock

Main clock oscillation circuit generates the main clock. The main clock becomes a clock source for the CPU clock and peripheral function clock.

The main clock oscillation circuit is configured by connecting an oscillator or resonator between the XIN and XOUT pins. The circuit has a built-in feedback resistor. The feedback resistor is separated from the oscillation circuit in stop mode to reduce power consumption. The externally generated clock can be input to the XIN pin in the main clock oscillation circuit. Figure 8.9 shows an example of a main clock circuit connection. Circuit constants vary with each oscillator. Use the circuit constant recommended by each oscillator manufacturer.

The main clock divided-by-eight becomes the CPU clock after reset.

To reduce power consumption, set the CM05 bit in the CM0 register to "1" (main clock stopped) after switching the CPU clock source to the sub clock or on-chip oscillator clock. In this case, XOUT becomes "H". XIN is pulled up by XOUT via the feedback resistor which remains on. When an externally generated clock is input to the XIN pin, the main clock does not stop even if the CM05 bit is set to "1". Terminate main clock operation externally if necessary.

All clocks, including the main clock, stop in stop mode. Refer to 8.5 Power Consumption Control for details.

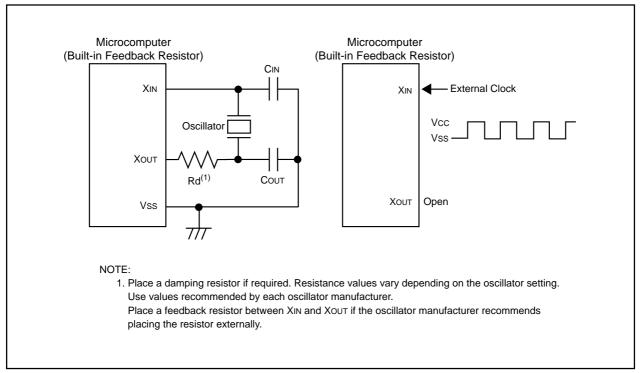


Figure 8.9 Main Clock Circuit Connection

8.1.2 Sub Clock

Sub clock oscillation circuit generates the sub clock. The sub clock becomes a clock source for the CPU clock and a count source for the timers A and B. The same frequency, fc, as the sub clock can be output from the CLKOUT pin.

The sub clock oscillation circuit is configured by connecting a crystal oscillator between the XCIN and XCOUT pins. The circuit has a built-in feedback resistor. The feedback resistor is separated from the oscillation circuit in stop mode to reduce power consumption. The externally generated clock can be applied to the XCIN pin. Figure 8.10 shows an example of a sub clock circuit connection. Circuit constants vary with each oscillator. Use the circuit constant recommended by each oscillation manufacturer.

The sub clock stops after reset. The feedback resistor is separated from the oscillation circuit. When the PD8_6 and PD8_7 bits in the PD8 register are set to "0" (input mode) and the PU25 bit in the PUR2 register is set to "0" (no pull-up), set the CM04 bit in the CM0 register to "1" (XCIN-XCOUT oscillation function). The sub clock oscillation circuit starts oscillating. To apply the external clock to the XCIN pin, set the CM04 bit to "1" when the PD8_6 bit is set to "0" and the PU25 bit to "0". The clock applied to the XCIN pin becomes the clock source for the sub clock.

When the CM07 bit in the CM0 register is set to "1" (sub clock) after the sub clock oscillation has stabilized, the sub clock becomes the CPU clock.

All clocks, including the sub clock, stop in stop mode. Refer to **8.5 Power Consumption Control** for details.

XCIN shares pins with VCONT and XCOUT shares pins with P86. The sub clock and PLL frequency synthesizer cannot be used simultaneously.

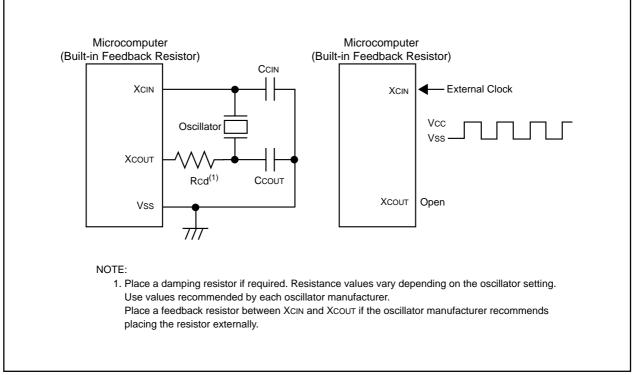


Figure 8.10 Sub Clock Connection Circuit

8.1.3 On-chip Oscillator Clock

On-chip oscillator generates the on-chip oscillator clock. The 1MHz on-chip oscillator clock becomes a clock source for the CPU clock and peripheral function clock.

The on-chip oscillator clock stops after reset. When the CM21 bit in the CM2 register is set to "1" (on-chip oscillator clock), the on-chip oscillator starts oscillating. Instead of the main clock, the on-chip oscillator clock becomes the clock source for the CPU clock and peripheral function clock.

8.1.3.1 Oscillation Stop Detect Function

When the main clock is terminated by external factors, the on-chip oscillator automatically starts oscillating to generate another clock.

When the CM 20 bit is set to "1" (oscillation stop detect function enabled), the oscillation stop detect interrupt request is generated as soon as the main clock stops. Simultaneously, the on-chip oscillator starts oscillating. The on-chip oscillator clock takes place of the main clock as the clock source for the CPU clock and peripheral function clock. Associated bits are set as follows:

- CM21 bit = 1 (on-chip oscillator clock becomes the clock source of the CPU clock.)
- CM22 bit = 1 (main clock stop is detected.)
- CM23 bit = 1 (main clock stops) (See Figure 8.15)

8.1.3.2 How to Use Oscillation Stop Detect Function

- The oscillation stop detect interrupt shares vectors with the watchdog timer interrupt. When both oscillation stop detect interrupt and watchdog timer interrupt are used, read the CM22 bit with an interrupt service routine to determine which interrupt request has been generated.
- When the main clock resumes running after an oscillation stop is detected, set the main clock as the clock source for the CPU clock and peripheral function clock. Figure 8.11 shows the procedure to switch the on-chip oscillator clock to the main clock.
- In low-speed mode, when the main clock is stopped by setting the CM20 bit to "1", the oscillation stop detect interrupt request is generated. Simultaneously, the on-chip oscillator starts oscillating. The sub clock remains the CPU clock. The on-chip oscillator clock becomes the clock source for the peripheral function clock.
- To enter wait mode while the oscillation stop detect interrupt function is in use, set the CM02 bit to "0" (peripheral function clock does not stop in wait mode).
- When the oscillation stop detect interrupt request is generated in wait mode, wait mode cannot be exited by the oscillation stop detect interrupt. After the microcomputer exits wait mode, the oscillation stop detect interrupt is acknowledged first, followed by the interrupt used to exit wait mode.
- The oscillation stop detect function is provided to handle main clock stop caused by external factors. Set the CM20 bit to "0" (oscillation stop detect function disabled) when the main clock is terminated by program, i.e., entering stop mode or setting the CM05 bit is set to "1" (main clock oscillation stop).
- When the main clock frequency is 2MHz or less, the oscillation stop detect function is not available. Set the CM20 bit to "0".

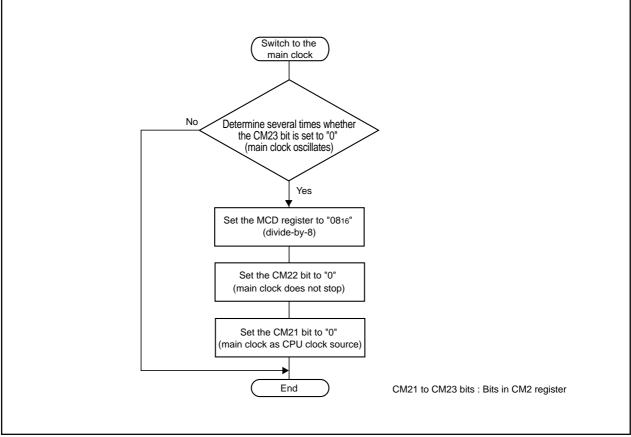


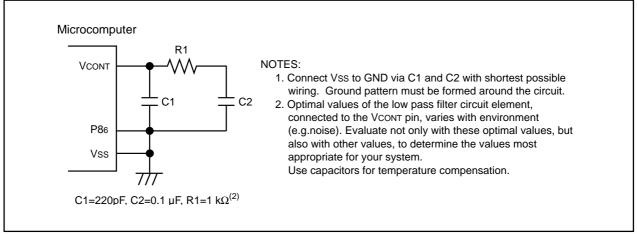
Figure 8.11 Switching Procedure from On-chip Oscillator Clock to Main Clock

8.1.4 PLL Clock

The PLL frequency synthesizer generates the PLL clock based on the main clock. The PLL clock can be used as a clock source for the CPU clock or peripheral function clock.

Connect a resistor and capacitor to the VCONT pin when using the PLL frequency synthesizer.

Set the PD8_6 and PD8_7 bits in the PD8 register to "0" (input mode) and the CM04 bit to "0" (the XCIN and XCOUT pins as ports). After that, connect the VCONT pin, the P86 pin, and the VSS pin to the circuit as is shown in Figure 8.12. Set the PLV00 bit in the PLV register to "1" (power to PLL).


The PLL frequency synthesizer stops after reset. When the PLC07 bit is set to "1" (PLL on), the PLL frequency synthesizer starts operating. Wait 20 ms (5 V operation) to 50 ms (3.3 V operation) for the PLL clock to stabilize.

The PLL clock can either be the clock output from the voltage controlled oscillator (VCO) divided-by-2 or divided-by-3.

When the PLL clock is used as a clock source for the CPU clock or peripheral function clock, set each bit as is shown in Table 8.2. Figure 8.13 shows the procedure for using the PLL clock as the CPU clock source.

To enter wait or stop mode, set the CM17 bit to "0" (main clock as CPU clock source). Set the PLC07 bit in the PLC0 register to "0" (PLL off) and the PLV00 bit to "0" (no power to PLL) before the microcomputer enters wait or stop mode.

The VCONT and P86 pins share pins with XCIN and XCOUT pins. When the PLL frequency synthesizer is being used, the sub clock cannot be used.

f(XIN)		PLC0 Registe	PLC1 Register	PLL Clock	
	PLC02	PLC01	PLC00	PLC12	
10MHz	0	1	1	0	30 MHz
				1	20 MHz
8MHz	1	0	0	0	32MHz
	•	Ŭ	Ū	1	21.3MHz

Table 8.2 Bit Settings to Use PLL	Clock as CPU Clock Source
-----------------------------------	---------------------------

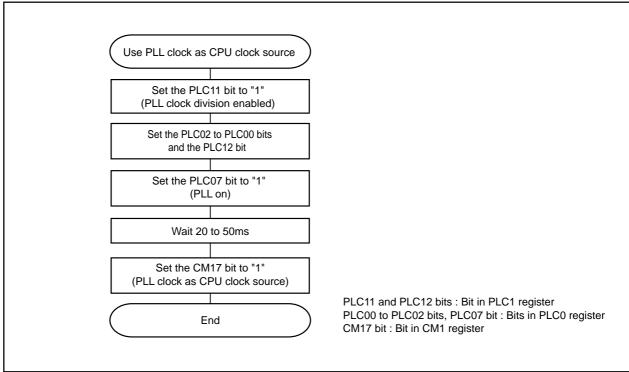


Figure 8.13 Procedure to Use PLL Clock as CPU Clock Source

8.2 CPU Clock and BCLK

The CPU operation clock is referred to as the CPU clock. The CPU clock is also the count source for the watchdog timer. After reset, the CPU clock is the main clock divided-by-8. In memory expansion or microprocessor mode, the clock having the same frequency as the CPU clock can be output from the BCLK pin as BCLK. Refer to **8.4 Clock Output Function** for details.

The main clock, sub clock, on-chip oscillator clock or PLL clock can be selected as a clock source for the CPU clock. Table 8.3 shows CPU clock source and bit settings.

When the main clock, on-chip oscillator clock or PLL clock is selected as a clock source of the CPU clock, the selected clock divided-by-1 (no division), -2, -3, -4, -6, -8, -10, -12, -14 or -16 becomes the CPU clock. The MCD register selects the clock division.

When the microcomputer enters stop mode or low-power consumption mode (except when the on-chip oscillator clock is the CPU clock), the MCD register is set to "0816" (divide-by-8 mode). Therefore, when the main clock starts running, the CPU clock enters middle-speed mode (divide-by-8).

CPU Clock Source	CM0 Register	CM2 Register	CM1 Register
	CM07	CM21	CM17
Main Clock	0	0	0
Sub Clock	1	0	0
On-chip Oscillator Clock	0	1	0
PLL Clock	0	0	1

Table 8.3 CPU Clock Source and Bit Settings

8.3 Peripheral Function Clock

The peripheral function clock becomes the operation clock or count source for peripheral functions excluding the watchdog timer.

8.3.1 f1, f8, f32 and f2n

f1, f8, f32 and f2n are the main $clock^{(1)}$ or on-chip oscillator clock divided-by-1, -8, -32, or -2n (n=1 to 15. No division when n=0). The CM21 bit determines which clock is selected.

When the CM02 bit is set to "1" (peripheral function stops in wait mode) when entering wait mode, f1, f8, f32 and f2n stop running. These clocks also stop in low-power consumption mode.

f1, f8 and f2n are used as the operation clock for the serial I/O and the count source for timers A and B. The CNT3 to CNT0 bits in the TCSPR register selects a f2n division. f1 is also used as the operation clock for the intelligent I/O.

The CLKOUT pin outputs f8 and f32 . Refer to 8.4 Clock Output Function for details.

8.3.2 fad

fAD is the operation clock for the A/D convertor and has the same frequency as the main clock⁽¹⁾ and onchip oscillator clock. The CM21 bit determines which clock is selected.

When the CM02 bit is set to "1" (peripheral function stop in wait mode) when entering wait mode, fAD stops. fAD also stops in low-power consumption mode.

NOTES:

1. When the CM17 bit is set to "1" (PLL clock as CPU clock source), the PLL clock is the main clock.

8.3.3 fC32

fC32 is the sub clock divided by 32. fC32 is used for as a count source for the timers A and B. fC32 is available when the sub clock is running.

8.4 Clock Output Function

The CLKOUT pin outputs fC, f8 or f32.

In memory expansion and microprocessor modes, a clock having the same frequency as the CPU clock can be output from the BCLK pin as BCLK.

Table 8.4 lists CLKOUT pin function in single-chip mode. Table 8.5 lists CLKOUT pin functions in memory expansion and microprocessor modes.

able 8.4 CEROUT PIN IN Single-Chip Mode							
PM0 Register ⁽¹⁾	CM0 Re	egister ⁽²⁾					
PM07	CM01 CM00		CLKOUT Pin Function				
	0	0	P53 I/O port				
1	0	1	Outputs fc				
1	1	0	Outputs f8				
1	1	1	Outputs f32				

Table 8.4 CLKOUT Pin in Single-Chip Mode

- : Can be set to either "0" or "1"

NOTES:

1. Rewrite the PM0 register after the PRC1 bit in the PRCR register is set to "1" (write enable)

2. Rewrite the CM0 register after the PRC0 bit in the PRCR register is set to "1" (write enable)

Table 8.5 BLCK/CLKout Pin in Memor	Y Expansion Mode and Microprocessor Mode ⁽⁴⁾

PM1 Regi	PM1 Register ⁽¹⁾ PM0 Register ⁽¹⁾ CM0 Register ⁽²⁾		CLKOUT Pin Function		
PM15	PM14	PM07	CM01	CM00	CERCOT 1 III 1 directori
002, 102, 112,		0	0 (3)	0 (3)	Outputs BCLK
		1	0	0	Outputs "L" (not P53)
		1	0	1	Outputs fc
		1	1	0	Outputs f8
		1	1	1	Outputs f32
0	1		0 (3)	0 (3)	Outputs ALE

- : Can be set to either "0" or "1"

NOTES:

1. Rewrite the PM0 and PM1 register after the PRC1 bit in the PRCR register is set to "1" (write enable)

2. Rewrite the CM0 register after the PRC0 bit in the PRCR register is set to "1" (write enable)

- 3. When the PM07 bit is set to "0" (selected in the CM01 to CM00 bits) or the PM15 to PM14 bits are set to "012" (P53/BCLK), set the CM01 to CM00 bits to "002" (I/O port P53)
- 4. M32C/83T cannot be used in memory expansion mode and microprocessor mode.

8.5 Power Consumption Control

Normal operation mode, wait mode and stop mode are provided as the power consumption control. All mode states, except wait mode and stop mode, are called normal operation mode in this document. Figure 8.14 shows a block diagram of status transition in wait mode and stop mode. Figure 8.15 shows a block diagram of status transition in all modes.

8.5.1 Normal Operation Mode

The normal operation mode is further separated into six modes.

In normal operation mode, the CPU clock and peripheral function clock are supplied to operate the CPU and peripheral function. The power consumption control is enabled by controlling the CPU clock frequency. The higher the CPU clock frequency, the more processing power increases. The lower the CPU clock frequency, the more processing power increases. The lower the CPU clock frequency, the more power consumption decreases. When unnecessary oscillation circuits stop, power consumption is further reduced.

8.5.1.1 High-Speed Mode

The main clock⁽¹⁾ becomes the CPU clock and the clock source for the peripheral function clock. When the sub clock runs, fC32 can be used as a count source for the timers A and B.

8.5.1.2 Medium-Speed Mode

The main clock divided-by-2, -3, -4, -6, -8, -10, -12, -14, or -16 becomes the CPU clock. The main clock is the clock source for the peripheral function clock. When the sub clock runs, fC32 can be used as the count source for the timers A and B.

8.5.1.3 Low-Speed Mode

The sub clock becomes the CPU clock. The main clock is the count source for the peripheral function clock. fc32 can be used as the count source for the timers A and B.

8.5.1.4 Low-Power Consumption Mode

The microcomputer enters low-power consumption mode when the main clock stops in low-speed mode. The sub clock becomes the CPU clock. fc32 can be used as the count source for timers A and B. Only fc32 can be used as the peripheral function clock. In low-power consumption mode, the MCD register is set to "0816" (divide-by-8 mode). Therefore, when the main clock resumes running, the microcomputer is in middle-speed mode (divide-by-8 mode).

8.5.1.5 On-chip Oscillator Mode

The on-chip oscillator clock divided-by-1(no division), -2, -3, -4, -6, -8, -10, -12, -14, or -16 becomes the CPU clock. The on-chip oscillator clock is the clock source for the peripheral function clock. When the sub clock runs, fC32 can be used as the count source for the timers A and B.

8.5.1.6 On-chip Oscillator Low-Power Consumption Mode

The microcomputer enters on-chip oscillator low-power consumption mode when the main clock stops in on-chip oscillator mode. The on-chip oscillator clock divided-by-1(no division), -2, -3, -4, -6, -8, -10, - 12, -14, or -16 becomes the CPU clock. The on-chip oscillator clock is the clock source for the peripheral function clock. When the sub clock runs, fC32 can be used as the count source for the timers A and B.

Switch the CPU clock after the clock to be switched to stabilizes. Sub clock oscillation will take longer⁽²⁾ to stabilize. Wait, by program, until the clock stabilizes directly after running the microcomputer on or exiting stop mode.

To switch the on-chip oscillator to the main clock, enter medium-speed mode (divide-by-8) after the main clock is divided by eight in on-chip oscillator mode (MCD register=0816).

Do not enter on-chip oscillator mode or on-chip oscillator low-power consumption mode from low-speed mode or low-power consumption mode and vice versa.

NOTES:

- 1. When the CM17 bit is set to "1" (PLL clock as CPU clock source), the PLL clock is the main clock .
- 2. Contact your oscillator manufacturer for oscillation stabilization time.

8.5.2 Wait Mode

In wait mode, the CPU clock stops running. The CPU and watchdog timer, operated by the CPU clock, also stop. Because the main clock, sub clock and on-chip oscillator clock continue running, peripheral functions using these clocks also continue operating.

8.5.2.1 Peripheral Function Clock Stop Function

If the CM02 bit is set to "1" (peripheral function clock stops in wait mode), f1, f8, f32, f2n and fAD stop in wait mode. Power consumption can be reduced because the peripheral function that has f1, f8, f32, f2n, or fAD as a count source stops. fC32 does not stop running.

8.5.2.2 Entering Wait Mode

Follow the procedure below to enter wait mode.

Initial Setting

Set each interrupt priority level after setting the exit priority level required to exit wait mode, controlled by the RLVL2 to RLVL0 bits in the RLVL register, to "7".

- Before Entering Wait Mode
- (1) Set the I flag to "0"
- (2) Set the interrupt priority level of the interrupt being used to exit wait mode
- (3) Set the interrupt priority levels of the interrupts, not being used to exit wait mode, to "0"
- (4) Set the IPL in the FLG register. Then set the exit priority level to the same level as IPL (Interrupt priority level of the interrupt used to exit wait mode > exit priority level ≥ interrupt priority level of the interrupts not used to exit wait mode)
- (5) Set the PRC0 bit in the PRCR register to "1" (write enable)
- (6) If the CPU clock source is the PLL clock, set the CM17 bit in the CM1 register to "0" (main clock), the PLC07 bit in the PLC0 register to "0" (PLL off), and the PLV00 bit in the PLV register to "0"(cut off power to PLL)
- (7) Set the I flag to "1"
- (8) Execute the WAIT instruction
- After Exiting Wait Mode

Set the interrupt priority level required to exit wait mode to "7" immediately after exiting wait mode.

8.5.2.3 Pin Status in Wait Mode

Table 8.6 lists pin states in wait mode.

Table 8.6 Pin Status in Wait Mode

Pin		Memory Expansion Mode	Single-Chip Mode
		Microprocessor Mode	
Address Bus, Data Bus, $\overline{CS0}$ to $\overline{CS3}$,		Maintains state immediately	
BHE		before entering wait mode	
RD, WR, WRL, WRH, DW, CASL, CASH		"H" ⁽¹⁾	
RAS		"H" ⁽¹⁾	
HLDA, BCLK		"H"	
ALE		"L"	
Port		Maintains state immediately before entering wait mode	
CLKOUT	When fc is selected	Outputs clock	
	When f8, f32 are selected	The clock is output when the CM02 bit in the CM0 register is set to	
		"0" (peripheral function clock not stop in wait mode).	
		Maintains state immediately before entering wait mode when the	
		CM02 bit is set to "1" (peripheral function clock stopped in wait	
		mode).	

NOTES:

1. When performing a self-refresh operation using the DRAMC, CAS and RAS become low ("L").

2. M32C/83T cannot be used in memory expansion mode and microprocessor mode.

8.5.2.4 Exiting Wait Mode

Wait mode is exited by the hardware reset, $\overline{\text{NMI}}$ interrupt or peripheral function interrupts. When the hardware reset or $\overline{\text{NMI}}$ interrupt, but not the peripheral function interrupts, is used to exit wait mode, set the ILVL2 to ILVL0 bits for the peripheral function interrupts to "0002" (interrupt disabled) before executing the WAIT instruction.

The CM02 bit affects the peripheral function interrupts. When the CM02 bit is set to "0" (peripheral function clock does not stop in wait mode), all peripheral function interrupts can be used to exit wait mode. When the CM02 bit is set to "1" (peripheral function clock stops in wait mode), peripheral functions using the peripheral function clock stop. Therefore, the peripheral function interrupts cannot be used to exit wait mode. However, peripheral function interrupts caused by an external signal can be used to exit wait mode.

The CPU clock used when exiting wait mode by the peripheral function interrupts or $\overline{\text{NMI}}$ interrupt is the same CPU clock used when WAIT instructions are executed.

Table 8.7 shows interrupts to be used to exit wait mode and usage conditions.

Table 8.7 Interrupts to Exit Wait Mode	•
--	---

Interrupt	When CM02=0	When CM02=1
NMI Interrupt	Available	Available
Serial I/O Interrupt	Available when the internal and external	Available only when the external clock is used
	clocks are used	
Key Input Interrupt	Available	Available
A/D Conversion Interrupt	Available in single or single-sweep mode	Do not use
Timer A Interrupt	Available in all modes	Available in event counter mode or when
Timer B Interrupt		the count source is fC32
INT Interrupt	Available	Available
CAN Interrupt	Available	Do not use
Intelligent I/O Interrupt	Available	Do not use

8.5.3 Stop Mode

In stop mode, all oscillators and resonators stop. The CPU clock and peripheral function clock, as well as the CPU and peripheral functions operated by these clocks, also stop. The least power required to operate the microcomputer is in stop mode. The internal RAM holds its data if the voltage applied to the Vcc pin is 2.5V or more.

Interrupts used to exit stop mode are NMI interrupt, key input interrupt, and INT interrupt.

8.5.3.1 Entering Stop Mode

Stop mode is entered when setting the CM10 bit in the CM1 register to "1" (all clocks stops). The MCD4 to MCD0 bits in the MCD register become set to "010002" (divide-by-8 mode). Enter stop mode after setting the followings.

• Initial Setting

Set each interrupt priority level after setting the minimum interrupt priority level required to exit stop or wait mode, controlled by the RLVL2 to RLVL0 bits in the RLVL register, to "7".

- Before Entering Stop Mode
- (1) Set the I flag to "0"
- (2) Set the interrupt priority level of the interrupt being used to exit stop mode
- (3) Set the interrupt priority levels of the interrupts, not being used to exit stop mode, to "0"
- (4) Set IPL in the FLG register. Then set the exit priority level to the same level as IPL (Interrupt priority level of the interrupt used to exit stop mode > interrupt priority level to exit stop mode ≥ interrupt priority level of the interrupts not used to exit stop mode)
- (5) Set the PRC0 bit in the PRCR register to "1" (write enabled)
- (6) Select the main clock as the CPU clock
- When the CPU clock source is the sub clock, Set the CM05 bit in the CM0 register to "0" (main clock oscillates) and CM07 bit in the CM0 register to "0" (clock selected by the CM21 bit divided by MCD register setting)
- When the CPU clock source is the PLL clock, Set the CM17 bit in the CM1 register to "0" (main clock) and the PLC07 bit in the PLC0 register to "0" (PLL off)
- When the CPU clock source is the on-chip oscillator clock, Set the MCD4 to MCD0 bits to "010002" (divide-by-8 mode), the CM05 bit to "0" (main clock oscillates), and the CM21 it in the CM2 register to "0" (clock selected by the CM17 bit)

- (7) The oscillation stop detect function is used, set the CM20 bit in the CM2 register to "0" (oscilla tion stop detect function disabled)
- (8) Set the I flag to "1"
- (9) Set the CM10 bit to "1" (all clocks stops)
- After Exiting Stop Mode

Set the interrupt priority level required to exit stop mode to "7" immediately after exiting stop mode.

8.5.3.2 Exiting Stop Mode

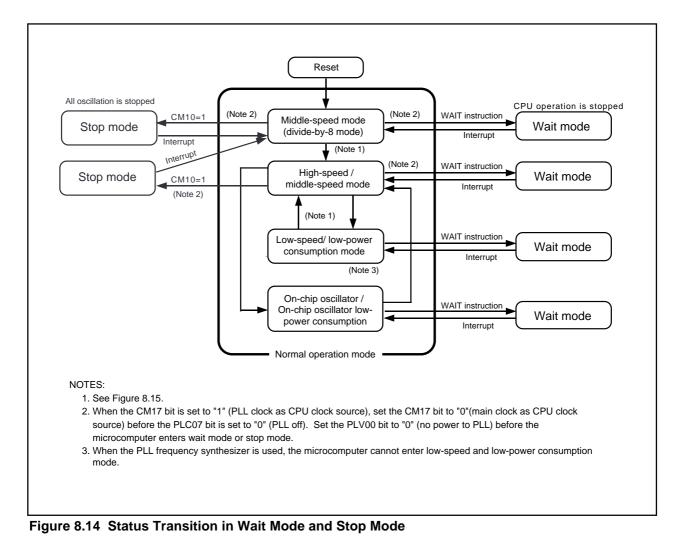
Stop mode is exited by the hardware reset, $\overline{\text{NMI}}$ interrupt, or peripheral function interrupts (key input interrupt and $\overline{\text{INT}}$ interrupt).

When the hardware reset or $\overline{\text{NMI}}$ interrupt, but not the peripheral function interrupts, is used to exit wait mode, set all ILVL2 to ILVL0 bits in the interrupt control registers for the peripheral function interrupt to "0002" (interrupt disabled) before setting the CM10 bit to "1" (all clocks stops).

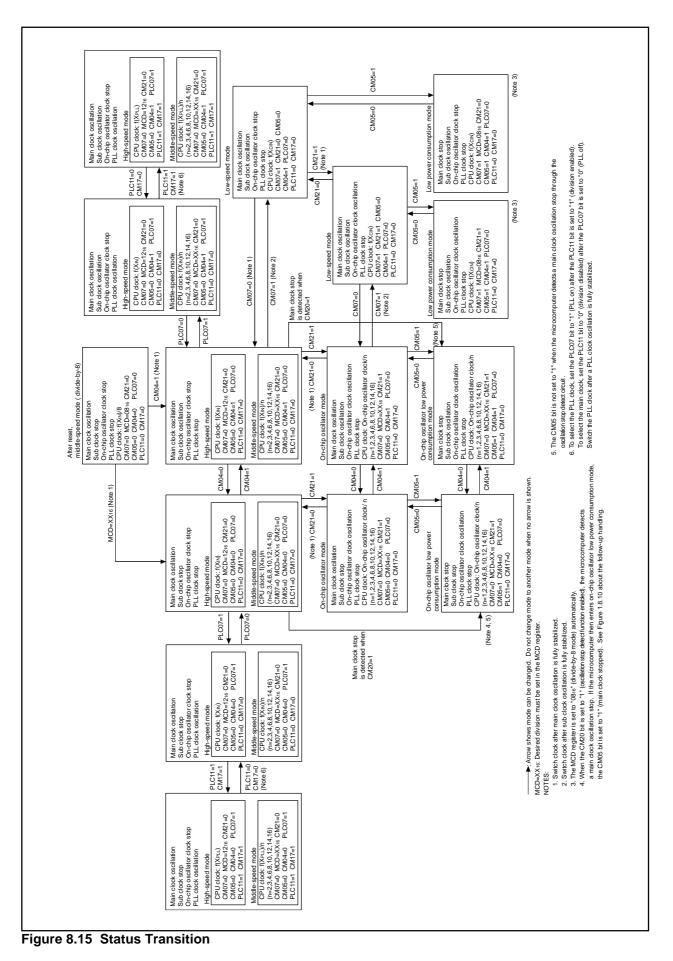
8.5.3.3 Pin Status in Stop Mode

Table 8.8 lists pin status in stop mode.

Table 8.8 Pin Status in Stop Mode


Pin		Memory Expansion Mode Single-Chip Mode Microprocessor Mode ⁽²⁾ Single-Chip Mode		
Address Bus, Data Bus, CS0 to CS3, BHE		Maintains state immediately before		
		entering stop mode		
RD, WR, WRL, WRH, DW, CASL, CASH		"H" (1)		
RAS		"H" ⁽¹⁾		
HLDA, BCLK		"Н"		
ALE		"Н"		
Port Maintains state immediately before enter		entering stop mode		
CLKOUT When fc selected		"Н"		
	When f8, f32 selected	Maintains state immediately before entering stop mode		
XIN		High-impedance		
Хоит '		"Н"		
XCIN, XCOUT		High-impedance		

NOTES:


1. When performing a self-refresh operation using DRAMC, \overline{CAS} and \overline{RAS} become low ("L").

2. M32C/83T cannot be used in memory expansion mode and microprocessor mode.

M32C/83 Group (M32C/83, M32C/83T)

Rev. 1.31 Jan.31, 2006 Page 87 of 488 REJ09B0034-0131

9. Protection

The protection function protects important registers from being easily overwritten when a program runs out of control.

Figure 9.1 shows the PRCR register. Each bit in the PRCR register protects the following registers:

- The PRC0 bit protects the CM0, CM1, CM2, MCD, PLC0 and PLC1 registers;
- The PRC1 bit protects the PM0, PM1, PM2, INVC0 and INVC1 registers;
- The PRC2 bit protects the PD9 and PS3 registers;
- The PRC3 bit protects the PLV and VDC0 registers.

The PRC2 bit is set to "0" (write disable) when data is written to a desired address after setting the PRC2 bit to "1" (write enable). Set the PD9 and PS3 registers immediately after setting the PRC2 bit in the PRCR register to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the following instruction. The PRC0, PRC1 and PRC3 bits are not set to "0" even if data is written to desired addresses. Set the PRC0, PRC1 and PRC3 bits to "0" by program.

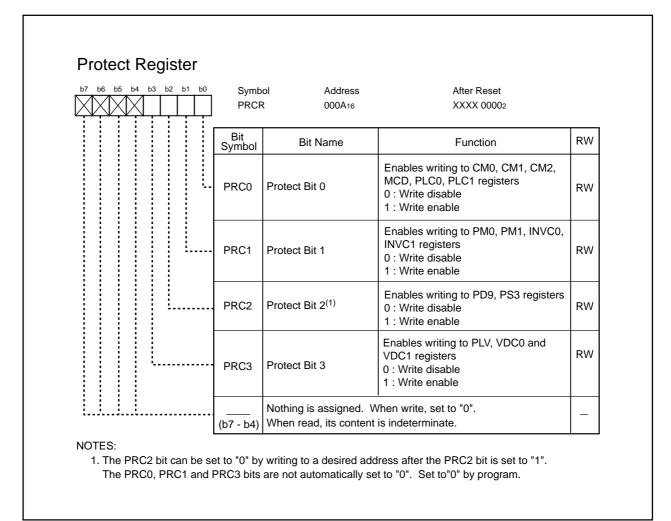


Figure 9.1 PRCR Register

10. Interrupts

10.1 Types of Interrupts

Figure 10.1 shows types of interrupts.

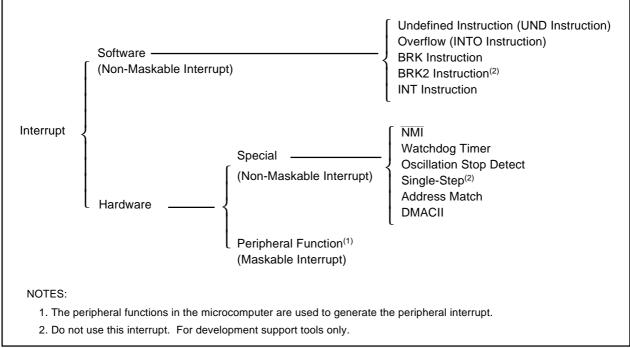


Figure 10.1 Interrupts

Maskable Interrupt

The I flag enables or disables an interrupt.

The interrupt priority order based on interrupt priority level can be changed.

Non-maskable Interrupt

The I flag does not enable nor disable an interrupt .

The interrupt priority order based on interrupt priority level cannot be changed.

10.2 Software Interrupts

Software interrupt occurs when an instruction is executed. The software interrupts are non-maskable interrupts.

10.2.1 Undefined Instruction Interrupt

The undefined instruction interrupt occurs when the UND instruction is executed.

10.2.2 Overflow Interrupt

The overflow interrupt occurs when the O flag in the FLG register is set to "1" (overflow of arithmetic operation) and the INTO instruction is executed.

Instructions to set the O flag are :

ABS, ADC, ADCF, ADD, ADDX, CMP, CMPX, DIV, DIVU, DIVX, NEG, RMPA, SBB, SCMPU, SHA, SUB, SUBX

10.2.3 BRK Interrupt

The BRK interrupt occurs when the BRK instruction is executed.

10.2.4 BRK2 Interrupt

The BRK2 interrupt occurs when the BRK2 instruction is executed. Do not use this interrupt. For development support tools only.

10.2.5 INT Instruction Interrupt

The INT instruction interrupt occurs when the INT instruction is executed. The INT instruction can select software interrupt numbers 0 to 63. Software interrupt numbers 7 to 54, and 57 are assigned to the vector table used for the peripheral function interrupt. Therefore, the microcomputer executes the same service routine when the INT instruction is executed as when a peripheral function interrupt occurs.

When the INT instruction is executed, the FLG register and PC are saved to the stack. PC also stores the relocatable vector of the specified software interrupt number. Where the stack is saved varies, depending on the software interrupt number. ISP is selected as the stack for the software interrupt numbers 0 to 31 (the U flag is set to "0"). SP, which is set before the INT instruction is executed, is selected as the stack for the software interrupt numbers 32 to 63 (the U flag is not changed).

With the peripheral function interrupt, the FLG register is saved and the U flag is set to "0" (ISP select) when an interrupt request is acknowledged. With software interrupt numbers 32 to 54 and 57, the SP to be used varies, depending on whether the interrupt is generated by the peripheral function interrupt request or by the INT instruction.

10.3 Hardware Interrupts

Special interrupts and peripheral function interrupts are available as hardware interrupts.

10.3.1 Special Interrupts

Special interrupts are non-maskable interrupts.

10.3.1.1 NMI Interrupt

The NMI interrupt occurs when a signal applied to the NMI pin changes from an "H" signal to an "L" signal. Refer to **10.8** NMI Interrupt for details.

10.3.1.2 Watchdog Timer Interrupt

The watchdog timer interrupt occurs when the count source of the watchdog timer underflows. Refer to **11. Watchdog Timer** for details.

10.3.1.3 Oscillation Stop Detection Interrupt

The oscillation stop detection interrupt occurs when the microcomputer detects a main clock oscillation stop. Refer to **8. Clock Generating Circuit** for details.

10.3.1.4 Single-Step Interrupt

Do not use the single-step interrupt. For development support tool only.

10.3.1.5 Address Match Interrupt

The address match interrupt occurs immediately before executing an instruction that is stored into an address indicated by the RMADi register (i=0 to 3) when the AIERi bit in the AIER register is set to "1" (address match interrupt enabled). Set the starting address of the instruction in the RMADi register. The address match interrupt does not occur when a table data or addresses of the instruction other than the starting address, if the instruction has multiple addresses, is set. Refer to **10.10 Address Match Interrupt** for details.

10.3.2 Peripheral Function Interrupt

The peripheral function interrupt occurs when a request from the peripheral functions in the microcomputer is acknowledged. The peripheral function interrupts and software interrupt numbers 7 to 54 and 57 for the INT instruction use the same interrupt vector table. The peripheral function interrupt is a maskable interrupt.

See **Table 10.2** about how the peripheral function interrupt occurs. Refer to the descriptions of each function for details.

10.4 High-Speed Interrupt

The high-speed interrupt executes an interrupt sequence in five cycles and returns from the interrupt in 3 cycles.

When the FSIT bit in the RLVL register is set to "1" (interrupt priority level 7 available for the high-speed interrupt), the ILVL2 to ILVL0 bits in the interrupt control registers can be set to "1112" (level 7) to use the high-speed interrupt.

Only one interrupt can be set as the high-speed interrupt. When using the high-speed interrupt, do not set multiple interrupts to interrupt priority level 7. Set the DMAII bit in the RLVL register to "0" (interrupt priority level 7 available for interrupts).

Set the starting address of the high-speed interrupt service routine in the VCT register.

When the high-speed interrupt is acknowledged, the FLG register is saved to the SVF register and PC is saved to the SVP registers. The program is executed from an address indicated by the VCT register.

Execute the FREIT instruction to return from the high-speed interrupt service routine.

The values saved to the SVF and SVP registers are restored to the FLG register and PC by executing the FREIT instruction.

The high-speed interrupt and the DMA2 and DMA3 use the same register. When using the high-speed interrupt, neither DMA2 nor DMA3 is available. DMA0 and DMA1 can be used.

10.5 Interrupts and Interrupt Vectors

There are four bytes in one vector. Set the starting address of interrupt service routine in each vector table. When an interrupt request is acknowledged, the interrupt service routine is executed from the address set in the interrupt vectors. Figure 10.2 shows the interrupt vector.

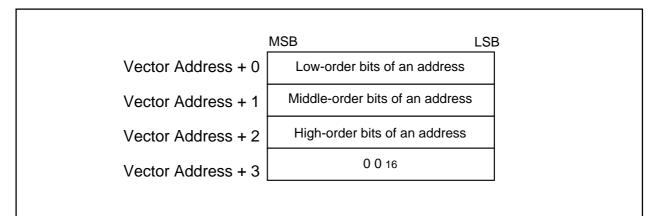


Figure 10.2 Interrupt Vector

10.5.1 Fixed Vector Tables

The fixed vector tables are allocated addresses FFFFDC16 to FFFFF16. Table 10.1 lists the fixed vector tables. Refer to **25.2 Functions to Prevent Flash Memory from Rewriting** for fixed vectors of the flash memory.

Table 10.1 Fixed Vector Table	Table	10.1	Fixed	Vector	Table
-------------------------------	-------	------	-------	--------	-------

Interrupt Generated by	Vector Addresses Address (L) to Address (H)	Remarks	Reference
Undefined Instruction	FFFFDC16 to FFFFDF16		M32C/80 series software manual
Overflow	FFFFE016 to FFFFE316		
BRK Instruction	FFFFE416 to FFFFE716	If the content of address FFFE716 is FF16, the program is executed from the address stored into software interrupt number 0 in the relocatable vector table	
Address Match	FFFFE816 to FFFFEB16		
-	FFFFEC16 to FFFFEF16	Reserved space	
Watchdog Timer	FFFFF016 to FFFFF316	These addresses are used for the watchdog timer interrupt and the oscillation stop detect interrupt	Clock oscillation circuit, Watchdog timer
-	FFFFF416 to FFFFF716	Reserved space	
NMI	FFFFF816 to FFFFFB16		
Reset	FFFFFC16 to FFFFFF16		Reset

10.5.2 Relocatable Vector Tables

The relocatable vector tables occupy 256 bytes from the starting address set in the INTB register. Table 10.2 lists the relocatable vector tables.

Set an even address as the starting address of the vector table set in the INTB register to increase interrupt sequence execution rate.

Table 10.2 Relocatable Vector Tables

Interrupt Generated by	Vector Table Address Address(L) to Address(H) ⁽¹⁾	Software Interrupt Number	Reference
BRK Instruction ⁽²⁾	+0 to +3 (000016 to 000316)	0	M32C/80 Series
Reserved Space	+4 to +27 (000416 to 001B16)	1 to 6	Software Manual
A/D1	+28 to +31 (001C16 to 001F16)	7	A/D Converter
DMA0	+32 to +35 (002016 to 002316)	8	DMAC
DMA1	+36 to +39 (002416 to 002716)	9	
DMA2	+40 to +43 (002816 to 002B16)	10	
DMA3	+44 to +47 (002C16 to 002F16)	11	
Timer A0	+48 to +51 (003016 to 003316)	12	Timer A
Timer A1	+52 to +55 (003416 to 003716)	13	•
Timer A2	+56 to +59 (003816 to 003B16)	14	*
Timer A3	+60 to +63 (003C16 to 003F16)	15	*
Timer A4	+64 to +67 (004016 to 004316)	16	*
UART0 Transmission, NACK ⁽³⁾	+68 to +71 (004416 to 004716)	17	Serial I/O
UART0 Reception, ACK ⁽³⁾	+72 to +75 (004816 to 004B16)	18	
UART1 Transmission, NACK ⁽³⁾	+76 to +79 (004C16 to 004F16)	19	
UART1 Reception, ACK ⁽³⁾	+80 to +83 (005016 to 005316)	20	
Timer B0	+84 to +87 (005416 to 005716)	21	Timer B
Timer B1	+88 to +91 (005816 to 005B16)	22	
Timer B2	+92 to +95 (005C16 to 005F16)	23	
Timer B3	+96 to +99 (006016 to 006316)	24	
Timer B4	+100 to +103 (006416 to 006716)	25	
INT5	+104 to +107 (006816 to 006B16)	26	Interrupt
INT4	+108 to +111 (006C16 to 006F16)	27	•
INT3	+112 to +115 (007016 to 007316)	28	
INT2	+116 to +119 (007416 to 007716)	29	
INT1	+120 to +123 (007816 to 007B16)	30	
INT0	+124 to +127 (007C16 to 007F16)	31	
Timer B5	+128 to +131 (008016 to 008316)	32	Timer B
UART2 Transmission, NACK ⁽³⁾	+132 to +135 (008416 to 008716)	33	Serial I/O
UART2 Reception, ACK ⁽³⁾	+136 to +139 (008816 to 008B16)	34	
UART3 Transmission, NACK ⁽³⁾	+140 to +143 (008C16 to 008F16)	35	
UART3 Reception, ACK ⁽³⁾	+144 to +147 (009016 to 009316)	36	
UART4 Transmission, NACK ⁽³⁾	+148 to +151 (009416 to 009716)	37	
UART4 Reception, ACK ⁽³⁾	+152 to +155 (009816 to 009B16)	38	

Table 10.2	Relocatable	Vector	Tables	(Continued)
------------	-------------	--------	--------	-------------

Interrupt Generated by	Vector Table Address Address(L)to Address(H) ⁽¹⁾	Software Interrupt Number	Reference
Bus Conflict Detect, Start Condition Detect,		39	Serial I/O
Stop Condition Detect, (UART2) ⁽³⁾ ,			
Fault Error ⁽⁴⁾			
Bus Conflict Detect, Start Condition Detect,	+160 to +163 (00A016 to 00A316)	40	
Stop Condition Detect,			
(UART3/UART0) ⁽⁵⁾ , Fault Error ⁽⁴⁾			
Bus Conflict Detect, Start Condition Select,	+164 to +167 (00A416 to 00A716)	41	
Stop Condition Detect,			
(UART4/UART1) ⁽⁵⁾ , Fault Error ⁽⁴⁾			
A/D0	+168 to +171 (00A816 to 00AB16)	42	A/D Converter
Key Input	+172 to +175 (00AC16 to 00AF16)	43	Interrupts
Intelligent I/O Interrupt 0	+176 to +179 (00B016 to 00B316)	44	Intelligent I/O
Intelligent I/O Interrupt 1	+180 to +183 (00B416 to 00B716)	45	CAN
Intelligent I/O Interrupt 2	+184 to +187 (00B816 to 00BB16)	46	
Intelligent I/O Interrupt 3	+188 to +191 (00BC16 to 00BF16)	47	
Intelligent I/O Interrupt 4	+192 to +195 (00C016 to 00C316)	48	
Intelligent I/O Interrupt 5	+196 to +199 (00C416 to 00C716)	49	
Intelligent I/O Interrupt 6	+200 to +203(00C816 to 00CB16)	50	
Intelligent I/O Interrupt 7	+204 to +207(00CC16 to 00CF16)	51	
Intelligent I/O Interrupt 8	+208 to +211(00D016 to 00D316)	52	
Intelligent I/O Interrupt 9, CAN 0	+212 to +215 (00D416 to 00D716)	53	
Intelligent I/O Interrupt 10, CAN 1	+216 to +219 (00D816 to 00DB16)	54	
Reserved Space	+220 to +227 (00DC16 to 00E316)	55 to 56	
Intelligent I/O Interrupt 11, CAN 2	+228 to +231 (00E416 to 00E716)	57	Intelligent I/O
			CAN
Reserved Space	+232 to +255 (00E816 to 00FF16)	58 to 62	
INT Instruction ⁽²⁾	+0 to +3 (000016 to 000316) to	0 to 63	Interrupts
	+252 to +255 (00FC16 to 00FF16)		

NOTES:

- 1. These addresses are relative to those in the INTB register.
- 2. The I flag does not disable interrupts.
- 3. In I²C mode, NACK, ACK or start/stop condition detection causes interrupts to be generated.
- 4. When the \overline{SS} pin is selected, fault error causes an interrupt to be generated.
- 5. The IFSR6 bit in the IFSR register determines whether these addresses are used for an interrupt in UART0 or in UART3.

The IFSR7 bit in the IFSR register determines whether these addresses are used for an interrupt in UART1 or in UART4.

10.6 Interrupt Request Reception

Software interrupts and special interrupts occur when conditions to generate an interrupt are met. The peripheral function interrupts are acknowledged when all conditions below are met.

- I flag = "1"
- IR bit = "1"
- ILVL2 to ILVL0 bits > IPL

The I flag, IPL, IR bit and ILVL2 to ILVL0 bits are independent of each other. The I flag and IPL are in the FLG register. The IR bit and ILVL2 to ILVL0 bits are in the interrupt control register.

10.6.1 | Flag and IPL

The I flag enables or disables maskable interrupts. When the I flag is set to "1" (enable), all maskable interrupts are enabled; when the I flag is set to "0" (disable), they are disabled. The I flag is automatically set to "0" after reset.

IPL, consisting of three bits, indicates the interrupt priority level from level 0 to level 7.

If a requested interrupt has higher priority than that indicated by IPL, the interrupt is acknowledged. Table 10.3 lists interrupt priority levels associated with IPL.

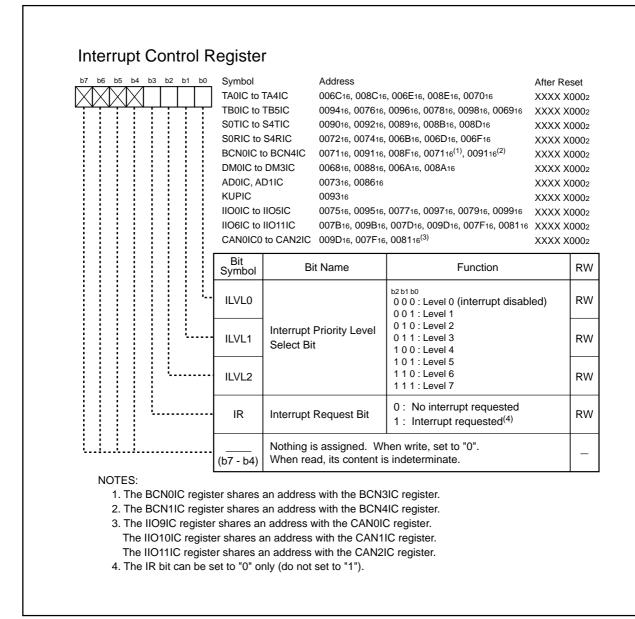

IPL2	IPL1	IPL0	Interrupt Priority Levels
0	0	0	Level 1 and above
0	0	1	Level 2 and above
0	1	0	Level 3 and above
0	1	1	Level 4 and above
1	0	0	Level 5 and above
1	0	1	Level 6 and above
1	1	0	Level 7 and above
1	1	1	All maskable interrupts are disabled

Table 10.3 Interrupt Priority Levels

10.6.2 Interrupt Control Register and RLVL Register

The peripheral function interrupts use interrupt control registers to control each interrupt. Figures 10.3 and 10.4 show the interrupt control register. Figure 10.5 shows the RLVL register.

	to INT2IC 009E16,	After Reset 007E16, 009C16 XX00 X0002 009A16, 007A16 XX00 X0002	
Bit Symbol	Bit Name	Function	RW
ILVL0		^{b2 b1 b0} 0 0 0 : Level 0 (interrupt disabled) 0 0 1 : Level 1	RW
 ILVL1	Interrupt Priority Level Select Bit	0 1 0 : Level 2 0 1 1 : Level 3 1 0 0 : Level 4	RW
 ILVL2		1 0 1 : Level 5 1 1 0 : Level 6 1 1 1 : Level 7	RW
 IR	Interrupt Request Bit	0 : Requests no interrupt 1 : Requests an interrupt ⁽²⁾	RW
 POL	Polarity Switch Bit	0 : Selects falling edge or "L" ⁽³⁾ 1 : Selects rising edge or "H"	RW
 LVS	Level Sensitive/Edge Sensitive Switch Bit	0 : Edge sensitive 1 : Level sensitive ⁽⁴⁾	RW
(b7 - b6)	Nothing is assigned. Wh When read, its content is		-

1. When the 16-bit data bus is used in microprocessor or memory expansion mode, each pin for the INT3 to INT5 bits is used as the data bus. Set the ILVL2 to ILVL0 bits in the INT3IC, INT4IC and INT5IC registers to "0002".

2. The IR bit can be set to "0" only (do not set to "1").

3. Set the POL bit to "0" when a corresponding bit in the IFSR register is set to "1" (both edges).

4. When setting the LVS bit to "1", set a bit corresponding to the IFSR register to "0" (one edge).

Figure 10.4 Interrupt Control Register (2)

10.6.2.1 ILVL2 to ILVL0 Bits

The ILVL2 to ILVL0 bits determines the interrupt priority level. The higher the interrupt priority level, the higher interrupt priority is.

When an interrupt request is generated, its interrupt priority level is compared to IPL. This interrupt is acknowledged only when its interrupt priority level is higher than IPL. When the ILVL2 to ILVL0 bits are set to "0002" (level 0), this interrupt is ignored.

10.6.2.2 IR Bit

The IR bit is automatically set to "1" (interrupt requested) when an interrupt request is generated. The IR bit is automatically set to "0" (no interrupt requested) after an interrupt request is acknowledged and the program in the corresponding interrupt vector is executed.

The IR bit can be set to "0" by program. Do not set to "1".

07 b6 b5	b4 b3 b2	b1 b0	Symbo RLVL	DI Address 009F16	After Reset XXXX 00002	
			Bit Symbol	Bit Name	Function	RV
			RLVL0		^{b2 b1 b0} 0 0 0 : Level 0 0 0 1 : Level 1	RV
			RLVL1	Stop/Wait Mode Exit Minimum Interrupt Priority Level Control Bit ⁽¹⁾	0 1 0 : Level 2 0 1 1 : Level 3 1 0 0 : Level 4	RW
			RLVL2		1 0 1 : Level 5 1 1 0 : Level 6 1 1 1 : Level 7	RW
			FSIT	High-Speed Interrupt Set Bit ⁽²⁾	0: Interrupt priority level 7 is used for normal interrupt1: Interrupt priority level 7 is used for high-speed interrupt	RW
			(b4)	Nothing is assigned. Whe When read, its content is		-
			DMA II	DMAC II Select Bit ⁽⁴⁾	 0: Interrupt priority level 7 is used for interrupt 1: Interrupt priority level 7 is used for DMAC II transfer⁽³⁾ 	RW
			(b7 - b6)	Nothing is assigned. Whe When read, its content is		-
the the 2. Whe case 3. Set	level set i FLG regis en the FSI e, set onl the ILVL2	n the RL' ster. T bit is s y one int	VL2 to RLV et to "1", in errupt to in) bits in the	/L0 bits. Set the RLVL2 to terrupt priority level 7 bec terrupt priority level 7 and interrupt control register	ested interrupt priority level is higher to o RLVL0 bits to the same value as IP comes the high-speed interrupt. In this the DMA II bit to "0". after setting the DMAII bit to "1". Do n bit to "1". Set the FSIT bit to "0" when	L in s iot

4. After reset, the DMA II bit is indeterminate. When using an interrupt, set the interrupt control register after setting the DMA II bit to "0".

Figure 10.5 RLVL Register

10.6.2.3 RLVL2 to RLVL0 Bits

When using an interrupt to exit stop or wait mode, refer to **8.5.2 Wait Mode** and **8.5.3 Stop Mode** for details.

10.6.3 Interrupt Sequence

The interrupt sequence is performed between an interrupt request acknowledgment and interrupt routine execution.

When an interrupt request is generated while an instruction is executed, the CPU determines its interrupt priority level after the instruction is completed. The CPU starts the interrupt sequence from the following cycle. However, in regards to the SCMPU, SIN, SMOVB, SMOVF, SMOVU, SSTR, SOUT or RMPA instruction, if an interrupt request is generated while executing the instruction, the microcomputer suspends the instruction to start the interrupt sequence.

The interrupt sequence is performed as follows:

- (1) The CPU obtains interrupt information (interrupt number and interrupt request level) by reading address 00000016 (address 00000216 for the high-speed interrupt). Then, the IR bit applicable to the interrupt information is set to "0" (interrupt requested).
- (2) The FLG register, prior to an interrupt sequence, is saved to a temporary register⁽¹⁾ within the CPU.
- (3) Each bit in the FLG register is set as follows:
 - The I flag is set to "0" (interrupt disabled)
 - The D flag is set to "0" (single-step disabled)
 - The U flag is set to "0" (ISP selected)
- (4) A temporary register within the CPU is saved to the stack; or to the SVF register for the high-speed interrupt.
- (5) PC is saved to the stack; or to the SVP register for the high-speed interrupt.
- (6) The interrupt priority level of the acknowledged interrupt is set in IPL .
- (7) A relocatable vector corresponding to the acknowledged interrupt is stored into PC.

After the interrupt sequence is completed, an instruction is executed from the starting address of the interrupt service routine.

NOTES:

1. Temporary register cannot be modified by users.

10.6.4 Interrupt Response Time

Figure 10.6 shows an interrupt response time. Interrupt response time is the period between an interrupt generation and the execution of the first instruction in an interrupt service routine. An interrupt response time includes the period between an interrupt request generation and the completed execution of an instruction ((a) in Figure 10.6) and the period required to perform an interrupt sequence ((b) in Figure 10.6).

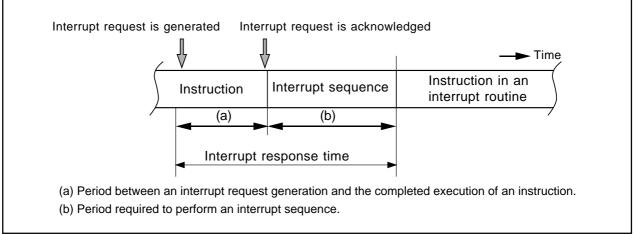


Figure 10.6 Interrupt Response Time

Time (a) varies depending on the instruction being executed. The DIV instruction requires the longest time (a); 40 cycles when an immediate value or register is set as the divisor .

When the divisor is a value in the memory, the following value is added.

 Normal addressing 	: 2 + X
 Index addressing 	: 3 + X
 Indirect addressing 	: 5 + X + 2Y
 Indirect index addressing 	: 6 + X + 2Y

X is the number of wait states for a divisor space. Y is the number of wait states for the space that stores indirect addresses. If X and Y are in an odd address or in 8-bit bus space, the X and Y value must be doubled.

Table 10.4 lists time (b).

Interrupt	Interrupt Vector Address	16-Bit Bus	8-Bit Bus
Peripheral Function	Even address	14 cycles	16 cycles
	Odd address ⁽¹⁾	16 cycles	16 cycles
INT Instruction	Even address	12 cycles	14 cycles
	Odd address ⁽¹⁾	14 cycles	14 cycles
NMI	Even address ⁽²⁾	13 cycles	15 cycles
Watchdog Timer			
Undefined Instruction			
Address Match			
Overflow	Even address ⁽²⁾	14 cycles	16 cycles
BRK Instruction (relocatable vector table)	Even address	17 cycles	19 cycles
	Odd address ⁽¹⁾	19 cycles	19 cycles
BRK Instruction (fixed vector table)	Even address ⁽²⁾	19 cycles	21 cycles
High-Speed Interrupt	Vector table is internal register	5 cycles	

Table 10.4 Interrupt Sequence Execution Time

NOTES:

1. Allocate interrupt vectors to even addresses.

2. Vectors are fixed to even addresses.

10.6.5 IPL Change when Interrupt Request is Acknowledged

When a peripheral function interrupt request is acknowledged, IPL sets the priority level for the acknowledged interrupt.

Software interrupts and special interrupts have no interrupt priority level. If an interrupt request that has no interrupt priority level is acknowledged, the value shown in Table 10.5 is set in IPL as the interrupt priority level.

Table 10.5 Interrupts without Interrupt Priority Levels and IPL

Interrupt Sources	Level that is Set to IPL
Watchdog Timer, NMI, Oscillation Stop Detect	7
Reset	0
Software, Address Match	Not changed

10.6.6 Saving a Register

In the interrupt sequence, the FLG register and PC are saved to the stack.

After the FLG register is saved to the stack, 16 high-order bits and 16 low-order bits of PC, extended to 32 bits, are saved to the stack. Figure 10.7 shows the stack state before and after an interrupt request is acknowledged.

Other important registers are saved by program at the beginning of an interrupt service routine. The PUSHM instruction can save all registers except SP.

Refer to 10.4 High-Speed Interrupt for the high-speed interrupt.

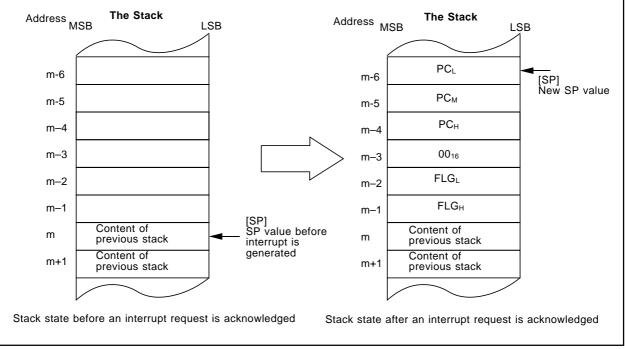


Figure 10.7 Stack States

10.6.7 Restoration from Interrupt Routine

When the REIT instruction is executed at the end of an interrupt service routine, the FLG register and PC, which have been saved to the stack, are automatically restored. The program, executed before an interrupt request has been acknowledged, starts running again. Refer to **10.4 High-Speed Interrupt** for the high-speed interrupt.

Restore registers saved by program in an interrupt service routine by the POPM instruction or others before the REIT and FREIT instructions. Register bank is switched back to the bank used prior to the interrupt sequence by the REIT or FREIT instruction.

10.6.8 Interrupt Priority

If two or more interrupt requests are sampled at the same sampling points (a timing to detect whether an interrupt request is generated or not), the interrupt with the highest priority is acknowledged.

Set the ILVL2 to ILVL0 bits to select the desired priority level for maskable interrupts (peripheral function interrupt).

Priority levels of special interrupts such as reset (reset has the highest priority) and watchdog timer are set by hardware. Figure 10.8 shows priority levels of hardware interrupts.

The interrupt priority does not affect software interrupts. The microcomputer jumps to the interrupt routine when the instruction is executed.

Oscillation Stop DetectReset > NMI >Watchdog> Peripheral Function > Address Match

Figure 10.8 Interrupt Priority

10.6.9 Interrupt Priority Level Select Circuit

The interrupt priority level select circuit selects the highest priority interrupt when two or more interrupt requests are sampled at the same sampling point.

Figure 10.9 shows the interrupt priority level select circuit.

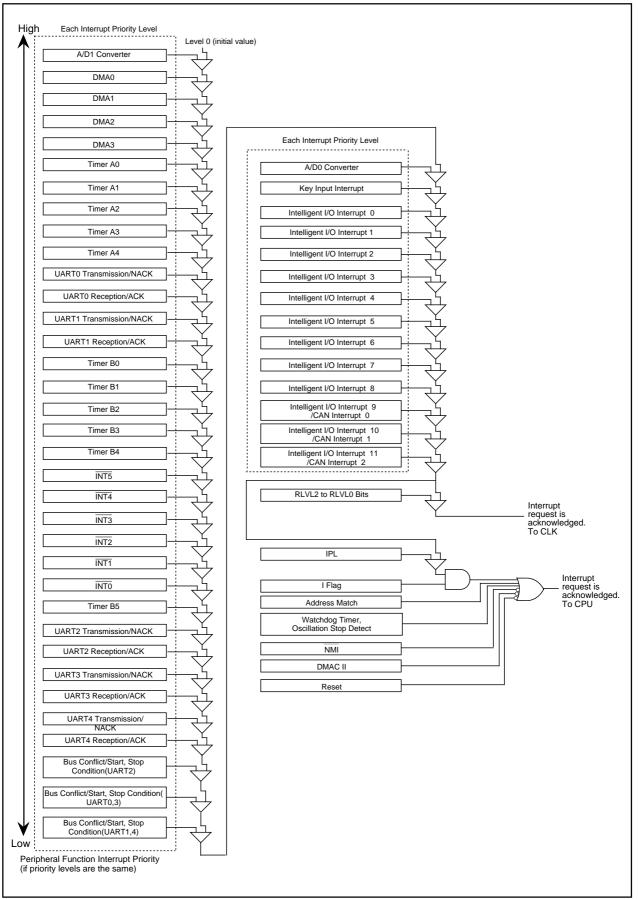


Figure 10.9 Interrupt Priority Level Select Circuit

10.7 INT Interrupt

External input generates the \overline{INTi} interrupt (i = 0 to 5). The LVS bit in the INTilC register selects either edge sensitive triggering to generate an interrupt on any edge or level sensitive triggering to generate an interrupt at an applied signal level. The POL bit in the INTIIC register determines the polarity.

With an edge sensitive triggering, when the IFSRi bit in the IFSR register is set to "1" (both edges), an interrupt occurs on both rising and falling edges of the external input. If the IFSRi bit is set to "1", set the POL bit in the corresponding register to "0" (falling edge).

With a level sensitive triggering, set the IFSRi bit to "0" (single edge). When the INTi pin input level reaches the level set in the POL bit, the IR bit in the INTIIC register is set to "1". The IR bit remains set to "1" even if the INTi pin level is changed. The IR bit is set to "0" when the INTi interrupt is acknowledged or when "0" is written by program.

Figure 10.10 shows the IFSR register.

57 b6 b5 b4 b3 b2 b	b1 b0	Symbo IFSR	ol Address 031F16	After Reset 0016	
		Bit ymbol	Bit Name	Function	RW
	IF	FSR0	INT0 Interrupt Polarity Select Bit ⁽¹⁾	0 : One edge 1 : Both edges	RW
	••••••	FSR1	INT1 Interrupt Polarity Select Bit ⁽¹⁾	0 : One edge 1 : Both edges	RW
	····· IF	FSR2	INT2 Interrupt Polarity Select Bit ⁽¹⁾	0 : One edge 1 : Both edges	RW
	····· IF	FSR3	INT3 Interrupt Polarity Select Bit ⁽¹⁾	0 : One edge 1 : Both edges	RW
	IF	FSR4	INT4 Interrupt Polarity Select Bit ⁽¹⁾	0 : One edge 1 : Both edges	RW
	IF	FSR5	INT5 Interrupt Polarity Select Bit ⁽¹⁾	0 : One edge 1 : Both edges	RW
	IF	-SR6	UART0, UART3 Interrupt Cause Select Bit	 0: UART3 bus conflict, start condition detect, stop condition detect, fault error detect 1: UART0 bus conflict, start condition detect, stop condition detect, fault error detect 	RW
	IF	SR7	UART1, UART4 Interrupt Cause Select Bit	 0: UART4 bus conflict, start condition detect, stop condition detect, fault error detect 1: UART1 bus conflict, start condition detect, stop condition detect, fault error detect 	RW

Set this bit to "0" to select level sensitive.

When setting this bit to "1", set the POL bit in the INTIC register (i = 0 to 5) to "0" (falling edge).

Figure 10.10 IFSR Register

10.8 NMI Interrupt

The NMI interrupt occurs when the signal applied to the P85/NMI pin changes from an "H" signal to an "L" signal. The NMI interrupt is a non-maskable interrupt. Although the P85/NMI pin is used as the NMI interrupt input pin, the P8_5 bit in the P85 register indicates input level for this pin.

NOTES:

When the $\overline{\text{NMI}}$ interrupt is not used, connect (pull-up) the $\overline{\text{NMI}}$ pin to Vcc via a resistor. Because the $\overline{\text{NMI}}$ interrupt cannot be ignored, the pin must be connected.

10.9 Key Input Interrupt

Key input interrupt request is generated when one of the signals applied to the P104 to P107 pins in input mode is on the falling edge. The key input interrupt can be also used as key-on wake-up function to exit wait or stop mode. To use the key input interrupt, do not use P104 to P107 as A/D input ports. Figure 10.11 shows a block diagram of the key input interrupt. When an "L" signal is applied to any pins in input mode, signals applied to other pins are not detected as a request signal for an interrupt.

When the PSC_7 bit in the PSC register⁽¹⁾ is set to "1" (key input interrupt disabled), no key input interrupt occurs regardless of interrupt control register settings. When the PSC_7 bit is set to "1", no input from a port pin is available even when in input mode.

NOTES:

1. Refer to 24. Programmable I/O Ports for details on the PSC register.

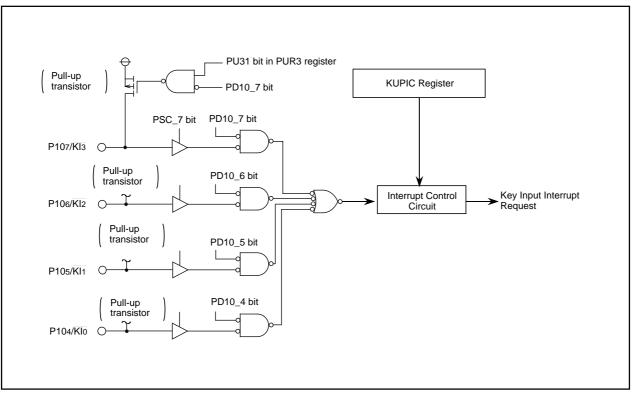


Figure 10.11 Key Input Interrupt

10.10 Address Match Interrupt

The address match interrupt occurs immediately before executing an instruction that is stored into an address indicated by the RMADi register (i=0 to 3). The address match interrupt can be set in four addresses. The AIERi bit in the AIER register determines whether the interrupt is enabled or disabled. The I flag and IPL do not affect the address match interrupt.

Figure 10.12 shows registers associated with the address match interrupt.

Set the starting address of an instruction in the RMADi register. The address match interrupt does not occur when a table data or addresses other than the starting address of the instruction is set.

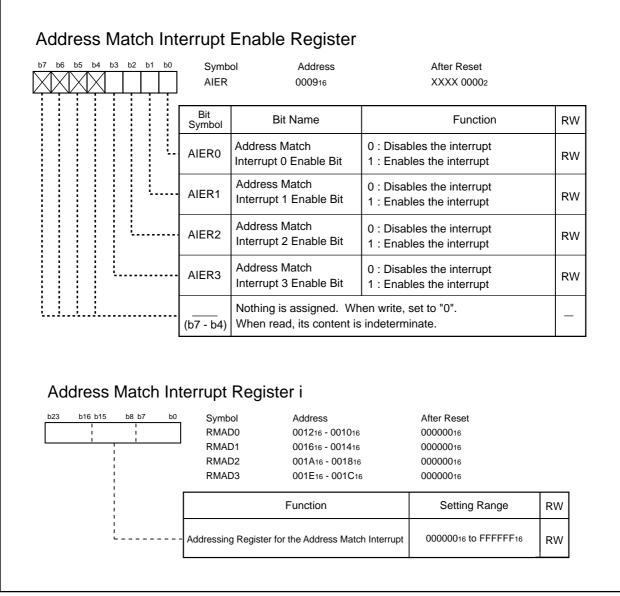


Figure 10.12 AIER Register and RMAD0 to RMAD3 Registers

10.11 Intelligent I/O Interrupt and CAN Interrupt

The intelligent I/O interrupt and CAN interrupt are assigned to software interrupt numbers 44 to 54, and 57. Figure 10.13 shows a block diagram of the intelligent I/O interrupt and CAN interrupt. Figure 10.14 shows the IIOiIR register (i = 0 to 11). Figure 10.15 shows the IIOiIE register.

When using the intelligent I/O interrupt or CAN interrupt, set the IRLT bit in the IIOiIE register to "1" (interrupt request for interrupt used).

Various interrupt requests cause the intelligent I/O interrupt to occur. When an interrupt request is generated with intelligent I/O or CAN functions, the corresponding bit in the IIOiIR register is set to "1" (interrupt requested). When the corresponding bit in the IIOiIE register is set to "1" (interrupt enabled), the IR bit in the corresponding IIOiIC register is set to "1" (interrupt requested).

After the IR bit setting changes from "0" to "1", the IR bit remains set to "1" when a bit in the IIOiIR register is set to "1" by another interrupt request and the corresponding bit in the IIOiIE register is set to "1".

Bits in the IIOiIR register are not set to "0" automatically, even if an interrupt is acknowledged. Set each bit to "0" by program. If these bits remain set to "1", all generated interrupt requests are ignored.

CAN interrupt uses bit 7 in the IIO9IR to IIO11IR registers and bit 7 in the IIO9IE to IIO11IE registers. IIO9IR to IIO11IR registers share addresses with the CAN0IC to CAN2IC registers. Refer to **22.3 CAN Interrupt** for details.

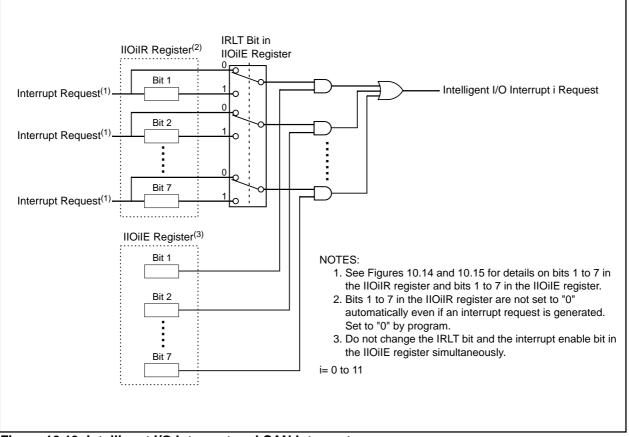
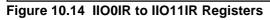



Figure 10.13 Intelligent I/O Interrupt and CAN Interrupt

When using the intelligent I/O interrupt or CAN interrupt to activate DMAC II, set the IRLT bit in the IIOiIE register to "0" (an interrupt used for DMAC, DMAC II) to enable the interrupt request that the IIOiIE register requires.

Bit Symbol Function
(b0) When read, its content is indeterminate. (Note 1) 0 : Requests no interrupt (Note 1) 1 : Requests an interrupt (Note 1) (Note 1) (Note 2) (Note 1) (Note 1) (Note 1) (Note 2) (Note 2) NOTES: . 1. See table below for bit symbols. . 2. Only "0" can be set (nothing is changed even if "1" is set).
(Note 1) (Note 1) NOTES: 1. See table below for bit symbols. 2. Only "0" can be set (nothing is changed even if "1" is set).
(Note 1) (Note 1)
Image: Note 1 (Note 1) Image: Note 1 (Note
(Note 1) (Note 1) (Note 1) (Note 1) NOTES: 1. See table below for bit symbols. 2. Only "0" can be set (nothing is changed even if "1" is set).
Image: Note 1 (Note 1) NOTES: 1. See table below for bit symbols. 2. Only "0" can be set (nothing is changed even if "1" is set).
Image: Note 1 (Note 1) NOTES: 1. See table below for bit symbols. 2. Only "0" can be set (nothing is changed even if "1" is set).
NOTES: 1. See table below for bit symbols. 2. Only "0" can be set (nothing is changed even if "1" is set).
NOTES: 1. See table below for bit symbols. 2. Only "0" can be set (nothing is changed even if "1" is set).
Symbol Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1
Bit Symbols for the Interrupt Request Register
IIO0IR 00A016 SIO0RR G0RIR - PO13R TM02R
IIO1IR 00A116 SIO0TR G0TOR - PO14R TM00R/PO00R
IIO2IR 00A216 SIO1RR G1RIR - TM12R/PO12R -
IIO3IR 00A316 SIO1TR G1TOR PO27R PO10R TM03R
IIO4IR 00A416 SRT0R SRT1R - BT1R PO32R TM17R/PO17R TM04R/PO04R
IIO5IR 00A516 - - SIO2RR PO33R PO21R TM05R/PO05R
IIO6IR 00A616 - - SIO2TR PO34R PO20R TM06R
IIO7IR 00A716 IE0R BT0R PO35R PO22R TM07R
IIO8IR 00A816 IE1R IE2R - BT2R PO36R PO23R TM11R/PO11R
IIO8IR 00A816 IE1R IE2R - BT2R PO36R PO23R TM11R/PO11R IIO9IR 00A916 CAN0R - - SIO3RR PO31R PO24R PO15R IIO10IR 00AA16 CAN1R - - SIO3TR PO30R PO25R TM16R/PO16R

\Box	ЦЦ	IIO0IE	to IIO11IE	Se	dress e below	0016			
		Bit Symbol	Bit Na	me		Functi	on	RW	
		IRLT			0 : Interrupt request is used for DMAC, DMAC II 1 : Interrupt request is used for interrupt				
		(Note 1)				0 : Disables an interrupt by bit 1 in IIOiIR register 1 : Enables an interrupt by bit 1 in IIOiIR register			
	[(Note 1)			1		-	1 8 1/1	
		(Note 1)			1		-	1 8 1/1	
		(Note 1)			1		-	1 8 1/1	
					0 : Disables an interrupt by bit 5 in IIOiIR register 1 : Enables an interrupt by bit 5 in IIOiIR register				
					1	 0 : Disables an interrupt by bit 6 in IIOiIR register 1 : Enables an interrupt by bit 6 in IIOiIR register 			
		(Note 1)			1		-	1 8 1/1	
ols for the	Interrupt	Enable Re	gister		1			Dit O	
					ыгэ			Bit 0 IRLT	
	-	-						IRLT	
	-	-				-	-	IRLT	
00B316	-	-					TM03E	IRLT	
00B416	SRT0E	SRT1E	-					IRLT	
00B516	-	-	-					IRLT	
00B616	-	-	-	SIO2TE	PO34E	PO20E	TM06E	IRLT	
00B716	IE0E	-	-	BTOE	PO35E	PO22E	TM07E	IRLT	
00B816	IE1E	IE2E	-	BT2E	PO36E	PO23E	TM11E/PO11E	IRLT	
00B916	CAN0E	-	-	SIO3RE	PO31E	PO24E	PO15E	IRLT	
00BA16	CAN1E	-	-	SIO3TE	PO30E	PO25E	TM16E/PO16E	IRLT	
00BB16	CAN2E	-	-	BT3E	PO37E	PO26E	TM01E/PO01E	IRLT	
Inte : Inte : Inte : Inte ITOE : Inte (RI	lligent I/O (Iligent I/O (Iligent I/O (Iligent I/O (E:input to r	Group m Tin Group i Wav Group i Com Group m HD eceive, TO	ne Measuren eform Gene imunication ILC Data Pro E:input to tra	ment j Inter ration Func Function Ir ocessing F ansmit)	rupt Enable ction j Interru nterrupt Enat unction Inter	Bit (j=0 to 7)(m=0 upt Enable Bit ble Bit (RE:receive			
	an interrup ols for the Address 00B016 00B116 00B216 00B316 00B416 00B516 00B616 00B916 00B816 00B816 00BB16 : Inte : Inte : Inte DITE : Inte	Bee table below for bit s an interrupt request is ols for the Interrupt Address Bit 7 00B016 - 00B116 - 00B216 - 00B316 - 00B416 SRT0E 00B516 - 00B616 - 00B716 IE0E 00B816 IE1E 00B416 CAN0E 00B416 CAN2E : Intelligent I/O 0 : Intelligent I/O 0 : Intelligent I/O 0 : Intelligent I/O 0 : Intelligent I/O 0 : Intelligent I/O 0 : Intelligent I/O 0 : Intelligent I/O 0	Symbol IRLT IRLT (Note 1) (Note 1) (Note 1) S: (Note 1) See table below for bit symbols. (Note 1) Si for the Interrupt Enable Re Address Address Bit 7 Bit 6 00B116 - - 00B216 - - 00B216 - - 00B416 SRT0E SRT1E 00B516 - - 00B416 CAN2E -	Symbol Bit Name IRLT Interrupt Reselved Bit/2 (Note 1)	Symbol Bit Name IRLT Interrupt Request Select Bit ⁽²⁾ (Note 1)	Symbol Bit Name IRLT Interrupt Request Select Bit ⁽²⁾ 0 : Interrup 1 : Interrup 0 : Disable: 1 : Enables (Note 1)	Symbol Bit Name Function IRLT Interrupt Request Select Bit ⁽²⁾ 0: Interrupt request is used fi 1: Interrupt request is used fi 1: Interrupt request is used fi 1: Enables an interrupt by bi (Note 1)	Symbol Bit Name Function IRLT Interrupt Request Select Bit ⁽²⁾ 0: Interrupt request is used for DMAC, DMAC is used for interrupt (Note 1)	

Figure 10.15 IIO0IE to IIO11IE Registers

11. Watchdog Timer

The watchdog timer detects a program which is out of control. The watchdog timer contains a 15-bit counter which is decremented by the CPU clock that the prescaler divides. The CM06 bit in the CM0 register determines whether the watchdog timer interrupt request or reset is generated when the watchdog timer underflows. The CM06 bit can be set to "1" (reset) only. Once the CM06 bit is set to "1", it cannot be changed to "0" (watchdog timer interrupt) by program. The CM06 bit is set to "0" only after reset. When the main clock, on-chip oscillator clock, or the PLL clock runs as the CPU clock, the WDC7 bit in the WDC register determines whether the prescaler divides by 16 or by 128. When the sub clock runs as the CPU clock, the prescaler divides by 2 regardless of the WDC7 bit setting. Watchdog timer cycle is calculated as follows. Marginal errors, due to the prescaler, may occur in watchdog timer cycle.

When the main clock, on-chip oscillator clock, or PLL clock is selected as the CPU clock:

Watchdog timer cycle = Divide by 16 or 128 prescaler x counter value of watchdog timer (32768) CPU clock

When the sub clock is selected as the CPU clock,

Watchdog timer cycle = Divided by 2 prescaler x counter value of watchdog timer (32768) CPU clock

For example, if the CPU clock frequency is 30MHz and the prescaler divides by 16, watchdog timer cycle is approximately 17.5 ms.

The watchdog timer is reset when the WDTS register is set and when a watchdog timer interrupt request is generated. The prescaler is reset only when the microcomputer is reset. Both watchdog timer and prescaler stop after reset. They begin counting when the WDTS register is set.

Write the WDTS register with shorter cycle than the watchdog timer cycle. Set the WDTS register also in the beginning of the watchdog timer interrupt routine.

The watchdog timer and prescaler stop in stop mode, wait mode and hold state. They resume counting from the value held when the mode or state is exited.

Figure 11.1 shows a block diagram of the watchdog timer. Figure 11.2 shows registers associated with the watchdog timer.

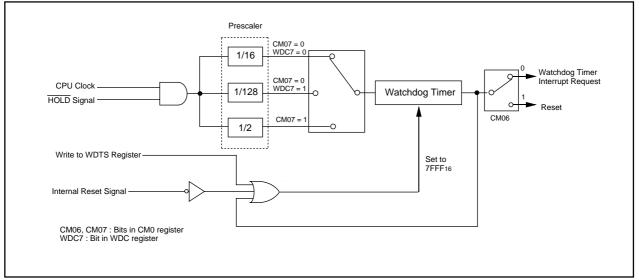


Figure 11.1 Watchdog Timer Block Diagram

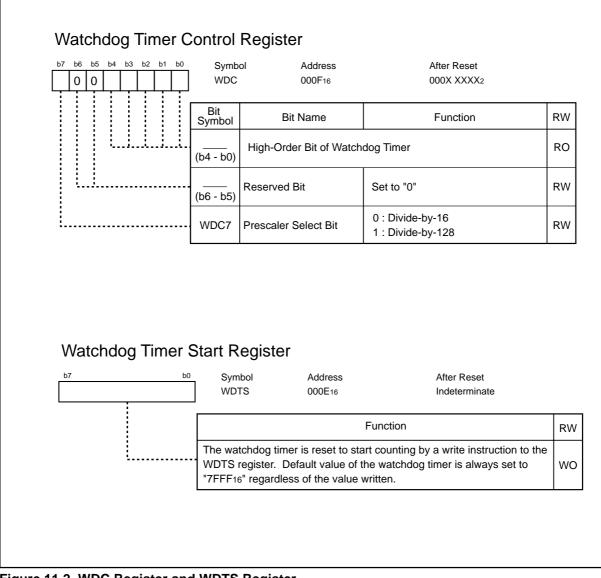
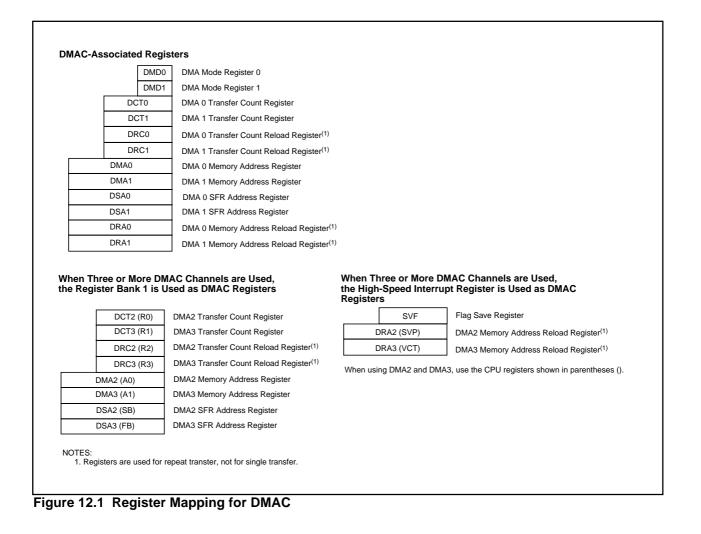


Figure 11.2 WDC Register and WDTS Register

b7 b6 b5 b4 b3 b2 b1 b0	Symb CM0	ool Address 000616	After Reset 0000 X0002	
	Bit Symbol	Bit Name	Function	RV
	CM00	Clock Output Function	^{b1 b0} 0 0 : I/O port P53 0 1 : Outputs fc	R۷
	CM01	Select Bit ⁽²⁾	1 0 : Outputs f8 1 1 : Outputs f3	R۷
	CM02	In Wait Mode, Peripheral Function Clock Stop Bit	 0 : Peripheral clock does not stop in wait mode 1 : Peripheral clock stops in wait mode⁽³⁾ 	R۷
	(b3)	Reserved Bit	Set to "1"	R۷
	CM04	Port Xc Switch Bit	0 : I/O port function 1 : XCIN-XCOUT oscillation function ⁽⁴⁾	R۷
	CM05	Main Clock (XIN-XOUT) Stop Bit ⁽⁵⁾	0 : Main clock oscillates 1 : Main clock stops ⁽⁶⁾	R۷
	CM06	Watchdog Timer Function Select Bit	0 : Watchdog timer interrupt 1 : Reset ⁽⁷⁾	R۷
	CM07	System Clock Select Bit ⁽⁸⁾	0: Clock selected by the CM21 bit divided by MCD register setting1: Sub clock	R۱
 When the PM07 bit in "002". When the PM11 CM01 to CM00 bits to bits) in microprocesson "L" signal is output from 3. fc32 does not stop. Wh When setting the CM0 port P87 and P86 input When entering the low the CM05 bit stops the To stop the main clock oscillation or after the CM05 bit is set to "1", to XOUT ("H" level) via When the CM05 bit is oscillation mode, the M Once the CM06 bit is 8. After the CM04 bit is s 	the PM0 5 to PM14 "002". W r or memory of port P5 nen the Cl 04 bit to "1 t mode) all v-power cl e main clo cM21 bit XouT bec the feedb set to "1" MCD regis set to "1", set to "1" v	register is set to "0" (BCLK 4 bits in the PM1 register is hen the PM07 bit is set to ' ory expansion mode, and th 3 (port P53 does not function M02 bit is set to "1", the PL " (XCIN-XCOUT oscillation), nd the PU25 bit in the PUR onsumption mode or on-ch ck. The CM05 bit cannot d CM05 bit to "1" after the CM in the CM2 register is set to omes "H". The built-in fee back resistor. , the MCD register is set to ter is not divided by eight e it cannot be set "0" by pro-	L clock cannot be used in wait mode. set the PD8_7 to PD8_6 bits to "002" (22 register to "0" (no pull-up). ip oscillator low-power consumption m etect whether the main clock stops or n /07 bit is set to "1" with a stable sub cl o "1" (on-chip oscillator clock). When the dback resistor remains on. XIN is pulle "0816" (divide-by-8 mode). In on-chip even if the CM05 bit terminates XIN-XO	ne M00 an (with ode not. ock the d up UT.

Figure 11.3 CM0 Register


12. DMAC

This microcomputer contains four DMAC (direct memory access controller) channels that allow data to be sent to memory without using the CPU. DMAC transmits a 8- or 16-bit data from a source address to a destination address whenever a transmit request occurs. DMA0 and DMA1 must be prioritized when using DMAC. DMAC2 and DMAC3 share registers required for high-speed interrupts. High-speed interrupts cannot be used when using three or more DMAC channels.

The CPU and DMAC use the same data bus, but DMAC has a higher bus access privilege than the CPU. The cycle-steal method employed by DMAC enables high-speed operation between a transfer request and the complete transmission of 16-bit (word) or 8-bit (byte) data. Figure 12.1 shows a mapping of registers to be used for DMAC. Table 12.1 lists specifications of DMAC. Figures 12.2 to 12.5 show registers associated with DMAC.

Because the registers shown in Figure 12.1 are allocated to the CPU, use the LDC instruction to write to the registers. To set DCT2, DCT3, DRC2, DRC3, DMA2 and DMA3 registers, set the B flag to "1" (register bank 1) and set R0 to R3, A0, A1 registers with the MOV instruction.

To set DSA2 and DSA3 registers, set the B flag to "1" and set the SB, FB, SVP, VCT registers with the LDC instruction. To set the DRA2 and DRA3 registers, set the SVP, VCT registers with the LDC instruction.

DMAC starts a data transfer by setting the DSR bit in the DMiSL register (i=0 to 3) or by using an interrupt request, generated by the functions determined by the DSEL 4 to DSEL0 bits in the DMiSL register, as a DMA request. Unlike interrupt requests, the I flag and interrupt control register do not affect DMA. Therefore, a DMA request can be acknowledged even if an interrupt is disabled and cannot be acknowledged. In addition, the IR bit in the interrupt control register does not change when a DMA request is acknowledged.

ltem		Specification
Channels		4 channels (cycle-steal method)
Transfer Memo	ry Space	 From a desired address in a 16M-byte space to a fixed address in a
		16M-byte space
		• From a fixed address in a 16M-byte space to a desired address in a
		16M-byte space
Maximum Byte:	s Transferred	128K bytes (when a 16-bit data is transferred) or 64K bytes (when an 8-
		bit data is transferred)
DMA Request I	Factors ⁽¹⁾	Falling edge or both edges of input signals to the INT0 to INT3 pins
		Timer A0 to timer A4 interrupt requests
		Timer B0 to timer B5 interrupt requests
		UART0 to UART4 transmit and receive interrupt requests
		A/D conversion interrupt request
		Intelligent I/O interrupt request
		CAN interrupt request
		Software trigger
Channel Priorit	у	DMA0 > DMA1 > DMA2 > DMA3 (DMA0 has highest priority)
Transfer Unit		8 bits, 16 bits
Destination Address		Forward/fixed (forward and fixed directions cannot be specified when
		specifying source and destination addresses simultaneously)
Transfer Mode	Single Transfer	Transfer is completed when the DCTi register (i = 0 to 3) is set to "000016"
	Repeat Transfer	When the DCTi register is set to "000016", the value of the DRCi register
		is reloaded into the DCTi register and the DMA transfer is continued
DMA Interrupt Requ	uest Generation Timing	When the DCTi register changes "000116" to "000016"
DMA Startup	Single Transfer	DMA starts when a DMA request is generated after the DCTi register is
		set to "000116" or more and the MDi1 to MD0 bits in the DMDj register (j
		= 0 to 1) are set to "012" (single transfer)
	Repeat Transfer	DMA starts when a DMA request is generated after the DCTi register is
		set to "000116" or more and the MDi1 to MDi0 bits are set to "112" (re-
		peat transfer)
DMA Stop	Single Transfer	DMA stops when the MDi1 to MDi0 bits are set to "002" (DMA disabled)
		or when the DCTi register is set to "000016" (0 DMA transfer) by DMA
		transfer or write
	Repeat Transfer	DMA stops when the MDi1 to MDi0 bits are set to "002" or when the
		DCTi register is set to "000016" and the DRCi register set to "000016"
Reload Timing	to the DCTi	When the DCTi register is set to "000016" from "000116" in repeat trans-
or DMAi Regist	er	fer mode
DMA Transfer (Cycles	Minimum 3 cycles between SFR and internal RAM

Table 12.1	DMAC S	pecifications
		peemeanons

NOTES:

1. The IR bit in the interrupt control register does not change when a DMA request is acknowledged.

07 b6 b5 b	04 b3 b2 b1 b0	Symb DM05	ol Address SL to DM3SL 037816, 03791	After Reset 6, 037A16, 037B16 0X00 00002	
		Bit Symbol	Bit Name	Function	RW
		DSEL0			RW
		DSEL1	-		RW
		DSEL2	DMA Request Cause Select Bit ⁽¹⁾	See Table 12.2 about DMiSL register (i = 0 to 3) function	RW
		DSEL3			RW
		DSEL4			RW
		DSR	Software DMA Request Bit ⁽²⁾	When a software trigger is selected, a DMA request is generated by setting this bit to "1" (When read, its content is always "0")	RW
			Nothing is assigned. Wi When read, its content is		
		DRQ	DMA Request Bit ^(2, 3)	0 : Not requested 1 : Requested	RW
reę DS 2. Wi	hange the DSEL4 gister are set to " GEL4 to DSEL0 b e.g., MOV.B #	002" (DMA it settings 083h, DM s set to "1 A0h, DMi§	a disabled). Also, set the I are changed. iSL ; Set timer A0 ", set the DRQ bit to "1" s SL	Di1 to MDi0 bits in the DMA0 or DMD1 DRQ bit to "1" simultaneously when the imultaneously.)

Figure 12.2 DM0SL to DM3SL Registers

b4 b3 b2 b1 b0 DMA0 DMA1 DMA2 DMA3 0 0 0 0 0 Software Trigger 0 0 0 0 1 Falling edge of INT0 Falling edge of INT1 Falling edge of INT2 Falling edge of IN 0 0 0 1 0 Both edges of INT0 Both edges of INT1 Both edges of INT2 Both edges of IN 0 0 0 1 1 Timer A0 Interrupt Request Timer A1 Interrupt Request Timer A1 Interrupt Request	
0 0 0 1 Falling edge of INT0 Falling edge of INT1 Falling edge of INT2 Falling edge of II 0 0 0 1 0 Both edges of INT0 Both edges of INT1 Both edges of INT2 Both edges of IN 0 0 0 1 1 Timer A0 Interrupt Request	
0 0 1 0 Both edges of INT0 Both edges of INT1 Both edges of INT2 Both edges of IN 0 0 1 1 Timer A0 Interrupt Request Both edges of IN	
0 0 0 1 1 Timer A0 Interrupt Request	NT3 ⁽¹⁾
	IT3 ⁽¹⁾
0 0 1 0 0 Timer A1 Interrupt Request	
0 0 1 0 1 Timer A2 Interrupt Request	
0 0 1 1 0 Timer A3 Interrupt Request	
0 0 1 1 1 Timer A4 Interrupt Request	
0 1 0 0 0 Timer B0 Interrupt Request	
0 1 0 0 1 Timer B1 Interrupt Request	
0 1 0 1 0 Timer B2 Interrupt Request	
0 1 0 1 1 Timer B3 Interrupt Request	
0 1 1 0 0 Timer B4 Interrupt Request	
0 1 1 0 1 Timer B5 Interrupt Request	
0 1 1 1 0 UART0 Transmit Interrupt Request	
0 1 1 1 1 UART0 Receive or ACK Interrupt Request ⁽³⁾	
1 0 0 0 0 UART1 Transmit Interrupt Request	
1 0 0 0 1 UART1 Receive or ACK Interrupt Request ⁽³⁾	
1 0 0 1 0 UART2 Transmit Interrupt Request	
1 0 0 1 1 UART2 Receive or ACK Interrupt Request ⁽³⁾	
1 0 1 0 0 UART3 Transmit Interrupt Request	
1 0 1 0 1 UART3 Receive or ACK Interrupt Request ⁽³⁾	
1 0 1 1 0 UART4 Transmit Interrupt Request	
1 0 1 1 1 UART4 Receive or ACK Interrupt Request ⁽³⁾	
1 1 0 0 0 A/D0 Interrupt Request A/D1 Interrupt Request A/D0 Interrupt request A/D1 Interrupt Request	
1 1 0 0 1 Intelligent I/O Intelligent I/O Intelligent I/O Intelligent I/O (1)	
Interrupt 0 Request Interrupt 7 Request Interrupt 2 Request Interrupt 9 Request ⁽⁴⁾	
1 1 0 1 0 Intelligent I/O Intelligent I/O Intelligent I/O Intelligent I/O Interrupt 1 Request Interrupt 3 Request Interrupt 10 Request ⁽⁵⁾	
1 0 1 Intelligent I/O Intelligent I/O Intelligent I/O Intelligent I/O	
Interrupt 2 Request Interrupt 9 Request ⁽⁴⁾ Interrupt 4 Request Interrupt 11 Request ⁽⁶⁾	
1 1 1 0 0 Intelligent I/O Intelligent I/O Intelligent I/O Intelligent I/O	
Interrupt 3 Request Interrupt 10 Request ⁽⁵⁾ Interrupt 5 Request Interrupt 0 Request	
1 1 1 0 1 Intelligent I/O Intelligent I/O Intelligent I/O Intelligent I/O	
Interrupt 4 Request Interrupt 11 Request ⁽⁶⁾ Interrupt 6 Request Interrupt 1 Request	
1 1 1 1 0 Intelligent I/O Intelligent I/O Intelligent I/O Intelligent I/O Intelligent I/O Interrupt 5 Request Interrupt 0 Request Interrupt 7 Request Interrupt 2 Request	
1 1 1 1 1 Intelligent I/O Intelligent I/O Intelligent I/O Intelligent I/O	
Interrupt 6 Request Interrupt 1 Request Interrupt 8 Request Interrupt 3 Request	

Table 12.2 DMiSL Register (i = 0 to 3) Function

NOTES:

1. If the INT3 pin is used as data bus in the memory expansion mode or microprocessor mode, a DMA3 interrupt request cannot be generated by an input signal to the INT3 pin.

2. The falling edge and both edges of input signal into the INTj pin (j = 0 to 3) cause a DMA request. The INT interrupt (the POL bit in the INTjIC register, the LVS bit, the IFSR register) is not affected and vice versa.

3. The UkSMR register and UkSMR2 register (k = 0 to 4) switch the UARTj receive to ACK or ACK to UARTk receive.

4. The same setting is used to generate an intelligent I/O interrupt 9 request and a CAN interrupt 0 request.

5. The same setting is used to generate an intelligent I/O interrupt 10 request and a CAN interrupt 1 request.

6. The same setting is used to generate an intelligent I/O interrupt 11 request and a CAN interrupt 2 request.

07 b6 b5 b4 b3 b2 b	b1 b0	Symb DMD0		After Reset al Register 0016	
		Bit Symbol	Bit Name	Function	RW
		MD00	Channel 0 Transfer	^{b1 b0} 0 0 : DMA disabled 0 1 : Single transfer	RW
		MD01	Mode Select Bit	1 0 : Do not set to this value 1 1 : Repeat transfer	RW
		BW0	Channel 0 Transfer Unit Select Bit	0 : 8 bits 1 : 16 bits	RW
		RW0	Channel 0 Transfer Direction Select Bit	0 : Fixed address to memory (forward direction) 1 : Memory (forward direction) to fixed address	RW
		MD10	Channel 1 Transfer	^{b5 b4} 0 0 : DMA disabled 0 1 : Single transfer	RW
		MD11	Mode Select Bit	1 0 : Do not set to this value 1 1 : Repeat transfer	RW
		BW1	Channel 1 Transfer Unit Select Bit	0 : 8 bits 1 : 16 bits	RW

Channel 1 Transfer

Direction Select Bit

0 : Fixed address to memory (forward direction)

1 : Memory (forward direction) to fixed address

RW

NOTES:

1. Use the LDC instruction to set the DMD0 register.

RW1

DMA Mode Register 1⁽¹⁾

7 b6 b5 b	04 b3	b2	b1	b0	Symb DMD1		After Reset al Register 0016	
					Bit Symbol	Bit Name	Function	RW
					MD20	Channel 2 Transfer	0 0 : DMA disabled 0 1 : Single transfer	RW
			Į.		MD21	Mode Select Bit	1 0 : Do not set to this value 1 1 : Repeat transfer	RV
					BW2	Channel 2 Transfer Unit Select Bit	0 : 8 bits 1 : 16 bits	RV
					RW2	Channel 2 Transfer Direction Select Bit	0 : Fixed address to memory (forward direction) 1 : Memory (forward direction) to fixed address	RV
					MD30	Channel 3 Transfer	b5 b4 0 0 : DMA disabled 0 1 : Single transfer	RV
					MD31	Mode Select Bit	1 0 : Do not set to this value 1 1 : Repeat transfer	RV
					BW3	Channel 3 Transfer Unit Select Bit	0 : 8 bits 1 : 16 bits	RV
					RW3	Channel 3 Transfer Direction Select Bit	0 : Fixed address to memory (forward direction) 1 : Memory (forward direction) to fixed address	R٧

1. Use the LDC instruction to set the DMD1 register.

Figure 12.3 DMD0 Register, DMD1 Register

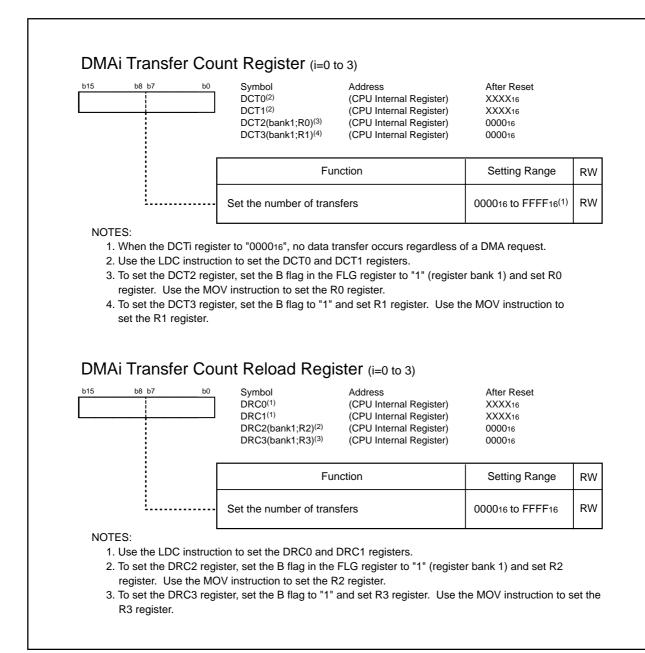
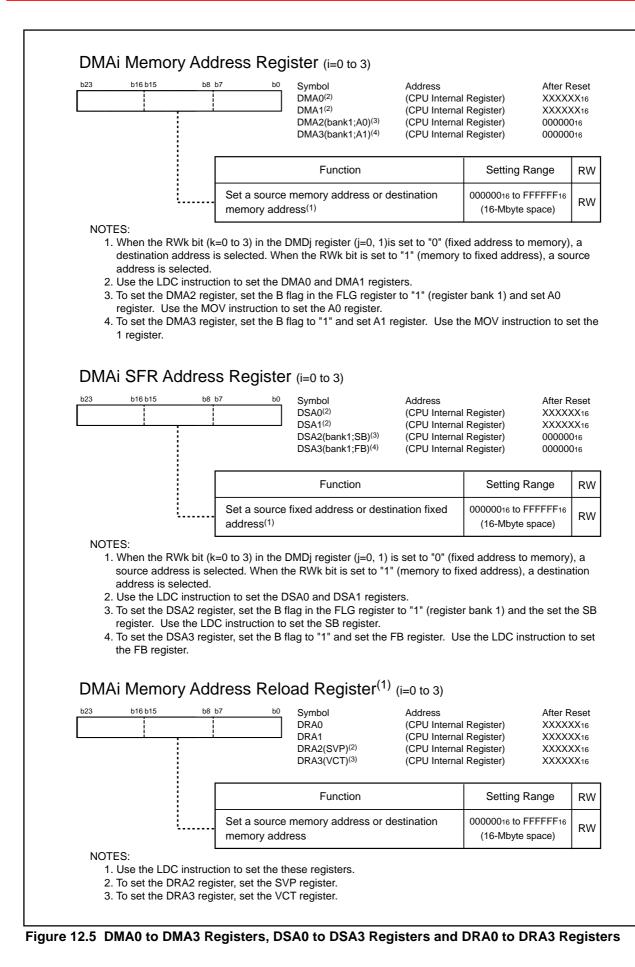



Figure 12.4 DCT0 to DCT3 Registers and DRC0 to DRC3 Registers

12.1 Transfer Cycles

Transfer cycle contains a bus cycle to read data from a memory or the SFR area (source read) and a bus cycle to write data to a memory space or the SFR area (destination write). The number of read and write bus cycles depends on source and destination addresses. In memory expansion mode and microprocessor mode, the number of read and write bus cycles also depends on the DS register. Software wait state insertion and the $\overline{\text{RDY}}$ signal make a bus cycle longer.

12.1.1 Effect of Source and Destination Addresses

When a 16-bit data is transferred with a 16-bit data bus, and the source address starts with an odd address, source read cycle has one more bus cycle compared to a source address starting with an even address.

When a 16-bit data is transferred with a 16-bit data bus and the destination address starts with an odd address, destination write cycle has one more bus cycle compared to a destination address starting with an even address.

12.1.2 Effect of the DS Register

In an external space in memory expansion or microprocessor mode, transfer cycle varies depending on the data bus used at the source and destination addresses. See **Figure 7.1** for details about the DS register.

- (1) When an 8-bit data bus (the DSi bit in the DS register is set to "0" (i=0 to 3)), accessing both source address and destination address, is used to transfer a 16-bit data, 8-bit data is transferred twice. Therefore, two bus cycles are required to read the data and another two bus cycles to write the data.
- (2) When an 8-bit data bus (the DSi bit in the DS register is set to "0" (i=0 to 3)), accessing source address, and a 16-bit data bus, accessing destination address, are used to transfer a 16-bit data, 8-bit data is read twice but is written once as 16-bit data. Therefore, two bus cycles are required for reading and one bus cycle is for writing.
- (3) When a 16-bit data bus, accessing source address, and an 8-bit data bus, accessing destination address, are used to transfer a 16-bit data, 16-bit data is read once and 8-bit data is written twice. Therefore, one bus cycle is required for reading and two bus cycles is for writing.

12.1.3 Effect of Software Wait State

When the SFR area or memory space with software wait states is accessed, the number of cycles is incremented by software wait states.

Figure 12.6 shows an example of a transfer cycle for the source-read bus cycle. In Figure 12.6, the number of source-read bus cycles is illustrated under different conditions, provided that the destination address is an address of an external space with the destination write bus cycle as two BCLK cycles (=one bus cycle). In effect, the destination-write bus cycle is also affected by each condition and the transfer cycles change accordingly. To calculate a transfer cycle, apply respective conditions to both destination-write bus cycle and source-read bus cycle. As shown in example (2) of Figure 12.6, when an 8-bit data bus, accessing both source and destination addresses, is used to transfer a 16-bit data, two bus cycles each are required for the source-read bus cycle and destination-write bus cycle.

12.1.4 Effect of RDY Signal

In memory expansion or microprocessor mode, the \overline{RDY} signal affects a bus cycle of source address or destination address is allocated address in an external space. Refer to **7.2.6** \overline{RDY} Signal for details.

BCLK									
Address Bus	CPU Use	Source	Destinati	on		CP	U Use		
- RD Signal									
 WR Signal									
Data bus	CPU Use	So	urce C	Destination	χ	CF	PU Use		
or when	-bit data is tran 16-bit data is tr	sferred fro ansferred	om an odd from sour	source ad ce by an 8	ldress B-bit data	bus			
BCLK									
Address Bus	CPU Use	Source	Source + 1	Destinatio	nX		CPU U	Jse	
RD Signal									
WR Signal									
Data Bus	CPU Use	Sou	rce Source	+ 1 Des	stination	Χ	CPU L	Jse	
3) When on BCLK	e wait state is i	nserted in	to the sou	rce-read b	us cycle	under t	he condi	itions	in (1
Г	e wait state is i		to the sou	rce-read b		under t	he condi		in (1
BCLK						under ti			in (1
BCLK Address Bus						under t			in ('
BCLK Address Bus				Destinatio		under ti		e	in (
BCLK Address Bus RD Signal WR Signal Data Bus	CPU Use	So So inserted ir	urce X	Destinatio	stination	<u></u>	CPU Us CPU	e Use	
BCLK Address Bus RD Signal WR Signal Data Bus (4) When on BCLK Address Bus RD Signal	CPU Use CPU Use	So So inserted ir	source	Destinatio	stination	e under f	CPU Us CPU		

Figure 12.6 Transfer Cycle Examples with the Source-Read Bus Cycle

12.2 DMAC Transfer Cycles

The number of DMAC transfer cycle can be calculated as follows.

Any combination of even or odd transfer read and write addresses are possible. Table 12.3 lists the number of DMAC transfer cycles. Table 12.4 lists coefficient j, k.

Transfer cycles per transfer = Number of read cycle x j + Number of write cycle x k

Transfer Unit	Bus Width	Access Address	Single-C	Chip Mode		pansion Mode cessor Mode
	Bus whath	100000 / 1001000	Read	Write	Read	Write
			Cycle	Cycle	Cycle	Cycle
	16-bit	Even	1	1	1	1
8-bit transfers		Odd	1	1	1	1
(BWi bit in the DMDp	8-bit	Even			1	1
register = 0)		Odd	_		1	1
	16-bit	Even	1	1	1	1
16-bit transfers		Odd	2	2	2	2
(BWi bit = 1)	8-bit	Even			2	2
		Odd			2	2

Table 12.3 DMAC Transfer Cycles

i= 0 to 3, p = 0 to 1

Table 12.4 Coefficient j, k

In	Internal Space				External Space					
Internal ROM or Internal RAM with no wait state	Internal ROM or Internal RAM with a wait state	SFR Area	Separate Bus with no wait state	Separate Bus with 1 wait state	Separate Bus with 2 wait states	Separate Bus with 3 wait states	Multiplexed Bus with 2 wait states	Multiplexed Bus with 3 wait states		
j = 1 k = 1	j=2 k=2	j=2 k=2	j = 1 k = 2	j = 2 k = 2	j = 3 k = 3	j = 4 k = 4	j = 3 k = 3	j = 4 k = 4		

12.3 Channel Priority and DMA Transfer Timing

When multiple DMA requests are generated in the same sampling period, between the falling edge of the CPU clock and the next falling edge, the DRQ bit in the DMiSL register (i = 0 to 3) is set to "1" (requested) simultaneously. Channel priority in this case is : DMA0 > DMA1 > DMA2 > DMA3.

Figure 12.7 shows an example of the DMA transfer by external factors.

In Figure 12.7, the DMA0 request having the highest priority is received first to start a transfer when a DMA0 request and DMA1 request are generated simultaneously. After one DMA0 transfer is completed, the bus privilege is returned to the CPU. When the CPU has completed one bus access, the DMA1 transfer starts. After one DMA1 transfer is completed, the privilege is again returned to the CPU.

In addition, DMA requests cannot be counted up since each channel has one DRQ bit. Therefore, when DMA requests, as DMA1 in Figure 12.7, occur more than once before receiving bus privilege, the DRQ bit is set to "0" as soon as privilege is acquired. The bus privilege is returned to the CPU when one transfer is completed.

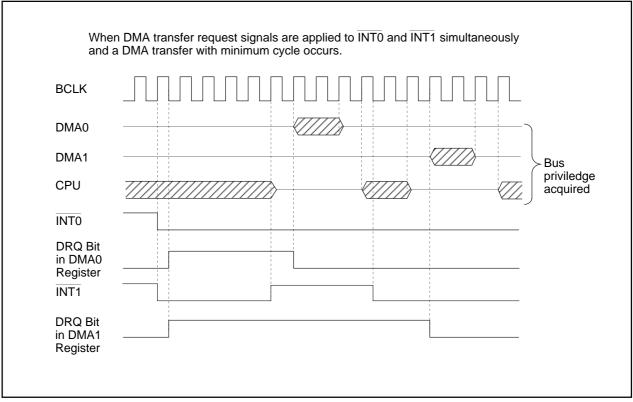


Figure 12.7 DMA Transfer by External Factors

13. DMAC II

The DMAC II performs memory-to-memory transfer, immediate data transfer and calculation transfer, which transfers the sum of two data added by an interrupt request from any peripheral functions. Table 13.1 lists specifications of the DMAC II.

Table 13.1	DMAC II Specifications
------------	------------------------

Item	Specification
DMAC II Request Factor	Interrupt requests generated by all peripheral functions when the ILVL2 to
	ILVL0 bits are set to "1112"
Transfer Data	• Data in memory is transferred to memory (memory-to-memory transfer)
	 Immediate data is transferred to memory (immediate data transfer)
	• Data in memory (or immediate data) + data in memory are transferred to
	memory (calculation transfer)
Transfer Block	8 bits or 16 bits
Transfer Space	64-Kbyte space in addresses 0000016 to 0FFFF16 ^(1, 2)
Transfer Direction	Fixed or forward address
	Selected separately for each source address and destination address
Transfer Mode	Single transfer, burst transfer
Chained Transfer Function	Parameters (transfer count, transfer address and other information) are
	switched when transfer counter reaches zero
End-of-Transfer Interrupt	Interrupt occurs when a transfer counter reaches zero
Multiple Transfer Function	Multiple data can be transferred by a generated request for one DMA II transfer
NOTES:	

NOTES:

- 1. When transferring a 16-bit data to destination address 0FFFF16, it is transferred to 0FFFF16 and 1000016. The same transfer occurs when the source address is 0FFF16.
- 2. The actual space where transfer can occur is limited due to internal RAM capacity.

13.1 DMAC II Settings

DMAC II can be made available by setting up the following registers and tables.

- RLVL register
- DMAC II Index
- Interrupt control register of the peripheral function causing a DMAC II request
- The relocatable vector table of the peripheral function causing a DMAC II request
- IRLT bit in the IIOiIE register (i = 0 to 11) if using the intelligent I/O or CAN interrupt Refer to 10. Interrupts for details on the IIOiIE register

13.1.1 RLVL Register

When the DMAII bit is set to "1" (DMAC II transfer) and the FSIT bit to "0" (normal interrupt), the DMAC II is activated by an interrupt request from any peripheral function with the ILVL2 to ILVL0 bits in the interrupt control register set to "1112" (level 7).

Figure 13.1 shows the RLVL register.

b7 b6 b5 b4 b3 b2 b1 b0	Symbo RLVL	ol Address 009F16	After Reset XXXX 00002	
	Bit Symbol	Bit Name	Function	RW
	RLVL0		b2 b1 b0 0 0 0 : Level 0 0 0 1 : Level 1	RW
	RLVL1	Stop/Wait Mode Exit Minimum Interrupt Priority Level Control Bit ⁽¹⁾	0 1 0 : Level 2 0 1 1 : Level 3 1 0 0 : Level 4	RW
	RLVL2		1 0 1 : Level 5 1 1 0 : Level 6 1 1 1 : Level 7	RW
	FSIT	High-Speed Interrupt Set Bit ⁽²⁾	 0: Interrupt priority level 7 is used for normal interrupt 1: Interrupt priority level 7 is used for high-speed interrupt 	RW
	(b4)	Nothing is assigned. Wh When read, its content is		_
	DMA II	DMAC II Select Bit ⁽⁴⁾	 0: Interrupt priority level 7 is used for interrupt 1: Interrupt priority level 7 is used for DMAC II transfer⁽³⁾ 	RW
	(b7 - b6)	Nothing is assigned. Wh When read, its content is	-	_
 the level set in the RLV the FLG register. When the FSIT bit is set case, set only one inter Set the ILVL2 to ILVL0 change the DMAII bit so DMAII bit to "1". 	/L2 to RL\ et to "1", in errupt to in bits in the setting to " bit is inder	/L0 bits. Set the RLVL2 to terrupt priority level 7 bect terrupt priority level 7 and interrupt control register 0" after setting the DMAII terminate. When using an	ested interrupt priority level is higher t o RLVL0 bits to the same value as IPI comes the high-speed interrupt. In this I the DMA II bit to "0". after setting the DMAII bit to "1". Do n bit to "1". Set the FSIT bit to "0" when interrupt, set the interrupt control regi	L in s ot the

Figure 13.1 RLVL Register

13.1.2 DMAC II Index

The DMAC II index is a data table which comprises 8 to 18 bytes (maximum 32 bytes when the multiple transfer function is selected). The DMAC II index stores parameters for transfer mode, transfer counter, source address (or immediate data), operation address as an address to be calculated, destination address, chained transfer address, and end-of-transfer interrupt address.

This DMAC II index must be located on the RAM area.

Figure 13.2 shows a configuration of the DMAC II index. Table 13.2 lists a configuration of the DMAC II index in transfer mode.

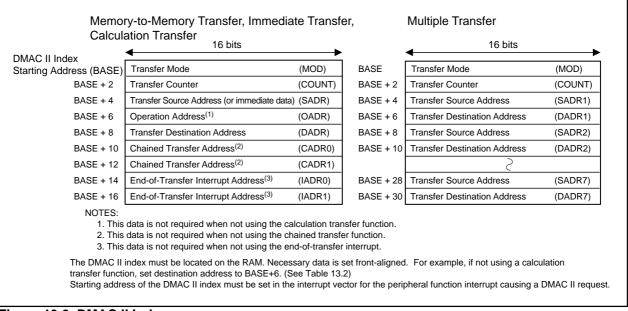


Figure 13.2 DMAC II Index

The followings are details of the DMAC II index. Set these parameters in the specified order listed in Table 13.2, according to DMAC II transfer mode.

• Transfer mode (MOD)

Two-byte data is required to set transfer mode. Figure 13.3 shows a configuration for transfer mode.

• Transfer counter (COUNT)

Two-byte data is required to set the number of transfer.

• Transfer source address (SADR)

Two-byte data is required to set the source memory address or immediate data.

• Operation address (OADR)

Two-byte data is required to set a memory address to be calculated. Set this data only when using the calculation transfer function.

• Transfer destination address (DADR)

Two-byte data is required to set the destination memory address.

Chained transfer address (CADR)

Four-byte data is required to set the starting address of the DMAC II index for the next transfer. Set this data only when using the chained transfer function.

• End-of-transfer interrupt address (IADR)

Four-byte data is required to set a jump address for end-of-transfer interrupt processing. Set this data only when using the end-of-transfer interrupt.

		emory-to-Me nmediate Da	emory Trans ata Transfer	fer		Multiple Transfer			
Chained Transfer	Not Used	Used	Not Used	Used	Not Used	Used	Not Used	Used	Not Available
End-of-Transfer Interrupt	Not Used	Not Used	Used	Used	Not Used	Not Used	Used	Used	Not Available
	MOD	MOD	MOD	MOD	MOD	MOD	MOD	MOD	MOD
	COUNT	COUNT	COUNT	COUNT	COUNT	COUNT	COUNT	COUNT	COUNT
	SADR	SADR	SADR	SADR	SADR	SADR	SADR	SADR	SADR1
	DADR	DADR	DADR	DADR	OADR	OADR	OADR	OADR	DADR1
DMAC II	8 bytes	CADR0	IADR0	CADR0	DADR	DADR	DADR	DADR	
Index	0 29100	CADR1	IADR1	CADR1	10 bytes	CADR0	IADR0	CADR0	
		12 bytes	12 bytes	IADR0		CADR1	IADR1	CADR1	SADRi
		,	,	IADR1		14 bytes	14 bytes	IADR0	DADRi
				16 bytes				IADR1	i=1 to 7
								18 bytes	Max 32 bytes (when i=7)

Transfer Mode (M	IOD) ⁽¹)			
b15 b8 b7 b0					
	Bit Symbol	Bit Name	Function (MULT=0)	Function (MULT=1)	RW
	SIZE	Transfer Unit Select Bit	0: 8 bits 1: 16 bits		RW
· · · ·	IMM	Transfer Data Select Bit	0: Immediate data 1: Memory	Set to "1"	RW
· · · · · · · · · · · · · · · · · · ·	UPDS	Transfer Source Direction Select Bit	0: Fixed address 1: Forward address		RW
· · · · · · · · · · · · · · · · · · ·	UPDD	Transfer Destination Direction Select Bit	0: Fixed address 1: Forward address		RW
· · · · · · · · · · · · · · · · · · ·	OPER/ CNT0 ⁽²⁾	Calculation Transfer Function Select Bit	0: Not used 1: Used	b6 b5 b4 0 0 0: Do not set to this value	RW
· · · · · · · · · · · · · · · · · · ·	BRST/ CNT1 ⁽²⁾	Burst Transfer Select Bit	0: Single transfer 1: Burst transfer	0 0 1: Once 0 1 0: Twice :	RW
· · · · · · · · · · · · · · · · · · ·	INTE/ CNT2 ⁽²⁾	End-of-Transfer Interrupt Select Bit	0: Interrupt not used 1: Use interrupt	: 1 1 0: 6 times 1 1 1: 7 times	RW
	CHAIN	Chained Transfer Select Bit	0: Chained transfer not used 1: Use chained transfer	Set to "0"	RW
	(b14 - b8)	0 0	d. When write, set to "0" tent is indeterminate.		_
	MULT	Multiple Transfer Select Bit	0: Multiple transfer not used	1: Use multiple transfer	RW

NOTES:

1. MOD must be located on the RAM.

2. When the MULT bit is set to "0" (no multiple transfer), bits 4 to 6 becomes the OPER, BRST, INTE

bits. When the MULT bit is set to "1" (multiple transfer), bits 4 to 6 becomes the CNT0 to CNT2 bits.

Figure 13.3 MOD

13.1.3 Interrupt Control Register for the Peripheral Function

For the peripheral function interrupt activating a DMAC II request, set the ILVL2 to ILVL0 bits to "1112" (level 7).

13.1.4 Relocatable Vector Table for the Peripheral Function

Set the starting address of the DMAC II index in the interrupt vector for the peripheral function interrupt activating a DMAC II request.

When using the chained transfer, the relocatable vector table must be located in the RAM.

13.1.5 IRLT Bit in the IIOiIE Register (i=0 to 11)

When the intelligent I/O interrupt or CAN interrupt is used to activate DMAC II, set the IRLT bit in the IIOiIE register of the interrupt to "0".

13.2 DMAC II Performance

The DMAC II function is selected by setting the DMA II bit to "1" (DMAC II transfer). DMAC II request is activated by all peripheral function interrupts with the ILVL2 to ILVL0 bits set to "1112" (level 7). These peripheral function interrupt request signals become DMAC II transfer request signals and the peripheral function interrupt cannot be used.

When an interrupt request is generated by setting the ILVL2 to ILVL0 bits to "1112" (level 7), the DMAC II is activated regardless of what state the I flag and IPL is in.

13.3 Transfer Data

The DMAC II transfers 8-bit or 16-bit data.

- Memory-to-memory transfer : Data is transferred from a desired memory location in a 64-Kbyte space (Addresses 0000016 to 0FFFF16) to another desired memory location in the same space.
- Immediate data transfer : Immediate data is transferred to a desired memory location in a 64-Kbyte space.
- Calculation transfer : Two 8-bit or16-bit data are added together and the result is transferred to a desired memory location in a 64K-byte space.

When a 16-bit data is transferred to the destination address 0FFFF16, it is transferred to 0FFFF16 and 1000016. The same transfer occurs when the source address is 0FFFF16.

13.3.1 Memory-to-Memory Transfer

Data transfer between any two memory locations can be:

- a transfer from a fixed address to another fixed address
- a transfer from a fixed address to a relocatable address
- a transfer from a relocatable address to a fixed address
- a transfer from a relocatable address to another relocatable address

When a relocatable address is selected, the DMAC II increments address, after a transfer, for the next transfer. In a 8-bit transfer, the transfer address is incremented by one. In a 16-bit transfer, the transfer address is incremented by two.

When a source or destination address exceeds address 0FFFF16 as a result of address incrementation, the source or destination address returns to address 00000016 and continues incrementation. Maintain source and destination address at address 0FFFF16 or below.

13.3.2 Immediate Data Transfer

The DMAC II transfers immediate data to a desired memory location. A fixed or relocatable address can be selected as the destination address. Store the immediate data into SADR. To transfer an 8-bit immediate data, write the data in the low-order byte of SADR (high-order byte is ignored).

13.3.3 Calculation Transfer

After two memory data, or an immediate data and memory data are added together, the calculated result is transferred to a desired memory location. SADR must have one memory location address to be calculated or immediate data. OADR must have the other memory location address to be calculated. Fixed or relocatable address can be selected as source and destination addresses when using a memory + memory calculation transfer. If the transfer source address is relocatable, the operation address also becomes relocatable. Fixed or relocatable address can be selected as the transfer destination address when using an immediate data + memory calculation transfer.

13.4 Transfer Modes

In DMAC II, single and burst transfers are available. The BRST bit in MOD selects transfer method, either the single transfer or burst transfer. COUNT determines how many transfers occur. No transfer occurs when COUNT is set to "000016". All interrupts are ignored while transfer is in progress.

13.4.1 Single Transfer

For every transfer request factor, the DMAC II transfers one transfer unit of 8-bit or 16-bit data once. When the source or destination address is relocatable, the DMAC II increments the address, after a transfer, for the next transfer.

COUNT is decremented every time a transfer occurs. When using the end-of-transfer interrupt, the interrupt is acknowledged when COUNT reaches "0".

13.4.2 Burst Transfer

For every transfer request factor, the DMAC II continuously transfers data the number of times determined by COUNT. The DMAC II decrements COUNT every time a transfer occurs. The burst transfer ends when COUNT reaches "0". The end-of-transfer interrupt is acknowledged when the burst transfer ends if using the end-of-transfer interrupt. All interrupts are ignored while the burst transfer is in progress.

13.4.3 Multiple Transfer

The MULT bit in MOD selects the multiple transfer. When using the multiple transfer, select the memoryto-memory transfer. One transfer request factor initiates multiple transfers. The CNT2 to CNT0 bits in MOD selects the number of transfers from "0012" (once) to "1112" (7 times). Do not set the CNT2 to CNT0 bits to "0002".

The transfer source and destination addresses for each transfer must be allocated alternately to addresses following MOD and COUNT. When the multiple transfer is selected, the calculation transfer, burst transfer, end-of-transfer interrupt and chained transfer cannot be used.

13.4.4 Chained Transfer

The CHAIN bit in MOD selects the chained transfer.

The following process initiates the chained transfer.

- (1) Transfer, caused by a transfer request factor, occurs according to the content of the DMAC II index. The vectors of the request factor indicates the address where the DMAC II index is allocated. For each request, the BRST bit in MOD selects either single or burst transfer.
- (2) When COUNT reaches "0", the contents of CADR1 to CADR0 are written to the vector of the request factor. When the INTE bit in the MOD is set to "1," the end-of-transfer interrupt is generated simultaneously.
- (3) When the next DMAC II transfer request is generated, transfer occurs according to the contents of the DMAC II index indicated by the vector rewritten in (2).

Figure 13.4 shows the relocatable vector and DMACII index of when the chained transfer is in progress. For the chained transfer, the relocatable vector table must be located in the RAM.

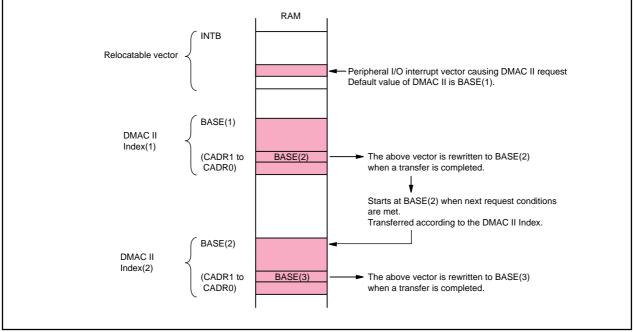


Figure 13.4 Relocatable Vector and DMAC II Index

13.4.5 End-of-Transfer Interrupt

The INTE bit in MOD selects the end-of-transfer interrupt. Set the starting address of the end-of-transfer interrupt service routine in the IADR1 to IADR0 bits. The end-of-transfer interrupt is generated when COUNT reaches "0."

13.5 Execution Time

DMAC II execution cycle is calculated by the following equations:

Multiple transfers: $t = 21 + (11 + b + c) \times k$ cycles Other than multiple transfers: $t = 6 + (26 + a + b + c + d) \times m + (4 + e) \times n$ cycles

a: If IMM = 0 (source of transfer is immediate data), a = 0;

if IMM = 1 (source of transfer is memory), a = -1

b: If UPDS = 1 (source transfer address is a relocatable address), b = 0;

if UPDS = 0 (source transfer address is a fixed address), b = 1

- c: If UPDD = 1 (destination transfer address is a relocatable address), c = 0;
- if UPDD = 0 (destination transfer address is a fixed address), c = 1
- d: If OPER = 0 (calculation function is not selected), d = 0;

if OPER = 1 (calculation function is selected) and UPDS = 0 (source of transfer is immediate data or fixed address memory), d = 7;

if OPER = 1 (calculation function is selected) and UPDS = 1 (source of transfer is relocatable address memory), d = 8

e: If CHAIN = 0 (chained transfer is not selected), e = 0; if CHAIN = 1 (chained transfer is selected), e = 4 m: BRST = 0 (single transfer), m = 1; BRST = 1 (burst transfer), m = the value set in COUNT

n: If COUNT = 1, n = 0; if COUNT = 2 or more, n = 1

k: Number of transfers set in the CNT2 to CNT0 bits

The equations above are approximations. The number of cycles may change with CPU state, bus wait state, and DMAC II index allocation.

The first instruction from the end-of-transfer interrupt service routine is executed in the 8th cycle after the DMAC II transfer is completed.

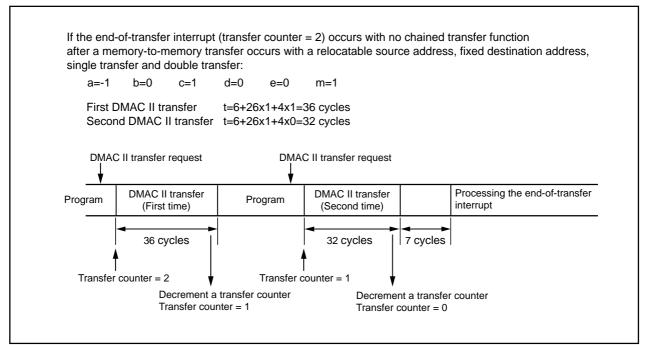
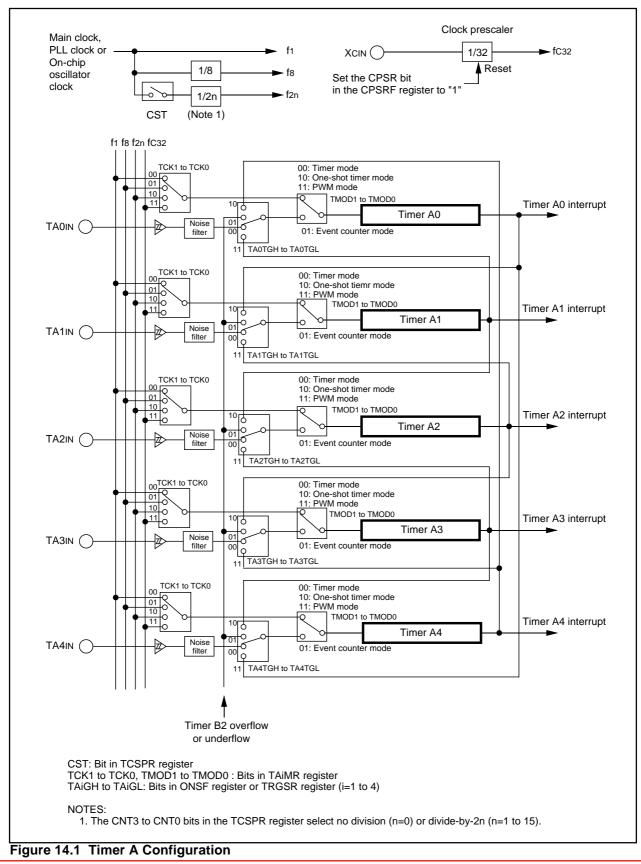



Figure 13.5 Transfer Cycle

When an interrupt request which acts as a DMAC II transfer request factor and another interrupt request with higher priority (e.g., $\overline{\text{NMI}}$ or watchdog timer) are generated simultaneously, the interrupt with higher priority takes precedence over the DMAC II transfer. The pending DMAC II transfer starts after the interrupt sequence has been completed.

14. Timer

The microcomputer has eleven 16-bit timers. Five timers A and six timers B have different functions. Each timer operates independently. The count source for each timer is the clock for timer operations including counting and reloading, etc. Figures 14.1 and 14.2 show block diagrams of timer A and timer B configuration.

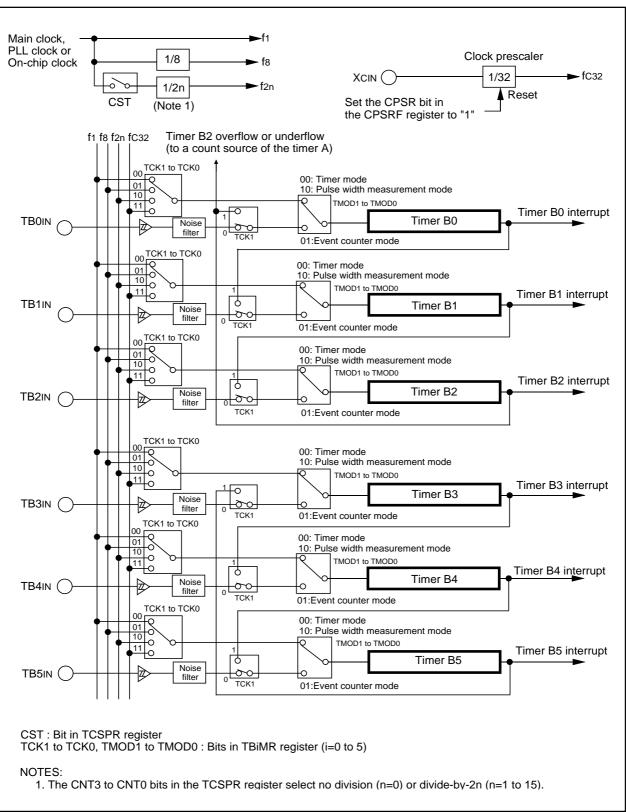


Figure 14.2 Timer B Configuration

14.1 Timer A

Figure 14.3 shows a block diagram of the timer A. Figures 14.4 to 14.7 show registers associated with the timer A.

The timer A supports the following four modes. Except in event counter mode, all timers A0 to A4 have the same function. The TMOD1 to TMOD0 bits in the TAiMR register (i=0 to 4) determine which mode is used.

- Timer mode: The timer counts an internal count source.
- Event counter mode: The timer counts an external pulse or an overflow and underflow of other timers.
- One-shot timer mode: The timer outputs one valid pulse until the counter reaches "000016".
- Pulse width modulation mode: The timer continuously outputs desired pulse widths.

Table 14.1 lists TAiOUT pin settings when used as an output. Table 14.2 lists TAiIN and TAiOUT pin settings when used as an input.

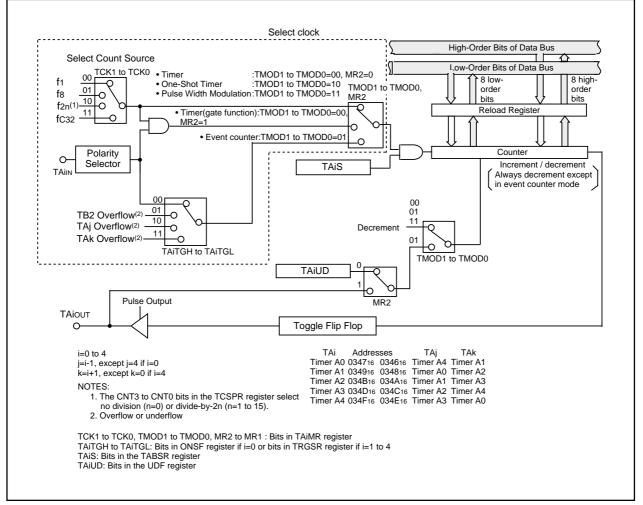


Figure 14.3 Timer A Block Diagram

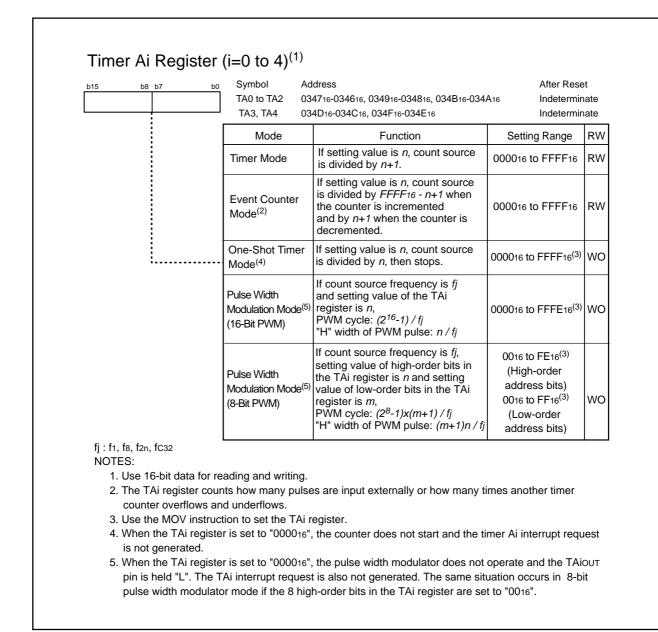


Figure 14.4 TA0 to TA4 Registers

57 b6 b5 b4	b3 b2 b1 b0	Symb		After I	
┊╵┊╵┊╵┊		IAOM	IRO to TA4MR 035616, 035	5716, 035816, 035916, 035A16 0000	0X002
		Bit Symbol	Bit Name	Function	RV
		TMOD0	Operation Mode	b1b0 0 0 : Timer mode 0 1 : Event counter mode	RV
		TMOD1	Select Bit	1 0 : One-shot timer mode 1 1 : Pulse width modulation (PWM) mode	RV
		(b2)	Nothing is assigned. W	Vhen write, set to "0".	_
		MR1			RV
		MR2		Function varies depending on operation mode	RV
		MR3			RV
		TCK0	Count Source	Function varies depending on	RV
			Select Bit	operation mode	
Count St	tart Flag	TCK1			RV
	Ŭ	TCK1 Symb TABS		After Reset 0016	RV
	Ŭ	Symb		After Reset	
	Ŭ	Symb TABS Bit	R 034016	After Reset 0016	RV
	Ŭ	Symb TABS Bit Symbol	R 034016 Bit Name Timer A0 Count	After Reset 0016 Function 0 : Stops counting	RV
	Ŭ	Symb TABS Bit Symbol TA0S	R 034016 Bit Name Timer A0 Count Start Flag Timer A1 Count	After Reset 0016 Function 0 : Stops counting 1 : Starts counting 0 : Stops counting	RV RV RV RV RV
	Ŭ	Symb TABS Bit Symbol TA0S TA1S	R 034016 Bit Name Timer A0 Count Start Flag Timer A1 Count Start Flag Timer A2 Count	After Reset 0016 Function 0 : Stops counting 1 : Starts counting 0 : Stops counting 1 : Starts counting 1 : Starts counting 0 : Stops counting 0 : Stops counting 0 : Stops counting	RV RV RV
	Ŭ	Symb TABS Bit Symbol TA0S TA1S TA2S	R 034016 Bit Name Timer A0 Count Start Flag Timer A1 Count Start Flag Timer A2 Count Start Flag Timer A3 Count	After Reset 0016 Function 0 : Stops counting 1 : Starts counting 0 : Stops counting 1 : Starts counting	RV RV RV RV RV
	Ŭ	Symb TABS Bit Symbol TA0S TA1S TA1S TA2S TA3S	R 034016 Bit Name Timer A0 Count Start Flag Timer A1 Count Start Flag Timer A2 Count Start Flag Timer A3 Count Start Flag Timer A4 Count	After Reset 0016 Function 0: Stops counting 1: Starts counting 0: Stops counting 1: Starts counting 0: Stops counting	RV RV RV RV RV RV
	Ŭ	Symb TABS Symbol TA0S TA1S TA1S TA2S TA3S TA4S	R 034016 Bit Name Timer A0 Count Start Flag Timer A1 Count Start Flag Timer A2 Count Start Flag Timer A3 Count Start Flag Timer A4 Count Start Flag Timer A4 Count Start Flag	After Reset 0016 Function 0: Stops counting 1: Starts counting 0: Stops counting 1: Starts counting	RV RV RV

Figure 14.5 TA0MR to TA4MR Registers and TABSR Register

07 b6 b5 b4 l	b3 b2 b1 b0	Symb UDF	ol Address 034416	After Reset 0016	
		Bit Symbol	Bit Name	Function	RW
		TA0UD	Timer A0 Up/Down Flag	0 : Decrement (Note 2)	RW
		TA1UD	Timer A1 Up/Down Flag	0 : Decrement 1 : Increment (Note 2)	RW
		TA2UD	Timer A2 Up/Down Flag	0 : Decrement 1 : Increment (Note 2)	R٧
		TA3UD	Timer A3 Up/Down Flag	0 : Decrement 1 : Increment (Note 2)	RW
		TA4UD	Timer A4 Up/Down Flag	0 : Decrement 1 : Increment (Note 2)	R٧
		TA2P	Timer A2 Two-Phase Pulse Signal Processing Function Select Bit	0 : Disables two-phase pulse signal processing function 1 : Enables two-phase pulse signal processing function (Note 3)	wo
		ТАЗР	Timer A3 Two-Phase Pulse Signal Processing Function Select Bit	0 : Disables two-phase pulse signal processing function 1 : Enables two-phase pulse signal processing function (Note 3)	wc
		TA4P	Timer A4 Two-Phase Pulse Signal Processing Function Select Bit	0 : Disables two-phase pulse signal processing function 1 : Enables two-phase pulse signal processing function (Note 3)	wo

NOTES:

1. Use the MOV instruction to set the UDF register.

2. This bit is enabled when the MR2 bit in the TAiMR register (i=0 to 4) is set to "0" (the UDF register causes increment/decrement switching) in event counter mode.

3. Set this bit to "0" when not using the two-phase pulse signal processing function.

One-Shot Start Flag

6 b5 b	b4 b	b3 b2 b	b1 b0	Symb ONSF		After Reset 0016	
				Bit Symbol	Bit Name	Function	RW
				TA0OS	Timer A0 One-Shot Start Flag	0 : In an idle state 1 : Starts the timer (Note 1)	RW
				TA1OS	Timer A1 One-Shot Start Flag	0 : In an idle state 1 : Starts the timer (Note 1)	RW
				TA2OS	Timer A2 One-Shot Start Flag	0 : In an idle state 1 : Starts the timer (Note 1)	RW
				TA3OS	Timer A3 One-Shot Start Flag	0 : In an idle state 1 : Starts the timer (Note 1)	RW
				TA4OS	Timer A4 One-Shot Start Flag	0 : In an idle state 1 : Starts the timer (Note 1)	RW
				TAZIE	Z-Phase Input Enable Bit	0 : Disables Z-phase input 1 : Enables Z-phase input	RW
				TA0TGL	Timer A0 Event/Trigger	b7b6 0 0 : Selects an input to the TA0IN pin 0 1 : Selects the TB2 overflows ⁽²⁾	RW
				TA0TGH	Select Bit	1 0 : Selects the TA4 overflows ⁽²⁾ 1 1 : Selects the TA1 overflows ⁽²⁾	RW
) DTES:				TAZIE TA0TGL	Start Flag Z-Phase Input Enable Bit Timer A0 Event/Trigger	1 : Starts the timer (Note 1) 1 : Enables Z-phase input 1 : Enables Z-phase input b7b6 0 0 : Selects an input to the TA0IN pin 0 1 : Selects the TB2 overflows ⁽²⁾ 1 0 : Selects the TA4 overflows ⁽²⁾	

NOTES:

1. When read, the bit is set to "0".

2. Overflow or underflow.

Figure 14.6 UDF Register and ONSF Register

	b3 b2 b1 b0	Symb TRGS		After Reset 0016	
		Bit Symbol	Bit Name	Function	R١
		TA1TGL	Timer A1 Event/Trigger	b0 b1 0 0 : Selects an input to the TA1IN pin 0 1 : Selects the TB2 overflows ⁽¹⁾	R۱
		TA1TGH	Select Bit	1 0 : Selects the TA0 overflows ⁽¹⁾ 1 1 : Selects the TA2 overflows ⁽¹⁾	R۱
		TA2TGL	Timer A2 Event/Trigger	$^{b3b2}_{00}$ 0 0 : Selects an input to the TA2IN pin 0 1 : Selects the TB2 overflows ⁽¹⁾	R۱
		TA2TGH	Select Bit	1 0 : Selects the TA1 overflows ⁽¹⁾ 1 1 : Selects the TA3 overflows ⁽¹⁾	R١
		TA3TGL	Timer A3 Event/Trigger	b5b4 0 0 : Selects an input to the TA3IN pin 0 1 : Selects the TB2 overflows ⁽¹⁾	R٧
		TA3TGH	Select Bit	1 0 : Selects the TA2 overflows ⁽¹⁾ 1 1 : Selects the TA4 overflows ⁽¹⁾	R١
		TA4TGL	Timer A4 Event/Trigger	b7 b6 0 0 : Selects an input to the TA4IN pin 0 1 : Selects the TB2 overflows ⁽¹⁾	R١
		TA4TGH	Select Bit	1 0 : Selects the TA3 overflows ⁽¹⁾	R٧
	w or underflo urce Pre		Register	1 1 : Selects the TA0 overflows ⁽¹⁾	
1. Overflow			ol Address	After Reset ⁽²⁾ 0XXX 00002	
1. Overflow	urce Pre	scaler	ol Address	After Reset ⁽²⁾	RV
1. Overflow	urce Pre	Scaler Symb TCSP Bit	ol Address 2R 035F16	After Reset ⁽²⁾ 0XXX 00002	RV
1. Overflow	urce Pre	Scaler Symb TCSP Bit Symbol	ol Address 2R 035F16 Bit Name	After Reset ⁽²⁾ 0XXX 00002 Function If setting value is <i>n</i> , <i>f</i> 2 <i>n</i> is the main clock, PLL clock or on-chip	
1. Overflow	urce Pre	Scaler Symb TCSP Bit Symbol CNT0	ol Address 2R 035F16	After Reset ⁽²⁾ 0XXX 00002 Function If setting value is <i>n</i> , <i>f</i> 2 <i>n</i> is the	R۷
1. Overflow	urce Pre	Scaler Symb TCSP Bit Symbol CNT0 CNT1	ol Address 2R 035F16 Bit Name	After Reset ⁽²⁾ 0XXX 00002 Function If setting value is <i>n</i> , <i>f</i> 2 <i>n</i> is the main clock, PLL clock or on-chip oscillator clock divided by 2 <i>n</i> .	RV
1. Overflow	urce Pre	Scaler Symb TCSP Bit Symbol CNT0 CNT1 CNT2	ol Address 2R 035F16 Bit Name	After Reset ⁽²⁾ 0XXX 00002 Function If setting value is <i>n</i> , <i>f</i> 2 <i>n</i> is the main clock, PLL clock or on-chip oscillator clock divided by 2 <i>n</i> . Not divided if <i>n</i> =0. ⁽¹⁾ men write, set to "0".	RV RV
1. Overflow	urce Pre	Scaler Symb TCSP Bit Symbol CNT0 CNT1 CNT2	ol Address 2R 035F16 Bit Name	After Reset ⁽²⁾ 0XXX 00002 Function If setting value is <i>n</i> , <i>f</i> 2 <i>n</i> is the main clock, PLL clock or on-chip oscillator clock divided by 2 <i>n</i> .	R' R'

Figure 14.7 TRGSR Register and TCSPR Register

Pin	Setting					
	PS1, PS2 Registers	PSL1, PSL2 Registers	PSC Register			
P70/TA00UT ⁽¹⁾	PS1_0= 1	PSL1_0=1	PSC_0= 0			
P72/TA10UT	PS1_2= 1	PSL1_2=1	PSC_2= 0			
P74/TA2out	PS1_4= 1	PSL1_4=0	PSC_4= 0			
Р76/ТАЗОUT	PS1_6= 1	PSL1_6=1	PSC_6= 0			
P80/TA4OUT	PS2_0= 1	PSL2_0=0	_			

Table 14.1 Pin Settings for Output from TAioUT Pin (i=0 to 4)

NOTES:

1. P70/TA0OUT is a port for the N-channel open drain output.

Table 14.2 Pin Settings for Input to TAiN and TAiOUT Pins (i=0 to 4)

Pin	Setting		
	PS1, PS2 Registers	PD7, PD8 Registers	
P70/TA00UT	PS1_0=0	PD7_0=0	
P71/TA0IN	PS1_1=0	PD7_1=0	
P72/TA1out	PS1_2=0	PD7_2=0	
P73/TA1IN	PS1_3=0	PD7_3=0	
Ρ74ΤΑ2ουτ	PS1_4=0	PD7_4=0	
P75/TA2IN	PS1_5=0	PD7_5=0	
Ρ76ΤΑ3Ουτ	PS1_6=0	PD7_6=0	
P77/TA3IN	PS1_7=0	PD7_7=0	
Р80/ТА400т	PS2_0=0	PD8_0=0	
P81/TA4IN	PS2_1=0	PD8_1=0	

14.1.1 Timer Mode

In timer mode, the timer counts an internally generated count source (see Table 14.3). Figure 14.8 shows the TAiMR register (i=0 to 4) in timer mode.

Item	Specification				
Count Source	f1, f8, f2n ⁽¹⁾ , fC32				
Counting Operation	The timer decrements a counter value				
	When the timer counter underflows, content of the reload register is reloaded into t				
	count register and counting resumes.				
Divide Ratio	1/(n+1) n: setting value of the TAi register (i=0 to 4) 000016 to FFFF16				
Counter Start Condition	The TAiS bit in the TABSR register is set to "1" (starts counting)				
Counter Stop Condition	The TAiS bit is set to "0" (stops counting)				
Interrupt Request Generation Timing	The timer counter underflows				
TAilN Pin Function	Programmable I/O port or gate input				
TAIOUT Pin Function	Programmable I/O port or pulse output				
Read from Timer	The TAi register indicates counter value				
Write to Timer	When the timer counter stops,				
	the value written to the TAi register is also written to both reload register and counter				
	While counting,				
	the value written to the TAi register is written to the reload register				
	(It is transferred to the counter at the next reload timing)				
Selectable Function	Gate function				
	Input signal to the TAin pin determines whether the timer counter starts or stops counting				
	Pulse output function				
	The polarity of the TAiOUT pin is inversed whenever the timer counter underflows				

Table 14.3	Specifications in Timer Mode
------------	-------------------------------------

NOTES:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

b7 b6 b5		0 Symb		After Reso 35716, 035816, 035916, 035A16 0000 0X0	
		Bit Symbol	Bit Name	Function	RW
		TMOD0	Operation Mode	b1 b0 0 0 : Timer mode	RW
		TMOD1	Select Bit		RW
		(b2)	Nothing is assigned.	When write, set to "0".	-
		MR1	Gate Function	 b4 b3 0 X : Gate function disabled⁽¹⁾ (TAilN pin is a programmable I/O pin) 1 0 : Timer counts only while the 	RW
	i	MR2	Select Bit	1 1 : Timer counts only while the TAilly pin is held "L"	RW
		MR3	Set to "0" in timer mo	de	RW
		тско	Count Source	^{b7 b6} 0 0 : f1 0 1 : f8	RW
	тск1		Select Bit	1 0 : $f_{2n}^{(2)}$ 1 1 : f_{C32}	RW

Figure 14.8 TA0MR to TA4MR Registers

14.1.2 Event Counter Mode

In event counter mode, the timer counts how many external signals are applied or how many times another timer overflows and underflows. The timers A2, A3 and A4 can count externally generated two-phase signals. Table 14.4 lists specifications in event counter mode (when not handling a two-phase pulse signal). Table 14.5 lists specifications in event counter mode (when handling a two-phase pulse signal with the timer A2, A3 and A4). Figure 14.9 shows the TAiMR (i=0 to 4) register in event counter mode.

Table 14 4	Specifications in Event Counter Mode	(when not processi	a two-phace	nuleo cignal)
Table 14.4	Specifications in Event Counter Mode	(when not processi	iy two-phase	puise signal)

Item	Specification
Count Source	• External signal applied to the TAiIN pin (i = 0 to 4) (valid edge can be selected by
	program)
	• Timer B2 overflow or underflow signal, timer Aj overflow or underflow signal (j=i-1,
	except j=4 if i=0) and timer Ak overflow or underflow signal (k=i+1, except k=0 if i=4)
Counting Operation	• External signal and program can determine whether the timer increments or decre-
	ments the counter
	• When the timer counter underflows or overflows, the content of the reload register is
	reloaded into the count register and counting resumes. When the free-running count
	function is selected, the timer counter continues running without reloading.
Divide Ratio	• 1/(FFFF16 - n + 1) for counter increment
	• 1/(n + 1) for counter decrement n : setting value of the TAi register 000016 to FFFF16
Counter Start Condition	The TAiS bit in the TABSR register is set to "1" (starts counting)
Counter Stop Condition	The TAiS bit is set to "0" (stops counting)
Interrupt Request Generation Timing	The timer counter overflows or underflows
TAilN Pin Function	Programmable I/O port or count source input
TAiout Pin Function	Programmable I/O port, pulse output or input selecting a counter increment or decrement
Read from Timer	The TAi register indicates counter value
Write to Timer	When the timer counter stops,
	the value written to the TAi register is also written to both reload register and counter
	While counting,
	the value written to the TAi register is written to the reload register
	(It is transferred to the counter at the next reload timing)
Selectable Function	Free-running count function
	Content of the reload register is not reloaded even if the timer counter overflows or
	underflows
	Pulse output function
	The polarity of the TAiOUT pin is inversed whenever the timer counter overflows or
	underflows

Item	Specification
Count Source	Two-phase pulse signal applied to the TAIIN pin, or TAIIN and TAIOUT pin (i = 2 to 4)
Counting Operation	Two-phase pulse signal determines whether the timer increments or decrements a
	counter value
	• When the timer counter overflows or underflows, content of the reload register is
	reloaded into the count register and counting resumes. With the free-running count
	function, the timer counter continues running without reloading.
Divide Ratio	 1/ (FFFF16 - n + 1) for counter increment
	• $1/(n + 1)$ for counter decrement n : setting value of the TAi register 000016 to FFFF16
Counter Start Condition	The TAIS bit in the TABSR register is set to "1" (starts counting)
Counter Stop Condition	The TAiS bit is set to "0" (stops counting)
Interrupt Request Generation Timing	The timer counter overflows or underflows
TAilN Pin Function	Two-phase pulse signal is applied
	Two-phase pulse signal is applied
Read from Timer	The TAi register indicates counter value
Write to Timer	When the timer counter stops,
	the value written to the TAi register is also written to both reload register and counter
	 While counting,
	the value written to the TAi register is written to the reload register
	(It is transferred to the counter at the next reload timing)
Selectable Function ⁽¹⁾	Normal processing operation (the timer A2 and timer A3)
	While a high-level ("H") signal is applied to the TAjout pin ($j = 2 \text{ or } 3$), the timer incre-
	ments a counter value on the rising edge of the TAjIN pin or decrements a counter
	value on the falling edge.
	TAJIN Increment Increment Decrement Decrement Decrement
	Multiply-by-4 processing operation (the timer A3 and timer A4)
	While an "H" signal is applied to the TAkOUT pin (k = 3 or 4) with the rising edge of the
	TAkin pin, the timer counter increments a counter value on the rising and falling edges of
	the TAkout and TAkin pins.
	While "H" is applied to the TAkou⊤ pin on the falling edge of the TAkıN pin, the timer
	decrements a counter value on the rising and falling edges of the TAkOUT and TAkIN pins.
	TAkın
	Increment on all edges Decrement on all edges

Table 14.5 Specifications in Event Counter Mode (when processing two-phase pulse signal on timer A2, A3 and A4)

1. Only timer A3 operation can be selected. The timer A2 is for the normal processing operation. The timer A4 is for the multiply-by-4 operation.

b7 b6 b5 b	4 b3 b2 b1 b0	Symb TA0M		s , 035716, 035816, 035916,	After Reset 035A16 0000 0X0016	5
		Bit Symbol	Bit Name	Function (When not using two-phase pulse signal processing)	Function (When using two-phase pulse signal processing)	R۷
		TMOD0	Operation Mode	ьтьо 01: Event counter m	ode ⁽¹⁾	RV
		TMOD1	Select Bit			RV
		(b2)	Nothing is assigned	. When write, set to "0	".	RV
	<u>.</u>	MR1	Count Polarity Select Bit ⁽²⁾	0 : Counts falling edges of an external signal1 : Counts rising edges of an external signal	Set to "0"	RV
		MR2	Increment/Decrement Switching Cause Select Bit	0 : Setting of the UDF register 1 : Input signal to TAio∪⊤pin ⁽³⁾	Set to "1"	RV
		MR3	Set to "0" in event co	unter mode		RV
		TCK0	Count Operation Type Select Bit	0 : Reloading 1 : Free running		RV
		TCK1	Two-Phase Pulse Signal Processing Operation Select Bit ^(4,5)	Set to "0"	0 : Normal processing operation 1 : Multiplied-by-4 processing operation	RV

2. The MR1 bit is enabled only when counting how many times external signals are applied.

3. The timer decrements a counter value when "L" is applied to the TAiOUT pin and the timer increments a counter value when "H" is applied to the TAiOUT pin.

4. The TCK1 bit is enabled only in the TA3MR register.

5. For two-phase pulse signal processing, set the TAjP bit in the UDF register (j=2 to 4) to "1" (twophase pulse signal processing function enabled) and the TAiTGH and TAiTGL bits to "002" (input to the TAjIN pin).

Figure 14.9 TA0MR to TA4MR Registers

14.1.2.1 Counter Reset by Two-Phase Pulse Signal Processing

The timer counter is reset to "0" by a Z-phase input when processing a two-phase pulse signal.

This function can be used in timer A3 event counter mode, two-phase pulse signal processing, freerun type or multiply-by-4 processing. The Z-phase signal is applied to the INT2 pin.

When the TAZIE bit in the ONSF register is set to "1" (Z-phase input enabled), the timer counter can be reset by a Z-phase input. To reset the timer counter by a Z-phase input, set the TA3 register to "000016" beforehand.

Z-phase input is enabled when the edge of the signal applied to the INT2 pin is detected. The POL bit in the INT2IC register can determine edge polarity. The Z-phase must have a pulse width of one timer A3 count source cycle or more. Figure 14.10 shows two-phase pulses (A-phase and B-phase) and the Z-phase.

Z-phase input resets the counter in the next count source following Z-phase input. Figure 14.11 shows the counter reset timing.

Timer A3 interrupt request is generated twice when a timer A3 overflow or underflow, and a counter reset by $\overline{INT2}$ input occur at the same time. Do not use the timer A3 interrupt request when this function is used.

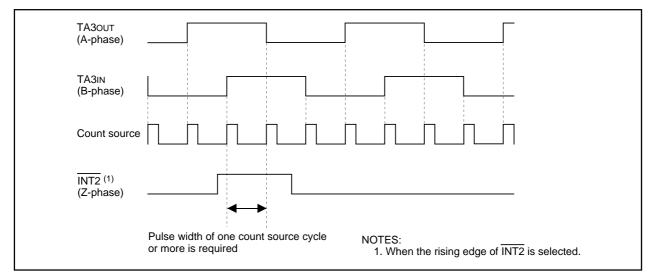


Figure 14.10 Two-phase Pulse (A-phase and B-phase) and Z-phase

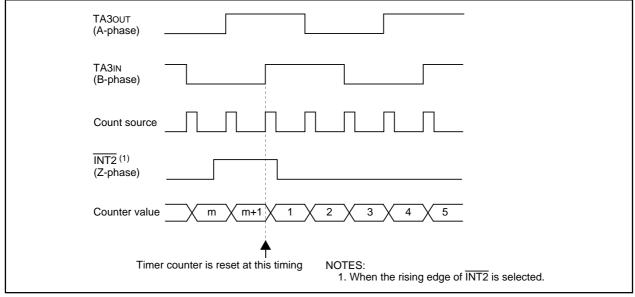


Figure 14.11 Counter Reset Timing

14.1.3 One-shot Timer Mode

In one-shot timer mode, the timer operates only once for each trigger (see **Table 14.6**). Once a trigger occurs, the timer starts and continues operating for a desired period. Figure 14.12 shows the TAiMR register (i=0 to 4) in one-shot timer mode.

Item	Specification
Count Source	f1, f8, f2n ⁽¹⁾ , fC32
Counting Operation	The timer decrements a counter value
	• When the timer counter reaches "000016", it stops counting after reloading.
	• If a trigger occurs while counting, content of the reload register is reloaded into the
	count register and counting resumes.
Divide Ratio	1/n n : setting value of the TAi register (i=0 to 4) 000016 to FFFF16
	but the timer counter does not run if n=000016
Counter Start Condition	The TAiS bit in the TABSR register is set to "1" (starts counting) and following triggers
	occur:
	External trigger input
	 The timer overflow or underflow signal
	 The TAiOS bit in the ONSF register is set to "1" (timer started)
Counter Stop Condition	After the timer counter has reached "000016" and is reloaded
	 When the TAiS bit is set to "0" (timer stopped)
Interrupt Request Generation Timing	The timer counter reaches "000016"
TAilN Pin Function	Programmable I/O port or trigger input
TAiout Pin Function	Programmable I/O port or pulse output
Read from Timer	The value in the TAi register is indeterminate when read
Write to Timer	When the timer counter stops,
	the value written to the TAi register is also written to both reload register and counter
	While counting,
	the value written to the TAi register is written to the reload register
	(It is transferred to the counter at the next reload timing)

Table 14.6	Specifications in One-shot Timer Mode
------------	--

NOTES:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

	Bit Symbol	Bit Name	Function	RW
	TMOD0	Operation Mode	b1b0	RW
	TMOD1	Select Bit	1 0 : One-shot timer mode	RW
	(b2)	Nothing is assigned. W	hen write, set to "0".	
	MR1	External Trigger Select Bit ⁽¹⁾	0 : Falling edge of input signal to TAiın pin 1 : Rising edge of input signal to TAiın pin	RW
	MR2	Trigger Select Bit	0 : The TAiOS bit is enabled 1 : Selected by the TAiTGH and TAiTGL bits	RW
 	MR3	Set to "0" in the one-sho	ot timer mode	RW
 	ТСК0	Count Source	b7b6 0 0 : f1	RW
 	TCK1	Select Bit	0 1 : f8 1 0 : f2n ⁽²⁾ 1 1 : fC32	RW

Figure 14.12 TA0MR to TA4MR Registers

L

14.1.4 Pulse Width Modulation Mode

In pulse width modulation mode, the timer outputs pulse of desired width continuously (see **Table 14.7**). The counter functions as either 16-bit pulse width modulator or 8-bit pulse width modulator. Figure 14.13 shows the TAiMR register (i=0 to 4) in pulse width modulation mode. Figures 14.14 and 14.15 show examples of how a 16-bit pulse width modulator operates and of how an 8-bit pulse width modulator operates.

Item	Specification				
Count Source	f1, f8, f2n ⁽¹⁾ , fC32				
Counting Operation	The timer decrements the counter				
	(The counter functions as an 8-bit or a 16-bit pulse width modulator)				
	• The timer reloads on the rising edge of PWM pulse and continues counting.				
	• The timer is not affected by the trigger that is generated during counting.				
16-Bit PWM	• "H" width = n / fj n : setting value of the TAi register 000016 to FFFE16				
	fj : Count source frequency				
	• Cycle = $(2^{16}-1) / f_j$ fixed				
8-Bit PWM	• "H" width = n x (m+1) / fj				
	n : setting value of high-order bit address of the TAi register 0016 to FE16				
	• Cycles = (2 ⁸ -1) x (m+1) / fj				
	m : setting value of low-order bit address of the TAi register 0016 to FF16				
Counter Start Condition	External trigger is input				
	The timer overflows and underflows				
	 The TAiS bit in the TABSR register is set to "1" (start counting) 				
Counter Stop Condition	The TAiS bit is set to "0" (stop counting)				
Interrupt Request Generation Timing	On the falling edge of the PWM pulse				
TAilN Pin Function	Programmable I/O port or trigger input				
TAio∪⊤ Pin Function	Pulse output				
Read from Timer	The value in the TAi register is indeterminate when read				
Write to Timer	• When the timer counter stops,				
	the value written to the TAi register is also written to both reload register and counter				
	While counting,				
	the value written to the TAi register is written to the reload register				
	(It is transferred to the counter at the next reload timing)				

Table 14.7	Specifications in	n Pulse Width	Modulation Mode
------------	-------------------	---------------	-----------------

NOTES:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

b7 b6	b5 b4 b3		Symb TA0M		After Rese 716, 035816, 035916, 035A16 0000 0X00	
			Bit Symbol	Bit Name	Function	RW
			TMOD0	Operation Mode	b1b0 1 1 : Pulse width modulation (PWM)	RW
			TMOD1	Select Bit	mode	RW
			(b2)	Nothing is assigned. WI	hen write, set to "0".	_
			MR1	External Trigger Select Bit ⁽¹⁾	0 : Falling edge of input signal to TAiın pin 1 : Rising edge of input signal to TAiın pin	RW
	ļ		MR2	Trigger Select Bit —	0 : The TAiS bit is enabled 1 : Selected by the TAiTGH and TAiTGL bits	RW
			MR3	16/8-Bit PWM Mode Select Bit	0: Functions as a 16-bit pulse width modulator 1: Functions as an 8-bit pulse width modulator	
			TCK0	Count Source	^{b7 b6} 0 0 : f1 0 1 : f8	RW
			TCK1	Select Bit	1 0 : $f_{2n}^{(2)}$ 1 1 : f_{C32}	RW
	The MR1 to "002" (ii TAiTGL b "112" (TAi	nput to the its are set t overflow a	TAiın pin) o "012" (T nd underfl	. The MR1 bit can be set B2 overflow and underflow ow).	TAiTGL bits in the TRGSR register are to either "0" or "1" when the TAiTGH a w), "102" (TAi overflow and underflow) o division (n=0) or divide-by-2n (n=1 to 1	nd or

Figure 14.13 TA0MR to TA4MR Registers

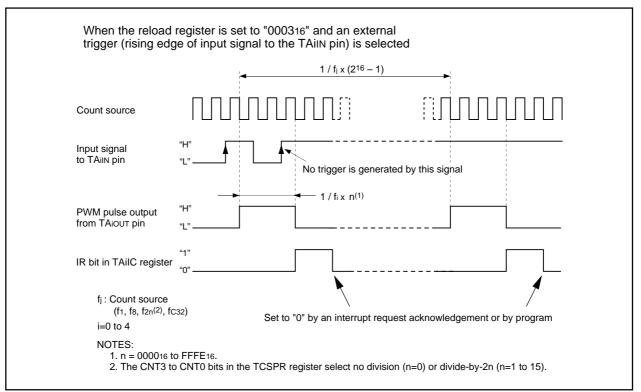
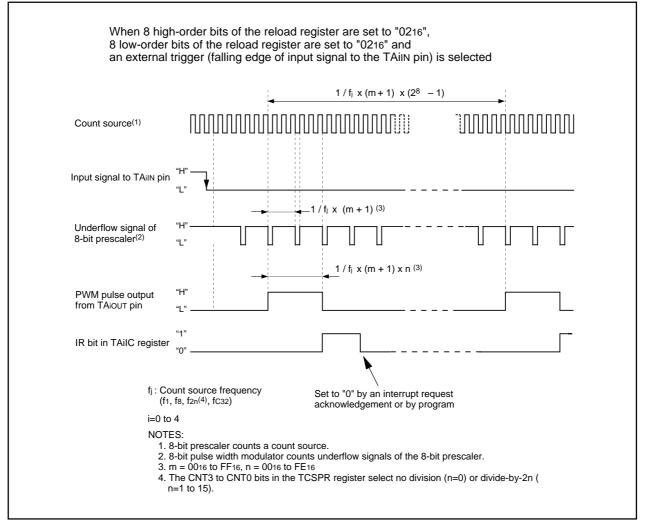
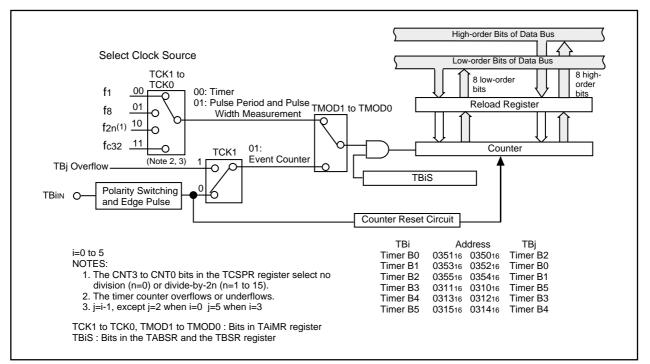


Figure 14.14 16-bit Pulse Width Modulator Operation




Figure 14.15 8-bit Pulse Width Modulator Operation

14.2 Timer B

Figure 14.16 shows a block diagram of the timer B. Figures 14.17 to 14.19 show registers associated with the timer B. The timer B supports the following three modes. The TMOD1 to TMOD0 bits in the TBiMR register (i=0 to 5) determine which mode is used.

- Timer mode : The timer counts an internal count source.
- Event counter mode : The timer counts pulses from an external source or overflow and underflow of another timer.
- Pulse period/pulse width measurement mode : The timer measures pulse period or pulse width of an external signal.

Table 14.18 lists TBilN pin settings.

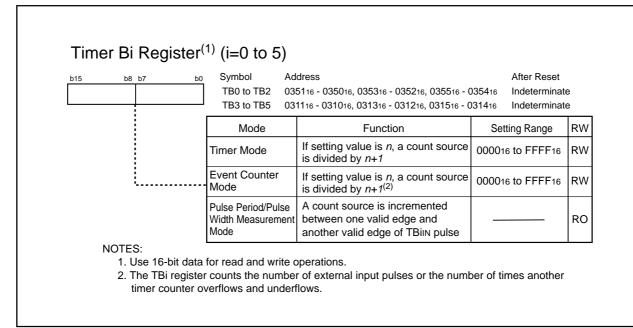
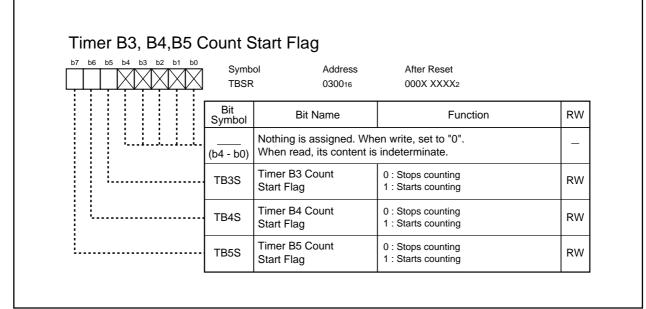



Figure 14.17 TB0 to TB5 Registers

b7 b6 b5 b4 b3 b2 b1 b0	Symbol TB0MR		After R 16, 035D16, 031B16, 031C16, 031D16 00XX (
	Bit Symbol	Bit Name	Function	R۱
	- TMOD0	Operation Mode Select Bit	b1b0 0 0 : Timer mode 0 1 : Event counter mode 1 0 : Pulse period measurement mode,	R۱
· · · · · · · · · · · · · · · · · · ·	- TMOD1		pulse width measurement mode 1 1 : Do not set to this value	R۱
· · · · · · · · · · · · · · · · · · ·	- MR0			R١
	- MR1		Function varies depending on	R١
	- MR2		operation mode ^(1, 2)	R١
	MR3			R١
l	тско	Count Source	Function varies depending on	R۱
	- тск1	Select Bit	operation mode	R١
When write, set to Count Start Flag	"0". When	read, its content is indete		
Count Start Flag	"0". When Symb TABS	oread, its content is indete		
Count Start Flag	"0". When	oread, its content is indete	After Reset	R\
Count Start Flag	"0". When Symt TABS	pol Address R 034016	After Reset 0016	\vdash
Count Start Flag	"0". When Symb TABS Bit Symbol	ool Address SR 034016 Bit Name Timer A0 Count Start Flag Timer A1 Count Start Flag	After Reset 0016 Function 0 : Stops counting 1 : Starts counting 0 : Stops counting 1 : Starts counting 1 : Starts counting	RI
Count Start Flag	"0". When Symb TABS Bit Symbol TAOS	ool Address SR 034016 Bit Name Timer A0 Count Start Flag Timer A1 Count	After Reset 0016 Function 0 : Stops counting 1 : Starts counting 0 : Stops counting 0 : Stops counting	R\ R\
Count Start Flag	"0". When Symb TABS Bit Symbol - TA0S - TA1S	ool Address SR 034016 Bit Name Timer A0 Count Start Flag Timer A1 Count Start Flag Timer A2 Count	After Reset 0016 Function 0 : Stops counting 1 : Starts counting 0 : Stops counting 1 : Starts counting 0 : Stops counting 0 : Stops counting 0 : Stops counting 0 : Stops counting	R\ R\ R\
Count Start Flag	"0". When Symt TABS Bit Symbol TA0S - TA1S - TA1S	ool Address SR 034016 Bit Name Timer A0 Count Start Flag Timer A1 Count Start Flag Timer A2 Count Start Flag Timer A2 Count Start Flag Timer A3 Count	After Reset 0016 Function 0 : Stops counting 1 : Starts counting 0 : Stops counting 0 : Stops counting	R۱
Count Start Flag	"0". When TABS Bit Symbol TAOS TAOS TA1S TA1S TA2S	read, its content is indeter Address R 034016 Bit Name Timer A0 Count Start Flag Timer A1 Count Start Flag Timer A2 Count Start Flag Timer A3 Count Start Flag Timer A4 Count Start Flag Timer A4 Count Start Flag Timer B0 Count Start Flag	After Reset 0016 Function 0 : Stops counting 1 : Starts counting 0 : Stops counting	
Count Start Flag	"0". When TABS Bit Symbol - TA0S - TA1S - TA2S - TA2S - TA3S - TA4S	ool Address SR 034016 Bit Name Timer A0 Count Start Flag Timer A1 Count Start Flag Timer A2 Count Start Flag Timer A3 Count Start Flag Timer A3 Count Start Flag Timer A4 Count Start Flag Timer A4 Count Start Flag	After Reset 0016 Function 0 : Stops counting 1 : Starts counting 0 : Stops counting 1 : Starts counting	

Figure 14.19 TBSR Register

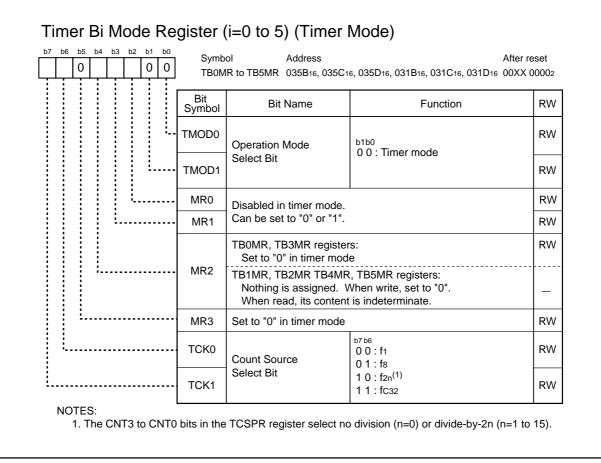
Table 14.8 Settings for the TBil Pins (i=0 to 5	Settings for the TBIIN Pins (i=0	to 5)
---	----------------------------------	-------

Port Name	Function	Setting	
		PS1, PS3 ⁽¹⁾ Registers	PD7, PD9 ⁽¹⁾ Registers
P90	TB0IN	PS3_0=0	PD9_0=0
P91	TB1IN	PS3_1=0	PD9_1=0
P92	TB2IN	PS3_2=0	PD9_2=0
P93	TB3IN	PS3_3=0	PD9_3=0
P94	TB4IN	PS3_4=0	PD9_4=0
P71	ΤΒ5ιΝ	PS1_1=0	PD7_1=0

NOTES:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

14.2.1 Timer Mode


In timer mode, the timer counts an internally generated count source (see Table 14.9). Figure 14.20 shows the TBiMR register (i=0 to 5) in timer mode.

Item	Specification				
Count Source	f1, f8, f2n ⁽¹⁾ , fC32				
Counting Operation	The timer decrements a counter value				
	• When the timer counter underflows, content of the reload register is reloaded into the				
	count register and counting resumes				
Divide Ratio	1/(n+1) n: setting value of the TBi register (i=0 to 5) 000016 to FFFF16				
Counter Start Condition	The TBiS bits in the TABSR or TBSR registers are set to "1" (starts counting)				
Counter Stop Condition	The TBiS bit is set to "0" (stops counting)				
Interrupt Request Generation Timing	The timer counter underflows				
TBilN Pin Function	Programmable I/O port				
Read from Timer	The TBi register indicates counter value				
Write to Timer	When the timer counter stops,				
	the value written to the TBi register is also written to both reload register and counter				
	While counting,				
	the value written to the TBi register is written to the reload register				
	(It is transferred to the counter at the next reload timing)				

Table 14.9 Specifications in Timer Mode

NOTES:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

Figure 14.20 TB0MR to TB5MR Registers

14.2.2 Event Counter Mode

In event counter mode, the timer counts how many external signals are applied or how many times another timer overflows and underflows. (See Table 14.10) Figure 14.21 shows the TBiMR register (i=0 to 5) in event counter mode.

Table 14.10 Specifications in Event Counter Mode	Table 14.10	Specifications	in Event	Counter Mod	е
--	-------------	-----------------------	----------	--------------------	---

Item	Specification
Count Source	• External signal applied to the TBiIN pin (i = 0 to 5) (valid edge can be selected by
	program)
	• TBj overflows or underflows (j=i-1, except j=2 when i=0, j=5 when i=3)
Counting Operation	The timer decrements a counter value
	When the timer counter underflows, content of the reload register is reloaded into the
	count register to continue counting
Divide Ratio	1/(n+1) n : setting value of the TBi register 000016 to FFFF16
Counter Start Condition	The TBiS bit in the TABSR or TBSR register is set to "1" (starts counting)
Counter Stop Condition	The TBiS bit is set to "0" (stops counting)
Interrupt Request Generation Timing	The timer counter underflows
TBiIN Pin Function	Programmable I/O port or count source input
Read from Timer	The TBi register indicates the value of the counter
Write to Timer	When the timer counter stops,
	the value written to the TBi register is also written to both reload register and counter
	While counting,
	the value written to the TBi register is written to the reload register
	(It is transferred to the counter at the next reload timing)

Γ

b7 b6 b5	b4 b3 b2	01	Symb TB0M		After re 6, 035D16, 031B16, 031C16, 031D16 00XX (
			Bit Symbol	Bit Name	Function	RW
		· · ·	TMOD0	Operation Mode	b1 b0	RW
			TMOD1	Select Bit	0 1 : Event counter mode	RW
			MR0	Count Polarity Select	 b3 b2 0 0 : Counts falling edges of external signal 0 1 : Counts rising edges of external signal 	RW
	·····		MR1	Bit ⁽¹⁾	 Counts falling and rising edges of external signal Do not set to this value 	RW
				TB0MR and TB3MR regi Set to "0" in event counter		RW
			MR2	MR2 TB1MR, TB2MR, TB4MR and TB5MR registers: Nothing is assigned. When write, set to "0". When read, its content is indeterminate.		_
			MR3	Disabled in event counte When read, its content is	r mode. When write, set to "0". indeterminate.	_
<u> </u>			TCK0	Disabled in event counte Can be set to "0" or "1".	r mode.	RW
			TCK1	Count Source Select Bit	0 : Input signal from the TBiIN pin 1 : TBj overflows or underflows ⁽²⁾	RW

The MR1 bit can be set to either "0" or "1", when the TCK1 bit is set to "1" (timer overflow or underflow).

2. j=i - 1, except j=2 when i=0 and j=5 when i=3.

Figure 14.21 TB0MR to TB5MR Registers

14.2.3 Pulse Period/Pulse Width Measurement Mode

In pulse period/pulse width measurement mode, the timer measures pulse period or pulse width of an external signal. (See Table 14.11) Figure 14.22 shows the TBiMR register (i=0 to 5) in pulse period/pulse width measurement mode. Figure 14.23 shows an example of an operation timing when measuring a pulse period. Figure 14.24 shows an example of the pulse width measurement.

Item	Specification					
Count Source	f1, f8, f2n ⁽³⁾ , fC32					
Counting Operation	The timer increments a counter value					
	Counter value is transferred to the reload register on the valid edge of a pulse to be					
	measured. It is set to "000016" and the timer continues counting					
Counter Start Condition	The TBiS bit (i=0 to 5) in the TABSR or TBSR register is set to "1" (starts counting)					
Counter Stop Condition	The TBiS bit is set to "0" (stops counting)					
Interrupt Request Generation Timing	• On the valid edge of a pulse to be measured ⁽¹⁾					
	The timer counter overflows					
	The MR3 bit in the TBiMR register is set to "1" (overflow) simultaneously. When the					
	TBiS bit is set to "1" (start counting) and the next count source is counted after setting					
	the MR3 bit to "1" (overflow), the MR3 bit can be set to "0" (no overflow) by writing to					
	the TBiMR register.					
TBiin Pin Function	Input for a pulse to be measured					
Read from Timer	The TBi register indicates reload register values (measurement results) ⁽²⁾					
Write to Timer	Value written to the TBi register can be written to neither reload register nor counter					

Table 14.11 Specifications in Pulse Period/Pulse Width Measurement Mode

NOTES:

- 1. No interrupt request is generated when the pulse to be measured is on the first valid edge after the timer has started counting.
- 2. The TBi register is in an indeterminate state until the pulse to be measured is on the second valid edge after the timer has started counting.
- 3. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

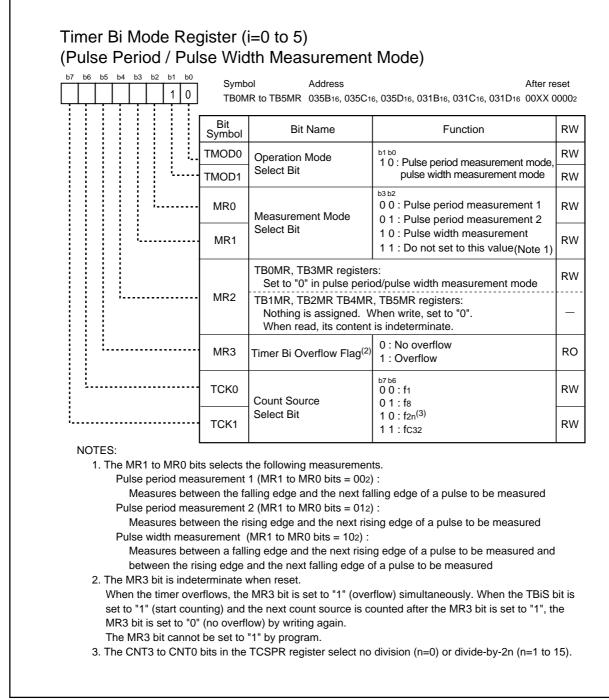


Figure 14.22 TB0MR to TB5MR Registers

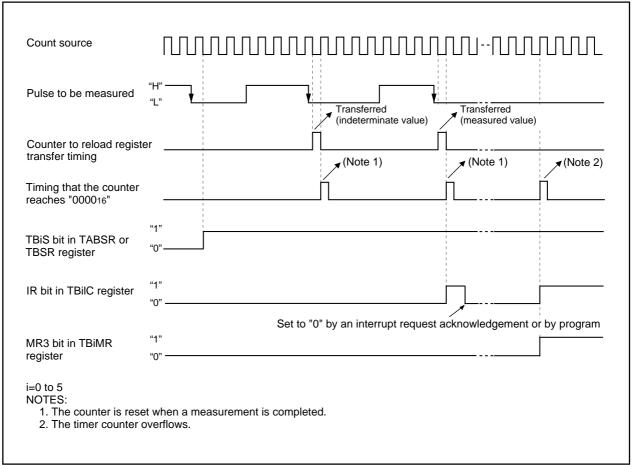
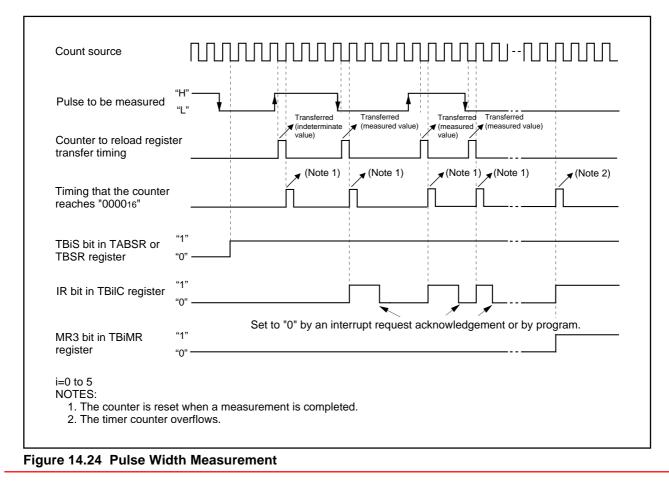



Figure 14.23 Pulse Period 1 Measurement

15. Three-Phase Motor Control Timer Functions

Three-phase motor driving waveform can be output by using the timers A1, A2, A4 and B2. Table 15.1 lists specifications of the three-phase motor control timer functions. Table 15.2 lists pin settings. Figure 15.1 shows a block diagram. Figures 15.2 to 15.7 show registers associated with the three-phase control timer functions.

Item	Specification
Three-Phase Waveform Output Pin	Six pins (U, \overline{U} , V, \overline{V} , W, \overline{W})
Forced Cutoff ⁽¹⁾	Apply a low-level signal ("L") to the MMI pin
Timers to be Used	Timer A4, A1, A2 (used in one-shot timer mode)
	Timer A4: U- and U-phase waveform control
	Timer A1: V- and \overline{V} -phase waveform control
	Timer A2: W- and \overline{W} -phase waveform control
	Timer B2 (used in timer mode)
	Carrier wave cycle control
	Dead time timer (three 8-bit timers share reload register)
	Dead time control
Output Waveform	Triangular wave modulation, Sawtooth wave modification
	Can output a high-level waveform or a low-level waveform for one cycle
	Can set positive-phase level and negative-phase level separately
Carrier Wave Cycle	Triangular wave modulation: <i>count source</i> x (<i>m+1</i>) x 2
	Sawtooth wave modulation: <i>count source</i> x (<i>m</i> +1)
	m: setting value of the TB2 register, 000016 to FFFF16
	Count source: f1, f8, f2n ⁽²⁾ , fc32
Three-Phase PWM Output Width	Triangular wave modulation: <i>count source</i> x <i>n</i> x 2
	Sawtooth wave modulation: <i>count source</i> x n
	n : setting value of the TA4, TA1 and TA2 register (of the TA4, TA41, TA1, TA11,
	TA2 and TA21 registers when setting the INV11 bit to "1"), 000116 to FFF16
	Count source: f1, f8, f2n ⁽²⁾ , fc32
Dead Time	Count source x p, or no dead time
	p: setting value of the DTT register, 0116 to FF16
	Count source: f1, or f1 divided by 2
Active Level	Selected from a high level ("H") or low level ("L")
Positive and Negative-Phase Con-	Positive and negative-phases concurrent active disable function
current Active Disable Function	Positive and negative-phases concurrent active detect function
Interrupt Frequency	For the timer B2 interrupt, one carrier wave cycle-to-cycle basis through 15
	time- carrier wave cycle-to-cycle basis can be selected

Table 15.1 Three-Phase Motor Control Timer Functions Specification

NOTES:

- 1. Forced cutoff by the signal applied to the NMI pin is available when the INV02 bit is set to "1" (threephase motor control timer functions) and the INV03 bit is set to "1" (three-phase motor control timer output enabled).
- 2. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

Table 15.2 Pin Settings

Pin		Setting	
	PS1, PS2 Registers ⁽¹⁾	PSL1, PSL2 Registers	PSC Register
P72/V	PS1_2 =1	PSL1_2 =0	PSC_2 =1
P73/V	PS1_3 =1	PSL1_3 =1	PSC_3 =0
P74/W	PS1_4 =1	PSL1_4 =1	PSC_4 =0
P75/W	PS1_5 =1	PSL1_5 =0	
P80/U	PS2_0 =1	PSL2_0 =1	
P81/U	PS2_1 =1	PSL2_1 =0	

NOTES:

1. Set the PS1_2 to PS1_5 and PS2_0 to PS2_1 bits in the PS1 and PS2 registers to "1" after the INV02 bit is set to "1".

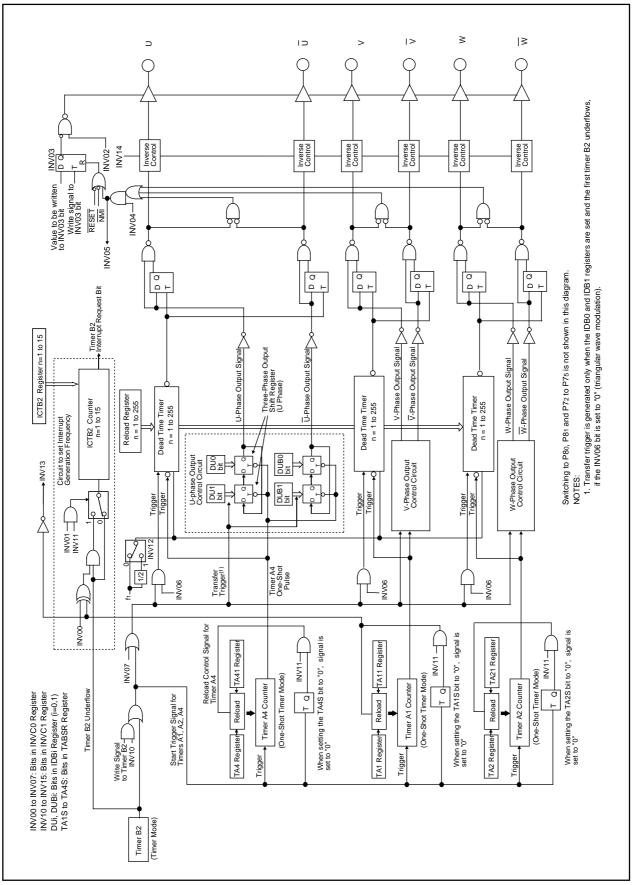


Figure 15.1 Three-Phase Motor Control Timer Functions Block Diagram

b6	b5 b4 b;	3 b2 b	o1 b0	Sym	ibol Address	After Reset	
			Ш	INV	C0 030816	0016	
				Bit Symbol	Bit Name	Function	RW
				INV00	Interrupt Enable Output Polarity Select Bit ⁽³⁾	0: The ICTB2 counter is incremented by one on the rising edge of the timer A1 reload control signal1: The ICTB2 counter is incremented by one on the falling edge of the timer A1 reload control signal	RW
				INV01	Interrupt Enable Output Specification Bit ^(2, 3)	0: ICTB2 counter is incremented by one whenever the timer B2 counter underflows1: Selected by the INV00 bit	RW
		L		INV02	Mode Select Bit ^(4, 5, 6)	0: No three-phase control timer functions 1: Three-phase control timer function	RW
				INV03	Output Control Bit ^(6, 7)	0: Disables three-phase control timer output 1: Enables three-phase control timer output	RW
	· · · ·			INV04	Positive and Negative- Phases Concurrent Active Disable Function Enable Bit	0: Enables concurrent active output 1: Disables concurrent active output	RW
				INV05	Positive and Negative- Phases Concurrent Active Output Detect Flag ⁽⁸⁾	0: Not detected 1: Detected	RW
				INV06	Modulation Mode Select ^(9, 10)	0: Triangular wave modulation mode 1: Sawtooth wave modulation mode	RW
				INV07	Software Trigger Select	Transfer trigger is generated when the INV07 bit is set to "1". Trigger to the dead time timer is also generated when setting the INV06 bit to "1". Its value is "0" when read.	RW

NOTES:

1. Set the INVC0 register after the PRC1 bit in the PRCR register is set to "1" (write enable).

- Rewrite the INV00 to INV02 and INV06 bits when the timers A1,A2, A4 and B2 stop.
- 2. Set the INV01 bit to "1" after setting the ICTB2 register .
- 3. The INV00 and INV01 bits are enabled only when the INV11 bit is set to "1" (three-phase mode 1). The ICTB2 counter is incremented by one every time the timer B2 counter underflows, regardless of INV00 and INV01 bit settings, when the INV11 bit is set to "0" (three-phase mode).

When setting the INV01 bit to "1", set the timer A1 count start flag before the first timer B2 counter underflow. When the INV00 bit is set to "1", the first interrupt is generated when the timer B2 counter underflows n-1 times, if n is the value set in the ICTB2 counter. Subsequent interrupts are generated every n times the timer B2 counter underflows.

- 4. Set the INV02 bit to "1" to operate the dead time timer, U-, V-and W-phase output control circuits and the ICTB2 counter.
- 5. Set pins after the INV02 bit is set to "1". See Table 15.2 for pin settings.
- 6. When the INV02 bit is set to "1" and the INV03 bit to "0", U, U, V, V, W and W pins, including pins shared with other output functions, are placed in high-impedance states.
- 7. The INV03 bit is set to "0" when the followings occurs :

- Reset

- A concurrent active state occurs while INV04 bit is set to "1"
- The INV03 bit is set to "0" by program
- A signal applied to the MMI pin changes "H" to "L"
- The INV05 bit can not be set to "1" by program. Set the INV04 bit to "0", as well, when setting the INV05 bit to "0".
 The following table describes how the INV06 bit works.

Item	INV06 = 0	INV06 = 1
Mode	Triangular wave modulation mode	Sawtooth wave modulation mode
Timing to Transfer from the IDB0 and IDB1 Registers to Three-Phase Output Shift Register	Transferred once by generating a transfer trigger after setting the IDB0 and IDB1 registers	Transferred every time a transfer trigger is generated
Timing to Trigger the Dead Time Timer when the INV16 Bit=0	On the falling edge of a one-shot pulse of the timer A1, A2 or A4	By a transfer trigger, or the falling edge of a one-shot pulse of the timer A1, A2 or A4
INV13 Bit	Enabled when the INV11 bit=1 and the INV06 bit=0	Disabled

Transfer trigger : Timer B2 underflows and write to the INV07 bit, or write to the TB2 register when INV10 = 1 10. When the INV06 bit is set to "1", set the INV11 bit to "0" (three-phase mode 0) and the PWCON bit in the TB2SC register to "0" (timer B2 counter underflows).

Figure 15.2 INVC0 Register

b7 b6 b5 b4	b3 b2 b1 b0	Symb INVC		After Reset 0016	
		Bit Symbol	Bit Name	Function	RW
		INV10	Timer A1, A2 and A4 Start Trigger Select Bit	0: Timer B2 counter underflows 1: Timer B2 counter underflows and write to the TB2 register	RW
		INV11	Timer A1-1, A2-1, A4-1 Control Bit ^(2, 3)	0: Three-phase mode 0 1: Three-phase mode 1	RW
		INV12	Dead Time Timer Count Source Select Bit	0 : f1 1 : f1 divided-by-2	RW
		INV13	Carrier Wave Detect Flag ⁽⁴⁾	0: Timer A1 reload control signal is "0" 1: Timer A1 reload control signal is "1"	RO
		INV14	Output Polarity Control Bit	0 : Active "L" of an output waveform 1 : Active "H" of an output waveform	RW
		INV15	Dead Time Disable Bit	0: Enables dead time 1: Disables dead time	RW
ļ		INV16	Dead Time Timer Trigger Select Bit	 0: Falling edge of a one-shot pulse of the timer A1, A2, A4⁽⁵⁾ 1: Rising edge of the three-phase output shift register (U-, V-, W-phase) 	RW
		(b7)	Reserved Bit	Set to "0"	RW
The tir	ners A1, A2, A4,	and B2 m	the PRC1 bit in the PRCR must be stopped during rew INV11 bit works.	egister is set to "1" (write enable). rite.	
ľ	tem		INV11 = 0	JNV11 = 1	
Mode		Three-p	hase mode 0	Three-phase mode 1	
TA11, TA21 ar	nd TA41 Registers	Not use	ed	Used	
INV00 and II in the INVC		increme	d. The ICTB2 counter is ented whenever the timer E underflows	32 Enabled	
INV13 Bit		Disable	d	Enabled when INV11=1 and INV0	6-0

phase mode 0). Also, when the INV11 bit is set to "0", set the PWCON bit in the TB2SC register to "0" (timer B2 counter underflows).

4. The INV13 bit is enabled only when the INV06 bit is set to "0" (Triangular wave modulation mode) and the INV11 bit to "1" (three-phase mode 1).

5. If the following conditions are all met, set the INV16 bit to "1".

• The INV15 bit is set to "0" (dead time timer enabled)

 The Dij bit (i=U, V or W, j=0, 1) and DiBj bit always have different values when the INV03 bit is set to "1". (The positive-phase and negative-phase always output opposite level signals.)

If above conditions are not met, set the INV16 bit to "0".

Figure 15.3 INVC1 Register

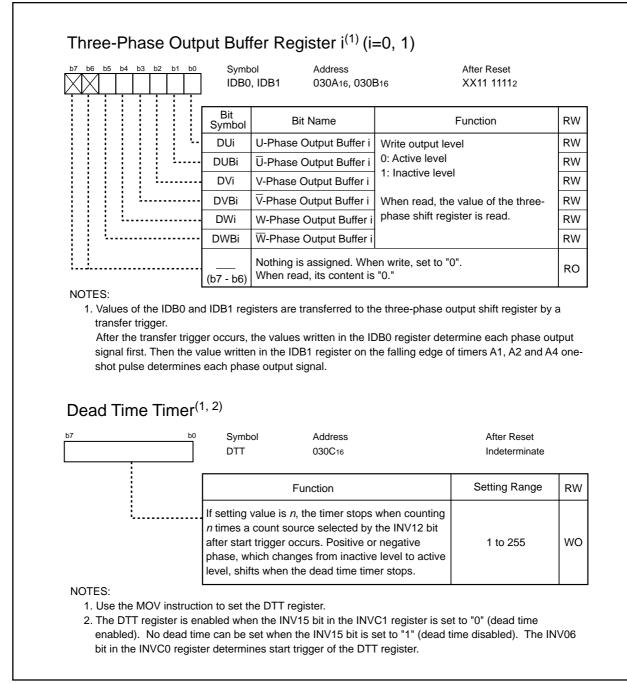


Figure 15.4 IDB0, IDB1 and DTT Registers

Timer B2 Interrupt Generation Frequency Set Counter^(1, 2, 3)

Symbol ICTB2	Address 030D16		r Reset eterminate	
	Function		Setting Range	RW
 increments when and the setting va generated every occurs. When the INV01 bit) and setting va generated every	bit is set to "0" (the ICTB2 ever the timer B2 counter alue is <i>n</i> , the timer B2 inter <i>n</i> th time timer B2 counter of bit is set to "1" (selected by alue is <i>n</i> , the timer B2 interr <i>n</i> th time timer B2 counter u ition selected in the INV00	underflows) rupt is underflow the INV00 upt is nderflow	1 to 15	wo
Nothing is ass	igned. When write, set to	"0".		—

NOTES:

1. Use the MOV instruction to set the ICTB2 register.

2. If the INV01 bit in the INVC0 register is set to "1", set the ICTB2 register when the TB2S bit is set to "0" (timer B2 counter stopped).

If the INV01 bit is set to "0" and the TB2S bit to "1" (timer B2 counter start), do not set the ICTB2 register when the timer B2 counter underflows.

3. If the INV00 bit is set to "1", the first interrupt is generated when the timer B2 counter underflows *n*-1 times, *n* being the value set in the ICTB2 counter. Subsequent interrupts are generated every *n* times the timer B2 counter underflows.

Timer Ai, Ai-1 Register (i=1, 2, 4)^(1, 2, 3, 4, 5, 6, 7)

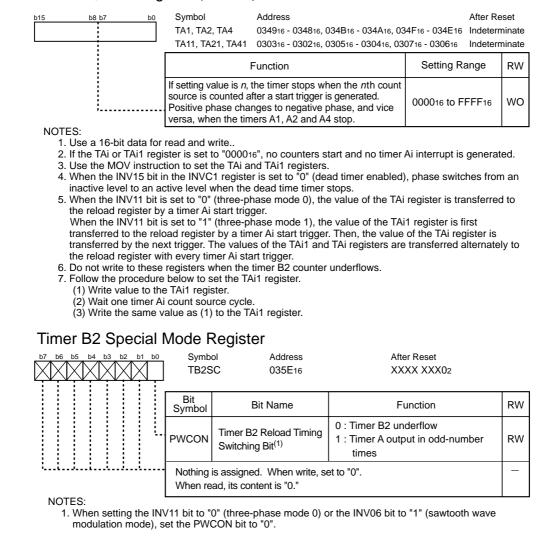
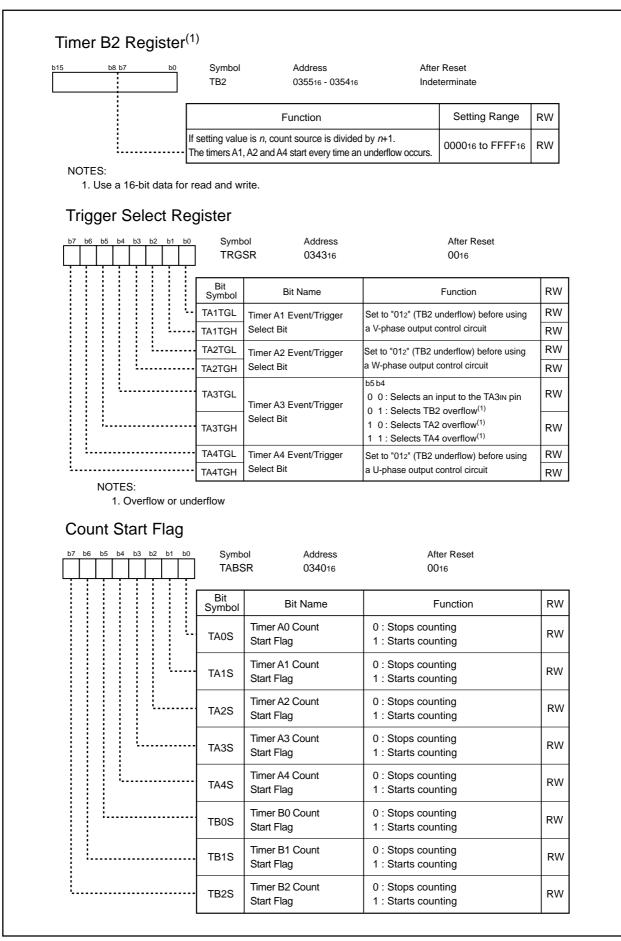
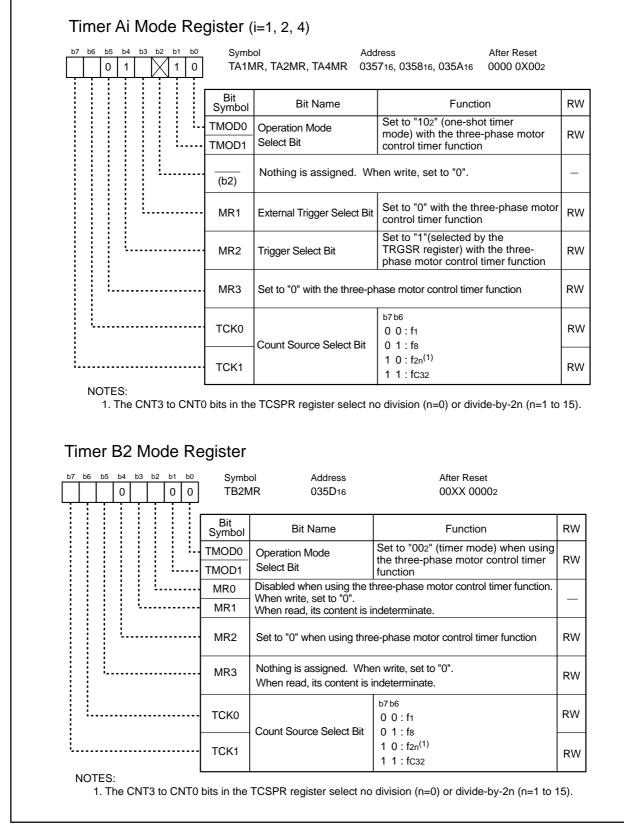




Figure 15.5 ICTB2 Register, TA1, TA2, TA4, TA11, TA21 and TA41 Registers and TB2SC Register

Figure 15.6 TB2, TRGSR and TABSR Registers

The three-phase control timer function is available by setting the INV02 bit in the INVC0 register to "1". The timer B2 is used for carrier wave control and timers A4, A1, A2 for three-phase PWM output (U, \overline{U} , V, \overline{V} , W, \overline{W}) control. An exclusive dead time timer controls dead time. Figure 15.8 shows an example of the triangular modulation waveform. Figure 15.9 shows an example of the sawtooth modulation waveform.

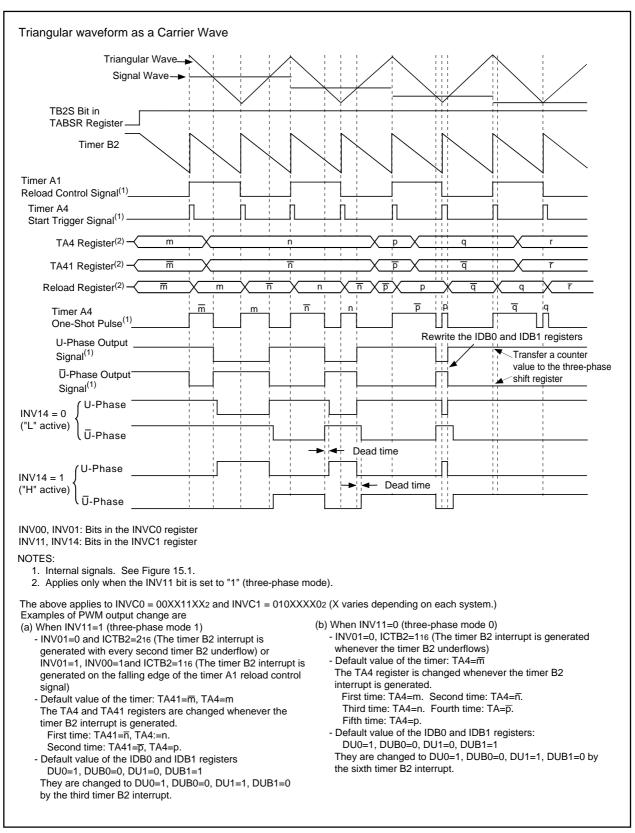


Figure 15.8 Triangular Wave Modulation Operation

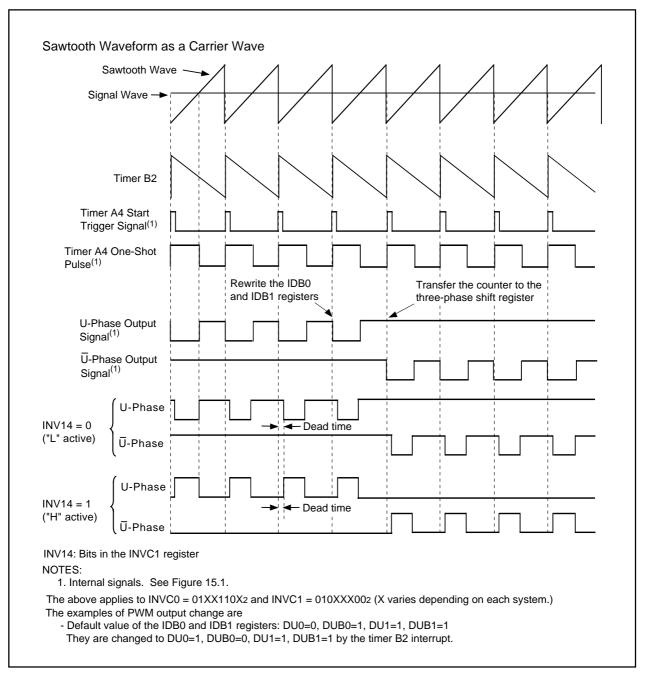


Figure 15.9 Sawtooth Wave Modulation Operation

16. Serial I/O

Serial I/O consists of five channels (UART0 to UART4).

Each UARTi (i=0 to 4) has an exclusive timer to generate the transfer clock and operates independently.

Figure 16.1 shows a UARTi block diagram.

UARTi supports the following modes :

- Clock synchronous serial I/O mode
- Clock asynchronous serial I/O mode (UART mode)
- Special mode 1 (I²C mode)
- Special mode 2
- Special mode 3 (Clock-divided synchronous function, GCI mode)
- Special mode 4 (Bus conflict detect function, IE mode)
- Special mode 5 (SIM mode)

Figures 16.2 to 16.9 show registers associated with UARTi.

Refer to the tables listing each mode for register and pin settings.

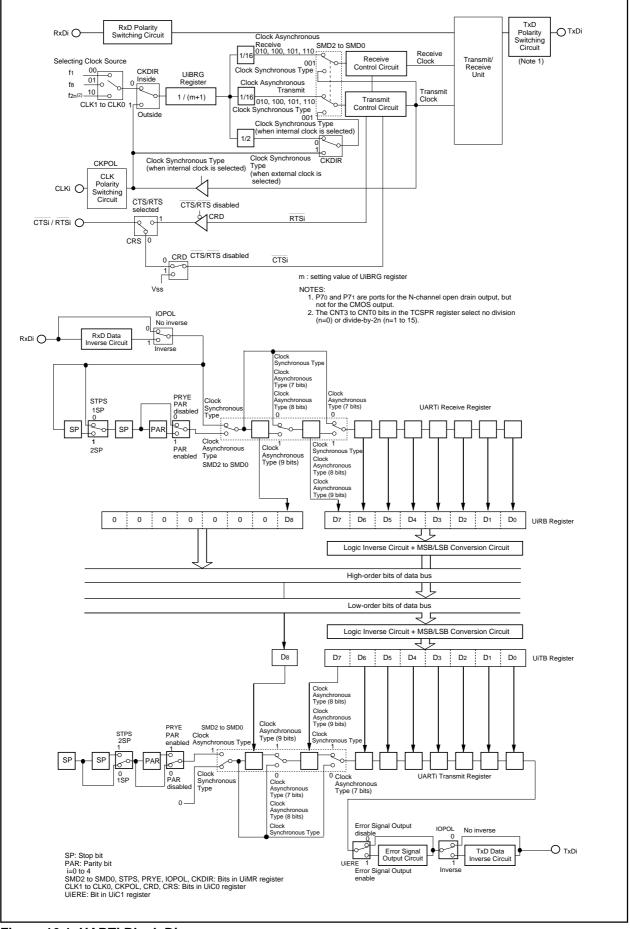


Figure 16.1 UARTi Block Diagram

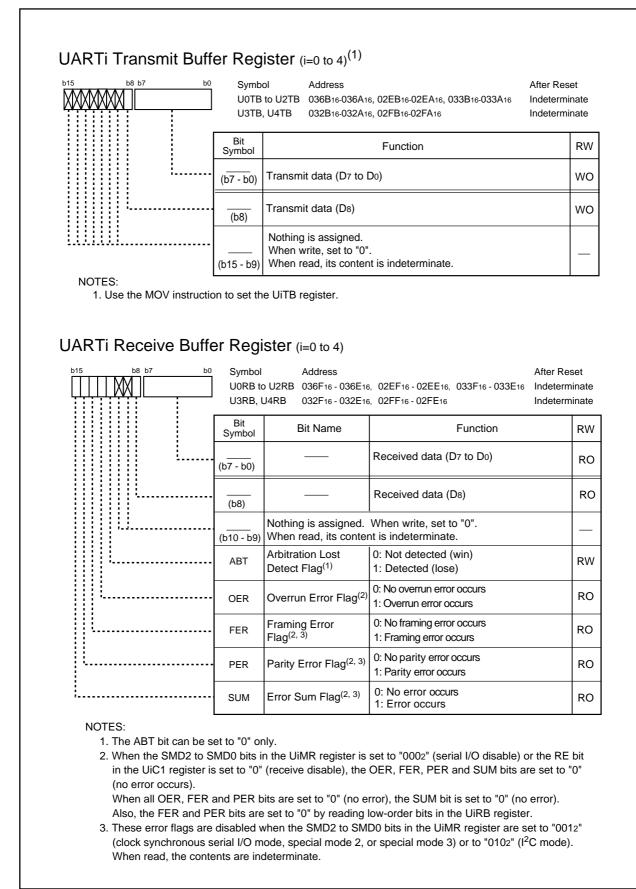


Figure 16.2 U0TB to U4TB Registers and U0RB to U4RB Registers

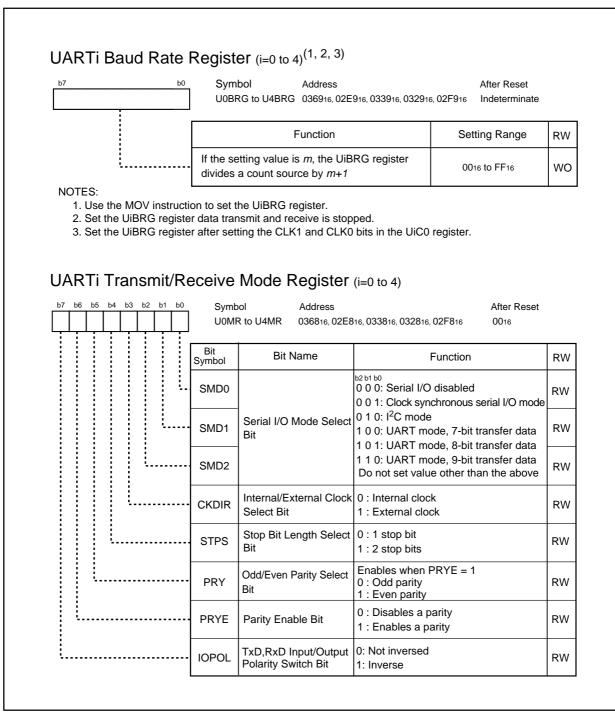


Figure 16.3 U0BRG to U4BRG Registers and U0MR to U4MR Registers

b7 b6 b5 b4	b3 b2 b1 b0	Symb U0C0		After Reset 02EC16, 033C16, 032C16, 02FC16 0000 10002	
		Bit Symbol	Bit Name	Function	RW
		CLK0	UiBRG Count	^{b0 b1} 0 0: Selects f1 0 1: Selects f8	RV
		CLK1	Source Select Bit ⁽⁴⁾	1 0: Selects $f_{2n}^{(2)}$ 1 1: Do not set to this value	RV
		CRS	CST/RTS Function Select Bit	Enabled when CRD=0 0 : Selects CTS function 1 : Selects RTS function	RW
		TXEPT	Transmit Register Empty Flag	0 : Data in the transmit register (during transmission)1 : No data in the transmit register (transmission is completed)	RC
		CRD	CTS/RTS Disable Bit	0 : Enables CTS/RTS function 1 : Disables CTS/RTS function	RW
		NCH	Data Output Select Bit ⁽¹⁾	 0 : TxDi/SDAi and SCLi are ports for the CMOS output 1 : TxDi/SDAi and SCLi are ports for the N-channel open drain output 	RV
		CKPOL	CLK Polarity Select Bit	 0: Data is transmitted on the falling edge of the transfer clock and data is received on the rising edge 1: Data is transmitted on the rising edge of the transfer clock and data is received on the falling edge 	RW
		UFORM	Transfer Format Select Bit ⁽³⁾	0 : LSB first 1 : MSB first	RV

(clock synchronous serial I/O mode), or "1012" (UART mode, 8-bit transfer data). Set this bit to "1" when the SMD2 to SMD0 bits are set to "0102" (I²C mode), and to "0" when the SMD2 to SMD0 bits are set to "1002"(UART mode, 7-bit transfer data) or "1102"(UART mode, 9-bit transfer data).

4. If the CLK1 and CLK0 bits are changed, set the UiBRG register.

Figure 16.4 U0C0 to U4C0 Registers

	Symb U0C ²		ress After Reset D16, 02ED16, 033D16, 032D16, 02FD16 0000 00102	
	Bit Symbol	Bit Name	Function	RW
	TE	Transmit Enable Bit	0: Transmit disable 1: Transmit enable	RW
	ΤI	Transmit Buffer Empty Flag	0: Data in the UiTB register 1: No data in the UiTB register	RO
	RE	Receive Enable Bit	0: Receive disable 1: Receive enable	RW
	RI	Receive Complete Flag	0: No data in the UiRB register 1: Data in the UiRB register	RO
	UilRS	UARTi Transmit Interrupt Cause Select Bit	0: No data in the UiTB register (TI = 1) 1: Transmission is completed (TXEPT = 1)	RW
	UiRRM	UARTi Continuous Receive Mode Enable Bit	0: Disables continuous receive mode to be entered 1: Enables continuous receive mode to be entered	RW
<u>.</u>	UiLCH	Data Logic Select Bit	0: Not inversed 1: Inverse	RW
	SCLKSTPB /Uiere	Clock-Divided Synchronous Stop Bit / Error Signal Output Enable Bit ⁽¹⁾	Clock-divided synchronous stop bit (special mode 3) 0: Stops synchronizing 1: Starts synchronizing Error signal output enable bit (special mode 5) 0: Not output 1: Output	RW

Set this bit to "0" when the SMD2 to SMD0 bits are set to "0102" (I²C mode) or "1102"(UART mode, 9-bit transfer data)

UARTi Special Mode Register (i=0 to 4)

b7	b6	b5	b4	b3	b2		b1	b0	Symb U0SN		After Res 02E716, 033716, 032716, 02F716 0016	et
									Bit Symbol	Bit Name	Function	RW
									IICM	I ² C Mode Select Bit	0: Except I ² C mode 1: I ² C mode	RW
									ABC	Arbitration Lost Detect Flag Control Bit	0: Update per bit 1: Update per byte	RW
					l			••••	BBS	Bus Busy Flag	0: Stop condition detected 1: Start condition detected (Busy)	RW ⁽¹
				į					LSYN	SCLL Sync Output Enable Bit	0: Disabled 1: Enabled	RW
									ABSCS	Bus Conflict Detect Sampling Clock Select Bit	0: Rising edge of transfer clock 1: Timer Aj underflow ⁽²⁾	RW
							ACSE	Auto Clear Function Select Bit for Transmit Enable Bit	0: No auto clear function 1: Auto clear at bus conflict	RW		
	ί.		••••		•••				SSS	Transmit Start Condition Select Bit	0: Not related to RxDi 1: Synchronized with RxDi	RW
									SCLKDIV	Clock Divide Synchronous Bit	(Note 3)	RW

NOTES:

The BBS bit is set to "0" by program. It is unchanged if set to "1".
 UART0: timer A3 underflow signal, UART1: timer A4 underflow signal, UART2: timer A0 underflow signal, UART3: timer A3 underflow signal, UART4: timer A4 underflow signal.
 Refer to notes for the SU1HIM bit in the UiSMR2 register.

Figure 16.5 U0C1 to U4C1 Registers and U0SMR to U4SMR Registers

b7 b6	b5 b4	b3 b2 b1 b0	Sym U0S			After R E616, 033616, 032616, 02F616 0000 (
			Bit Symbol	Bit Name		Function	R
			IICM2	I ² C Mode Select Bit 2	2	(Note 1)	R
			csc	Clock Synchronous E	Bit	0: Disabled 1: Enabled	R
			SWC	SCL Wait Output Bit		0: Disabled 1: Enabled	R١
			ALS	SDA Output Stop Bit		0: Output 1: No output	R\
			STC	UARTi Initialize Bit		0: Disabled 1: Enabled	R
			SWC2	SCL Wait Output Bit 2	2	0: Transfer clock 1: 0 output	R١
			SDHI	SDA Output Inhibit Bi	it	0: Output 1: No output (high-impedance)	R١
			SU1HIM	External Clock Synchronous Enable	Bit	(Note 2)	R
	. Refe . The	er to 16.3 Speci external clock : .KDIV bit in the	synchron	ous function can be sele	ected	by combining the SU1HIM bit and	the
		SCLKDIV bit in UiSMR Regist		SU1HIM bit in the UiSMR2 Register		ternal Clock Synchronous Function	
		0		0	No	synchronization	

1

0 or 1

Same division as the external clock

External clock divided by 2

Figure 16.6 U0SMR2 to U4SMR2 Registers

0

1

b7 b6	b5 I	b4	b3 b2	b1	ь0	Symb U0SM		ress After Rese 516, 02E516, 033516, 032516, 02F516 0016	ət		
						Bit Symbol	Bit Name	Function	RW		
						SSE	SS Pin Function Enable Bit ⁽¹⁾	0: Disables SS pin function 1: Enables SS pin function	RV		
				Į.		СКРН	Clock-Phase Set Bit	0: No clock delay 1: Clock delay	RV		
						DINC	Serial Input Port Set Bit	0: Selects the TxDi and RxDi pins (master mode) 1: Selects the STxDi and SRxDi pins (slave mode)	RV		
						NODC	Clock Output Select Bit	0: CMOS output 1: N-channel open drain output	RV		
						ERR	Fault Error Flag ⁽²⁾	0: No error 1: Error	RW		
						DL0		^{b7 b6 b5} 000 : No delay 001 : 1-to-2 cycles of BRG count source	RV		
							DL1		SDAi Digital Delay Time Set Bit ^(3, 4)	010 : 2-to-3 cycles of BRG count source 011 : 3-to-4 cycles of BRG count source 100 : 4-to-5 cycles of BRG count source	RV
l						DL2		101 : 5-to-6 cycles of BRG count source 110 : 6-to-7 cycles of BRG count source 111 : 7-to-8 cycles of BRG count source	R۱		

1. Set the SS pin after the CRD bit in the UiC0 register is set to "1" (CTS/RTS function disabled).

2. The ERR bit is set to "0" by program. It is unchanged if set to "1".

3. Digital delay is generated from a SDAi output by the DL2 to DL0 bits in I²C mode. Set these bits to "0002" (no delay) except in the I²C mode.

4. When the external clock is selected, approximately 100ns delay is added.

Figure 16.7 U0SMR3 to U4SMR3 Registers

b7 b6 b5 b4	b3 b2 b1 b0	Symb U0SN		Idress After 6416, 02E416, 033416, 032416, 02F416 001	er Reset
		Bit Symbol	Bit Name	Function	RV
		STAREQ	Start Condition Generate Bit ⁽¹⁾	0: Clear 1: Start	RV
		RSTAREQ	Restart Condition Generate Bit ⁽¹⁾	0: Clear 1: Start	RW
		STPREQ	Stop Condition Generate Bit ⁽¹⁾	0: Clear 1: Start	RV
		STSPSEL	SCL, SDA Output Select Bit	0: Selects the serial I/O circuit 1: Selects the start/stop condition generation circuit	RV
		ACKD	ACK Data Bit	0: ACK 1: NACK	RW
		ACKC	ACK Data Output Enable Bit	0: Serial I/O data output 1: ACK data output	RV
		SCLHI	SCL Output Stop Enable Bit	0: Disabled 1: Enabled	RV
		SWC9	SCL Wait Output Bit 3	0: SCL "L" hold disabled 1: SCL "L" hold enabled	RV

Figure 16.8 U0SMR4 to U4SMR4 Registers

b7 b6 b5	b4 b3 b2 b1 b0	Symb IFSR	ol Address 031F ₁₆	After Reset 0016	
		Bit Symbol	Bit Name	Function	RV
		IFSR0	INT0 Interrupt Polarity Select Bit ⁽¹⁾	0 : One edge 1 : Both edges	RV
		IFSR1	INT1 Interrupt Polarity Select Bit ⁽¹⁾	0 : One edge 1 : Both edges	RV
		IFSR2	INT2 Interrupt Polarity Select Bit ⁽¹⁾	0 : One edge 1 : Both edges	RV
		IFSR3	INT3 Interrupt Polarity Select Bit ⁽¹⁾	0 : One edge 1 : Both edges	RV
		IFSR4	INT4 Interrupt Polarity Select Bit ⁽¹⁾	0 : One edge 1 : Both edges	RV
			INT5 Interrupt Polarity Select Bit ⁽¹⁾	0 : One edge 1 : Both edges	RV
		IFSR6	UART0, UART3 Interrupt Cause Select Bit	 0 : UART3 bus conflict, start condition detect, stop condition detect, fault error detect 1 : UART0 bus conflict, start condition detect, stop condition detect, fault error detect 	PW
		IFSR7	UART1, UART4 Interrupt Cause Select Bit	 0 : UART4 bus conflict, start condition detect, stop condition detect, fault error detect 1 : UART1 bus conflict, start condition detect, stop condition detect, fault error detect 	RV

Figure 16.9 IFSR Register

16.1 Clock Synchronous Serial I/O Mode

In clock synchronous serial I/O mode, data is transmitted and received with the transfer clock. Table 16.1 lists specifications of clock synchronous serial I/O mode. Table 16.2 lists registers to be used and settings. Tables 16.3 to 16.5 list pin settings. When UARTi (i=0 to 4) operation mode is selected, the TxDi pin outputs an "H" signal before transfer starts (the TxDi pin is in a high-impedance state when the N-channel open drain output is selected). Figure 16.10 shows transmit and receive timings in clock synchronous serial I/O mode.

Item	Specification
Transfer Data Format	Transfer data : 8 bits long
Transfer Clock	• The CKDIR bit in the UiMR register (i=0 to 4) is set to "0" (internal clock selected):
	<u>Ij</u> 2(m+1) fj=f1, f8, f2n ⁽¹⁾ m :setting value of the UiBRG register 0016 to FF16.
	• The CKDIR bit is set to "1" (external clock selected) : an input from the CLKi pin
Transmit/Receive Control	Selected from the CTS function, RTS function or CTS/RTS function disabled
Transmit Start Condition	 To start transmitting, the following requirements must be met⁽²⁾:
	- Set the TE bit in the UiC1 register to "1" (transmit enable)
	- Set the TI bit in the UiC1 register to "0" (data in the UiTB register)
	- Apply an "L" signal to the $\overline{\text{CTSi}}$ pin when the $\overline{\text{CTS}}$ function is selected
Receive Start Condition	• To start receiving, the following requirements must be met ⁽²⁾ :
	- Set the RE bit in the UiC1 register to "1" (receive enable)
	- Set the TE bit to "1" (transmit enable)
	- Set the TI bit to "0" (data in the UiTB register)
Interrupt Request Generation Timing	Transmit interrupt timing can be selected from the followings:
	- The UiIRS bit in the UiC1 register is set to "0" (no data in the transmit buffer) :
	when data is transferred from the UiTB register to the UARTi transmit register (transfer started)
	- The UiIRS bit is set to "1" (transmission completed) :
	when a data transfer from the UARTi transmit register is completed
	Receive interrupt timing
	When data is transferred from the UARTi receive register to the UiRB register (reception completed)
Error Detect	• Overrun error ⁽³⁾
	This error occurs when the seventh bit of the next received data is read before reading
	the UiRB register
Selectable Function	CLK polarity
	Transferred data is output and input on either the rising edge or falling edge of the
	transfer clock
	LSB first / MSB first
	Data is transmitted or received in either bit 0 or in bit 7
	Continuous receive mode
	Data can be received simultaneously by reading the UiRB register
	Serial data logic inverse
	This function inverses transmitted or received data logically

NOTES:

- 1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).
- 2. To start transmission/reception when selecting the external clock, these conditions must be met after the CKPOL bit in the UiC0 register is set to "0" (data is transmitted on the falling edge of the transfer clock and data is received on the rising edge) and the CLKi pin is held high ("H"), or when the CKPOL bit is set to "1" (Data is transmitted on the rising edge of the transfer clock and data is received on the rising edge of the transfer clock and data is received on the falling edge) and the CLKi pin is held high ("H").
- 3. If an overrun error occurs, the UiRB register is indeterminate. The IR bit in the SiRIC register does not change to "1" (interrupt requested).

Register	Bit	Function	
UiTB	0 to 7	Set transmit data	
UiRB 0 to 7 OER		Received data can be read	
		Overrun error flag	
UiBRG	0 to 7	Set bit rate	
UiMR	SMD2 to SMD0	Set to "0012"	
	CKDIR	Select the internal clock or external clock	
	IOPOL	Set to "0"	
UiC0	CLK1 to CLK0	Select count source for the UiBRG register	
	CRS	Select CTS or RTS when using either	
	TXEPT	Transmit register empty flag	
	CRD	Enables or disables the CTS or RTS function	
	NCH	Select output format of the TxDi pin	
	CKPOL	Select transmit clock polarity	
	UFORM	Select either LSB first or MSB first	
UiC1	TE	Set to "1" to enable data transmission and reception	
	TI	Transmit buffer empty flag	
	RE	Set to "1" to enable data reception	
	RI	Reception complete flag	
	UilRS	Select how the UARTi transmit interrupt is generated	
	UiRRM	Set to "1" when using continuous receive mode	
	UiLCH	Set to "1" when using data logic inverse	
	SCLKSTPB	Set to "0"	
UiSMR	0 to 7	Set to "0016"	
UiSMR2	0 to 7	Set to "0016"	
UiSMR3	0 to 2	Set to "0002"	
	NODC	Select clock output format	
	4 to 7	Set to "00002"	
UiSMR4	0 to 7	Set to "0016"	

Table 16.2 Registers to be Used and Setting Value in Clock Synchronous Serial I/O Mode

i=0 to 4

Port	Function		Setting			
		PS0 Register	PSL0 Register	PD6 Register		
P60	CTS0 input	PS0_0=0	-	PD6_0=0		
	RTS0 output	PS0_0=1	-	-		
P61	CLK0 input	PS0_1=0	-	PD6_1=0		
	CLK0 output	PS0_1=1	-	-		
P62	RxD0 input	PS0_2=0	-	PD6_2=0		
P63	TxD0 output	PS0_3=1	-	-		
P64	CTS1 input	PS0_4=0	-	PD6_4=0		
	RTS1 output	PS0_4=1	PSL0_4=0	-		
P65	CLK1 input	PS0_5=0	-	PD6_5=0		
	CLK1 output	PS0_5=1	-	-		
P66	RxD1 input	PS0_6=0	-	PD6_6=0		
P67	TxD1 output	PS0_7=1	-	-		

Table 16.3 Pin Settings in Clock Synchronous Serial I/O Mode (1)

Table 16.4 Pin Settings (2)

Port	Function	Setting			
		PS1 Register	PSL1 Register	PSC Register	PD7 Register
P70 ⁽¹⁾	TxD2 output	PS1_0=1	PSL1_0=0	PSC_0=0	-
P71 ⁽¹⁾	RxD2 input	PS1_1=0	-	-	PD7_1=0
P72	CLK2 input	PS1_2=0	-	-	PD7_2=0
	CLK2 output	PS1_2=1	PSL1_2=0	PSC_2=0	-
P73	CTS2 input	PS1_3=0	-	-	PD7_3=0
	RTS2 output	PS1_3=1	PSL1_3=0	PSC_3=0	-

NOTES:

1. P70 and P71 are ports for the N-channel open drain output.

Table 16.5 Pin Settings (3)

Port	Function		Setting			
		PS3 Register ⁽¹⁾	PSL3 Register	PD9 Register ⁽¹⁾		
P90	CLK3 input	PS3_0=0	-	PD9_0=0		
	CLK3 output	PS3_0=1	-	-		
P91	RxD3 input	PS3_1=0	-	PD9_1=0		
P92	TxD3 output	PS3_2=1	PSL3_2=0	-		
P93	CTS3 input	PS3_3=0	PSL3_3=0	PD9_3=0		
	RTS3 output	PS3_3=1	-	-		
P94	CTS4 input	PS3_4=0	PSL3_4=0	PD9_4=0		
	RTS4 output	PS3_4=1	-	-		
P95	CLK4 input	PS3_5=0	PSL3_5=0	PD9_5=0		
	CLK4 output	PS3_5=1	-	-		
P96	TxD4 output	PS3_6=1	-	-		
P97	RxD4 input	PS3_7=0	-	PD9_7=0		

NOTES:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

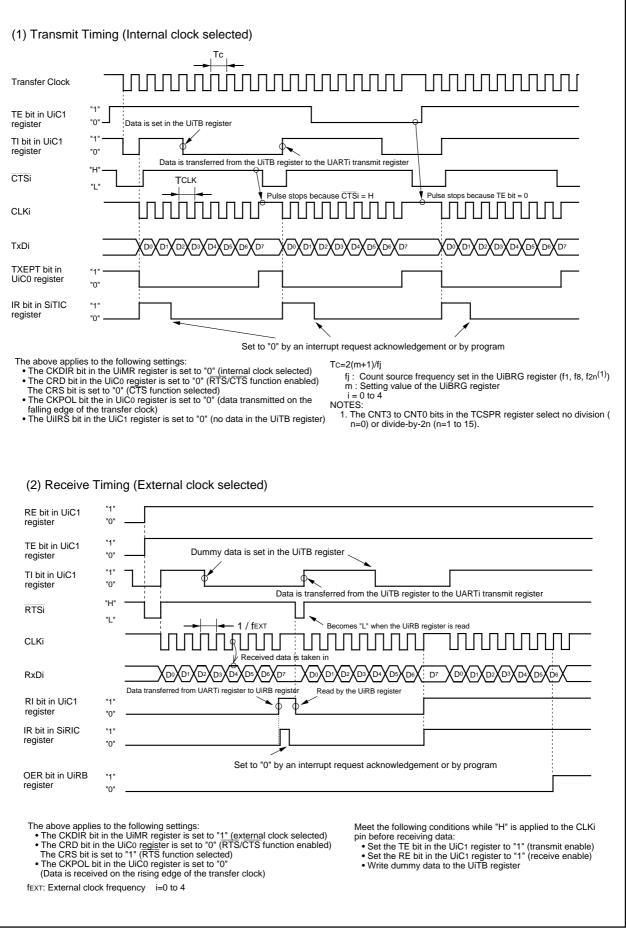


Figure 16.10 Transmit and Receive Operation

16.1.1 Selecting CLK Polarity

As shown in Figure 16.11, the CKPOL bit in the UiC0 register (i=0 to 4) determines the polarity of the transfer clock.

	e CKPOL bit in the UiC0 register (i=0 to 4) is set to "0" transmitted on the falling edge of the transfer clock and data is received on the rising edge)
CLKi	
TXDi	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
RXDi	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
1 2	TES: . The CLKi pin is held high ("H") when no data is transferred. . The above applies when the UFORM bit in the UiC0 register is set to "0" (LSB first) and the UiLCH bit in the UiC1 register is set to "0" (not inversed).
	e CKPOL bit in the UiC0 register is set to "1" transmitted on the falling edge) transmitted on the rising edge of the transfer clock and data is received on the falling edge)
CLKi	
TXDi	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
RXDi	$ \begin{array}{c c} & & & & \\ \hline \\ \hline$
3	TES: . The CLKi pin is held low ("L") when no data is transferred. . The above applies when the UFORM bit in the UiC0 register is set to "0" (LSB first) and the UiLCH bit in the UiC1 register is set to "0" (not inversed).

Figure 16.11 Transfer Clock Polarity

16.1.2 Selecting LSB First or MSB First

As shown in Figure 16.12, the UFORM bit in the UiC0 register (i=0 to 4) determines a data transfer format.

(1) When the UFORM bit in the UiC0 register (i=0 to 4) is set to "0" (LSB first)
TXDi D0 D1 D2 D3 D4 D5 D6 D7
RXDi D0 \ D1 \ D2 \ D3 \ D4 \ D5 \ D6 \ D7
NOTES: 1. The above applies when the CKPOL bit in the UiC0 register is set to "0" (data is transmitted on the falling edge of the transfer clock and received on the rising edge) and the UiLCH bit in the UiC1 register is set to "0" (not inversed).
(2) When the UFORM bit in the UiC0 register is set to "1" (MSB first)
TxDi D7 D6 D5 D4 D3 D2 D1 D0
RXDi D7 X D6 X D5 X D4 X D3 X D2 X D1 X D0
NOTES: 2. The above applies when the CKPOL bit in the UiC0 register is set to "0" (data is transmitted on the falling edge of the transfer clock and received on the rising edge) and the UiLCH bit in the UiC1 register is set to "0" (not inversed).

Figure 16.12 Transfer Format

16.1.3 Continuous Receive Mode

When the UiRRM bit in the UiC1 register (i=0 to 4) is set to "1" (continuous receive mode), the TI bit is set to "0" (data in the UiTB register) by reading the UiRB register. When the UiRRM bit is set to "1", do not set dummy data in the UiTB register by program.

16.1.4 Serial Data Logic Inverse

When the UiLCH bit in the UiC1 register is set to "1" (inverse), data logic written in the UiTB register is inversed when transmitted. The inversed receive data logic can be read by reading the UiRB register. Figure 16.13 shows a switching example of the serial data logic.

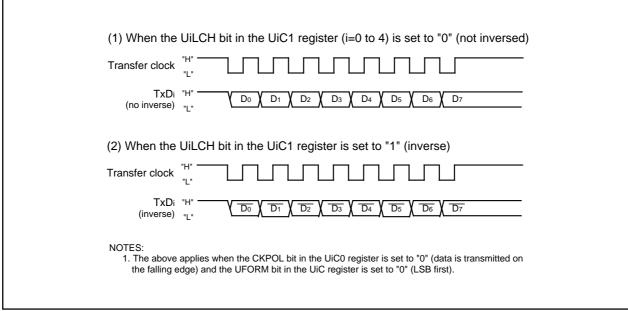


Figure 16.13 Serial Data Logic Inverse

16.2 Clock Asynchronous Serial I/O (UART) Mode

In UART mode, data is transmitted and received after setting a desired bit rate and data transfer format. Table 16.6 lists specifications of UART mode.

Item	Specification
Transfer Data Format	Character bit (transfer data) : selected from 7 bits, 8 bits, or 9 bits long
	Start bit: 1 bit long
	 Parity bit: selected from odd, even, or none
	Stop bit: selected from 1 bit or 2 bits long
Transfer Clock	• The CKDIR bit in the UiMR register is set to "0" (internal clock selected) :
	fj/16(m+1) fj = f1, f8, $f_{2n}^{(1)}$ m: setting value of the UiBRG register 0016 to FF16
	 The CKDIR bit is set to "1" (external clock selected) :
	fEXT/16(m+1) fEXT: clock applied to the CLKi pin
Transmit/Receive Control	Select from CTS function, RTS function or CTS/RTS function disabled
Transmit Start Condition	• To start transmitting, the following requirements must be met:
	- Set the TE bit in the UiC1 register to "1" (transmit enable)
	- Set the TI bit in the UiC1 register to "0" (data in the UiTB register)
	- Apply an "L" signal to the \overline{CTS} i pin when the \overline{CTS} function is selected
Receive Start Condition	• To start receiving, the following requirements must be met:
	- Set the RE bit in the UiC1 register to "1" (receive enable)
	- The start bit is detected
Interrupt Request	Transmit interrupt timing can be selected from the followings:
Generation Timing	- The UiIRS bit in the UiC1 register is set to "0" (no data in the transmit buffer) :
	when data is transferred from the UiTB register to the UARTi transmit register (transfer started)
	- The UiIRS bit is set to "1" (transmission completed) :
	when data transmission from the UARTi transfer register is completed
	Receive interrupt timing
	when data is transferred from the UARTi receive register to the UiRB register (reception completed)
Error Detect	• Overrun error ⁽²⁾
	This error occurs when the bit before the last stop bit of the next received data is read
	prior to reading the UiRB register (the first stop bit when selecting 2 stop bits)
	Framing error
	This error occurs when the number of stop bits set is not detected
	Parity error
	When parity is enabled, this error occurs when the number of "1" in parity and character
	bits does not match the number of "1" set
	• Error sum flag
	This flag is set to "1" when any of an overrun, framing or parity errors occur
Selectable Function	LSB first / MSB first
	Data is transmitted or received in either bit 0 or in bit 7
	Serial data logic inverse
	Logic values of data to be transmitted or received data are inversed. The start bit and
	stop bit are not inversed
	•TxD, RxD I/O polarity switching
	TxD pin output and RxD pin input are inversed

Table 16.6 UART Mode Specifications

NOTES:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

2. If an overrun error occurs, the UiRB register is indeterminate. The IR bit in the SiRIC register remains unchanged as "1" (interrupt requested).

Table 16.7 lists registers to be used and settings. Tables 16.8 to 16.10 list pin settings. When UARTi (i=0 to 4) operation mode is selected, the TxDi pin outputs an "H" signal before transfer is started (the TxDi pin is in a high-impedance state when the N-channel open drain output is selected). Figure 16.14 shows an example of a transmit operation in UART mode. Figure 16.15 shows an example of a receive operation in UART mode.

Register	Bit	Function
UiTB	0 to 8	Set transmit data ⁽¹⁾
UiRB 0 to 8		Received data can be read ⁽¹⁾
	OER, FER,	Error flags
	PER, SUM	
UiBRG	0 to 7	Set bit rate
UiMR	SMD2 to SMD0	Set to "1002" when transfer data is 7 bits long
		Set to "1012" when transfer data is 8 bits long
		Set to "1102" when transfer data is 9 bits long
	CKDIR	Select the internal clock or external clock
	STPS	Select stop bit length
	PRY, PRYE	Select parity enable or disable, odd or even
	IOPOL	Select TxD / RxD I/O polarity
UiC0	CLK0, CLK1	Select count source for the UiBRG register
	CRS	Select either CTS or RTS when using either
	TXEPT	Transfer register empty flag
	CRD	Enables or disables the CTS or RTS function
	NCH	Select output format of the TxDi pin
	CKPOL	Set to "0"
	UFORM	Select the LSB first or MSB first when a transfer data is 8 bits long
		Set to "0" when transfer data is 7 bits or 9 bits long
UiC1	TE	Set to "1" to enable data transmission
	ТІ	Transfer buffer empty flag
	RE	Set to "1" to enable data reception
	RI	Reception complete flag
	UilRS	Select how the UARTi transmit interrupt is generated
	UiRRM	Set to "0"
	UiLCH	Select whether or not data logic is inversed when transfer data length is 7 or
		8 bits. Set to "0" when transfer data length is 9 bits.
	UiERE	Set to either "0" or "1"
UiSMR	0 to 7	Set to "0016"
UiSMR2	0 to 7	Set to "0016"
UiSMR3	0 to 7	Set to "0016"
UiSMR4	0 to 7	Set to "0016"

Table 16.7 Registers to be Used and Settings in UART

NOTES:

1. Use bits 0 to 6 when transfer data is 7 bits long, bits 0 to 7 when 8 bits long, bits 0 to 8 when 9 bits long.

Port	Function	Setting			
		PS0 Register	PSL0 Register	PD6 Register	
P60	CTS0 input	S0 input PS0_0=0 –		PD6_0=0	
	RTS0 output	PS0_0=1	-	-	
P61	CLK0 input	PS0_1=0	-	PD6_1=0	
P62	RxD0 input	PS0_2=0	-	PD6_2=0	
P63	TxD0 output	PS0_3=1	-	-	
P64	64 CTS1 input PS0_4=0 –		-	PD6_4=0	
	RTS1 output	PS0_4=1	PSL0_4=0	-	
P65	CLK1 input	PS0_5=0	-	PD6_5=0	
P66	RxD1 input	PS0_6=0	-	PD6_6=0	
P67	TxD1 output	PS0_7=1			

Table 16.8 Pin Settings in UART (1)

Table 16.9 Pin Settings (2)

Port	Function	Setting				
		PS1 Register	PSL1 Register	PSC Register	PD7 Register	
P70 ⁽¹⁾	TxD2 output	PS1_0=1	PSL1_0=0	PSC_0=0	-	
P71 ⁽¹⁾	RxD2 input	PS1_1=0	-	-	PD7_1=0	
P72	CLK2 input	PS1_2=0	-	-	PD7_2=0	
P73	CTS2 input	PS1_3=0	-	-	PD7_3=0	
	RTS2 output	PS1_3=1	PSL1_3=0	PSC_3=0	_	

NOTES:

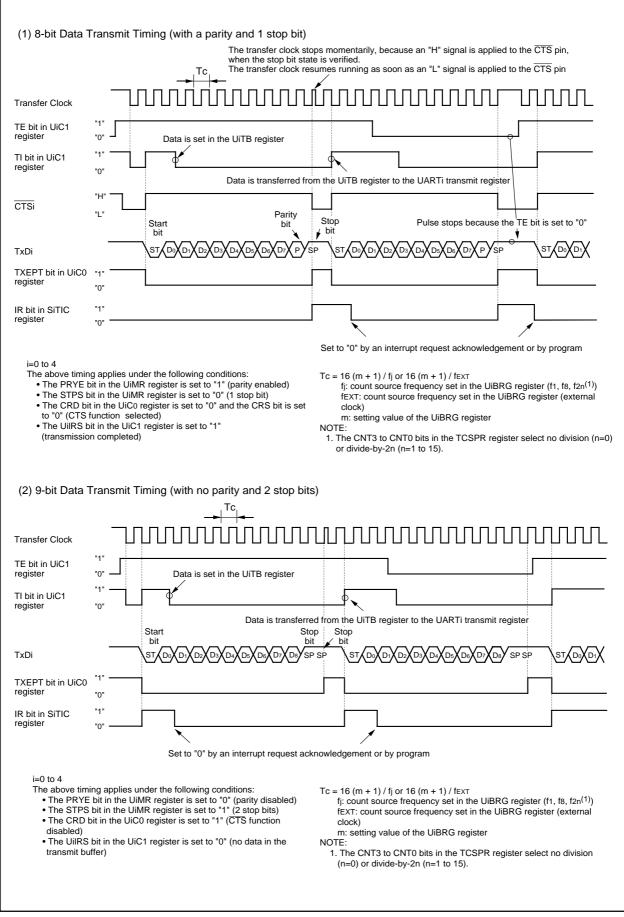

1. P70 and P71 are ports for the N-channel open drain output.

Table 16.10 Pin Settings (3)

Port	Function	Setting			
		PS3 Register ⁽¹⁾	PSL3 Register	PD9 Register ⁽¹⁾	
P90	CLK3 input	PS3_0=0	-	PD9_0=0	
P91	RxD3 input	PS3_1=0	-	PD9_1=0	
P92	TxD3 output	PS3_2=1	PSL3_2=0	-	
P93	CTS3 input	PS3_3=0	PSL3_3=0	PD9_3=0	
	RTS3 output	PS3_3=1	-	-	
P94	CTS4 input	PS3_4=0	PSL3_4=0	PD9_4=0	
	RTS4 output	PS3_4=1	-	-	
P95	CLK4 input	PS3_5=0	PSL3_5=0	PD9_5=0	
P96	TxD4 output	PS3_6=1	-	-	
P97	RxD4 input	PS3_7=0	-	PD9_7=0	

NOTES:

1. Set the PD9 and PS3 registers set immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

Figure 16.14 Transmit Operation

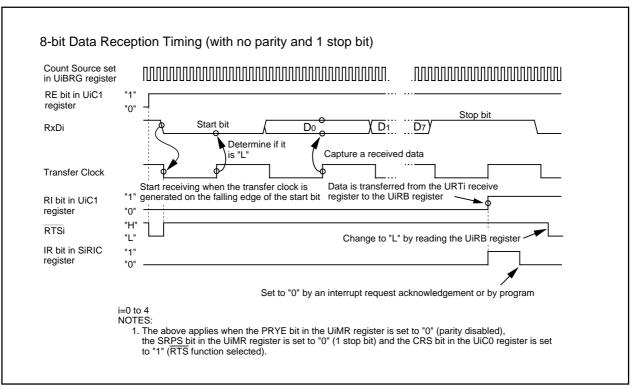


Figure 16.15 Receive Operation

16.2.1 Bit Rate

In UART mode, bit rate is clock frequency which is divided by a setting value of the UiBRG (i=0 to 4) register and again divided by 16. Table 16.11 lists an example of bit rate setting.

Table 16.11 Bit F	Rate
-------------------	------

Bit Rate (bps)	Count Source of UiBRG	Peripheral Function Clock: 16MHz		Peripheral Function Clock: 24MHz		Peripheral Function Clock: 32MHz	
		Setting Value of UiBRG: <i>n</i>	Actual Bit Rate (bps)	Setting Value of UiBRG: <i>n</i>	Actual Bit Rate (bps)	Setting Value of UiBRG: <i>n</i>	Actual Bit Rate (bps)
1200	f8	103 (67h)	1202	155 (96h)	1202	207 (CFh)	1202
2400	f8	51 (33h)	2404	77 (46h)	2404	103 (67h)	2404
4800	f8	25 (19h)	4808	38 (26h)	4808	51 (33h)	4808
9600	f1	103 (67h)	9615	155 (96h)	9615	207 (CFh)	9615
14400	f1	68 (44h)	14493	103 (67h)	14423	138 (8Ah)	14388
19200	f1	51 (33h)	19231	77 (46h)	19231	103 (67h)	19231
28800	f1	34 (22h)	28571	51 (33h)	28846	68 (44h)	28986
31250	f1	31 (1Fh)	31250	47 (2Fh)	31250	63 (3Fh)	31250
38400	f1	25 (19h)	38462	38 (26h)	38462	51 (33h)	38462
51200	f1	19 (13h)	50000	28 (1Ch)	51724	38 (26h)	51282

16.2.2 Selecting LSB First or MSB First

As shown in Figure 16.16, the UFORM bit in the UiC0 register (i=0 to 4) determines data transfer format. This function is available for 8-bit transfer data.

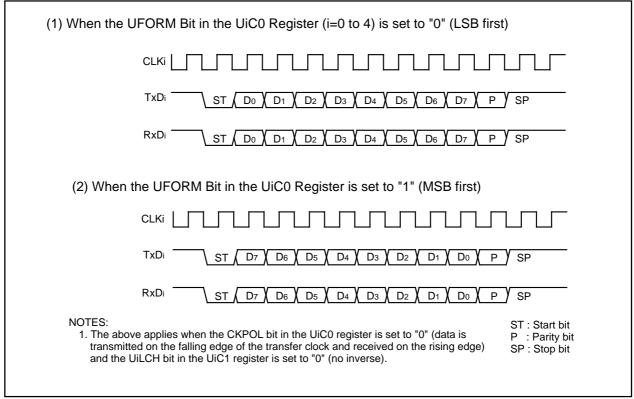


Figure 16.16 Transfer Format

16.2.3 Serial Data Logic Inverse

After the UiLCH bit in the UiC1 register is set to "1", data logic is inversed when writing to the UiTB register (i=0 to 4) and reading from the UiRB register. Figure 16.17 shows a switching example of the serial data logic.

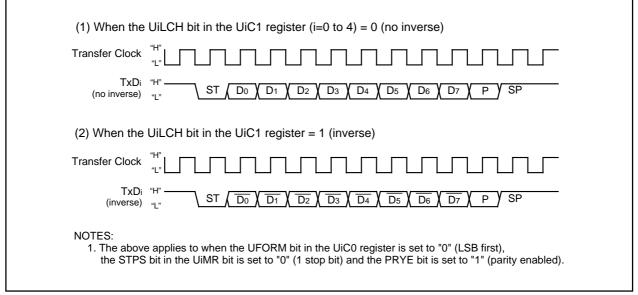


Figure 16.17 Serial Data Logic Inverse

Г

16.2.4 TxD and RxD I/O Polarity Inverse

TxD pin output and RxD pin input are inversed. All I/O data level, including the start bit, stop bit and parity bit, are inversed. Figure 16.18 shows TxD and RxD I/O polarity inverse.

(1) When the IOPOL bit in the UiMR register (i=0 to 4) is set to "0" (no inverse)
Transfer Clock "H"
TxDi "H" ST / D0 / D1 / D2 / D3 / D4 / D5 / D6 / D7 / P / SP
RxDi "H" ST / D0 / D1 / D2 / D3 / D4 / D5 / D6 / D7 / P / SP (no inverse) "L"
(2) When the IOPOL bit in the UiMR register is set to "1" (inverse)
TxDi "H" ST V Do V D1 V D2 V D3 V D4 V D5 V D6 V D7 V P V SP
RxDi "H" ST V D0 V D1 V D2 V D3 V D4 V D5 V D6 V D7 V P V SP (inverse) "L"
NOTES: 1. The above applies when the UFORM bit in the UiC0 register is set to "0" (LSB first), the STPS bit in the UiMR bit is set to "0" (1 stop bit) and the PRYE bit is set to "1" (parity enabled). ST : Start bit P : Even parity SP : Stop bit

Figure 16.18 TxD, RxD I/O Polarity Inverse

16.3 Special Mode 1 (I²C Mode)

 I^2C mode is a mode to communicate with external devices with a simplified I^2C . Table 16.12 lists specifications of I^2C mode. Table 16.13 lists registers to be used and settings, Table 16.14 lists each function. Figure 16.19 shows a block diagram of I^2C mode. Figure 16.20 shows timings for transfer to the UiRB register and interrupts. Tables 16.14 to 16.16 list pin settings.

As shown in Table 16.14, I²C mode is entered when the SMD2 to SMD0 bits in the UiMR register is set to "0102" and the IICM bit in the UiMR register is set to "1". SDAi output changes after SCLi becomes low ("L") and stabilizes due to a SDAi output via the delay circuit.

Item	Specifications
Interrupt	Start condition detect, stop condition detect, no acknowledgment detect, acknowledgment detect
Selectable Function	Arbitration lost
	The update timing of the ABT bit in the UiRB register can be selected.
	Refer to 16.3.3 Arbitration.
	• SDAi digital delay
	Selected from no digital delay or 2 to 8 cycle delay of the count source of BRG.
	Refer to 16.3.5 SDA Output.
	Clock phase setting
	Selected from clock delay or no clock delay.
	Refer to 16.3.4 Transfer Clock.

Table 16.12 I²C Mode Specifications

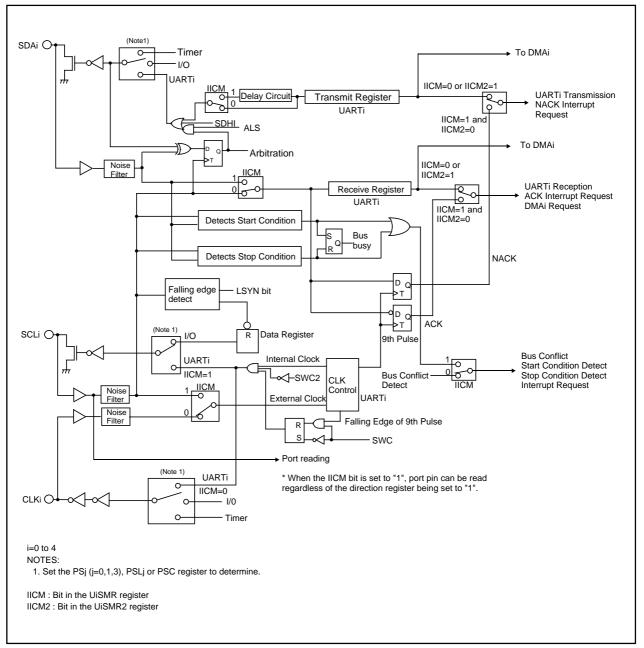


Figure 16.19 I²C Mode Block Diagram

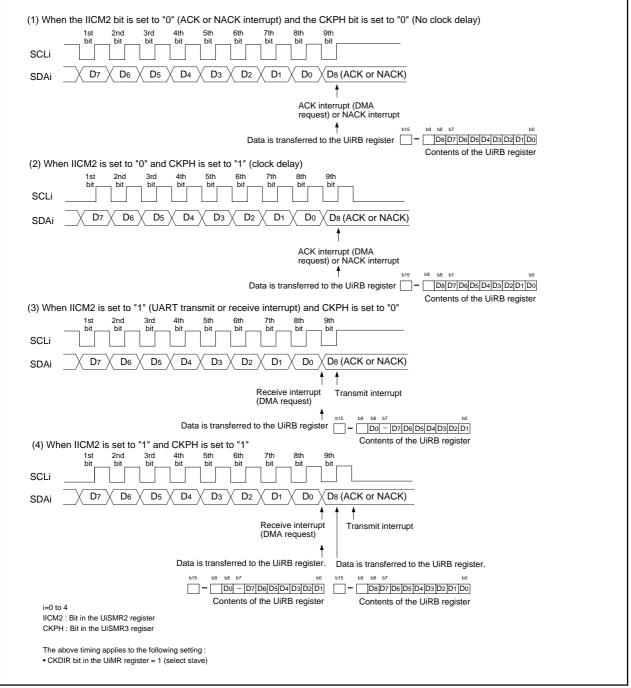
Table 16.13 Registers To Be Used and Settings (I²C Mode)

Register	Bit	Function	<u>Slava</u>			
	0 to 7	Master Set transmit data	Slave			
UiTB	0 to 7					
UiRB	0 to 7	Received data can be read				
	8	ACK or NACK bit can be read				
	ABT	Arbitration lost detect flag	Disabled			
	OER	Overrun error flag				
UiBRG	0 to 7	Set bit rate	Disabled			
UiMR	SMD2 to SMD0	Set to "0102"				
	CKDIR	Set to "0" Set to "1"				
	IOPOL	Set to "0"				
UiC0	CLK1 to CLK0	Select count source of the UiBRG register	Disabled			
	CRS	Disabled because CRD = 1				
	TXEPT	Transfer register empty flag				
	CRD, NCH	Set to "1"				
	CKPOL	Set to "0"				
	UFORM	Set to "1"				
UiC1	TE	Set to "1" to enable data transmission				
	TI	Transfer buffer empty flag				
	RE	Set to "1" to enable data reception				
	RI	Reception complete flag				
	UiRRM, UiLCH,	Set to "0"				
	UiERE					
UiSMR	IICM	Set to "1"				
	ABC	Select an arbitration lost detect timing	Disabled			
	BBS	Bus busy flag				
	3 to 7	Set to "000002"				
UiSMR2	IICM2	See Table 16.14				
	CSC	Set to "1" to enable clock synchronization	Set to "0"			
	SWC	Set to "1" to output fixed "L" from the SDAi on th	e falling edge of the ninth bit of			
		the transfer clock				
	ALS	Set to "1" to terminate SDA output when	Not used. Set to "0"			
		detecting the arbitration lost				
ľ	STC	Not used. Set to "0"	Set to "1" to reset UARTi			
			by detecting a start condition			
	SWC2	Set to "1" to forcibly output an "L" signal from SCL				
	SDHI	Set to "1" to disable SDA output				
	SU1HIM	Set to "0"				
UiSMR3	SSE	Set to "0"				
	СКРН	See Table 16.14.				
	DINC, NODC, ERR	Set to "0"				
	DL2 to DL0	Set digital delay value				
UiSMR4	STAREQ	Set to "1" when generating start condition	Not used. Set to "0"			
	RSTAREQ	Set to "1" when generating restart condition				
	STPREQ	Set to "1" when generating stop condition				
	STSPSEL	Set to "1" when using a condition generating function				
	ACKD	Select ACK or NACK				
ŀ	ACKC	Set to "1" to output ACK data				
	SCLHI	Set to "1" to enable SCL output stop when	Not used. Set to "0"			
	JULIII					
	011/00	detecting stop condition				
	SWC9	Not used. Set to "0"	Set to "1" to output fixed "L" from SCL			
			on the falling edge of the ninth bit of			
		Cot to "1"	the transfer clock			
IFSR	IFSR6, IFSR7	Set to "1"				

i=0 to 4

Table 16.14 I²C Mode Functions

		I ² C Mode (SMD2 to SMD0=0102, IICM=1)				
Function	Clock Synchronous Serial I/O Mode (SMD2 to SMD0=0012,	IICM2=0 (NACK/ACK interrupt)		IICM2=1 (UART transmit / UART receive interrupt)		
	IICM=0)	CKPH=0 (No clock delay)	CKPH=1 (Clock delay)	CKPH=0 (No clock delay)	CKPH=1 (Clock delay)	
Interrupt Numbers 39 to 41 Generated ⁽¹⁾ (See Figure 16.20)	-	Start condition or stop condition detect (See			Table 16.17)	
Interrupt Number 17, 19, 33, 35 and 37 Generated ⁽¹⁾ (See Figure 16.20)	UARTi Transmission - Transmission started or completed (selected by the UiIRS register)	No Acknowlegement Detect		UARTi Transmission - Rising edge of 9th bit of SCLi	UARTi Transmission - Next falling edge after the 9th bit of SCLi	
Interrupt Numbers 18, 20, 34, 36 and 38 Generated ⁽¹⁾ (See Figure 16.20)	UARTi Reception - Receiving at 8th bit CKPOL=0(rising edge) CKPOL=1(falling edge)	Acknowlegement Rising edge of 9tl		UARTi Reception Falling edge of 9t	RTi Reception - ng edge of 9th bit of SCLi	
Data Transfer Timing from the UART Receive Shift Register to the UiRB Register	CKPOL=0(rising edge) CKPOL=1(falling edge)	Rising edge of 9th	n bit of SCLi	Falling edge of 9th bit of SCLi	Falling edge and rising edge of 9th bit of SCLi	
UARTi Transmit Output Delay	No delay	Delay				
P63, P67, P70, P92, P96 Pin Functions	TxDi output	SDAi input and output				
P62, P66, P71, P91, P97 Pin Functions	RxDi input	SCLi input and output				
P61, P65, P72, P90, P95 Pin Functions	Select CLKi input or output	 – (Not used in I²C mode) 				
Noise Filter Width	15ns	200ns				
Reading RxDi and SCLi Pin Levels	Can be read if port direction bit is set to "0"	Can be read rega	rdless of the po	ort direction bit		
Default Value of TxDi, SDAi Output	CKPOL=0 (H) CKPOL=1 (L)	Values set in the	port register be	fore entering I ² C m	node ⁽²⁾	
SCLi Default and End Value	-	н	L	н	L	
DMA Generated (See Figure 16.20)	UARTi reception			UARTi Reception Falling edge of 9	ARTi Reception - Illing edge of 9 bit of SCLi	
Store Received Data	1st to 8th bits of the received data are stored into bits 0 to 7 in the	1st to 8th bits of the received data are stored into bits 7 to 0 in the UiRB register		1st to 7th bits of the received data are store into bits 6 to 0 in the UiRB register. 8th bit is stored into bit 8 in the UiRB register.		
	UiRB register				1st to 8th bits are stored into bits 7 to 0 in the UiRB register $^{(3)}$	
Reading Received Data	The UiRB register status	registerts ⁽⁴⁾ are read a to 1. Bit 8 in the UiRE		Bits 6 to 0 in the UiRB registerts ⁽⁴⁾ are read as bit 7 to 1. Bit 8 in the UiRB register is read as bit 0		


i=0 to 4

NOTES:

1. Follow the procedures below to change how an interrupt is generated.

- (a) Disable interrupt of corresponding interrupt number.
- (b) Change how an interrupt is generated.
- (c) Set the IR bit of a corresponding interrupt number to "0" (no interrupt requested).
- (d) Set the ILVL2 to ILVL0 bits of a corresponding interrupt number.
- Set default value of the SDAi output when the SMD2 to SMD0 bits in the UiMR register are set to "0002" (serial I/O disabled).
- 3. Second data transfer to the UiRB register (on the rising edge of the ninth bit of SCLi).
- 4. First data transfer to the UiRB register (on the falling edge of the ninth bit of SCLi).

RENESAS

Figure 16.20 UiRB Register Transfer and Interrupt Timings

Table 16.15 Pin Settings in I²C Mode (1)

Port	Function	Setting			
		PS0 Register	PSL0 Register	PD6 Register	
P62	SCL0 output	PS0_2=1	PSL0_2=0	-	
	SCL0 input	PS0_2=0	-	PD6_2=0	
P63	SDA0 output	PS0_3=1	-	-	
	SDA0 input	PS0_3=0	-	PD6_3=0	
P66	SCL1 output	PS0_6=1	PSL0_6=0	-	
	SCL1 input	PS0_6=0	-	PD6_6=0	
P67	SDA1 output	PS0_7=1	-	-	
	SDA1 input	PS0_7=0	-	PD6_7=0	

Table 16.16 Pin Settings (2)

Port	Function	Setting			
		PS1 Register	PSL1 Register	PSC Register	PD7 Register
P70 ⁽¹⁾	SDA2 output	PS1_0=1	PSL1_0=0	PSC_0=0	-
	SDA2 input	PS1_0=0	-	-	PD7_0=0
P71 ⁽¹⁾	SCL2 output	PS1_1=1	PSL1_1=0	PSC_1=0	
	SCL2 input	PS1_1=0	-	-	PD7_1=0

NOTES:

1. P70 and P71 are ports for the N-channel open drain output.

Port	Function	Setting			
		PS3 Register ⁽¹⁾	PSL3 Register	PD9 Register ⁽¹⁾	
P91	SCL3 output	PS3_1=1	PSL3_1=0	-	
	SCL3 input	PS3_1=0	-	PD9_1=0	
P92	SDA3 output	PS3_2=1	PSL3_2=0	-	
	SDA3 input	PS3_2=0	-	PD9_2=0	
P96	SDA4 output	PS3_6=1	-	-	
	SDA4 input	PS3_6=0	-	PD9_6=0	
P97	SCL4 output	PS3_7=1	PSL3_7=0	-	
	SCL4 input	PS3_7=0	-	PD9_7=0	

NOTES:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

16.3.1 Detecting Start Condition and Stop Condition

The microcomputer detects either a start condition or stop condition. The start condition detect interrupt is generated when the SCLi (i=0 to 4) pin is held high ("H") and the SDAi pin changes high ("H") to low ("L"). The stop condition detect interrupt is generated when the SCLi pin is held high ("H") and the SDAi pin changes low ("L") to high ("H"). The start condition detect interrupt shares interrupt control registers and vectors with the stop condition detect interrupt. The BBS bit in the UiSMR register determines which interrupt is requested.

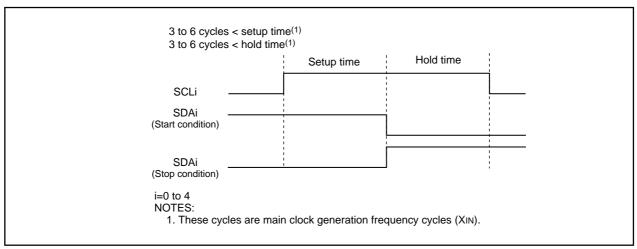


Figure 16.21 Start Condition or Stop Condition Detect

16.3.2 Start Condition or Stop Condition Output

The start condition is generated when the STAREQ bit in the UiSMR4 register (i=0 to 4) is set to "1" (start). The restart condition is generated when the RSTAREQ bit in the UiSMR4 register is set to "1" (start). The stop condition is generated when the STPREQ bit in the UiSMR4 is set to "1" (start).

The start condition is output when the STAREQ bit is set to "1" and the STSPSEL bit in the UiSMR4 register is set to "1" (start or stop condition generation circuit selected). The restart condition is output when the RSTAREQ bit and STSPSEL bit are set to "1". The stop condition is output when the STPREQ bit and the STSPSEL bit are set to "1".

When the start condition, stop condition or restart condition is output, do not generate an interrupt between the instruction to set the STAREQ bit, STPREQ bit or RSTAREQ bit to "1" and the instruction to set the STSPSEL bit to "1". When the start condition is output, set the STAREQ bit to "1" before the STSPSEL bit is set to "1".

Table 16.18 lists function of the STSPSEL bit. Figure 16.22 shows functions of the STSPSEL bit.

Function	STSPSEL = 0	STSPSEL = 1
Start condition and stop condition	Program with a port determines	The STAREQ bit, RSTAREQ bit and
output	how the start condition or stop	STPREQ bit determine how the start
	condition is output	condition or stop condition is output
Timing to generate a start condition and stop condition interrupt request	The start condition and stop condition are detected	Start condition and stop condition generation are completed

Table 16.18 STSPSEL Bit Function

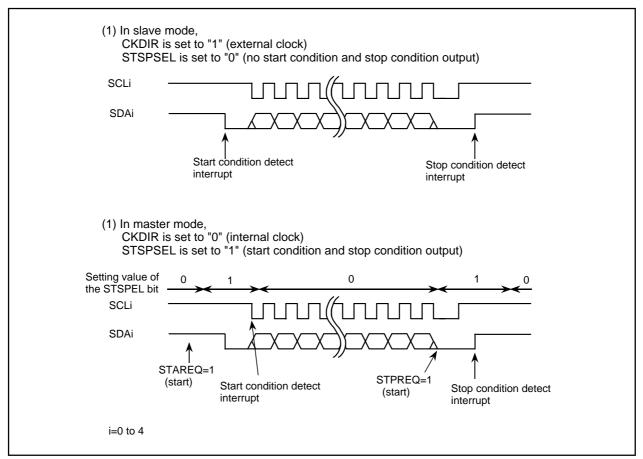


Figure 16.22 STSPSEL Bit Function

16.3.3 Arbitration

The ABC bit in the UiSMR register (i=0 to 4) determines an update timing for the ABT bit in the UiRB register. On the rising edge of SCLi, the microcomputer determines whether a transmit data matches data input to the SDAi pin.

When the ABC bit is set to "0" (update per bit), the ABT bit is set to "1" as soon as a data discrepancy is detected. The ABT bit is set to "0" if not detected. When the ABC bit is set to "1", the ABT bit is set to "1" (detected-arbitration is lost) on the falling edge of the ninth bit of the transfer clock if any discrepancy is detected. When the ABT bit is updated per byte, set the ABT bit to "0" (not detected-arbitration is won) between an ACK detection in the first byte data and the next byte data to be transferred. When the ALS bit in the UiSMR2 register is set to "1" (SDA output stop enabled), the arbitration lost occurs. As soon as the ABT bit is set to "1", the SDAi pin is placed in a high-impedance state.

16.3.4 Transfer Clock

The transfer clock transmits and receives data as is shown in Figure 16.22

The CSC bit in the UiSMR2 register (i=0 to 4) synchronizes an internally generated clock (internal SCLi) with the external clock applied to the SCLi pin. When the CSC bit is set to "1" (clock synchronous enabled) and the internal SCLi is held high ("H"), the internal SCLi become low ("L") if signal input to the SCLi pin is on the falling edge. Value of the UiBRG register is reloaded to start counting for low level. A counter stops when the SCLi pin is held "L" and then the internal SCLi changes "L" to "H". Counting is resumed when the SCLi pin become "H". The transfer clock of UARTi is equivalent to the AND for signals from the internal SCLi and the SCLi pin.

The transfer clock is synchronized between a half cycle before the falling edge of first bit of the internal SCLi and the rising edge of the ninth bit. Select the internal clock as the transfer clock while the CSC bit is set to "1".

The SWC bit in the UiSMR2 register determines whether the SCLi pin is fixed to output an "L" signal on the falling edge of the ninth cycle of the transfer clock or not.

When the SCLHI bit in the UiSMR4 register is set to "1" (enabled), a SCLi output stops when a stop condition is detected (high-impedance).

When the SWC2 bit in the UiSMR2 register is set to "1" (0 output), the SCLi pin forcibly outputs an "L" signal while transmitting and receiving. The fixed "L" signal applied to the SCLi pin is cancelled by setting the SWC2 bit to "0" (transfer clock) and the transfer clock is input to and output from the SCLi pin.

When the CKPH bit in the UiSMR3 register is set to "1" and the SWC9 bit in the UiSMR4 register is set to "1" (SCL "L" hold enabled), the SCLi pin is fixed to output an "L" signal on the next falling edge after the ninth bit of the clock. The fixed "L" signal applied to the SCLi pin is cancelled by setting the SWC9 bit to "0" (SCL "L" hold disabled).

16.3.5 SDA Output

Values in bits 7 to 0 (D7 to D0) in the UiTB register (i=0 to 4) are output in descending order from D7. The ninth bit (D8) is ACK or NACK.

Set the default value of SDAi transmit output when the IICM bit is set to "1" (I²C mode) and the SMD2 to SMD0 bits in the UiMR register are set to "0002" (serial I/O disabled).

The DL2 to DL0 bits in the UiSMR3 register determine no delay in the SDAi output or a delay of 2 to 8 UiBRG register count source cycles.

When the SDHI bit in the UiSMR2 register is set to "1" (SDA output disabled), the SDAi pin is forcibly placed in a high-impedance state. Do not set in the SDHI bit on the rising edge of the URTi transfer clock. The ABT bit in the UiRB register may be set to "1" (detected).

16.3.6 SDA Input

When the IICM2 bit in the UiSMR2 register (i=0 to 4) is set to "0", the first eight bits of received data are stored into bits 7 to 0 (D7 to D0) in the UiRB register. The ninth bit (D8) is ACK or NACK.

When the IICM2 bit is set to "1", the first seven bits (D7 to D1) of received data are stored into bits 6 to 0 in the UiRB register. Store the eighth bit (D0) into bit 8 in the UiRB register.

If the IICM bit in the UiSMR register is set to "1" and the CKPH bit is set to "1", the same data as that of when setting the IICM2 bit to "0" can be read. To read the data, read the UiRB register after the rising edge of the ninth bit of the transfer clock.

16.3.7 ACK, NACK

When the STSPSEL bit in the UiSMR4 register (i=0 to 4) is set to "0" (serial I/O circuit selected) and the ACKC bit in the UiSMR4 register is set to "1" (ACK data output), the SDAi pin outputs the value set in the ACKD bit.

If the IICM2 bit is set to "0", the NACK interrupt request is generated when the SDAi pin is held high ("H") on the rising edge of the ninth bit of the transfer clock. The ACK interrupt request is generated when the SDAi pin is held low ("L") on the rising edge of the ninth bit of the transfer clock.

When ACK is selected to generate a DMA request, the DMA transfer is activated by an ACK detection.

16.3.8 Transmit and Receive Reset

When the STC bit in the UiSMR2 register is set to "1" (UARTi initialization enabled) and a start condition is detected,

- the transmit shift register is reset and the content of the UiTB register is transferred to the transmit shift register. The first bit starts transmitting when the next clock is input. UARTi output value remains unchanged between when clock is input and when data of the first bit is output. The value remains the same value as when start condition was detected.
- the receive shift register is reset and the first bit starts receiving when the next clock is input.
- the SWC bit is set to "1" (SCL wait output enabled). The SCLi pin becomes low ("L") on the falling edge of the ninth bit of the transfer clock.

If UARTi transmission and reception are started with this function, the TI bit in the UiC1 register remains unchanged. Select the external clock as the transfer clock when using this function.

16.4 Special Mode 2

In special mode 2, serial communication between one or multiple masters and multiple slaves is available. The \overline{SSi} input pin (i=0 to 4) controls the serial bus communication. Table 16.19 lists specifications of special mode 2. Table 16.20 lists registers to be used and settings. Tables 16.20 to 16.22 list pin settings.

Item	Specification
Transfer Data Format	Transfer data : 8 bits long
Transfer Clock	The CKDIR bit in the UiMR register (i=0 to 4) is set to "0" (internal clock selected) : ft/2(m+1)
	$f_j = f_1, f_8, f_{2n}^{(1)}$ m : setting value of the UiBRG register 0016 to FF16
	The CKDIR bit to "1" (external clock selected) : input clock from the CLKi pin
Transmit/Receive Control	SSi input pin function
Transmit Start Condition	•To start transmitting, the following requirements must be met ⁽²⁾ :
	- Set the TE bit in the UiC1 register to "1" (transmit enable)
	- Set the TI bit in the UiC1 register to "0" (data in the UiTB register)
Receive Start Condition	• To start receiving, the following requirement must be met ⁽²⁾ :
	- Set the RE bit in the UiC1 register to "1" (receive enable)
	- Set the TE bit to "1" (receive enable)
	- Set the TI bit to "0" (data in the UiTB register)
Interrupt Request	Transmit interrupt timing can be selected from the followings:
Generation Timing	- The UiIRS bit in the UiC1 register is set to "0" (no data in a transmit buffer) :
	when data is transferred from the UiTB register to the UARTi transmit register (transmission started)
	- The UiIRS register is set to "1" (transmission completed):
	when data transmission from UARTi transfer register is completed
	Receive interrupt timing
	When data is transferred from the UARTi receive register to the UiRB register (reception completed)
Error Detection	•Overrun error ⁽³⁾
	This error occurs when the seventh bit of the next received data is read before reading the
	UiRB register
	•Fault error
	In master mode, the fault error occurs an "L" signal is applied to the SSi pin
Selectable Function	CLK polarity
	Select from the rising edge or falling edge of the transfer clock when transferred data is output and input • LSB first / MSB first
	Data is transmitted or received in either bit 0 or in bit 7
	Continuous receive mode
	Reception is enabled simultaneously by reading the UiRB register
	Serial data logic inverse
	This function inverses transmitted or received data logically
	• TxD, RxD I/O polarity Inverse
	TxD pin output and RxD pin input are inversed. All I/O data levels are also inversed
	Clock phase
	Select from one of 4 combinations of transfer data polarity and phases
	• SSi input pin function
	Output pin is placed in a high-impedance state to avoid data conflict between master and other masters or slaves

Table 16.19. Special Mode 2 Specifications

NOTES:

- 1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).
- 2. To start transmission/reception when selecting the external clock, these conditions must be met after the CKPOL bit in the UiC0 register is set to "0" (data is transmitted on the falling edge of the transfer clock and data is received on the rising edge) and the CLKi pin is held high ("H"), or when the CKPOL bit is set to "1" (Data is transmitted on the rising edge of the transfer clock and data is received on the falling edge) and the CLKi pin is held low ("L").
- 3. If an overrun error occurs, the UiRB register is indeterminate. The IR bit in the SiRIC register does not change to "1" (interrupt requested).

Register	Bit	Function			
UiTB	0 to 7	Set transmit data			
UiRB	0 to 7	Received data can be read			
	OER	Overrun error flag			
UiBRG	0 to 7	Set bit rate			
UiMR	SMD2 to SMD0	Set to "0012"			
	CKDIR	Set to "0" in master mode or "1" in slave mode			
	IOPOL	Set to "0"			
UiC0	CLK0, CLK1	Select count source for the UiBRG register			
	CRS	Disabled since CRD = 1			
	TXEPT	Transfer register empty flag			
	CRD	Set to "1"			
	NCH	Select the output format of the TxDi pin			
	CKPOL	Clock phase can be set by the combination of the CKPOL bit and the CKPH bit in			
		the UiSMR3 register			
	UFORM	Select either LSB first or MSB first			
UiC1	TE	Set to "1" to enable data transmission and reception			
	TI	Transfer buffer empty flag			
	RE	Set to "1" to enable data reception			
	RI	Reception complete flag			
	UilRS	Select how the UARTi transmit interrupt is generated			
	UiRRM	Set to "1" to enable continuous receive mode			
	UiLCH, SCLKSTPB	Set to "0"			
UiSMR	0 to 7	Set to "0016"			
UiSMR2	0 to 7	Set to "0016"			
UiSMR3	SSE	Set to "1"			
	СКРН	Clock phase can be set by the combination of the CKPH bit and the CKPOL bit			
		in the UiC0 register			
	DINC	Set to "0" in master mode or "1" in slave mode			
	NODC	Set to "0"			
	ERR	Fault error flag			
	5 to 7	Set to "0002"			
UiSMR4	0 to 7	Set to "0016"			
IFSR	IFSR6, IFSR7	Select how fault error occurs			

Table 16.20. Registers To Be Used and Settings in Special Mode 2

i=0 to 4

Port	Function	Setting			
		PS0 Register	PSL0 Register	PD6 Register	
P60	SS0 input	PS0_0=0	-	PD6_0=0	
P61	CLK0 input (slave)	PS0_1=0	-	PD6_1=0	
	CLK0 output (master)	PS0_1=1	-	-	
P62	RxD0 input (master)	PS0_2=0	-	PD6_2=0	
	STxD0 output (slave)	PS0_2=1	PSL0_2=1	-	
P63	TxD0 output (master)	PS0_3=1	-	-	
	SRxD0 input (slave)	PS0_3=0	-	PD6_3=0	
P64	SS1 input	PS0_4=0	-	PD6_4=0	
P65	CLK1 input (slave)	PS0_5=0	-	PD6_5=0	
	CLK1 output (master)	PS0_5=1	-	-	
P66	RxD1 input (master)	PS0_6=0	-	PD6_6=0	
	STxD1 output (slave)	PS0_6=1	PSL0_6=1	-	
P67	TxD1 output (master)	PS0_7=1	-	-	
	SRxD1 input (slave)	PS0_7=0	-	PD6_7=0	

Table 16.21 Pin Settings in Special Mode 2 (1)

Table 16.21 Pin Settings (2)

Port	Function	Setting			
		PS1 Register	PSL1 Register	PSC Register	PD7 Register
P70 ⁽¹⁾	TxD2 output (master)	PS1_0=1	PSL1_0=0	PSC_0=0	-
	SRxD2 input (slave)	PS1_0=0	-	-	PD7_0=0
P71 ⁽¹⁾	RxD2 input (master)	PS1_1=0	-	-	PD7_1=0
	STxD2 output (slave)	PS1_1=1	PSL1_1=1	PSC_1=0	-
P72	CLK2 input (slave)	PS1_2=0	-	-	PD7_2=0
	CLK2 output (master)	PS1_2=1	PSL1_2=0	PSC_2=0	-
P73	SS2 input	PS1_3=0	-	-	PD7_3=0

NOTES:

1. P70 and P71 are ports for the N-channel open drain output.

Table 16.23 Pin Settings (3)

Port	Function	Setting		
		PS3 Register ⁽¹⁾	PSL3 Register	PD9 Register ⁽¹⁾
P90	CLK3 input (slave)	PS3_0=0	-	PD9_0=0
	CLK3 output (master)	PS3_0=1	-	-
P91	RxD3 input (master)	PS3_1=0	-	PD9_1=0
	STxD3 output (slave)	PS3_1=1	PSL3_1=1	-
P92	TxD3 output (master)	PS3_2=1	PSL3_2=0	-
	SRxD3 input (slave)	PS3_2=0	-	PD9_2=0
P93	SS3 input	PS3_3=0	PSL3_3=0	PD9_3=0
P94	SS4 input	PS3_4=0	PSL3_4=0	PD9_4=0
P95	CLK4 input (slave)	PS3_5=0	PSL3_5=0	PD9_5=0
	CLK4 output (master)	PS3_5=1	-	-
P96	TxD4 output (master)	PS3_6=1	-	-
	SRxD4 input (slave)	PS3_6=0	PSL3_6=0	PD9_6=0
P97	RxD4 input (master)	PS3_7=0	-	PD9_7=0
	STxD4 output (slave)	PS3_7=1	PSL3_7=1	-

NOTES:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

16.4.1 **SSi** Input Pin Function (i=0 to 4)

When the SSE bit in the UiSMR3 register is set to "1" (SS function enabled), the SSi input pin function is selected, activating the pin function.

The DINC bit in the UiSMR3 register determines which microcomputer performs as master or slave. When multiple microcomputers perform as the masters (multi-master system), the \overline{SSi} pin setting determines which master microcomputer is active and when.

16.4.1.1 When Setting the DINC Bit to "1" (Slave Mode)

When an "H" signal is applied to the \overline{SSi} pin, the STxDi and SRxDi pins are placed in a high-impedance state and the transfer clock input to the CLKi pin is ignored. When a low-level signal ("L") is applied to the \overline{SSi} input pin, the transfer clock input is valid and serial communication is enabled.

16.4.1.2 When Setting the DINC Bit to "0" (Master Mode)

When an "H" signal is applied to the SSi pin, serial communication is available due to transmission privilege. The master outputs the transfer clock. When an "L" signal is applied to the SSi pin, it indicates that another master is active and TxDi, RxDi and CLKi pins are placed in a high-impedance state. Moreover, a fault error occurs and the IR bit in the BCNiIC register is set to "1" (interrupt requested). The ERR bit in the UiSMR3 register indicates whether a fault error occurs.

In master mode, software interrupt numbers 39, 40 and 41 are used for the fault error interrupt. The fault error interrupt is generated when the ERR bit changes "0" to "1". The fault error interrupt of UART0 and of UART3 share an interrupt vector. The fault error interrupt of UART1 and of UART4 share an interrupt vector. The IFSR6 and IFSR7 bits in the IFSR register determine which fault error interrupt is used.

Communication is not terminated even if a fault error is generated while communicating. To stop communication, the SMD 2 to SMD0 bit in the UiMR register is set to "0002" (serial I/O disabled).

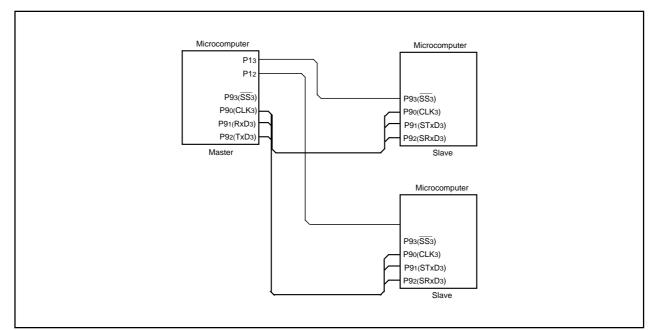


Figure 16.23 Serial Bus Communication Control with SS Pin

16.4.2 Clock Phase Setting Function

The CKPH bit in the UiSMR3 register (i=0 to 4) and the CKPOL bit in the UiC0 register select one of four combinations of transfer clock polarity and phases.

The transfer clock phase and polarity must be the same between the master and the slave involved in the transfer.

16.4.2.1 When setting the DINC Bit to "0" (Master (Internal Clock))

Figure 16.24 shows transmit and receive timing.

16.4.2.2 When Setting the DINC Bit to "1" (Slave (External Clock))

When the CKPH bit is set to "0" (no clock delay) and the \overline{SSi} input pin is held high ("H"), the STxDi pin is placed in a high-impedance state. When the \overline{SSi} input pin becomes low ("L"), conditions to start a serial transfer are met, but output is indeterminate. The serial transmission is synchronized with the transfer clock. Figure 16.25 shows the transmit and receive timing.

When the CKPH bit is set to "1" (clock delay) and the \overline{SSi} input pin is held high ("H"), the STxDi pin is placed in a high-impedance state. When the \overline{SSi} pin becomes low ("L"), the first data is output. The serial transmission is synchronized with the transfer clock. Figure 16.26 shows the transmit and receive timing.

Input Signal to the SS Pin in the Master	"H"
Clock Output (CKPOL=0, CKPH=0)	
Clock Output (CKPOL=1, CKPH=0)	
Clock Output (CKPOL=0, CKPH=1)	
Clock Output (CKPOL=1, CKPH=1)	
Data Output Timing	"H" <u>D0</u> <u>D1</u> <u>D2</u> <u>D3</u> <u>D4</u> <u>D5</u> <u>D6</u> <u>D7</u>
Data Input Timing	$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$

Figure 16.24 Transmit and Receive Timing in Master Mode (Internal Clock)

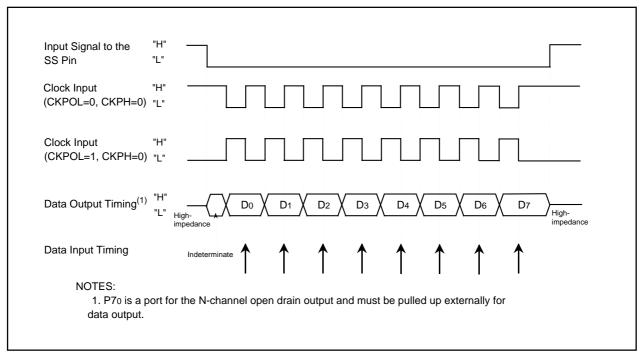


Figure 16.25 Transmit and Receive Timing in Slave Mode (External Clock) (CKPH=0)

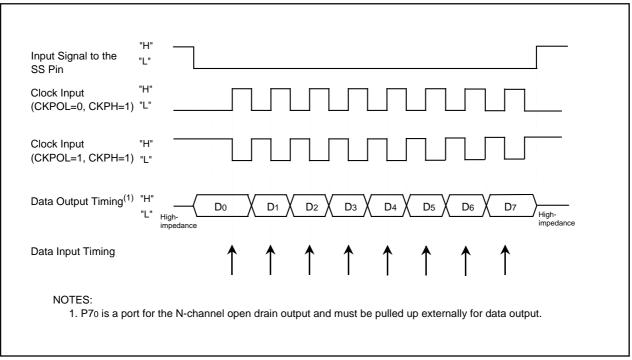


Figure 16.26 Transmit and Receive Timing in Slave Mode (External Clock) (CKPH=1)

16.5 Special Mode 3 (GCI Mode)

In GCI mode, the external clock is synchronized with the transfer clock used in the clock synchronous serial I/O mode.

Table 16.24 lists specifications of GCI mode. Table 16.25 lists registers to be used and settings. Tables 16.25 to 16.27 list pin settings.

Item	Specification
Transfer Data Format	Transfer data : 8 bits long
Transfer Clock	The CKDIR bit in the UiMR register (i=0 to 4) is set to "1" (external clock selected):
	an input from the CLKi pin
Clock Synchronization Function	The CTSi pin inputs a trigger
Transmit/Receive Start	When a trigger signal is applied to the CTSi pin under the following conditions:
Conditions	Set the TE bit in the UiC1 register to "1" (transmit enable)
	• Set the RE bit in the UiC1 register to "1" (receive enable)
	• Set the TI bit in the UiC1 register to "0" (data in UiTB register)
Interrupt Request	Transmit interrupt timing can be selected from the followings:
Generation Timing	• The UiIRS bit in the UiC1 register is set to "0" (UiTB register empty) :
	when data is transferred from the UiTB register to the UARTi transmit register (transmission started)
	• The UiIRS bit is set to "1" (transmit completed):
	when a data transmission from the UARTi transfer register is completed
	Receive interrupt timing
	when data is transferred from the UARTi receive register to the UiRB register (reception completed)
Error Detection	Overrun error ⁽¹⁾
	This error occurs when the seventh bit of the next received data is read before reading the
	UiRB register.

Table16.24 GCI Mode Specifications

NOTES:

1. If an overrun error occurs, the UiRB register is indeterminate. The IR bit in the SiRIC register does not change to "1" (interrupt requested).

Register	Bit	Function
UiTB	0 to 7	Set transmit data
UiRB	0 to 7	Received data
	OER	Overrun error flag
UiBRG	0 to 7	Set to "0016"
UiMR	SMD2 to SMD0	Set to "0012"
	CKDIR	Set to "1"
	IOPOL	Set to "0"
UiC0	CLK1 to CLK0	Set to "002"
	CRS	Disabled because CRD = 1
	TXEPT	Transfer register empty flag
	CRD	Set to "1"
	NCH	Select the output format of the TxDi pin
	CKPOL	Set to "0"
	UFORM	Set to "0"
UiC1	TE	Set to "1" to enable data transmission and reception
	TI	Transfer buffer empty flag
Í	RE	Set to "1" to enable data reception
	RI	Reception complete flag
	UilRS	Select how the UARTi transmit interrupt is generated
	UiRRM, UiLCH	Set to "0"
	SCLKSTPB	Set to "0"
UiSMR	0 to 6	Set to "00000002"
	SCLKDIV	See Table 16.29
UiSMR2	0 to 6	Set to "0000002"
[SU1HIM	See Table 16.29
UiSMR3	0 to 2	Set to "0002"
	NODC	Set to "0"
	4 to 7	Set to "00002"
UiSMR4	0 to 7	Set to "0016"

Table 16.25 Registers To Be Used and Settings in GCI Mode

i=0 to 4

Table 16.26	Pin Settings in CGI Mode (1)
-------------	----------------------------	----

Port	Function	Setting		
		PS0 Register	PSL0 Register	PD6 Register
P60	CTS0 input ⁽¹⁾	PS0_0=0	-	PD6_0=0
P61	CLK0 input	PS0_1=0	-	PD6_1=0
P62	RxD0 input	PS0_2=0	_	PD6_2=0
P63	TxD0 output	PS0_3=1	-	-
P64	CTS1 input ⁽¹⁾	PS0_4=0	-	PD6_4=0
P65	CLK1 input	PS0_5=0	_	PD6_5=0
P66	RxD1 input	PS0_6=0	-	PD6_6=0
P67	TxD1 output	PS0_7=1	_	-

NOTES:

1. CTS input is used to input a trigger.

Table 16.27 Pin Settings (2)

Port	Function	Setting			
		PS1 Register	PSL1 Register	PSC Register	PD7 Register
P70 ⁽¹⁾	TxD2 output	PS1_0=1	PSL1_0=0	PSC_0=0	-
P71 ⁽¹⁾	RxD2 input	PS1_1=0	-	-	PD7_1=0
P72	CLK2 input	PS1_2=0	-	-	PD7_2=0
P73	CTS2 input ⁽²⁾	PS1_3=0	_	_	PD7_3=0

NOTES:

1. P70 and P71 are ports for the N-channel open drain output.

2. CTS input is used to input a trigger.

Table 16.2	8 Pin	Settings	(3)
------------	-------	----------	-----

Port	Function	Setting		
		PS3 Register ⁽¹⁾	PSL3 Register	PD9 Register ⁽¹⁾
P90	CLK3 input	PS3_0=0	-	PD9_0=0
P91	RxD3 input	PS3_1=0	_	PD9_1=0
P92	TxD3 output	PS3_2=1	PSL3_2=0	-
P93	CTS3 input ⁽²⁾	PS3_3=0	PSL3_3=0	PD9_3=0
P94	CTS4 input ⁽²⁾	PS3_4=0	PSL3_4=0	PD9_4=0
P95	CLK4 input	PS3_5=0	PSL3_5=0	PD9_5=0
P96	TxD4 output	PS3_6=1	_	-
P97	RxD4 input	PS3_7=0	_	PD9_7=0

NOTES:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

2. $\overline{\text{CTS}}$ input is used to input a trigger.

To generate the internal clock synchronized with the external clock, first set the SU1HIM bit in the UiSMR2 register (i=0 to 4) and the SCLKDIV bit in the UiSMR register to values shown in Table 16.29. Then apply a trigger signal to the CTSi pin. Either the same clock cycle as the external clock or external clock divided by two can be selected as the transfer clock. The SCLKSTPB bit in the UiC1 register controls the transfer clock. Set the SCLKSTPB bit accordingly, to start or stop the transfer clock during an external clock operation. Figure 16.27 shows an example of the clock-divided synchronous function.

SCLKDIV Bit in	SU1HIM Bit in	Clock-Divided Synchronous Function	Example of Waveform
UiSMR Register	UiSMR2 Register		
0	0	Not synchronized	-
0	1	Same division as the external clock	A in Figure 16.27
1	0 or 1	Same division as the external clock	B in Figure 16.27
		divided by 2	

i=0 to 4

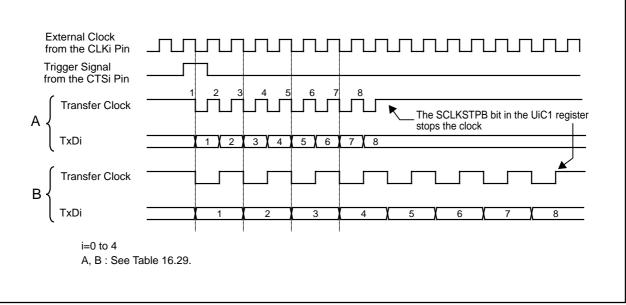


Figure 16.27 Clock-Divided Synchronous Function

16.6 Special Mode 4 (IE Mode)

In IE mode, devices connected with the IEBus can communicate in UART mode. Table 16.30 lists registers to be used and settings. Tables 16.30 to 16.32 list pin settings.

Register	Bit	Function
UiTB	0 to 8	Set transmit data
UiRB	0 to 8	Received data can be read
	OER, FER,	Error flags
	PER, SUM	
UiBRG	0 to 7	Set bit rate
UiMR	SMD2 to SMD0	Set to "1102"
	CKDIR	Select the internal clock or external clock
	STPS	Set to "0"
	PRY	Disabled because PRYE=0
	PRYE	Set to "0"
	IOPOL	Select TxD and RxD I/O polarity
UiC0	CLK1 to CLK0	Select the count source for the UiBRG register
	CRS	Disabled because CRD=1
	TXEPT	Transfer register empty flag
	CRD	Set to "1"
	NCH	Select output format of the TxDi pin
	CKPOL	Set to "0"
	UFORM	Set to "0"
UiC1	TE	Set to "1" to enable data transmission
	TI	Transfer buffer empty flag
	RE	Set to "1" to enable data reception
	RI	Reception complete flag
	UiIRS	Select how the UARTi transmit interrupt is generated
	UiRRM, UiLCH,	Set to "0"
	SCLKSTPB	
UiSMR	0 to 3	Set to "00002"
	ABSCS	Select bus conflict detect sampling timing
	ACSE	Set to "1" to automatically clear the transmit enable bit
	SSS	Select transmit start condition
	SCLKDIV	Set to "0"
UiSMR2	0 to 7	Set to "0016"
UiSMR3	0 to 7	Set to "0016"
UiSMR4	0 to 7	Set to "0016"
IFSR	IFSR6, IFSR7	Select how the bus conflict interrupt occurs

i=0 to 4

Port	Function	Setting			
		PS0 Register	PSL0 Register	PD6 Register	
P61	CLK0 input	PS0_1=0	-	PD6_1=0	
	CLK0 output	PS0_1=1	-	-	
P62	RxD0 input	PS0_2=0	-	PD6_2=0	
P63	TxD0 output	PS0_3=1	-	-	
P65	CLK1 input	PS0_5=0	-	PD6_5=0	
	CLK1 output	PS0_5=1	-	-	
P66	RxD1 input	PS0_6=0	-	PD6_6=0	
P67	TxD1 output	PS0_7=1	-	-	

Table 16.31 Pin Settings in IE Mode (1)

Table 16.32 Pin Settings (2)

Port	Function	Setting			
		PS1 Register	PSL1 Register	PSC Register	PD7 Register
P70 ⁽¹⁾	TxD2 output	PS1_0=1	PSL1_0=0	PSC_0=0	-
P71 ⁽¹⁾	RxD2 input	PS1_1=0	-	-	PD7_1=0
P72	CLK2 input	PS1_2=0	-	-	PD7_2=0
	CLK2 output	PS1_2=1	PSL1_2=0	PSC_2=0	_

NOTES:

1. P70 and P71 are ports for the N-channel open drain output.

Table 16.33 Pin Settings (3)

Port	Function	Setting		
		PS3 Register ⁽¹⁾	PSL3 Register	PD9 Register ⁽¹⁾
P90	CLK3 input	PS3_0=0	-	PD9_0=0
	CLK3 output	PS3_0=1	-	-
P91	RxD3 input	PS3_1=0	-	PD9_1=0
P92	TxD3 output	PS3_2=1	PSL3_2=0	-
P95	CLK4 input	PS3_5=0	PSL3_5=0	PD9_5=0
	CLK4 output	PS3_5=1	-	-
P96	TxD4 output	PS3_6=1	-	-
P97	RxD4 input	PS3_7=0	_	PD9_7=0

NOTES:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

If the output level of the TxDi pin (i=0 to 4) differs from the input level of the RxDi pin, an interrupt request is generated.

UART0 and UART3 are assigned software interrupt number 40. UART1 and UART4 are assigned number 41. When using the bus conflict detect function of UART0 or UART3, of UART1 or UART4, set the IFSR6 bit and the IFSR7 bit in the IFSR register accordingly.

When the ABSCS bit in the UISMR register is set to "0" (rising edge of the transfer clock), it is determined, on the rising edge of the transfer clock, if the output level of the TxD pin and the input level of the RxD pin match. When the ABSCS bit is set to "1" (timer Aj underflow), it is determined when the timer Aj (timer A3 in UART0, timer A4 in UART1, timer A0 in UART2, timer A3 in UART3, the timer A4 in UART4) overflows. Use the timer Aj in one-shot timer mode.

When the ACSE bit in the UiSMR register is set to "1" (automatic clear at bus conflict) and the IR bit in the BCNiIC register to "1" (discrepancy detected), the TE bit is set to "0" (transmit disable).

When the SSS bit in the UiSMR register is set to "1" (synchronized with RxDi), the TxDi pin starts transmitting data on the falling edge of the RxDi pin. Figure 16.28 shows bits associated with the bus conflict detect function.

(i=0 to 4)	Bus conflict is detected on the rising edge of the transfer clock when ABSCS is set to "0"
Transfer Clock	T T T T T T T T T T
TxDi	
RxDi	Trigger signal is applied to the TAjıN pin
Timer Aj	
	When ABSCS is set to "1", bus conflict is detected when the timer Aj underflows (in the one-shot mode). An interrupt request is generated. Timer Aj: timer A3 in UART0 or UART3, timer A4 in UART1 or UART4, timer A0 in UART2
(2) The ACSE	Bit in the UiSMR Register (Transmit enable bit is automatically cleared
Transfer Clock	ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP
TxDi	
RxDi	
IR bit in BCNiIC register	
TE bit in UiC1 register	k
	it in the UiSMR Register (Transmit start condition selected)
	SS is set to "0", data is transmitted after one transfer clock cycle if data transmission is enabled.
Transfer Clock	ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP
TxDi	
	transmit enable conditons are met
When S	SS is set to "1", data is transmitted on the rising edge of $RxDi^{(1)}$
CLKi	ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP
TxDi	(Note 2)
RxDi	
	smitted on the falling edge of RxDi when IOPOL is set to "0". smitted on the rising edge of RxDi when IOPOL is set to "1".

Figure 16.28 Bit Function Related Bus Conflict Detection

RENESAS

16.7 Special Mode 5 (SIM Mode)

In SIM mode, SIM interface devices can communicate in UART mode. Both direct and inverse formats are available and the TxDi pin (i=0 to 4) can output an "L" signal when a parity error is detected.

Table 16.34 lists specifications of SIM mode. Table 16.35 lists registers to be used and register settings in SIM mode. Tables 16.36 to 16.38 list the pin settings.

Item	Specification		
Transfer Data Format	Transfer data: 8-bit UART mode		
	One stop bit		
	In direct format		
	Parity: Even		
	Data logic: Direct		
	Transfer format: LSB first		
	In inverse format		
	Parity: Odd		
	Data logic: Inverse		
	Transfer format: MSB first		
Transfer Clock	The CKDIR bit in the UiMR register (i=0 to 4) is "0" (internal clock selected):		
	$f_j/16(m+1)^{(1)}$ f _j = f ₁ , f ₈ , f _{2n} ⁽²⁾ m : setting value of the UiBRG register 0016 to FF ₁₆		
	Do not set the CKDIR bit to "1" (external clock selected)		
Transmit/Receive Control	The CRD bit in the UiC0 register is set to "1" (CTS, RTS function disabled)		
Other Setting Items	The UiIRS bit in the UiC1 register is set to "1" (transmission completed)		
Transmit Start Condition	To start transmitting, the following requirements must be met:		
	Set the TE bit in the UiC1 register to "1" (transmit enable)		
	Set the TI bit in the UiC1 register to "0" (data being in the UiTB register)		
Receive Start Condition	To start receiving, the following requirements must be met:		
	Set the RE bit in the UiC1 register to "1" (receive enable)		
	Detect the start bit		
Interrupt Request	Transmit interrupt timing		
Generation Timing	• The UiIRS bit is set to "1" (transmission is completed):		
	when data transmission from the UARTi transfer register is completed		
	Receive interrupt timing		
	when data is transferred from the UARTi receive register to the UiRB register (reception completed)		
Error Detection	• Overrun error ⁽¹⁾		
	This error occurs when the eighth bit of the next data is received before reading the UiRB register		
	• Framing error		
	This error occurs when the number of the stop bit set is not detected		
	• Parity error		
	This error occurs when the number of "1" in parity bit and character bits differ from the number set.		
	• Error sum flag		
	The SUM bit is set to "1" when an overrun error, framing error or parity error occurs.		

Table16.34 SIM Mode Specifications

NOTES:

1. If an overrun error occurs, the UiRB register is indeterminate. The IR bit in the SiRIC register does not change to "1" (interrupt requested).

2. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

Table 16.35	Registers To Be Used and Settings	5

Register	Bit	Function
UiTB	0 to 7	Set transmit data
UiRB	0 to 7	Received data can be read
	OER, FER,	Error flags
	PER, SUM	
UiBRG	0 to 7	Set bit rate
UiMR	SMD2 to SMD0	Set to "1012"
	CKDIR	Set to "0"
	STPS	Set to "0"
	PRY	Set to "1" for direct format or "0" for inverse format
	PRYE	Set to "1"
	IOPOL	Set to "0"
UiC0	CLK1 to CLK0	Select count source for the UiBRG register
	CRS	Disabled because CRD=1
	TXEPT	Transfer register empty flag
	CRD	Set to "1"
	NCH	Set to "1"
	CKPOL	Set to "0"
	UFORM	Set to "0" for direct format or "1" for inverse format
UiC1	TE	Set to "1" to enable data transmission
	TI	Transfer buffer empty flag
	RE	Set to "1" to enable data reception
	RI	Reception complete flag
	UilRS	Set to "1"
	UiRRM	Set to "0"
	UiLCH	Set to "0" for direct format or "1" for inverse format
	UiERE	Set to "1"
UiSMR	0 to 3	Set to "0016"
UiSMR2	0 to 7	Set to "0016"
UiSMR3	0 to 7	Set to "0016"
UiSMR4	0 to 7	Set to "0016"

i=0 to 4

Port	Function	Setting		
		PS0 Register	PSL0 Register	PD6 Register
P62	RxD0 input	PS0_2=0	-	PD6_2=0
P63	TxD0 output	PS0_3=1	-	-
P66	RxD1 input	PS0_6=0	-	PD6_6=0
P67	TxD1 output	PS0_7=1	_	_

Table 16.36 Pin Settings in SIM Mode (1)

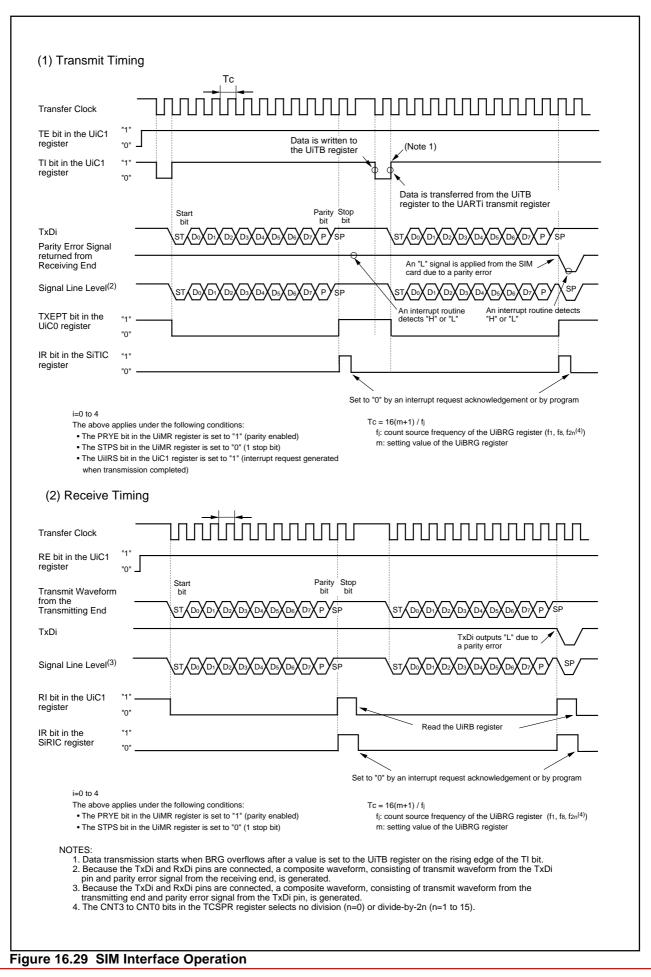
Table 16.37 Pin Settings (2)

Port	Function	Setting				
		PS1 Register PSL1 Register PSC Register PD7 Register				
P70 ⁽¹⁾	TxD2 output	PS1_0=1	PSL1_0=0	PSC_0=0	-	
P71 ⁽¹⁾	RxD2 input	PS1_1=0	-	_	PD7_1=0	

NOTES:

1. P70 and P71 are ports for the N-channel open drain output.

Table 16.38 Pin Settings (3)


Port	Function	Setting		
		PS3 Register ⁽¹⁾	PSL3 Register	PD9 Register ⁽¹⁾
P91	RxD3 input	PS3_1=0	-	PD9_1=0
P92	TxD3 output	PS3_2=1	PSL3_2=0	-
P96	TxD4 output	PS3_6=1	-	-
P97	RxD4 input	PS3_7=0	_	PD9_7=0

NOTES:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

Figure 16.29 shows an example of a SIM interface operation. Figure 16.30 shows an example of a SIM interface connection. Connect TxDi to RxDi for a pull-up.

RENESAS

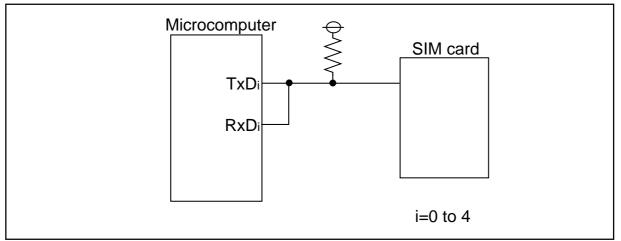


Figure 16.30 SIM Interface Connection

16.7.1 Parity Error Signal

16.7.1.1 Parity Error Signal Output Function

When the UiERE bit in the UiC1 register (i=0 to 4) is set to "1", the parity error signal can be output. The parity error signal is output when a parity error is detected upon receiving data. TxDi outputs an "L" signal in the timing shown in Figure 16.31. When reading the UiRB register during a parity error output, the PER bit in the UiRB register is set to "0" and TxDi again outputs an "H" signal simultaneously.

16.7.1.2 Parity Error Signal

To determine whether the parity error signal is output, the port that shares a pin with RxDi is read by using a transmit complete interrupt routine.

RxDi	"H" ST / D0 / D1 / D2 / D3 / D4 / D5 / D6 / D7 / "L"	P ∕ SP
TxDi	"H" — Hi-Z "L"	
Recieve Complete Flag	"1" "0"	
NOTES: 1. The above	applies to direct format conditions (PRY=1, UFORM=0, UiLCH=0).	ST : Start bit P : Even parity SP : Stop bit i=0 to 4

Figure 16.31 Parity Error Signal Output Timing (LSB First)

16.7.2 Format

16.7.2.1 Direct Format

Set the PRYE bit in the UiMR register (i=0 to 4) to "1", the PRY bit to "1", the UFORM bit in the UiC0 register to "0" and the UiLCH bit in the UiC1 register to "0". When data are transmitted, data set in UiTB register are transmitted with the even-numbered parity, starting from D0. When data are received, received data are stored in the UiRB register, starting from D0. The even-numbered parity determines whether a parity error occurs.

16.7.2.2 Inverse Format

Set the PRYE bit to "1", the PRY bit to "0", the UFORM bit to "1" and the UiLCH bit to "1". When data are transmitted, values set in the UiTB register are logically inversed and are transmitted with the odd-numbered parity, starting from D7. When data are received, received data are logically inversed to be stored in the UiRB register, starting from D7. The odd-numbered parity determines whether a parity error occurs.

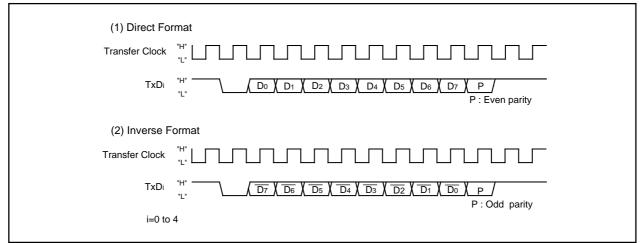


Figure 16.32 SIM Interface Format

17. A/D Converter

The A/D converter consists of two 10-bit successive approximation A/D converters, each with a capacitive coupling amplifier.

The result of an A/D conversion is stored into the A/D register corresponding to selected pins.

Table 17.1 lists specifications of the A/D converter. Figure 17.1 shows a block diagram of the A/D converter. Table 17.2 lists the differences between A/D0 and A/D1 conversions, which share the same conversion method. A/D0 and A/D1 can perform conversions simultaneously. Table 17.3 lists settings of the following pins; AN0 to AN7, AN00 to AN07, AN20 to AN27, AN150 to AN157, ANEX0, ANEX1 and ADTRG. Figures 17.2 to 17.7 show registers associated with the A/D converter.

NOTE

In this section, the 144-pin package is given as the example. The AN150 to AN157 pins are not included in the 100-pin package.

Item	Specification
A/D Conversion Method	Successive approximation (with a capacitive coupling amplifier)
Analog Input Voltage ⁽¹⁾	0V to AVcc (Vcc)
Operating Clock, ØAD ⁽²⁾	fad, fad/2, fad/3, fad/4
Resolution	Select from 8 bits or 10 bits
Operating Mode	One-shot mode, repeat mode, single sweep mode, repeat sweep mode 0,
	repeat sweep mode 1
Analog Input Pins ⁽³⁾	34 pins
	8 pins each for AN (ANo to AN7), ANO (AN0o to AN07), AN2 (AN2o to AN27),
	AN15 (AN150 to AN157)
	2 extended input pins (ANEX0 and ANEX1)
A/D Conversion Start Condition	Software trigger
	• The ADST bit in the ADiCON0 (i=0, 1) register is set to "1" (A/D conversion
	started) by program
	• The PST bit in the AD0CON2 register is set to "1" (A/D0 and A/D1 start a
	conversion simultaneously) by program
	External trigger (re-trigger is enabled)
	When a falling edge is applied to the ADTRG pin after the ADST bit is set to "1" by
	program
	Hardware trigger (re-trigger is enabled)
	One of the following interrupt requests is generated after the ADST bit is set to
	"1" by program:
	The timer B2 interrupt request of the three-phase motor control timer functions
	(after the ICTB2 counter completes counting)
	The intelligent I/O interrupt request
	Channel 1 in the group 2 (A/D0), channel 1 in the group 3 (A/D1)
Conversion Rate Per Pin	Without the sample and hold function
	8-bit resolution : 49 ØAD cycles
	10-bit resolution : 59 ØAD cycles
	With the sample and hold function
	8-bit resolution : 28 ØAD cycles
NOTES	10-bit resolution : 33 ØAD cycles

Table 17.1 A/D Converter Specifications

NOTES:

1. Analog input voltage is not affected by the sample and hold function status.

2. ØAD frequency must be under 16 MHz when VCC=5V.

ØAD frequency must be under 10 MHz when Vcc=3.3V. Without the sample and hold function, the ØAD frequency must be 250 kHz or more. With the sample and hold function, the ØAD frequency must be 1 MHz or more.

3. AVCC = VREF = VCC, A/D input voltage (for ANo to AN7, AN0o to AN07, AN2o to AN27, AN15o to AN157, ANEXO and ANEX1) ≤ VCC.

Table 19.2 Difference between A/D0 a	and A/D1
--------------------------------------	----------

Item	A/D0	A/D1
Analog Input Pins ⁽¹⁾	AN (ANo to AN7)	Select from AN0 (AN00 to AN07),
		AN2 (AN20 to AN27) or AN15 (AN150 to AN157)
Extended Analog Input Pins	ANEX0, ANEX1	Not provided
External Op-Amp ⁽¹⁾	Enabled	Disabled
Intelligent I/O used as a Trigger	Channel 1 in group 2	Channel 1 in group 3

NOTES:

1. When the ADS bit in the AD0CON2 register is set to "0" (channel replacement disabled)

Figure 17.1 A/D Converter Block Diagram

RENESAS

Port	Function		Bit and Setting			
Name		PD10, PD0, PD2,	PS3 ⁽³⁾ , PS9	PSL3, IPS	PUR0, PUR3,	
		PD15, PD9 ⁽³⁾ Registers	Registers	Registers	PUR4 Registers	
P100	AN0	PD10_0 = 0	-	-	PU30 = 0	
P101	AN1	PD10_1 = 0				
P102	AN2	PD10_2 = 0				
P103	AN3	PD10_3 = 0				
P104	AN4	PD10_4 = 0			PU31 = 0	
P105	AN5	PD10_5 = 0				
P106	AN6	PD10_6 = 0				
P107	AN7	PD10_7 = 0				
P00	AN00 ⁽¹⁾	PD0_0 = 0	-	-	PU00 = 0	
P01	AN01 ⁽¹⁾	PD0_1 = 0				
P02	AN02 ⁽¹⁾	PD0_2 = 0				
P03	AN03 ⁽¹⁾	PD0_3 = 0				
P04	AN04 ⁽¹⁾	PD0_4 = 0			PU01 = 0	
P05	AN05 ⁽¹⁾	PD0_5 = 0				
P06	AN06 ⁽¹⁾	PD0_6 = 0				
P07	AN07 ⁽¹⁾	PD0_7 = 0				
P20	AN20 ⁽¹⁾	PD2_0 = 0	-	-	PU04 = 0	
P21	AN21 ⁽¹⁾	PD2_1 = 0				
P22	AN22 ⁽¹⁾	PD2_2 = 0				
P23	AN23 ⁽¹⁾	PD2_3 = 0				
P24	AN24 ⁽¹⁾	PD2_4 = 0	-	-	PU05 = 0	
P25	AN25 ⁽¹⁾	PD2_5 = 0				
P26	AN26 ⁽¹⁾	PD2_6 = 0				
P27	AN27 ⁽¹⁾	PD2_7 = 0				
P150	AN150 ⁽²⁾	PD15_0 = 0	PS9_0 = 0	IPS2 = 1	PU42 = 0	
P151	AN151 ⁽²⁾	PD15_1 = 0	PS9_1 = 0			
P152	AN152 ⁽²⁾	PD15_2 = 0	-			
P153	AN15 3 ⁽²⁾	PD15_3 = 0	-			
P154	AN154 ⁽²⁾	PD15_4 = 0	PS9_4 = 0		PU43 = 0	
P155	AN155 ⁽²⁾	PD15_5 = 0	PS9_5 = 0			
P156	AN156 ⁽²⁾	PD15_6 = 0	-			
P157	AN157 ⁽²⁾	PD15_7 = 0	-			
P95	ANEX0	PD9_5 = 0	PS3_5 = 0	PSL3_5 = 1	PU27 = 0	
P96	ANEX1	PD9_6 = 0	PS3_6 = 0	PSL3_6 = 1		
P97	ADTRG	PD9_7 = 0	PS3_7 = 0	-	-	

Table 17.3 Pin Settings

NOTES:

1. This pin is available in single-chip mode.

2. This pin is provided in the 144-pin package.

3. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

RENESAS

b7 b6 b5 b4 b3 b2 b1 b0	Symbo AD0C0		After Reset 0016	
	Bit Symbol	Bit Name	Function	RW
	CH0		^{b2 b1 b0} 0 0 0 : AN0 0 0 1 : AN1	RW
	CH1	Analog Input Pin Select Bit ^(2, 3, 4)	0 1 0 : AN2 0 1 1 : AN3 1 0 0 : AN4	RV
	CH2		1 0 1 : AN5 1 1 0 : AN6 1 1 1 : AN7	RW
	MD0	A/D Operation	^{b4 b3} 0 0 : One-shot mode 0 1 : Repeat mode	RW
	MD1	Mode Select Bit 0 ⁽²⁾	1 0 : Single sweep mode 1 1 : Repeat sweep mode 0 or 1	RW
	TRG	Trigger Select Bit	0 : Software trigger 1 : External trigger, hardware trigger ⁽⁵⁾	RW
	ADST	A/D Conversion Start Flag	0 : A/D conversion stops 1 : A/D conversion starts ⁽⁵⁾	RW
	CKS0	Frequency Select Bit ⁽⁶⁾	0 : Select from fAD/3 or fAD/4 1 : Select from fAD/1 or fAD/2	RW
indeterminate. 2. Analog input pins mu 3. This bit is disabled in 4. Set the PSC_7 bit in 5. To set the TRG bit to AD0CON2 register. 6. ØAD frequency must	st be set a single swe the PSC re "1", select Then set th be under 2 be under 2	gain after changing A eep mode, repeat swe egister to "1" (AN4 to A the cause of trigger b he ADST bit to "1" afte 16 MHz when Vcc=5\ 10 MHz when Vcc=3.	we prove 0 and repeat sweep mode 1. (N7) to use the P10 pin as a analog input by setting the TRG1 and TRG0 bits in the r the TRG bit is set to "1". /.	pin.

CKS0	CKS1	ØAD
0	0	fAD divided by 4
0	1	fAD divided by 3
1	0	fAD divided by 2
1	1	fad

Figure 17.2 AD0CON0 Register

b7 b6 b5 b4	b3 b2 b1 b0	Symbo AD0C		After Reset 0016	
		Bit Symbol	Bit Name	Function	RW
		SCAN0	A/D Sweep Pin	^{b0 b1} 0 0 : AN0, AN1 (AN0) 0 1 : AN0 to AN3 (AN0, AN1)	RW
		SCAN1	Select Bit ⁽²⁾	1 0 : AN0 to AN5 (AN0 to AN2) 1 1 : AN0 to AN7 (AN0 to AN3)	RW
		MD2	A/D Operation Mode Select Bit 1	0 : Any mode other than repeat sweep mode 1 1 : Repeat sweep mode 1	RW
		BITS	8/10-bit Mode Select Bit	0 : 8-bit mode 1 : 10-bit mode	RW
			Frequency Select Bit ⁽³⁾	0 : Select from fAD/2 or fAD/4 1 : Select from fAD/1 or fAD/3	RW
			VREF Connection Bit	0 : No VREF connection ⁽⁴⁾ 1 : VREF connection	RW
		OPA0	External Op-Amp Connection Mode	^{b6 b7} 0 0 : ANEX0 and ANEX1 are not used ⁽⁶⁾ 0 1 : Signal into ANEX0 is A/D converted	RW
		OPA1	Bit ⁽⁵⁾	1 0 : Signal into ANEX1 is A/D converted 1 1 : External op-amp connection mode	
inde 2. This com 3. ØAt whe 4. Do r	terminate. bit is disabled monly used in frequency mu n Vcc=3.3V. Co	in one-sho the A/D co ist be undo ombination JT bit to "0	ot mode and repeat r poversions when the er 16 MHz when Vcc of the CKS0 and CKS " during the A/D con	ne A/D conversion, the conversion result is mode. Pins in parentheses are those most MD2 bit is set to "1". =5V. ØAD frequency must be under 10 M S1 bits selects ØAD (see the AD0CON0 regist version. This is a reference voltage for the a	er).

6. When the OPA1 to OPA0 bits is set to "002", set the PSL3_5 bit in PSL3 register to "0" (other than ANEX0) and the PSL3_6 bit to "0" (other than ANEX1).

Figure 17.3 AD0CON1 Register

b7 b6 b5 b4 b3	b2 b1 b0	Symbo AD0C		After Reset X000 00002	
		Bit Symbol	Bit Name	Function	RW
		SMP	A/D Conversion Method Select Bit	0 : Without the sample and hold function 1 : With the sample and hold function	R٧
			Reserved Bit	Set to "0"	RV
		ADS	A/D Channel Replace Select Bit ⁽²⁾	0 : Disables channel replacement 1 : Enables channel replacement ⁽⁵⁾	RV
		TRG0	External Trigger Request Cause	 b6 b5 0 0 : Selects ADTRG 0 1 : Selects a timer B2 interrupt request of the three-phase motor control timer functions (after ICTB2 counter completes 	RV
			Select Bit	1 0 : Selects the intelligent I/O group 2 channel 1 interrupt 1 1 : Do not set to this value	RW
			•	When this bit is set to "1", A/D0 and	
indetermina 2. Do not set t 3. The PST bi Do not set t 4. Set both A/	ate. the APS1 a it is enabled the PST bit /D0 and A/E	and APS0 k d when the t to "1" whe D1 to the s	bits to "1" while either A/ TRG bit in the AD0COI on the TRG bit is set to " ame setting.	A/D1 start conversions simultaneously. When read, its content is indeterminate. conversion, the conversion result is D0 or A/D1 is operating. N0 register is set to "0" (software trigger)	. wc
 When the A indetermina Do not set f The PST bi Do not set f Set both A/ 	ate. the APS1 a it is enabled the PST bit /D0 and A/E bit is set to node.	register is i and APS0 t d when the t to "1" whe D1 to the st "1", do no	Start Bit ^(2, 3, 4) rewritten during the A/D pits to "1" while either A/ e TRG bit in the AD0COI en the TRG bit is set to " ame setting.	A/D1 start conversions simultaneously. When read, its content is indeterminate. conversion, the conversion result is D0 or A/D1 is operating. N0 register is set to "0" (software trigger) 1" (external trigger).	
 When the A indetermina Do not set f The PST bi Do not set f Set both A/ If the ADS f operation m 	ate. the APS1 a it is enabled the PST bit /D0 and A/D bit is set to mode. ter i (i =	register is i and APS0 t d when the t to "1" whe D1 to the si "1", do no 0 to 7) Symbol	Start Bit ^(2, 3, 4) rewritten during the A/D bits to "1" while either A/ a TRG bit in the AD0COI en the TRG bit is set to " ame setting. t select single sweep mo Address Address AD02 038116 - 038016, 0 AD05 038716 - 038616, 0	A/D1 start conversions simultaneously. When read, its content is indeterminate. conversion, the conversion result is D0 or A/D1 is operating. N0 register is set to "0" (software trigger) 1" (external trigger). ode or repeat sweep mode as the A/D After Resu 38316 - 038216, 038516 - 038416 Indetermin 38916 - 038816, 038B16 - 038A16 Indetermin	
 When the A indetermina Do not set f The PST bi Do not set f Set both A/ If the ADS f operation m 	ate. the APS1 a it is enabled the PST bit /D0 and A/D bit is set to mode. ter i (i =	register is i and APS0 t d when the t to "1" whe D1 to the si "1", do no 0 to 7) Symbol AD00 to 7 AD03 to 7	Start Bit ^(2, 3, 4) rewritten during the A/D bits to "1" while either A/ e TRG bit in the AD0COI en the TRG bit is set to " ame setting. t select single sweep mo Address AD02 038116 - 038016, 0 AD05 038716 - 038616, 0 AD07 038D16 - 038C16, 0	A/D1 start conversions simultaneously. When read, its content is indeterminate. conversion, the conversion result is D0 or A/D1 is operating. N0 register is set to "0" (software trigger) 1" (external trigger). ode or repeat sweep mode as the A/D After Resu 38316 - 038216, 038516 - 038416 Indetermin 38916 - 038816, 038B16 - 038A16 Indetermin	
 When the A indetermina Do not set f The PST bi Do not set f Set both A/ If the ADS f operation m 	ate. the APS1 a it is enabled the PST bit /D0 and A/D bit is set to mode. ter i (i =	register is i d when the t to "1" whe D1 to the si "1", do no 0 to 7) Symbol AD00 to 7 AD03 to 7 AD06 to 7	Start Bit ^(2, 3, 4) rewritten during the A/D bits to "1" while either A/ e TRG bit in the AD0COI en the TRG bit is set to " ame setting. t select single sweep mo Address AD02 038116 - 038016, 0 AD05 038716 - 038616, 0 AD07 038D16 - 038C16, 0	A/D1 start conversions simultaneously. When read, its content is indeterminate. conversion, the conversion result is D0 or A/D1 is operating. N0 register is set to "0" (software trigger) 1" (external trigger). ode or repeat sweep mode as the A/D After Results 38316 - 038216, 038516 - 038416 Indetermin 38916 - 038816, 038B16 - 038A16 Indetermin D38F16 - 038E16 Indetermin Function	
 When the A indetermina Do not set f The PST bi Do not set f Set both A/ If the ADS f operation m 	ate. the APS1 a it is enabled the PST bit /D0 and A/C bit is set to mode. ter i (i =	register is i d when the t to "1" whe D1 to the si "1", do no 0 to 7) Symbol AD00 to 7 AD03 to 7 AD06 to 7	Start Bit ^(2, 3, 4) rewritten during the A/D bits to "1" while either A/ e TRG bit in the AD0COI en the TRG bit is set to " ame setting. t select single sweep mo Address AD02 038116 - 038016, 0 AD05 038716 - 038616, 0 AD07 038D16 - 038C16, 0 AD07 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	A/D1 start conversions simultaneously. When read, its content is indeterminate. conversion, the conversion result is D0 or A/D1 is operating. N0 register is set to "0" (software trigger) 1" (external trigger). ode or repeat sweep mode as the A/D After Results 38316 - 038216, 038516 - 038416 Indetermin 38916 - 038816, 038B16 - 038A16 Indetermin D38F16 - 038E16 Indetermin Function	

Figure 17.4 AD0CON2 Register, AD00 to AD07 Registers

b7 b6 b5 b4 b3 b2 b1 b0	Symb AD1C		After Reset 0016	
	Bit Symbol	Bit Name	Function	RW
	CH0		^{b2 b1 b0} 0 0 0 : ANio 0 0 1 : ANi1	RW
	CH1	Analog Input Pin Select Bit ^(2, 3, 4, 5, 6)	0 1 0 : ANi2 0 1 1 : ANi3 1 0 0 : ANi4	RW
	CH2		1 0 1 : ANis 1 1 0 : ANi6 1 1 1 : ANi7 (i=0, 2, 15)	RW
	MD0	A/D Operation	0 0 : One-shot mode 0 1 : Repeat mode	RW
	MD1	Mode Select Bit 0 ⁽²⁾	1 0 : Single sweep mode 1 1 : Repeat sweep mode 0 or 1	RW
	TRG	Trigger Select Bit	0 : Software trigger 1 : External trigger, hardware trigger ⁽⁷⁾	RW
	ADST		0 : A/D conversion stops 1 : A/D conversion starts ⁽⁷⁾	RW
[CKS0	Frequency Select Bit ⁽⁸⁾	0 : Select from fAD/3 or fAD/4 1 : Select from fAD/1 or fAD/2	RW

NOTES:

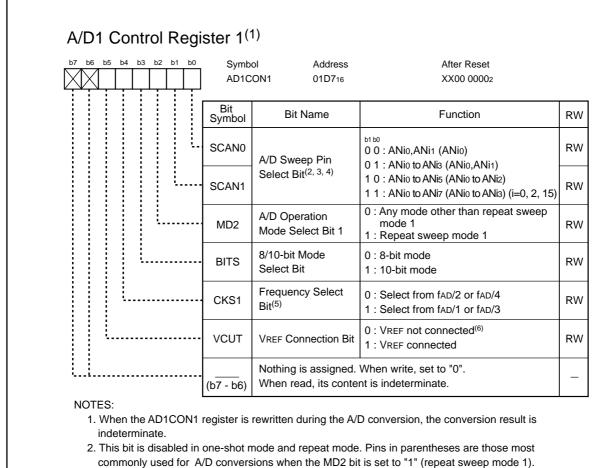
1. When the AD1CON0 register is rewritten during the A/D conversion, the conversion result is indeterminate.

2. Set analog input pins again after changing A/D operation mode.

3. This bit is disabled in single sweep mode, repeat sweep mode 0 and repeat sweep mode 1.

- 4. The APS1 to APS0 bit in the AD1CON2 register select i=0, 2 or 15.
- 5. i=0 or 2 is available in single-chip mode only.

6. i=15 is available in the 144-pin package.


7. To set the TRG bit to "1", select the cause of trigger by setting the the TRG1 and TRG0 bits in the AD1CON2 register. Then set the ADST bit to "1" after the TRG bit is set to "1".

Ø AD frequency must be under 16 MHz when Vcc=5V.
 Ø AD frequency must be under 10 MHz when Vcc=3.3V.
 Combination of the CKS0 and CKS1 bits selects Ø AD.

CKS0	CKS1	Ø AD
0	0	fAD divided by 4
0	1	fAD divided by 3
1	0	fAD divided by 2
1	1	fad

Figure 17.5 AD1CON0 Register

- 3. The APS1 to APS0 bits in the AD1CON2 register select i=0, 2 or 15.
- 4. i=15 is available in the 144-pin package.

5. ØAD frequency must be under 16 MHz when Vcc=5V. ØAD frequency must be under 10 MHz when Vcc=3.3V. Combination of the CKS0 and CKS1 bits selects ØAD (see the AD1CON0 register).

6. Do not set the VCUT bit to "0" during the A/D conversion. This is a reference voltage for the A/D1. It does not affect the D/A conversion.

Figure 17.6 AD1CON1 Register

ĂĦŦŔŔŔŦŦŦŦ	Symbo AD1C		After Reset X00X X0002	
	Bit Symbol	Bit Name	Bit name	R٧
	SMP	A/D Conversion Method Select Bit	0 : Without the sample and hold function 1 : With the sample and hold function	RV
	APS0	Analog Input Port	^{b2 b1} 0 0 : AN150 to AN157 ⁽²⁾ 0 1 : Do not set to this value	RV
	APS1	Select Bit	1 0 : AN00 to AN07 ⁽³⁾ 1 1 : AN20 to AN27 ⁽³⁾	RV
	(b4 - b3)	Nothing is assigned. When read, its conte	When write, set to "0". Int is indeterminate.	
	TRG0		 b6 b5 0 0 : Selects ADTRG 0 1 : Selects a timer B2 interrupt request of the three-phase motor control timer functions (after the ICTB2 counter completes 	RW
	TRG1		 1 0 : Selects the Intelligent I/O group 3 channel 1 interrupt 1 1 : Do not set to this value 	RW
	(b7)	Nothing is assigned. When write, set to "0". When read, its content is indeterminate.		_
indeterminate. 2. AN150 to AN157 are pr 3. AN00 to AN07, AN20 to	o AN27 are	e available in single-chip	mode only.	
A/D1 Register j (j:	OSymbol AD10 to AD13 to AD16 to	AD12 01C116 - 01C01 AD15 01C716 - 01C61	After R 6, 01C316 - 01C216, 01C516 - 01C416 Indeter 6, 01C916 - 01C816, 01CB16 - 01CA16 Indeter 16, 01CF16 - 01CE16 Indeter	mina mina
b15 b8 b7 b	AD10 to AD13 to	AD12 01C116 - 01C01 AD15 01C716 - 01C61	6, 01C316 - 01C216, 01C516 - 01C416 Indeter 6, 01C916 - 01C816, 01CB16 - 01CA16 Indeter	mina mina
b15 b8 b7 b	AD10 to AD13 to AD16 to	AD12 01C116 - 01C01 AD15 01C716 - 01C61	6, 01C316 - 01C216, 01C516 - 01C416 Indeter 6, 01C916 - 01C816, 01CB16 - 01CA16 Indeter 16, 01CF16 - 01CE16 Indeter Function	mina mina mina
b15 b8 b7 b	AD10 to AD13 to AD16 to	AD12 01C116 - 01C01 AD15 01C716 - 01C61 AD17 01CD16 - 01CC rder bits in an A/D con	6, 01C316 - 01C216, 01C516 - 01C416 Indeter 6, 01C916 - 01C816, 01CB16 - 01CA16 Indeter 16, 01CF16 - 01CE16 Indeter Function	mina mina mina

Figure 17.7 AD1CON2 Register, AD10 to AD17 Register

17.1 Mode Description

17.1.1 One-shot Mode

In one-shot mode, analog voltage applied to a selected pin is converted to a digital code once. Table 17.4 lists specifications of one-shot mode.

Item	Specification
Function	Analog voltage, applied to a pin selected by the CH2 to CH0 bits in the ADiCON0
	register (i=0, 1), is converted to a digital code once.
Start Condition	When the TRG bit in the ADiCON0 register is set to "0" (software trigger),
	 The ADST bit in the ADiCON0 register is set to "1" (A/D conversion starts) by program
	• The PST bit in the AD0CON2 register is set to "1" (A/D0 and A/D1 start a
	conversion simultaneously) by program
	When the TRG bit is set to "1" (external trigger, hardware trigger),
	 A falling edge is applied to the ADTRG pin after the ADST bit is set to "1" by program
	 One of the following interrupt requests is generated after the ADST bit is set to
	"1" by program:
	- The timer B2 interrupt request of three-phase motor control timer functions
	(after the ICTB2 counter completes counting) is generated
	- The intelligent I/O interrupt request is generated
	Channel 1 in the group 2 (A/D0), channel 1 in the group 3 (A/D1)
Stop Condition	• A/D conversion is completed (the ADST bit is set to "0" when the internal trigger is
	selected)
	 The ADST bit is set to "0" (A/D conversion stopped) by program
Interrupt Request Generation Timing	A/D conversion is completed
Analog Voltage Input Pins	Select one from ANo to AN7, ANEX0, or ANEX1
	Select one from ANj0 to ANj7 (j=0, 2, 15)
Reading of A/D Conversion Result	The ADik register (k=0 to 7) corresponding to selected pin

Table 17.4 One-shot Mode Specifications

17.1.2 Repeat Mode

In repeat mode, analog voltage applied to a selected pin is repeatedly converted to a digital code. Table 17.5 lists specifications of repeat mode.

 Table 17.5
 Repeat Mode Specifications

Item	Specification
Function	Analog voltage, applied to a pin selected by the CH2 to CH0 bits in the ADiCON0
	register (i=0, 1), is converted to a digital code once.
Start Condition	Same as one-shot mode
Stop Condition	The ADST bit in the ADiCON0 register is set to "0" (A/D conversion stopped) by
	program
Interrupt Request Generation Timing	Not generated
Analog Voltage Input Pins	Select one from ANo to AN7, ANEX0, or ANEX1
	Select from ANj0 to ANj7 (j=0, 2, 15)
Reading of A/D Conversion Result	The ADik register (k=0 to 7) corresponding to selected pins

17.1.3 Single Sweep Mode

In single sweep mode, analog voltage that is applied to selected pins is converted one-by-one to a digital code. Table 17.6 lists specifications of single sweep mode.

Item	Specification
Function	Analog voltage, applied to pins selected by the SCAN1 to SCAN0 bits in the
	ADiCON0 register (i=0, 1), are converted one-by-one to a digital code
Start Condition	Same as one-shot mode
Stop Condition	• A/D conversion is completed (the ADST bit in the ADiCON0 register is set to "0"
	when the internal trigger is selected)
	 The ADST bit is set to "0" (A/D conversion stopped) by program
Interrupt Request Generation Timing	Sweep operation is completed
Analog Voltage Input Pins	Select from ANo to AN1 (2 pins), ANo to AN3 (4 pins), ANo to AN5 (6 pins), ANo to
	AN7 (8 pins)
	Select from ANjo (j=0, 2, 15) to ANj1 (2 pins), ANjo to ANj3 (4 pins), ANjo to ANj5 (6
	pins), or ANjo to ANj7 (8 pins)
Reading of A/D Conversion Result	The ADik register (k=0 to 7) corresponding to selected pins

Table 17.6	Single Sweep	Mode Specifications
------------	--------------	---------------------

17.1.4 Repeat Sweep Mode 0

In repeat sweep mode 0, analog voltage applied to selected pins is repeatedly converted to a digital code. Table 17.7 lists specifications of repeat sweep mode 0.

Table 17.7	Repeat Swee	p Mode 0 S	pecifications
------------	-------------	------------	---------------

Item	Specification
Function	Analog voltage, applied to pins selected by the SCAN1 to SCAN0 bits in the
	ADiCON0 register (i=0, 1), are repeatedly converted to a digital code
Start Condition	Same as one-shot mode
Stop Condition	The ADST bit in the ADiCON0 register is set to "0" (A/D conversion stopped) by program
Interrupt Request Generation Timing	Not generated
Analog Voltage Input Pins	Select from ANo to AN1 (2 pins), ANo to AN3 (4 pins), ANo to AN5 (6 pins), ANo to
	AN7 (8 pins)
	Select from ANjo (j=0, 2, 15) to ANj1 (2 pins), ANjo to ANj3 (4 pins), ANjo to ANj5 (6
	pins), or ANjo to ANj7 (8 pins)
Reading of A/D Conversion Result	The ADik register (k=0 to 7) corresponding to selected pins

17.1.5 Repeat Sweep Mode 1

In repeat sweep mode 1, analog voltage selectively applied to eight pins is repeatedly converted to a digital code. Table 17.8 lists specifications of repeat sweep mode 1.

Item	Specification
Function	Analog voltage selectively applied to 8 pins selected by the SCAN1 to SCAN0 bits
	in the ADiCON1 register (i=0,1) is repeatedly converted to a digital code.
	e.g., When ANjo is selected (j =none, 0, 2, 15), analog voltage is converted to a
	digital code in the following order:
	ANj0→ ANj1→ ANj0→ ANij2→ ANj0 → ANj3 etc.
Start Condition	Same as one-shot mode
Stop Condition	The ADST bit in the ADiCON1 register is set to "0" (A/D conversion stopped) by
	program
Interrupt Request Generation Timing	Not generated
Analog Voltage Input Pins	ANjo to ANj7 (8 pins)
Prioritized Pins	Select from AN0 (1 pin), AN0 to AN1 (2 pins), AN0 to AN2 (3 pins), or AN0 to AN3 (4
	pins)
	Select from ANj0 (j=0, 2, 15) (1 pin), ANj0 to ANj1 (2 pins), AN0 to AN2 (3 pins),
	ANjo to ANj3 (4 pins)
Reading of A/D Conversion Result	The ADik register (k=0 to 7) corresponding to selected pins

17.2 Function

17.2.1 Resolution Select Function

The BITS bit in the ADiCON1 (i=0, 1) register determines the resolution. When the BITS bit is set to "1" (10-bit precision), the A/D conversion result is stored into bits 0 to 9 in the ADij register (j = 0 to 7). When the BITS bit is set to "0" (8-bit precision), the A/D conversion result is stored into bits 0 to 7 in the ADij register.

17.2.2 Sample and Hold

When the SMP bit in the ADiCON2 register is set to "1" (with the sample and hold function), A/D conversion rate per pin increases to 28 ØAD cycles for 8-bit resolution and 33 ØAD cycles for 10-bit resolution. The sample and hold function is available in all operating modes. Start the A/D conversion after selecting whether the sample and hold function is to be used or not.

17.2.3 Trigger Select Function

The TRG bit in the ADiCON0 register and the TRG1 to TRG0 bits in the ADiCON2 register determine the trigger to start the A/D conversion. Table 17.9 lists settings of the trigger select function.

Table 17.9	Trigger	Select	Function	Settings
------------	---------	--------	----------	----------

Bit and S	Setting	Trigger
ADiCON0 Register	ADiCON2 Register	
TRG = 0	-	Software trigger
		The A/Di starts the A/D conversion when the ADST bit in the
		ADiCON0 register is set to "1"
	-	Two-circuit simultaneous start
		A/D0 and A/D1 start the A/D conversion simultaneously when the
		PST bit in the AD0CON2 register is set to "1" by program (Refer to
		17.2.4 Two-Circuit Simultaneous Start)
$TRG = 1^{(1)}$	TRG1 to TRG0 = 002	External trigger ⁽²⁾
		Falling edge of a signal applied to ADTRG
	TRG1 to TRG0 = 012	Hardware trigger ⁽²⁾
		The timer B2 interrupt request of three-phase motor control timer
		functions (after the ICTB2 counter completes counting)
	TRG1 to TRG0 = 102	Hardware trigger ⁽²⁾
		The intelligent I/O interrupt request is generated
		Channel 1 in the group 2 (A/D0), channel 1 in the group 3 (A/D1)

i= 0,1

NOTES:

- 1. The A/Di starts the A/D conversion when the ADST bit is set to "1" (A/D conversion started) and a trigger is generated.
- 2. The A/D conversion is restarted if an external trigger or a hardware trigger is inserted during the A/D conversion. (The A/D conversion in process is aborted.)

17.2.4 Two-Circuit Simultaneous Start (Software Trigger)

A/D0 and A/D1 start simultaneously when the PST bit in the AD0CON2 register is set to "1" (two-circuit simultaneous start).

Do not set the PST bit to "1" while either A/D0 or A/D1 is performing an A/D conversion, or if the TRG bit is set "1" (external trigger).

Do not set the ADST bit to "1" (A/D conversion started) when using the PST bit.

17.2.5 Pin Input Replacement Function

When the ADS bit in the AD0CON2 register is set to "1" (channel replacement enabled), channels of the A/D0 can be replaced with channels of the A/D1 and vice versa.

Voltage applied to the ANj (j = 0 to 7) pin is converted to digital code in the A/D1 and the conversion result is stored into the AD1j register. Voltage applied to the AN0j, AN2j or AN15j pin is converted to digital code in the A/D0 and the conversion results are stored into the AD0j register.

To set the ADS bit to "1", set the MD1 to MD0 bits in the AD0CON0 register to "002" (one-shot mode) or "012" (repeat mode). Single sweep, repeat sweep 0, and repeat sweep 1 modes cannot be used. Set the OPA1 to OPA0 bits in the AD0CON1 register to "002" (no ANEX0 and ANEX1 used). Set the same value to both AD0CON0 register and AD1CON0 register, and to both AD0CON1 register and AD1CON1 register.

17.2.6 Extended Analog Input Pins

In one-shot mode and repeat mode, the ANEX0 and ANEX1 pins can be used as analog input pins. The OPA1 to OPA0 bits in the AD0CON1 register select which pins to use as analog input pins. An A/D conversion result for the ANEX0 pin is stored into the AD00 register. The result for the ANEX1 pin is stored into the AD01 register.

17.2.7 External Operation Amplifier (Op-Amp) Connection Mode

In external op-amp connection mode, multiple analog voltage can be amplified by one external op-amp using extended analog input pins ANEX0 and ANEX1.

When the OPA1 to OPA0 bits in the AD0CON1 register are set to "112" (external op-amp connection), voltage applied to the AN0 to AN7 pins are output from ANEX0. Amplify this output signal by an external op-amp and apply it to ANEX1.

Analog voltage applied to ANEX1 is converted to a digital code and the A/D conversion result is stored into the corresponding ADij register (i=0, 1; j=0 to 7). A/D conversion rate varies depending on the response of the external op-amp. Do not connect the ANEX0 pin to the ANEX1 pin directly.

Figure 17.8 shows an example of an external op-amp connection.

AD0CON	1 Register	ANEX0 Function	ANEX1 Function
OPA1	OPA0		
0	0	Not used	Not used
0	1	P95 as an analog input	Not used
1	0	Not used	P96 as an analog input
1	1	Output to an external op-amp	Input from an external op-amp

Table 17.10 Extended Analog Input Pin Settings

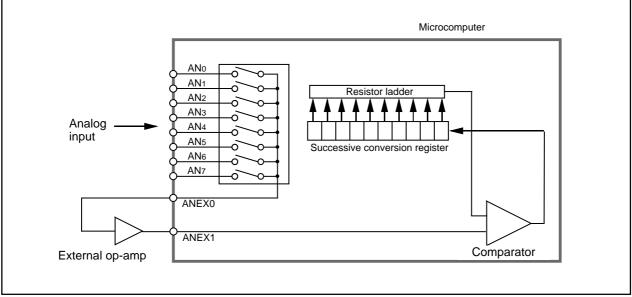


Figure 17.8 External Op-Amp Connection

17.2.8 Power Consumption Reducing Function

When the A/D converter is not used, the VCUT bit in the ADiCON1 register (i=0, 1) isolates the resistor ladder of the A/D converter from the reference voltage input pin (VREF). Power consumption is reduced by shutting off any current flow into the resistor ladder from the VREF pin.

When using the A/D converter, set the VCUT bit to "1" (VREF connection) before setting the ADST bit in the ADiCON0 register to "1" (A/D conversion started). Do not set the ADST bit and VCUT bit to "1" simultaneously, nor set the VCUT bit to "0" (no VREF connection) during the A/D conversion. The VCUT bit does not affect the VREF performance of the D/A converter.

17.2.9 Analog Input Pin and External Sensor Equivalent Circuit

Figure 17.9 shows an example of the analog input pin and external sensor equivalent circuit.

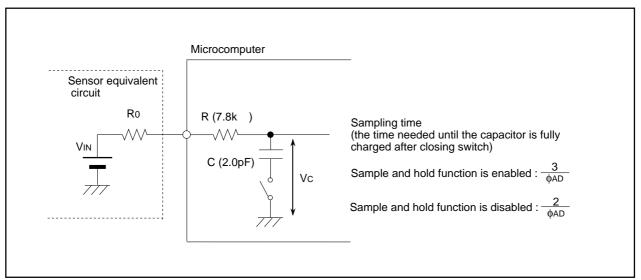


Figure 17.9 Analog Input Pin and External Sensor Equivalent Circuit

18. D/A Converter

The D/A converter consists of two separate 8-bit R-2R ladder D/A converters.

Digital code is converted to an analog voltage when a value is written to the corresponding DAi registers (i=0,1). The DAiE bit in the DACON register determines whether the D/A conversion result is output or not. Set the DAiE bit to "1" (output enabled) to disable a pull-up of a corresponding port.

Output analog voltage (V) is calculated from value n (n=decimal) set in the DAi register.

$$V = \frac{VREF \times n}{256}$$
 (n = 0 to 255)

VREF : reference voltage (not related to VCUT bit setting in the ADiCON1 register)

Table 18.1 lists specifications of the D/A converter. Table 18.2 lists pin settings of the DA0 and DA1 pins. Figure 18.1 shows a block diagram of the D/A converter. Figure 18.2 shows the D/A control register. Figure 18.3 shows a D/A converter equivalent circuit.

When the D/A converter is not used, set the DAi register to "0016" and the DAiE bit to "0" (output disabled).

Item	Specification
D/A Conversion Method	R-2R
Resolution	8 bits
Analog Output Pin	2 channels

Table 18.1 D/A Converter Specifications

Table 18.2 Pin Settings

Port	Function		Bit and Setting	
		PD9 Register ⁽¹⁾	PS3 Register ⁽¹⁾	PSL3 Register
P93	DA0 output	PD9_3=0	PS3_3=0	PSL3_3=1
P94	DA1 output	PD9_4=0	PS3_4=0	PSL3_4=1

NOTES:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

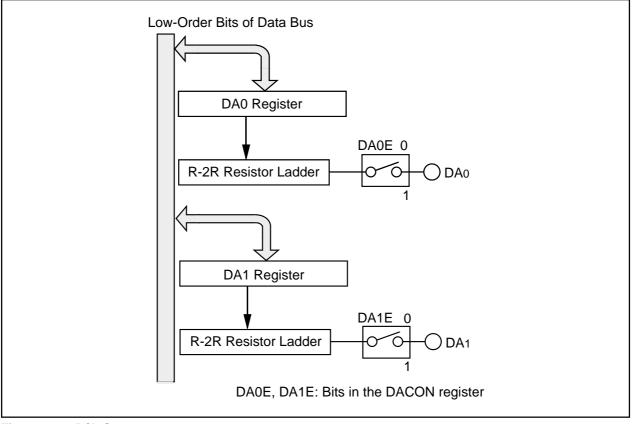


Figure 18.1 D/A Converter

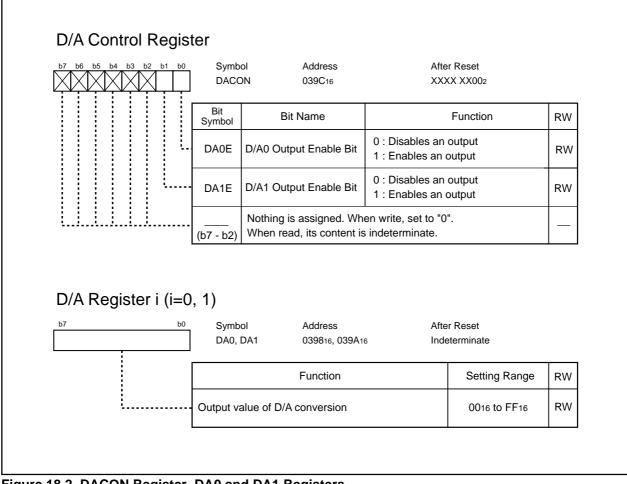


Figure 18.2 DACON Register, DA0 and DA1 Registers

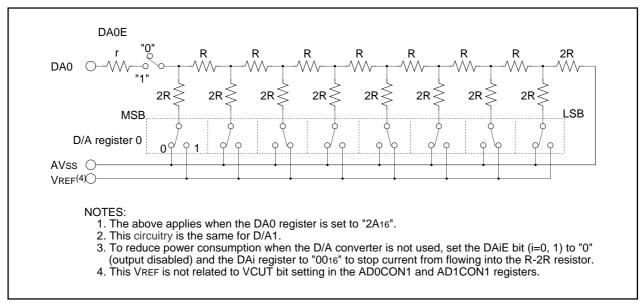
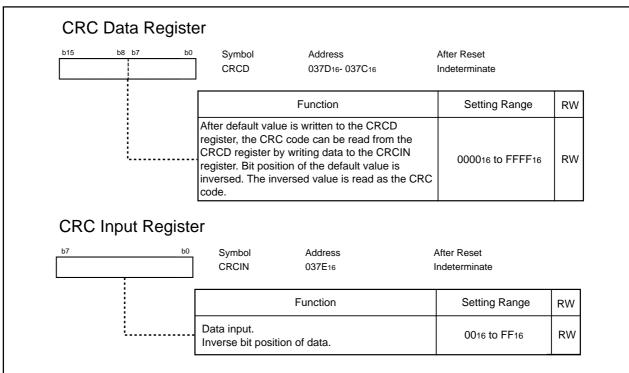


Figure 18.3 D/A Converter Equivalent Circuit

19. CRC Calculation


The CRC (Cyclic Redundancy Check) calculation detects an error in data blocks. A generator polynomial of CRC_CCITT ($X^{16} + X^{12} + X^{5} + 1$) generates CRC code.

The CRC code is a 16-bit code generated for a block of data of desired length. This block of data is in 8-bit units. The CRC code is set in the CRCD register every time one-byte data is transferred to the CRCIN register after a default value is written to the CRCD register. CRC code generation for one-byte data is completed in two cycles.

Figure 19.1 shows a block diagram of a CRC circuit. Figure 19.2 shows registers related to CRC. Figure 19.3 shows an example of the CRC calculation.

Figure 19.1 CRC Calculation Block Diagram

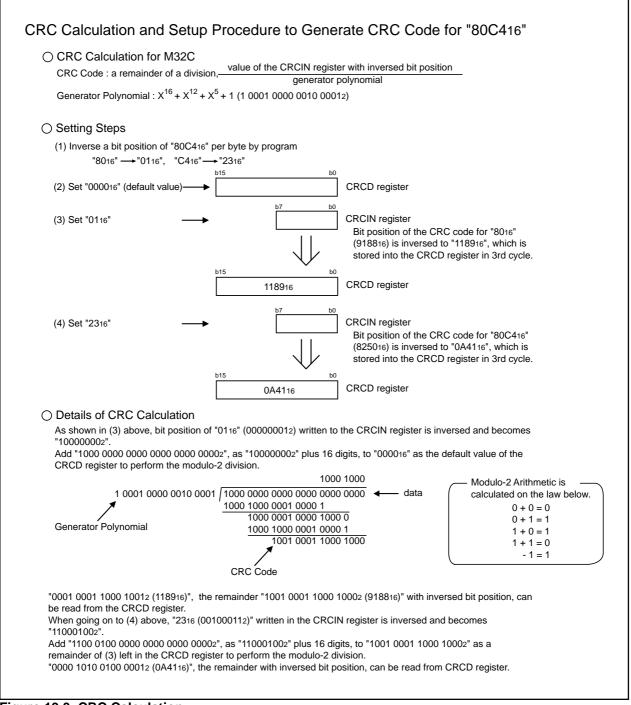


Figure 19.3 CRC Calculation

20. X/Y Conversion

The X/Y conversion rotates a 16 x 16 matrix data by 90 degrees and inverses high-order bits and low-order bits of a 16-bit data. Figure 20.1 shows the XYC register.

The 16-bit XiR register (i=0 to 15) and 16-bit YjR register (j=0 to 15) are allocated to the same address. The XiR register is a write-only register, while the YjR register is a read-only register. Access the XiR and YjR registers from an even address in 16-bit units. Performance cannot be guaranteed if the XiR and YiR registers are accessed in 8-bit units.

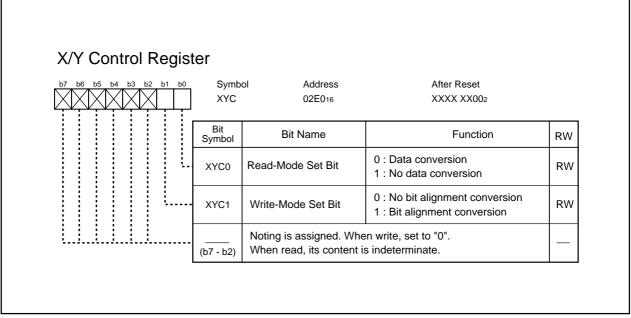


Figure 20.1 XYC Register

The XYC0 bit in the XYC register determines how to read the YjR register.

By reading the YjR register when the XYC0 bit is set to "0" (data conversion), bit j in the X0R to X15R registers can be read simultaneously.

For example, bit 0 in the X0R register can be read if reading bit 0 in the Y0R register, bit 0 in the X1R register if reading bit 1 in the Y0R register..., bit 0 in the X14R register if reading bit 14 in the Y0R register and bit 0 in the X15R register if reading bit 15 in the Y0R register.

Figure 20.2 shows the conversion table when the XYC0 bit is set to "0". Figure 20.3 shows an example of the X/Y conversion.

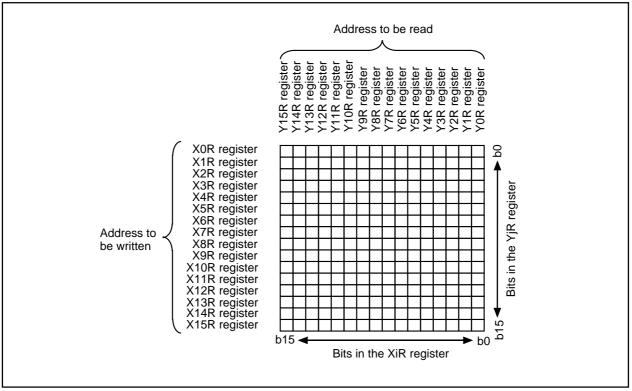


Figure 20.2 Conversion Table when Setting the XYC0 Bit to "0"

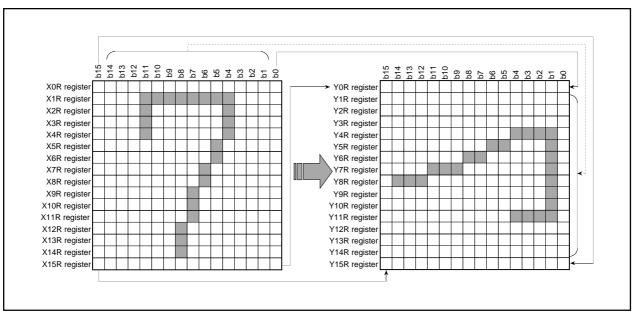


Figure 20.3 X/Y Conversion

By reading the YjR register when the XYC0 bit in the XYC register is set to "1" (no data conversion), the value written to the XiR register can be read directly. Figure 20.4 shows the conversion table when the XYC0 bit is set to "1."

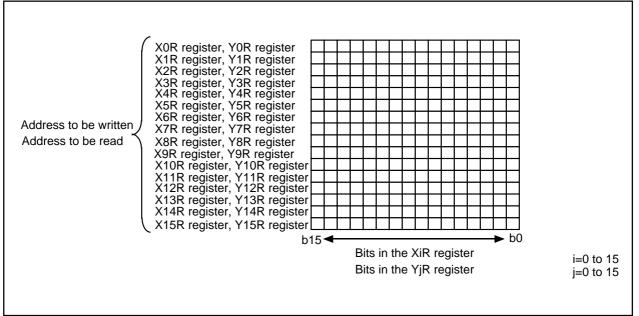


Figure 20.4 Conversion Table when Setting the XYC0 Bit to "1"

The XYC1 bit in the XYC register selects bit alignment of the value in the XiR register.

By writing to the XiR register while the XYC1 bit is set to "0" (no bit alignment conversion), bit alignment is written as is. By writing to the XiR register while the XYC1 bit is set to "1" (bit sequence replaced), bit alignment is written inversed.

Figure 20.5 shows the conversion table when the XYC1 bit is set to "1".

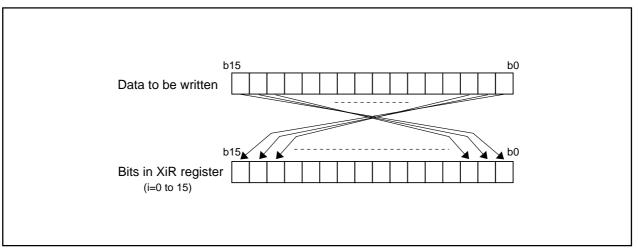


Figure 20.5 Conversion Table when Setting the XYC1 Bit to "1"

21. Intelligent I/O

The intelligent I/O is a multifunctional I/O port for time measurement, waveform generation, clock synchronous serial I/O, clock asynchronous serial I/O (UART), IEBus⁽¹⁾ communications, HDLC data processing and more.

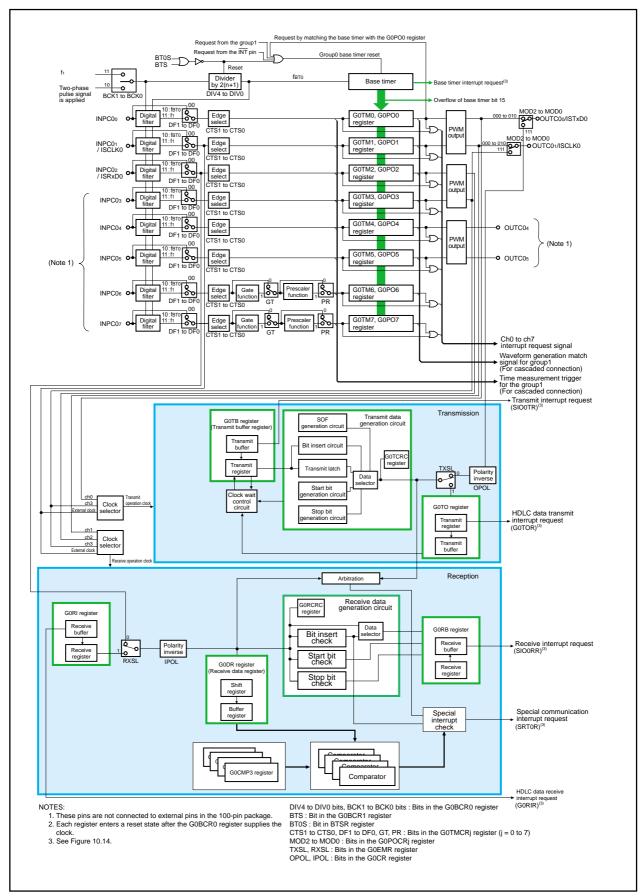
The intelligent I/O consists of four groups. Each group has one 16-bit base timer for free-running operation, eight 16-bit registers for time measurement and waveform generation and two 8-bit shift registers (or one 16-bit shift register) for communications.

Table 21.1 lists functions and channels of the intelligent I/O. NOTES:

1. IEBus is a trademark of NEC Electronics Corporation.

Function	Group 0	Group 1	Group 2	Group 3	Group 0, 1 cascaded
Time Measurement ⁽¹⁾	8 channels (3 channels) ⁽²⁾	4 channels (2 channels)			8 channels (3 channels)
Digital Filter	8 channels (3 channels)	4 channels (2 channels)	Not Available	Not Available	8 channels (3 channels)
Trigger Input Prescaler	2 channels	2 channels			2 channels
Trigger Input Gate	2 channels	2 channels			2 channels
Waveform Generation	4 channels (2 channels)	8 channels (3 channels)	8 channels (3 channels)	8 channels (2 channels)	8 channels (3 channels)
Single-phase Waveform Output					
Phase-delayed Waveform Output	Available	Available	Available	Available	Available
SR Waveform Output]				
Bit Modulation PWM Mode			Available	Available	
RTP Mode	Not Available	Not Available			Not Available
Parallel RTP Mode		, trailable			, trailable
Communication	8 bits fixed		Variable	8 or 16 bits	Not Available
Clock Synchronous Serial I/O Mode			Available	Available	
UART Mode	Available		Not		Not
HDLC Data Processing Mode	1		Available	Not Available	Available
IEBus Mode	Not Available		Available		

Table 21.1	Intelligent I/O Functions and Channels	


NOTES:

1. Time measurement function and waveform generation function share pins

2. The number of channels available in the 100-pin package are indicated in parentethese ().

The time measurement function and waveform generation function can be selected for each channel. The communication function is available by a combination of multiple channels.

Figures 21.1 to 21.4 show block diagram of the intelligent I/O groups 0 to 3.

Figure 21.1 Intelligent I/O Group 0 Block Diagram

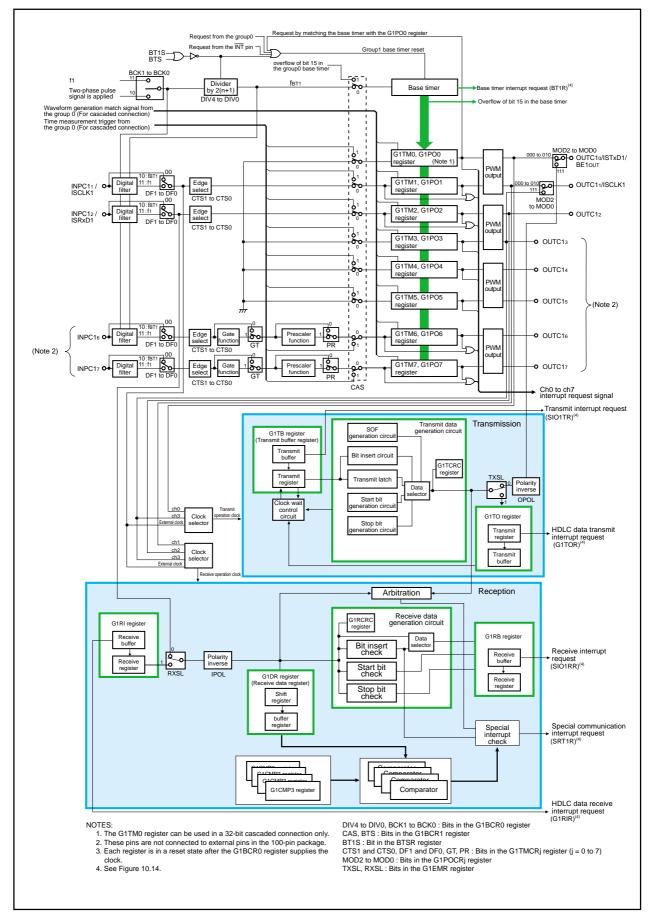


Figure 21.2 Intelligent I/O Group 1 Block Diagram

Figure 21.3 Intelligent I/O Group 2 Block Diagram

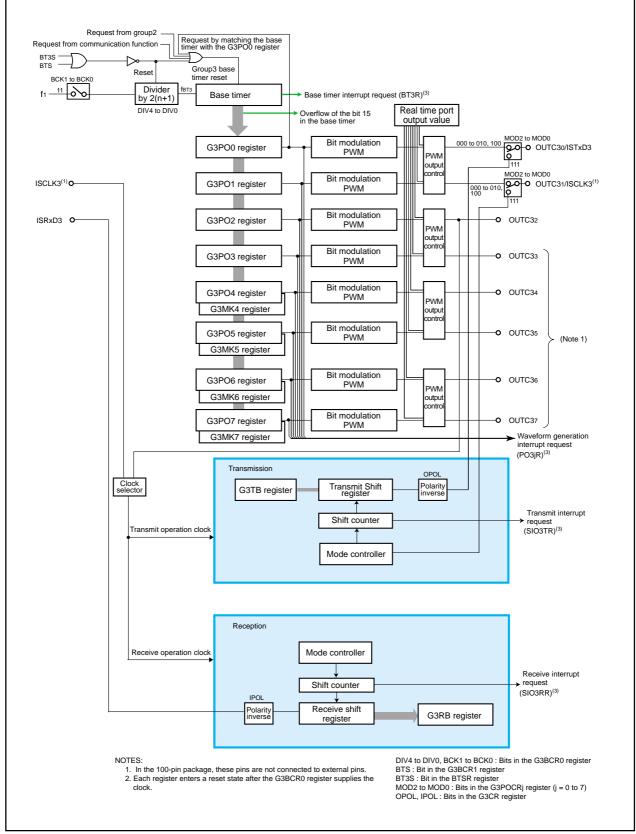
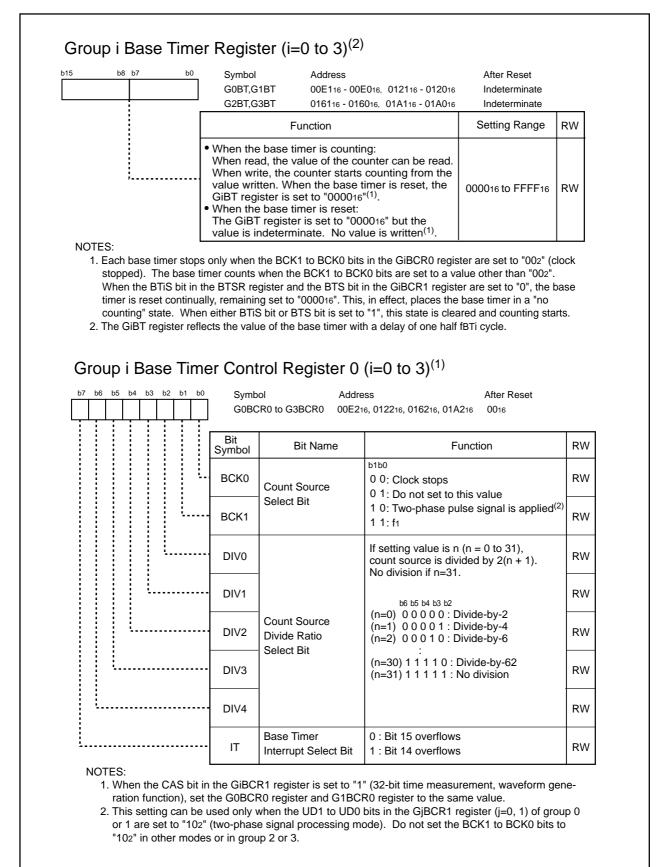
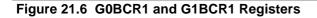



Figure 21.4 Intelligent I/O Group 3 Block Diagram

Figures 21.5 to 21.15 show registers associated with the intelligent I/O base timer, the time measurement function and waveform generation function. (For registers associated with the communication function, see Figures 21.32 to 21.38, Figures 21.42 to 21.45, Figures 21.47 to 21.49.)



b7 b6 b	05 b4 b3	b2 b1 b0	Symb G0B		Address 00E316, 012316	After Reset 0016	
			Bit Symbol	Bit Name		Function	RW
			RST0	Base Timer Reset Cause Select Bit 0		with the base timer reset is reset by synchronizing	RW
			RST1	Base Timer Reset Cause Select Bit 1		the GiPO0 register r is reset by matching	RW
			RST2	Base Timer Reset Cause Select Bit 2	0: The base time applying "L" to 1: The base time "L" to the INTI	the INTi pin r is reset by applying	RW
			(b3)	Reserved Bit	Set to "0"		RW
			BTS	Base Timer Start Bit ^(5, 6)	0: Base timer is r 1: Base timer sta		RW
			UD0	Counter Increment/		rement/decrement mode	RW
			UD1	Decrement Control Bit	1 0 : Two-phase p mode ⁽⁷⁾ 1 1 : Do not set to	pulse signal processing o this value	RW
			CAS	Groups 0 and 1 Cascaded Connection Function Select Bit	1: 32-bit time me	eration function	RW

NOTES:

- 1. In group 0, the base timer is reset by synchronizing with the group 1 base timer reset. In group 1, the base timer is reset by synchronizing with the group 0 base timer reset.
- 2. The base timer is reset two fBTi clock cycles after the base timer matches the value set in the GiPO0 register. (See Figure 21.13 for details on the GiPO0 register.) When the RST1 bit is set to "1", the value of the GiPOj register (j=1 to7) for the waveform generation function and communication function must be set to a smaller value than that of the GiPO0 register.
- 3. In group 0, the base timer is reset when "L" is applied to the INTO pin. In group 1, the base timer is reset when "L" is applied to the INT1 pin.
- 4. When the CAS bit is set to "1" (32-bit time measurement, waveform generation function), set the G0BCR1 register to "8116" and the G1BCR1 register to "1000 0XX02".
- 5. When starting the group 0 or 1 base timer separately, set the BTS bit to "1" after the BTkS bit (k=0 to 1) in the BTSR register is set to "0".
- 6. When starting the base timers in multiple groups simultaneously, use the BTSR register. Set the BTS bit to "0".
- 7. In two-phase pulse signal processing mode, the base timer is not reset, even when the RST1 bit is set to "1", if the counter is decremented two clock cycles after the base timer matches the value set in the GiPO0 register

b7 b6 b5 b4 b3 b2 b1 b0 0 0 0 0 0	Symb G2B0			
	Bit Symbol	Bit Name	Function	RW
	RST0	Base Timer Reset Cause Select Bit 0	0 : The base timer is not reset by synchronizing with the group 1 base timer reset1 : The base timer is reset by synchronizing with the group 1 base timer reset	RW
	RST1	Base Timer Reset Cause Select Bit 1	 0 : The base timer is not reset by matching with the G2PO0 register 1 : The base timer is reset by matching with the G2PO0 register⁽¹⁾ 	RW
	RST2	Base Timer Reset Cause Select Bit 2	0 : The base timer is not reset by a reset request from the communication function1 : The base timer is reset by a reset request from the communication function	RW
	(b3)	Reserved Bit	Set to "0"	RW
	BTS	Base Timer Start Bit ^(3, 4)	0 : Base timer is reset 1 : Base timer starts counting	RW
	(b6 - b5)	Reserved Bit	Set to "0"	RW
	PRP	Parallel Real-Time Port Function Select Bit ⁽²⁾	0 : RTP output mode 1 : Parallel RTP output mode	RW

1. The base timer is reset two fBT2 clock cycles after the base timer matches the value set in the G2PO0 register. (See Figure 21.13 for details on the G2PO0 register.) When the RST1 bit is set to "1", the value of the G2POi register (i=1 to7), for the waveform generation function and communication function, must be set to a smaller value than that of the G2PO0 register.

2. The PRP bit is valid when the RTP bit in the G2POCRi register is set to "1" (not used)

3. When starting the group 2 base timer, set the BTS bit to "1" after the BT2S bit in the BTSR register is set to "0".

4. When starting the base timers in multiple groups simultaneously, use the BTSR register. Set the BTS bit to "0".

Figure 21.7 G2BCR1 Register

7 b6 b5 b4 0 0	b3 b2	b1 b0	Symb G3B0			
			Bit Symbol	Bit Name	Function	RW
			RST0	Base Timer Reset Cause Select Bit 0	0 : The base timer is not reset by synchronizing with the group 2 base timer reset1 : The base timer is reset by synchronizing with the group 2 base timer reset	RW
			RST1	Base Timer Reset Cause Select Bit 1	 0 : The base timer is not reset by matching with the G3PO0 register 1 : The base timer is reset by matching with the G3PO0 register⁽¹⁾ 	RW
			RST2	Base Timer Reset Cause Select Bit 2	0 : The base timer is not reset by a reset request from the communication function1 : The base timer is reset by a reset request from the communication function	RW
			(b3)	Reserved Bit	Set to "0"	RW
			BTS	Base Timer Start Bit ^(3, 4)	0 : Base timer is reset 1 : Base timer starts counting	RW
			(b6 - b5)	Reserved Bit	Set to "0"	RW
			PRP	Parallel Real-Time Port Function Select Bit ⁽²⁾	0 : RTP output mode 1 : Parallel RTP output mode	RW

1. The base timer is reset after two fBT3 clock cycles after the base timer matches the value set in the G3PO0 register. (See Figure 21.13 for details on the G3PO0 register.) When the RST1 bit is set to "1", the value of the G3POi register (i=1 to7), for the waveform generation function and communication function, must be set to a smaller value than that of the G2PO0 register.

2. The PRP bit is valid when the RTP bit in the G3POCRi register is set to "1" (not used)

3. When starting the group 3 base timer, set the BTS bit to "1" after the BT3S bit in the BTSR register is set to "0".

4. When starting the base timers in multiple groups simultaneously, use the BTSR register. Set the BTS bit to "0".

Figure 21.8 G3BCR1 Register

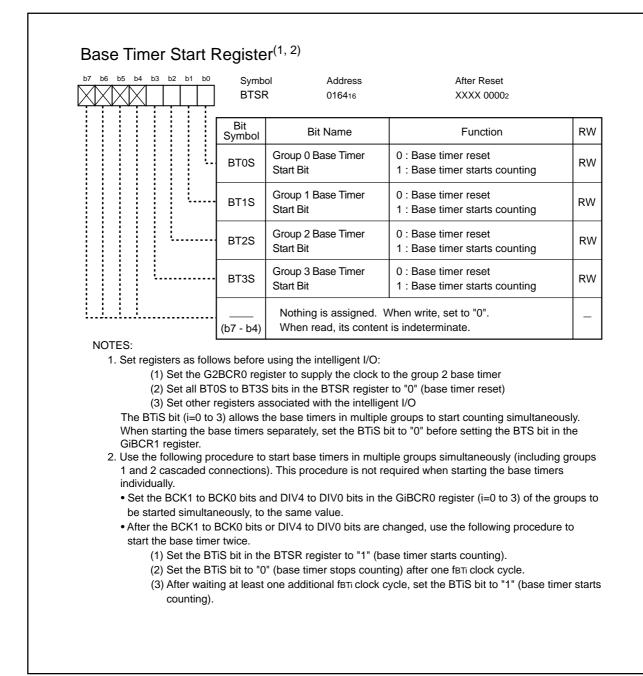


Figure 21.9 BTSR Register

Group i Time Measurement Control Register j (i=0,1; j=0 to 7)⁽¹⁾

7 b6 b5 b4 b3 b2 b1 b0	G0TMC G1TMC	CR0 to G0TMCR3 00D816 CR4 to G0TMCR7 00DC16 CR0 to G1TMCR3 011816,	ss After Reset 6, 00D916, 00DA16, 00DB16 0016 6, 00DD16, 00DE16, 00DF16 0016 6, 011916, 011A16, 011B16 0016 6, 011D16, 011E16, 011F16 0016	
	Bit Symbol	Bit Name	Function	RW
	CTS0	Time Measurement	b1 b0 0 0 : No time measurement 0 1 : Rising edge	RW
	CTS1	Trigger Select Bit	1 0 : Falling edge 1 1 : Both edges	RW
	DF0	Digital Filter Function	b3 b2 0 0 : No digital filter 0 1 : Do not set to this value	RW
	DF1	Select Bit	1 0 : fвтi 1 1 : f1	RW
	GT	Gate Function Select Bit ^(2, 4)	0 : Gate function is not used 1 : Gate function is used	RW
	GOC	Gate Function Clear Select Bit ^(2, 3, 5)	0 : Not cleared 1 : The gate is cleared when the base timer matches the GiPOk register	RW
	GSC	Gate Function Clear Bit ^(2, 3)	The gate is cleared by setting the GSC bit to "1"	RW
	PR	Prescaler Function Select Bit ⁽²⁾	0 : Not used 1 : Used	RW

- If the CAS bit in the GiBCR1 register is set to "0" (16-bit time measurement function), the G1TMCR0 and G1TMCR3 to G1TMCR5 registers cannot be used. When write, set these registers to "0016". If the CAS bit is set to "1" (32-bit time measurement function), set the same values in the G0TMCRj and G1TMCRj registers.
- 2. These bits are in the GiTMCR6 and GiTMCR7 registers.
- Set all bits 4 to 7 in the GiTMCR0 to GiTMCR5 registers to "0".
- 3. These bits are enabled only when the GT bit is set to "1"
- 4. If the CAS bit in the GiBCR1 register is set to "1" (32-bit time measurement function), set the GT bit to "0". The gate function cannot be used.
- 5. The GOC bit is set to "0" after the gate function is cleared. See Figure 18.13 for details on the GiPOk register (k=4 when j=6; k=5 when j=7).

Group i Time Measurement Prescale Register j (i=0,1; j=6,7) b0 After Reset Symbol Address 00E416, 00E516 G0TPR6 to G0TPR7 0016 G1TPR6 to G1TPR7 012416, 012516 0016 Setting Range RW Function If the setting value is n, the value of the base timer is stored into GiTMj register whenever a trigger 0016 to FF16 RW input is counted by $n+1^{(1)}$ NOTES: 1. The first prescaler, after the PR bit in the GiTMCRj register is changed from "0" (prescaler function

 The first prescaler, after the PR bit in the GiTMCRj register is changed from "0" (prescaler function used) to "1" (prescaler function not used), may be divided by n rather than n+1. The subsequent prescaler is divided by n+1.

Figure 21.10 G0TMCR0 to G0TMCR7, G1TMCR0 to G1TMCR7, G0TPR6, G0TPR7, G1TPR6, and G1TPR7 Registers

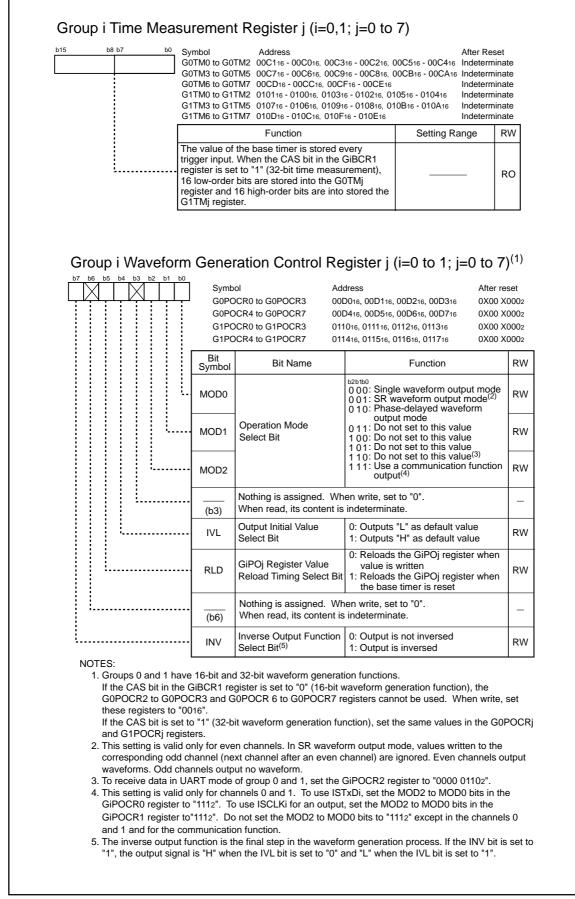


Figure 21.11 G0TM0 to G0TM7, G1TM0 to G1TM7, Registers and G0POCR0 to G0POCR7, G1POCR0 to G1POCR7 Registers

Group i Waveform Generation Control Register j (i=2 to 3; j=0 to 7)

7 b6 b5 b4 b3		Symb	ol A	Address After Re	eset
┹┯┹┯┹┯┹	+++++	G2PC	OCR0 to G2POCR3 0	015016, 015116, 015216, 015316 0016	
	1 1 1	G2PC	OCR4 to G2POCR7 0	015416, 015516, 015616, 015716 0016	
		G3PC	OCR0 to G3POCR3 0	019016, 019116, 019216, 019316 0016	
		G3PC	OCR4 to G2POCR7 0	019416, 019516, 019616, 019716 0016	
		Bit Symbol	Bit Name	Function	RV
		MOD0		 b2b1b0 0 0 0: Single waveform output mode 0 0 1: SR waveform output mode⁽¹⁾ 0 1 0: Inverse waveform output mode 	RV
		MOD1	Operation Mode Select Bit ⁽⁵⁾	0 1 1: Do not set to this value 1 0 0: Bit-modulation PWM mode 1 0 1: Do not set to this value	RV
		MOD2		1 1 0: Do not set to this value 1 1 1: Use a communication function output ⁽²⁾	RV
		PRT	Parallel Real-time Port Output Trigger Select Bit ⁽⁴⁾	 0: Not triggered by matching the base timer with the GiPO0 to GiPO7 registers 1: Triggered by matching the base timer with the GiPO0 to GiPO7 registers 	RV
		IVL	Output Initial Value Select Bit	0: Outputs "L" as default value 1: Outputs "H" as default value	RV
		RLD	GiPOj Register Value Reload Timing Select Bit	0: Reloads the GiPOj register when counter is written to1: Reloads the GiPOj register when the base timer is reset	RW
		RTP	Real-time Port Function Select Bit	 0: Not used 1: Used (RTP output mode or parallel RTP output mode) 	RV
		INV	Inverse Output Functio Select Bit ⁽³⁾	n 0: Output is not inversed 1: Output is inversed	RW

NOTES:

1. This setting is valid only for even channels. In SR waveform output mode, values written to the corresponding odd channel (next channel after an even channel) are ignored. Even channels output waveforms. Odd channels output no waveforms.

2. This setting is valid only for channels 0 and 1 in the groups 2 and 3. To use ISTxD2 or IEOUT, set the MOD2 to MOD0 bits in the G2POCR0 register to "1112". To use ISCLK2 for an output, set the MOD2 to MOD0 bits in the G2POCR1 register to "1112". Do not set the MOD2 to MOD0 bits to "1112" except in the channels 0 and 1.

To use ISTxD3, set the MOD2 to MOD0 bits in the G3POCR0 register to "1112". To use ISCLK3 for an output, set the MOD2 to MOD0 bits in the G3POCR1 register to "1112". Do not set the MOD2 to MOD0 bits to "1112" except in the channels 0 and 1.

3. The inverse output function is the final step in the waveform generation process. If the INV bit is set to "1" (output inversed), the output signal is "H" when the IVL bit is set to "0" (outputs "L" as an initial value) and "L" when the IVL bit is set to "1" (outputs "H" as an initial value).

4. The PRT bit is valid when the RTP bit is set to "1" (real-time port function used) and the PRP bit in the GiBCR1 register is set to "1" (parallel RTP output mode).

5. When the RTP bit is set to "1", the value written to the MOD2 to MOD0 bits is ignored.

Figure 21.12 G2POCR0 to G2POCR7 and G3POCR0 to G3POCR7 Registers

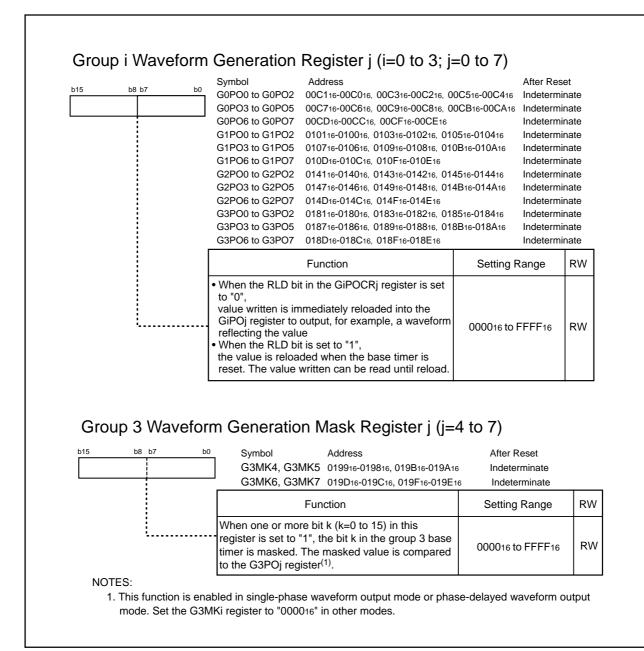


Figure 21.13 G0PO0 to G0PO7, G1PO0 to G1PO7, G2PO0 to G2PO7, G3PO0 to G3PO7 Registers and G3MK4 to G3MK7 Registers

b7 b6 b5	b4 b3 b2	b1 b0	Symb G0FS	Address S, G1FS 00E716, 012716	After Reset 0016	
			Bit Symbol	Bit Name	Function	RW
			FSC0	Channel 0 Time Measurement/ Waveform Generation Function Select Bit	0 : Selects the waveform generation function 1 : Selects the time measurement	RW
			FSC1	Channel 1 Time Measurement/ Waveform Generation Function Select Bit	function	RW
		FSC2	Channel 2 Time Measurement/ Waveform Generation Function Select Bit	/	RW	
		FSC3	Channel 3 Time Measurement/ Waveform Generation Function Select Bit		RW	
			FSC4		Channel 4 Time Measurement/ Waveform Generation Function Select Bit	RW
			FSC5	Channel 5 Time Measurement/ Waveform Generation Function Select Bit		RW
			FSC6	Channel 6 Time Measurement/ Waveform Generation Function Select Bit		RW
		FSC7	Channel 7 Time Measurement/ Waveform Generation Function Select Bit		RW	

NOTES:

 No 16-bit waveform generation function is provided for channels 2, 3, 6 and 7 of the group 0. No 16-bit time measurement function is provided for channels 0, 3, 4 and 5 of the group 1. When the CAS bit in the GiBCR1 register is set to "1" (32-bit time measurement or waveform generation function), set the same values in the G0FS and G1FS registers.

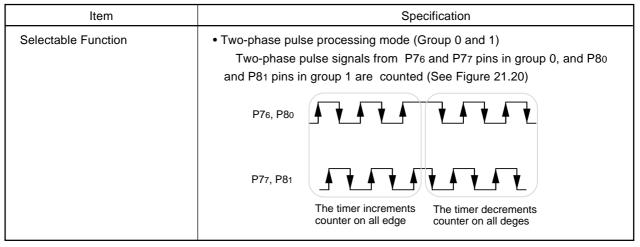
Group i Function Enable Register (i=0 to 3)

b7 b6 b5 b4 b3 b2 b1 b0	Symb G0FI		After Reset , 016616, 01A616 0016	
	Bit Symbol	Bit Name	Function	RW
	IFE0	Channel 0 Function Enable Bit	0 : Disables functions for channel j 1 : Enables functions for channel j	RW
	IFE1	Channel 1 Function Enable Bit	(j=0 to 7)	RW
	IFE2	Channel 2 Function Enable Bit		RW
	IFE3	Channel 3 Function Enable Bit		RW
	IFE4	Channel 4 Function Enable Bit		RW
	IFE5	Channel 5 Function Enable Bit	-	RW
	IFE6	Channel 6 Function Enable Bit		RW
	IFE7	Channel 7 Function Enable Bit		RW

Figure 21.14 G0FS and G1FS Registers and G0FE to G3FE Registers

7 b6 b5 b4 b3 b2 b1 b0	Symb G2R	ol Address TP, G3RTP 016716, 01A716	After Reset 0016	
	Bit Symbol	Bit Name	Function	RW
	RTP0	Channel 0 RTP Output Buffer	0 : Outputs "L"	RW
· · · · · · · · · · · · · · · · · · ·	RTP1	Channel 1 RTP Output Buffer	1 : Outputs "H"	RW
	RTP2	Channel 2 RTP Output Buffer		RW
	RTP3	Channel 3 RTP Output Buffer		RW
	RTP4	Channel 4 RTP Output Buffer		RW
	RTP5	Channel 5 RTP Output Buffer		RW
	RTP6	Channel 6 RTP Output Buffer		RW
	RTP7	Channel 7 RTP Output Buffer		RW

Figure 21.15 G2RTP AND G3RTP Registers



21.1 Base Timer

The base timer is a free-running counter that counts an internally generated count source. Table 21.2 lists specifications of the base timer. Figures 21.5 to 21.9 show registers associated with the base timer. Figure 21.16 shows a block diagram of the base timer. Figure 21.17 shows an example of a cascaded connection. Figure 21.18 shows an example of the base timer in counter increment mode. Figure 21.19 shows an example of the base timer in counter increment mode. Figure 21.20 shows an example of two-phase pulse signal processing mode.

Item	Specification
Count Source (fBTi) (i=0 to 3)	 f1 divided by 2(n+1) (Group 0 to 3), two-phase pulse input divided by 2(n+1) (Group 0 and 1) <i>n</i>: determined by the DIV4 to DIV0 bits in the GiBCR0 register <i>n</i>=0 to 31; however no division when <i>n</i>=31
Counting Operation	The base timer increments the counter The base timer increments/decrements the counter Two-phase pulse signal processing
Counter Start Condition	 When starting the base timer of each group separately, set the BTS bit in the GiBCR1 register to "1" (base timer starts counting) When starting the base timer of multiple groups simultaneously, set the BTIS bit in the BTSR register to "1" (base timer starts counting)
Counter Stop Condition	Set the BTiS bit in the BTSR register to "0" (base timer reset) and the BTS bit in the GiBCR1 register to "0" (base timer reset)
Base Timer Reset Condition	 Synchronized with the base timer reset in different groups: Group0 : synchronized with group 1 base timer reset Group1 : synchronized with group 0 base timer reset Group2 : synchronized with group 1 base timer reset Group3 : synchronized with group 2 base timer reset Matching values in the base timer and GiPO0 register "L" signal applied to the external interrupt pin Group 0 : INT0 pin Group 1 : INT1 pin Reset request from communication function (Group 2 and 3)
Value when the Base Timer is Reset	"000016"
Interrupt Request	The BTiR bit in the interrupt request register is set to "1" (interrupt requested) when bit 14 or bit 15 in the base timer overflows (See Figure 10.14.)
Read from Base Timer	 The GiBT register indicates counter value while the base timer is running The GiBT register is indeterminate when the base timer is reset
Write to Base Timer	When a value is written while the base timer is running, the counter immediately starts counting from this value. No value can be written while the base timer is reset.
Selectable Function	 Cascaded connection (Group 0 and 1) Group 1 base timer is incremented every time bit 15 in the group 0 base timer overflows (See Figure 21.17) Counter increment/decrement mode (Group 0 and 1)
	The base timer starts when the BTS bit or the BTiS bit is set to "1". After incrementing to "FFFF16", the counter is then decremented back to "000016". If the RST1 bit in the GiBCR1 register is set to "1" (the base timer is reset by matching with the GiPO0 register), the counter decrements after the base timer matches the GiPO0 register. The base timer increments the counter again when the counter becomes "000016." (See Figure 21.19.)

Table 21.2 Base Timer Specifications (Continued)

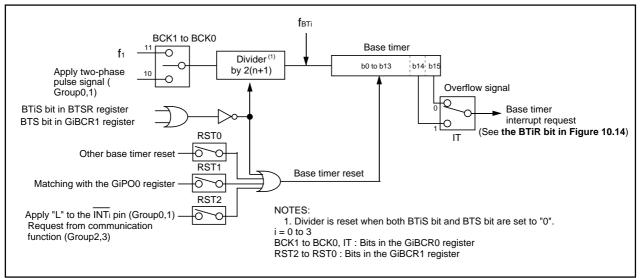


Figure 21.16 Base Timer Block Diagram

Table 21.3 Base Timer Associated Register Settings

(for Time Measurement Function, Waveform Generation Function, and Communication Function)

Register	Bit	Function
G2BCR0	-	Supplies operation clock to the BTSR register. Set to "0111 11112".
BTSR	-	Set to "0000 00002"
GiBCR0	BCK1 to BCK0	Select count source
	DIV4 to DIV0	Select divide ratio of count source
	IT	Selects the base timer interrupt
GiBCR1	RST2 to RST1	Select factors for a base timer reset
	BTS	Used to start the base timer independently
	UD1 to UD0	Select how to count (Group 0 and 1)
	CAS	Selects cascaded connection (Group 0 and 1)
GiBT	-	Read or write base timer value

Set the following registers to set the RST1 bit to "1" (base timer reset by matching the base timer with the G1PO0 register).

GiPOCR0	MOD2 to MOD0	Set to "0002" (single-phase waveform output mode)
GiPO0	-	Set reset cycle
GiFS	FSC0	Set to "0" (waveform generation function)
GiFE	IFE0	Set to "1" (channel operation start)

i : Bit configurations and functions vary with each group

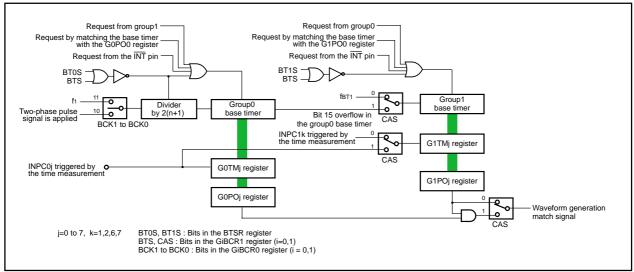


Figure 21.17 Cascaded Connection

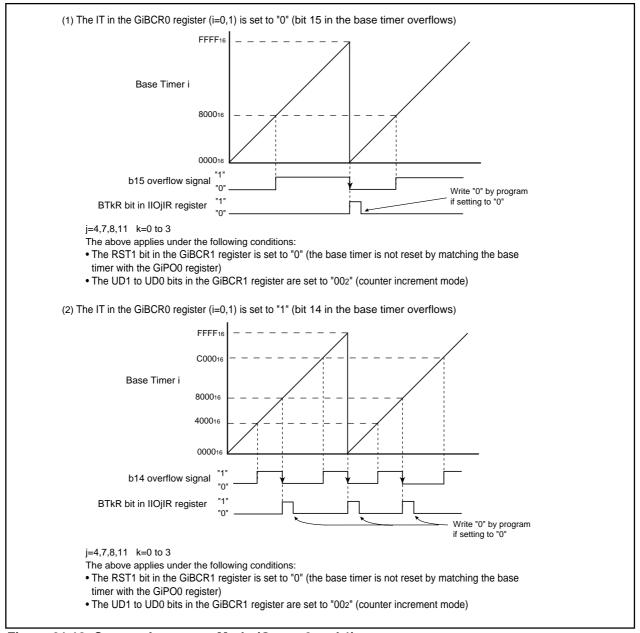


Figure 21.18 Counter Increment Mode (Group 0 and 1)

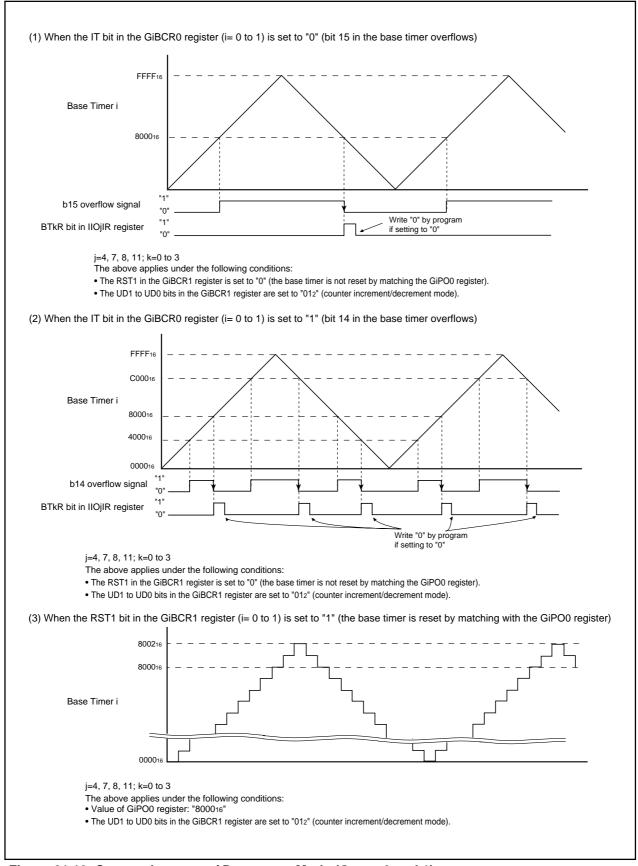


Figure 21.19 Counter Increment/ Decrement Mode (Group 0 and 1)

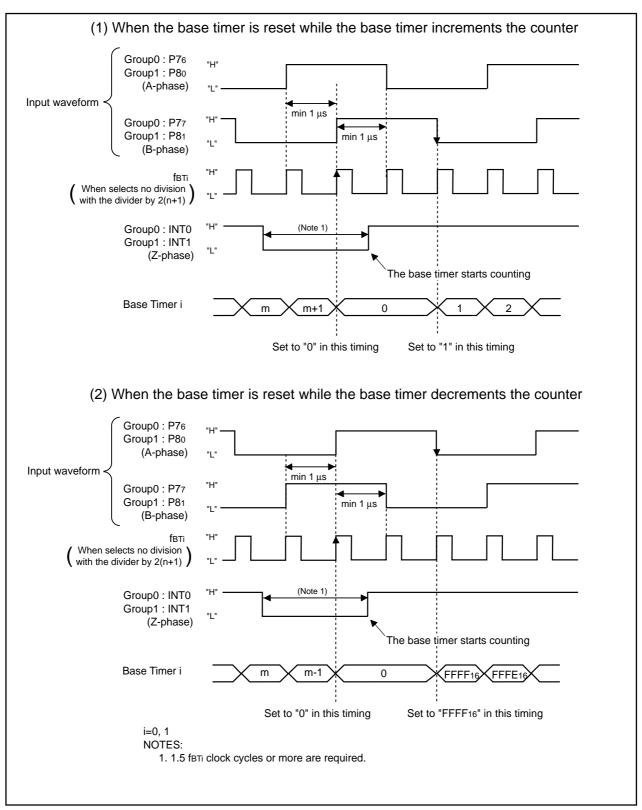


Figure 21.20 Base Timer Operation in Two-phase Pulse Signal Proccessing Mode (Group 0 and 1)

21.2 Time Measurement Function (Group 0 and 1)

When external trigger is applied, the value of the base timer is stored into the GiTMj register (i=0 to 1; j=0 to 7). Table 21.4 shows specifications of the time measurement function. Table 21.5 lists pin settings of the time measurement function. Table 21.6 lists settings of time measurement function associated registers. Figures 21.21 and 21.22 show operating examples of the time measurement function. Figure 21.23 shows an operating example of the prescaler function and gate function.

Item	Specification
Measurement Channel	Group 0: Channels 0 to 7
	Group 1: Channels 1, 2, 6, 7
Trigger Input Polarity	Rising edge, falling edge or both edges of the INPCij pin ⁽¹⁾
Measurement Start Condition	The IFEj bit in the GiFE register is set to "1" (channel j function enabled)
	when the FSCj bit (i=0 to1; j=0 to 7) in the GiFS register is set to "1" (time
	measurement function selected)
Measurement Stop Condition	The IFEj bit is set to "0" (channel j function disabled)
Time Measurement Timing	 No prescaler : every time a trigger signal is applied Prescaler (for channel 6 and channel 7):
	every <i>GiTPRk register (k=6, 7) +1</i> times a trigger signal is applied
Interrupt Request Generation Timing	The TMijR bit in the interrupt request register (See Figure 10.14) is set to "1"
	(interrupt requested) at time measurement timing
INPCij Pin Function ⁽¹⁾	Trigger input pin
Selectable Function	Digital filter function
	The digital filter samples a trigger input signal level every f1 or fBTi cycles
	and passes pulse signals, matching trigger input signal level, three times
	Cascaded connection function
	Group 0 and group 1 are connected to operate as a 32-bit base timer
	Prescaler function (for channel 6 and channel 7)
	Time measurement is executed every GiTPRk register value +1 times a
	trigger signal is applied
	Gate function (for channel 6 and channel 7)
	After time measurement by the first trigger input, trigger input cannot be
	received. However, trigger input can be received again by matching the
	base timer with the GiPOp register, or by setting the GSC bit in the
	GiTMCRK register to "1", when the GOC bit in the GiTMCRk register is set
	to "1" (gate cleared by matching the base timer with the GiPOp register
	(p=4 when k=6, p=5 when k=7))

Table 21.4 Time Measurement Function Specifications

NOTES:

1. INPC00 to INPC07, INPC11 to INPC12, INPC16 to INPC17 pins (INPC00 to INPC07 pins during cascaded connection)

Pin ⁽²⁾		Bit and Setting	
	PS1, PS2, PS5, PS8, PS9	PD7, PD8, PD11, PD14, PD15	IPS Register
	Registers	Registers	
P74/INPC11	PS1_4 = 0	PD7_4 = 0	IPS1 = 0
P75/INPC12	PS1_5 = 0	PD7_5 = 0	
P76/INPC00	PS1_6 = 0	PD7_6 = 0	IPS0 = 0
P77/INPC01	PS1_7 = 0	PD7_7 = 0	
P80/INPC02	PS2_0 = 0	PD8_0 = 0	
P111/INPC11 ⁽¹⁾	PS5_1 = 0	PD11_1 = 0	IPS1 =1
P112/INPC12 ⁽¹⁾	PS5_2 = 0	PD11_2 = 0	
P142/INPC16 ⁽¹⁾	PS8_2 = 0	PD14_2 = 0	
P143/INPC17 ⁽¹⁾	PS8_3 = 0	PD14_3 = 0	
P150/INPC00 ⁽¹⁾	PS9_0 = 0	PD15_0 = 0	IPS0 = 1, IPS2 = 0
P151/INPC01 ⁽¹⁾	PS9_1 = 0	PD15_1 = 0	
P152/INPC02 ⁽¹⁾		PD15_2 = 0	
P153/INPC03 ⁽¹⁾		PD15_3 = 0	IPS2 = 0
P154/INPC04 ⁽¹⁾	PS9_4 = 0	PD15_4 = 0	
P155/INPC05 ⁽¹⁾	PS9_5 = 0	PD15_5 = 0	
P156/INPC06 ⁽¹⁾		PD15_6 = 0	
P157/INPC07 ⁽¹⁾		PD15_7 = 0	

NOTES:

1. This port is provided in the 144-pin package only.

2. Apply trigger to INPC0j pin (j=0 to 7) when the CAS bit in the GiBCR register is set to "1" (32-bit time measurement function). Trigger input to INPC1k pin (k=1, 2, 6, 7) is invalid.

Table 21.6	Time Measurement	t Function Associated Register Settings	

Register	Bit	Function
GiTMCRj	CTS1 to CTS0	Select a time measurement trigger
	DF1 to DF0	Select the digital filter function
	GT, GOC, GSC	Select the gate function
	PR	Select the prescaler function
GiTPRk	-	Setting value of the prescaler
GiFS	FSCj	Set to "1" (time measurement function)
GiFE	IFEj	Set to "1" (channel j function enabled)

 $i = 0 \text{ to } 1; \quad j = 0 \text{ to } 7; \quad k = 6, 7$

Bit configurations and functions vary with channels and groups used.

Registers associated with the time measurement function must be set after setting registers associated with the base timer.

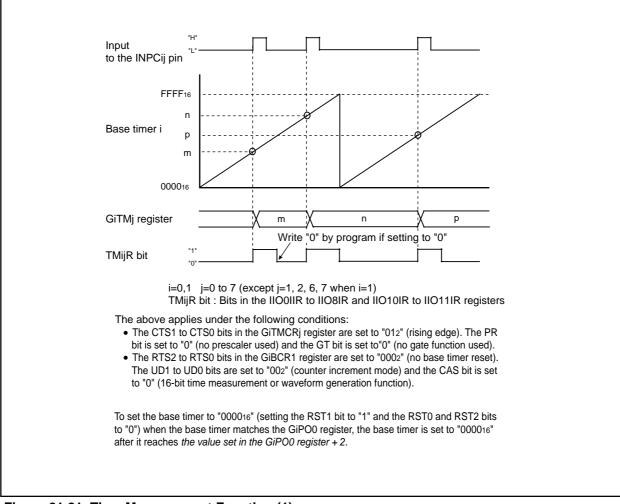


Figure 21.21 Time Measurement Function (1)

	ing the rising edge as a time measurement trigger to CTS0 bits in the GiTMCR register (i=0,1, j=0 to 7)=012)
fBTi ⁽¹⁾	
Base timer i	<u>Note 3</u>
INPCij pin input	
TMijR bit ⁽²⁾	"1" "0" Write "0" by program
GiTMj register	n n+5 n+8
incre 2. Bits i	CAS bit in the GiBCR1 register is set to "1" (32-bit time measurement), the group 1 base timer ments counter every time the group 0 base timer overflows. n the IIO0IR to IIO8IR, IIO10IR to IIO11R registers. The TM0jR bit if the CAS bit is set to "1". pulses applied to the INPCij pin require 1.5 fBTi clock cycles or more.
	ing both edges as a time measurement trigger to CTS0 bits=112)
fBTi ⁽¹⁾	
Base timer i	<u></u>
INPCij pin input	"H"
TMijR bit ⁽²⁾	"0" Write "0" by program if setting to "0"
GiTMj register	n n+2 n+5 n+6 n+8 n+12
the co 2. Bits in 3. No in	CAS bit in the GiBCR1 register is set to "1" (32-bit time measurement), the group 1 base timer increments ounter whenever the group 0 base timer overflows. In the IIO0IR to IIO8IR, IIO10IR to IIO11R registers. The TM0jR register if the CAS bit is set to "1". terrupt is generated if the microcomputer receives a trigger signal when the TMijR bit is set to "1". rer, the value of the GiTMj register changes.
	al when using the digital filter DF0 bits in the GiTMCR register =102 or 112)
fi or fBTi ⁽¹⁾	
INPCij pin	"H" Maximum 3.5 fi or fBTi ⁽¹⁾
Trigger signal after passing the digital filter	"H" Signal, which does not match three times, is stripped off The trigger signal is delayed by the digital filter
NOTES:	when the DF1 to DF0 bits are set to "102", and f1 when to "112".

Figure 21.22 Time Measurement Function (2)

fBTi ⁽¹⁾	
Base timer i	<u> </u>
INPCij pin input	
Internal time measurement trigger	
Prescaler ⁽²⁾	
TMijR bit ⁽³⁾	"1" "0" Write "0" by program if setting to "0"
GiTMj register	n N+12
(The gate function	on is cleared by matching the base timer with the GiPOk register.
With the gate fu (The gate function the GT bit in the fBTi ⁽¹⁾	on is cleared by matching the base timer with the GiPOk register. e GiTMCRj register=1, the GOC bit=1)
(The gate function the GT bit in the	on is cleared by matching the base timer with the GiPOk register. e GiTMCRj register=1, the GOC bit=1)
(The gate function the GT bit in the fBTi ⁽¹⁾	on is cleared by matching the base timer with the GiPOk register. e GiTMCRj register=1, the GOC bit=1)
(The gate function the GT bit in the fBTi ⁽¹⁾ Base timer i IFEj bit in GiFE	on is cleared by matching the base timer with the GiPOk register. e GiTMCRj register=1, the GOC bit=1)
(The gate function the GT bit in the fBTi ⁽¹⁾ Base timer i IFEj bit in GiFE register	on is cleared by matching the base timer with the GiPOk register. e GiTMCRj register=1, the GOC bit=1)
(The gate function the GT bit in the fBTi ⁽¹⁾ Base timer i IFEj bit in GiFE register INPCij pin input Internal time measurement	on is cleared by matching the base timer with the GiPOk register. a GiTMCRj register=1, the GOC bit=1)
(The gate function the GT bit in the fBTi ⁽¹⁾ Base timer i IFEj bit in GiFE register INPCij pin input Internal time measurement trigger GiPOk register	on is cleared by matching the base timer with the GiPOk register. a GiTMCRj register=1, the GOC bit=1)
(The gate function the GT bit in the fBTi ⁽¹⁾ Base timer i IFEj bit in GiFE register INPCij pin input Internal time measurement trigger GiPOk register match signal Gate control	on is cleared by matching the base timer with the GiPOk register. a GiTMCRj register=1, the GOC bit=1)

Figure 21.23 Prescaler Function and Gate Function

21.3 Waveform Generation Function

Waveforms are generated when the value of the base timer matches the GiPOj register (i=0 to 3; j=0 to 7). The waveform generation function has the following six modes :

- Single-phase waveform output mode (group 0 to 3)
- Phase-delayed waveform output mode (group 0 to 3)
- Set/Reset waveform output (SR waveform output) mode (group 0 to 3)
- Bit modulation PWM output mode (group 2 and 3)
- Real-time port output (RTP output) mode (group 2 and 3)
- Parallel real-time port output (parallel RTP output) mode (group 2 and 3)

Table 21.7 lists pin settings of the waveform generation function. Table 21.8 lists registers associated with the waveform generation function.

Pin	Bit and Setting			
	PS0 to PS2, PS5 to PS9 Registers	PSL0, PSL1, PSL2, PSL3 Registers	PSC Register	
P64/OUTC21	PS0_4 = 1	PSL0_4 = 1	-	
P70/OUTC20	PS1_0 = 1	PSL1_0 = 0	PSC_0 = 1	
P71/OUTC22	PS1_1 = 1	PSL1_1 = 0	PSC_1 = 1	
P73/OUTC10 ⁽²⁾	PS1_3 = 1	PSL1_3 = 0	PSC_3 = 1	
P74/OUTC11 ⁽²⁾	PS1_4 = 1	PSL1_4 = 0	PSC_4 = 1	
P75/OUTC12 ⁽²⁾	PS1_5 = 1	PSL1_5 = 1	-	
P76/OUTC00 ⁽²⁾	PS1_6 = 1	PSL1_6 = 0	PSC_6 = 0	
P77/OUTC01 ⁽²⁾	PS1_7 = 1	-	-	
P81/OUTC30	PS2_1 = 1	PSL2_1 = 1	-	
P82/OUTC32	PS2_2 = 1	PSL2_2 = 0	-	
P92/OUTC20	PS3_2 = 1	PSL3_2 = 1	-	
P110/OUTC10 ^(1,2)	PS5_0 = 1	-	-	
P111/OUTC11 ^(1,2)	PS5_1 = 1			
P112/OUTC12 ^(1,2)	PS5_2 = 1			
P113/OUTC13 ^(1,2)	PS5_3 = 1			
P120/OUTC30 ⁽¹⁾	PS6_0 = 1	-	-	
P121/OUTC31 ⁽¹⁾	PS6_1 = 1			
P122/OUTC32 ⁽¹⁾	PS6_2 = 1			
P123/OUTC33 ⁽¹⁾	PS6_3 = 1			
P124/OUTC34 ⁽¹⁾	PS6_4 = 1			
P125/OUTC35 ⁽¹⁾	PS6_5 = 1			
P126/OUTC36 ⁽¹⁾	PS6_6 = 1			
P127/OUTC37 ⁽¹⁾	PS6_7 = 1			
P130/OUTC24 ⁽¹⁾	PS7_0 = 1	-	-	
P131/OUTC25 ⁽¹⁾	PS7_1 = 1			
NOTES		•	•	

Table 21.7	Pin Settings for	Waveform	Generation	Function	(1/2)
------------	------------------	----------	------------	----------	-------

NOTES:

1. This port is provided in the 144-pin package only.

2. When the CAS bit in the GiBCR1 register is set to "1" (32-bit time measurement function), the OUTC1j pin (j=0 to 7) outputs a waveform and the OUTC0k pin (k=0, 1, 4, 5), set as above, outputs a 16-bit low-order waveform.

Pin		Bit and Setting	
	PS0 to PS2, PS5 to PS9 Registers	PSL0, PSL1, PSL2, PSL3 Registers	PSC Register
P132/OUTC26 ⁽¹⁾	PS7_2 = 1	-	-
P133/OUTC23 ⁽¹⁾	PS7_3 = 1		
P134/OUTC20 ⁽¹⁾	PS7_4 = 1		
P135/OUTC22 ⁽¹⁾	PS7_5 = 1		
P136/OUTC21 ⁽¹⁾	PS7_6 = 1		
P137/OUTC27 ⁽¹⁾	PS7_7 = 1		
P140/OUTC14 ^(1,2)	PS8_0 = 1	-	-
P141/OUTC15 ^(1,2)	PS8_1 = 1		
P142/OUTC16 ^(1,2)	PS8_2 = 1		
P143/OUTC17 ^(1,2)	PS8_3 = 1		
P150/OUTC00 ^(1,2)	PS9_0 = 1	-	-
P151/OUTC01 ^(1,2)	PS9_1 = 1		
P154/OUTC04 ^(1,2)	PS9_4 = 1		
P155/OUTC05 ^(1,2)	PS9_5= 1		

Table 21.7 Pin Settings for Waveform Generation Function (2/2)

NOTES:

- 1. This port is provided in the 144-pin package only.
- 2. When the CAS bit in the GiBCR1 register is set to "1" (32-bit time measurement function), the OUTC1j pin (j=0 to 7) outputs a waveform and the OUTC0k pin (k=0, 1, 4, 5), set as above, outputs a 16-bit low-order waveform.

Register	Bit	Function
GiPOCRj	MOD2 to MOD0	Select waveform output mode
	PRT ⁽¹⁾	Set to "1" when using the parallel RTP output mode
	IVL	Select default value
	RLD	Select reload timing of GiPOj register value
	RTP ⁽¹⁾	Set to "1" when using the RTP output or the parallel RTP output mode
		MOD2 to MOD0 bits are invalid when the RTP bit is set to "1"
	INV	Select inversed output
G2BCR1	PRP	Set to "1" when using the parallel RTP output mode
G3BCR1		
GiPOj	-	Select output waveform inverse timing
G3MK4 to	-	Set masked values of the base timer and G3PO4 to G3PO7 registers
G3MK7		(group 3 only)
GiFS	FSCj	Set to "0" (waveform generation function) (group 0 and 1 only)
GiFE	IFEj	Set to "1" (enables channel j function)
G2RTP	RTP0 to	Set RTP output value in RTP output or parallel RTP output mode
G3RTP	RTP7	

i = 0 to 3; j = 0 to 7

Bit configurations and functions vary with channels and groups used.

Set registers associated with the waveform generation function after setting registers associated with the base timer. NOTES:

1. This bit is in the G2POCRj and G3POCRj registers only.

21.3.1 Single-Phase Waveform Output Mode (Group 0 to 3)

Output signal level of the OUTCij pin (i=0 to 3; j=0 to 7) becomes high ("H") when the value of the base timer matches that of the GiPOj register. The "H" signal switches to an "L" signal when the base timer reaches "000016". If the IVL bit in the GiPOCRj register is set to "1" (outputs "H" as default value), an "H" signal is output when waveform output starts. If the INV bit is set to "1" (output inversed), the level of the waveform being output is inversed. See Figure 21.24 for details on single-phase waveform mode operation. Table 21.9 lists specifications of single-phase waveform mode.

ltem	Specification			
Output Waveform ⁽³⁾	Free-running operation			
	(the RST2 to RST0 bits in the GiBCR1 (i=0 to 3) register are set to "0002")			
	Cycle : <u>65536</u> fBTi			
	"L" width : <u>m</u> fBTi			
	"H" width : <u>65536-m</u> fBTi			
	m : setting value of the GiPOj register (j=0 to 7), 000016 to FFFF16			
	• The base timer is reset by matching the base timer with the GiPO0 register			
	(the RST1 bit is set to "1", and the RST0 and the RST2 bit are set to "0")			
	Cycle : <u>n+2</u> fBTi			
	"L" width : <u>m</u> fBTi			
	"H" width : <u>n+2-m</u> fBTi			
	m : setting value of the GiPOj register (j=1 to 7), 000016 to FFFF16			
	n : setting value of the GiPO0 register, 000116 to FFFD16			
	If $m \ge n+2$, the output level is fixed to "L"			
Waveform Output Start Condition ⁽¹⁾	The IFEj bit in the GiFE register is set to "1" (channel j function enabled)			
Waveform Output Stop Condition	The IFEj bit is set to "0" (channel j function disabled)			
Interrupt Request	The POijR bit in the interrupt request register is set to "1" (interrupt requested)			
	when the value of the base timer matches that of the GiPOj register. (See			
	Figure 10.14)			
OUTCij Pin ⁽²⁾	Pulse signal output pin			
Selectable Function	Default value set function : Set starting waveform output level			
	• Inversed output function : Waveform output level is inversed and output from			
	the OUTCij pin			
	• Cascaded connection function: Connect group 0 and group 1 to operate as a			
	32-bit base timer			

Table 21.9	Single-phase	Waveform	Output N	Node S	pecifications
------------	--------------	----------	----------	--------	---------------

NOTES:

1. Set the FSCj bit in the GiFS register to "0" (waveform generation function selected) when using channels shared by both time measurement function and waveform generation function

- 2. OUTC00, OUTC01, OUTC04, OUTC05, OUTC10 to OUTC17, OUTC20 to OUTC27, and OUTC30 to OUTC37 pins (OUTC10 to OUTC17 pins when using group 0 and group 1 cascaded connection)
- 3. When the INV bit in the GiPOCRj register is set to "1" (output inversed), the "L" width and "H" width are inversed

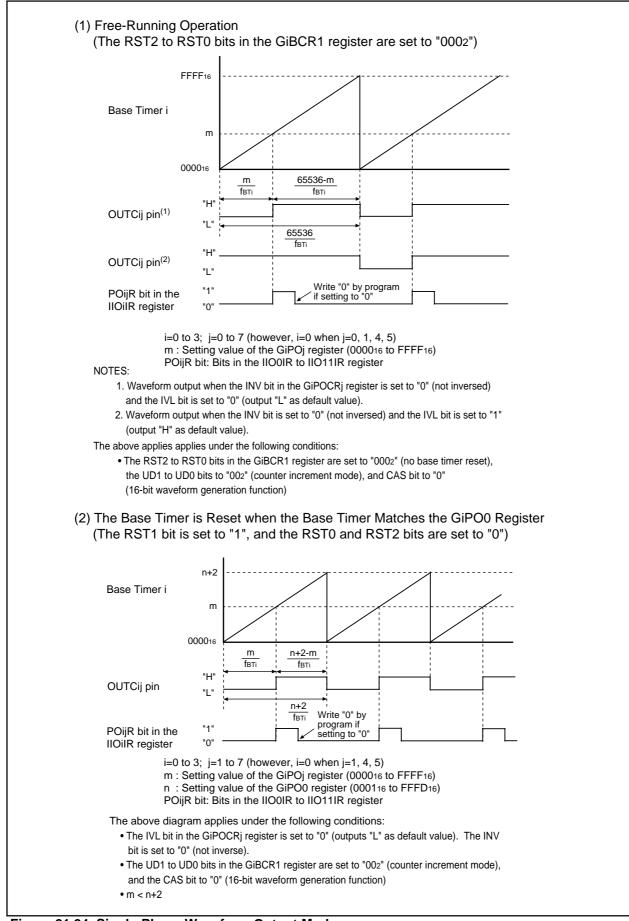


Figure 21.24 Single-Phase Waveform Output Mode

21.3.2 Phase-Delayed Waveform Output Mode (Group 0 to 3)

Output signal level of the OUTCij pin (i=0 to 3; j=0 to 7) is inversed every time the value of the base timer matches that of the GiPOj register. Table 21.10 lists specifications of phase-delayed waveform mode. Figure 21.25 shows an example of phase-delayed waveform mode operation.

Item	Specification
Output Waveform	Free-running operation
	(the RST2 to RST0 bits in the GiBCR1 register (i=0 to 3) are set to "0002")
	Cycle : <u>65536 x 2</u> fBTi
	"H" and "L" width : <u>65536</u> f _{BTi}
	Setting value of the GiPOj (j=0 to 7) register is 000016 to FFFF16
	• The base timer is reset by matching the base timer with the GiPO0 register
	(the RST1 bit is set to "1", and the RST0 and RST2 bit are set to "0")
	Cycle : $\frac{2(n+2)}{fBTi}$
	"H" and "L" width : <u>n+2</u> fBTi
	n : setting value of the GiPO0 register, 000116 to FFFD16
	Setting value of the GiPOj (j=1 to 7) register is 000016 to FFFF16
	If GiPOj register \geq n+2, the output level is not inversed
Waveform Output Start Condition ⁽¹⁾	The IFEj bit (j=0 to 7) in the GiFE register is set to "1" (channel j function
Waveform Output Stop Condition	The IFEj bit is set to "0" (channel j function disabled)
Interrupt Request	The POijR bit in the interrupt request register is set to "1" (interrupt requested)
	when the value of the base timer matches that of the GiPOj register. (See
	Figure 10.14)
OUTC1j Pin	Pulse signal output pin
Selectable Function	Default value set function : Set starting waveform output level
	 Inversed output function : Waveform output level is inversed and output from the OUTCij pin
	• Cascaded connection function: Connect group 0 and group 1 to operate as a
	32-bit base timer

Table 21.10 Phase-delayed Waveform Output Mode Specifications

NOTES:

1. Set the FSCj bit in the GiFS register to "0" (waveform generation function selected) when using channels shared by both time measurement function and waveform generation function

2. OUTC00, OUTC01, OUTC04, OUTC05, OUTC10 to OUTC17, OUTC20 to OUTC27, and OUTC30 to OUTC37 pins (OUTC10 to OUTC17 pins when using group 0 and group 1 cascaded connection)

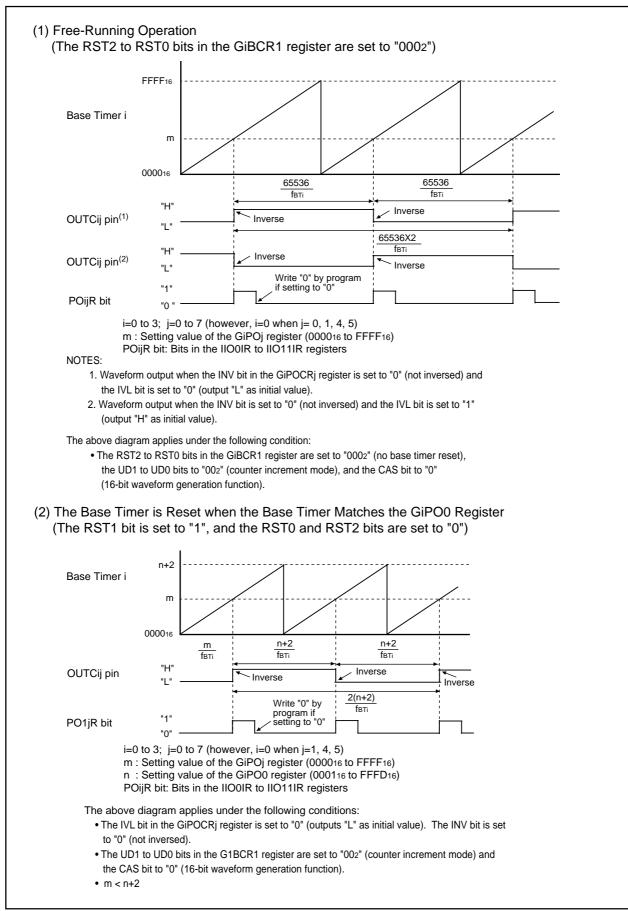


Figure 21.25 Phase-delayed Waveform Output Mode

21.3.3 Set/Reset Waveform Output (SR Waveform Output) Mode (Group 0 to 3)

Output signal level of the OUTCij pin (i=0 to 3; j=0, 2, 4, 6) becomes "H" when the value of the base timer matches that of the GiPOj register. The "H" signal switches to an "L" signal when the value of the base timer matches that of the GiPOk register (k=j+1) or when the base timer is set to "000016". If the IVL bit in the GiPOCRj register (j=0 to 7) is set to "1" (outputs "H" as initial value), an "H" signal is output when waveform output starts. If the INV bit is set to "1" (output is inversed), the level of the waveform being output is inversed. Table 21.11 lists specifications of SR waveform mode. Figure 21.26 shows an example of a SR waveform mode operation.

Item	Specification
Output Waveform ⁽²⁾	Free-running operation
	(the RST2 to RST0 bits in the GiBCR1 register are set to "0002")
	(1) m < n
	"H" width : <u>n - m</u> fвті
	"L" width : $\frac{m^{(3)}}{f_{BTi}}$ + $\frac{65536 - n^{(4)}}{f_{BTi}}$
	(2) m ≥ n
	"H" width : <u>65536 - m</u> fBTi
	"L" width : <u>m</u> fBTi
	m : setting value of the GiPOj register (j=0, 2, 4, 6)
	n : setting value of the GiPOk register (k=j+1)
	m, n=000016 to FFF16
	• The base timer is reset by matching the base timer with the GiPO0 register ⁽¹⁾
	(the RST1 bit is set to "1", and the RST0 and RST2 bits are set to "0")
	(1) m < n < p+2
	"H" width : <u>n-m</u>
	"H" width : $\frac{n-m}{f_{BTi}}$ "L" width : $\frac{m^{(3)}}{f_{BTi}}$ + $\frac{p+2 - n^{(4)}}{f_{BTi}}$
	(2) m < p+2 ≤ n
	"H" width : $\frac{p+2-n}{fBTi}$
	"L" width : <u>m</u> fBTi
	(3) If $m \ge p+2$, the output level is fixed to "L"
	m : setting value of the GiPOj register (j=2, 4, 6)
	n : setting value of the GiPOk register (k=j+1)
	p : setting value of the GiPO0 register
	m, n=000016 to FFFF16 p=000116 to FFFD16

NOTES:

- 1. When the GiPO0 register resets the base timer, the channel 0 and 1 SR waveform generation functions are not available.
- 2. When the INV bit in the GiPOCRj register is set to "1" (output inversed), the "L" width and "H" width are inversed.
- 3. Waveform from base timer reset until when output level becomes "H".
- 4. Waveform from when output level becomes "L" until base timer reset.

Item	Specification
Waveform Output Start Condition ⁽⁵⁾	The IFEq bit (q=0 to 7) in the GiFE register is set to "1" (channel q function enabled)
Waveform Output Stop Condition	The IFEq bit is set to "0" (channel q function disabled)
Interrupt Request	The POijR bit in the interrupt request register is set to "1" (interrupt requested) when the value of the base timer matches that of the GiPOj register. The POikR bit in the interrupt request register is set to "1" (interrupt requested) when the value of the base timer matches that of the GiPOk register. (See Figure 10.14)
OUTCij Pin ⁽⁶⁾	Pulse signal output pin
Selectable Function	 Default value set function : Set starting waveform output level Inversed output function : Waveform output level is inversed and output from the OUTCij pin Cascaded connection function: Connect group 0 and group 1 to operate as a 32-bit base timer

Table 21.11	SR Waveform Outpu	t Mode Specifications (2/2)
-------------	-------------------	-----------------------------

NOTES:

5. Set the FSCj bit in the GiFS register to "0" (waveform generation function selected) when using channels shared by both time measurement function and waveform generation function

6. OUTC00, OUTC04, OUTC10, OUTC12, OUTC14, OUTC16, OUTC20, OUTC22, OUTC24, OUTC26, OUTC30, OUTC32, OUTC34, and OUTC36 pins

(OUTC10, OUTC12, OUTC14, and OUTC16 pins when using group 0 and group 1 cascaded connection)

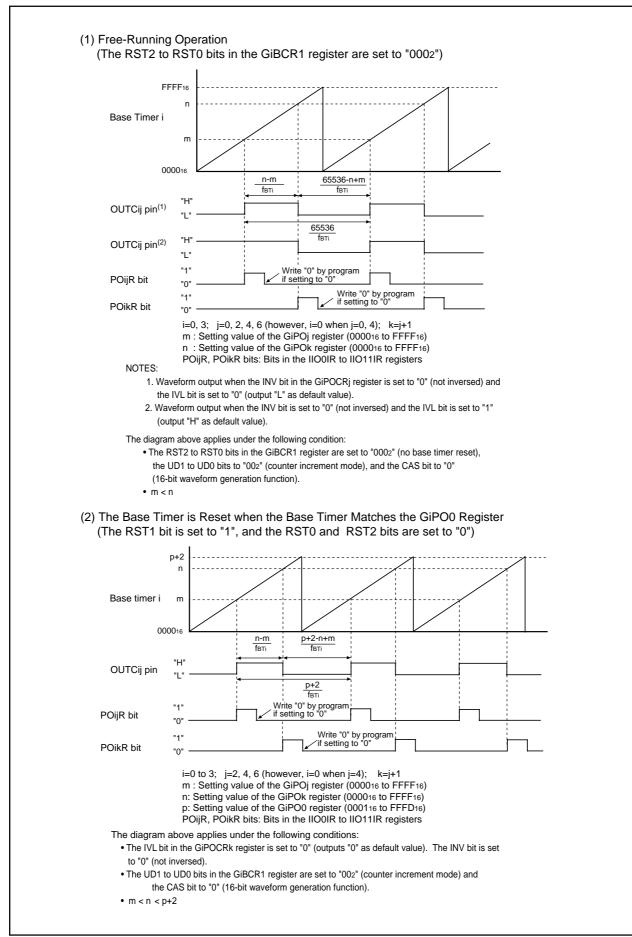


Figure 21.26 SR Waveform Output Mode

21.3.4 Bit Modulation PWM Output Mode (Group 2 and 3)

In bit modulation PWM output mode, PWM output has a 16-bit resolution. Pulses are output in repetitive cycles, each cycle consisting of span t repeated 1024 times. Span t, itself, has a cycle of $\frac{64}{f_{BTI}}$. The six high-order bits in the GiPOj register (i=2 to 3; j=0 to 7) determine the "L" base width. The 10 low-order bits determine the number of span t, within a cycle, in which "L" width is extended by the minimum resolution bit width (1 clock cycle). If the INV bit is set to "1" (output is inversed), the level of the waveform being output is inversed.

Table 21.12 lists specifications of bit modulation PWM output mode. Table 21.13 lists the number of modulated span and minimum resolution bit width altered span t. Figure 21.27 shows an example of bit modulation PWM mode operation.

Item	Specification
Output Waveform ^(1,2)	PWM-repeated cycle T: $65536 \\ fBTi$ $(= \frac{64}{fBTi} X1024)$ Cycle of span t: $\frac{64}{fBTi}$ "L" width: of m spans $\frac{n+1}{fBTi}$ $\frac{n}{fBTi}$ of (1024-m) spansAverage "L" output width: $\frac{1}{fBTi} X (n + \frac{m}{1024})$ n: Setting values (six high-order bits) of the GiPOj register (i=2 to 3; j=0 to 7)0016 to 3F16m: Setting values (ten low-order bits) of the GiPOj register 0016 to 3FF16
Waveform Output Start Condition	The IFEj bit in the GiFE register is set to "1" (channel j function enabled)
Waveform Output Stop Condition	The IFEj bit is set to "0" (channel j function disabled)
Interrupt Request	The POijR bit in the interrupt request register is set to "1" when the value of the six low-order bits of the base timer matches those set in the six high-order bits of the GiPOj register (see Figure 10.14).
OUTCij Pin	Pulse signal output pin
Selectable Function	 Default value set function : Set starting waveform output level Inversed output function : Waveform output level is inversed and output from the OUTCij pin

Table 21.12 Bit Modulation PWM Output Mode Specifications

-

. ...

NOTES:

Г

1. Set the RST2 to RST0 bits in the GiBCR1 register to "0002" when using the bit modulation PWM mode.

2. When the INV bit in the GiPOCRj register is set to "1" (output inversed), the "L" width and "H" width are inversed.

Table 21.13. Number of Modulated Spans and Minimum Resolution Bit Width Extended Span t

Number of Modulated Spans	Minimum Resolution Bit Width Extended Span t
00 0000 00002	none
00 0000 00012	t512
00 0000 00102	t256, t768
00 0000 01002	t128, t384, t640, t896
00 0000 10002	t64, t192, t320, t448, t576, t704, t832, t960
i	i
10 0000 00002	t1, t3, t5, t7, ••• t1019, t1021, t1023

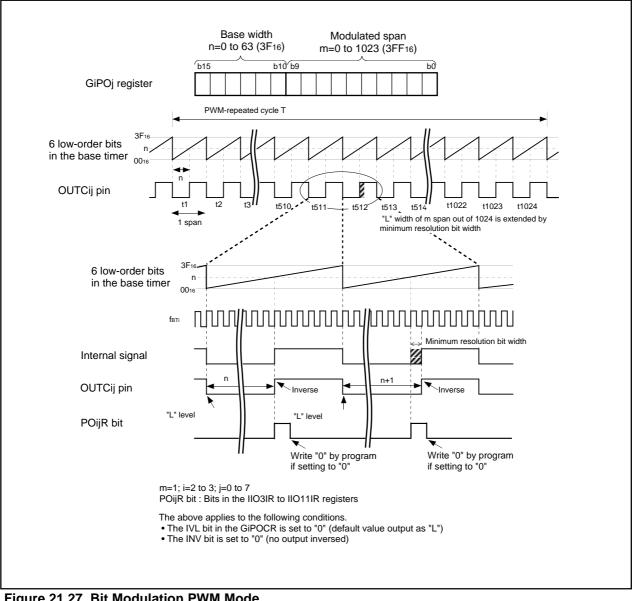


Figure 21.27 Bit Modulation PWM Mode

21.3.5 Real-Time Port (RTP) Output Mode (Group 2 and 3)

The OUTCij pin outputs the value set in the GiRTP register in one-byte units by matching the value of the base timer with that of the GiPOj register (i=2 to 3, j=0 to 7). Table 21.14 lists specifications of RTP output mode. Figure 21.28 shows a block diagram of the RTP output function. Figure 21.29 shows an example of RTP output mode operation.

Item	Specification
Waveform Output Start Condition	The IFEj bit in the GiFE register (i=2 to 3, j=0 to 7) is set to "1" (channel j function
	enabled)
Waveform Output Stop Condition	The IFEj bit is set to "0" (channel j function disabled)
Interrupt Request	The POijR bit in the interrupt request register is set to "1" when the value of
	the base timer matches that of the GiPOj register (000016 to $FFFF16^{(1)}$).
	(See Figure 10.14.)
OUTCij Pin	RTP output pin
Selectable Function	Default value set function : Set starting waveform output level
	 Inversed output function : Waveform output level is inversed and output from
	the OUTCij pin

Table 21.14 RTP Output Mode Specifications

NOTES:

1. Set the GiPO0 register to 000116 to FFFD16 when setting the base timer to "000016" (the RST1 bit in the GiBCR1 register is set to "1", and the RST0 and RST2 bits are set to "0") while the values in the base timer and the GiPO0 register match

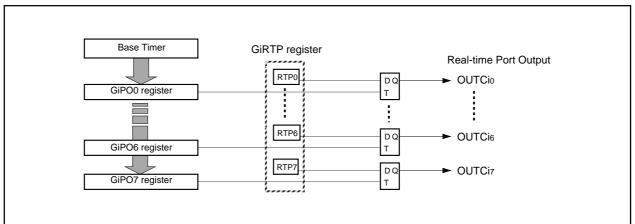
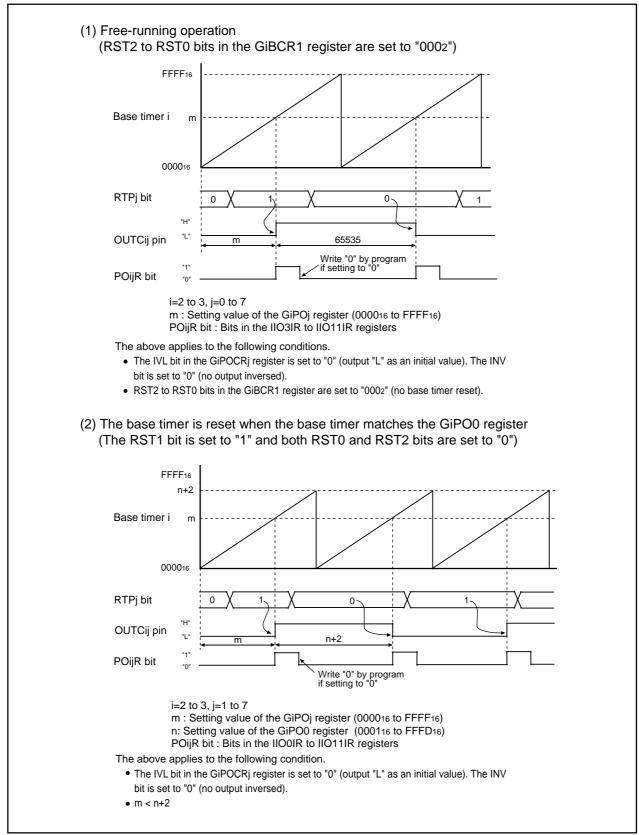




Figure 21.28 Real-time Port Output Function Block Diagram

21.3.6 Parallel Real-Time Port Output Mode (Group 2 and 3)

The OUTCij pin outputs the value set by the GiRTP register in one-byte units when the value of the base timer matches that of the GiPOj register (i=2 to 3, j=0 to 7). Table 21.15 lists specifications of the parallel RTP output mode. Figure 21.30 shows a block diagram of the parallel RTP output function. Figure 21.31 shows an example of the parallel RTP output mode operation. (See Figure 21.7 for the G2BCR1 register and Figure 21.8 for the G3BCR1 register.)

Item	Specification
Waveform Output Start Condition	The IFEj bit in the GiFE register (i=2 to 3, j=0 to 7) is set to "1" (channel j function enabled)
Waveform Output Stop Condition	The IFEj bit is set to "0" (channel j function disabled)
Interrupt Request	The POijR bit in the interrupt request register is set to "1" when value of the base timer matches that of the GiPOj register (000016 to FFFF16 ⁽¹⁾). (See Figure 10.14.)
OUTCij Pin	RTP output
Selectable Function	 Default value set function: Set starting waveform output level Inverse output function: Waveform output level is inversed and output from the OUTCij pin

Table 21.15 Parallel RTP Output Mode Specifications

NOTES:

1. Set the GiPO0 register to 000116 to FFFD16 when setting the base timer to "000016" (the RST1 bit in the GiBCR1 register is set to "1", and the RST0 and RST2 bits are set to "0") while the values in the base timer and the GiPO0 register match

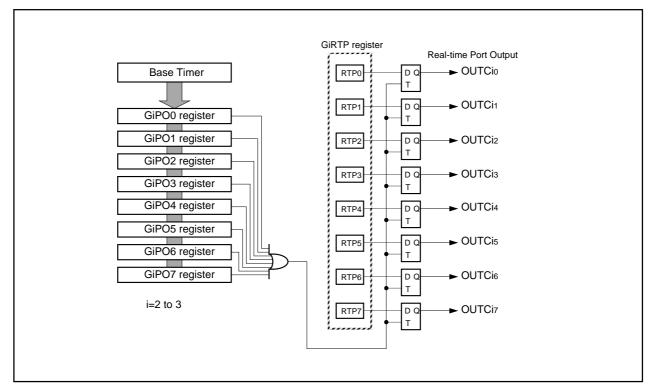


Figure 21.30 Parallel RTP Output Function Block Diagram

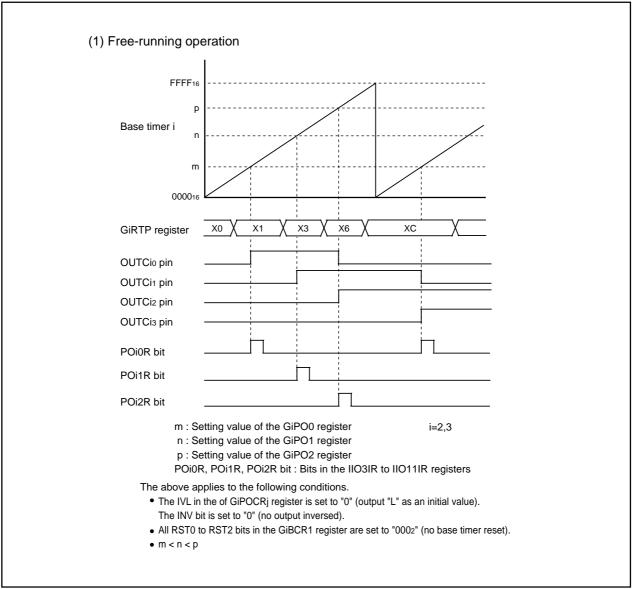


Figure 21.31 Parallel RTP Output Mode

21.4 Communication Unit 0 and 1 Communication Function

The communication function is available when two 8-bit shift registers are used with either timer measurement function or waveform generation function.

In the intelligent I/O groups 0 and 1, 8-bit clock synchronous serial I/O, 8-bit clock asynchronous serial I/O (UART) and HDLC data processing are available.

Figures 21.32 to 21.38 show registers associated with the communication function.

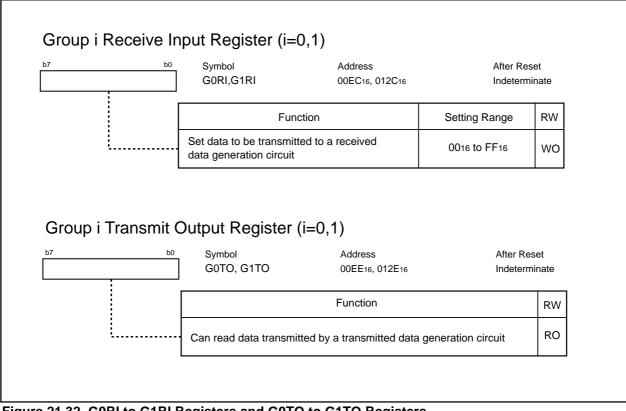


Figure 21.32 GORI to G1RI Registers and G0TO to G1TO Registers

b7 b6 b5 b		b1 b0	Symb G0C	ol Address R, G1CR 00EF16, 0	After Reset 12F ₁₆ 0000 X0002	
			Bit Symbol	Bit Name	Function	RV
			ΤI	Transmit Buffer Empty Flag	0 : Data in the GiTB register 1 : No data in the GiTB register	RC
			TXEPT	Transmit Register Empty Flag	 0 : Data in the transmit register (during transmission) 1 : No data in the transmit register (transmit completed) 	RC
	Į		RI	Receive Complete Flag	0 : No data in the GiRB register 1 : Data in the GiRB register	RC
			(b3)		When write, set to "0". ents is indeterminate.	-
			TE	Transmit Enable Bit	0 : Transmit disable 1 : Transmit enable	RW
			RE	Receive Enable Bit	0 : Receive disable 1 : Receive enable	RW
L			IPOL	ISRxD Input Polarity Switch Bit	0 : No inverse 1 : Inverse ⁽¹⁾	RW
			OPOL	ISTxD Output Polarity Switch Bit	0 : No inverse 1 : Inverse ⁽¹⁾	RW

Figure 21.33 G0CR to G1CR Registers

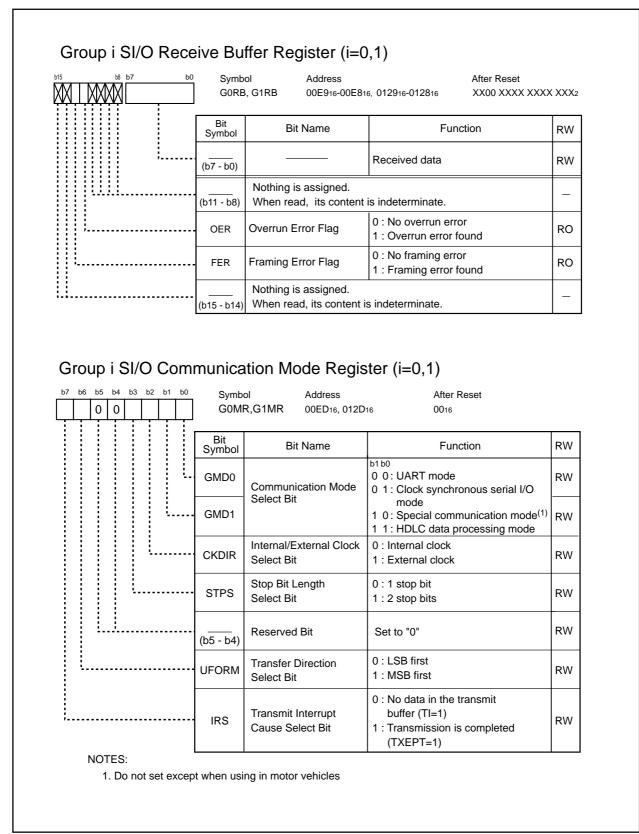


Figure 21.34 GORB to G1RB Registers and G0MR to G1MR Registers

Group i SI/O Expansion Mode Register $(i=0,1)^{(1)}$

		•						•		0	``	. ,	
b7	b6	b5	b4	b3	b	2 1	b1	b0	Symb	ol	Address	After Reset	
Ļ					L		_		G0EM	IR,G1EMR	00FC16, 013	3C16 0016	
									Bit Symbol	Bit Na	me	Function	RW
									SMODE	Synchronous Select Bit	Mode	0 : No re-synchronous mode used 1 : Re-synchronous mode	RW
									CRCV	CRC Default Select Bit	/alue	0 : Set to "000016" 1 : Set to "FFFF16"	RW
									ACRC	CRC Reset S	elect Bit	0 : Not reset 1 : Reset ⁽²⁾	RW
				i.					BSINT	Bit Stuffing Err		0 : Not used 1 : Used	RW
						•••			RXSL	Receive Sour	ce	0 : ISRxDi pin 1 : GiRI register	RW
									TXSL	Transmit Sour Switch Bit	ce	0 : ISTxDi pin 1 : GiTO register	RW
				CRC0	CRC Generat	-	^{b7} ^{b6} 0 0 : X ⁸ +X ⁴ +X+1 0 1 : Do not set to this value	RW					
				···· CRC1		elect Bit	$\begin{array}{c} 0 & : X^{16} + X^{15} + X^2 + 1 \\ 1 & 1 & : X^{16} + X^{12} + X^5 + 1 \end{array}$	RW					

NOTES:

1. The GiEMR register is used in special communication mode or HDLC data processing mode. Do not use in clock synchronous serial I/O mode or UART mode.

2. The CRC is reset when a data in the GiCMP3 register matches a received data.

Group i SI/O Expansion Transmit Control Register (i=0,1)⁽¹⁾ b6 b5 b4 b7 b3 b2 b1 Symbol Address After Reset G0ETC,G1ETC 00FF16, 013F16 0000 0XXX2 Bit Function RW Bit Name Symbol Nothing is assigned. When write, set to "0". ÷, When read, its content is indeterminate. (b2 - b0) SOF Transmit 0 : No request to transmit SOF SOF RW **Request Bit** 1 : Request to transmit SOF Transmit CRC 0: Not used TCRCE RW Enable Bit 1: Used 0: Not used ABTE Arbitration Enable Bit RW 1: Used Transmit Bit Stuffing 0: "1" is not inserted TBSF0 RW "1" Insert Select Bit 1: "1" is inserted Transmit Bit Stuffing 0: "0" is not inserted TBSF1 RW "0" Insert Select Bit 1: "0" is inserted

NOTES:

1. The GiETC register is used in special communication mode or HDLC data processing mode. Do not use in clock synchronous serial I/O mode or UART mode.

7 b6	b5 b4 b3	b2 b1 b0	Symb G0EF		ddressAfter Reset0FD16, 013D160016	
			Bit Symbol	Bit Name	Function	RW
			CMP0E	Data Compare Function 0 Select Bit	 0 : The GiDR register (transmit data register) is not compared with the GiCMP0 register 1 : The GiDR register is compared with the GiCMP0 register 	RW
			CMP1E	Data Compare Function 1 Select Bit	 0 : The GiDR register (transmit data register) is not compared with the GiCMP1 register 1 : The GiDR register is compared with the GiCMP1 register 	RW
			CMP2E	Data Compare Function 2 Select Bit	 0 : The GiDR register (transmit data register) is not compared with the GiCMP2 register 1 : The GiDR register is compared with the GiCMP2 register 	RW
			CMP3E	Data Compare Function 3 Select Bit	 0 : The GiDR register (transmit data register) is not compared with the GiCMP3 register 1 : The GiDR register is compared with the GiCMP3 register⁽²⁾ 	RW
	ļ		RCRCE	Receive CRC Enable Bit	0 : Not used 1 : Used	RW
			RSHTE	Receive Shift Operation Enable Bit	0 : Disables receive shift operation 1 : Enables receive shift operation	RW
			RBSF0	Receive Bit Stuffing "1" Delete Select Bit	0 : "1" is not deleted 1 : "1" is deleted	RW
			RBSF1	Receive Bit Stuffing "0" Delete Select Bit	0 : "0" is not deleted 1 : "0" is deleted	RW

NOTES:

1. The GiERC register is used in special communication mode or HDLC data processing mode.

Set to "0010 00002" in clock synchronous serial I/O mode. Do not use in UART mode.

2. When the ACRC bit in the GiEMR register is set to "1" (CRC reset function used), set the CMP3E bit to "1".

Figure 21.36 G0ERC to G1ERC Registers

Group i SI/O Special Communication Interrupt Detect Register (i=0,1)^(1,2) b7 b6 b5 b4 b3 b2 b1 Symbol Address After Reset G0IRF,G1IRF 00FE16, 013E16 0000 00XX2 Bit Symbol RW Bit Name Function Nothing is assigned. When write, set to "0". When read, its content is indeterminate. (b1 - b0) Bit Stuffing Error 0: Not detected BSERR RW Detect Flag 1: Detected Arbitration Lost 0: Not detected RW ABT Detect Flag 1: Detected 0 : The GiDR register (receive data register) Interrupt Cause does not match the GiCMP0 register IRF0 Determination Flag 0⁽²⁾ RW 1 : The GiDR register matches the GiCMP0 reaister 0 : The GiDR register (receive data register) Interrupt Cause does not match the GiCMP1 register Determination IRF1 RW 1 : The GiDR register matches the GiCMP1 Flag 1⁽²⁾ register 0 : The GiDR register (receive data register) Interrupt Cause does not match the GiCMP2 register IRF2 RW Determination 1 : The GiDR register matches the GiCMP2 Flag 2⁽²⁾ register 0 : The GiDR register (receive data register) Interrupt Cause does not match the GiCMP3 register RW IRF3 Determination 1 : The GiDR register matches the GiCMP3 Flag 3⁽²⁾ register NOTES: 1. The GiETC register is used in special communication mode or HDLC data processing mode. Do not use in clock synchronous serial I/O mode or UART mode. 2. The SRTiR bit in the IIO4IR register is set to "1" if the BSERR bit, ABT bit or the IRF0 to IRF3 bits is set to "0". Group i Transmit Buffer (Receive Data) Register (i=0,1)⁽¹⁾ After Reset b0 Symbol Address G0TB,G0DR 00EA16 Indeterminate G1TB,G1DR 012A16 Indeterminate Function RW Set data to be transmitted. Values written in these registers are written to the GiTB register. WO (RO) Data read from these registers in HDLC data processing mode are

Values written in these registers are written to the GiTB register. Data read from these registers in HDLC data processing mode are values written in the GiDR register NOTES: 1. The GiTB register and the GiDR register share addresses.

 	Symbol G0CMP0 to G0CMP3 G1CMP0 to G1CMP3	Address 00F016, 00F116, 00F216, 013016, 013116, 013216,		ate
	Functio	'n	Setting Range	RW
	Data to be compared		0016 to FF16	RW
•	ster to use the GiCMP0 reg ster to use the GiCMP1 reg K Register j (i=0,1	lister.		
b7 b0	Symbol G0MSK0,G0MSK1 G1MSK0,G1MSK1	Address 00F416, 00F516 013416, 013516	After Res Indetermi Indetermi	nate
[Functi		Setting Range	RW
	Masked data for received Set bits not being compa		0016 to FF16	RW
	Result of the transmit CR	Function		RW
	e reset by setting the TE bit mined by setting the CRCV ation is performed with eve ster is set to "1" (used).	in the GiCR register to bit in the GiEMR regist	ter.	
Transmit CRC calcul bit in the GiETC regis				
2. Transmit CRC calcul	Symbol GORCRC, G1RCRC	er (i=0,1) Address 00F916-00F816, 013916-	After Reset 013816 Indeterminat	te
2. Transmit CRC calcul bit in the GiETC regis	Symbol	Address		te RW
2. Transmit CRC calcul bit in the GiETC regis	Symbol	Address 00F916-00F816, 013916- Function]

Figure 21.38 G0CMP0 to G0CMP3 Registers, G1CMP0 to G1CMP3 Registers, G0MSK0 to G0MSK1 Registers, G1MSK0 to G1MSK1 Registers, G0TCRC to G1TCRC Registers, and G0RCRC to G1RCRC Registers

21.4.1 Clock Synchronous Serial I/O Mode (Groups 0 and 1)

In clock synchronous serial I/O mode, data is transmitted and received with the transfer clock. When the internal clock is selected as the transfer clock, the channel 0 and channel 3 waveform generation functions generate the internal clock. ISTxDi (i=0, 1), ISCLKi, and ISRxDi share pins with INPCio to INPCi2 and OUTCio to OUTCi2.

Table 21.16 lists specifications of clock synchronous serial I/O mode. Table 21.17 lists registers to be used and their settings. Tables 21.18 to 21.21 list pin settings. Figure 21.39 shows an example of a transmit and receive operation.

Item	Specification				
Transfer Data Format	Transfer data : 8 bits long				
Transfer Clock ^(1, 2)	When the CKDIR bit in the GiMR register (i=0, 1) is set to "0" (internal clock) : $\frac{fBT_1}{2(n+2)}$				
	n : setting value of the GiPO0 register, 000016 to FFFF16				
	• The GiPO0 register determines the bit rate and the transfer clock is generated in				
	phase-delayed waveform output mode by the channel 3 waveform generation func-				
	tion.				
	When the CKDIR bit is set to "1" (external clock) : input from the ISCLKi pin				
Transmit Start Condition	Set registers associated with the waveform generation function, the GiMR register and the				
	GiERC register. Then set as written below after at least one transfer clock cycle:				
	 Set the TE bit in the GiCR register to "1" (transmit enable) 				
	 Set the TI bit in the GiCR register to "0" (data in the GiTB register) 				
Receive Start Condition	Set registers associated with the waveform generation function, the GiMR register and				
	GiERC register. Then set as written below after at least one transfer clock cycle:				
	Set the RE bit in the GiCR register to "1" (receive enable)				
	Set the TE bit to "1" (transmit enable)				
	Set the TI bit to "0" (data in the GiTB register)				
Interrupt Request	• While transmitting, one of the following conditions can be selected to set the SIOiTR				
	bit to "1" (see Figure 10.14):				
	- The IRS bit in the GiMR register is set to "0" (no data in the GiTB register) and data				
	is transferred to the transmit register from the GiTB register				
	 The IRS bit is set to "1" (transmission completed) and data transfer from the transmit register is completed 				
	• While receiving, the following condition can be selected to set the SIOiRR bit to "1"				
	(see Figure 10.14):				
	Data is transferred from the receive register to the GiRB register				
Error Detection	Overrun error ⁽³⁾				
	This error occurs when the 8th bit of the next data is received before reading the GiRB register				
Selectable Function	LSB first/MSB first				
	Select either bit 0 or bit 7 to transmit/receive data				
	ISTxDi and ISRxDi I/O polarity inverse				
	ISTxDi pin output level and ISRxDi pin input level are inversed				

Table 21.16 Clock S	ynchronous Serial I/O	Mode Specifications	(Groups 0 and 1)
	y	mode opeeniounene	

NOTES:

- 1. The transfer clock must be fBTi divided by six or more.
- 2. In clock synchronous serial I/O mode, set the RSHTE bit in the GiERC register (i=0, 1) to "1" (receive shift operation enabled).
- 3. When an overrun error occurs, the GiRB register is indeterminate.

When the OPOL bit in the GiCR register is set to "0" (no ISTxDi output polarity inversed), the ISTxDi pin outputs an "H" signal after selecting operation mode until transfer starts. When the OPOL bit is set to "1", the ISTxDi pin outputs an "L" signal.

	registers to be o				
Register	Bit	Function			
GiBCR0	BCK1 to BCK0	Set to "112"			
	DIV4 to DIV0	Select divide ratio of count source			
	IT	Set to "0"			
GiBCR1	7 to 0	Set to "0001 00102"			
GiPOCR0	7 to 0	Set to "0000 01112"			
GiPOCR1	7 to 0	Set to "0000 01112"			
GiPOCR3	7 to 0	Set to "0000 00102" ⁽¹⁾			
GiPO0	15 to 0	Set the bit rate			
		$\frac{\text{fBTi}}{2x(\text{setting value + 2})} = \text{transfer clock frequency}^{(1)}$			
		2x(setting value + 2) = transfer clock frequency ⁽¹⁾			
GiPO3	15 to 0	Set to a value smaller than the GiPO0 register ⁽¹⁾			
GiFS	FSC3,1,0	Set to "0"			
GiFE	IFE3,1,0	Set to "1"			
GiERC	7 to 0	Set to "0010 00002"			
GiMR	GMD1 to GMD0	Set to "012"			
	CKDIR	Select the internal clock or external clock			
	STPS	Set to "0"			
	UFORM	Select either LSB first or MSB first			
	IRS	Select how the transmit interrupt is generated			
GiCR	TI	Transmit buffer empty flag			
	TXEPT	Transmit register empty flag			
	RI	Receive complete flag			
	TE	Set to "1" to enable transmission and reception			
	RE	Set to "1" to enable reception			
	IPOL	Select ISRxD input polarity (usually set to "0")			
	OPOL	Select ISTxD output polarity (usually set to "0")			
GiTB	7 to 0	Write data to be transmitted			
GiRB	15 to 0	Received data and error flag are stored			

Table 21.17 Registers to be Used and Settings

i = 0 to 1

NOTES:

1. The CKDIR bit in the GiMR register is set to "0" (internal clock)

Table 21.18 Pin Settings (1)

Port	Function			Bit and Setting	g		Register ⁽¹⁾
Name		PS1 Register	PSL1 Register	PSC Register	PD7 Register	IPS Register	
P73	ISTxD1 output	PS1_3 = 1	PSL1_3 = 0	PSC_3 = 1	-	-	G1POCR0
P74	ISCLK1 input	PS1_4 = 0	-	-	PD7_4 = 0	IPS1 = 0	-
	ISCLK1 output	PS1_4 = 1	$PSL1_4 = 0$	PSC_4 = 1	-	-	G1POCR1
P75	ISRxD1 input	PS1_5 = 0	-	-	PD7_5 = 0	IPS1 = 0	-
P76	ISTxD0 output	PS1_6 = 1	PSL1_6 = 0	$PSC_6 = 0$	-	-	G0POCR0
P77	ISCLK0 input	PS1_7 = 0	-	-	PD7_7 = 0	IPS0 = 0	-
	ISCLK0 output	PS1_7 = 1	-	-	-	-	G0POCR1

NOTES:

1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output of the communication function used).

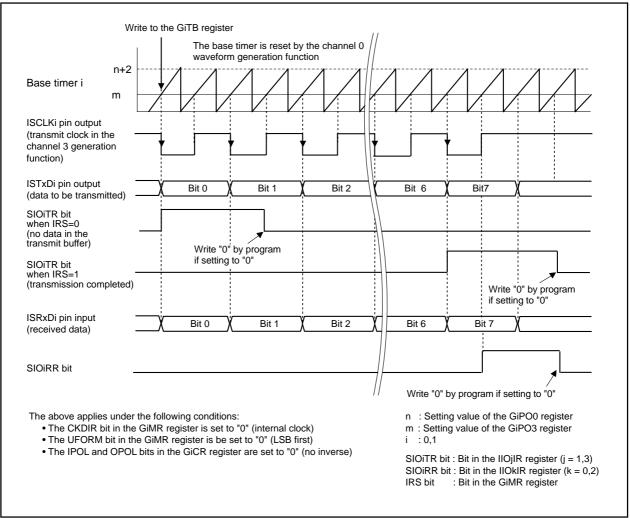
Table	21.19	Pin	Settings	(2)
-------	-------	-----	----------	-----

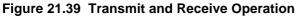
Port	Function	Bit and Setting			Register
Name		PS2 Register	PD8 Register	IPS register	
P80	ISRxD0 input	$PS2_0 = 0$	PD8_0 = 0	IPS0 = 0	-

		• • • •			
Port	Function		Bit and Setting		Register ⁽¹⁾
Name		PS5 Register	PD11 Register	IPS Register	
P110	ISTxD1 output	PS5_0 = 1	-	-	G1POCR0
P111	ISCLK1 input	PS5_1 = 0	PD11_1 = 0	IPS1 = 1	-
	ISCLK1 output	PS5_1 = 1	-	-	G1POCR1
P112	ISRxD1 input	PS5_2 = 0	PD11_2 = 0	IPS1 = 1	-

Table 21. 20 Pin Settings (3)

NOTES:


1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output of the communication function used).


Table 21. 21 Pin Settings (4)

Port	Function		Bit and Setting		Register ⁽¹⁾
Name		PS9 Register	PD15 Register	IPS Register	
P150	ISTxD0 output	PS9_0 = 1	-	-	G0POCR0
P151	ISCLK0 input	PS9_1 = 0	PD15_2 = 0	IPS0 = 1	-
	ISCLK0 output	PS9_1 = 1	-	-	G0POCR1
P152	ISRxD0 input	PS9_2 = 0	PD15_2 = 0	IPS0 = 1	-

NOTES:

1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output of the communication function used).

21.4.2 Clock Asynchronous Serial I/O Mode (UART) (Groups 0 and 1)

In clock asynchronous serial I/O mode (UART), data is transmitted at a desired bit rate and in a desired transfer data format. Table 21.22 lists specifications of UART mode groups 0 and 1. Table 21.23 lists registers to be used and their settings. Tables 21.24 to 21.27 list pin settings. Figure 21.40 shows an example of transmit operation. Figure 21.41 shows an example of receive operation.

Item		Specification					
Transfer Data Format	Character Bit (transfer	data): 8 bits long					
	Start bit :	1 bit long					
	Stop bit :	select length from 1 bit or 2 bits					
Transfer Clock ^(1, 2)	When the CKDIR bit in th	e GiMR register (i=0, 1) is set to "0" (internal clock) : $\frac{fBTi}{2(n+2)}$					
	n : setting value of the	GiPO0 register, 000016 to FFFF16.					
	The GiPO0 register	determines the bit rate.					
	Transmit clock is ge	nerated in phase-delayed waveform output mode of the chan-					
	nel 3 waveform gen	eration function.					
	Receive clock is ger	nerated with the channel 2 time measurement function.					
Transmit Start Condition	Set the registers associat	ed with the waveform generation function, the GiMR register and					
	GiERC register. Then, se	t as written below after at least one transfer clock cycle.					
	Set the TE bit in the G	iCR register to "1" (transmit enable)					
	Set the TI bit in the Gi	• Set the TI bit in the GiCR register to "0" (data in the GiTB register)					
Receive Start Condition	Set the registers associat	Set the registers associated with the waveform generation function, the GiMR register and					
	GiERC register. Then, se	t as written below after at least one transfer clock cycle.					
	• Set the RE bit in the GiCR register to "1" (receive enable)						
	Detect the start bit						
Interrupt Request	While transmitting, one of the following conditions can be selected to set the S						
	bit to "1" (see Figure 1	0.14):					
	– The IRS bit in the C	GiMR register is set to "0" (no data in the GiTB register) and					
	data is transferred t	o the transmit register from the GiTB register.					
	 The IRS bit is set transmit register is a 	to "1" (transmission completed) and data transfer from the completed					
	While receiving, the fo	llowing condition can be selected to set the SIOiRR bit to "1"					
	(see Figure 10.14) :						
	Data is transferred fro	m the receive register to the GiRB register (data reception is					
	completed)						
Error detection	Overrun error ⁽³⁾						
	This error occurs whe	n the final stop bit of the next data is received before reading					
	the GiRB register						
	Framing Error						
	This error occurs whe	n the number of the stop bits set is not detected					
Selectable function	Stop bit length	·					
		bit is selected from 1 bit or 2 bits					
	LSB first/MSB first						
	Select either bit 0 or b	it 7 to transmit/receive data					

Table 21.22	UART	Mode S	Specifications
-------------	------	--------	----------------

NOTES:

1. The transfer clock must be fBTi divided by six or more.

- 2. Set the GiPOCR2 register and the GiTMCR2 register.
- 3. When an overrun error occurs, the GiRB register is indeterminate.

Register	Bit	Function
GiBCR0	BCK1 to BCK0	Set to "112"
	DIV4 to DIV0	Select divide ratio of count source
	IT	Set to "0"
GiBCR1	7 to 0	Set to "0001 00102"
GiPOCR0	7 to 0	Set to "0000 01112"
GiPOCR2	7 to 0	Set to "0000 01102"
GiPOCR3	7 to 0	Set to "0000 00102"
GiTMCR2	7 to 0	Set to "0000 00102"
GiPO0	15 to 0	Set bit rate
		fBTi
		$\frac{1}{2 \times (\text{setting value + 2})} = \text{transfer clock frequency}$
GiPO3	15 to 0	Set to a value smaller than the GiPO0 register
GiFS	FSC3 to FSC0	Set to "01002"
GiFE	IFE3 to IFE0	Set to "11012"
GiMR	GMD1 to GMD0	Set to "002"
	CKDIR	Set to "0"
	STPS	Select stop bit length
	UFORM	Select LBS first or MSB first
	IRS	Select how the receive interrupt is generated
GiCR	TI	Transmit buffer empty flag
	TXEPT	Transmit register empty flag
	RI	Receive complete flag
	TE	Set to "1" to enable transmission
	RE	Set to "1" to enable reception
	IPOL	Set to "1"
	OPOL	Set to "1"
GiTB	7 to 0	Write data to be transmitted
GiRB	15 to 0	Received data and error flag are stored

Table 21.23	Registers	to be	Used	and	Settings
-------------	-----------	-------	------	-----	----------

i = 0 to 1

Port	Function	Bit and Setting				Register ⁽¹⁾	
Name		PS1 Register	PSL1 Register	PSC Register	PD7 Register	IPS Register	
P73	ISTxD1 output	PS1_3 = 1	PSL1_3 = 0	PSC_3 = 1	-	-	G1POCR0
P75	ISRxD1 input	PS1_5 = 0	-	-	PD7_5 = 0	IPS1 = 0	-
P76	ISTxD0 output	PS1_6 = 1	$PSL1_6 = 0$	$PSC_6 = 0$	-	-	G0POCR0

Table 21.24 Pin Settings in UART Mode (1)

NOTES:

1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output of the communication function used).

Table 21.25 Pin Settings (2)

Port	Function	Bit and Setting				Register
Name		PS2 Register	PSL2 Register	PD8 Register	IPS Register	
P80	ISRxD0 input	PS2_0 = 0	-	PD8_0 = 0	IPS0 = 0	-

Table 21.26 Pin Settings (3)

Port	Function		Register ⁽¹⁾		
Name		PS5 Register	PD11 Register	IPS Register	
P110	ISTxD1 output	PS5_0 = 1	-	-	G1POCR0
P112	ISRxD1 input	PS5_2 = 0	$PD11_2 = 0$	IPS1 = 1	-

NOTES:

1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output of the communication function used).

Table 21.27 Pin Settings (4)

Port	Function	Bit and Setting			Register ⁽¹⁾
Name		PS9 Register	PD15 Register	IPS Register	
P150	ISTxD0 output	PS9_0 = 1	-	-	G0POCR0
P152	ISRxD0 input	-	PD15_2 = 0	IPS0 = 1	-

NOTES:

1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output of the communication function used).

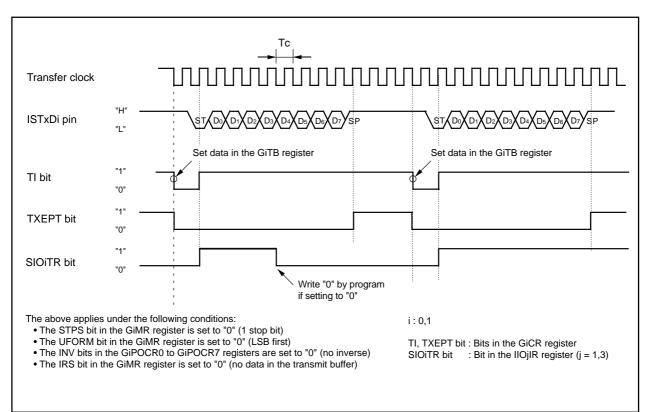


Figure 21.40 Transmit Operation

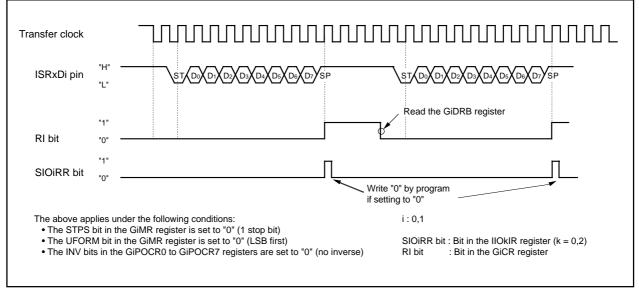


Figure 21.41 Receive Operation

21.4.3 HDLC Data Processing Mode (Group 0 and 1)

In HDLC data processing mode, bit stuffing, flag detection, abort detection and CRC calculation are available for HDLC control. The channel 0 and 1 are used to generate the transfer clock. No pins are used.

To convert data, data to be transmitted is written to the GiTB register (i=0,1) and the data conversion result is restored after data conversion. If any data are in the GiTO register after data conversion, the conversion is terminated. If no data is in the GiTO register, bit stuffing processing is executed regardless of there being no data in the transmit output buffer. A CRC value is calculated every time one bit is converted. If no data is in the GiRI register, received data conversion is terminated.

Table 21.28 list specifications of the HDLC data processing mode. Table 21.29 lists registers to be used and their settings.

Item	Specification				
Input Data Format	8-bit data fixed, bit alignment is optional				
Output Data Format	8-bit data fixed				
Transfer Clock	When the CKDIR bit in the GiMR register (i=0, 1) is set to "0" (internal clock) : $\frac{fBTi}{n+2}$				
	n : setting value of the GiPO0 register 000016 to FFFF16				
	The GiPO0 register determines bit rate.				
	The transfer clock is generated in phase-delayed waveform output mode of the				
	channel 1 waveform generation function.				
	When the RSHTE bit in the GiERC register is set to "1" (reception shift operation				
	enabled), the transfer clock is generated in the receiver				
I/O Method	• While transmitting,				
	value set in the GiTB register is converted in HDLC data processing mode and				
	transferred to the GiTO register				
	• While receiving,				
	value set in the GiRI register is converted in HDLC data processing mode and				
	transferred to the GiRB register. The value in the GiRI register is also transferred to				
	the GiDR register (received data register).				
Bit Stuffing	While transmitting, "0" following five consecutive "1" is inserted.				
Flag Datastian	While receiving, "0" following five consecutive "1" is deleted.				
Flag Detection	Write the flag data "7E16" to the GiCMP3 register to use the special communication				
Abort Datastian	interrupt (the SRTiR bit in the IIO4IR register)				
Abort Detection CRC	Write the masked data "0116" to the GiMSKk(k=0, 1) registerThe CRC1 to CRC0 bits are set to "112" (X ¹⁶ +X ¹² +X ⁵ +1)				
CRC	The CRCV bit is set to "1" (set to "FFFF16")				
	• While transmitting, CRC calculation result is stored into the GiTCRC register.				
	The TCRCE bit in the GiETC register is set to "1" (transmit CRC used).				
	The CRC calculation result is reset when the TE bit in the GiCR register is set to "0"				
	(transmit disabled) ⁽¹⁾ .				
	While receiving, CRC calculation result is stored into the GiRCRC register.				
	The RCRCE bit in the GiERC register is set to "1" (receive CRC used).				
	The CRC calculation result is reset by comparing the flag data "7E16" and matching				
	the result with the value in the GiCMP3 register. The ACRC bit in the GiEMR regis-				
	ter is set to "1" (CRC reset) ⁽²⁾				

Table 21.28 HDLC Processing Mode Specifications

Item	Specification					
Data Processing	The following conditions are required to start transmit data processing:					
Start Conditions	 The TE bit in the GiCR register is set to "1" (transmit enable) 					
	Data is written to the GiTB register					
	The following conditions are required to start receive data processing:					
	 The RE bit in the GiCR register is set to "1" (receive enable) 					
	Data is written to the GiRI register					
Interrupt Request ⁽³⁾	During transmit data processing,					
	(1) One of the following conditions can be selected to set the GiTOR bit in the interrupt request register to "1" (interrupt request) (see Figure 10.14)					
	- When the IRS bit in the GiMR register is set to "0" (no data in the GiTB register)					
	and data is transferred from the GiTB register to the transmit register (transmit start)					
	- When the IRS bit is set to "1" (transmission completed) and data transfer from					
	the transmit register to the GiTO register is completed					
	(2) When data, which is already converted to HDLC data, is transferred from the receive register of the GiTO register to the transmit buffer, the GiTOR bit is set to "1"					
	During received data processing,					
	(1) When data is transferred from the GiRI register to the GiRB register (reception completed), the GiRIR bit is set to "1" (See Figure 10.14)					
	(2) When received data is transferred from the receive buffer of the GiRI register to the receive register, the GiRIR bit is set to "1"					
	(3) When the GiTB register is compared to the GiCMPj register (j=0 to 3), the SRTiR bit is set to "1"					

Table 21.28 HDLC Processing Mode Specifications (Continued)

NOTES:

1. Set the CRCV bit and ACRC bit in the GiEMR register to "1".

2. The CRC calculation circuit is reset after the GiRCRC register stores CRC data.

3. See Figure 10.14 for details on the GiTOR bit, GiRIR bit and SRTiR bit.

Register	Bit	Function
GiBCR0	BCK1 to BCK0	Select count source
	DIV4 to DIV0	Select divide ratio of count source
	IT	Select the base timer interrupt
GiBCR1	7 to 0	Set to "0001 00102"
GiPOCR0	7 to 0	Set to "0000 00002"
GiPOCR1	7 to 0	Set to "0000 00002"
GiPO0	15 to 0	Set bit rate
GiPO1	15 to 0	Set the timing of the rising edge of the transfer clock.
		Timing of the falling edge (high-level signal ("H") width of the transfer clock) is
		fixed.
		Setting value of GiPO1 \leq Setting value of GiPO0 .
GiFS	FSC1 to FSC0	Set to "002"
GiFE	IFE1 to IFE0	Set to "112"
GiMR	GMD1 to GMD0	Set to "112"
	CKDIR	Set to "0"
	UFORM	Set to "0"
	IRS	Select how the transmit interrupt is generated
GiEMR	7 to 0	Set to "1111 01102"
GiCR	TI	Transmit buffer empty flag
	TXEPT	Transmit register empty flag
	RI	Receive complete flag
	TE	Transmit enable bit
	RE	Receive enable bit
GiETC	SOF	Set to "0"
	TCRCE	Select whether the transmit CRC is used or not
	ABTE	Set to "0"
	TBSF0, TBSF1	Transmit bit stuffing
GiERC	CMP2E to CMP0E	Select whether received data is compared or not
	CMP3E	Set to "1"
	RCRCE	Select whether receive CRC is used or not
	RSHTE	Set to "1" to use it in the receiver
	RBSF0, RBSF1	Receive bit stuffing
GilRF	BSERR, ABT	Set to "0"
	IRF3 to IRF0	Select how an interrupt is generated
GiCMP0,	7 to 0	Write "FE16" to abort processing
GiCMP1		
GiCMP2	7 to 0	Data to be compared
GiCMP3	7 to 0	Write "7E16"
GiMSK0,	7 to 0	Write "0116" to abort processing
GiMSK1		
GiTCRC	15 to 0	Transmit CRC calculation result can be read
GiRCRC	15 to 0	Receive CRC calculation result can be read
GiTO	7 to 0	Data, which is output from a transmit data generation circuit, can be read
GiRI	7 to 0	Set data input to a receive data generation circuit
GiRB	7 to 0	Received data is stored
GiTB	7 to 0	For transmission : write data to be transmitted
		For reception : received data for comparison is stored

Table 21.29 Registers to be Used and Settings

i = 0,1

21.5 Group 2 Communication Function

The communication function is available when two 8-bit shift registers are used with the waveform generation function.

In the intelligent I/O group 2, the variable clock synchronous serial I/O or IEBus⁽¹⁾ communication function is available. Figures 21.42 to 21.45 show registers associated with the communication function. NOTES:

1. IEBus is a trademark of NEC Electronics Corporation.

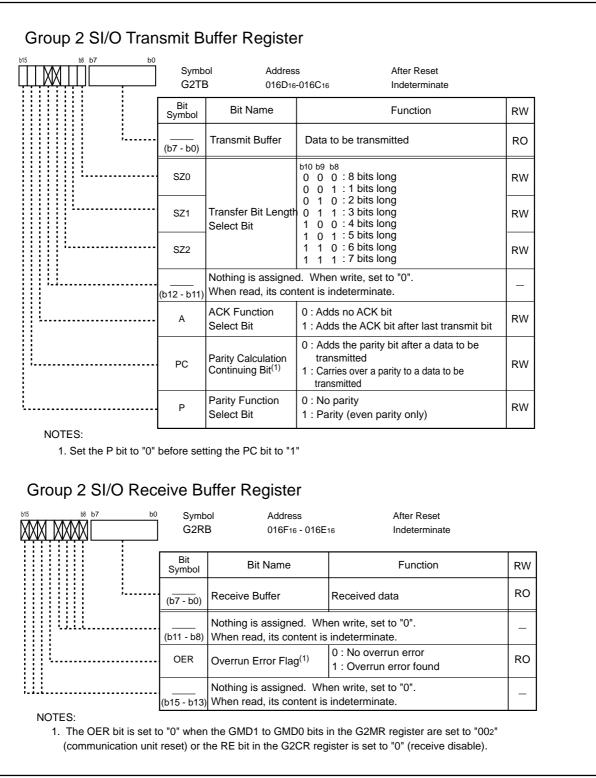


Figure 21.42 G2TB and G2RB Register

•		munic	ation Mode Regi	ster	
b7 b6 b5 b4 b3	b2 b1 b0	Symbo G2MI		After Reset 00XX X0002	
		Bit Symbol	Bit Name	Function	RW
		GMD0	Communication Mode Select Bit	0 0: Communication unit is reset (The OER bit is set to "0") ⁽¹⁾ 0 1 : Clock <u>sy</u> nchronous serial I/O	RW
		GMD1		mode ⁽²⁾ 1 0 : IE mode ⁽²⁾ 1 1 : Do not set to this value	RW
		CKDIR	Internal/External Clock Select Bit	0 : Internal clock 1 : External clock	RW
		(b5 - b3)	Nothing is assigned. Wi When read, its content is	-	_
		UFORM	Transfer Format Select Bit	0 : LSB first 1 : MSB first	RW
		IRS	Transmit Interrupt Cause Select Bit	0 : No data is in the transmit buffer 1 : Transmission is completed	RW

NOTES:

1. Run the base timer clock for one or more cycles after the GMD1 to GMD0 bits are set to "002" (communication unit reset).

2. Set the GMD1 to GMD0 bits to "012" (clock synchronous serial I/O mode) or "102" (IE mode) while the base timer clock is stopped.

Group 2 SI/O Communication Control Register

		After Reset 0000 X0002	
Bit Symbol	Bit Name	Function	RW
TE	Transmit Enable Bit	0 : Transmit disabled 1 : Transmit enabled	RW
ТХЕРТ	Transmit Register Empty Flag	0 : Data is in the transmit register (during transmission)1 : No data is in the transmit register (transmission is completed)	RC
ті	Transmit Buffer Empty Flag	0 : Data is in the G2TB register 1 : No data is in the G2TB register	RC
(b3)			_
RE	Receive Enable Bit ¹	0 : Receive disabled 1 : Receive enabled	RV
RI	Receive Complete Flag	0 : No data is in the G2RB register 1 : Data is in the G2RB register	RC
OPOL	ISTxD Output Polarity Switch Bit	0 : No inverse 1 : Inverse	RW
IPOL	ISRxD Input Polarity Switch Bit ⁽¹⁾	0 : No inverse 1 : Inverse	RV
	G2C Bit Symbol TE TXEPT TI (b3) RE RI OPOL	G2CR 016B16 Bit Symbol Bit Name TE Transmit Enable Bit TXEPT Transmit Register Empty Flag TI Transmit Buffer Empty Flag Nothing is assigned. When read, its content RE Receive Enable Bit ¹ RI Receive Complete Flag OPOL ISTxD Output Polarity Switch Bit	G2CR016B160000 X0002Bit SymbolBit NameFunctionTETransmit Enable Bit0 : Transmit disabled 1 : Transmit enabled 0 : Data is in the transmit register (during transmission) 1 : No data is in the transmit register (during transmission) 1 : No data is in the transmit register (transmission is completed)TITransmit Buffer Empty Flag0 : Data is in the G2TB register 1 : No data is in the G2TB registerTITransmit Buffer Empty Flag0 : Data is in the G2TB register 1 : No data is in the G2TB registerNothing is assigned.When write, set to "0". When read, its content is indeterminate.REReceive Enable Bit1 Flag0 : Receive disabled 1 : Receive enabledRIReceive Complete Flag0 : No data is in the G2RB register 1 : Data is in the G2RB registerOPOLISTxD Output Polarity Switch Bit0 : No inverse 1 : InverseIPOLISRxD Input Polarity 0 : No inverse0 : No inverse 1 : Inverse

1. The group 2 base timer may be reset when rewriting the RE or IPOL bit. To avoid resetting, set the RST2 bit in the G2BCR1 register to "0" (no base timer reset by a reset request from the communication function).

Figure 21.43 G2MR and G2CR Register

7 b6 b5 b4 b3 b2 b1 b0	Symb IECR		After Reset 00XX X0002	
	Bit Symbol	Bit Name	Function	RW
	IEB	IEBus Enable Bit ⁽¹⁾	0 : Disables IEBus ⁽²⁾ 1 : Enables IEBus	RW
	IETS	IEBus Transmit Start Request Bit	0 : Transmission is completed 1 : Transmission is started	RW
	IEBBS	IEBus Busy Flag	0 : Idle state 1 : Busy state (start condition is detected)	RO
	(b5 - b3)	Nothing is assigned. V When read, its content		_
	DF	Digital Filter Select Bit	0 : No digital filter 1 : Digital filter	RW
			- · · · ·	
2. After the IEB bit is s	et to "0", k	IEBus Mode Select Bit timer clock is stopped. eep "0" for at least 1 fBT2 ck stop) when setting the	0 : Mode 1 1 : Mode 2 cycle. Set the BCK1 to BCK0 bits in th IEB bit to "1".	RW
1. Set the IEB bit while 2. After the IEB bit is s G2BCR0 register to Group 2 IEBus A	e the base et to "0", k "002" (clor ddress	Select Bit timer clock is stopped. eep "0" for at least 1 fBT2 ck stop) when setting the s Register nbol Address	1 : Mode 2 cycle. Set the BCK1 to BCK0 bits in th IEB bit to "1".	
1. Set the IEB bit while 2. After the IEB bit is s G2BCR0 register to Group 2 IEBus A	e the base et to "0", k "002" (clor ddress	Select Bit timer clock is stopped. eep "0" for at least 1 fBT2 ck stop) when setting the s Register nbol Address	1 : Mode 2 cycle. Set the BCK1 to BCK0 bits in th IEB bit to "1".	
1. Set the IEB bit while 2. After the IEB bit is s G2BCR0 register to Group 2 IEBus A	e the base et to "0", k "002" (clor ddress	Select Bit timer clock is stopped. eep "0" for at least 1 fBT2 ck stop) when setting the s Register nbol Address R 017116 - 01	1 : Mode 2 cycle. Set the BCK1 to BCK0 bits in th IEB bit to "1".	
1. Set the IEB bit while 2. After the IEB bit is s G2BCR0 register to Group 2 IEBus A	e the base et to "0", k "002" (clor ddress ddress JEA	Select Bit timer clock is stopped. eep "0" for at least 1 fBT2 ck stop) when setting the s Register nbol Address R 017116 - 01	1 : Mode 2 cycle. Set the BCK1 to BCK0 bits in th IEB bit to "1". After Reset 7016 Indeterminate	e
1. Set the IEB bit while 2. After the IEB bit is s G2BCR0 register to Group 2 IEBus A	e the base et to "0", k "002" (clou Address Syn IEA	Select Bit timer clock is stopped. eep "0" for at least 1 fBT2 ck stop) when setting the s Register nbol Address R 017116 - 01	1 : Mode 2 cycle. Set the BCK1 to BCK0 bits in th IEB bit to "1". After Reset 7016 Indeterminate	e

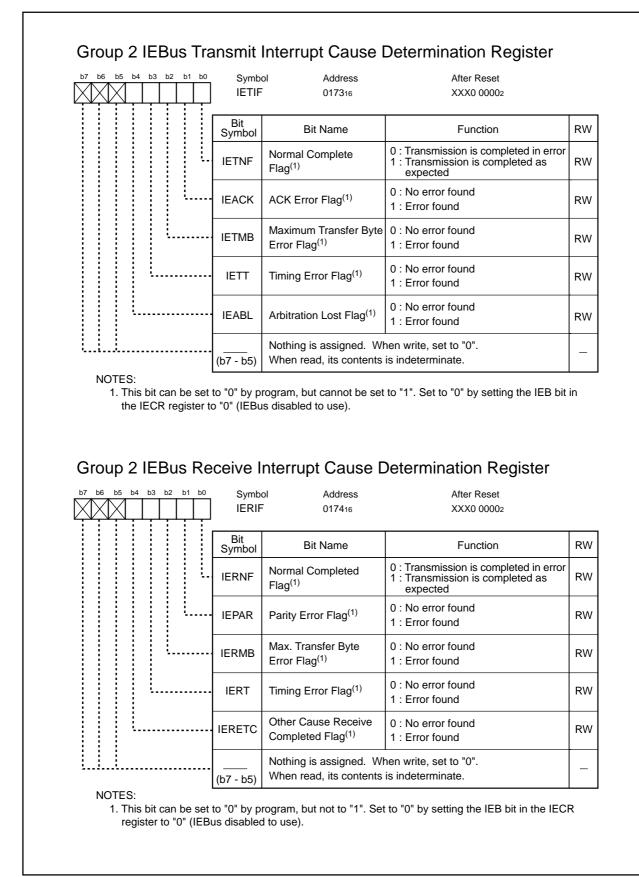


Figure 21.45 IETIF and IERIF Registers

21.5.1 Variable Clock Synchronous Serial I/O Mode (Group 2)

In variable clock synchronous serial I/O mode, data is transmitted and received using the transfer clock. The length of data transferred is selected from 1 to 8 bits. Table 21.30 lists specifications of the group 2 variable clock synchronous serial I/O mode. Table 21.31 lists registers to be used and their settings. Tables 21.32 to 21.35 lists pin settings. Figure 21.46 shows an example of a transmit and receive operation.

Item	Specification				
Transfer Data Format	Transfer data length: 1 to 8 bits				
Transfer Clock ⁽¹⁾	• When the CKDIR bit in the G2MR register is set to "0" (internal clock) : $\frac{fBT2}{2(n+2)}$				
	n : setting value of the G2PO0 register 000016 to FFFF16				
	The G2PO0 register determines bit rate and the transfer clock is generated in				
	phase-delayed waveform output mode of the channel 2 waveform generation func-				
	tion.				
	• When the CKDIR bit is set to "1" (external clock) : input from the ISCLK2 pin ⁽²⁾				
Transmit Start Condition	• To start transmitting, the following conditions are required :				
	- Set the TE bit in the G2CR register to "1" (transmit enable)				
	- Write data to the G2TB register				
Receive Start Condition	• To start receiving, the following conditions are required :				
	- Set the RE bit in the G2CR register to "1" (receive enable)				
	- Set the TE bit in the G2CR register to "1" (transmit enable)				
	- Write data to the G2TB register				
Interrupt Request	• While transmitting, one of the following conditions can be selected to set the				
	SIO2TR bit in the IIO6IR register to "1" (see Figure 10.14):				
	- The IRS bit in the G2MR register is set to "0" (no data in the G2TB register):				
	when data is transferred from the G2TB register to the transmit register.				
	- The IRS bit is set to "1" (reception completed):				
	when data transfer from the transmit register is completed				
	• While receiving, the following condition can be selected to set the SIO2RR bit in the				
	IIO5IR register to "1" (interrupt request) (see Figure 10.14):				
	when data is transferred from the receive register to the G2RB register (data recep-				
	tion is completed)				
Error Detection	Overrun error ⁽³⁾				
	This error occurs when receiving the j bit (j=1 to 8) of the next data (transfer data				
	length: j bits) before reading the G2RB register				
Selectable Function	LSB first/MSB first				
	Select either bit 0 or bit 7 to transmit/receive data				
	ISTxD2 and ISRxD2 I/O polarity inverse				
	ISTxD2 pin output level and ISRxD2 pin input level are inversed				
	Data transfer bit length				
	Select from 1 to 8 bits				

NOTES:

- 1. The transfer clock must be fBT2 divided by six or more when both transfer clock and transfer data are transmitted. Under conditions other than this, the transfer clock must be fBT2 divided by 20 or more.
- 2. Transfer clocks must be fBT2 divided by 20 or more.
- 3. When an overrun error occurs, the G2RB register is indeterminate.

Register	Bit	Function
G2BCR0	BCK1 to BCK0	Set to "112"
	DIV4 to DIV0	Select divide ratio of count source
	IT	Set to "0"
G2BCR1	7 to 0	Set to "0001 00102"
G2POCR0	7 to 0	Set to "0000 01112"
G2POCR1	7 to 0	Set to "0000 01112"
G2BCR2	7 to 0	Set to "0000 00102"
G2PO0	15 to 0	Set bit rate
		$\frac{\text{fBT2}}{2 \times (\text{setting value + 2})}$ = transfer clock frequency
		2 x (setting value + 2) = transfer clock frequency
G2PO2	15 to 0	Set to a value smaller than the G2PO0 register
G2FE	IFE2 to IFE0	Set to "1112"
G2MR	GMD1 to GMD0	Set to "012"
	CKDIR	Select internal or external clock
	UFORM	Select either LSB first or MSB first
	IRS	Select how the transmit interrupt is generated
G2CR	TE	When transmission is enabled, set to "1"
	TXEPT	Transmit register empty flag
	TI	Transmit buffer empty flag
	RE	When reception is enabled, set to "1"
	RI	Receive complete flag
	OPOL	ISTxD2 output polarity inverse (usually set to "0")
	IPOL	ISRxD2 input polarity inverse (usually set to "0")
G2TB	15 to 0	Write transfer bit length and transmit data
G2RB	15 to 0	Received data and error flag are stored

Table 21.31	Register to	be Used	and Settings
-------------	-------------	---------	--------------

	0	()						
Port	Function		Bit and Setting					
Name		PS1 Register	S1 Register PSL1 Register PSC Register PD7 Register IPS Register					
P70 ⁽¹⁾	ISTxD2 output	PS1_0 = 1	$PSL1_0 = 0$	PSC_0 = 1	-	-	G2POCR0	
P71	ISRxD2 input	PS1_1 = 0	-	-	PD7_1 = 0	IPS5 to 4 = 002	-	

Table 21.32 Pin Settings (1)

NOTES:

- 1. P70 is a port for the N-channel open drain output.
- 2. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output of the communication function is used).

Table 21.33 Pin Settings (2)

Port	Function		Register ⁽²⁾			
Name		PS3 Register ⁽¹⁾	PSL3 Register	PD9 Register ⁽¹⁾	IPS Register	
P91	ISRxD2 input	PS3_1=0	-	PD9_1=0	IPS5 to 4=012	-
P92	ISTxD2 output	PS3_2=1	PSL3_2=1	-	-	G2POCR0

NOTES:

- 1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.
- 2. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output of the communication function used).

Table 21.34 Pin Settings (3)

Port	Function		Register ⁽¹⁾			
Name		PS0 Register	PSL0 Register	PD6 Register	IPS Register	
P64	ISCLK2 input	$PS0_4 = 0$	-	PD6_4 = 0	IPS6 = 0	-
	ISCLK2 output	PS0_4 = 1	PSL0_4 = 1	-	-	G2POCR1

NOTES:

1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output of the communication function used).

Table 21.35 Pin Settings (4)

Port	Function		Register ⁽¹⁾		
Name		PS7 Register	PD13 Register	IPS Register	
P134	ISTxD2 output	PS7_4 = 1	-	-	G2POCR0
P135	ISRxD2 input	PS7_5 = 0	PD13_5 = 0	IPS5 to 4 = 102	-
P136	ISCLK2 input	PS7_6 = 0	PD13_6 = 0	IPS6 = 1	-
	ISCLK2 output	PS7_6 = 1	-	-	G2POCR1

NOTES:

1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output of the communication function used).

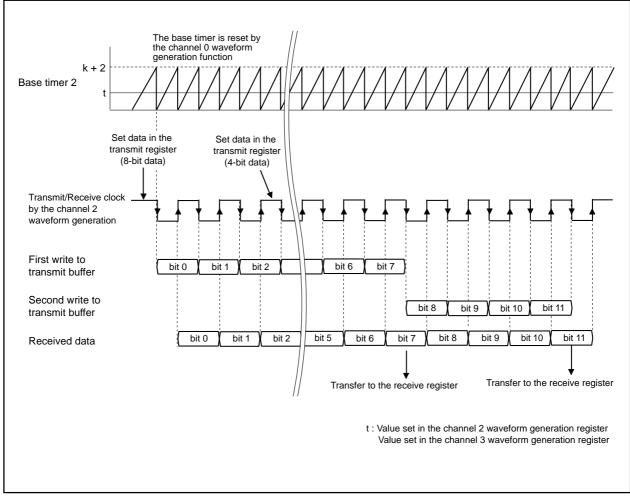


Figure 21.46 Transmit and Receive Operation

21.5.2 IEBus Mode (Group 2)

Table 21.36 lists specifications of IEBus mode. Table 21.37 lists registers to be used and settings. Tables 21.38 to 21.40 lists pin settings.

Item	Specification
Transfer Data Format	Transfer data length: 1 to 8 bits
Transfer Clock	 When the CKDIR bit in the G2MR register is set to "0" (internal clock) : fBT2 2(n+2) n : setting value of the G2PO0 register, 000016 to FFFF16. The G2PO0 register determines bit rate and the transfer clock is generated in phase-delayed waveform output mode of the channel 2 waveform generation function. The G2PO2 register = (n+2)/2⁽¹⁾ When the CKDIR bit is set to "1" (external clock) : input from the ISCLK2 pin⁽²⁾
Transmit Start Condition	 To start transmitting, the following conditions are required : Set the TE bit in the G2CR register to "1" (transmit enable) Write data to G2TB register
Receive Start Condition	To start receiving, the following requirements must be met: • Set the RE bit in the G2CR register to "1" (receive enable) • Set the TE bit in the G2CR register to "1" (transmit enable) • Write data to the G2TB register
Interrupt Request	 While transmitting, the following conditions can be selected to set the SIO2TR bit in the IIO6IR register to "1" (see Figure 10.14): The IRS bit in the G2MR register is set to "0" (no data in the G2TB register): when data is transferred to the transmit register from the G2TB register (transmission started) The IRS bit is set to "1" (transmission completed): when data transfer from the transmit register to the G2TO register is completed While receiving, the following condition can be selected to set the SIO2RR bit in the IIO5IR register to "1" (see Figure 10.14): when data is transferred from receive register to the G2RB register (data reception is completed)
Error Detection	Overrun error ⁽³⁾ This error occurs when receiving the j bit (j=1 to 8) of the next data (transfer data length: j bits) before reading the G2RB register
Selectable Function	 LSB first/MSB first select Select either bit 0 or bit 7 to transmit/receive data ISTxD2 and ISRxD2 I/O polarity inverse ISTxD2 pin output and ISRxD2 pin input levels are inversed Data transfer bit length Select from 1 to 8 bits

Table 21.36 IEBus Mode Specifications

NOTES:

1. The transfer clock must be fBT2 divided by six or more when both transfer clock and transfer data are transmitted. Under conditions other than this, the transfer clock must be fBT2 divided by 20 or more.

- 2. Transfer clock must be input fBT2 divided by 20 or more.
- 3. When an overrun error occurs, the G2RB register is indeterminate.

Register	Bit	Function
G2BCR0	BCK1 to BCK0	Set to "112"
	DIV4 to DIV0	Select divide ratio of count source
	IT	Set to "0"
G2BCR1	7 to 0	Set to "000100102"
G2POCR0	MOD2 to MOD0	Set to "1112"
to G2POCR7	PRT	Set to "0"
	IVL	Set to "0"
	RLD	Set to "0"
	RTP	Set to "0"
	INV	Set to "0"
G2PO0 to G2PO7	15 to 0	Set compared data for waveform generation
G2FE	7 to 0	Set bit of corresponding channel to "1"
G2MR	GMD1 to GMD0	Select serial I/O mode
	CKDIR	Select internal clock or external clock
	UFORM	Select either LSB first or MSB first
	IRS	Select how the transmit interrupt is generated
G2CR	TI	Transmit buffer empty flag
	TXEPT	Transmit register empty flag
	RI	Receive complete flag
	TE	When transmission is enabled, set to "1"
	RE	When reception is enabled, set to "1"
	IPOL	ISRxD2 input polarity inverse (usually set to "0")
	OPOL	ISTxD2 output polarity inverse (usually set to "0")
IECR	IEB	Set to "1"
	IETS	When transmission starts, set to "1"
	IEBBS	Select IEBus busy flag
	DF	Select whether the digital filter is available or not
	IEM	Select mode
IEAR	11 to 0	Set address data
IETIF	IETNF	Normal complete flag when transmitting
	IEACK	ACK error flag when transmitting
	IETMB	Maximum transfer byte error flag when transmitting
	IETT	Timing error flag when transmitting
	IEABL	Arbitration lost flag when transmitting
IERIF	IERNF	Normal complete flag when receiving
	IEPAR	Parity error flag when receiving
	IERMB	Maximum transfer byte error flag when receiving
	IERT	Timing error flag when receiving
	IERETC	Other cause receive completed flag when receiving
G2RB	7 to 0	Received data and error flag are stored
	OER	Overrun error flag
G2TB	7 to 0	Write transfer bit length and data to be transmitted

Table 21.37 Registers to be Used and Settings

Table 21.38 Pin Settings (1)

Port	Function		Bit and Setting					
Name		PS1 Register	PSL1 Register	PSC Register	PD7 Register	IPS Register		
P70 ⁽¹⁾	IEO∪⊤ output	PS1_0 = 1	$PSL1_0 = 0$	PSC_0 = 1	-	-	G2POCR0	
P71	IEIN input	PS1_1 = 0	-	-	PD7_1 = 0	IPS5 to 4 = 002	-	

NOTES:

1. P70 is a port for the N-channel open drain output.

2. Set the MOD2 to MOD0 bits in the G2POCR0 register to "1112".

Table 21.39 Pin Settings (2)

Port	Function		Register ⁽¹⁾			
Name		PS3 Register ⁽²⁾	PSL3 Register	PD9 Register ⁽²⁾	IPS Register	
P91	IEIN input	PS3_1 = 0	-	-	IPS5 to 4 = 012	-
P92	IEo∪⊤ output	PS3_2 = 1	PSL3_2 = 1	PD9_2 = 0	-	G2POCR0

NOTES:

1. Set the MOD2 to MOD0 bits in the G2POCR0 register to "1112".

2. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

Table 21.40 Pin Settings (3)

Port	Function		Register ⁽¹⁾		
Name		PS7 Register	PSL7 Register	IPS Register	
P134	IEO∪⊤ output	PS7_4 = 1	-	-	G2POCR0
P135	IEIN input	PS7_5 = 0	PD13_5 = 0	IPS5 to 4 = 102	-

NOTES:

1. Set the MOD2 to MOD0 bits in the G2POCR0 register to "1112".

21.6 Group 3 Communication Function

The communication function is available when two 16-bit shift registers are used with the waveform generation function.

In the intelligent I/O group 3, 8-bit or 16-bit synchronous communication function is available. Figures 21.47 to 21.49 show registers associated with the communication function.

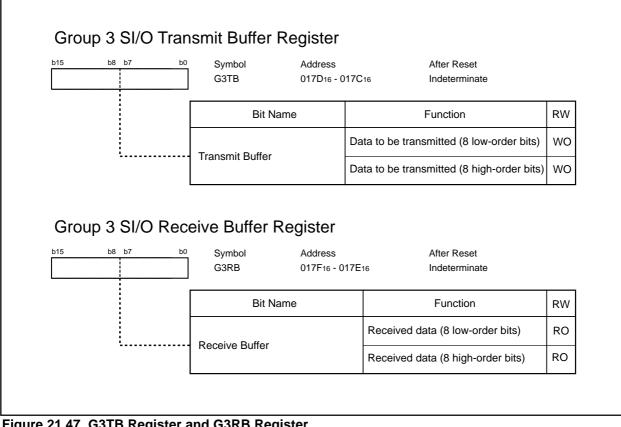


Figure 21.47 G3TB Register and G3RB Register

7 b6 b5 b	b4 b3	b2 b1	b0	Symb			After Reset	
		$\frac{1}{1}$	Ļ	G3MF	R 017A ₁₆		00XX 00002	
				Bit Symbol	Bit Name		Function	RW
				GMD0	Communication Mod	de	0 0: Communication unit is reset (The ROER bit is set to "0")	RV
				GMD1	Select Bit		 0 1: Clock synchronous serial I/O mode 1 0: Do not set to this value 1 1: Do not set to this value 	RV
		Ĺ		CKDIR	Internal/External Clo Select Bit		0 : Internal clock 1 : External clock	RW
				TLD	Transfer Data Lengt Select Bit		0 : 16 bits long 1 : 8 bits long	RW
				(b5 - b4)	Nothing is assigned. When read, its conte			_
				UFORM	Transfer Format Select Bit		0 : LSB first 1 : MSB first	RW
				IRS	Transmit Interrupt Cause Select Bit		0 : No data is in the transmit buffer 1 : Transmission is completed	RW
		'O C		Symb		Reg	After Reset	
					ol Address	Reg		
				Symb G3Cl Bit	ol Address R 017B16	Reg	After Reset 0000 X0002	RM
			ьо 	Symb G3Cl Bit Symbol	ol Address R 017B16 Bit Name		After Reset 0000 X0002 Function	
				Symb G3Cl Bit	ol Address R 017B16	0 : Ti	After Reset 0000 X0002	
			ьо 	Symb G3Cl Bit Symbol	ol Address R 017B16 Bit Name	0 : Ti 1 : Ti 0 : D (c 1 : N	After Reset 0000 X0002 Function ransmit disable	RW
			ьо 	Symb G3Cl Bit Symbol TE	ol Address R 017B16 Bit Name Transmit Enable Bit Transmit Register	0 : Ti 1 : Ti 0 : D (c 1 : N (ti 0 : D	After Reset 0000 X0002 Function ransmit disable ransmit enable vata is in transmit register during transmission) o data is in the transmit register	RW
			ьо 	Symb G3Cl Symbol TE TXEPT	ol Address R 017B16 Bit Name Transmit Enable Bit Transmit Register Empty Flag Transmit Buffer	0 : Ti 1 : Ti 0 : D (c 1 : N (ti 0 : D 1 : N When	After Reset 0000 X0002 Function ransmit disable ransmit enable rata is in transmit register during transmission) to data is in the transmit register ransmission is completed) rata is in the G3TB register to data is in the G3TB register n write, set to "0".	RW RC
			ьо 	Symb G3Cl Symbol TE TXEPT TI	ol Address 017B16 Bit Name Transmit Enable Bit Transmit Register Empty Flag Transmit Buffer Empty Flag Nothing is assigned.	0 : Tn 1 : Tn 0 : D (cc 1 : N (ti 1 : N 0 : D 1 : N When nt is ir 0 : R	After Reset 0000 X0002 Function ransmit disable ransmit enable rata is in transmit register during transmission) to data is in the transmit register ransmission is completed) rata is in the G3TB register to data is in the G3TB register n write, set to "0".	RW RC
			ьо 	Symb G3Cl Symbol TE TXEPT TI (b3)	ol Address 017B16 Bit Name Transmit Enable Bit Transmit Register Empty Flag Transmit Buffer Empty Flag Nothing is assigned. When read, its conter	0 : Ti 1 : Ti 0 : D (cc 1 : N (ti 0 : D 1 : N Wheen nt is ir 0 : R 1 : R 0 : N	After Reset 0000 X0002 Function ransmit disable ransmit disable ransmit enable ata is in transmit register during transmission) io data is in the transmit register ransmission is completed) rata is in the G3TB register to data is in the G3TB register n write, set to "0". ndeterminate. eceive disabled	RW RV RC RC RC
			ьо 	Symb G3Cl Symbol TE TXEPT TI (b3) RE	ol Address R 017B16 Bit Name Transmit Enable Bit Transmit Register Empty Flag Transmit Buffer Empty Flag Nothing is assigned. When read, its conter Receive Enable Bit Receive Complete	0 : Ti 1 : Ti 0 : D 1 : N (ti 0 : D 1 : N Wheel nt is ir 0 : R 0 : N 1 : D 0 : C 0 : C 1 : N 0 : D 0 : D 0 : C 0 : D 0 : D 0 : D 0 : C 0 : D 0 : D 0 : D 0 : D 0 : D 0 : D 0 : C 0 : D 0 : D 0 : D 0 : C 0 : D 0 : C 0 : D 0 : C 0 : C	After Reset 0000 X0002 Function ransmit disable ransmit enable rata is in transmit register during transmission) to data is in the transmit register ransmission is completed) rata is in the G3TB register to data is in the G3TB register n write, set to "0". ndeterminate. eccive disabled eccive enabled o data is in the G3RB register	RW RC RC

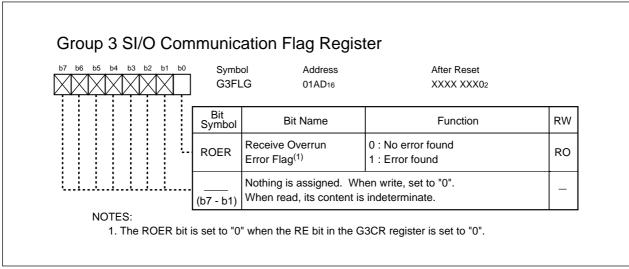


Figure 21.49 G3FLG Register

21.6.1 8-bit or 16-bit Clock Synchronous Serial I/O Mode (Group 3)

In 8-bit or 16-bit clock synchronous serial I/O mode, data is transmitted and received using the transfer clock. When the internal clock is selected as the transfer clock, the channel 0 and channel 2 waveform generation functions generate the transfer clock. ISTxD3, ISCLK3 and ISRxD3 share pins with OUTC30 to OUTC32 and are available in the 144-pin package only.

Table 21.41 lists specifications of clock synchronous serial I/O mode. Table 21.42 lists registers to be used and their settings. Tables 21.43 and 21.44 list pin settings. Figure 21.50 and 21.51 shows an example of transmit and receive operation.

Item	Specification				
Transfer Data Format	Transfer data : 8 bits or 16 bits long				
Transfer Clock ⁽¹⁾	 When the CKDIR bit in the G3MR register is set to "0" (internal clock) : ^{fBT3}/_{2(n+2)} n : setting value of the G3PO0 register, 000116 to FFFD16 The G3PO0 register determines the bit rate and the transfer clock is generated in phase-delayed waveform output mode of the channel 2 waveform generation function. When the CKDIR bit is set to "1" (external clock) : input from the ISCLK3 pin 				
Transmit Start Condition ⁽²⁾	 Set registers associated with the waveform generation function and the G3MR register. Then, set as written below after waiting at least one transfer clock cycle. Set the TE bit in the G3CR register to "1" (transmit enable) Set the TI bit in the G3CR register to "0" (data in the G3TB register) 				
Receive Start Condition	 Set registers associated with the waveform generation function and the G3MR register. Then, set as written below after waiting at least one transfer clock cycle. Set the RE bit in the G3CR register to "1" (receive enable) Set theTE bit to "1" (transmit enable) Set the TI bit to "0" (data in the G3TB register) 				
Interrupt Request	 While transmitting, one of the following conditions can be selected to set the SIO3TR bit in the IIO10IR register to "1" (see Figure 10.14) : When the IRS bit in the G3MR register is set to "0" (no data in the transmit buffer), one transfer clock cycle after data transmission starts When the IRS bit is set to "1" (reception completed), 15 transfer clock cycles after data transmission starts in 16-bit clock synchronous serial I/O mode (set the DLS bit in the G3MR register to "0"), or 7 transfer clock cycles after data transmission starts in 8-bit clock clock synchronous serial I/O mode (set the DLS bit to "1"). While receiving, the following condition can be selected to set the SIO3RR bit in the IIO9IR register to "1" (see Figure 10.14) : 15.5 transfer clock cycles after data transmission starts in 3-bit clock synchronous serial I/O mode, or 7.5 transfer clock cycles after data transmission starts in 8-bit clock synchronous serial I/O mode 				
Error Detection	 Overrun error⁽³⁾ This error occurs in 16-bit clock synchronous serial I/O mode when the 15th bit of the next data is received before reading the G3RB register. This error occurs in 8-bit clock synchronous serial I/O mode when the 7th bit of the next data is received before reading the G3RB register. 				
Selectable Function	 LSB first/MSB first Select either bit 0 or bit 7 to transmit/receive data ISTxD3 and ISRxD3 I/O polarity inverse ISTxD3 pin output level and ISRxD3 pin input level are inversed 				

Table 21.41	Clock Synchronous	Serial I/O Mode	(Group 3)
-------------	--------------------------	-----------------	-----------

NOTES:

1. The transfer clock must be fBT3 divided by six or more.

- 2. Transmit interrupt request is generated when the TE bit is set to "1". Set the interrupt-associated registers after setting the TE bit.
- 3. When an overrun error occurs, the G3RB register is indeterminate.

Register	Bit	Function			
G3BCR0	BCK1 to BCK0	Set to "112"			
	DIV4 to DIV0	Select divide ratio of count source			
	IT	Set to "0"			
G3BCR1	7 to 0	Set to "0001 00102"			
G3POCR0	7 to 0	Set to "0000 01112"			
G3POCR1	7 to 0	Set to "0000 01112"			
G3POCR2	7 to 0	Set to "0000 00102"			
G3PO0	15 to 0	Set bit rate			
		$\frac{\text{fBT3}}{2 \text{ x (setting value + 2)}} = \text{transfer clock frequency}$			
G3PO2	15 to 0	Set to a value smaller than the G3PO0 register			
G3FE	7 to 0	Set to "0000 01112"			
G3MR	GMD1 to GMD0	Set to "012"			
	CKDIR	Select the internal clock or external clock			
	TLD	Select transfer data length			
	UFORM	Select either LSB first or MSB first			
	IRS	Select how the transmit interrupt is generated			
G3CR	TE	Set to "1" to enable transmission			
	TXEPT	Transmit register empty flag			
	ТІ	Transmit buffer empty flag			
	RE	Set to "1" to enable reception			
	RI	Receive complete flag			
	OPOL	ISTxD3 output polarity inverse (usually set to "0")			
	IPOL	ISRxD3 input polarity inverse			
G3TB	15 to 0	Write transmit data			
G3RB	15 to 0	Received data is stored			

Table 21.42 Registers to be Used and Settings

Table 21.43 Pin Setting in Clock Synchronous Serial I/O Mode (Group 3)

Port	Function		Register ⁽¹⁾			
Name		PS2 Register	PSL2 Register	PD8 Register	IPS Register	
P81	ISTxD3 output	PS2_1 = 1	PSL2_1 = 1	-	-	G3POCR0
P82	ISRxD3 input	PS2_2 = 0	-	PD8_2 = 0	IPS7 = 0	-

NOTES:

1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output of the communication function used).

Port	Function		Register ⁽¹⁾		
Name		PS6 Register	PD12 Register	IPS Register	
P120	ISTxD3 output	PS6_0 =1	-	-	G3POCR0
P121	ISCLK3 input	PS6_1 = 0	PD12_1 = 0	-	-
	ISCLK3 output	PS6_1 = 1	-	-	G3POCR1
P122	ISRxD3 input	PS6_2 = 0	PD12_2 = 0	IPS7 = 1	-

NOTES:

1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output of the communication function used).

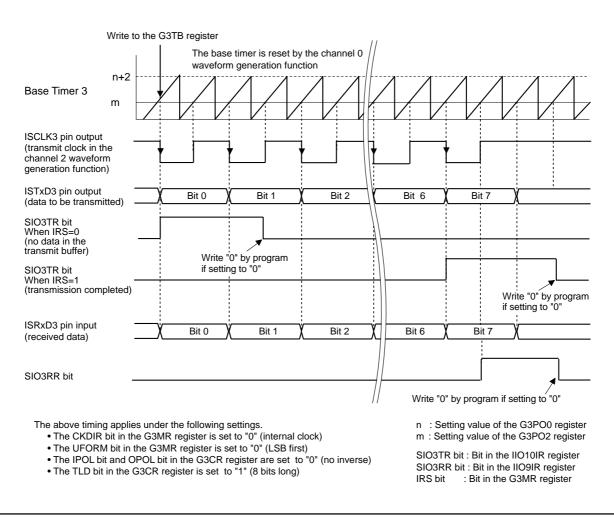


Figure 21. 50 Transmit and Receive Operation (8-bit Length)

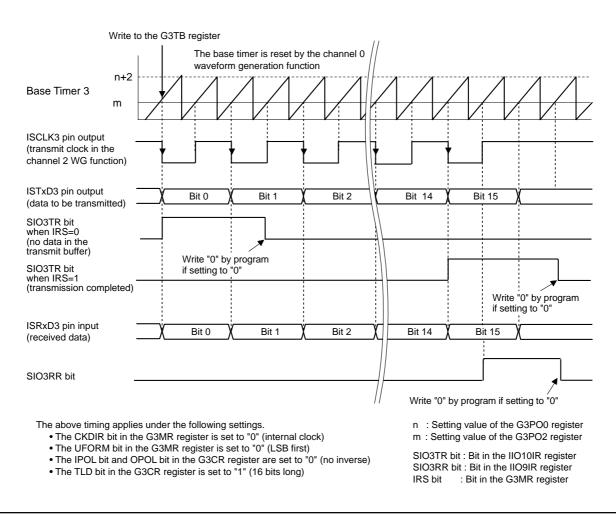


Figure 21. 51 Transmit and Receive Operation (16-bit Length)

22. CAN Module

The CAN (Controller Area Network) module incorporated in the M32C/83 group is a Full CAN module, compatible with CAN Specification 2.0 Part B. Table 22.1 lists specifications of the CAN module.

Item	Specification
Protocol	CAN Specification 2.0 Part B
Message Slots	16 slots
Polarity	Dominant: "L"
	Recessive: "H"
Acceptance Filter	Global mask: 1 mask (for message slots 0 to 13)
	Local mask: 2 masks (for message slots 14 and 15 respectively)
Baud Rate	Baud rate = $\frac{1}{\text{Tq clock cycle x Tq per bit}}$ Max. 1 Mbps
	$Tq clock cycle = \frac{BRP + 1}{f_1}$
	Tq per bit = SS + PTS +PBS1+PBS2
	Tq: Time quantum
	BRP: Setting value in the C0BRP and C1BRP registers, 1-255
	SS: Synchronization Segment; 1 Tq
	PTS: Propagation Time Segment; 1 to 8 Tq
	PBS1: Phase Buffer Segment 1; 2 to 8 Tq
	PBS2: Phase Buffer Segment 2; 2 to 8 Tq
Remote Frame Automatic	Message slot that receives the remote frame transmits the data frame
Answering Function	automatically
Time Stamp Function	Time stamp function with a 16-bit counter. Count source can be selected
	from the CAN bus bit clock divided by 1, 2, 3 or 4.
BasicCAN Mode	BasicCAN function can be used with the CANi message slots 14 and 15.
Transmit Abort Function	Transmit request is aborted
Loopback Function	Frame transmitted by the CAN module is received by the same CAN module
Forcible Error Active	The CAN module is forced into an error active state
Clear Function	

Table 22.1	CAN Modul	e Specifications
------------	-----------	------------------

NOTES:

1. Use an oscillator with maximum 1.58% oscillation tolerance.

Figure 22.1 shows a block diagram of the CAN module. Figure 22.2 shows CANi message slot buffer (the message slot buffer) (i=0,1) and CANi message slot (the message slot) j (j=0 to 15). Table 22.2 lists pin settings of the CAN module.

The message slot cannot be accessed directly from the CPU. Allocate the message slot j to be used to the message slot buffer 0 or 1. The message slot j is accessed via the message slot buffer address. The CiSBS register selects the message slot j to be allocated. Figure 22.2 shows the 16-byte message slot buffer and message slot.

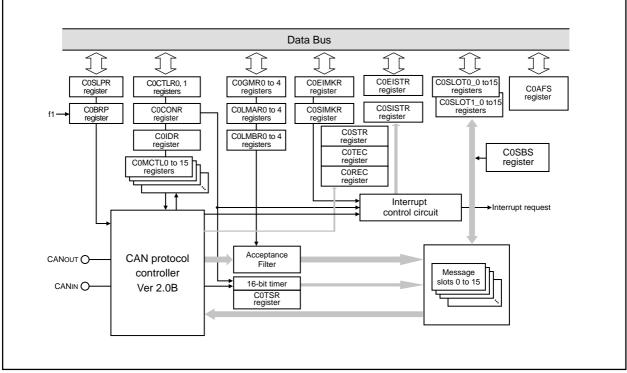


Figure 22.1 CAN Module Block Diagram

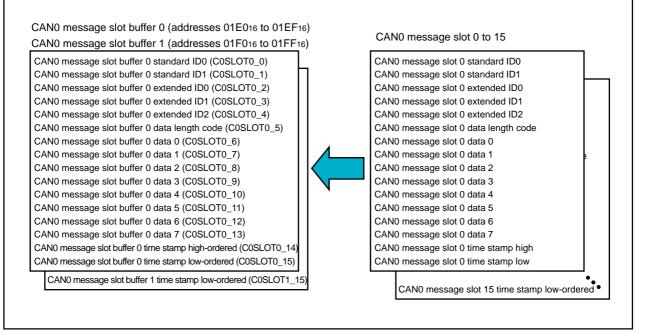
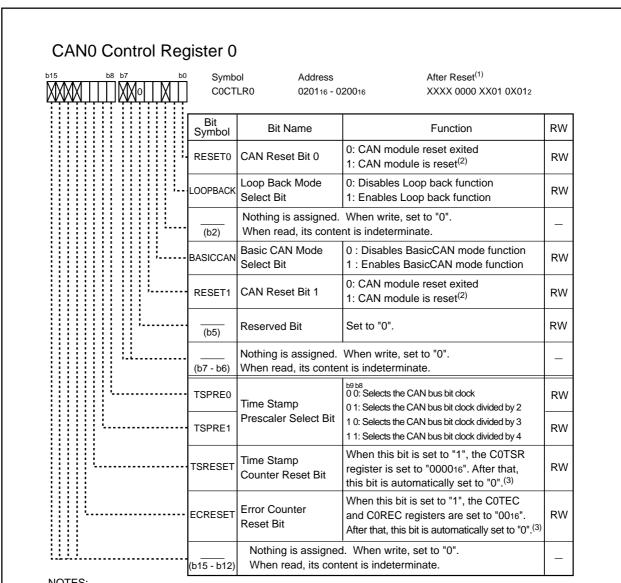


Figure 22.2 Message Slot Buffer and Message Slot


Table 22.2 Pin Settings

Port	Function	Bit and Setting						
		PS1, PS2 PSL1, PSL2		PSC Registers	IPS Registers	PD7, PD8		
		Registers	Registers			Registers		
P76	CANout	PS1_6=1	PSL1_6=0	PSC_6=1	-	-		
P77	CANIN	PS1_7=0	-	_	IPS3=0	PD7_7=0		
P82	CANOUT	PS2_2=1	PSL2_2=1	_	_	-		
P83	CANIN	_	_	_	IPS3=1	PD8_3=0		

22.1 CAN-Associated Registers

Figures 22.3 to 22.26 show registers associated with CAN. To access the associated registers, set the MCD4 to MCD0 bits in the MCD register to "100102" (no division of CPU clock), the PM13 bit in the PM1 register to "1" (2 wait states), and the CM07 bit in the CM0 register to "0" (XIN-XOUT selected).

22.1.1 CAN0 Control Register 0 (C0CTLR0 Register)

NOTES:

1. Value is obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) and supplying a clock to the CAN module after reset.

2. Set the RESET0 bit and RESET1 bit to the same value simultaneously.

3. This bit can be set to "1" by program, but cannot be set to "0".

Figure 22.3 C0CTLR0 Register

22.1.1.1 RESET0 Bit and RESET1 Bit

When both RESET0 and RESET1 bits are set to "1", the CAN module is immediately reset regardless of ongoing CAN communication.

After the RESET0 and RESET1 bits are set to "1" and the CAN module reset is completed, the C0TSR register is set to "000016". The C0TEC and C0REC registers are set to "0016" and the STATE_ERRPAS and STATE_BUSOFF bits in the C0STR register are set to "0" as well.

When both RESET0 and RESET1 bits are changed "1" to "0", the C0TSR register starts counting. CAN communication is available after 11 continuous recessive bits are detected.

NOTES:

- 1. Set the same value in both RESET0 and RESET1 bits simultaneously.
- 2. Set CAN configuration upon confirming that the STATE_RESET bit in the COSTR register is set to "1" (CAN module reset completed) after setting the RESET0 and RESET1 bits to "1".
- 3. The CANOUT pin outputs an "H" signal as soon as the RESET0 and RESET1 bits are set to "1". CAN bus error may occur when the RESET0 and RESET1 bits are set to "1" while the CAN frame is transmitting.
- 4. For CAN communication, set the PS1, PS2, PSL1, PSL2, PSC, and IPS registers when the STATE_RESET bit is set to "1" (CAN module reset completed).

22.1.1.2 LOOPBACK Bit

When the LOOPBACK bit is set to "1" (loopback function enabled) and the receive message slot has a matched ID and frame format with a transmitted frame, the transmitted frame is stored to the receive message slot.

NOTES:

- 1. No ACK for the transmitted frame is returned.
- 2. Change the LOOPBACK bit only when the STATE_RESET bit is set to "1" (CAN module reset completed).

22.1.1.3 BASICCAN Bit

When the BASICCAN bit is set to "1", the message slots 14 and 15 enter BasicCAN mode.

In BasicCAN mode, the message slots 14 and 15 are used as dual-structured buffers. The message slot 14 and 15 alternately store a received frame having matched ID detected by acceptance filtering. The ID in the message slot 14 and the C0LMAR0 to C0LMAR4 registers are used for acceptance filtering when the message slot 14 is active (the next received frame is to be stored in the message slot 14). The ID in the message slot 15 and the C0LMBR0 to C0LMBR4 registers are used when the message slot 15 is active. Both data frame and remote frame can be received.

When entering BasicCAN mode, set the same ID in two message slots and set the same values in the C0LMAR0 to C0LMAR4 registers and in the C0LMBR0 to C0LMBR4 registers.

Follow the procedure below to enter BasicCAN mode.

- (1) Set the BASICCAN bit to "1".
- (2) Set IDs in the message slots 14 and 15. Set the C0LMAR0 to C0LMAR4 registers and C0LMBR0 to C0LMBR4 registers. (Set to the same values.)
- (3) Set the IDE14 and 15 bits in the COIDR register to select a frame format (standard or extended) for the message slots 14 and 15. (Set to the same format.)
- (4) Set the REMACTIVE bit in the COMCTL14 and COMCTL15 registers in the message slots 14 and 15 to "0" (data frame received) and the RECREQ bit to "1" (request to receive).

NOTES:

- 1. Change the BASICCAN bit only when the STATE_RESET bit is set to "1" (CAN module reset completed).
- 2. The message slot 14 is the first slot to become active after the RESET0 and RESET1 bits are set to "0".
- 3. The message slots 0 to 13 are not affected by entering BasicCAN mode.

22.1.1.4 TSPRE1, TSPRE0 Bits

The TSPRE1 and TSPRE0 bits determine which count source is used for the time stamp counter. NOTES:

1. Change the TSPRE1 to TSPRE0 bits only when the STATE_RESET bit is set to "1" (CAN module reset completed).

22.1.1.5 TSRESET Bit

When the TSRESET bit is set to "1" (counter reset), the COTSR register is set to "000016". The TSRESET bit is automatically set to "0" after the COTSR register is set to "000016".

22.1.1.6 ECRESET Bit

When the ECRESET bit is set to "1", the COTEC and COREC registers are set to "0016". The CAN module forcibly goes into an error active state.

The ECRESET bit is automatically set to "0" after the CAN module enters an error active state. NOTES:

1. In an error active state, the CAN module is ready to communicate when 11 continuous recessive bits are detected on the CAN bus.

22.1.2 CAN0 Control Register 1 (C0CTLR1 Register)

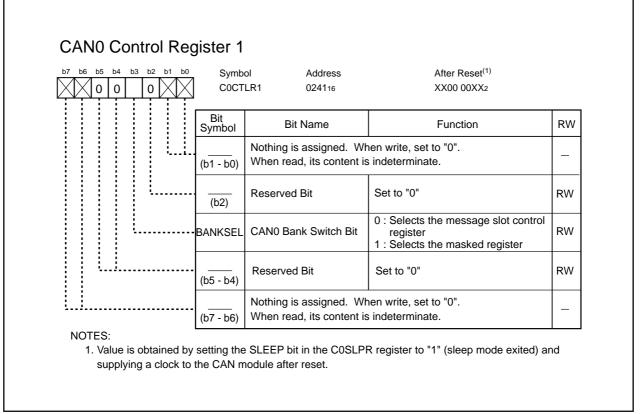
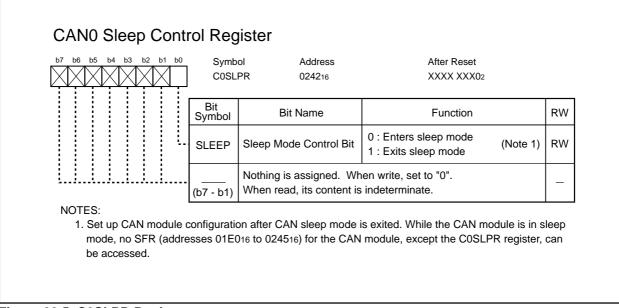


Figure 22.4 C0CTLR1 Register


22.1.2.1 BANKSEL Bit

The BANKSEL bit in the C0CTLR1 register selects the registers allocated to addresses 022016 to 023F16.

The COMCTL0 to COMCTL15 registers can be accessed by setting the BANKSEL bit to "0". The COGMR0 to COGMR4 registers, COLMAR0 to COLMAR4 registers and COLMBR0 to COLMBR4 registers can be accessed by setting the BANKSEL bit to "1".

22.1.3 CAN0 Sleep Control Register (C0SLPR Register)

Figure 22.5 COSLPR Register

22.1.3.1 SLEEP Bit

When the SLEEP bit is set to "0", the clock supplied to the CAN module stops running and enters sleep mode.

When the SLEEP bit is set to "1", the clock supplied to the CAN module starts running and exits sleep mode.

NOTES:

1. Enter sleep mode after the STATE_RESET bit in the COSTR register is set to "1" (CAN module reset completed).

22.1.4 CAN0 Status Register (C0STR Register)

		Symbol C0STR	Address 020316 - 020216	After reset ⁽¹⁾ X000 0X01 0000 00002	
		Bit Symbol	Bit Name	Function	RW
		MBOX0		b3 b2 b1 b0 0 0 0 0 : Message slot 0	RO
		MBOX1	Active Slot	0 0 0 1 : Message slot 1 0 0 1 0 : Message slot 2 0 0 1 1 : Message slot 3	RO
	·	MBOX2	Determination Bit		RO
		MBOX3		1 1 0 1 : Message slot 13 1 1 1 0 : Message slot 14 1 1 1 1 : Message slot 15	RO
		TRMSUCC	Transmit Complete State Flag	0: Transmission is not completed 1: Transmission is completed	RO
		RECSUCC	Receive Complete State Flag	0: Reception is not completed 1: Reception is completed	RO
		TRMSTATE	Transmit State Flag	0: Not transmitting 1: During transmission	RO
· · · · · · · · · · · · · · · · · · ·		RECSTATE	Receive State Flag	0: Not receiving 1: During reception	RO
· · · · · · · · · · · · · · · · · · ·		STATE_RESET	CAN Reset State Flag	0: CAN module is operating 1: CAN module reset is completed	RO
		STATE_LOOPBACK	Loop Back State Flag	0: Mode except Loop back mode 1: Loop back mode	RO
· · · · · · · · · · · · · · · · · · ·		(b10)	Nothing is assigned. Wh When read, its content is		_
		STATE_BASICCAN	BasicCAN State Flag	0: Mode except BasicCAN mode 1: BasicCAN mode	RO
		STATE_BUSERROR	CAN Bus Error State Flag	0: No error occurs 1: Error occurs	RO
		STATE_ERRPAS	Error Passive State Flag	0: No error passive state 1: Error passive state	RO
		STATE_BUSOFF	Bus-off State Flag	0: No bus-off state 1: Bus-off state	RO
		(b15)	Nothing is assigned. Wh When read, its content is		_

supplying a clock to the CAN module after reset.

Figure 22.6 C0STR Register

22.1.4.1 MBOX3 to MBOX0 Bits

The MBOX3 to MBOX0 bits store relevant slot numbers when the CAN module has completed transmitting data or storing received data.

22.1.4.2 TRMSUCC Bit

The TRMSUCC bit is set to "1" when the CAN module has transmitted data as expected. The TRMSUCC bit is set to "0" when the CAN module has received data as expected.

22.1.4.3 RECSUCC Bit

The RECSUCC bit is set to "1" when the CAN module has received data as expected. (Whether received message has been stored in the message slot or not is irrelevant.) If the received message is transmitted in loopback mode, the TRMSUCC bit is set to "1" and the RECSUCC bit is set to "0". The RECSUCC bit is set to "0" when the CAN module has transmitted data as expected.

22.1.4.4 TRMSTATE Bit

The TRMSTATE bit is set to "1" when the CAN module is performing as a transmit node. The TRMSTATE bit is set to "0" when the CAN module is in a bus-idle state or starts performing as a receive node.

22.1.4.5 RECSTATE Bit

The RECSTATE bit is set to "1" when the CAN module is performing as a receive node. The RECSTATE bit is set to "0" when the CAN module is in a bus-idle state or starts performing as a transmit node.

22.1.4.6 STATE_RESET Bit

After both RESET0 and RESET1 bits are set to "1" (CAN module reset), the STATE_RESET bit is set to "1" as soon as the CAN module is reset.

The STATE_RESET bit is set to "0" when the RESET0 and RESET1 bits are set to "0".

22.1.4.7 STATE_LOOPBACK Bit

The STATE_LOOPBACK bit is set to "1" when the CAN module is in loopback mode.

The STATE_LOOPBACK bit is set to "1" when the LOOPBACK bit in the COCTLR0 register is set to "1" (loop back function enabled).

The STATE_LOOPBACK bit is set to "0" when the LOOPBACK bit is set to "0" (loop back function disabled).

22.1.4.8 STATE_BASICCAN Bit

The STATE_BASICCAN bit is set to "1" when the CAN module is in BasicCAN mode. Refer to **22.1.1.3 BASICCAN Bit** for BasicCAN mode.

The STATE_BASICCAN bit is set to "0" when the BASICCAN bit is set to "0" (BasicCAN mode function disabled).

The STATE_BASICCAN bit is set to "1" when the BASICCAN bit is set to "1" (BasicCAN mode function enabled), the REMACTIVE bits in the COMCTL14 and COMCTL15 registers in the message slot 14 and 15 are set to "0" (data frame received) and the RECREQ bit is set to "1" (request to receive the frame).

22.1.4.9 STATE_BUSERROR Bit

The STATE_BUSERROR bit is set to "1" when an CAN communication error is detected.

The STATE_BUSERROR bit is set to "0" when the CAN module has transmitted or received data as expected. Whether a received message has been stored into the message slot or not is irrelevant. NOTES:

1. When the STATE_BUSERROR bit is set to "1", the STATE_BUSERROR bit remains unchanged even if both RESET 0 and RESET1 bits are set to "1" (CAN module reset).

22.1.4.10 STATE_ERRPAS Bit

The STATE_ERRPAS bit is set to "1" when the value of the COTEC or COREC register exceeds 127 and places the CAN module in an error-passive state.

The STATE_ERRPAS bit is set to "0" when the CAN module in an error passive state is placed in another error state.

The STATE_ERRPAS bit is set to "0" when both RESET0 and RESET1 bits are set to "1" (CAN module is reset).

22.1.4.11 STATE_BUSOFF Bit

The STATE_BUSOFF bit is set to "1" when the value of the COTEC register exceeds 255 and the CAN module in a bus-off state.

The STATE_BUSOFF bit is set to "0" when the CAN module in a bus-off state is placed in an erroractive state.

The STATE_BUSOFF bit is set to "0" when both RESET0 and RESET1 bits are set to "1" (CAN module reset).

22.1.5 CAN0 Extended ID Register (C0IDR Register)

b15	b8 b7 b0	Symb		After Reset ⁽¹⁾	
		COIDF	R 020516 - 020416	000016	
		Bit Symbol	Bit Name	Function	RW
		IDE15	Extended ID15 (message slot 15)	Standard or extended	RW
		IDE14	Extended ID14 (message slot 14)	format is set by the	RW
		IDE13	Extended ID13 (message slot 13)	corresponding message	RW
		IDE12	Extended ID12 (message slot 12)	slot 0: Standard format	RW
		IDE11	Extended ID11 (message slot 11)	1: Extended format	RW
		IDE10	Extended ID10 (message slot 10)		RW
		IDE9	Extended ID9 (message slot 9)		RW
		IDE8	Extended ID8 (message slot 8)		RW
		IDE7	Extended ID7 (message slot 7)		RW
		IDE6	Extended ID6 (message slot 6)		RW
		IDE5	Extended ID5 (message slot 5)		RW
		IDE4	Extended ID4 (message slot 4)		RW
		IDE3	Extended ID3 (message slot 3)		RW
		IDE2	Extended ID2 (message slot 2)		RW
		IDE1	Extended ID1 (message slot 1)		RW
		IDE0	Extended ID0 (message slot 0)		RW
	e is obtained by se lying a clock to th	0	SLEEP bit in the C0SLPR register to "	1" (sleep mode exited) and	1

Figure 22.7 COIDR Register

Bits in the COIDR register determine the frame format in the message slot corresponding to each bit. The standard format is selected when the bit is set to "0".

The extended format is selected when the bit is to set "1". NOTES:

1. Set each bit in the COIDR register when neither transmit request nor receive request from the message slot is generated.

22.1.6 CAN0 Configuration Register (C0CONR Register)

	⁰⁰ Symb		After Reset ⁽¹⁾ 0000 0000 0000 XXXX2	
	Bit Symbol	Bit Name	Function	RW
·	(b3 - b0)	Nothing is assigned. W When read, its content i		-
· · · · · · · · · · · · · · · · · · ·	- SAM	Sampling Number	0: Sampled once 1: Sampled three times	RW
	PTS0		b7 b6 b5 0 0 0: PTS = 1Tq 0 0 1: PTS = 2Tq	RW
· · · · · · · · · · · · · · · · · · ·	PTS1	Segment	0 1 0: PTS = 3Tq 0 1 1: PTS = 4Tq 1 0 0: PTS = 5Tq	RW
· · · · · · · · · · · · · · · · · · ·	PTS2		1 0 1: PTS = 6Tq 1 1 0: PTS = 7Tq 1 1 1: PTS = 8Tq	RW
	• PBS10	Phase Buffer Segment 1	b10b9 b8 0 0 0: Do not set to this value 0 0 1: PBS1 = 2Tq 0 1 0: PBS1 = 3Tq 0 1 1: PBS1 = 4Tq 1 0 0: PBS1 = 5Tq 1 0 1: PBS1 = 6Tq 1 1 0: PBS1 = 7Tq 1 1 1: PBS1 = 8Tq	RW
	PBS11			RW
	- PBS12			RW
	• PBS20	Phase Buffer Segment 2	b13b12b11 0 0 0: Do not set to this value 0 0 1: PBS2 = 2Tq 0 1 0: PBS2 = 3Tq 0 1 1: PBS2 = 4Tq 1 0 0: PBS2 = 5Tq	RW
	PBS21			RW
	PBS22		1 0 1: PBS2 = 6Tq 1 1 0: PBS2 = 7Tq 1 1 1: PBS2 = 8Tq	RW
	- SJW0	reSynchronization	b15 b14 0 0:SJW = 1Tq	
SJW1		Jump Width	0 1: SJW = 2Tq 1 0: SJW = 3Tq 1 1: SJW = 4Tq	

1. Value is obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) and supplying a clock to the CAN module after reset.

PTS: Propagation Time Segment, PBS1: Phase Buffer Segment 1, PBS2: Phase Buffer Segment 2, SJW: reSynchronization Jump Width

Figure 22.8 C0CONR Register

22.1.6.1 SAM Bit

The SAM bit determines the number of sample points to be taken per bit.

When the SAM bit is set to "0", only one sample is taken per bit at the end of the Phase Buffer Segment 1 (PBS1) to determine the value of the bit.

When the SAM bit is set to "1", three samples per bit are taken; one time quantum and two time quanta before the end of PBS1, and at the end of PBS1. The sample result value which is detected more than twice becomes the value of the bit sampled.

22.1.6.2 PTS2 to PTS0 Bits

The PTS2 to PTS0 bits determine PTS width.

22.1.6.3 PBS12 to PBS10 Bits

The PBS12 to PBS10 bits determine PBS1 width. Set the PBS12 to 10 bits to "0012" or more.

22.1.6.4 PBS22 to PBS20 Bits

The PBS22 to PBS20 bits determine PBS2 width. Set the PBS22 to PBS20 bits to "0012" or more.

22.1.6.5 SJW1 to SJW0 Bits

The SJW1 to SJW0 bits determine SJW width. Set the SJW1 to SJW0 bits to a value equal to or less than that of the PBS12 to PBS10 bits and PBS22 to PBS20 bits.

Baud Rate	BRP	Tq Clock Cycles (ns)	Tq Per Bit	PTS+PBS1	PBS2	Sample Point
1Mbps	1	66.7	15	12	2	87%
	1	66.7	15	11	3	80%
	1	66.7	15	10	4	73%
	2	100	10	7	2	80%
	2	100	10	6	3	70%
	2	100	10	5	4	60%
500Kbps	2	100	20	16	3	85%
	2	100	20	15	4	80%
	2	100	20	14	5	75%
	3	133.3	15	12	2	87%
	3	133.3	15	11	3	80%
	3	133.3	15	10	4	73%
	4	166.7	12	9	2	83%
	4	166.7	12	8	3	75%
	4	166.7	12	7	4	67%
	5	200	10	7	2	80%
	5	200	10	6	3	70%
	5	200	10	5	4	60%

Table 22.3 Bit Timing when CPU Clock = 30 MHz

22.1.7 CAN0 Time Stamp Register (C0TSR Register)

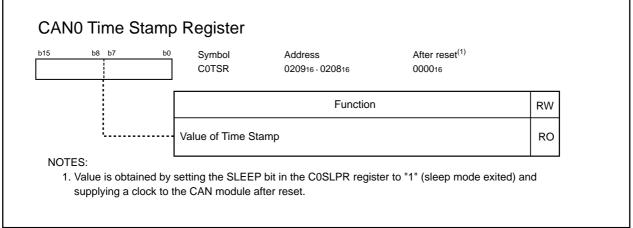
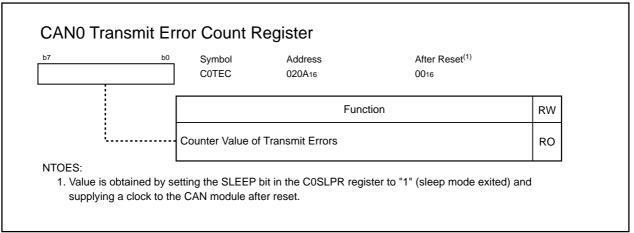


Figure 22.9 C0TSR Register

The C0TSR register is a 16-bit counter. The TSPRE0 and TSPRE1 bits in the C0CTLR0 register select the CAN bus bit clock divided by 1, 2, 3 or 4 as the count source for the C0TSR register. When data transmission or reception is completed, the value of the C0TSR register is automatically stored into the message slot.

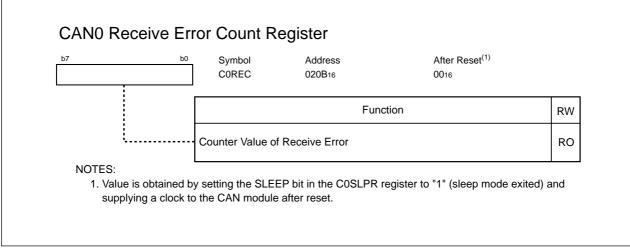

The C0TSR register starts a counter increment when the RESET0 and RESET1 bits in the C0CTLR0 register are set to "0".

The COTSR register is set to "000016":

- at the next count timing after the C0TSR register is set to "FFFF16";
- when the RESET0 and RESET1 bits are set to "1" (CAN module reset) by program, or
- when the TSRESET bit is set to "1" (C0TSR register reset) by program.

In loopback mode, when either data frame receive message slot or remote frame receive message slot is available to store the message, the value of the COTSR register is also stored into the message slot when data reception is completed. The value of the COTSR register is not stored when data transmission is completed.

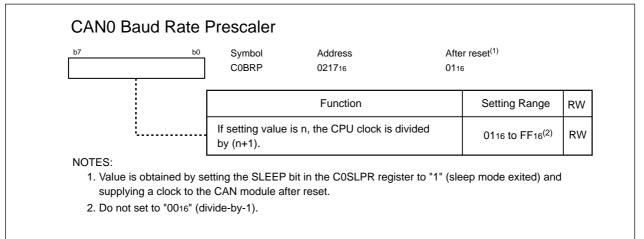
22.1.8 CAN0 Transmit Error Count Register (C0TEC Register)



In an error active or an error passive state, the count value of a transmission error is stored into the COTEC register. The counter is decremented when the CAN module has transmitted data as expected or is incremented when an transmit error occurs.

In a bus-off state, an indeterminate value is stored into the COTEC register. The COTEC register is set to "0016" when the CAN module is placed in an error active state again.

22.1.9 CAN0 Receive Error Count Register (C0REC Register)


Figure 22.11 COREC Register

In an error active or an error passive state, a count value of the reception error is stored into the COREC register. The counter is decremented when the CAN module has received data as expected or is incremented when a receive error occurs.

The COREC register is set to 127 when the COREC register is 128 (error passive state) or more and the CAN module has received as expected.

In a bus-off state, an indeterminate value is stored into the COREC register. The COREC register is set to "0016" when the CAN module is placed in an error active state again.

22.1.10 CAN0 Baud Rate Prescaler (C0BRP Register)

Figure 22.12 COBRP Register

The C0BRP register determines the Tq clock cycle of the CAN bit timing. The baud rate is obtained from Tq clock cycle x Tq per bit.

Tq clock cycle = $(BRP+1) / f_1$ Baud rate = $\frac{1}{Tq clock cycle x Tq per bit}$ Tq per bit = SS + PTS + PBS1 + PBS2 Tq: Time quantum BRP: SS: Synchronization Segment; 1 Tq PTS: PBS1: Phase Buffer Segment 1; 2 to 8 Tq PBS2

BRP: Setting value of the C0BRP register; 1-255 PTS: Propagation Time Segment; 1 to 8 Tq PBS2: Phase Buffer Segment 2; 2 to 8 Tq

22.1.11 CAN0 Slot Interrupt Status Register (C0SISTR Register)

15 b8 b7		mbol Address SISTR 020D16 -	After Reset ⁽¹⁾ 020C16 000016	
	Bit Symb	ol Bit Name	Function	RW
	SIS15	Message Slot 15 Inter Request Status Bit	Determines whether an interrupt of a corresponding message slot is	RW
	SIS14	Message Slot 14 Inter Request Status Bit	rupt requested or not.	RW
	SIS13	Message Slot 13 Inter Request Status Bit	rupt 1: Interrupt requested (Note 2)	RW
	SIS12	Message Slot 12 Inter Request Status Bit	rupt	RW
	SIS11	Message Slot 11 Intern Request Status Bit	rupt	RW
·····	SIS10	Message Slot 10 Inter Request Status Bit	rupt	RW
· · · · · · · · · · · · · · · · · · ·	SIS9	Message Slot 9 Interru Request Status Bit	ipt	RW
· · · · · · · · · · · · · · · · · · ·	SIS8	Message Slot 8 Interru Request Status Bit	ipt	RW
· · · · · · · · · · · · · · · · · · ·	SIS7	Message Slot 7 Interru Request Status Bit	ipt	RW
	SIS6	Message Slot 6 Interru Request Status Bit	ıpt	RW
· · · · · · · · · · · · · · · · · · ·	SIS5	Message Slot 5 Interru Request Status Bit	ıpt	RW
	SIS4	Message Slot 4 Interru Request Status Bit	ipt	RW
· · · · · · · · · · · · · · · · · · ·	SIS3	Message Slot 3 Interru Request Status Bit	ipt	RW
	SIS2	Message Slot 2 Interru Request Status Bit	ipt	RW
	SIS1	Message Slot 1 Interru Request Status Bit	ıpt	RW
	SIS0	Message Slot 0 Interru Request Status Bit	ıpt	RW

1. Value is obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) and supplying a clock to the CAN module after reset.

2. Set to "0" by program. If it is set to "1", the value before setting to "1" remains.

Figure 22.13 COSISTR Register

When using the CAN interrupt, the COSISTR register indicates which message slot is requesting an interrupt. The SISi bits (i=0 to 15) are not automatically set to "0" (no interrupt requested) when an interrupt is acknowledged. Set the SISj bits to "0" by program⁽¹⁾. Refer to **22.3 CAN Interrupt** for details.

22.1.11.1 Message Slot for Transmission

The SISi bit is set to "1" (interrupt requested) when the C0TSR register is stored into the message slot i after data transmission is completed.

22.1.11.2 Message Slot for Reception

The SISi bit is set to "1" when the received message is stored in the message slot i after data reception is completed.

NOTES:

1. Use the MOV instruction, instead of the bit clear instruction, to set the SISi bit to "0". Bits in the COSISTR register, which are not being changed to "0", must be to "1".

For example: To set the SIS0 bit to "0"

Assembly language:	mov.w #07FFFh, C0SISTR
C language:	c0sistr = 0x7FFF;

- 2. If the automatic answering function is enabled in the remote frame receive message slot, the SISi bit is set to "1" after the remote frame is received and after the data frame is transmitted.
- 3. In the remote frame transmit message slot, the SISi bit is set to "1" after the remote frame is transmitted and after the data frame is received.
- 4. The SISi bit is set to "1" if the SISi bit is set to "1" by an interrupt request and "0" by program simultaneously.

22.1.12 CAN0 Slot Interrupt Mask Register (C0SIMKR Register)

	b0 Syml C0SI		After Reset ⁽¹⁾ 000016	
	Bit Symbol	Bit Name	Function	RW
	SIM15		etermines whether the interrupt quest of the corresponding	RW
	SIM14	Slot 14 Interrupt me	essage slot is enabled or masked. Masks (disables) an interrupt request	R٧
	SIM13		Enables an interrupt request	R٧
	SIM12	Slot 12 Interrupt Request Mask Bit		R٧
·	SIM11	Slot 11 Interrupt Request Mask Bit		R٧
·····	SIM10	Slot 10 Interrupt Request Mask Bit		RV
·····	SIM9	Slot 9 Interrupt Request Mask Bit	-	RV
· · · · · · · · · · · · · · · · · · ·	SIM8	Slot 8 Interrupt Request Mask Bit		R٧
	SIM7	Slot 7 Interrupt Request Mask Bit		RV
· · · · · · · · · · · · · · · · · · ·	SIM6	Slot 6 Interrupt Request Mask Bit		RW
· · · · · · · · · · · · · · · · · · ·	SIM5	Slot 5 Interrupt Request Mask Bit		RW
	SIM4	Slot 4 Interrupt Request Mask Bit		RV
	SIM3	Slot 3 Interrupt Request Mask Bit		RW
	SIM2	Slot 2 Interrupt Request Mask Bit		R٧
	SIM1	Slot 1 Interrupt Request Mask Bit		R٧
	SIM0	Slot 0 Interrupt Request Mask Bit		R٧

Figure 22.14 COSIMKR Register

The CiSIMKR register determines whether an interrupt request that is generated by a data transmission or reception in the corresponding message slot is enabled or disabled. When the SIMi bit (i=0 to 15) is set to "1", an interrupt request generated by a data transmission or reception in the corresponding message slot is enabled. Refer to **22.3 CAN Interrupt** for details.

22.1.13 CAN0 Error Interrupt Mask Register (C0EIMKR Register)

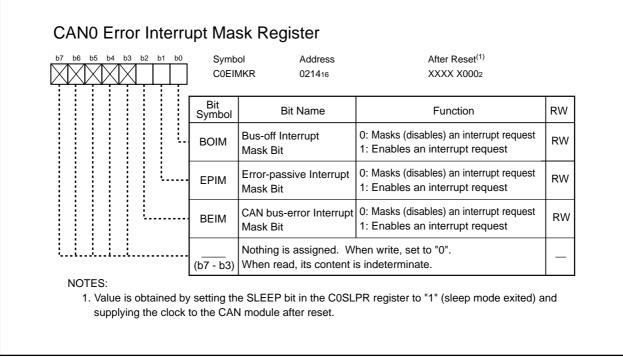


Figure 22.15 C0EIMKR Register

22.1.13.1 BOIM Bit

The BOIM bit determines whether an interrupt request is enabled or disabled when the CAN module is placed in a bus-off state. When the BOIM bit is set to "1", the bus-off interrupt request is enabled.

22.1.13.2 EPIM Bit

The EPIM bit determines whether an interrupt request is enabled or disabled when the CAN module is placed in an error passive state. When the EPIM bit is set to "1", the error passive interrupt request is enabled.

22.1.13.3 BEIM Bit

The BEIM bit determines whether an interrupt request is enabled or disabled when a CAN bus error occurs. When the BEIM bit is set to "1", the CAN bus error interrupt request is enabled.

Refer to 22.3 CAN Interrupt for details.

22.1.14 CAN0 Error Interrupt Status Register (C0EISTR Register)

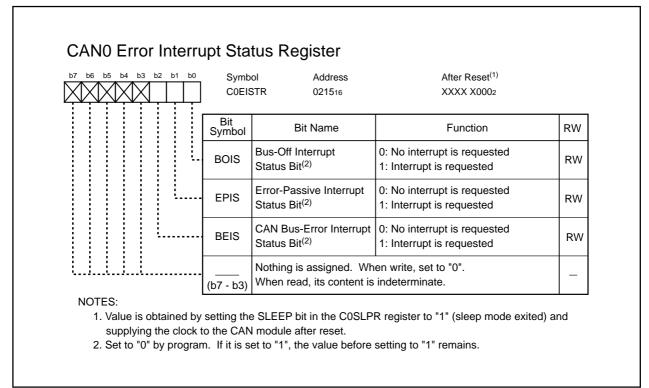


Figure 22.16 C0EISTR Register

When using the CAN interrupt, the C0EISTR register indicates the cause of the generated error interrupt. The BOIS, EPIS and BEIS bits are not automatically set to "0" (no interrupt requested) even if an interrupt is acknowledged. Set these bits to "0" by program⁽¹⁾. Refer to **22.3 CAN Interrupt** for details.

22.1.14.1 BOIS Bit

The BOIS bit is set to "1" when the CAN module is placed in a bus-off state.

22.1.14.2 EPIS Bit

The EPIS bit is set to "1" when the CAN module is placed in an error passive state.

22.1.14.3 BEIS Bit

The BEIS bit is set to "1" when a CAN bus error is detected.

NOTES:

1. Use the MOV instruction, instead of the bit clear instruction, to set each bit in the CoEISTR register to "0". Bits not being changed to "0" must be set to "1".

For example: To set the BOIS bit to "0"

Assembly language:mov.b#006h, C0EISTRC language:c0eistr = 0x06;

22.1.15 CAN0 Global Mask Register, CAN0 Local Mask Register A and CAN0 Local Mask Register B (C0GMRj (j=0 to4), C0LMARj and C0LMBRj Registers)

The COGMRj, COLMARj and COLMBRj registers are used for acceptance filtering.

The C0GMRj register determines whether the IDs in the message slots 0 to 13 are verified. The C0LMARj register determines whether the ID in the message slot 14 is verified. The C0LMBRj register determines whether the ID in the message slot 15 is verified.

- When bits in these registers are set to "0", each ID bit, standard ID 0 to 1 bit and extended ID0 to 2 bit in the CAN0 message slots i (i=0 to 15) corresponding to the bits in the above registers, is masked while acceptance filtering. (The corresponding bits are assumed to have matching IDs.)
- When bits in these registers are set to "1", corresponding ID bits are compared with received IDs while acceptance filtering. If the received ID matches the ID in the message slot i, the received data having the matching ID is stored into that message slot.

NOTES:

- 1. Change the C0GMRj register only when the message slots 0 to 13 have no receive request.
- 2. Change the COLMARj register only when the message slot 14 has no receive request.
- 3. Change the C0LMBRj register only when the message slot 15 has no receive request.

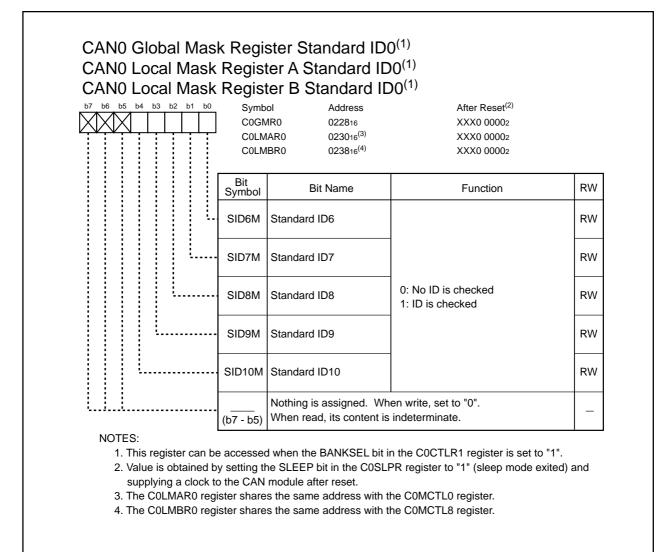
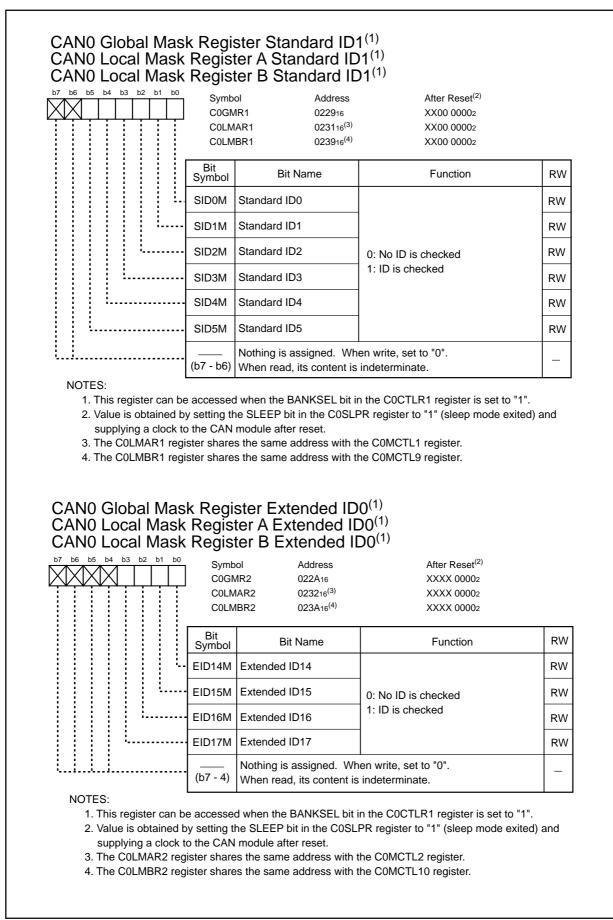
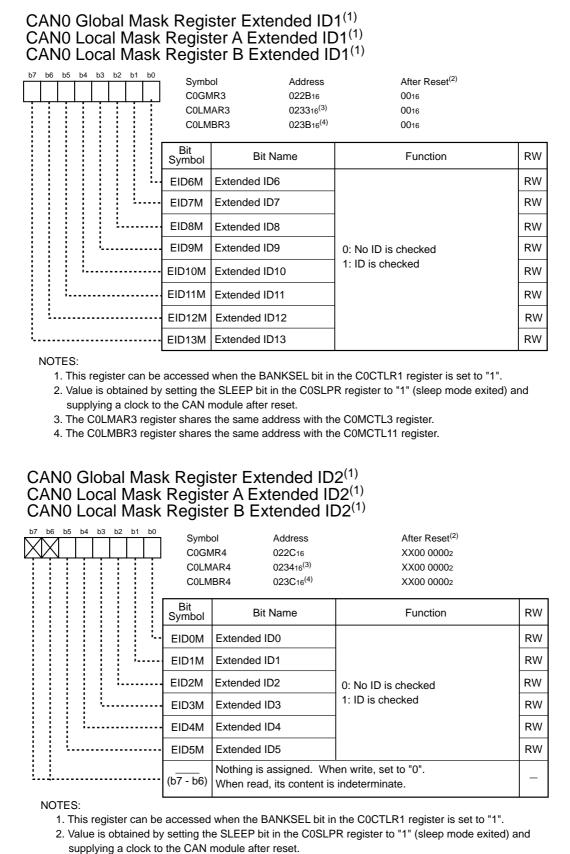




Figure 22.17 C0GMR0, C0LMAR0 and C0LMBR0 Registers

Figure 22.18 C0GMR1, C0LMAR1 and C0LMBR1 Registers and C0GMR2, C0LMAR2 and C0LMBR2 Registers

- 3. The COLMAR4 register shares the same address with the COMCTL4 register.
- 4. The C0LMBR4 register shares the same address with the C0MCTL12 register.

Figure 22.19 C0GMR3, C0LMAR3 and C0LMBR3 Registers and C0GMR4, C0LMAR4 and C0LMBR4 Registers

22.1.16 CAN0 Message Slot i Control Register (C0MCTLi Register) (i=0 to 15)

7 b6 b5 b4 b	b3 b2 b1 b0	COMCTL COMCTL	4 to C0MCTL7 8 to C0MCTL11	Address After Reset 023016 ⁽³⁾ , 023116 ⁽³⁾ , 023216 ⁽³⁾ , 023316 ⁽³⁾ 0000 00002 023416 ⁽³⁾ , 023516, 023616, 023716 0000 00002 023816 ⁽³⁾ , 023916 ⁽³⁾ , 023A16 ⁽³⁾ , 023B16 ⁽³⁾ 0000 00002 023C16 ⁽³⁾ , 023D16, 023E16, 023F16 0000 00002	2
		Bit Symbol	Bit Name	Function	RW
		When receive, NEWDATA When transmit, SENTDATA	Receive Complete Flag Transmit Complete Flag	0: Not transmitted ⁽⁴⁾ 1: Transmit complete 0: Not received ⁽⁴⁾ 1: Receive complete	RV
		When receive, INVALDATA When transmit, TRMACTIVE	Receiving Flag Transmitting Flag	When transmittingWhen receiving0: Stops transmitting0: Stops receiving1: Transmits1: Stores received data	RC
		MSGLOST	Overwrite Flag	0: No overrun error occurs 1: Overrun error occurs (Note 4)	RV
		REMACTIVE	Remote Frame Transmit/Receive Status Flag	In modes other than BasicCan mode 0: Data frame 1: Remote frame In BasicCan mode 0: Receives the data frame (status) 1: Receives the remote frame (status)	RC
		RSPLOCK	Automatic Answering Disable Mode Select Bit	0: Enables automatic answering of the remote frame1: Disables automatic answering of the remote frame	RV
		REMOTE	Remote Frame Set Bit	0: Transmits/receives the data frame 1: Transmits/receives the remote frame	RV
		RECREQ	Receive Request Bit	0: No request to receive the frame 1: Request to receive data	R٧
		TRMREQ	Transmit Request Bit	0: No request to transmit the frame 1: Request to transmit data	RV

3. The COMCTL0 to COMCTL4 registers each share addresses with the COMAR0 to COMAR4 registers.

4. Each bit can be set to "0" by program. If it is set to "1", the value before setting to "1" remains.

Figure 22.20 COMCTL0 to COMCTL15 Registers

Table 22.4 COMCTLi Register (i= 0 to 15) Settings and Transmit/Receive Mode

		Set	tings for t	he C0MCT	Li Registe	r		
TRMREQ	RECREQ	REMOTE	RSPLOCK	REMACTIVE	MSGLOST	TRMACTIVE	SENTDATA	Transmit/Receive Mode
						INVALDATA	NEWDATA	
0	0	0	0	0	0	0	0	No frame is transmitted or received
0	1	0	0	0	0	0	0	Data frame is received
0	1	1	1	0	0	0	0	Remote frame is received
			or					(The data frame is transmitted
			0					after receiving the remote frame.)
1	0	0	0	0	0	0	0	Data frame is transmitted
1	0	1	0	0	0	0	0	Remote frame is transmitted
								(The data frame is received after
								transmitting the remote frame)

22.1.16.1 SENTDATA/NEWDATA Bit

The SENTDATA/NEWDATA bit indicates that the CAN module has transmitted or received the CAN message. Set the SENTDATA/NEWDATA bit to "0 " (not transmitted or not received) by program before data transmission and reception is started. The SENTDATA/NEWDATA bit is not set to "0" automatically. When the TRMACTIVE/INVALDATA bit is set to "1" (during transmission or storing received data), the SENTDATA/NEWDATA bit cannot be set to "0".

- SENTDATA : The SENTDATA bit is set to "1" (transmit complete) when a data transmission is completed in the transmit message slot.
- NEWDATA : The NEWDATA bit is set to "1" (receive complete) when the message to be stored into the message slot i (i=0 to 15) is received in the receive message slot as expected.

NOTES:

- 1. To read a received data from the message slot i, set the NEWDATA bit to "0" before reading. If the NEWDATA bit is set to "1" immediately after reading, this indicates that new received data has been stored into the message slot while reading and the data read contains an indeterminate value. In this case, discard the data with indeterminate value and then read the message slot again after the NEWDATA bit is set to "0".
- 2. When the remote frame is transmitted or received, the SENTDATA/NEWDATA bit remains unchanged after the remote frame transmission or reception is completed. The SENTDATA/ NEWDATA bit is set to "1" when a subsequent data frame transmission or reception is completed.

22.1.16.2 TRMACTIVE/INVALDATA Bit

The TRMACTIVE/INVALDATA bit indicates that the CAN module is transmitting or receiving a message and accessing the message slot i. The TRMACTIVE/INVALDATA bit is set to "1" when the CAN module is accessing the message slot and to "0" when not accessing the message slot.

- TRMACTIVE : The TRMACTIVE bit is set to "1" (transmitting) when a data transmission is started in the message slot. The TRMACTIVE bit is set to "0" (stops transmitting) if the CAN module loses in bus arbitration and a CAN bus error occurs or when a data transmission is completed.
- INVALDATA : The INVALDATA bit is set to "1" (storing received data) when receiving a message and storing a received data into the message slot i. Data, if read from the message slot i while this bit is set to "1", is indeterminate.

22.1.16.3 MSGLOST Bit

The MSGLOST bit is valid only when the message slot is set for reception. The MSGLOST bit is set to "1" (overrun error occurred) when the message slot i is overwritten by a new received message while the NEWDATA bit set to "1" (already received).

The MSGLOST bit is not automatically set to "0". Set to "0" (no overrun error occurred) by program.

22.1.16.4 REMACTIVE Bit

The COMCTL0 to COMCTL15 registers all have the same function when the STATE_BASICCAN bit is set to "0" (other than BasicCAN mode).

The REMACTIVE bit is set to "1" (remote frame) when the message slot i is set to transmit or receive the remote frame. The REMACTIVE bit is set to "0" (data frame) after the remote frame has been transmitted or received.

The functions of the COMCTL14 and COMCTL15 registers change when the STATE_BASICCAN bit is set to "1" (BasicCAN mode). When the REMACTIVE bit is set to "0", this indicates that a message stored into the message slot is the data frame. When the REMACTIVE bit is set to "1", this indicates a message stored into the message slot is the remote frame.

22.1.16.5 RSPLOCK Bit

The RSPLOCK bit is valid only when remote frame reception shown in Table 22.4 is selected. The RSPLOCK bit determines whether the received remote frame is processed or not.

When the RSPLOCK bit is set to "0" (automatic answering of the remote frame enabled), the slot automatically changes to a transmit slot after the remote frame is received, and the message stored into the message slot is automatically transmitted as the data frame.

When the RSPLOCK bit is set to "1" (automatic answering of the remote frame disabled), message is not automatically transmitted upon receiving the remote frame.

Set the RSPLOCK bit to "0" to select any transmit/receive mode other than the remote frame reception.

22.1.16.6 REMOTE Bit

The REMOTE bit selects transmit/receive mode shown in Table 22.4. Set the REMOTE bit to "0" to transmit or receive data frame. Set to "1" to transmit or receive remote frame.

The followings occur during remote frame transmission or reception.

• Transmitting the remote frame

A message stored into the message slot i (i=0 to 15) is transmitted as the remote frame. After transmission, the slot automatically becomes ready to receive data frame.

If the data frame is received before the remote frame is transmitted, the data frame is stored into the message slot i. The remote frame is not transmitted.

• Receiving the remote frame

The message slot receives the remote frame. The RSPLOCK bit determines whether or not to process the received remote frame.

22.1.16.7 RECREQ Bit

The RECREQ bit selects transmit/receive mode shown in Table 22.4. Set the RECREQ bit to "1" (receive requested) when data frame or remote frame is received. Set the RECREQ bit to "0" (no receive requested) when data frame or remote frame is transmitted.

When a data frame is automatically transmitted after a remote frame is received, the RECREQ bit remains set to "1". Set the RECREQ bit to "0" to transmit a remote frame. After a remote frame is transmitted, a data frame is automatically received while the RECREQ bit remains set to "0".

When setting the TRMREQ bit to "1" (transmit requested), do not set the RECREQ bit to "1" (receive requested).

22.1.16.8 TRMREQ Bit

The TRMREQ bit selects transmit/receive mode shown in Table 22.4. Set the TRMREQ bit to "1" (transmit requested) when data frame or remote frame is transmitted.

Set the TRMREQ bit to "0" (no request to transmit the frame) when data frame or remote frame is received. When the data frame is automatically received after the remote frame is transmitted, the TRMREQ bit remains set to "1". Set the TRMREQ bit to "0" to receive the remote frame. After the remote frame is received, data frame is automatically transmitted while the TRMREQ bit remains set to "0".

If the RECREQ bit is set to "1" (request to receive the frame), do not set the TRMREQ bit to "1" (request to transmit the frame).

22.1.17 CAN0 Slot Buffer Select Register (C0SBS Register)

7 b6 b5 b4 b3 b2 b1 b0	Symb C0SB		After Reset ⁽²⁾ 0016	
	Bit Symbol	Bit Name	Function	RW
	SBS00		b3 b2 b1 b0 0 0 0 0 0: Message slot 0 0 0 0 1: Message slot 1	RW
	SBS01	CAN0 Message	0 0 1 0 : Message slot 2 0 0 1 1 : Message slot 3	RW
	SBS02	Slot Buffer 0 Number Select Bit	(Note 1) 1 1 0 0 : Message slot 12	RW
	SBS03		1 1 0 1 : Message slot 13 1 1 1 0 : Message slot 14 1 1 1 1 : Message slot 15	RW
	SBS10		b3 b2 b1 b0 0 0 0 0 : Message slot 0 0 0 0 1 : Message slot 1	RW
	SBS11	CAN0 Message Slot Buffer 1	0 0 1 0 : Message slot 1 0 0 1 0 : Message slot 2 0 0 1 1 : Message slot 3	RW
	SBS12	Number Select Bit	(Note 1) 1 1 0 0 : Message slot 12	RW
	SBS13		1 1 0 1 : Message slot 13 1 1 1 0 : Message slot 14 1 1 1 1 : Message slot 15	RW

2. Value is obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) and supplying a clock to the CAN module after reset.

Figure 22.21 COSBS Register

22.1.17.1 SBS03 to SBS00 Bits

If the SBS03 to SBS00 bits select a number i (i=0 to 15), the message slot i is allocated to the CAN0 message slot buffer 0. The message slot i can be accessed via addresses 01E016 to 01EF16.

22.1.17.2 SBS13 to SBS10 Bits

If the SBS13 to SBS10 bits select a number i, the message slot i is allocated to the CAN0 message slot buffer 1. The message slot i can be accessed via addresses 01F016 to 01FF16.

22.1.18 Message Slot Buffer

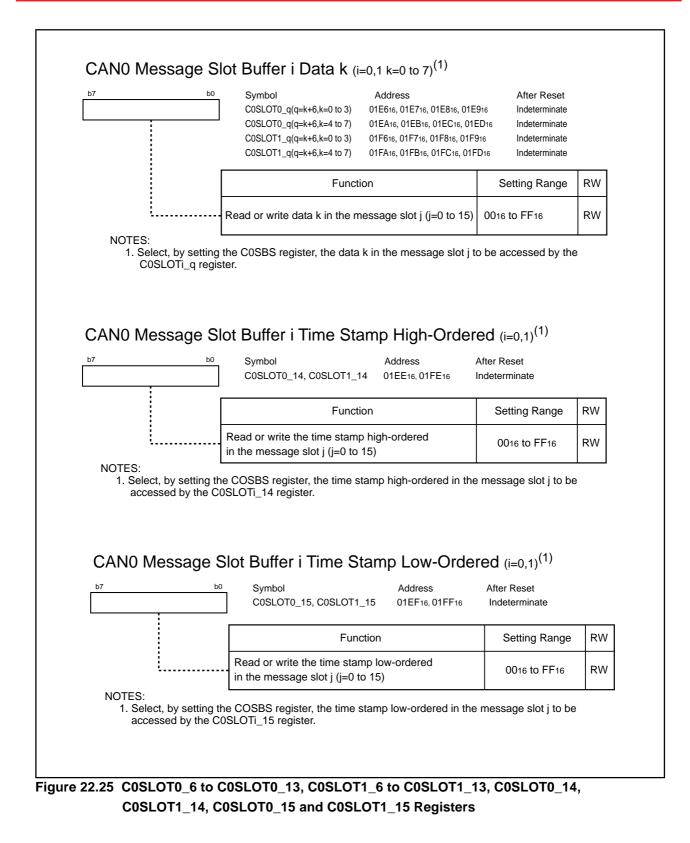
The message slot, selected by setting the COSBS register, is read by reading the message slot buffer. A message can be written in the message slot selected by the COSBS register if the message is written to the message slot buffer.

Γ

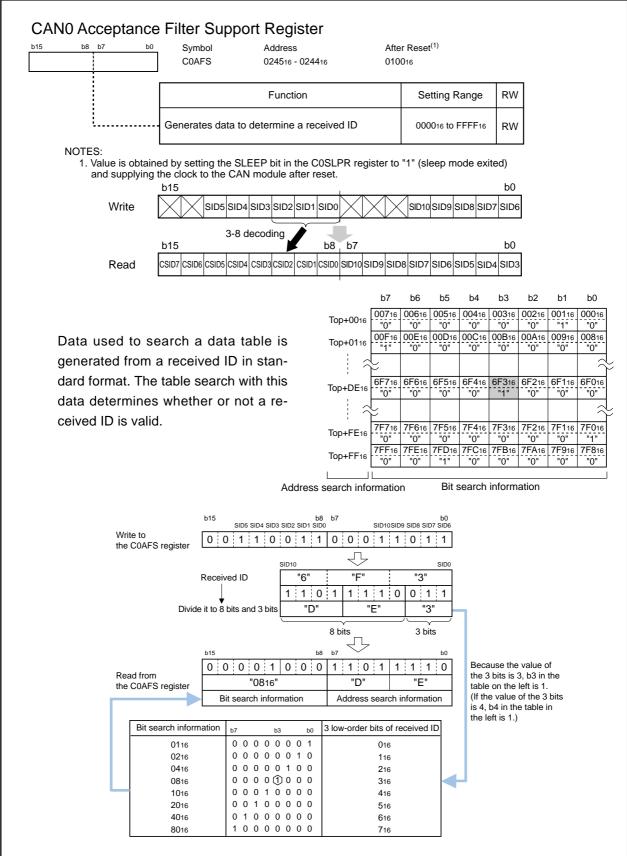
b7 b6 b5 b4	b3 b2 b1 b0	Symb C0SL		ddress After Reset E016, 01F016 Indeterminate	
		Bit Symbol	Bit Name	Function	R
		SID6	Standard ID6	Read or write the standard ID6 in the message slot j (j=0 to 15)	R
		SID7	Standard ID7	Read or write the standard ID7 in the message slot j	R
		SID8	Standard ID8	Read or write the standard ID8 in the message slot j	R
		SID9	Standard ID9	Read or write the standard ID9 in the message slot j	R
		SID10	Standard ID10	Read or write the standard ID10 in the message slot j	R
			Nothing is assigned.	When write, set to "0".	_
regis	ster.	ot Buff	register, the message sl er i Standard IE	t is indeterminate. ot j to be accessed by the C0SLOTi_0 D1 (i=0,1) ⁽¹⁾ dress After Reset E116, 01F116 Indeterminate	
1. Selerregis	essage Slo	COSBS	register, the message sl er i Standard IE	ot j to be accessed by the C0SLOTi_0 D1 (i=0,1) ⁽¹⁾ dress After Reset	
1. Sele regis	essage Slo	COSBS	register, the message sl er i Standard IE ol Ad DT0_1, C0SLOT1_1 016	ot j to be accessed by the C0SLOTi_0 D1 (i=0,1) ⁽¹⁾ dress After Reset E116, 01F116 Indeterminate	RW
1. Sele regis	essage Slo	COSBS	register, the message sl er i Standard IE bl Ad DT0_1, C0SLOT1_1 01E Bit Name	ot j to be accessed by the C0SLOTi_0 D1 (i=0,1) ⁽¹⁾ dress After Reset E116, 01F116 Indeterminate Function Read or write the standard ID0	RV
1. Sele regis	essage Slo	COSBS	register, the message sl er i Standard IE ol Ad DT0_1, C0SLOT1_1 01E Bit Name Standard ID0	ot j to be accessed by the C0SLOTi_0 D1 (i=0,1) ⁽¹⁾ dress After Reset E116, 01F116 Indeterminate Function Read or write the standard ID0 in the message slot j (j=0 to 15) Read or write the standard ID1	RV
1. Selerregis	essage Slo	Symbol SiD0 SID0	register, the message sl er i Standard IE ol Ad DT0_1, C0SLOT1_1 01E Bit Name Standard ID0 Standard ID1	ot j to be accessed by the C0SLOTi_0 D1 (i=0,1) ⁽¹⁾ dress After Reset E116, 01F116 Indeterminate Function Read or write the standard ID0 in the message slot j (j=0 to 15) Read or write the standard ID1 in the message slot j Read or write the standard ID2	RV RV RV RV
1. Sele regis	essage Slo	COSBS COSBS COSBS Symbol SID0 SID1 SID2	register, the message sl er i Standard IE ol Ad DT0_1, COSLOT1_1 01E Bit Name Standard ID0 Standard ID1 Standard ID2	ot j to be accessed by the COSLOTi_0 D1 (i=0,1) ⁽¹⁾ dress After Reset E116, 01F116 Indeterminate Function Read or write the standard ID0 in the message slot j (j=0 to 15) Read or write the standard ID1 in the message slot j Read or write the standard ID2 in the message slot j Read or write the standard ID2 in the message slot j	RV RV
1. Selerregis	essage Slo	COSBS COSBS COSBS Symbol COSLC SID0 SID1 SID2 SID2 SID3	register, the message sl er i Standard IE ol Ad DT0_1, C0SLOT1_1 01E Bit Name Standard ID0 Standard ID1 Standard ID2 Standard ID3	ot j to be accessed by the COSLOTi_0 D1 (i=0,1) ⁽¹⁾ dress After Reset E116, 01F116 Indeterminate Function Read or write the standard ID0 in the message slot j (j=0 to 15) Read or write the standard ID1 in the message slot j Read or write the standard ID2 in the message slot j Read or write the standard ID3 in the message slot j Read or write the standard ID3 in the message slot j	RV RV RV RV RV

Figure 22.22 C0SLOT0_0, C0SLOT1_0 Registers and C0SLOT0_1, C0SLOT1_1 Registers

b7 b6 b5 b4 b3 b2	2 b1 b0	Symb C0SL		Idress After Reset E216, 01F216 Indeterminate	
		Bit Symbol	Bit Name	Function	RV
		EID14	Extended ID14	Read or write the extended ID14 in the message slot j (j=0 to 15)	RV
		EID15	Extended ID15	Read or write the extended ID15 in the message slot j	RV
		EID16	Extended ID16	Read or write the extended ID16 in the message slot j	RV
		EID17	Extended ID17	Read or write the extended ID17 in the message slot j	RV
		(b7 - b4)	Nothing is assigned. V When read, its content		_
CANO Messa	-	Symb		D1 (i=0,1) ^(1, 2) Address After Reset 11E316,01F316 Indeterminate	
	-	Symb	pol A	Address After Reset	
	-	Symb COSL Bit Symbol	Dol A LOT0_3, COSLOT1_3 0 Bit Name	Address After Reset	
	-	Symb C0SL Bit	00I	Address After Reset 11E316, 01F316 Indeterminate Function	
	-	Symb COSL Bit Symbol	Dol A LOT0_3, COSLOT1_3 0 Bit Name	Address After Reset 11E316, 01F316 Indeterminate Function Read or write the extended ID6	R\
	-	Symt COSL Bit Symbol EID6	Dol A DT0_3, C0SLOT1_3 0 Bit Name Extended ID6	Address After Reset ItE316, 01F316 Indeterminate Function Read or write the extended ID6 in the message slot j (j=0 to 15) Read or write the extended ID 7	R\
	-	Symt COSL Bit Symbol EID6 EID7	Dol A DT0_3, C0SLOT1_3 0 Bit Name Extended ID6 Extended ID7	Address After Reset Indeterminate Indeterminate Function Read or write the extended ID6 in the message slot j (j=0 to 15) Read or write the extended ID 7 in the message slot j Read or write the extended ID 7 Read or write the extended ID 8 Read or write the extended ID 8	R\ R\ R\
	-	Symb COSL Bit Symbol EID6 EID7 EID8	Dol A DT0_3, C0SLOT1_3 0 Bit Name Extended ID6 Extended ID7 Extended ID8	Address After Reset Indeterminate Indeterminate Function Read or write the extended ID6 in the message slot j (j=0 to 15) Read or write the extended ID 7 in the message slot j Read or write the extended ID 7 Read or write the extended ID 8 in the message slot j Read or write the extended ID 8 Read or write the extended ID 8 Read or write the extended ID 9	R\ R\ R\
	-	Symt COSL Bit Symbol EID6 EID7 EID8 EID9	Dol A .OT0_3, COSLOT1_3 0 Bit Name Extended ID6 Extended ID7 Extended ID8 Extended ID9	Address After Reset Indeterminate Indeterminate Read or write the extended ID6 in the message slot j (j=0 to 15) Read or write the extended ID 7 in the message slot j Read or write the extended ID 7 in the message slot j Read or write the extended ID 8 in the message slot j Read or write the extended ID 8 in the message slot j Read or write the extended ID 9 in the message slot j Read or write the extended ID 9 in the message slot j	R\ R\ R\ R\ R\
	-	Symb COSL Bit Symbol EID6 EID7 EID8 EID9 EID10	Dol A LOT0_3, COSLOT1_3 0 Bit Name 0 Extended ID6 0 Extended ID7 0 Extended ID8 0 Extended ID9 0 Extended ID10 0	Address After Reset Indeterminate Indeterminate Function Function Read or write the extended ID6 in the message slot j (j=0 to 15) Read or write the extended ID 7 in the message slot j Read or write the extended ID 7 in the message slot j Read or write the extended ID 8 in the message slot j Read or write the extended ID 8 in the message slot j Read or write the extended ID 9 in the message slot j Read or write the extended ID 10 in the message slot j Read or write the extended ID 10 Read or write the extended ID 10	RV RV RV RV RV RV RV


1. If the receive slot is standard ID formatted, the EID13 to EID6 bits are indeterminate when the received data is stored.

2. Select, by setting the COSBS register the message slot j to be accessed by the COSLOTi_3 register.


Figure 22.23 C0SLOT0_2, C0SLOT1_2 Registers and C0SLOT0_3, C0SLOT1_3 Registers

b7 b6 b5 b4 b3	b2 b1 b0	Symb C0SL		ddress After Reset IE416, 01F416 Indeterminate	
		Bit Symbol	Bit Name	Function	R۱
		EID0	Extended ID0	Read or write the extended ID0 in the message slot j (j=0 to 15)	R۷
		EID1	Extended ID1	Read or write the extended ID1 in the message slot j	R۷
		EID2	Extended ID2	Read or write the extended ID2 in the message slot j	R۷
		EID3	Extended ID3	Read or write the extended ID3 in the message slot j	RV
		EID4	Extended ID4	Read or write the extended ID4 in the message slot j	RV
		EID5	Extended ID5	Read or write the extended ID5 in the message slot j	RV
			Nothing is assigned. W	hen write, set to "0".	
is stored.			When read, its content formatted, the EID 5 to E		
 If the receiv is stored. Select, by s 	setting the (andard ID f COSBS reg Ot Buff Symb	When read, its content formatted, the EID 5 to E gister, the message slot j er i Data Length	s indeterminate. D0 bits are indeterminate when receive to be accessed by the C0SLOTi_4 regi	
1. If the receiv is stored. 2. Select, by s	setting the o	andard ID t COSBS reg Ot Buff Symb COSL	When read, its content formatted, the EID 5 to E gister, the message slot j er i Data Length ol 4 OT0_5, C0SLOT1_5 0	s indeterminate. D0 bits are indeterminate when receive to be accessed by the C0SLOTi_4 regi Code (i=0,1) ⁽¹⁾ Address After Reset 1E516,01F516 Indeterminate	ster.
1. If the receiv is stored. 2. Select, by s	setting the o	ot Buff Symb Symbol	When read, its content formatted, the EID 5 to E gister, the message slot j er i Data Length	is indeterminate. D0 bits are indeterminate when receive to be accessed by the C0SLOTi_4 reginned a Code (i=0,1) ⁽¹⁾ Address After Reset	ster.
1. If the receiv is stored. 2. Select, by s	setting the o	andard ID t COSBS reg Ot Buff Symb COSL	When read, its content formatted, the EID 5 to E gister, the message slot j er i Data Length ol 4 OT0_5, C0SLOT1_5 0	s indeterminate. D0 bits are indeterminate when receive to be accessed by the C0SLOTi_4 regi Code (i=0,1) ⁽¹⁾ Address After Reset 1E516,01F516 Indeterminate	ster.
1. If the receiv is stored. 2. Select, by s	setting the o	ot Buff Symb Symbol	When read, its content formatted, the EID 5 to E gister, the message slot j eer i Data Length ol OT0_5, C0SLOT1_5 Bit Name	s indeterminate. D0 bits are indeterminate when receive to be accessed by the C0SLOTi_4 reginned and Code (i=0,1) ⁽¹⁾ Address After Reset 1E516,01F516 Indeterminate Function Read or write the data length set bit	RW
1. If the receiv is stored. 2. Select, by s	setting the o	andard ID f COSBS reg Ot Buff Symbol DLC0	When read, its content formatted, the EID 5 to E gister, the message slot j er i Data Length ol 4 OT0_5, C0SLOT1_5 0	s indeterminate. ID0 bits are indeterminate when receive to be accessed by the C0SLOTi_4 regi Code (i=0,1) ⁽¹⁾ Address After Reset 1E5 ₁₆ ,01F5 ₁₆ Indeterminate Function	ster.
1. If the receiv is stored. 2. Select, by s	setting the o	andard ID f COSBS reg Ot Buff Symb COSL Bit Symbol DLC0 DLC1	When read, its content formatted, the EID 5 to E gister, the message slot j eer i Data Length ol OT0_5, C0SLOT1_5 Bit Name	s indeterminate. D0 bits are indeterminate when receive to be accessed by the C0SLOTi_4 reginned and Code (i=0,1) ⁽¹⁾ Address After Reset 1E516,01F516 Indeterminate Function Read or write the data length set bit	RW RW RW

Figure 22.24 C0SLOT0_4, C0SLOT1_4 Registers and C0SLOT0_5 and C0SLOT1_5 Registers

22.1.19 CAN0 Acceptance Filter Support Register (C0AFS Register)

Figure 22.26 C0AFS Register

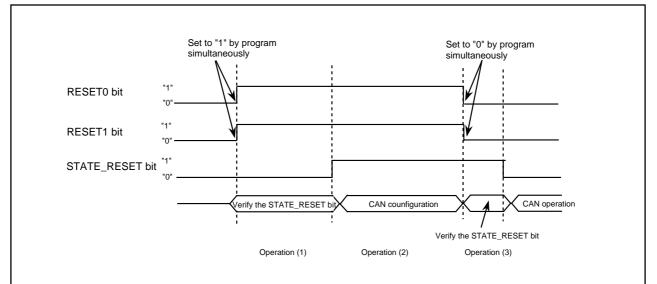
The C0AFS register enables prompt performance of the table search to determine the validity of a received ID. This function is for standard-formatted ID only.

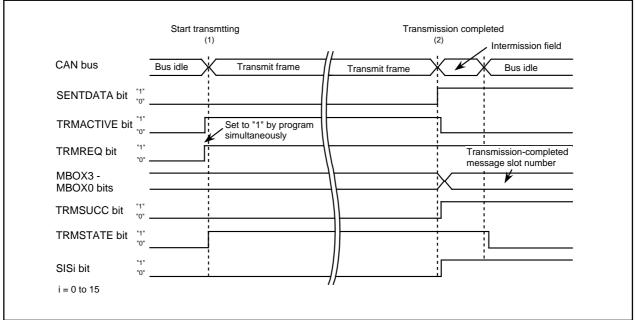
22.2 Timing with CAN-Associated Registers

22.2.1 CAN Module Reset Timing

Figure 22.27 shows an operation example of when the CAN module is reset.

- (1) The CAN module can be reset when the STATE_RESET bit in the COSTR register is set to "1" (CAN module reset completed) after the RESET0 and RESET1 bits in the COCTLR0 register are set to "1" (CAN module reset).
- (2) Set necessary CAN-associated registers.
- (3) CAN communication can be established after the STATE_RESET bit is set to "0" (resetting) after the RESET0 and RESET1 bits are set to "0" (CAN module reset exited) .




Figure 22.27 Example of CAN Module Reset Operation

22.2.2 CAN Transmit Timing

Figure 22.28 shows an operation example of when the CAN transmits a frame.

- (1) When the TRMREQ bit is set to "1" (request to transmit the data frame) while the CAN bus is in as idle state, the TRMACTIVE bit in the COMCTLi register (i=0 to 15) is set to "1" (during transmission) and the TRMSTATE bit in the COSTR register is set to "1" (during transmission). The CAN starts transmitting the frame.
- (2) After a CAN frame transmission is completed, the SENTDATA bit in the COMCTLi register is set to "1" (already transmitted), the TRMSUCC bit in the COSTR register to "1" (transmission completed) and the SISi bit in the COSISTR register to "1" (interrupt requested). The MBOX3 to MBOX0 bits in the COSTR register store transmitted message slot numbers.

22.2.3 CAN Receive Timing

Figure 22.29 shows an operation example of when the CAN receives a frame.

- (1) When the RECREQ bit in the COMCTLi register (i=0 to 15) is set to "1" (receive requested), the CAN is ready to receive the frame at anytime.
- (2) When the CAN starts receiving the frame, the RECSTATE bit in the C0STR register is set to "1" (during reception).
- (3) After the CAN frame reception is completed, the INVALDTA bit in the COMCTLi register is set to "1" (storing received data), the NEWDATA bit in the COMCTLi register is set to "1" (receive complete) and the RECSUCC bit in the COSTR register is set to "1" (reception completed).
- (4) After data is written to the message slot, the INVALDATA bit is set to "0" (stops receiving) and the SISi bit is set to "1" (interrupt requested). The MBOX3 to MBOX0 bits store received message slot numbers.

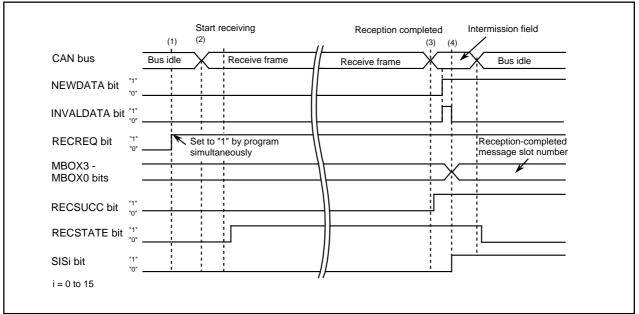


Figure 22.29 Example of CAN Data Frame Receive Operation

22.2.4 CAN Bus Error Timing

Figure 22.30 shows an operation example of when a CAN bus error occurs.

(1) When a CAN bus error is detected, the STATE_BUSERROR bit in the CiSTR register is set to "1", (error occurred) and the BEIS bit in the CiEISTR register is set to "1" (interrupt requested). The CAN starts transmitting the error frame.

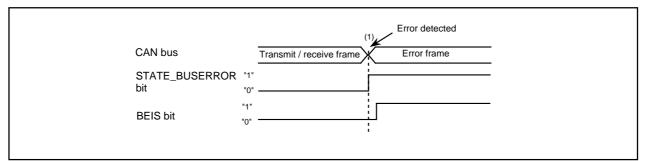


Figure 22.30 Operation Timing when CAN Bus Error Occurs

22.3 CAN Interrupts

The CANj interrupt (j=0 to 2) is provided as the CAN interrupt. Figure 22.31 shows a block diagram of the CAN interrupt.

The following factors cause the CAN-associated interrupt request to be generated.

- The CAN0 slot i (i=0 to 15) completes a transmission
- The CAN0 slot i completes a reception
- The CAN0 module detects a bus error
- The CAN0 module moves into an error-passive state
- The CAN0 module moves into a bus-off state

The CANj interrupt, caused by one of the CANi interrupt request factors listed above, is generated via the OR circuit.

If an interrupt request factor is established, the corresponding bit in the COSISTR register is set to "1" (interrupt requested) when the CAN0 slot k completes a transmission or a reception. The corresponding bit in the COEISTR register is set to "1" (interrupt requested) when the CANi module detects a bus error, moves into an error-passive state, or moves into a bus-off state.

The CAN0 interrupt request signal is set to "1" when the corresponding bit in the COSISTR or COEISTR is set to "1" and the corresponding bit in the COSIMKR or COEIMKR is set to "1".

When the CAN0 interrupt request signal changes from "0" to "1", all CANjR bits in the IIO9IR to IIO11IR registers are set to "1" (interrupt requested).

If at least one of the CANjE bits in the IIO9IE to IIO11IE registers is set to "1" (interrupt enabled), the IR bits in the corresponding CANjIC registers are set to "1" (interrupt requested). The CAN0 interrupt request signal remains set to "1" if another interrupt request causes a corresponding bit in the COSISTR or COEISTR to be set to "1" and the corresponding bit in the COSIMKR or COEIMKR to be set to "1" after the CAN0 interrupt request signal changes "0" to "1". The CANjR and IR bits also remain unchanged. Bits in the COSISTR or COEISTR register and CANjR bits (j=0 to 2) in the IIO9IR to IIO11IR registers are not set to "0" automatically, interrupt acknowledgment notwithstanding. Set these bits to "0" by program.

The CANi interrupts are acknowledged when the CANjR bit in the IIO9IR to IIO11IR register and the corresponding bit in the COSISTR or COEISTR register, which are set to enable interrupts though setting the COSIMKR or COEIMKR register, are set to "0". If these bits remain set to "1", all CAN-associated interrupt request factors become invalid.

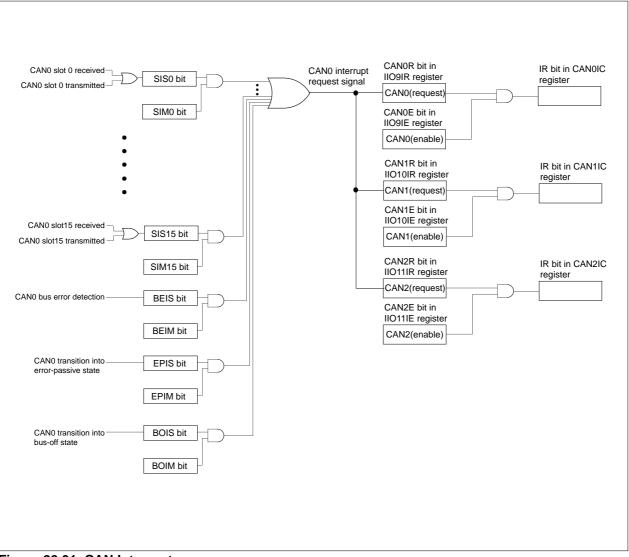


Figure 22.31 CAN Interrupts

23. DRAMC

The DRAM controller (DRAMC) controls the DRAM area, which ranges from 512 Kbytes to 8 Mbytes. Table 23.1 lists specifications of the DRAMC.

Table 23.1 DRAINC Speci	
Item	Specification
DRAM Area	512 KB, 1 MB, 2 MB, 4 MB, 8 MB
Bus Control	2CAS/1W
Refresh	CAS-before-RAS refresh, Self refresh
Supported Function Mode	EDO, fast page mode
Wait State Insertion	1-wait state, 2-wait state

Table 23.1 DRAMC Specifications

Table 23.2 shows pins associated with DRAMC. Signals listed in Table 23.2 are output by setting the AR2 to AR0 bits in the DRAMCONT register for the DRAM area and accessing DRAM. See **Table 7.9** for \overrightarrow{RAS} , \overrightarrow{CASL} , \overrightarrow{CASH} and \overrightarrow{DW} signal operations. Figure 23.1 shows the DRAMCONT register and REFCNT register.

Table 23.2 DRAMC-associated Pins

Port	Bus for Device Access except DRAM ⁽¹⁾	Bus for DRAM Access
P0	Do to D7	Do to D7
P1	D8 to D15	D8 to D15 ⁽²⁾
P3	A8 to D15	MA0 to MA7
P40 to P44	A16 to A20	MA8 to MA12
P50	WRL / WR	CASL
P51	WRH / BHE	CASH
P52	RD	DW
P56	ALE	RAS

NOTES:

1. This is an example of the separate bus and 16-bit data bus.

2. This bus is available when the DS2 bit in the DS register is set to "1" (16-bit data bus) and the PM02 bit in the PM0 register is set to "1" (RD/WRL/WRH in R/W mode).

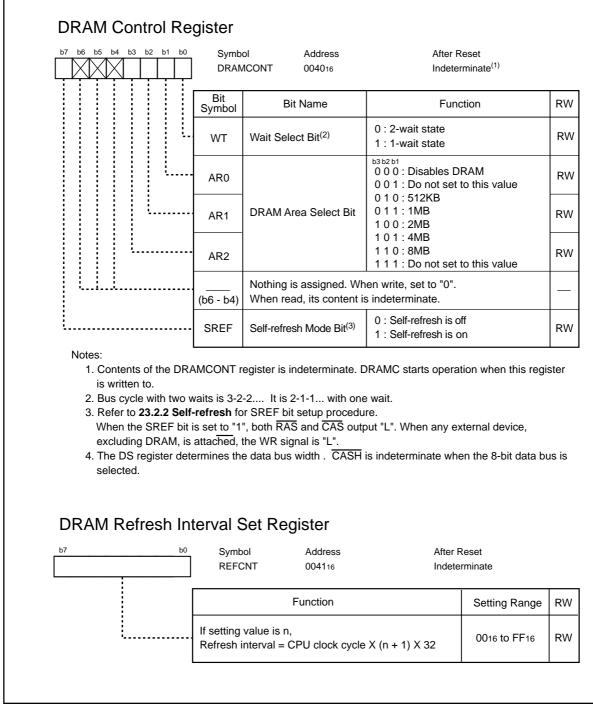


Figure 23.1 DRAMCONT Register and REFCNT Register

DRAMC is not available when the PM11 to PM10 bits in the PM1 register are set to "112" (mode 3). Set the PM11 to PM10 bits to "002," "012" or "102" (mode 0 to 2). When the 16-bit DRAM data bus is selected, set the PM02 bit in the PM0 register to "1" (RD/WRH/WRL).

Required wait time between DRAM power-on and memory operation, and necessary processing of dummy cycle for refresh varies with externally attached DRAM specifications.

23.1 DRAMC Multiplexed Address Output

DRAMC outputs signals, which are multiplexed row addresses and column addresses, to address bus A8 to A20. Figure 23.2 shows an output format for multiplexed addresses.

23.2 Refresh

23.2.1 Refresh

Refresh method is the \overline{CAS} -before- \overline{RAS} refresh. The REFCNT register controls the refresh interval. Refresh signals are not output in a hold state.

The setting value of the REFCNT register is obtained as follows:

The value of the REFCNT register (0016 to FF16) = refresh interval time / (CPU clock frequency X 32) - 1

23.2.2 Self-Refresh

The refresh signal described in 23.2.1 stops while the CPU stops in stop mode, etc. The DRAM self-refresh function can be activated by setting the self-refresh before the CPU stops. Setting and cancellation procedures for the self-refresh are as follows:

(1) Setting self-refresh (with 1 wait state, 4 Mbytes)

	•••		
	mov.b	#00000001b,DRAMCONT	;Set the AR2 to AR0 bits to "0002" (DRAM disabled)
	mov.b	#10001011b,DRAMCONT	;Set the AR2 to AR0 bits again and the SREF bit to "1" (self-refresh on) simultaneously
	nop ;l	Execute the nop instruction tw	vice
	nop ;		
	•••		
(2) C	ancellatio	on of self-refresh (with 1 wait	state, 4M bytes)
	•••		
	mov.b	#00000001b,DRAMCONT	;Set the AR2 to 0 bits to "0002" (self-refresh cancellation) and the SREF bit to "0" (DRAM disabled) simultaneously
	mov.b	#00001011b,DRAMCONT	;Set the AR2 to AR0 bits again
	mov.b	400h, 400h	;DRAM access is disabled immediately after cancellation.
			This is an example of a dummy read operation.

•••

Both \overline{RAS} and \overline{CAS} are held "L" during self-refresh. When devices other than DRAM are attached, the \overline{WR} signal is held "L". Take procedures such as applying an "H" signal to the \overline{CS} . Figures 23.3 to 23.5 show bus timings during DRAM access.

(1) In 8-bit Bus Mo	de												
Pin Function	MA12 (A20)	MA11 (A19)	MA10 (A18)	MA9 (A17)	MA8 (A16)	MA7 (A15)	MA6 (A14)	MA5 (A13)	MA4 (A12)	MA3 (A11)	MA2 (A10)	MA1 (A9)	MA0 (A8)
Row Address	(A20)	(A19)	A18	A17	A16	A15	A14	A13	A12	A11	A10	A9	-
Column Address	(A22)	(A22)	A19	A8	A7	A6	A5 2K-byte	A4	A3	A2	A1	A0	-
			-	Auure							alea		
Row Address	(A20)	A19	A18	A17	A16	A15	A14	A13	A12	A11	A10	A9	-
Column Address	(A22)	A21	A20	A8	A7	A6	A5	A4	A3	A2	A1	A0	-
		◄		Address	s used t	for 2M-	byte an	d 4M-b	yte DR.	AM are	a	→	
Row Address	A20	A19	A18	A17	A16	A15	A14	A13	A12	A11	A10	A9	-
Column Address	(A22)	A22	A21	A8	A7	A6	A5	A4	A3	A2	A1	A0	-
	-			Addr	ess us	ed for 8	M-byte	DRAM	area				
(2) In 16-bit Bus Mo	ode												
Pin Function	MA12 (A20)	MA11 (A19)	MA10 (A18)	MA9 (A17)	MA8 (A16)	MA7 (A15)	MA6 (A14)	MA5 (A13)	MA4 (A12)	MA3 (A11)	MA2 (A10)	MA1 (A9)	MA0 (A8)
Row Address	(A20)	(A19)	A18	A17	A16	A15	A14	A13	A12	A11	A10	(A9)	-
Column Address	(A22)	(A20)	A9	A8	A7	A6	A5	A4	A3	A2	A1	(A0)	_
			-		Addres	s used	for 512	K-byte	DRAM	area			
Row Address	(A20)	A19	A18	A17	A16	A15	A14	A13	A12	A11	A10	(A9)	_
Column Address	(A22)	A20	<mark>- A9</mark>	A8	A7	A6	A5	A4	A3	A2	A1	(A0)	-
		←	Ado	dress us	sed for	1M-byt	e and 2	M-byte	DRAM	area			
Row Address	A20	A19	A18	A17	A16	A15	A14	A13	A12	A11	A10	(A9)	_
Column Address	A22	A21	A9	A8	A7	A6	A5	A4	A3	A2	A1	(A0)	_
	◄	A	ddress	used for	or 4M-t	yte and	d 8M-by	∕te ⁽¹⁾ DI	RAM ar	ea			
(): disabl –: indeter NOTES: 1. The above configura	mimate e applie tion, im	DRAN e es whe pleme	area n usin nt the	g a 4M followi	lx1 or 4	4Mx4 r nbinati	nemor ons:	y confi	guratic	on. Wh	en usii	-	Mx16
For row a Or for row													

Figure 23.2 Multiplexed Address Output Pattern

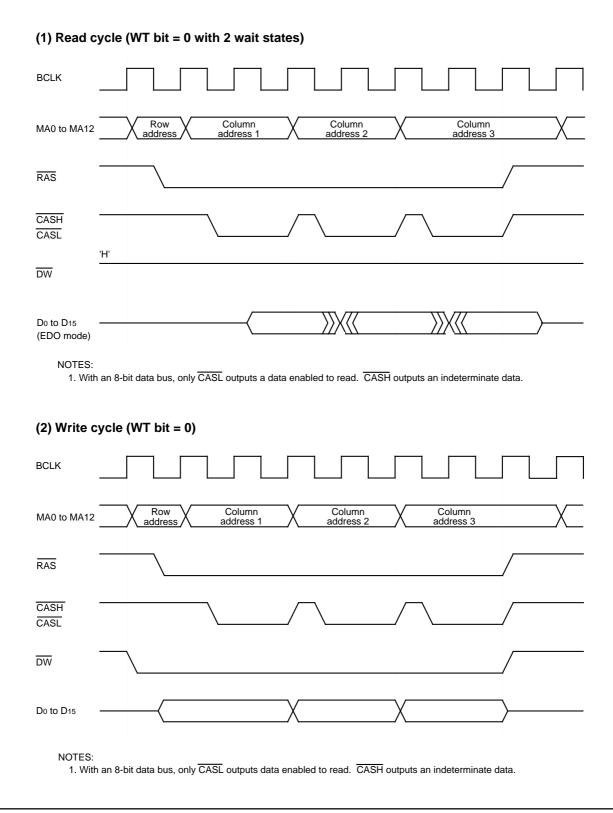


Figure 23.3 Bus Timing during DRAM Access (1)

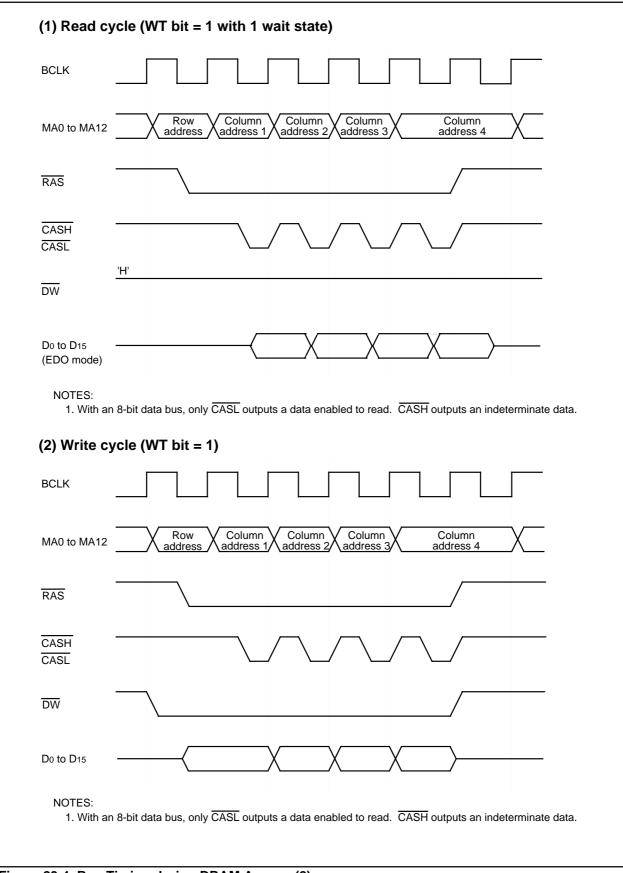
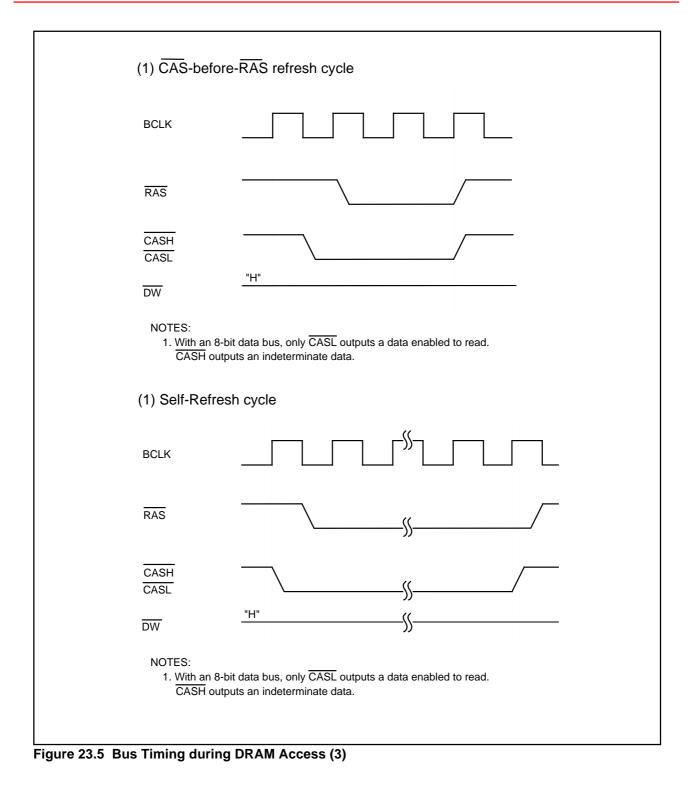



Figure 23.4 Bus Timing during DRAM Access (2)

24. Programmable I/O Ports

87 programmable I/O ports from P0 to P10 (excluding P85) are available in the 100-pin package and 123 programmable I/O ports from P0 to P15 (excluding P85) are in the 144-pin package. The direction registers determine each port status, input or output. The pull-up control registers determine whether the ports, divided into groups of four ports, are pulled up or not. P85 is an input port and no pull-up for this port is allowed. The P8_5 bit in the P8 register indicates an $\overline{\text{NMI}}$ input level since P85 shares pins with $\overline{\text{NMI}}$. Figures 24.1 to 24.4 show programmable I/O port configurations.

Each pin functions as the programmable I/O port, an I/O pin for internal peripheral functions or the bus control pin.

To use the pins as input or output pins for internal peripheral functions, refer to the explanations for each function. Refer to **7. Bus** when used as the bus control pin.

The registers, described below, are associated with the programmable I/O ports.

24.1 Port Pi Direction Register (PDi Register, i=0 to 15)

Figure 24.5 shows the PDi register.

The PDi register selects input or output status of a programmable I/O port. Each bit in the PDi register corresponds to a port.

In memory expansion and microprocessor mode, pins being used as bus control pins (A0 to A22, A23, D0 to D15, MA0 to MA12, CS0 to CS3, WRL/WR/CASL, WRH/BHE, RD/DW, BCLK/ALE/CLKOUT, HLDA/ALE, HOLD, ALE/RAS, and RDY) cannot be controlled by the PDi register. No bits controlling P85 are provided in the direction registers .

24.2 Port Pi Register (Pi Register, i=0 to 15)

Figure 24.6 shows the Pi register.

The Pi register writes and reads data to communicate with external devices. The Pi register consists of a port latch to hold output data and a circuit to read pin states. Each bit in the Pi register corresponds to a port. In memory expansion and microprocessor mode, pins being used as bus control pins (A0 to A22, A23, D0 to D15, MA0 to MA12, CS0 to CS3, WRL/WR/CASL, WRH/BHE, RD/DW, BCLK/ALE/CLKOUT, HLDA/ALE, HOLD, ALE/RAS, and RDY) cannot be controlled by the Pi register.

24.3 Function Select Register Aj (PSj Register) (j=0 to 3, 5 to 9)

Figures 24.7 to 24.11 show the PSj registers.

The PSj register selects either I/O port or peripheral function output if an I/O port shares pins with a peripheral function output (excluding DA0 and DA1.)

Tables 24.3 to 24.12 list peripheral function output control settings for each pin.

When multiple peripheral function outputs are assigned to a pin, set the PSLk (k=0 to 3) and PSC registers to select which function is used.

24.4 Function Select Register Bk (PSLk Register) (k=0 to 3)

Figures 24.12 and 24.13 show the PSL0 to PSL3 registers.

When multiple peripheral function outputs are assigned to a pin, the PSL0 to PSL3 registers select which peripheral function output is used.

Refer to **24.9** Analog Input and Other Peripheral Function Input for the PSL3_3 to PSL3_6 bits in the PSL3 register.

24.5 Function Select Register C (PSC Register)

Figure 24.14 show the PSC register.

When multiple peripheral function outputs are assigned to a pin, the PSC register select which peripheral function output is used.

Refer to 24.9 Analog Input and Other Peripheral Function Input for the PSC_7 bit in the PSC register.

24.6 Pull-up Control Register 0 to 4 (PUR0 to PUR4 Registers)

Figures 24.15 to 24.16 show the PUR0 to PUR4 registers.

The PUR0 to PUR4 registers select whether the ports, divided into groups of four ports, are pulled up or not. Ports with bits in the PUR0 to PUR4 registers set to "1" (pull-up) and the direction registers set to "0" (input mode) are pulled up.

Set bits in the PUR0 and PUR1 registers which control P0 to P5, running as bus, to "0" (no pull-up) in memory expansion and microprocessor mode. P0, P1, P40 to P43 can be pulled up when they are used as input ports in memory expansion mode and microprocessor mode.

24.7 Port Control Register (PCR Register)

Figure 24.17 shows the PCR register.

The PCR register selects either CMOS output or N-channel open drain output as the P1 output format. If the PCR0 bits is set to "1" (N-channel open drain output), N-channel open drain output is selected because the P-channel in the CMOS port is turned off. This is, however, not a perfect open drain. Therefore, the absolute maximum rating of the input voltage is from -0.3V to Vcc + 0.3V.

If P1 is used as the data bus in memory expansion and microprocessor mode, set the PCR0 bit to "0" (CMOS output). If P1 is used as a port in memory expansion and microprocessor mode, the PCR0 bit determines the output format.

24.8 Input Function Select Register (IPS Register)

Figure 24.18 shows the IPS registers.

The IPS0 to IPS1 and IPS3 bits in the IPS register and the IPSA_0 and IPSA_3 bits in the IPSA register select which pin is assigned the intelligent I/O or CAN input functions.

Refer to 24.9 Analog Input and Other Peripheral Function Input for the IPS2 bit.

24.9 Analog Input and Other Peripheral Function Input

The PSL3_3 to PSL3_6 bits in the PSL3 register, the PSC_7 bit in the PSC register and the IPS2 bit in the IPS register each separate analog I/O ports from other peripheral functions. Setting the corresponding bit to "1" (analog I/O) to use the analog I/O port (DA0, DA1, ANEX0, ANEX1, AN4 to AN7 or AN150 to AN157) prevents an intermediate potential from being impressed to other peripheral functions. The impressed intermediate potential may cause increase in power consumption.

Set the corresponding bit to "0" (except analog I/O) when analog I/O is not used. All peripheral function inputs except the analog I/O port are available when the corresponding bit is set to "0". These inputs are indeterminate when the bit is set to "1". When the PSC_7 bit is set to "1", key input interrupt request remains unchanged regardless of $\overline{Kl_0}$ to $\overline{Kl_3}$ pin input level change.

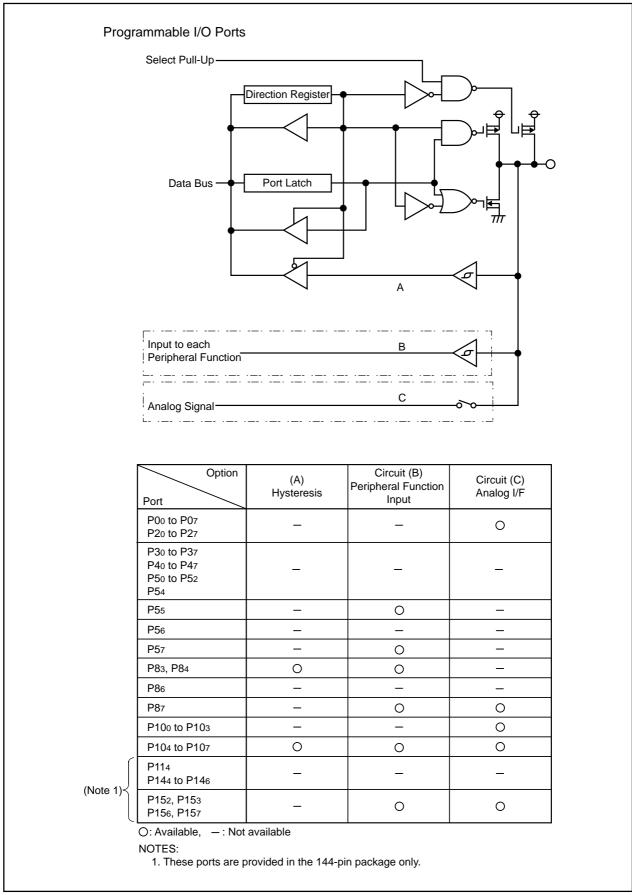
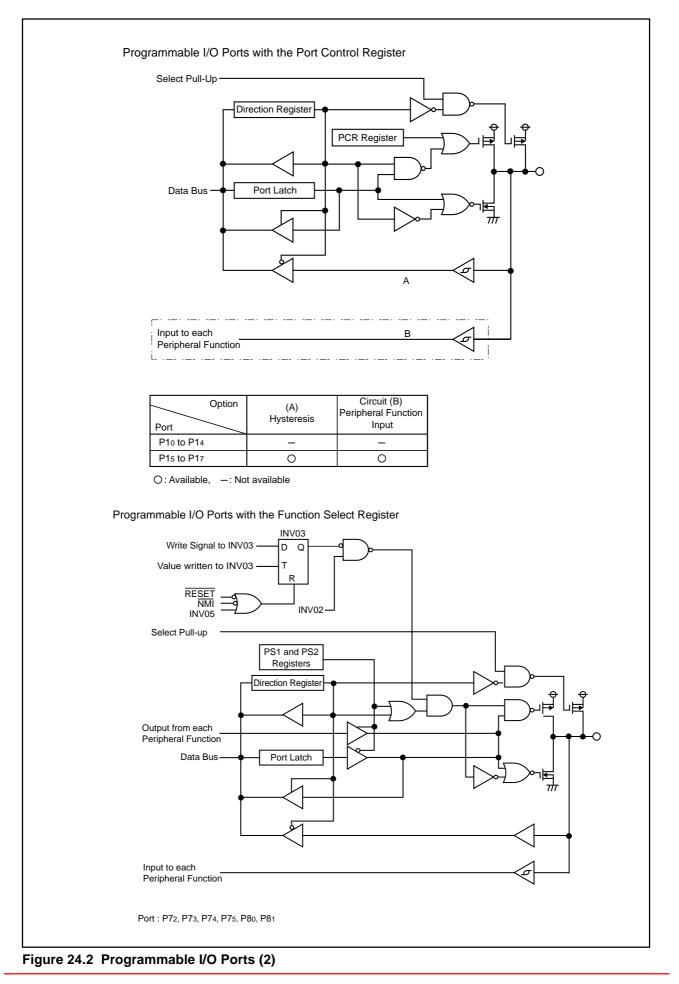



Figure 24.1 Programmable I/O Ports (1)

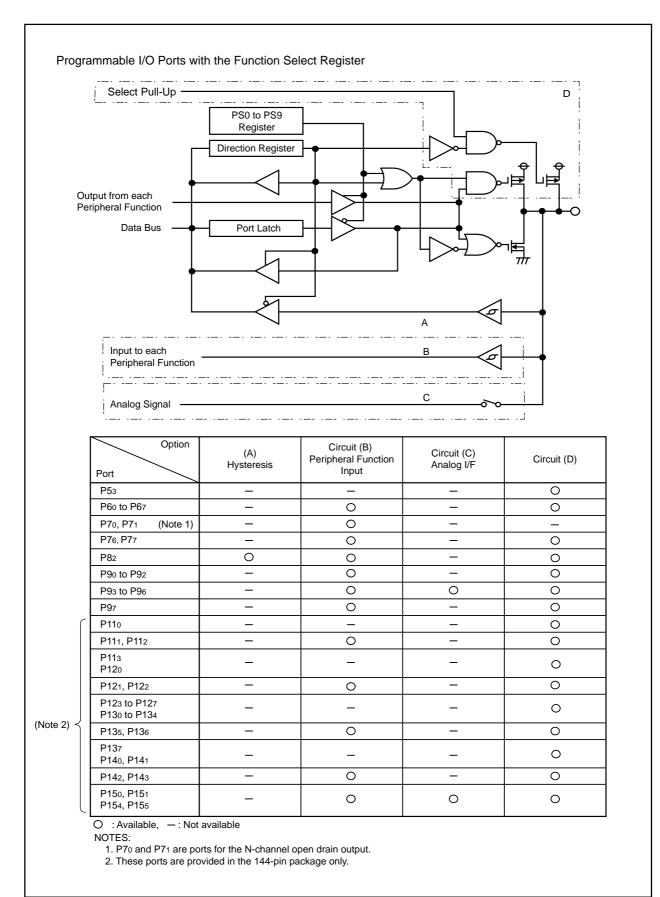
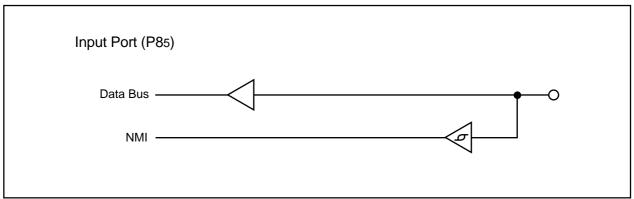
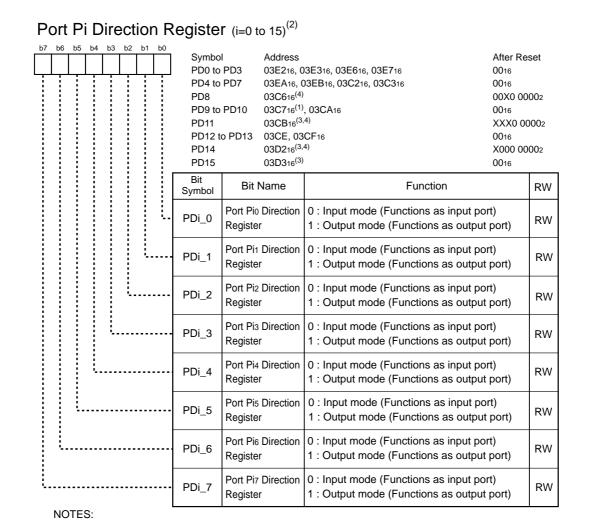




Figure 24.3 Programmable I/O Ports (3)

1. Set the PD9 register immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 register.

 In memory expansion and microprocessor mode, the direction register of pins being used as bus control pins (Ao to A22, A23, Do to D15, MAO to MA12, CS0 to CS3, WRL/WR/CASL, WRH/BHE/CASH, RD/DW, BCLK/ALE/CLKOUT, HLDA/ALE, HOLD, ALE/RAS and RDY) cannot be changed.

3. Set the PD11 to PD15 registers to "FF16" in the 100-pin package.

4. Nothing is assigned to the PD8_5 bit in the PD8 register, the PD11_5 to PD11_7 bits in the PD11 register and the P14_7 bit in the PD14 register. If write, set these bits to "0". When read, their contents are indeterminate.

Figure 24.5 PD0 to PD15 Registers

	b2 I	b1 b0	Symbol P0 to P P6 to P P11 to F	5 03E016, 03E116, 03 10 03C016, 03C116 ⁽³⁾ ,	3E416, 03E516, 03E816, 03E916 Ind , 03C416 ⁽⁴⁾ , 03C516, 03C816 Ind	er Reset leterminate leterminate leterminate
			Bit Symbol	Bit Name	Function	RW
			Pi_0	Port Pio Register		RV
			Pi_1	Port Pi1 Register		RV
	<u>.</u>		Pi_2	Port Pi2 Register	Pin levels can be read by readir bits corresponding to programm ports in input mode.	
			Pi_3	Port Pi3 Register	Pin levels can be controlled by writing to bits corresponding to programmable ports in output m	node.
			Pi_4	Port Pi4 Register	0 : "L" level 1 : "H" level	RV
			Pi_5	Port Pi5 Register		RV
			Pi_6	Port Pie Register		RV
[Pi_7	Port Pi7 Register		RV

3. P7o and P71 are ports for the N-channel open drain output. The pins go into a high-impedance state when P7o and P71 output a high-level signal ("H").

4. The P85 bit is for read only.

5. Nothing is assigned to the P11_5 to P11_7 bits in the P11 register and the P14_7 bit in the P14 register. If write, set these bits to "0". When read, their contents are indeterminate.

Figure 24.6 P0 to P15 Registers

07 b6 b5 b4 b3 b2 b1 b0	Symb	ol Address	After Reset	
	PS0	03B016	0016	
	Bit Symbol	Bit Name	Function	R
	PS0_0	Port P60 Output Function Select Bit	0 : I/O port 1 : RTS0	R
	• PS0_1	Port P61 Output Function Select Bit	0 : I/O port 1 : CLK0 output	R
	PS0_2	Port P62 Output Function Select Bit	0 : I/O port 1 : Selected by the PSL0_2 bit	R
	PS0_3	Port P63 Output Function Select Bit	0 : I/O port 1 : TxD0/SDA0 output	R
	PS0_4	Port P64 Output Function Select Bit	0 : I/O port 1 : Selected by the PSL0_4 bit	R
	PS0_5	Port P65 Output Function Select Bit	0 : I/O port 1 : CLK1 output	R
[PS0_6	Port P66 Output Function Select Bit	0 : I/O port 1 : Selected by the PSL0_6 bit	R
	PS0_7	Port P67 Output Function Select Bit	0 : I/O port 1 : TxD1/SDA1 output	R
Function Select R	egister			
	egister _{Symb} PS1	A1	After Reset 0016	
	Symb	A1 ol Address	After Reset	R
	Symb PS1 Bit	A1 ol Address 03B116	After Reset 0016	
	Symb PS1 Bit Symbol	A1 ol Address 03B116 Bit Name Port P70 Output	After Reset 0016 Function 0 : I/O port	R
	Symb PS1 Bit Symbol PS1_0	A1 ol Address 03B116 Bit Name Port P70 Output Function Select Bit Port P71 Output	After Reset 0016 Function 0 : I/O port 1 : Selected by the PSL1_0 bit 0 : I/O port	R\ R\
	Symb PS1 Bit Symbol PS1_0 • PS1_1	A1 ol Address 03B116 Bit Name Port P70 Output Function Select Bit Port P71 Output Function Select Bit Port P72 Output	After Reset 0016 Function 0 : I/O port 1 : Selected by the PSL1_0 bit 0 : I/O port 1 : Selected by the PSL1_1 bit 0 : I/O port	R\ R\ R
	Symb PS1 Bit Symbol PS1_0 • PS1_1 • PS1_2	A1 ol Address 03B116 Bit Name Port P70 Output Function Select Bit Port P71 Output Function Select Bit Port P72 Output Function Select Bit Port P73 Output	After Reset 0016 Function 0 : I/O port 1 : Selected by the PSL1_0 bit 0 : I/O port 1 : Selected by the PSL1_1 bit 0 : I/O port 1 : Selected by the PSL1_2 bit 0 : I/O port	R\ R\ R\
	Symb PS1 Bit Symbol PS1_0 PS1_1 PS1_2 PS1_3	A1 ol Address 03B116 Bit Name Port P70 Output Function Select Bit Port P71 Output Function Select Bit Port P72 Output Function Select Bit Port P73 Output Function Select Bit Port P74 Output	After Reset 0016 Function 0 : I/O port 1 : Selected by the PSL1_0 bit 0 : I/O port 1 : Selected by the PSL1_1 bit 0 : I/O port 1 : Selected by the PSL1_2 bit 0 : I/O port 1 : Selected by the PSL1_3 bit 0 : I/O port 1 : Selected by the PSL1_3 bit	R\ R\ R\ R\ R\ R\
	Symb PS1 Bit Symbol PS1_0 PS1_1 PS1_2 PS1_3 PS1_4	A1 ol Address 03B116 Bit Name Port P70 Output Function Select Bit Port P71 Output Function Select Bit Port P72 Output Function Select Bit Port P73 Output Function Select Bit Port P74 Output Function Select Bit Port P75 Output	After Reset 0016 Function 0 : I/O port 1 : Selected by the PSL1_0 bit 0 : I/O port 1 : Selected by the PSL1_1 bit 0 : I/O port 1 : Selected by the PSL1_2 bit 0 : I/O port 1 : Selected by the PSL1_3 bit 0 : I/O port 1 : Selected by the PSL1_4 bit 0 : I/O port 1 : Selected by the PSL1_4 bit 0 : I/O port	R\ R\ R\ R\ R\ R\ R\ R\ R\ R\ R\

Figure 24.7 PS0 Register and PS1 Register

b7 b6 b5 b	0 0	b2 b1	b0	Symbo PS2	ol Address 03B416	After Reset 00X0 00002	
			[Bit Symbol	Bit Name	Function	RW
				PS2_0	Port P80 Output Function Select Bit	0 : I/O port 1 : Selected by the PSL2_0 bit	RV
				PS2_1	Port P81 Output Function Select Bit	0 : I/O port 1 : Selected by the PSL2_1 bit	RV
		<u>.</u>		PS2_2	Port P82 Output Function Select Bit	0 : I/O port 1 : Selected by the PSL2_2 bit	RV
				(b4 - b3)	Reserved Bit	Set to "0"	RV
				(b5)		. When write, set to "0". tis indeterminate.	
				(b7 - b6)	Reserved Bit	Set to "0"	RV
				Symbo PS3	ol Address 03B516	After Reset 0016	
				Symbo PS3 Bit	ol Address		RV
				Symbo PS3	ol Address 03B516	0016 Function 0 : I/O port	
			b0	Symbo PS3 Bit Symbol	Address 03B516 Bit Name Port P90 Output	0016 Function	RV
			b0	Symbol PS3 Bit Symbol PS3_0	Address 03B516 Bit Name Port P90 Output Function Select Bit Port P91 Output	0016 Function 0 : I/O port 1 : CLK3 output 0 : I/O port	RV
			b0	Symbol PS3_0 PS3_0 PS3_1	Address 03B516 Bit Name Port P90 Output Function Select Bit Port P91 Output Function Select Bit Port P92 Output	0016 Function 0 : I/O port 1 : CLK3 output 0 : I/O port 1 : Selected by the PSL3_1 bit 0 : I/O port	RV RV RV
			b0	Symbol PS3_0 PS3_1 PS3_2	Address 03B516 Bit Name Port P90 Output Function Select Bit Port P91 Output Function Select Bit Port P92 Output Function Select Bit Port P93 Output	0016 Function 0 : I/O port 1 : CLK3 output 0 : I/O port 1 : Selected by the PSL3_1 bit 0 : I/O port 1 : Selected by the PSL3_2 bit 0 : I/O port	RV RV RV
			b0	Symbol PS3_0 PS3_1 PS3_2 PS3_2 PS3_3	Address 03B516 Bit Name Port P90 Output Function Select Bit Port P91 Output Function Select Bit Port P92 Output Function Select Bit Port P93 Output Function Select Bit Port P94 Output	0016 Function 0 : I/O port 1 : CLK3 output 0 : I/O port 1 : Selected by the PSL3_1 bit 0 : I/O port 1 : Selected by the PSL3_2 bit 0 : I/O port 1 : RTS3 0 : I/O port	RV RV RV RV RV RV RV
			b0	Symbol PS3_0 PS3_1 PS3_2 PS3_2 PS3_3 PS3_4	Address 03B516 Bit Name Port P90 Output Function Select Bit Port P91 Output Function Select Bit Port P92 Output Function Select Bit Port P93 Output Function Select Bit Port P94 Output Function Select Bit	0016 Function 0 : I/O port 1 : CLK3 output 0 : I/O port 1 : Selected by the PSL3_1 bit 0 : I/O port 1 : Selected by the PSL3_2 bit 0 : I/O port 1 : RTS3 0 : I/O port 1 : RTS4 0 : I/O port 1 : RTS4	RV RV RV RV RV

Figure 24.8 PS2 Register and PS3 Register

RENESAS

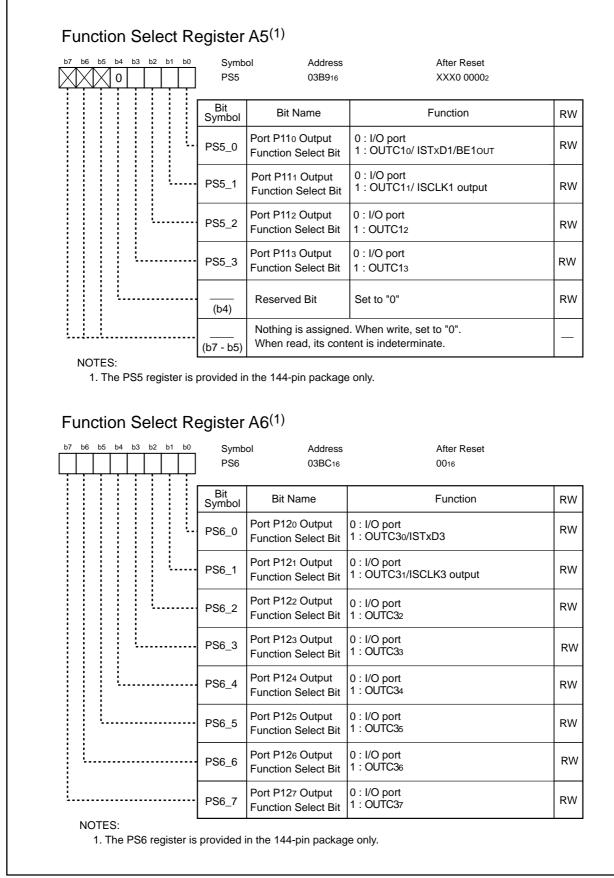


Figure 24.9 PS5 Register and PS6 Register

b7 b6 b5 b4 b3 b2 b1 b0	Symb			
└ _╍ ┧ _╍ ┧ _╍ ┧ _╍ ┧ _╍ ┧ _╍ ┧	PS7	03BD16	0016	
	Bit Symbol	Bit Name	Function	RW
	PS7_0	Port P130 Output Function Select Bit		RW
	PS7_1	Port P131 Output Function Select Bit	•	RW
	PS7_2	Port P132 Output Function Select Bit		RW
	PS7_3	Port P133 Output Function Select Bit		RW
	PS7_4		0 : I/O port 1 : OUTC20/ISTXD2/IEоυт	RW
	PS7_5	Port P135 Output Function Select Bit	•	RW
	PS7_6	Port P136 Output Function Select Bit	0 : I/O port 1 : OUTC21/ISCLK2 output	RW
	PS7_7	Port P137 Output Function Select Bit	•	RW

1. The PS7 register is provided in the 144-pin package only.

Function Select Register A8⁽¹⁾

b7 b6 b5 b4	b3 b2 b1 b0	Symb			
	┽┵┽┵┽┙	PS8	03A016	X000 00002	
		Bit Symbol	Bit Name	Function	R\
		PS8_0	Port P140 Output Function Select Bit	0 : I/O port 1 : OUTC14	RV
		PS8_1	Port P141 Output Function Select Bit	0 : I/O port 1 : OUTC15	RV
		PS8_2	Port P142 Output Function Select Bit	0 : I/O port 1 : OUTC16	R
		PS8_3	Port P143 Output Function Select Bit	0 : I/O port 1 : OUTC17	R
		(b6 - b4)	Reserved Bit	Set to "0"	R
		(b7)		. When write, set to "0". ent is indeterminate.	-

1: The PS8 register is provided in the 144-pin package only.

Figure 24.10 PS7 Register and PS8 Register

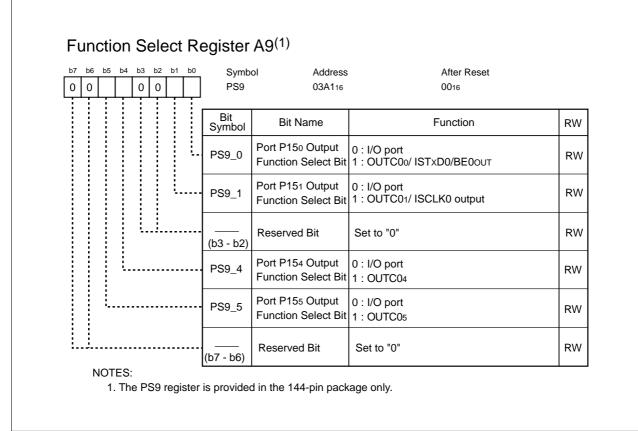


Figure 24.11 PS9 Register

7 b6 b5 b4 b3 b2 b1 b0	Symb	ol Address	After Reset	
0 0 0 0	PSL0	03B216	0016	
	Bit			
	Symbol	Bit Name	Function	R
		December 1 Dit	Set to "0"	
	(b1 - b0)	Reserved Bit	Set to 0	R
	PSL0_2	Port P62 Output Peripheral	0 : SCL0	
		Function Select Bit	1 : STxD0	R
		Reserved bit	Set to "0"	R
	(b3)	Reserved bit		
		Port P64 Output Peripheral	0 : RTS1	
	PSL0_4	Function Select Bit	1 : OUTC21/ISCLK2 output	R
		Deserved Dit		_
	(b5)	Reserved Bit	Set to "0"	R
	PSL0_6	Port P66 Output Peripheral	0 : SCL1 output	
	PSLU_0	Function Select Bit	1 : STxD1	R
		Reserved Bit	Set to "0"	R
	(b7)	Reserved bit		
	egister Symbo PSL1		After Reset 0016	
	Symbo	ol Address		
	Symbo PSL1 Bit	ol Address		RW
	Symbo PSL1 Bit Symbol	ol Address 03B316 Bit Name	0016 Function	RW
	Symbo PSL1 Bit Symbol	ol Address 03B316	0016	RW
	Symbo PSL1 Bit Symbol PSL1_0	DI Address 03B316 Bit Name Port P70 Output Peripheral Function Select Bit	0016 Function 0 : Selected by the PSC_0 bit 1 : TA0ouT output	RV
	Symbo PSL1 Bit Symbol	DI Address 03B316 Bit Name Port P70 Output Peripheral	0016 Function 0 : Selected by the PSC_0 bit	
	Symbol PSL1 PSL1_0 PSL1_1	Address 03B316 Bit Name Port P70 Output Peripheral Function Select Bit Port P71 Output Peripheral Function Select Bit	0016 Function 0 : Selected by the PSC_0 bit 1 : TA0ouT output 0 : Selected by the PSC_1 bit 1 : STxD2	RV RV
	Symbo PSL1 Bit Symbol PSL1_0 PSL1_1	Address 03B316 Bit Name Port P70 Output Peripheral Function Select Bit Port P71 Output Peripheral	0016 Function 0 : Selected by the PSC_0 bit 1 : TA0ou⊤ output 0 : Selected by the PSC_1 bit	RW
	Symbo PSL1 Bit Symbol PSL1_0 PSL1_1 PSL1_2	Address 03B316 Bit Name Port P70 Output Peripheral Function Select Bit Port P71 Output Peripheral Function Select Bit Port P72 Output Peripheral Function Select Bit	0016 Function 0 : Selected by the PSC_0 bit 1 : TA0ouT output 0 : Selected by the PSC_1 bit 1 : STxD2 0 : Selected by the PSC_2 bit 1 : TA1ouT output	RW RW RW
	Symbo PSL1 Bit Symbol PSL1_0 PSL1_1 PSL1_2 PSL1_3	Address 03B316 Bit Name Port P70 Output Peripheral Function Select Bit Port P71 Output Peripheral Function Select Bit Port P72 Output Peripheral	0016 Function 0 : Selected by the PSC_0 bit 1 : TA0ouT output 0 : Selected by the PSC_1 bit 1 : STxD2 0 : Selected by the PSC_2 bit	RW RW RW
	Symbo PSL1 Bit Symbol PSL1_0 PSL1_1 PSL1_2 PSL1_3	Address 03B316 Bit Name Port P70 Output Peripheral Function Select Bit Port P71 Output Peripheral Function Select Bit Port P72 Output Peripheral Function Select Bit	0016 Function 0 : Selected by the PSC_0 bit 1 : TA00UT output 0 : Selected by the PSC_1 bit 1 : STxD2 0 : Selected by the PSC_2 bit 1 : TA10UT output 0 : Selected by the PSC_3 bit 1 : V	RW RW RW
	Symbo PSL1 Bit Symbol PSL1_0 PSL1_1 PSL1_2 PSL1_3 PSL1_4	Address 03B316 Bit Name Port P70 Output Peripheral Function Select Bit Port P71 Output Peripheral Function Select Bit Port P72 Output Peripheral Function Select Bit Port P73 Output Peripheral Function Select Bit	0016 Function 0 : Selected by the PSC_0 bit 1 : TA0ouT output 0 : Selected by the PSC_1 bit 1 : STxD2 0 : Selected by the PSC_2 bit 1 : TA1ouT output 0 : Selected by the PSC_3 bit	RW
	Symbo PSL1 Bit Symbol PSL1_0 PSL1_1 PSL1_2 PSL1_3 PSL1_4	Address 03B316Bit NamePort P70 Output Peripheral Function Select BitPort P71 Output Peripheral Function Select BitPort P72 Output Peripheral Function Select BitPort P73 Output Peripheral Function Select BitPort P74 Output Peripheral Function Select Bit	0016 Function 0 : Selected by the PSC_0 bit 1 : TA0ouT output 0 : Selected by the PSC_1 bit 1 : STxD2 0 : Selected by the PSC_2 bit 1 : TA1ouT output 0 : Selected by the PSC_3 bit 1 : V 0 : Selected by the PSC_4 bit 1 : W	RW RW RW RW
	Symbol PSL1_0 PSL1_0 PSL1_1 PSL1_2 PSL1_2 PSL1_3 PSL1_4	Address 03B316 Bit Name Port P70 Output Peripheral Function Select Bit Port P71 Output Peripheral Function Select Bit Port P72 Output Peripheral Function Select Bit Port P73 Output Peripheral Function Select Bit Port P73 Output Peripheral Function Select Bit Port P74 Output Peripheral Function Select Bit	0016 Function 0 : Selected by the PSC_0 bit 1 : TA00UT output 0 : Selected by the PSC_1 bit 1 : STxD2 0 : Selected by the PSC_2 bit 1 : TA10UT output 0 : Selected by the PSC_3 bit 1 : V 0 : Selected by the PSC_4 bit	RW RW RW RW
	Symbo PSL1 Bit Symbol PSL1_0 PSL1_0 PSL1_1 PSL1_2 PSL1_3 PSL1_4 PSL1_5	Address 03B316Bit NamePort P70 Output Peripheral Function Select BitPort P71 Output Peripheral Function Select BitPort P72 Output Peripheral Function Select BitPort P73 Output Peripheral Function Select BitPort P74 Output Peripheral Function Select BitPort P74 Output Peripheral Function Select BitPort P75 Output Peripheral Function Select Bit	0016 Function 0 : Selected by the PSC_0 bit 1 : TA00UT output 0 : Selected by the PSC_1 bit 1 : STxD2 0 : Selected by the PSC_2 bit 1 : TA10UT output 0 : Selected by the PSC_3 bit 1 : V 0 : Selected by the PSC_4 bit 1 : W 0 : \overline{W} 1 : OUTC12	RW RW RW RW RW
	Symbol PSL1_0 PSL1_0 PSL1_1 PSL1_2 PSL1_2 PSL1_3 PSL1_4 PSL1_5 PSL1_6	Address 03B316Bit NamePort P70 Output Peripheral Function Select BitPort P71 Output Peripheral Function Select BitPort P72 Output Peripheral Function Select BitPort P73 Output Peripheral Function Select BitPort P74 Output Peripheral Function Select BitPort P75 Output Peripheral Function Select BitPort P75 Output Peripheral Function Select Bit	0016 Function 0 : Selected by the PSC_0 bit 1 : TA00UT output 0 : Selected by the PSC_1 bit 1 : STxD2 0 : Selected by the PSC_2 bit 1 : TA10UT output 0 : Selected by the PSC_3 bit 1 : V 0 : Selected by the PSC_4 bit 1 : W 0 : \overline{W}	RW RW RW
	Symbol PSL1_0 PSL1_0 PSL1_1 PSL1_2 PSL1_2 PSL1_3 PSL1_4 PSL1_5 PSL1_6	Address 03B316Bit NamePort P70 Output Peripheral Function Select BitPort P71 Output Peripheral Function Select BitPort P72 Output Peripheral Function Select BitPort P73 Output Peripheral Function Select BitPort P74 Output Peripheral Function Select BitPort P75 Output Peripheral Function Select Bit	0016 Function $0 : Selected by the PSC_0 bit$ $1 : TA00UT output$ $0 : Selected by the PSC_1 bit$ $1 : STxD2$ $0 : Selected by the PSC_2 bit$ $1 : TA10UT output$ $0 : Selected by the PSC_3 bit$ $1 : V$ $0 : Selected by the PSC_4 bit$ $1 : W$ $0 : \overline{W}$ $1 : OUTC12$ $0 : Selected by the PSC_6 bit$	RW RW RW RW RW

Figure 24.12 PSL0 Register and PSL1 Register

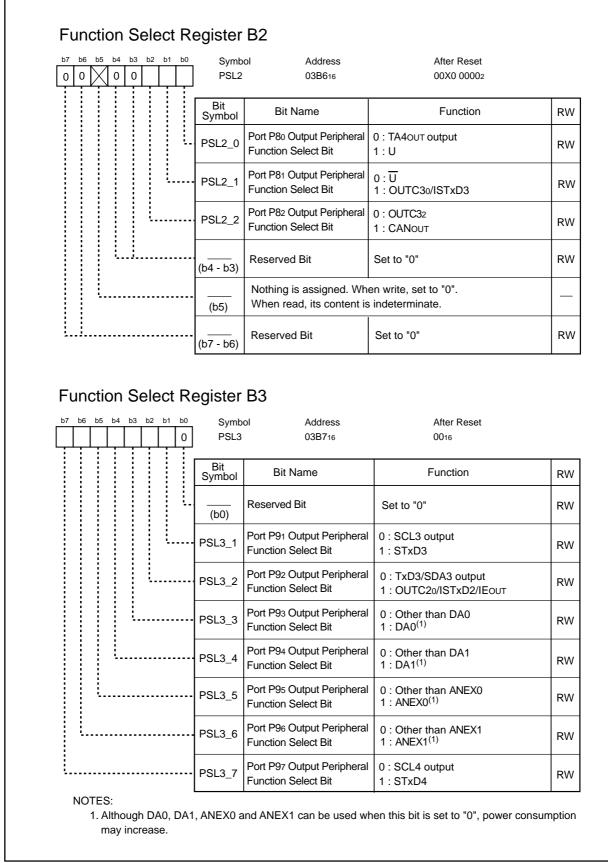
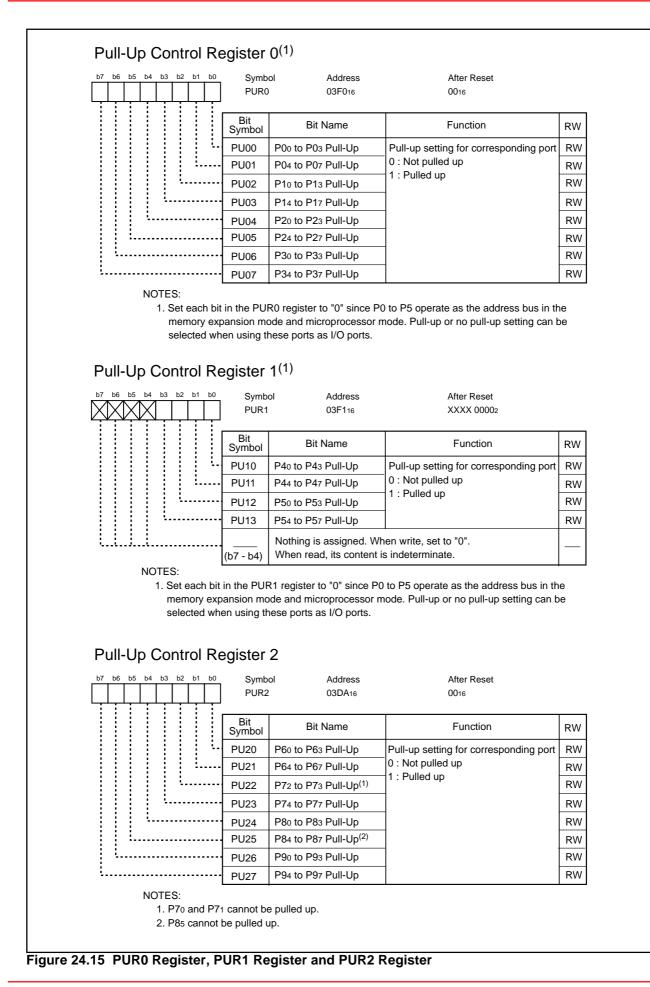


Figure 24.13 PSL2 Register and PSL3 Register


RENESAS

b7 b6 b5 b4 b3 b2 b1	DO Symb PSC	ool Address 03AF16	After Reset 00X0 00002	
	Bit Symbol	Bit Name	Function	RW
	PSC_0	Port P70 Output Peripheral Function Select Bit	0 : TxD2/SDA2 output 1 : OUTC20/ISTxD2/IEOUT	RW
	···· PSC_1	Port P71 Output Peripheral Function Select Bit	0 : SCL2 output 1 : OUTC22	RW
	PSC_2	Port P72 Output Peripheral Function Select Bit	0 : CLK2 output 1 : V	RW
	PSC_3	Port P73 Output Peripheral Function Select Bit	0 : RTS2 1 : OUTC10/ISTxD1/BE1out	RW
	PSC_4	Port P74 Output Peripheral Function Select Bit	0 : TA2o∪⊤ output 1 : OUTC11/ISCLK1 output	RW
		Nothing is assigned. Wher When read, its content is i		_
	··· PSC_6	Port P76 Output Peripheral Function Select Bit	0 : OUTC00/ISTxD0/BE0out 1 : CANout	RW
	PSC_7	Key Input Interrupt Validity Select Bit	0 : P104 to P107 or Klo to Kl3 1 : AN4 to AN7 ⁽¹⁾	RW

Figure 24.14 PSC Register

increase.

RENESAS

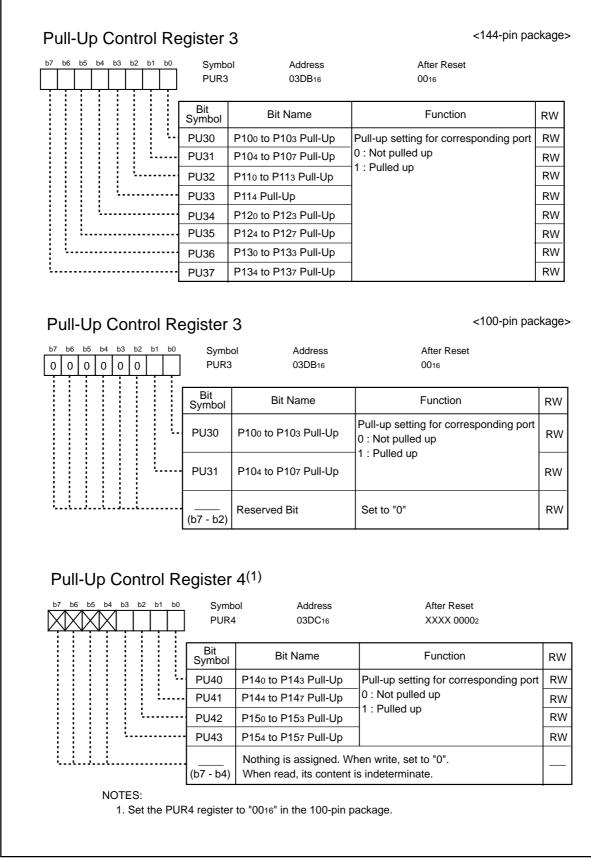


Figure 24.16 PUR3 Register and PUR4 Register

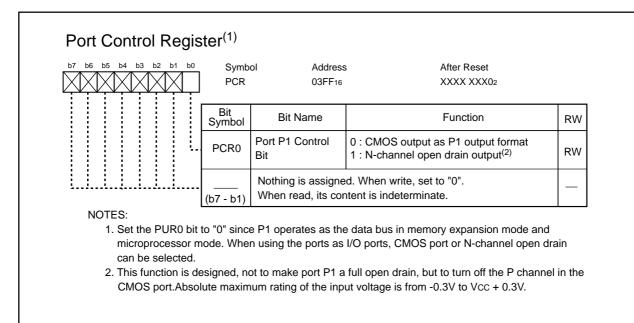
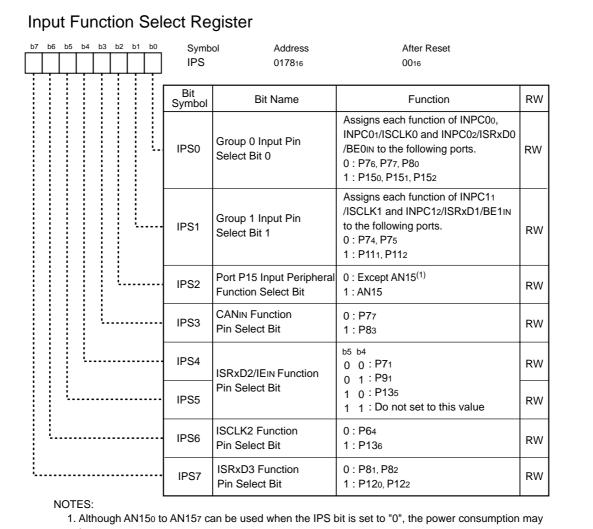



Figure 23.17 PCR Register

increase.

Figure 24.18 IPS Register

Pin Name	Setting
P0 to P15	Enter input mode and connect each pin to Vss via a resistor (pull-down);
(excluding P85) ^(1,2,3,4,6)	or enter output mode and leave pins open
Xout ⁽⁵⁾	Leave pin open
NMI(P85)	Connect pin to Vcc via a resistor (pull-up)
AVcc	Connect pin to Vcc
AVSS, VREF, BYTE	Connect pins to Vss

Table 24.1	Unassigned Pin	Settings in Single-chip Mode
------------	----------------	------------------------------

NOTES:

- 1. P11 to P15 are provided in the 144-pin package only.
- 2. If the port enters output mode and is left open, it is in input mode before output mode is entered by program after reset. While the port is in input mode, voltage level on the pins is indeterminate and power consumption may increase.

Direction register settings may be changed by noise or failure caused by noise. Configure direction register settings regulary to increase the reliability of the program.

- 3. Use the shortest possible wiring to connect the microcomputer pins to unassigned pins (within 2 cm).
- 4. P70 and P71 must output low-level ("L") signals if they are in output mode. They are ports for the N-channel open drain outputs.
- 5. When the external clock is applied to the XIN pin, set the pin as written above.
- 6. In the 100-pin package, set "FF16" in the following addresses, in addition to the above settings: Addresses 0003CB16, 0003CE16, 0003CF16, 0003D216, 0003D316

Table 24.2 Unassigned Pin Setting in Memory Expansion Mode and Microprocessor Mode

Pin Name	Setting
P6 to P15	Enter input mode and connect each pin to Vss via a resistor (pull-down);
(excluding P85) ^(1,2,3,4,6)	or enter output mode and leave pins open
BHE, ALE, HLDA,	Leave pin open
Xout ⁽⁵⁾ , BCLK	
NMI(P85), RDY, HOLD	Connect pin to Vcc via a resistor (pull-up)
AVcc	Connect pin to VCC
AVSS, VREF	Connect pins to Vss
NOTES:	

1. P11 to P15 are provided in the 144-pin package only.

2. If the port enters output mode and is left open, it is in input mode before output mode is entered by program after reset. While the port is in input mode, voltage level on the pins is indeterminate and power consumption may increase.

Direction register settings may be changed by noise or failure caused by noise. Configure direction register settings regulary to increase the reliability of the program.

- 3. Use the shortest possible wiring to connect the microcomputer pins to unassigned pins (within 2 cm).
- 4. P70 and P71 must output low-level ("L") signals if they are in output mode. They are ports for the N-channel open drain outputs.
- 5. When the external clock is applied to the XIN pin, set the pin as written above.
- 6. In the 100-pin package, set "FF16" in the following addresses, in addition to the above settings: Addresses 0003CB16, 0003CE16, 0003CF16, 0003D216, 0003D316

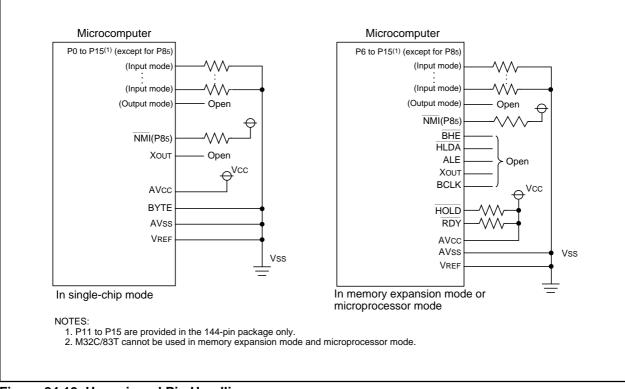


Figure 24.19 Unassigned Pin Handling

Table 24.3 Port P6 Peripheral Function Output Control

	PS0 Register	PSL0 Register
Bit 0	0: P60/CTS0/SS0 1: RTS0	Set to "0"
Bit 1	0: P61/CLK0 (input) 1: CLK0 (output)	Set to "0"
Bit 2	0: P62/RxD0/SCL0 (input) 1: Selected by the PSL0 register	0: SCL0 (output) 1: STxD0
Bit 3	0: P63/SRxD0/SDA0 (input) 1: TxD0/SDA0 (output)	Set to "0"
Bit 4	0: P64/CTS1/SS1/ISCLK2 (input) 1: Selected by the PSL0 register	0: RTS1 1: OUT21/ISCLK2(output)
Bit 5	0: P65/CLK1(input) 1: CLK1(output)	Set to "0"
Bit 6	0: P66/RxD1/SCL1 (input) 1: Selected by the PSL0 register	0: SCL1(output) 1: STxD1
Bit 7	0: P67/SRxD1/SDA1 (input) 1: TxD1/SDA1 (output)	Set to "0"

Table 24.4 Port P7 Peripheral Function Output Control

PS1 Register	PSL1 Register	PSC Register ⁽¹⁾
0: P70/SRxD2/TA0out(input)/ SDA2(input)	0: Selected by the PSC register	0: TxD2/SDA2(output)
1: Selected by the PSL1 register	1: TA0out(output)	1: OUTC20/ISTxD2/IEOUT
0: P71/TB5IN/TA0IN/RxD2/ISRxD2/IEIN/	0: Selected by the PSC register	0: SCL2(output)
SCL2(input)		
1: Selected by the PSL1 register	1: STxD2	1: OUTC22
0: P72/TA1out(input)/CLK2(input)	0: Selected by the PSC register	0: CLK2(output)
1: Selected by the PSL1 register	1: TA10UT(output)	1: V
0: P73/TA1IN/CTS2/SS2	0: Selected by the PSC register	0: RTS2
1: Selected by the PSL1 register	1: 🗸	1: OUTC10/ISTxD1/BE10UT
	0: Selected by the PSC register	0: TA2o∪⊤(output)
1: Selected by the PSL1 register	1: W	1: OUTC11/ISCLK1(output)
0: P75/TA2IN/INPC12/ISRxD1/BE1IN	0: W	Set to "0"
1: Selected by the PSL1 register	1: OUTC12	
0: P76/INPC00/TA3OUT(input)	0: Selected by the PSC register	0: OUTC00/ISTxD0/BE0out
1: Selected by the PSL1 register	1: TA3out(output)	1: CAN0out
0: P77/TA3IN/CANIN/ISCLK0(input)/INPC01	Set to "0"	0: P104 to P107 or KIO to KI3
1: OUTC01/ISCLK0(output)		1: AN4 to AN7
		(No relation to P77)
	1: Selected by the PSL1 register 0: P71/TB5IN/TA0IN/RxD2/ISRxD2/IEIN/ SCL2(input) 1: Selected by the PSL1 register 0: P72/TA10UT(input)/CLK2(input) 1: Selected by the PSL1 register 0: P73/TA1IN/CTS2/SS2 1: Selected by the PSL1 register 0: P74/INPC11/ISCLK1(input)/TA20UT(input) 1: Selected by the PSL1 register 0: P75/TA2IN/INPC12/ISRxD1/BE1IN 1: Selected by the PSL1 register 0: P76/INPC00/TA30UT(input) 1: Selected by the PSL1 register 0: P77/TA3IN/CANIN/ISCLK0(input)/INPC01	0: P70/SRxD2/TA0OUT(input)/ SDA2(input)0: Selected by the PSC register1: Selected by the PSL1 register1: TA0OUT(output)0: P71/TB5IN/TA0IN/RxD2/ISRxD2/IEIN/0: Selected by the PSC registerSCL2(input)1: STxD21: Selected by the PSL1 register1: STxD20: P72/TA1OUT(input)/CLK2(input)0: Selected by the PSC register1: Selected by the PSL1 register1: TA1OUT(output)0: P73/TA1IN/CTS2/SS20: Selected by the PSC register1: Selected by the PSL1 register1: \nd v0: P74/INPC11/ISCLK1(input)/TA2OUT(input)0: Selected by the PSC register1: Selected by the PSL1 register1: W0: P75/TA2IN/INPC12/ISRxD1/BE1IN0: \nd v1: Selected by the PSL1 register1: OUTC120: P76/INPC00/TA3OUT(input)0: Selected by the PSC register1: Selected by the PSL1 register1: OUTC120: P76/INPC00/TA3OUT(input)0: Selected by the PSC register1: Selected by the PSL1 register1: OUTC120: P76/INPC00/TA3OUT(input)0: Selected by the PSC register1: Selected by the PSL1 register1: TA3OUT(output)0: P77/TA3IN/CANIN/ISCLK0(input)/INPC01Set to "0"

NOTES:

1. Set the corresponding PSC_i bit to "0" when setting the PSL1_i bit (i=0 to 4, 6) to "1".

	PS2 Register	PSL2 Register
Bit 0	0: P80/INPC02/ISRxD0/BE0out/TA4out(input)	0: TA4out(output)
	1: Selected by the PSL2 register	1: U
Bit 1	0: P81/TA4IN	0: Ū
	1: Selected by the PSL2 register	1: OUTC32/ISTxD3
Bit 2	0: P82/INT0/ISRxD3	0: OUTC32
	1: Selected by the PSL2 register	1: CANout
Bit 3 to 7	Set to "0"	

Table 24.5 Port P8 Peripheral Function Output Control

Table 24.6 Port P9 Peripheral Function Output Control

	PS3 Register	PSL3 Register
Bit 0	0: P90/TB0IN/CLK3(input)	Set to "0"
	1: CLK3(output)	
Bit 1	0: P91/TB1IN/RxD3/ISRxD2/SCL3(input)/IEIN	0: SCL3(output)
	1: Selected by the PSL3 register	1: STxD3
Bit 2	0: P92/TB2IN/SRxD3/SDA3(input)	0: TxD3/SDA3(output)
	1: Selected by the PSL3 register	1: OUTC20/ISTxD2/IEIN
Bit 3	0: P93/TB3IN/CTS3/SS3/DA0(output)	0: Except DA0
	1: RTS3	1: DA0
Bit 4	0: P94/TB4IN/CTS4/SS4/DA1(output)	0: Except DA1
	1: RTS4	1: DA1
Bit 5	0: P95/ANEX0/CLK4(input)	0: Except ANEX0
	1: CLK4(output)	1: ANEX0
Bit 6	0: P96/SRxD4/ANEX1/SDA4(input)	0: Except ANEX1
	1: TxD4/SDA4(output)	1: ANEX1
Bit 7	0: P97/RxD4/ADTRG/SCL4(input)	0: SCL4(output)
	1: Selected by the PSL3 register	1: STxD4

Table 24.7 Port P10 Peripheral Function Output Control

	PSC Register	
Bit 7	0: P104 to P107 or Klo to Kl3	
	1: AN4 to AN7	

Table 24.8 Port P11 Peripheral Function Output Control

	PS5 Register
Bit 0	0: P110
	1: OUTC10/ISTxD1/BE1OUT
Bit 1	0: P111/INPC11/ISCLK1(input)
	1: OUTC11/ISCLK1(output)
Bit 2	0: P112/INPC12/ISRxD1/BE1IN
	1: OUTC12
Bit 3	0: P113
	1: OUTC13
Bit 4 to 7	Set to "0"

Table 24.9 Port P12 Peripheral Function Output Control

	PS6 Register
Bit 0	0: P120
	1: OUTC30/ISTxD3
Bit 1	0: P121/ISCLK3(input)
	1: OUTC31/ISCLK3(output)
Bit 2	0: P122/ISRxD3
	1: OUTC32
Bit 3	0: P123
	1: OUTC33
Bit 4	0: P124
	1: OUTC34
Bit 5	0: P125
	1: OUTC35
Bit 6	0: P126
	1: OUTC36
Bit 7	0: P127
	1: OUTC37

	PS7 Register
Bit 0	0: P130
	1: OUTC24
Bit 1	0: P131
	1: OUTC25
Bit 2	0: P132
	1: OUTC26
Bit 3	0: P133
	1: OUTC23
Bit 4	0: P134
	1: OUTC20/ISTxD2/IEOUT
Bit 5	0: P135/ISRxD2/IEIN
	1: OUTC22
Bit 6	0: P136/ISCLK2(input)
	1: OUTC21/ISCLK2(output)
Bit 7	0: P137
	1: OUTC27

Table 24.10 Port P13 Peripheral Function Output Control

Table 24.11 Port P14 Peripheral Function Output Control

	PS8 Register
Bit 0	0: P140
	1: OUTC14
Bit 1	0: P141
	1: OUTC15
Bit 2	0: P142/INPC16
	1: OUTC16
Bit 3	0: P143/INPC17
	1: OUTC17
Bit 4 to 7	Set to " 0"

Table 24.12 Port P15 Peripheral Function Output Control

	PS9 Register
Bit 0	0: P150/INPC00/AN150
	1: OUTC00/ISTxD0/BE0out
Bit 1	0: P151/INPC01/AN151/ISCLK0(input)
	1: OUTC01/ISCLK0(output)
Bit 2 to 3	Set to "0"
Bit 4	0: P154/INPC04/AN154
	1: OUTC04
Bit 4	0: P155/INPC05/AN155
	1: OUTC05
Bit 6 to 7	Set to " 0"

25. Flash Memory Version

Aside from the built-in flash memory, the flash memory version microcomputer has the same functions as the masked ROM version.

In the flash memory version, rewrite operations to the flash memory can be performed in three modes: CPU rewrite mode, standard serial I/O mode and parallel I/O mode.

Table 25.1 lists specifications of the flash memory version. See **Tables 1.1 and 1.2** for the items not listed in Table 25.1.

lt	em	Specification			
Supply Voltage		4.2V to 5.5V (f(XIN) = 32MHz, no wait)			
		3.0V to $5.5V$ (f(XIN) = 20MHz, no wait)			
Program and Era	se Voltage	4.2V to 5.5V (through VDC), 3.0V to 3.6V (not through VDC)			
		CPU clock=12.5MHz (1 wait state), CPU clock=6.25MHz (no wait)			
Flash Memory Re	ewrite Mode	3 modes (CPU rewrite, standard serial I/O, parallel I/O)			
Erase Block	User ROM Area	See Figure 25.1			
	Boot ROM Area	1 block (8 Kbytes) ⁽¹⁾			
Program Method		Per page (256 bytes)			
Erase Method		All block erase, erase per block			
Program and Era	se Control Method	Software commands control programming and erasing on the flash memory			
Protect Method		The lock bit protects each block in the flash memory			
Number of Commands		8 commands			
Program and Erase Endurance		100 cycles ⁽³⁾			
Data Retention		10 years			
ROM Code Prote	ection	Standard serial I/O mode and parallel I/O mode supported			

Table 25.1	Flash Memory Version Specifications
------------	-------------------------------------

NOTES:

1. The rewrite control program for standard serial I/O mode is stored in the boot ROM area before shipment. This space can be rewritten in parallel I/O mode only.

Table 25.2	Flash	Memory	Rewrite	Mode	Overview
------------	-------	--------	---------	------	----------

Flash Memory Rewrite Mode	CPU Rewrite Mode	Standard Serial I/O Mode	Parallel I/O Mode		
Function	Software command execution by CPU rewrites the user ROM area.	A dedicated serial programmer rewrites the user ROM area. Standard serial I/O mode 1: Clock synchronous serial I/O Standard serial I/O mode 2: UART	A dedicated parallel programmer rewrites the boot ROM area and user ROM area.		
Space which can be Rewritten	User ROM area	User ROM area	User ROM area Boot ROM area		
Operating Mode	Single-chip mode Memory expansion mode Boot mode	Boot mode	Parallel I/O mode		
Programmer	None	Serial programmer	Parallel programmer		

25.1 Memory Map

The flash memory contains a user ROM area, with space to store microcomputer operating programs in single-chip mode or memory expansion mode, and a separate 8-Kbyte boot ROM area. Figure 25.1 shows a block diagram of the flash memory.

The user ROM area is divided into several blocks, each of which can be protected (locked) from program and erase. The user ROM area can be rewritten in CPU rewrite, standard serial I/O and parallel I/O modes. The boot ROM area is allocated in the same addresses as the user ROM area. It can only be rewritten in parallel I/O mode (refer to **25.5 Parallel I/O Mode**). A program in the boot ROM area is executed after a hardware reset occurs while an "H" signal is applied to the CNVss and P50 pins and an "L" signal is applied to the P55 pin (refer to **25.1.1 Boot Mode**). A program in the user ROM area is executed after a hardware reset occurs while an "L" signal is applied to the CNVss pin. Consequently, the boot ROM area cannot be read.



Figure 25.1 Flash Memory Block Diagram

RENESAS

25.1.1 Boot Mode

The microcomputer enters boot mode when a hardware reset is performed while an "H" signal is applied to the CNVss and P50 pins and an "L" signal is applied to the P55 pin. The program in the boot ROM area is executed.

In boot mode, the FMR05 bit in the FMR0 register selects access to either the boot ROM area or the user ROM area.

The rewrite control program for standard serial I/O mode (refer to **25.4 Standard Serial I/O Mode**) is stored in the boot ROM area before shipment.

The boot ROM area can be rewritten in parallel I/O mode only. If any rewrite control program using erasewrite mode is written in the boot ROM area, the flash memory can be rewritten according to the system implemented.

25.2 Functions to Prevent the Flash Memory from Rewriting

The flash memory has the ROM code protect function for parallel I/O mode and the ID code verify function for standard I/O mode to prevent the flash memory from reading or rewriting.

25.2.1 ROM Code Protect Function

The ROM code protect function prevents the flash memory from reading and rewriting in parallel I/O mode. Figure 25.2 shows the ROMCP register. The ROMCP register is located in the user ROM area.

The ROM code protect function is enabled when the ROMCP1 bit is set to "002". The ROM code protect function is disabled when the ROMCR bit is set to "002", regardless of the ROMCP1 bit setting.

Therefore, set the ROMCR bit to "112" and the ROMCP1 bit to "002" when setting up the ROM code protect function.

Once the ROM code protect function is enabled, the ROMCR bit cannot be changed in parallel I/O mode. Rewrite the ROMCR bit to "002" in standard serial I/O mode or CPU rewrite mode when disabling the ROM code protect function.

25.2.2 ID Code Verify Function

Use the ID code verify function in standard serial I/O mode. The ID code sent from the serial programmer is compared with the ID code written in the flash memory for a match. If the ID codes do not match, commands sent from the serial programmer are not accepted. However, if the four bytes of the reset vector are "FFFFFFF16", ID codes are not compared, and all commands are accepted.

The ID codes are 7-byte data stored consecutively, starting with the first byte, into addresses 0FFFDF16, 0FFFFE316, 0FFFFEB16, 0FFFFEF16, 0FFFFF316, 0FFFFF716 and 0FFFFFB16. The flash memory must have a program with the ID codes set in these addresses.

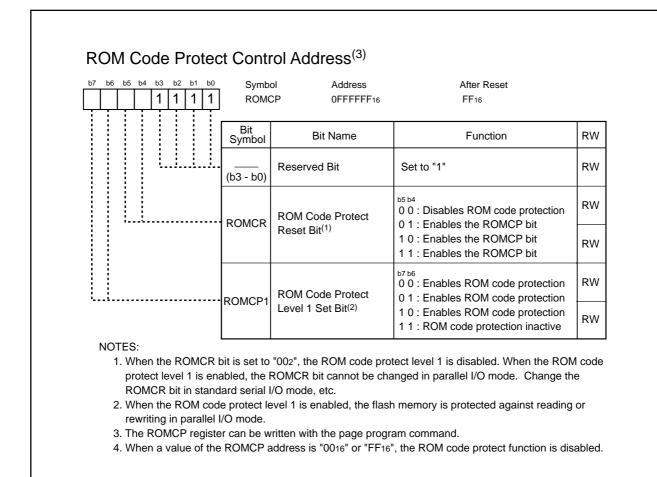


Figure 25.2 ROMCP Register

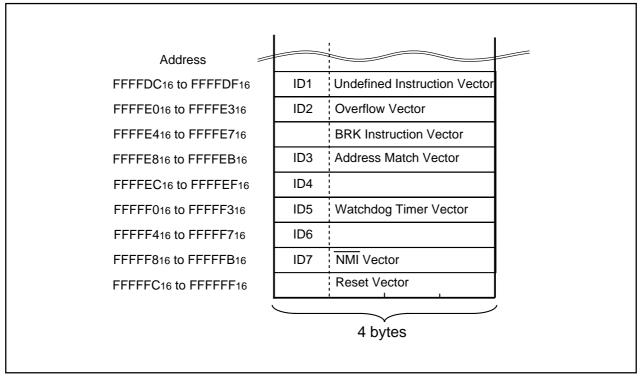


Figure 25.3 Address to Store ID Code

25.3 CPU Rewrite Mode

In CPU rewrite mode, the user ROM area can be rewritten when the CPU executes software commands. The user ROM area can be rewritten with the microcomputer mounted on a board, without using a parallel or serial programmer.

Write the rewrite control program to either the user ROM area or the boot ROM area, beforehand. No program in the flash memory can be executed in CPU rewrite mode. Therefore, transfer rewrite control program to an area other than flash memory (internal RAM, etc.), and execute.

CPU rewrite mode can be entered when the microcomputer is in single-chip, memory expansion, and boot mode.

Software commands, listed in Table 25.3, can be used in CPU rewrite mode. Refer to **25.3.3 Software Command** for details of each command.

<u>Read or write commands and data from or to even addresses in the user ROM area, in 16-bit units.</u> The 8 high-order bits (D15 to D8) are ignored when writing command codes.

Software Command	First Bus Cycle		Second Bus Cycle			Third Bus Cycle			
Software Command	Mode	Address	Data (D15 to D0)	Mode	Address	Data (D15 to D0)	Mode	Address	Data (D15 to D0)
Read Array	Write	Х	xxFF16						
Read Status Register	Write	х	xx7016	Read	Х	SRD			
Clear Status Register	Write	х	xx5016						
Page Program	Write	х	xx41 16	Write	WA	WD	Write	WA+2	WD
Block Erase	Write	х	xx2016	Write	BA	xxD016			
Erase All Unlocked Block	Write	х	xxA716	Write	х	xxD016			
Lock Bit Program	Write	х	xx77 16	Write	BA	xxD016			
Read Lock Bit Status	Write	х	xx71 16	Read	BA	D6			

Table 25.3 Software Commands

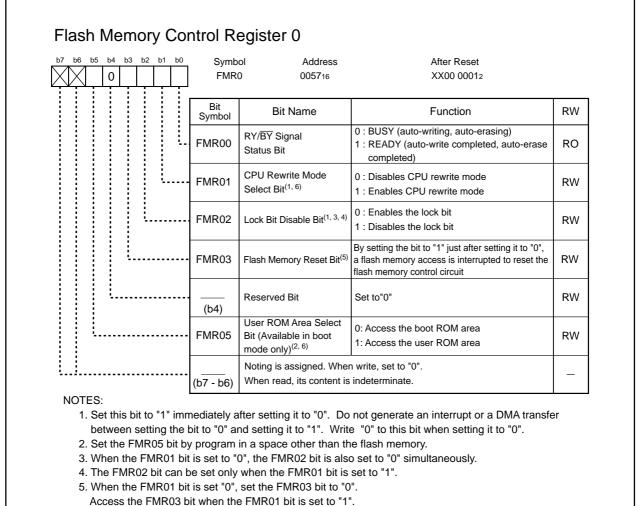
SRD: Data in the SRD register (D7 to D0)

WA: Address to be written (Increment Á7 to A0 by 2 from "0016" to "FE16".)

WD: 16-bit write data

BA: Highest-order block address (A₀ = 0)

D6: Lock bit (D6=1: unlock, D6=0: locked)


X: Any even address in the user ROM area $(A_0 = 0)$

xx: 8 high-order bits of command code (ignored)

25.3.1 Flash Memory Control Register 0 (FMR0 Register)

Figure 25.4 shows the FMR0 register.

6. Set the FMR05 bit while applying "H" to the \overline{NMI} pin.

Figure 25.4 FMR0 Register

25.3.1.1 FMR00 Bit

The FMR00 bit indicates the write status machine (WSM) operation state during an auto write and auto erase operation. The FMR00 bit is set to "0" during an auto write or auto erase operation and is set to "1" when an auto write or auto erase operation is completed. The FMR00 bit changes while executing the page program, block erase, erase all unlocked block or lock bit program command. Determine whether the auto write or erase operation is completed by reading the FMR00 bit . The FMR00 bit is changed by the above commands only.

25.3.1.2 FMR01 Bit

Commands can be accepted when the FMR01 bit is set to "1" (CPU rewrite mode). To set the FMR01 bit to "1", set to "1" immediately after setting it to "0". To set the FMR01 bit to "0", set it to "0".

CPU rewrite mode is entered by setting the FMR01 bit to "1" and programs in the flash memory cannot be executed. Execute an instruction written to this bit in a space (internal RAM, etc.) other than the flash memory.

If a command for CPU rewrite mode is executed in boot mode, set the FMR05 bit to "1" (user ROM area access).

RENESAS

25.3.1.3 FMR02 Bit

The lock bit set for each block can be disabled by setting the FMR02 bit to "1" (lock bit disabled). (Refer to **25.3.3 Data Protect Function**.) The lock bit is enabled by setting the FMR02 bit to "0" (lock bit enabled). The FMR02 bit can be set when the FMR01 bit is set to "1". To set the FMR02 bit to "1", set it to "1" immediately after setting it to "0". To set the FMR02 bit to "0", set it to "0".

The FMR02 bit does not change the lock bit state, but disables the lock bit function. If the block erase or erase all unlocked block command is executed while the FMR02 bit is set to "1", the lock bit state changes "0" (locked) to "1" (unlocked) after command execution is completed.

25.3.1.4 FMR03 Bit

By setting the FMR03 bit to "0" following "1", access to the user ROM area is interrupted to reset the flash memory control circuit. The flash memory enters read array mode after reset. The FMR00 bit is set to "1" (READY) and the Status register is set to "8016". (Refer to **25.3.2 Status Register**.) When the FMR03 bit resets the flash memory control circuit during an auto write or auto erase operation, an auto write or auto erase operation is interrupted. Data in the block is invalid. To set the FMR03 bit to "0", set it to "0" immediately after setting it to "1".

25.3.1.5 FMR05 Bit

The FMR05 bit selects the boot ROM or user ROM area in boot mode. Set to "0" to access (read) the boot ROM area or to "1" (user ROM access) to access (read, write or erase) the user ROM area. Execute an instruction written to the FMR05 bit in a space (internal RAM, etc.) other than the flash memory.

In modes other than boot mode, the user ROM area is accessed (read) regardless of the FMR05 bit setting.

25.3.2 Status Register

The write state machine (WSM) in the flash memory controls programming and erasing of the flash memory. The status register indicates whether or not the WSM is operating as expected, and whether or not a program or erase operation is completed as expected. Refer to **25.3.6 Full Status Check** for details on each error.

Table 25.4 lists the status register.

The status register can be read by the read status command (Refer to **25.3.5 Software Command**).

Table 25.4 Status Register							
Symbol	Status Name	Def	Definition				
Symbol	Status Name	0	1				
SR0 (D0)	Reserved bit	-	-				
SR1 (D1)	Reserved bit	-	-				
SR2 (D2)	Reserved bit	-	-				
SR3 (D3)	Block status after program	Completed as expected	Error (excessive write error)				
SR4 (D4)	Program status	Completed as expected	Error (program error)				
SR5 (D5)	Erase status	Completed as expected	Error (erase error)				
SR6 (D6)	Reserved bit	-	-				
SR7 (D7)	Write state machine (WSM) status	BUSY	READY				

Table 25.4 Status Register

D7 to D0 : These data bus are read when the read status register command is executed.

25.3.2.1 Block Status After Program (SR3)

The SR3 bit is set to "1" when a page program command execution is completed with an excessive write error. The SR3 bit is set to "0" when the clear status command is executed.

The SR3 bit is set to "0" after reset or after setting the FMR03 bit to "0" following "1".

25.3.2.2 Program Status (SR4)

The SR4 bit is set to "1" when a program error occurs while the page program or lock bit program command is being executed. The SR4 bit is set to "0" when the clear status command is executed. The SR4 bit is set to "0" after reset or after setting the FMR03 bit to "0" following "1".

25.3.2.3 Erase Status (SR5)

The SR5 bit is set to "1" when an erase error occurs while the block erase or erase all unlocked block command is being executed. The SR5 bit is set to "0" when the clear status command is executed. The SR5 bit is set to "0" after reset or after setting the FMR03 bit to "0" following "1".

25.3.2.4 Write State Machine (WSM) Status (SR7)

The SR7 bit indicates the WSM operation state. The SR7 bit is set to "0" during auto write or auto erase and to "1" when an auto write or auto erase operation is completed. The SR7 bit changes while the page program, block erase, erase all unlocked block or lock bit program command is being executed. The SR7 bit changes with the above commands only. The SR7 bit is set to "1" after reset or after setting the FMR03 bit to "0" following "1",.

The FMR00 bit indicates the WSM status. Read the FMR00 bit to determine whether the auto write or erase operation is completed.

25.3.3 Data Protect Function

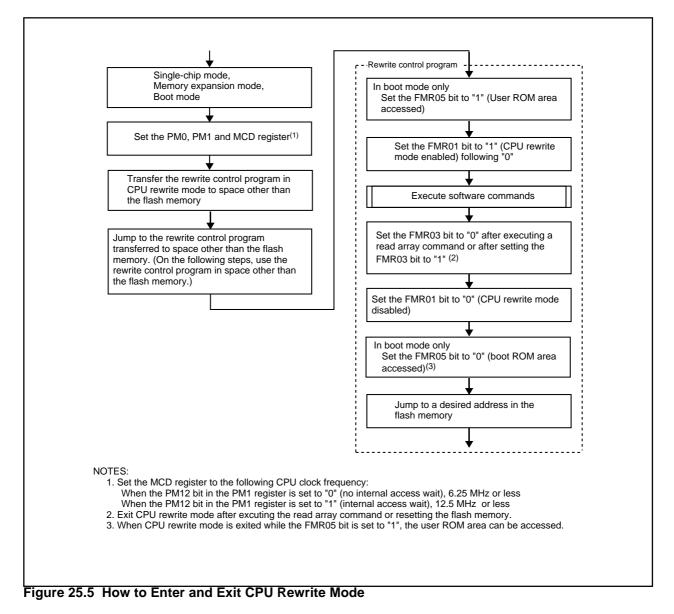
Each block in the flash memory has a nonvolatile lock bit. The lock bit is enabled by setting the FMR02 bit to "0" (lock bit enabled). The lock bit individually protects (locks) each block against program and erase. This prevents data from being inadvertently written to or erased from the flash memory.

- When the lock bit status is set to "0", the block is locked (block is protected against program and erase).
- When the lock bit status is set to "1", the block is not locked (block can be programmed or erased).

The lock bit status is set to "0" (locked) by executing the lock bit program command and to "1" (unlocked) by erasing the block. The lock bit status cannot be set to "1" by any commands. The lock bit status can be read by the read lock bit status command.

The lock bit function is disabled by setting the FMR02 bit to "1". All blocks are unlocked. However, individual lock bit status remains unchanged. The lock bit function is enabled by setting the FMR02 bit to "0". Lock bit status is retained.

If the block erase or erase all unlocked block command is executed while the FMR02 bit is set to "1", the target block or all blocks are erased regardless of lock bit status. The lock bit status of each block is set to "1" after an erase operation has been completed.


Refer to 25.3.5 Software Commands for details on each command.

25.3.4 How to Enter and Exit CPU Rewrite Mode

Figure 25.5 shows how to enter and exit CPU rewrite mode.

No program in the flash memory can be executed in CPU rewrite mode. Execute rewrite control program in a space other than the flash memory (internal RAM, etc.) after transferring the program to that space.

25.3.5 Software Commands

Read or write commands and data from or to even addresses in the user ROM area, in 16-bit units. When writing a command code, 8 high-order bits (D15 to D8) are ignored.

25.3.5.1 Read Array Command

The read array command reads the flash memory.

Read array mode is entered by writing command code "xxFF16" in the first bus cycle. Content of a specified address can be read after the next bus cycle.

The microcomputer remains in read array mode until another command is written. Therefore, contents from multiple addresses can be read consecutively.

25.3.5.2 Read Status Register Command

The read status register command reads the status register (refer to **25.3.7 Status Register** for details). By writing command code "xx7016" in the first bus cycle, the status register can be read in the second bus cycle. Read an even address in the user ROM area.

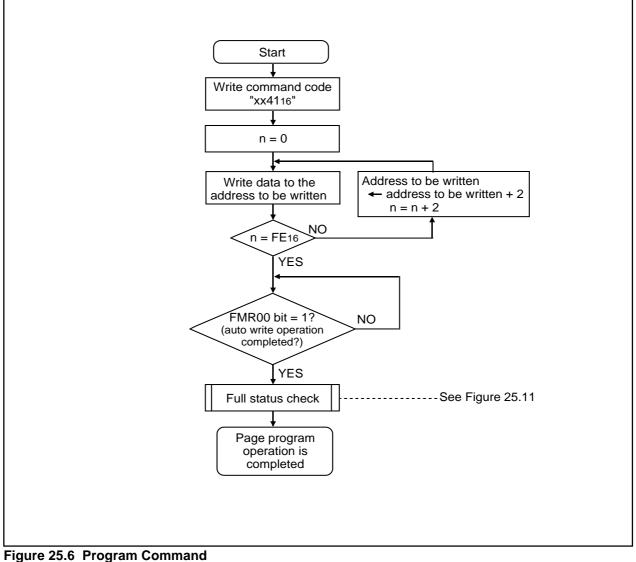
25.3.5.3 Clear Status Register Command

The clear status register command clears the status register. By writing "xx5016" in the first bus cycle, the SR5 to SR3 bits in the status register (see Table 25.4) are set to "0".

25.3.5.4 Page Program Command

The page program command executes programs in 128-word (256-byte) units.

After writing command code "xx4116" in the first bus cycle, write data to the 2nd through 129th bus cycles in 16-bit units. Increment by two, from "0016" to "FE16", the 8 low-order bits of the write address. Auto write, programming and verification of data, is performed when 128 word data has been written. Do not access the flash memory or execute the next command during auto write operation.


The FMR00 bit in the FMR0 register indicates whether an auto program operation is completed. After an auto write operation is completed, the Status register indicates whether the auto write opera-

tion is completed as expected or not. (Refer to 25.3.6 Full Status Check.)

Figure 25.6 shows a flow chart of the page program command programming. <u>When programming a space which is already programmed, execute erase (block erase) before programming.</u> If the page program command is executed to a space already programmed, no program error occurs but the page is indeterminate.

The lock bit can protect blocks from being programmed. (Refer to 25.3.3 Data Protect Function.)

25.3.5.5 Block Erase Command

The block erase command erases each block.

By writing command code "xx2016" in the first bus cycle and "xxD016" to the highest-order even address of a block in the second bus cycle, an auto erase operation (erase and verify) starts in the specified block. Do not access the flash memory or execute the next command during auto erase operations. The FMR00 bit in the FMR0 register indicates whether an auto erase operation has been completed. After the completion of an auto erase operation, the Status register indicates whether or not the auto erase operation has been completed as expected. (Refer to **25.3.6 Full Status Check**.) Figure 25.7 shows a flow chart of the block erase command programming. The lock bit can protect blocks from being erased. (Refer to **25.3.6 Data Protect Function**.)

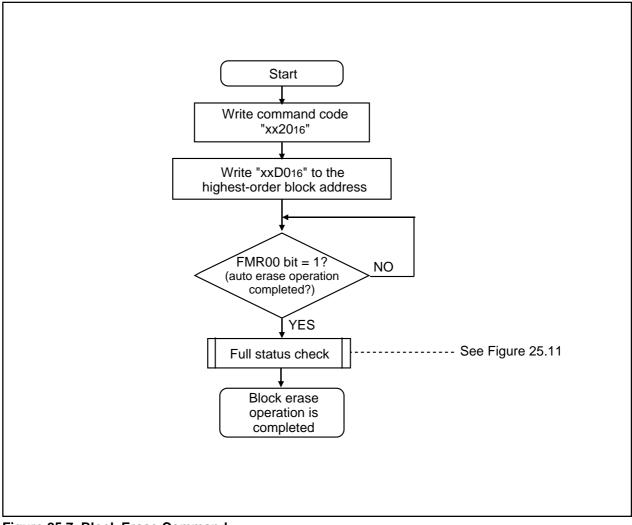


Figure 25.7 Block Erase Command

25.3.5.6 Erase All Unlocked Block Command

By writing command code "xxA716" in the first bus cycle and "xxD016" in the second bus cycle, an auto erase (erase and verify) operation will run in all blocks. Do not access the flash memory or execute the next command during auto erase operations.

The FMR00 bit in the FMR0 register indicates whether an auto erase operation is completed. After the completion of an auto erase operation, the Status register indicates whether or not the auto erase operation is completed as expected.

Figure 25.8 shows a flow chart of the erase all unlocked block command programming. The lock bit can protect each block from being erased. (Refer to **25.3.6 Data Protect Function**.)

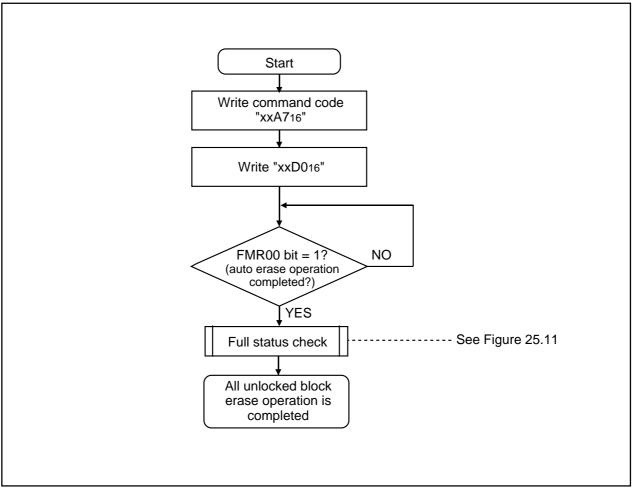


Figure 25.8 Erase All Unlocked Block Command

25.3.5.7 Lock Bit Program Command

The lock bit program command sets the lock bit for a specified block to "0" (locked).

By writing command code "xx7716" in the first bus cycle and "xxD016" to the highest-order even address of a block in the second bus cycle, auto write operation starts, and the lock bit for the specified block is set to "0". Do not access the flash memory or execute the next instructions during the lock bit program operation.

The FMR00 bit in the FMR0 register indicates whether or not the lock bit program operation has been completed. After the completion of a lock bit program operation, the Status register indicates whether or not the operation has been completed as expected. (Refer to **25.3.6 Full Status Check**.) Figure 25.9 shows a flow chart of the lock bit program command programming.

Refer to **25.3.6 Data Protect Function** for details on how to set the lock bit function to "0" (unlocked).

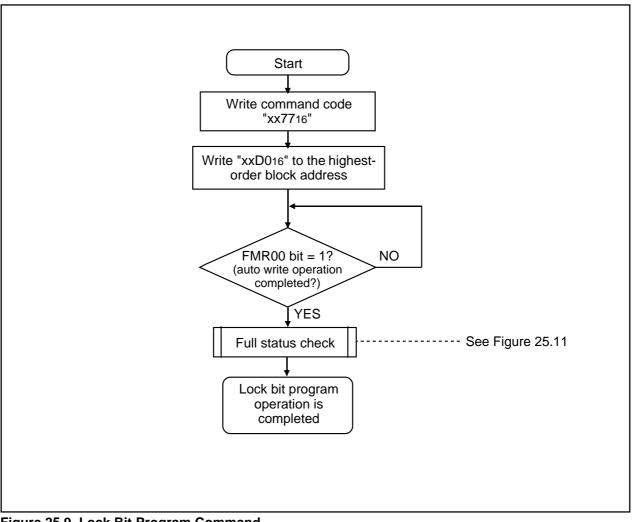


Figure 25.9 Lock Bit Program Command

25.3.5.8 Read Lock Bit Status Command

The read lock bit status command reads the lock bit state of a specified block.

By writing command code "xx7116" in the first bus cycle and reading the highest-order address (however, A0=0) of a block in the second bus cycle, the lock bit state information of a specified block is read out to the data bus (D6).

Figure 25.10 shows a flow chart of the read lock bit status command programming.

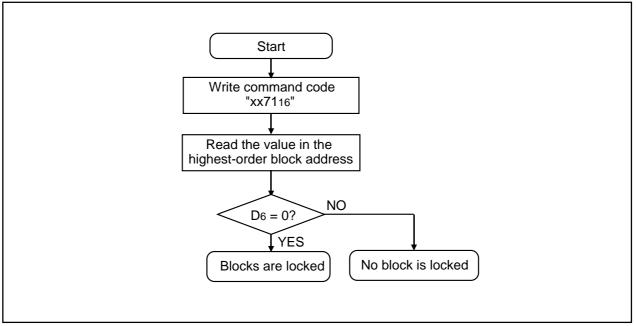


Figure 25.10 Read Lock Bit Status Command

25.3.6 Full Status Check

If an error occurs when a program or erase operation is completed, the SR3 to SR5 bits in the status register are set to "1", indicating a specific error. Therefore, execution results can be confirmed by verifying these bits (full status check).

Table 25.5 lists errors and status register state. Figure 25.12 shows a flow chart of the full status check and handling procedure for each error.

Status Register			Error	Error Occurrence Conditions		
SR5	SR4	SR3				
1	1	0	Command sequence	An incorrect command is written		
			error	• A value other than "xxD016" or "xxFF16" is written in the sec-		
				ond bus cycle of the lock bit program, block erase or eras		
				all unlocked block command ⁽¹⁾		
1 0 0		0	Erase error	• The block erase command is executed on a locked block ²		
				• The block erase or erase all unlocked block command is		
				executed on an unlock block but the erase operation is not		
				completed as expected		
0	1	0	Program error	• The page program command is executed on a locked block ⁽²⁾		
				• The page program command is executed in an unlocked		
				block but the program operation is not completed as ex-		
				pected		
				• The lock bit program command is executed but the pro-		
				gram operation is not completed as expected		
0	0	1	Excessive write error	Excessive write occurs after the page program command		
				is executed		

Table 25.5	Errors	and	Status	Register	State
------------	--------	-----	--------	----------	-------

NOTES:

1. The flash memory enters read array mode when command code "xxFF16" is written in the second bus cycle of these commands. The command code written in the first bus cycle becomes invalid.

2. If the FMR02 bit is set to "1" (lock bit disabled), no error occurs even under the conditions listed above.

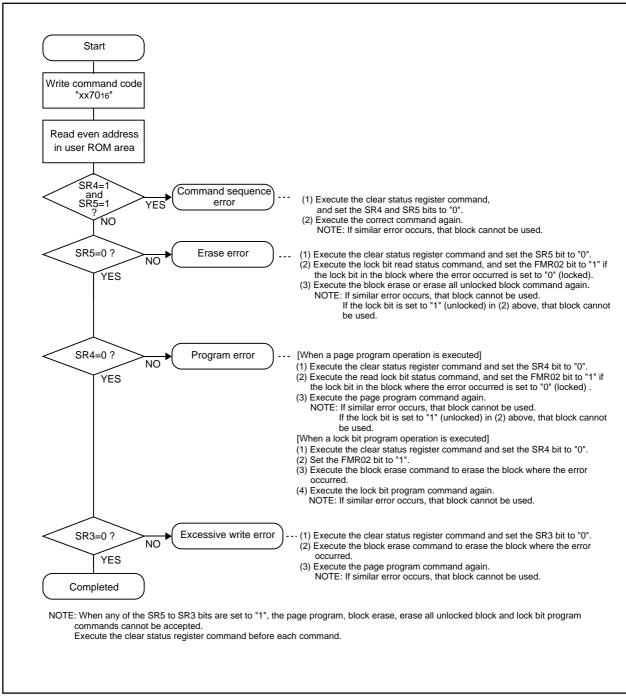


Figure 25.11 Full Status Check and Handling Procedure for Each Error

25.3.7 Precautions in CPU Rewrite Mode

25.3.7.1 Operating Speed

Set the MCD register to the following CPU clock before entering CPU rewrite mode . When the PM12 bit in the PM register is set to "0" (no wait state), 6.25MHz or less When the PM12 bit in the PM register is set to "1" (wait state), 12.5MHz or less

25.3.7.2 Prohibited Instructions

In CPU rewrite mode, programs cannot be executed, nor can interrupt vectors be read in the flash memory. Execute the rewrite control program after the program is transferred to a space other than the flash memory. (See **Figure 25.5**.)

The following instructions cannot be used because the CPU tries to read data in the flash memory: the UND instruction, INTO instruction, JMPS instruction, JSRS instruction and BRK instruction.

25.3.7.3 Interrupts

- To use interrupts having vectors in a relocatable vector table, the vectors must be relocated to the RAM area.
- The NMI and watchdog timer interrupts are available since the FMR01 is forcibly reset when either interrupt occurs. Allocate the jump addresses for each interrupt service routine and write to the fixed vector table. Flash memory rewrite operation is aborted when the NMI or watchdog timer interrupt occurs. Execute the rewrite program again after exiting the interrupt routine.
- The address match interrupt is not available since the CPU tries to read data in the flash memory.

25.3.7.4 Reading and Writing Commands and Data

Read or write 16-bit commands and data from or to even addresses in the user ROM area.

25.3.7.5 Reset

Reset is always enabled.

25.3.7.6 Access Prohibited

Write the FMR01 bit and FMR05 bit in a space other than the flash memory.

25.3.7.7 How to Access

To set the FMR01 bit and FMR02 bits to "1", set to "1" immediately after setting to "0". Do not generate an interrupt or a DMA transfer between the instruction to set the bits to "1" and the instruction to set the bits to "0". Set the FMR01 bit to "1" after an "H" signal is applied to the P85/NMI pin.

25.3.7.8 Rewriting in the User ROM Area

If the supply voltage drops while in CPU rewrite mode, when rewriting the block where the rewrite control program is stored, the flash memory cannot be rewritten because the rewrite control program is not correctly rewritten. If this error occurs, rewrite the user ROM area while in standard serial I/O mode or parallel I/O mode.

25.4 Standard Serial I/O Mode

In standard serial I/O mode, the serial programmer supporting the M32C/83 group can be used to rewrite the flash memory user ROM area, while the microcomputer is mounted on a board. For more information about the serial programmer, contact your serial programmer manufacturer. Refer to the user's manual included with your serial programmer for instructions.

Standard serial I/O mode includes:

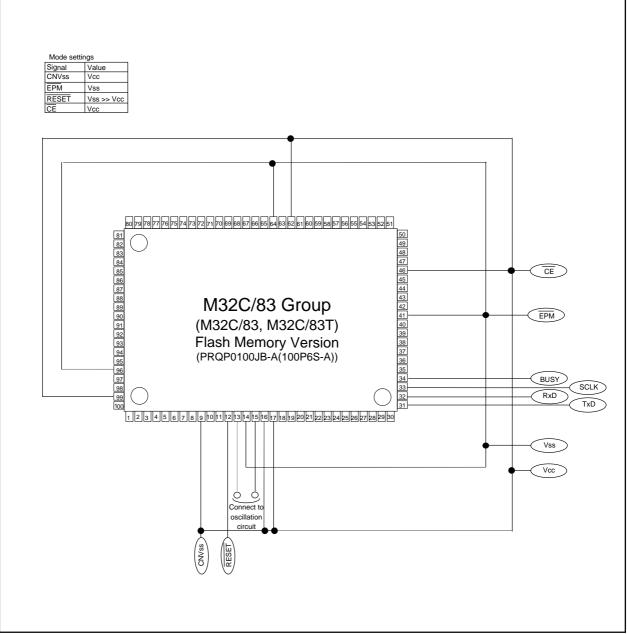
- Standard serial I/O mode 1 (clock synchronous)
- Standard serial I/O mode 2 (clock asynchronous)

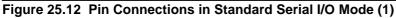
25.4.1 Pin Function

Table 25.6 lists pin descriptions (flash memory standard serial I/O mode). Figures 2.12 to 25.14 show pin connections in serial I/O mode.

25.4.2 ID Code Verify Function

The ID code verify function determines whether the ID codes sent from the serial programmer matches those written in the flash memory. (Refer to **25.2 Functions to Prevent Flash Memory from Rewriting**.)


Table 25.6 Pin Description (Flash Memory Standard Serial I/O Mode)


Symbol	Function	I/О Туре	Description
Vcc	Power Supply	I	Apply 4.2 V to 5.5 V to the VCC pin
Vss	Input		Apply 0 V to the Vss pin
CNVss	CNVss	I	Connect this pin to Vcc
RESET	Reset Input	I	Reset input pin. Apply 20 or more clock cycles to the XIN pin while "L"
			is applied to the RESET pin.
Xin	Clock Input	I	Connect a ceramic resonator or crystal oscillator between XIN and
Хоит	Clock Output	Ο	XOUT. To use the external clock, input the clock from XIN and leave
			XOUT open.
BYTE	BYTE Input	I	Connect this pin to Vss or Vcc
AVcc	Analog Power	I	Connect AVcc to Vcc
AVss	Supply Input	I	Connect AVss to Vss
Vref	Reference	I	Reference voltage input pin for the A/D converter.
	Voltage Input		
P00 to P07	Input Port P0	I	Apply "H" or "L" to this pin, or leave open
P10 to P17	Input Port P1	I	Apply "H" or "L" to this pin, or leave open
P20 to P27	Input Port P2	I	Apply "H" or "L" to this pin, or leave open
P30 to P37	Input Port P3	I	Apply "H" or "L" to this pin, or leave open
P40 to P47	Input port P4	I	Apply "H" or "L" to this pin, or leave open
P50	CE Input	I	Apply "H" to this pin.
P55	EPM Input		Apply "L" to this pin.
P51 to P54	Input Port P5		Apply "H" or "L" to this pin, or leave open
P56, P57			
P60 to P63	Input Port P6	I	Apply "H" or "L" to this pin, or leave open
P64	BUSY Output	0	Standard serial I/O mode 1: BUSY signal output pin
			Standard serial I/O mode 2: Program running verify monitor
P65	SCLK Input		Standard serial I/O mode 1: Serial clock input pin
			Standard serial I/O mode 2: Apply "L" to this pin
P66	RxD		Serial data input pin
P67	TxD	0	Serial data output pin ⁽¹⁾
P70 to P77	Input Port P7	I	Apply "H" or "L" to this pin, or leave open
P80 to P84	Input Port P8	I	Apply "H" or "L" to this pin, or leave open
P86, P87			
P85	NMI Input		Connect this pin to Vcc
P90 to P97	Input Port P9	I	Apply "H" or "L" to this pin, or leave open
P100 to P107	Input Port P10	I	Apply "H" or "L" to this pin, or leave open
P110 to P114 ⁽²⁾	Input Port P11	I	Apply "H" or "L" to this pin, or leave open
P120 to P127 ⁽²⁾	Input Port P12	I	Apply "H" or "L" to this pin, or leave open
P130 to P137 ⁽²⁾	Input Port P13	I	Apply "H" or "L" to this pin, or leave open
P140 to P146 ⁽²⁾	Input Port P14	I	Apply "H" or "L" to this pin, or leave open
P150 to P157 ⁽²⁾	Input Port P15		Apply "H" or "L" to this pin, or leave open

NOTES:

1. In standard serial I/O mode 1, apply an "L" signal to the TxD pin while applying "L" to the RESET pin. Connect P67 to Vss via a resistor. P67 becomes a data output pin after reset. Adjust the value of the pull-down resistor on your system so as not to affect data transfer.

2. These pins are provided in the 144-pin package only.

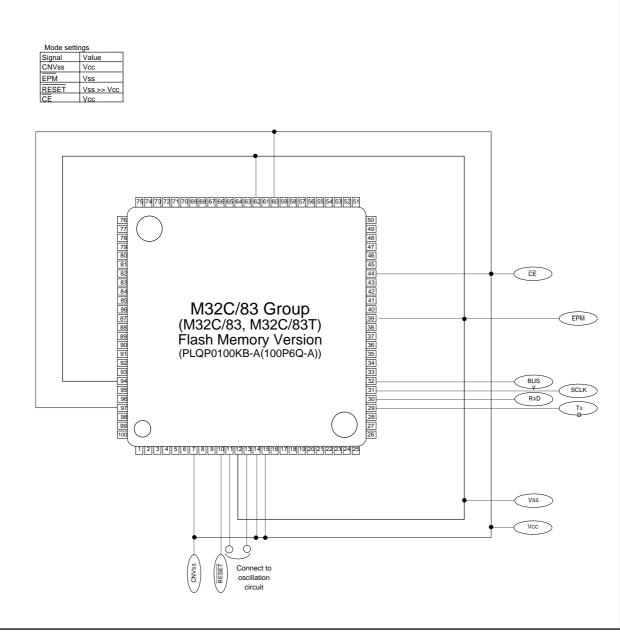


Figure 25.13 Pin Connections in Standard Serial I/O Mode (2)

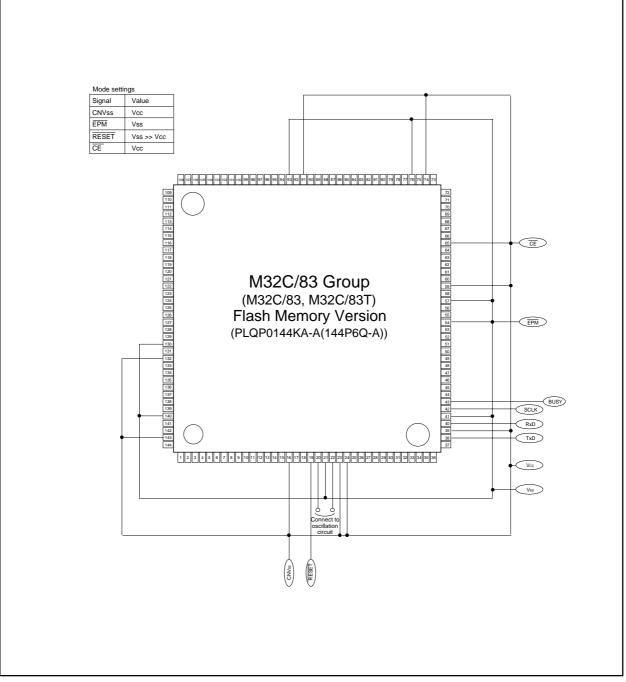


Figure 25.14 Pin Connections in Standard Serial I/O Mode (3)

25.4.3 Precautions in Standard Serial I/O Mode

- Serial I/O mode cannot be used after boot ROM area is written in parallel I/O mode.
- If an user reset signal becomes "L" in serial I/O mode, break connection between the user reset signal and the RESET pin by using, for example, a jumper selector.

25.4.4 Circuit Application in Standard Serial I/O Mode

Figure 25.15 shows an example of a circuit application in standard serial I/O mode 1. Figure 25.16 shows an example of a circuit application in serial I/O mode 2. Refer to the user's manual of your serial programmer to handle pins controlled by the serial programmer.

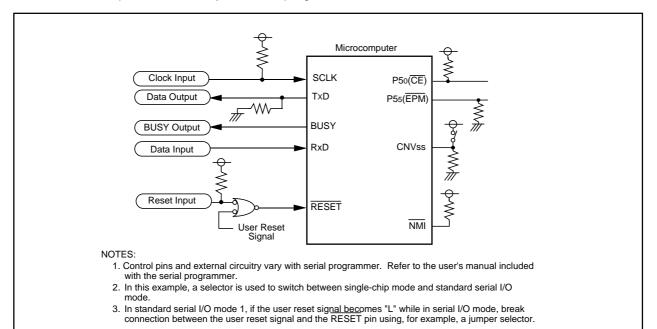


Figure 25.15 Circuit Application in Standard Serial I/O Mode 1

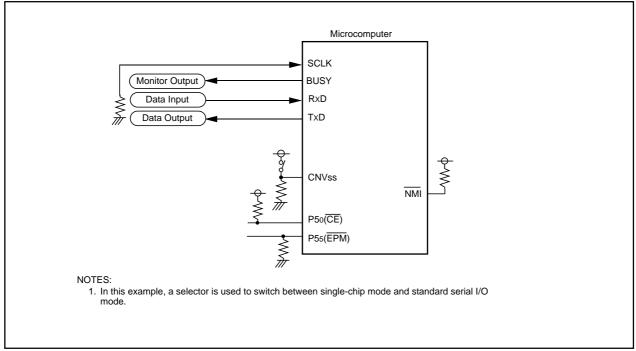


Figure 25.16 Circuit Application in Standard Serial I/O Mode 2

25.5 Parallel I/O Mode

In parallel I/O mode, the user ROM area and the boot ROM area (see Figure 25.1) can be rewritten by a parallel programmer supporting the M32C/83 Group. Contact your parallel programmer manufacturer for more information on the parallel programmer. Refer to the user's manual included with your parallel programmer for instructions.

25.5.1 Boot ROM Area

Within the boot ROM area, 8K bytes equal one block.

The rewrite control program in standard serial I/O mode is written in the boot ROM area before shipment. Do not rewrite the boot ROM area if using a serial programmer.

In parallel I/O mode, the boot ROM area is allocated to addresses 0FFE00016 to 0FFFFF16. Rewrite only this address range when rewriting the boot ROM area. (Do not access addresses other than addresses 0FFE00016 to 0FFFFF16.)

25.5.2 ROM Code Protect Function

The ROM code protect function prevents the flash memory from being read and rewritten in parallel I/O mode. (Refer to **25.2 Functions to Prevent Flash Memory from Rewriting**.)

25.5.3 Precautions on Parallel I/O Mode

Standard serial I/O mode cannot be used if rewriting the boot ROM area in parallel I/O mode. (Refer to **25.4 Standard Serial I/O Mode**.)

26. Electrical Characteristics

26.1 Electrical Characteristics (M32C/83)

Table 26.1	Absolute	Maximum	Ratings
------------	----------	---------	---------

Symbol		Value	Unit		
Vcc	Supply Voltage		Vcc=AVcc	-0.3 to 6.0	V
AVcc	Analog Supply	Voltage	Vcc=AVcc	-0.3 to 6.0	V
Vı	Input Voltage	RESET, CNVss, BYTE, P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60-P67, P72-P77, P80- P87, P90-P97, P100-P107, P110-P114, P120-P127, P130-P137, P140-P146, P150-P157 ⁽¹⁾ , VREF, XIN		-0.3 to Vcc+0.3	V
		P70, P71		-0.3 to 6.0	V
Vo	Output Voltage	P0o-P07, P1o-P17, P2o-P27, P3o-P37, P4o-P47, P5o- P57, P6o-P67, P72-P77, P8o-P84, P86, P87, P9o-P97, P10o-P107, P11o-P114, P12o-P127, P13o-P137, P14o- P146, P15o-P157 ⁽¹⁾ , XOUT		-0.3 to Vcc+0.3	V
Pd	Power Dissipation		Topr=25° C	500	mW
Topr	Operating Ambient Temperature			-20 to 85	°C
Tstg	Storage Tempe	rature		-65 to 150	°C

NOTES:

1. P11 to P15 are provided in the 144-pin package.

Symbol	Parameter			Standard			Unit
				Min	Тур	Max	
Vcc	Supply Voltage (Through VDC)		3.0	5.0	5.5	V
	Supply Voltage (Not through VDC)		3.0	3.3	3.6	V
AVcc	Analog Supply V	/oltage			Vcc		V
Vss	Supply Voltage				0		V
AVss	Analog Supply V	/oltage			0		V
Viн	Input High ("H") Voltage	P2o-P27, P3o-P37, P4o-P47, P5o-P57, P P87 ⁽³⁾ , P9o-P97, P10o-P107, P11o-P114, P137, P14o-P146, P15o-P157 ⁽⁴⁾ , XIN, RE	P120-P127, P130-	0.8Vcc		Vcc	V
		P70, P71		0.8Vcc		6.0	
		P00-P07, P10-P17 (in single-chip mode)	0.8Vcc		Vcc	V
		P0o-P07, P1o-P17 (in memory expansion mode and mice	roprocesor mode)	0.5Vcc		Vœ	V
V⊫ Input Low ("L") Voltage		P2o-P27, P3o-P37, P4o-P47, P5o-P57, P P87 ⁽³⁾ , P9o-P97, P10o-P107, P11o-P114, P137, P14o-P146, P15o-P157 ⁽⁴⁾ , XiN, RE	P120-P127, P130-	0		0.2Vcc	V
		P00-P07, P10-P17 (in single-chip mode		0		0.2Vcc	V
		P00-P07, P10-P17 (in memory expansion mode and mici	roprocesor mode)	0		0.16Vcc	V
OH(peak)	Peak Output High ("H") Current ⁽²⁾	P0o-P07, P1o-P17, P2o-P27, P3o-P37, P P67, P72-P77, P8o-P84, P86, P87, P9o-F P114, P12o-P127, P13o-P137, P14o-P1	P97, P100-P107, P110-			-10.0	mA
IOH(avg)	Average Output High ("H") Current ⁽¹⁾	P00-P07, P10-P17, P20-P27, P30-P37, P P67, P72-P77, P80-P84, P86, P87, P90-F P114, P120-P127, P130-P137, P140-P1	97, P100-P107, P110-			-5.0	mA
lOL(peak)	Peak Output Low ("L") Current ⁽²⁾	P0o-P07, P1o-P17, P2o-P27, P3o-P37, P4o-P47, P5o-P57, P6o- P67, P7o-P77, P8o-P84, P86, P87, P9o-P97, P10o-P107, P11o- P114, P12o-P127, P13o-P137, P14o-P146, P15o-P157 ⁽⁴⁾				10.0	mA
IOL(avg)	Average Output Low ("L") Current ⁽¹⁾	P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60- P67, P70-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110- P114, P120-P127, P130-P137, P140-P146, P150-P157 ⁽⁴⁾				5.0	mA
f(Xin)	Main Clock Input Frequency	Through VDC	Vcc=4.2 to 5.5V Vcc=3.0 to 4.3V	0		32 20	MHz MHz
		Not through VDC	Vcc=3.0 to 3.6	0		20	MHz
f(Xan)	Sub Clock Oscill	ation Frequency			32.768	50	kHz

Table 26.2 Recommended O	perating Conditions	(VCC = 3.0V to 5.5V at Topr = -	20 to 85°C)

NOTES:

1. Typical values when average output current is 100ms.

2. Total IOL(peak) for P0, P1, P2, P86, P87, P9, P10, P11, P14 and P15 must be 80mA or less. Total IOH(peak) for P0, P1, P2, P86, P87, P9, P10, P11, P14 and P15 must be -80mA or less. Total IOL(peak) for P3, P4, P5, P6, P7, P80 to P84, P12 and P13 must be 80mA or less. Total IOH(peak) for P3, P4, P5, P6, P72 to P77, P80 to P84, P12 and P13 must be -80mA or less.

3. V_{IH} and V_{IL} reference for P87 applies when P87 is used as a programmable input port. It does not apply to P87 used as X_{CIN}.

4. P11 to P15 are provided in the 144-pin package only.

Table 26.3 Electrical Characteristics (VCC=4.2 to 5.5V, VSS=0V

at Topr= -20 to 85°C, f(XIN)=32MHz unless otherwise specified)

Symbol		Parameter		Condition	Standard			Unit
		-			Min	Тур	Max	
Vон	Output High ("H")	P00-P07, P10-P17, P20-P27, P3		lo⊨-5mA	Vcc - 2.0			V
	Voltage	P50-P57, P60-P67, P72-P77, P8						
		P90-P97, P100-P107, P110-P11	4, P120-P127,					
		P130-P137, P140-P146, P150-P	157 ⁽¹⁾					
		P00-P07, P10-P17, P20-P27, P3	0-P37, P40-P47,	Іон=-200μА	Vcc - 0.3			
		P50-P57, P60-P67, P70-P77, P8	0-P84, P86, P87,					
		P90-P97, P100-P107, P110-P11	4, P120-P127,					
		P130-P137, P140-P146, P150-P	157 ⁽¹⁾					
		Холт		lo⊢=-1mA	3.0			V
		Хсолт		No load applied		3.3		V
Val	Output Low ("L")	P00-P07, P10-P17, P20-P27, P3	0-P37, P40-P47,	lo_=5mA			2.0	V
	Voltage	P50-P57, P60-P67, P70-P77, P8	0-P84, P86, P87,					
		P90-P97, P100-P107, P110-P11						
		P130-P137, P140-P146, P150-P						
		P00-P07, P10-P17, P20-P27, P3		IoL=200μA			0.45	V
		P50-P57, P60-P67, P70-P77, P8						
		P90-P97, P100-P107, P110-P11						
		P130-P137, P140-P146, P150-P						
		Хал	10/	loL=1mA			2.0	V
	Хсолт		No load applied		0		V	
Vt+-Vt-	Hysteresis	HOLD, RDY, TA0IN-TA4IN, TB			0.2		1.0	V
VI+ VI-		INT5, ADTRG, CTS0-CTS4, CL			0.2		1.0	ľ
		TA0our-TA4our, NMI, KI0-KI3,						
		SCL0-SCL4, SDA0-SDA4	KXD0-KXD4,					
	RESET			0.2		1.8	V	
Ін	Input High ("H")	P00-P07, P10-P17, P20-P27, P3	0 D37 D40 D47	VI=5V	0.2		5.0	μA
	Current	P50-P57, P60-P67, P70-P77, P8		VIII-SV			5.0	μΛ
		P100-P107, P110-P114, P120-P						
		P140-P146, P150-P157 ⁽¹⁾ , XIN, F	ESET, CINVSS,					
I	Input Low ("L")	BYTE P00-P07, P10-P17, P20-P27, P3	• D2= D4• D4=	VI=0V			-5.0	
lı∟	Input Low ("L") Current			VIEUV			-5.0	μA
	Curronic	P50-P57, P60-P67, P70-P77, P8						
		P100-P107, P110-P114, P120-P						
		P140-P146, P150-P157 ⁽¹⁾ , XIN, F	RESET, CNVss,					
		BYTE		<u> </u>			407	
Rpullup	Pull-up Resistance	P00-P07, P10-P17, P20-P27, P3		VI=0V	30	50	167	kΩ
		P50-P57, P60-P67, P72-P77, P8						
		P90-P97, P100-P107, P110-P11	, , ,					
		P130-P137, P140-P146, P150-P	157 ⁽¹⁾					
Rfxin	Feedback Resistance					1.5		MΩ
Rfxcin	Feedback Resistance				0.5	10		MΩ
VRAM	RAM Standby Voltage	, v			2.5			V
lcc	Power Supply Current	Measurement conditions: In single-chip mode, output	f(XIN)=32 MHz, no division	square wave,		40	54	mA
		pins are left open and other pins are connected to Vss.	f(Xcin)=32 kHz, Topr=25° C	32 kHz, with a wait state, 5° C		470		μA
			Topr=25° C wh	en the clock tops		0.4	20	μA

NOTES:

1. P11 to P15 are provided in the 144-pin package only.

Table 26.4 A/D Conversion Characteristics (VCC = AVCC = VREF = 4.2 to 5.5V, Vss = AVSS = 0V at Topr = -20 to 85°C, f(XIN) = 32MHz unless otherwise specified)

Symbol	Parameter	Measure	Measurement Condition		Standard		
Symbol	i alameter	Measurer		Min	Тур	Max	Unit
-	Resolution	VREF=VCC				10	Bits
			ANo to AN7			±3	LSB
INL	Integral Nonlinearity Error	VREF=Vcc=5V	ANEX0, ANEX1			10	LSB
		Ext	External op-amp			±7	LSB
			connection mode				LSB
DNL	Differential Nonlinearity Error					±1	LSB
-	Offset Error					±3	LSB
-	Gain Error					±3	LSB
RLADDER	Resistor Ladder	VREF=VCC		8		40	kΩ
tcow	10-bit Conversion Time			2.1			μs
tcow	8-bit Conversion Time			1.8			μs
tsamp	Sample Time			0.2			μs
Vref	Reference Voltage			2		Vcc	V
Via	Analog Input Voltage			0		VREF	V

NOTES:

1. Divide f(X_{IN}), if exceeding 16 MHz, to keep ϕ AD frequency at 16 MHz or less.

Table 26.5 D/A Conversion Characteristics (VCC = VREF = 4.2 to 5.5V, VSS = AVSS = 0V at Topr = -20 to 85°C, f(XIN) = 32MHz unless otherwise specified)

Symbol	Parameter	Measurement Condition	S	Unit		
	i arameter	Medsurement Condition	Min	Тур	Max	Orm
-	Resolution				8	Bits
-	Absolute Accuracy				1.0	%
ts∪	Setup Time				3	μs
Ro	Output Resistance		4	10	20	kΩ
Ivref	Reference Power Supply Input Current	(Note 1)			1.5	mA

NOTES:

 Measurement results when using one D/A converter. The DAi register (i=0, 1) of the D/A converter not being used is set to "0016". The resistor ladder in the A/D converter is exclued. IVREF flows even if the VCUT bit in the ADiCON1 register is set to "0" (no VREF connection).

Table 26.6 Flash Memory Version Electrical Characteristics

Parameter		Unit		
Falameter	Min	Тур	Max	Unit
Program Time (per page)		8	120	ms
Block Erase Time (per block)		50	600	ms

NOTES:

1. Vcc= 4.2 to 5.5V (through VDC), 3.0 to 3.6V (not through VDC) at Topr= 0 to 60° C, unless otherwise specified

Timing Requirements (VCC = 4.2 to 5.5V, VSS = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 26.7 External Clock Input

Symbol	Parameter		Standard		
			Max		
tc	External Clock Input Cycle Time	33		ns	
tw(H)	External Clock Input High ("H") Pulse Width	13		ns	
tw(L)	External Clock Input Low ("L") Pulse Width	13		ns	
tr	External Clock Rise Time		5	ns	
tf	External Clock Fall Time		5	ns	

Table 26.8 Memory Expansion and Microprocessor Modes

Symbol	Parameter		ndard	1.1.0.14
Symbol			Max	Unit
tac1(RD-DB)	Data Input Access Time (RD standard, with no wait state)		(Note 1)	ns
tac1(AD-DB)	Data Input Access Time (AD standard, CS standard, with no wait state)		(Note 1)	ns
tac2(RD-DB)	Data Input Access Time (RD standard, with a wait state)		(Note 1)	ns
tac2(AD-DB)	Data Input Access Time (AD standard, CS standard, with a wait state)		(Note 1)	ns
tac3(RD-DB)	Data Input Access Time (RD standard, when accessing a space with the multiplexed bus)		(Note 1)	ns
tac3(AD-DB)	Data Input Access Time (AD standard, CS standard, when accessing a space with the multiplexed bus)		(Note 1)	ns
tac4(RAS-DB)	Data Input Access Time (RAS standard, when accessing a DRAM space)		(Note 1)	ns
tac4(CAS-DB)	Data Input Access Time (CAS standard, when accessing a DRAM space)		(Note 1)	ns
tac4(CAD-DB)	Data Input Access Time (CAD standard, when accessing a DRAM space)		(Note 1)	ns
tsu(db-balk)	Data Input Setup Time	26		ns
tsu(RDY-BOLK)	RDY Input Setup Time	26		ns
tsu(HOLD-BOLK)	HOLD Input Setup Time	30		ns
th(RD-DB)	Data Input Hold Time	0		ns
th(CAS-DB)	Data Input Hold Time	0		ns
th(BCLK-RDY)	RDY Input Hold Time	0		ns
th(BOLK-HOLD)	HOLD Input Hold Time	0		ns
td(BCLK-HLDA)	HLDA Output Delay Time		25	ns

NOTES:

 Values can be obtained from the following equations, according to BCLK frequency. Insert a wait state or lower the operation frequency, f(BCLK), if the calculated value is negative.

$tac1(RD - DB) = \frac{10^9}{f(BCLK) X 2} - 35$	[ns]
$tac1(AD - DB) = \frac{10^9}{f(BCLK)} - 35$	[ns]
$tac2(RD - DB) = \frac{10^9 X m}{f(BCLK) X 2} - 35$	[ns] (m=3 with 1 wait state, m=5 with 2 wait states and m=7 with 3 wait states)
$tac2(AD - DB) = \frac{10^9 X n}{f(BCLK)} - 35$	[ns] (n=2 with 1 wait state, n=3 with 2 wait states and n=4 with 3 wait states)
$tac3(RD - DB) = \frac{10^9 X m}{f(BCLK) X 2} - 35$	[ns] (m=3 with 2 wait states and m=5 with 3 wait states)
$tac3(AD - DB) = \frac{10^9 X n}{f(BCLK) X 2} - 35$	[ns] (n=5 with 2 wait states and n=7 with 3 wait states)
$tac4(RAS - DB) = \frac{10^{9}X m}{f(BCLK) X 2} - 35$	[ns] (m=3 with 1 wait state and m=5 with 2 wait states)
$tac4(CAS - DB) = \frac{10^9 X n}{f(BCLK) X 2} - 35$	[ns] (n=1 with 1 wait state and n=3 when 2 wait states)
$tac4(CAD - DB) = \frac{10^9 X I}{f(BCLK)} - 35$	[ns] (I=1 with 1 wait state and I=2 with 2 wait states)

Timing Requirements

(VCC = 4.2 to 5.5V, VSS = 0V at Topr = -20 to 85°C unless otherwise specified)

Symbol	Parameter	Star	Idard	Unit
	i didificici	Min	Max	
tc(ta)	TAin Input Cycle Time	100		ns
tw(TAH)	TAi⊪ Input High ("H") Pulse Width	40		ns
tw(tal)	TAi⊪ Input Low ("L") Pulse Width	40		ns

Table 26.9 Timer A Input (Count Source Input in Event Counter Mode)

Table 26.10 Timer A Input (Gate Input in Timer Mode)

Symbol	Devenuetor	Star	ndard	Linit
	Parameter	Min	Max	Unit
tc(TA)	TAi⊪ Input Cycle Time	400		ns
tw(TAH)	TAi⊪ Input High ("H") Pulse Width	200		ns
tw(tal)	TAi⊪ Input Low ("L") Pulse Width	200		ns

Table 26.11 Timer A Input (External Trigger Input in One-Shot Timer Mode)

Symbol	Parameter	Standard		Unit
	Falameter	Min	Max	01111
tc(ta)	TAin Input Cycle Time	200		ns
tw(TAH)	TAi⊪ Input High ("H") Pulse Width	100		ns
tw(TAL)	TAi⊪ Input Low ("L") Pulse Width	100		ns

Table 26.12 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter	Star	Idard	Unit
	Falameter	Min	Max	
tw(tah)	TAi⊪ Input High ("H") Pulse Width	100		ns
tw(TAL)	TAi⊪ Input Low ("L") Pulse Width	100		ns

Table 26.13 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

Symbol	Parameter	Star	ndard	Unit
Symbol	Falanielei	Min	Max	
tc(UP)	TAiour Input Cycle Time	2000		ns
tw(UPH)	TAiour Input High ("H") Pulse Width	1000		ns
tw(UPL)	TAiour Input Low ("L") Pulse Width	1000		ns
tsu(up-tin)	TAiour Input Setup Time	400		ns
th(TIN-UP)	TAiour Input Hold Time	400		ns

Timing Requirements

(VCC = 4.2 to 5.5V, VSS = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 26.14	Timer B Input	(Count Source In	put in Event Counter Mode)	

Symbol	Parameter	Star	ndard	Unit
Symbol	Falantelei	Min	Max	
tc(TB)	TBin Input Cycle Time (counted on one edge)	100		ns
tw(TBH)	TBin Input High ("H") Pulse Width (counted on one edge)	40		ns
tw(TBL)	TBin Input Low ("L") Pulse Width (counted on one edge)	40		ns
tc(TB)	TBin Input Cycle Time (counted on both edges)	200		ns
tw(TBH)	TBin Input High ("H") Pulse Width (counted on both edges)	80		ns
tw(TBL)	TBin Input Low ("L") Pulse Width (counted on both edges)	80		ns

Table 26.15 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Stan	ndard Max	Unit
	Falantelei	Min		Unit
tc(TB)	TBin Input Cycle Time	400		ns
tw(TBH)	TBin Input High ("H") Pulse Width	200		ns
tw(TBL)	TBin Input Low ("L") Pulse Width	200		ns

Table 26.16 Timer B Input (Pulse Width Measurement Mode)

Symbol Parameter	Parameter	Star	ndard	- Unit
	Min	Max		
tc(TB)	TBin Input Cycle Time	400		ns
tw(TBH)	TBi⊪ Input High ("H") Pulse Width	200		ns
tw(TBL)	TBi⊪ Input Low ("L") Pulse Width	200		ns

Table 26.17 A/D Trigger Input

Symbol	Parameter	Star	dard	Unit
		Min	Max	
tC(AD)	ADTRG Input Cycle Time (required for re-trigger)	1000		ns
tw(ADL)	ADTRG Input Low ("L") Pulse Width	125		ns

Table 26.18 Serial I/O

Symbol	Parameter	Standard		Unit
Symbol	Falantelei	Min	Max	Onit
tC(CK)	CLKi Input Cycle Time	200		ns
tw(ckh)	CLKi Input High ("H") Pulse Width	100		ns
tw(CKL)	CLKi Input Low ("L") Pulse Width	100		ns
td(C-Q)	TxDi Output Delay Time		80	ns
th(C-Q)	TxDi Hold Time	0		ns
tsu(D-C)	RxDi Input Set Up Time	30		ns
th(C-Q)	RxDi Input Hold Time	90		ns

Table 26.19 External Interrupt INTi Input

Symbol Parameter	Parameter	Star	Idard	Unit
	Falantelei	Min	Max	
tw(INH)	INTi Input High ("H") Pulse Width	250		ns
tw(INL)	INTi Input Low ("L") Pulse Width	250		ns

Switching Characteristics

(Vcc = 4.2 to 5.5V, Vss = 0V at Topr = -20 to 85°C unless otherwise specified)

Symbol	Parameter	Measurement	Standard		Unit	
		Condition	Min	Max		
td(BCLK-AD)	Address Output Delay Time			18	ns	
th(BCLK-AD)	Address Output Hold Time (BCLK standard)		-3		ns	
th(RD-AD)	Address Output Hold Time (RD standard)		0		ns	
th(WR-AD)	Address Output Hold Time (WR standard)		(Note 1)		ns	
td(BCLK-CS)	Chip-select Signal Output Delay Time			18	ns	
th(BCLK-CS)	Chip-select Signal Output Hold Time (BCLK standard)		-3		ns	
th(RD-CS)	Chip-select Signal Output Hold Time (RD standard)		0		ns	
th(wR-CS)	Chip-select Signal Output Hold Time (WR standard)	See Figure 26.1	(Note 1)		ns	
td(BCLK-ALE)	ALE Signal Output Delay Time			18	ns	
th(BCLK-ALE)	ALE Signal Output Hold Time		-2		ns	
td(BCLK-RD)	RD Signal Output Delay Time			18	ns	
th(BCLK-RD)	RD Signal Output Hold Time		-5		ns	
td(BCLK-WR)	WR Signal Output Delay Time			18	ns	
th(BCLK-WR)	WR Signal Output Hold Time		-3		ns	
td(DB-WR)	Data Output Delay Time (WR standard)		(Note 1)		ns	
th(WR-DB)	Data Output Hold Time (WR standard)]	(Note 1)		ns	
tw(WR)	WR Output Width	1	(Note 1)		ns	

Table 26.20 Memory Expansion Mode and Microprocessor Mode (with No Wait State)

NOTES:

1. Values can be obtained from the following equations, according to BCLK frequency.

$$td(DB - WR) = \frac{10^9}{f(BCLK)} - 20 \text{ [ns]}$$

$$th(WR - DB) = \frac{10^9}{f(BCLK) X 2} - 10 \text{ [ns]}$$

$$th(WR - AD) = \frac{10^9}{f(BCLK) X 2} - 10 \text{ [ns]}$$

$$th(WR - CS) = \frac{10^9}{f(BCLK) X 2} - 10 \text{ [ns]}$$

$$tw(WR) = \frac{10^9}{f(BCLK) X 2} - 15 \text{ [ns]}$$

Switching Characteristics

(Vcc = 4.2 to 5.5V, Vss = 0V at Topr = -20 to 85°C unless otherwise specified)

Symbol	Parameter	Measurement Condition	Standard		Unit
	Condition		Min	Max	1
td(BCLK-AD)	Address Output Delay Time			18	ns
th(BCLK-AD)	Address Output Hold Time (BCLK standard)		-3		ns
th(RD-AD)	Address Output Hold Time (RD standard)		0		ns
th(WR-AD)	Address Output Hold Time (WR standard)		(Note 1)		ns
td(BCLK-CS)	Chip-select Signal Output Delay Time			18	ns
th(BCLK-CS)	Chip-select Signal Output Hold Time (BCLK standard)	1	-3		ns
th(RD-CS)	Chip-select Signal Output Hold Time (RD standard)]	0		ns
th(wr-cs)	Chip-select Signal Output Hold Time (WR standard)	See Figure 26.1	(Note 1)		ns
td(BOLK-ALE)	ALE Signal Output Delay Time]		18	ns
th(BCLK-ALE)	ALE Signal Output Hold Time]	-2		ns
td(BCLK-RD)	RD Signal Output Delay Time			18	ns
th(BCLK-RD)	RD Signal Output Hold Time		-5		ns
td(BCLK-WR)	WR Signal Output Delay Time]		18	ns
th(BCLK-WR)	WR Signal Output Hold Time	1	-3		ns
td(DB-WR)	Data Output Delay Time (WR standard)	1	(Note 1)		ns
th(WR-DB)	Data Output Hold Time (WR standard)	1	(Note 1)		ns
tw(WR)	WR Output Width]	(Note 1)		ns

Table 26.21 Memory Expansion Mode and Microprocessor Mode (With a Wait State, Accessing an External Memory)

NOTES:

1. Values can be obtained from the following equations, according to BCLK frequency.

	[ns] (n=1 with 1 wait state, n=2 with 2 wait states and n=3 with 3 wait states)
$th(WR - DB) = \frac{10^9}{f(BCLK) X 2} - 10$	[ns]
$th(WR - AD) = \frac{10^9}{f(BCLK) X 2} - 10$	[ns]
th(WR - CS) = $\frac{10^9}{f(BCLK) X 2} - 10$	[ns]
$t_{W(WR)} = \frac{10^9 \text{ X n}}{f_{(BCLK)} \text{ X 2}} - 15$	[ns] (n=1 with 1 wait state, n=3 with 2 wait states and n=5 with 3 wait states)

Switching Characteristics

(Vcc = 4.2 to 5.5V, Vss = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 26.22 Memory Expansion Mode and Microprocessor Mode

(With a Wait State, Accessing an External Memory and Selecting a Space with the Multiplexed Bus)

Symbol	ol Parameter Measuremen Condition		Standard		Unit
-		Condition	Min	Max	
td(BCLK-AD)	Address Output Delay Time			18	ns
th(BCLK-AD)	Address Output Hold Time (BCLK standard)		-3		ns
th(RD-AD)	Address Output Hold Time (RD standard)	-	(Note 1)		ns
th(WR-AD)	Address Output Hold Time (WR standard)	-	(Note 1)		ns
td(BCLK-CS)	Chip-select Signal Output Delay Time	-		18	ns
th(BCLK-CS)	Chip-select Signal Output Hold Time (BCLK standard)	-	-3		ns
th(RD-CS)	Chip-select Signal Output Hold Time (RD standard)	-	(Note 1)		ns
th(wr-cs)	Chip-select Signal Output Hold Time (WR standard)	See Figure 26.1	(Note 1)		ns
td(BCLK-RD)	RD Signal Output Delay Time	-		18	ns
th(BCLK-AD)	RD Signal Output Hold Time	-	-5		ns
td(BCLK-WR)	WR Signal Output Delay Time	-		18	ns
th(BCLK-WR)	WR Signal Output Hold Time	-	-3		ns
td(DB-WR)	Data Output Delay Time (WR standard)	-	(Note 1)		ns
th(WR-DB)	Data Output Hold Time (WR standard)	-	(Note 1)		ns
td(BCLK-ALE)	ALE Signal Output Delay Time (BCLK standard)	-		18	ns
th(BCLK-ALE)	ALE Signal Output Hold Time (BCLK standard)	-	-2		ns
td(AD-ALE)	ALE Signal Output Delay Time (address standard)	-	(Note 1)		ns
th(ALE-AD)	ALE Signal Output Hold Time (address standard)		(Note 1)		ns
tdz(RD-AD)	Address Output High-Impedance Time			8	ns

NOTES:

1. Values can be obtained from the following equations, according to BCLK frequency.

th(RD - AD) =	<u>10⁹</u> <u>f(BCLK) X 2</u> – 10	[ns]
th(WR - AD) =	<u>10⁹</u> <u>f(BCLK) X 2</u> - 10	[ns]
th(RD - CS) =	<u>10⁹</u> <u>f(BCLK) X 2</u> - 10	[ns]
th(WR - CS) =	<u>10⁹</u> f(BCLK) X 2 - 10	[ns]
td(DB - WR) =	<u>10⁹X m</u> <u>f(BCLK) X 2</u> –25	[ns] (m=3 with 2 wait states and m=5 with 3 wait states)
th(WR - DB) =	<u>10⁹</u> <u>f(BCLK) X 2</u> - 10	[ns]
td(AD – ALE) =	<u>10 ⁹</u> <u>f(BCLK) X 2</u> - 20	[ns]
th(ALE – AD) =	<u>10⁹</u> <u>f(BCLK) X 2</u> - 10	[ns]

Switching Characteristics

(Vcc = 4.2 to 5.5V, Vss = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 26.23 Memory Expansion Mode and Microprocessor Mode (With a Wait State, Accessing an External Memory and Selecting the DRAM Space)

Symbol	Parameter	Measurement Condition	Stan	Unit	
		Condition	Min	Max	
td(BCLK-RAD)	Row Address Output Delay Time			18	ns
th(BCLK-RAD)	Row Address Output Hold Time (BCLK standard)		-3		ns
td(BCLK-CAD)	Column Address Output Delay Time			18	ns
th(BCLK-CAD)	Column Address Output Hold Time (BCLK standard)		-3		ns
th(RAS-RAD)	Row Address Output Hold Time after RAS Output		(Note 1)		ns
td(BCLK-RAS)	RAS Output Delay Time (BCLK standard)			18	ns
th(BCLK-RAS)	RAS Output Hold Time (BCLK standard)	See Figure 26.1	-3		ns
trp	RAS High ("H") Hold Time		(Note 1)		ns
td(BCLK-CAS)	CAS Output Delay Time (BCLK standard)			18	ns
th(BCLK-CAS)	CAS Output Hold Time (BCLK standard)		-3		ns
td(BCLK-DW)	DW Output Delay Time (BCLK standard)			18	ns
th(BCLK-DW)	DW Output Hold Time (BCLK standard)		-5		ns
tsu(db-cas)	CAS Output Setup Time after DB Output		(Note 1)		ns
th(BCLK-DB)	DB Signal Output Hold Time (BCLK standard)]	-7		ns
tsu(CAS-RAS)	CAS Output Setup Time before RAS Output (refresh)		(Note 1)		ns

NOTES:

1. Values can be obtained from the following equation, according to BCLK frequency.

$$th(RAS - RAD) = \frac{10^9}{f(BCLK) \times 2} - 13 \qquad [ns]$$

$$tRP = \frac{10^9 \times 3}{f(BCLK) \times 2} - 20 \qquad [ns]$$

$$tsu(DB - CAS) = \frac{10^9}{f(BCLK)} - 20 \qquad [ns]$$

$$10^9$$

$$t_{SU}(CAS - RAS) = \frac{10}{f(BCLK) \times 2} - 13$$
 [ns]

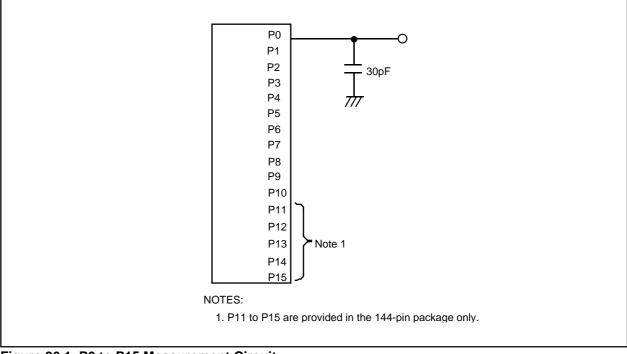
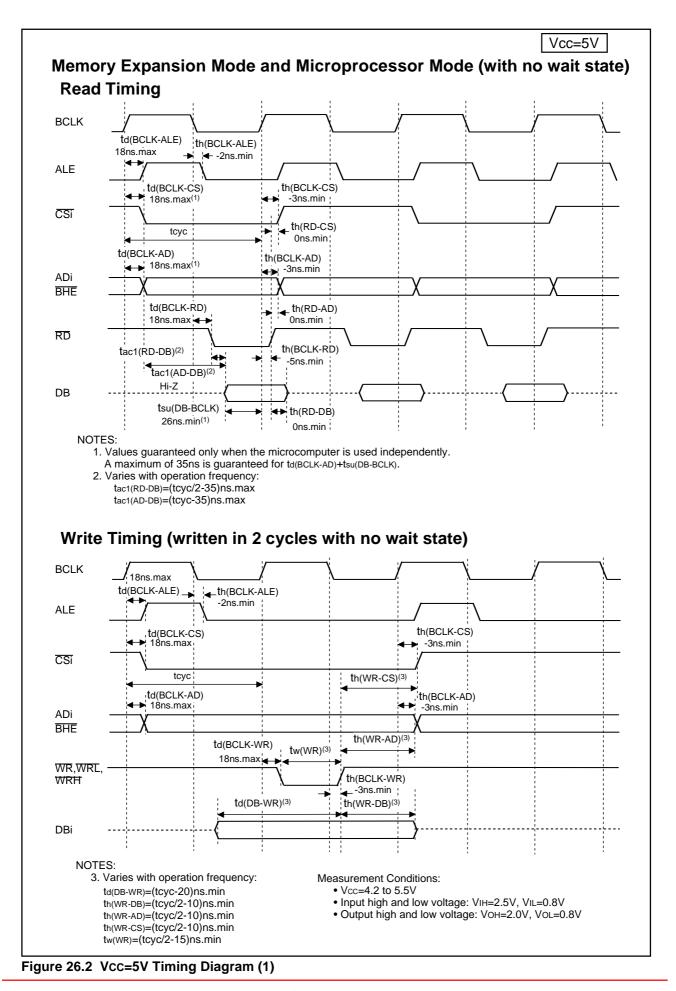



Figure 26.1 P0 to P15 Measurement Circuit

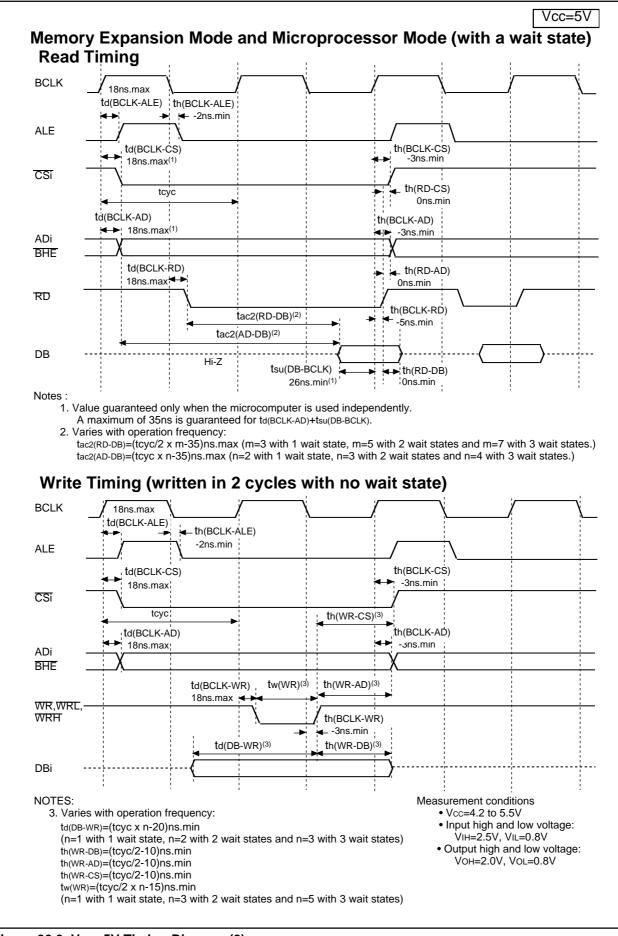


Figure 26.3 Vcc=5V Timing Diagram (2)

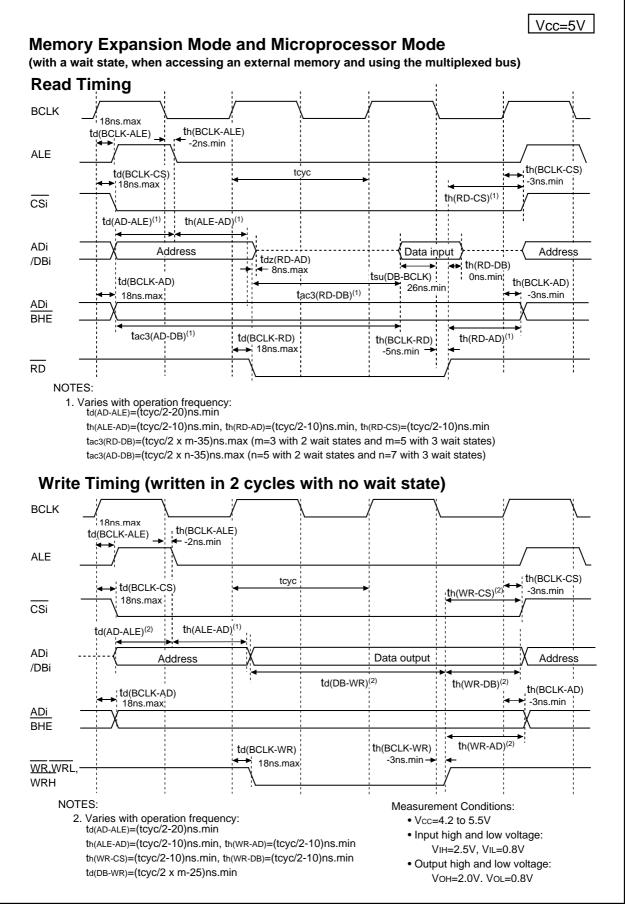



Figure 26.4 Vcc=5V Timing Diagram (3)

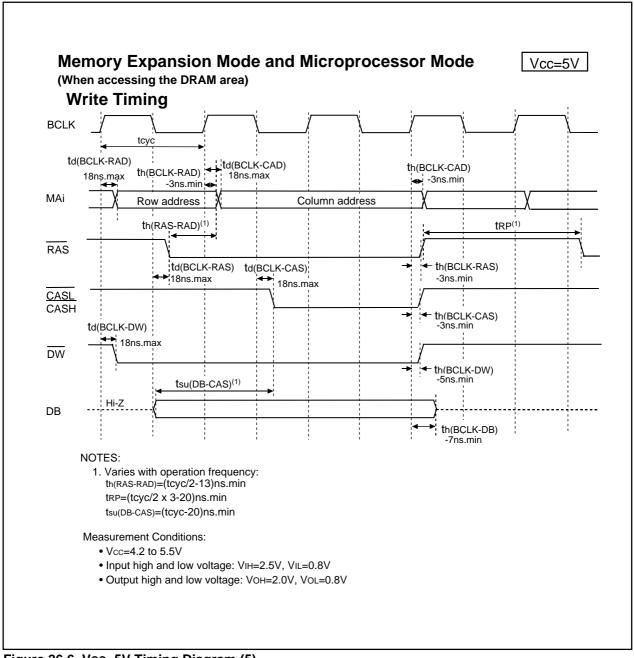
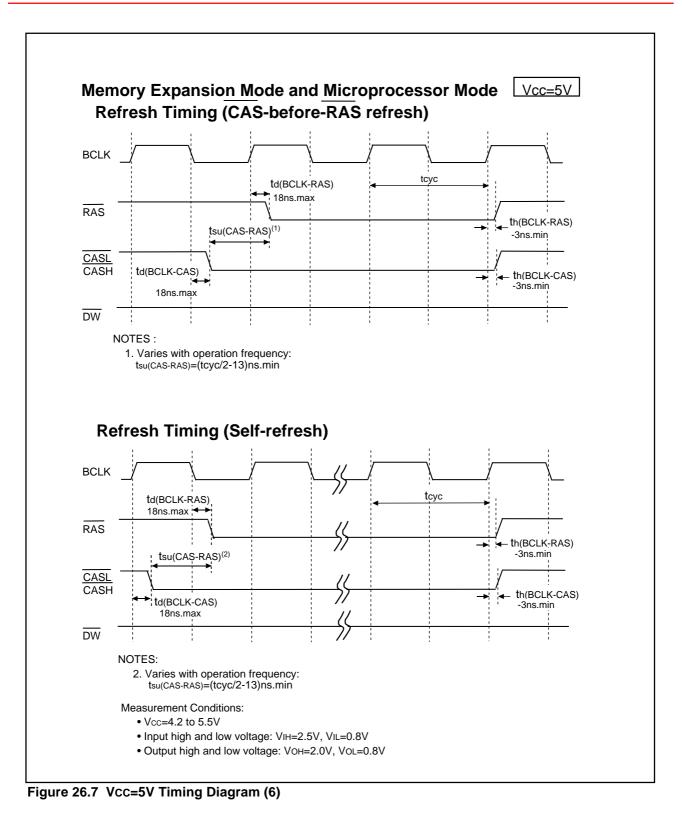



Figure 26.6 Vcc=5V Timing Diagram (5)

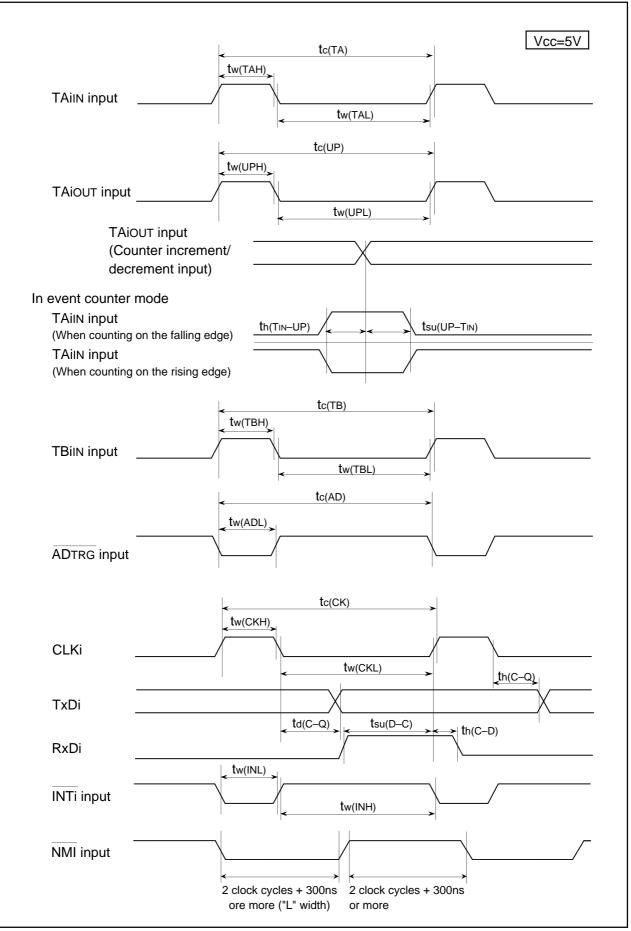


Figure 26.8 Vcc=5V Timing Diagram (7)

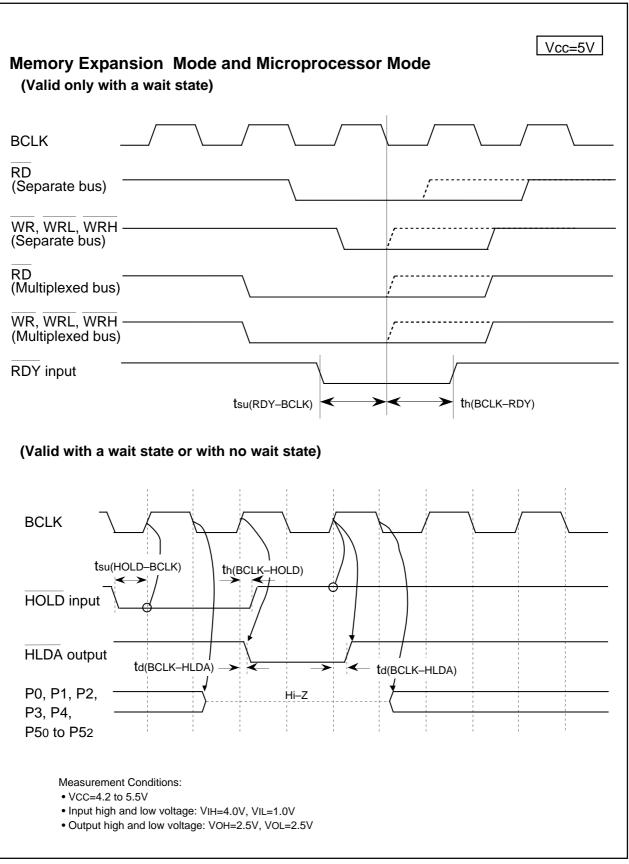


Figure 26.9 Vcc=5V Timing Diagram (8)

Table 26.24Electrical Characteristics (VCC=3.0 to 3.6V, VSS=0V at Topr = -20 to 85° C,
f(XIN)=20MHz unless otherwise specified)

Symbol	Parameter		Condition	Standard			Unit	
				Min Ty		yp Max		
Vон	Output High ("H") Voltage	P00-P07, P10-P17, P20-P27, P3 P50-P57, P60-P67, P72-P77, P8 P90-P97, P100-P107, P110-P17 P130-P137, P140-P146, P150-F	80-P84, P86, P87, 14, P120-P127,	Іон=-1mA	Vcc-0.6	5	V	
		Хоит		Іон=-0.1mA	2.7			V
		Хсоит		No load applied		3.3		V
Vol	Output Low ("L") Voltage	P00-P07, P10-P17, P20-P27, P3 P50-P57, P60-P67, P70-P77, P8 P90-P97, P100-P107, P110-P17 P130-P137, P140-P146, P150-F	80-P84, P86, P87, 14, P120-P127,	lol=1mA			0.5	V
		Хоит		lo∟=0.1mA			0.5	V
		Хсоит		No load applied		0		V
Vt+-Vt-	Hysteresis	HOLD, RDY, TA0IN-TA4IN, TB INT5, ADTRG, CTS0-CTS4, CL TA4out, NMI, KI0-KI3, RxD0-F SDA0-SDA4	K0-CLK4, TA0out-		0.2		1.0	V
		RESET			0.2		1.8	V
Ін	Input High ("H") Current	P00-P07, P10-P17, P20-P27, P3 P50-P57, P60-P67, P70-P77, P8 P100-P107, P110-P114, P120-F P140-P146, P150-P157 ⁽¹⁾ , XIN, BYTE	80-P87, P90-P97, P127, P130-P137,	VI=3V			4.0	μA
lı.	Input Low ("L") Current	P00-P07, P10-P17, P20-P27, P3 P50-P57, P60-P67, P70-P77, P8 P100-P107, P110-P114, P120-F P140-P146, P150-P157 ⁽¹⁾ , XIN, BYTE	80-P87, P90-P97, P127, P130-P137,	VI=0V			-4.0	μA
Rpullup	Pull-up Resistance	P00-P07, P10-P17, P20-P27, P3 P50-P57, P60-P67, P72-P77, P8 P90-P97, P100-P107, P110-P17 P130-P137, P140-P146, P150-F	80-P84, P86, P87, 14, P120-P127,	VI=0V	66	120	500	kΩ
Rfxin	Feedback Resistance	Xin				3.0		MΩ
Rfxcin	Feedback Resistance	Xcin				20.0		MΩ
Vram	RAM Standby Voltage	Through VDC Not through VDC			2.5 2.0			V V
lcc	Power Supply Current	Measurement condition: In single-chip mode, output pins are left open and other	f(XIN)=20 MHz, squ no division f(XCIN)=32 kHz, wit			26 5.0	38	mA μA
		pins are connected to Vss.	$f(XCIN)=32 \text{ kHz}, \text{ with through VDC}, f(XCIN)=32 \text{ kHz}, f(XCIN)=32 \text$	Topr=25° C		340		μ <u>Α</u>
			through VDC, Top Topr=25° C when	r=25° C		0.4	20	μΑ

NOTES:

1. P11 to P15 are provided in the 144-pin package only.

VCC=3.3V

Table 26.25 A/D Conversion Characteristics (VCC = AVCC = VREF = 3.0 to 3.6V, VSS = AVSS = 0V at Topr = -20 to 85°C, f(XIN) = 20MHz unless otherwise specified)

Symbol	Parameter		Measurement	Standard			Unit
0,111001			Condition	Min	Тур	Max	
-	Resolution		VREF=VCC			10	Bits
INL	Integral Nonlinearity Error	No S&H function (8-bit)	Vcc=Vref=3.3V			±2	LSB
DNL	Differential Nonlinearity Error	No S&H function (8-bit)				±1	LSB
-	Offset Error	No S&H function (8-bit)				±2	LSB
-	Gain Error	No S&H function (8-bit)				±2	LSB
RLADDER	Resistor Ladder	•	VREF=VCC	8		40	kΩ
tconv	8-bit Conversion Time			4.9			μs
Vref	Reference Voltage			3.0		Vœ	V
Via	Analog Input Voltage			0		VREF	V
				S&H	: Sam	ple and	hold

NOTES:

1. Divide $f(X_{\mathbb{N}})$, if exceeding 10 MHz, to keep ϕ AD frequency at 10 MHz or less.

Table 26.26 D/A Conversion Characteristics (VCC = VREF = 3.0 to 3.6V, VSS = AVSS = 0V at Topr = -20 to 85°C, f(XIN) = 20MHz unless otherwise specified)

Symbol Parameter	Parameter	Measurement Condition	S	Unit		
			Тур	Max	Onit	
-	Resolution				8	Bits
-	Absolute Accuracy				1.0	%
ts∪	Setup Time				3	μs
Ro	Output Resistance		4	10	20	kΩ
Ivref	Reference Power Supply Input Current	(Note 1)			1.0	mA

NOTES:

1. Measurement results when using one D/A converter. The DAi register (i=0, 1) of the D/A converter not being used is set to "0016". The resistor ladder in the A/D converter is exclued.

IVREF flows even if the VCUT bit in the ADiCON1 register is set to "0" (no VREF connection).

Table 26.27 Flash Memory Version Electrical Characteristics

Parameter		Unit		
	Min	Тур	Max	Onit
Program Time (per page)		8	120	ms
Block Erase Time (per block)		50	600	ms

NOTES:

1. Vcc= 4.2 to 5.5V (through VDC), 3.0 to 3.6V (not through VDC) at Topr= 0 to 60° C, unless otherwise specified

Timing Requirements (Vcc = 3.0 to 3.6V, Vss = 0V at Topr = -20 to 85° C unless otherwise specified)

Table 26.28 External Clock Input

Symbol	Parameter	Star	Unit	
		Min	Max	
tc	External Clock Input Cycle Time	50		ns
tw(H)	External Clock Input High ("H") Pulse Width	22		ns
tw(L)	External Clock Input Low ("L") Pulse Width	22		ns
tr	External Clock Rise Time		5	ns
tf	External Clock Fall Time		5	ns

Table 26.29 Memory Expansion Mode and Microprocessor Mode

Symbol	Symbol Parameter		Standard	
Symbol			Max	Unit
tac1(RD-DB)	Data Input Access Time (RD standard, with no wait state)		(Note 1)	ns
tac1(AD-DB)	Data Input Access Time (AD standard, CS standard, with no wait state)		(Note 1)	ns
tac2(RD-DB)	Data Input Access Time (RD standard, with a wait state)		(Note 1)	ns
tac2(AD-DB)	Data Input Access Time (AD standard, CS standard, with a wait state)		(Note 1)	ns
tac3(RD-DB)	Data Input Access Time (RD standard, when accessing a space with the multiplexed bus)		(Note 1)	ns
tac3(AD-DB)	Data Input Access Time (AD standard, CS standard, when accessing a space with the multiplexed bus)		(Note 1)	ns
tac4(RAS-DB)	Data Input Access Time (RAS standard, when accessing a DRAM space)		(Note 1)	ns
tac4(CAS-DB)	Data Input Access Time (CAS standard, when accessing a DRAM space)		(Note 1)	ns
tac4(CAD-DB)	Data Input Access Time (CAD standard, when accessing a DRAM space)		(Note 1)	ns
tsu(db-bclk)	Data Input Setup Time	30		ns
tsu(RDY-BCLK)	RDY Input Setup Time	40		ns
tsu(HOLD-BCLK)	HOLD Input Setup Time	60		ns
th(RD-DB)	Data Input Hold Time	0		ns
th(CAS-DB)	Data Input Hold Time	0		ns
th(BCLK-RDY)	RDY Input Hold Time	0		ns
th(BCLK-HOLD)	HOLD Input Hold Time	0		ns
td(BCLK-HLDA)	HLDA Output Delay Time		25	ns

NOTES:

1. Values can be obtained from the following equations, according to BCLK frequency. Insert a wait state or lower operation frequency, f(BCLK), if the calculated value is negative.

$tac1(RD - DB) = \frac{10^9}{f(BCLK) X 2} - 35$	[ns]
$tac1(AD - DB) = \frac{10^9}{f(BCLK)} - 35$	[ns]
$tac2(RD - DB) = \frac{10^9 X m}{f(BCLK) X 2} - 35$	[ns] (m=3 with 1 wait state, m=5 with 2 wait states and m=7 with 3 wait states)
$tac2(AD - DB) = \frac{10^9 X n}{f(BCLK)} - 35$	[ns] (n=2 with 1 wait state, n=3 with 2 wait states and n=4 with 3 wait states)
$tac3(RD - DB) = \frac{10^9 X m}{f(BCLK) X 2} - 35$	[ns] (m=3 with 2 wait states and m=5 with 3 wait states)
$tac3(AD - DB) = \frac{10^9 X n}{f(BCLK) X 2} - 35$	[ns] (n=5 with 2 wait states and n=7 with 3 wait states)
$tac4(RAS - DB) = \frac{10^{9}X m}{f(BCLK) X 2} - 35$	[ns] (m=3 with 1 wait state and m=5 with 2 wait states)
$tac4(CAS - DB) = \frac{10^9 X n}{f(BCLK) X 2} - 35$	[ns] (n=1 with 1 wait state and n=3 when 2 wait states)
$tac4(CAD - DB) = \frac{10^{9} X I}{f(BCLK)} - 35$	[ns] (I=1 with 1 wait state and I=2 with 2 wait states)

Timing Requirements

(VCC = 3.0 to 3.6V, VSS = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 26.30 Timer A Input (Count Source Input in Event Counter Mode)

Symbol	Symbol Parameter	Standard		Unit
Gymbol		Min	Max	01111
tc(ta)	TAin Input Cycle Time	100		ns
tw(tah)	TAiı∧ Input High ("H") Pulse Width	40		ns
tw(tal)	TAin Input Low ("L") Pulse Width	40		ns

Table 26.31 Timer A Input (Gate Input in Timer Mode)

Symbol Parameter	Deventer	Standard		Linit
Symbol	Parameter	Min	Max	Unit
tc(ta)	TAin Input Cycle Time	400		ns
tw(tah)	TAin Input High ("H") Pulse Width	200		ns
tw(tal)	TAin Input Low ("L") Pulse Width	200		ns

Table 26.32 Timer A Input (External Trigger Input in One-Shot Timer Mode)

Symbol	Parameter	Star	Unit	
Symbol		Min	Max	Unit
tc(ta)	TAin Input Cycle Time	200		ns
tw(TAH)	TAin Input High ("H") Pulse Width	100		ns
tw(tal)	TAin Input Low ("L") Pulse Width	100		ns

Table 26.33 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Symbol Parameter	Standard		Unit
Symbol	Falameter	Min	Max	
tw(tah)	TAin Input High ("H") Pulse Width	100		ns
tw(tal)	TAin Input Low ("L") Pulse Width	100		ns

Table 26.34 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

Symbol	Parameter	Star	Unit	
Symbol	Falameter	Min	Max	
tc(UP)	TAiout Input Cycle Time	2000		ns
tw(UPH)	TAiout Input High ("H") Pulse Width	1000		ns
tw(UPL)	TAiout Input Low ("L") Pulse Width	1000		ns
tsu(up-tin)	TAiout Input Setup Time	400		ns
th(TIN-UP)	TAiout Input Hold Time	400		ns

Timing Requirements

(VCC = 3.0 to 3.6V, VSS = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 26.35 Timer B input (Count Source Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit
Symbol	Falanetei	Min	Max	
tc(TB)	TBi⊪ Input Cycle Time (counted on one edge)	100		ns
tw(TBH)	TBin Input High ("H") Pulse Width (counted on one edge)	40		ns
tw(TBL)	TBiN Input Low ("L") Pulse Width (counted on one edge)	40		ns
tc(TB)	TBin Input Cycle Time (counted on both edges)	200		ns
tw(TBH)	TBiN Input High ("H") Pulse Width (counted on both edges)	80		ns
tw(TBL)	TBiN Input Low ("L") Pulse Width (counted on both edges)	80		ns

Table 26.36 Timer B input (Pulse Period Measurement Mode)

Symbol	Parameter	Standard		Unit
	Falameter	Min	Max	
tc(TB)	TBin Input Cycle Time	400		ns
tw(TBH)	TBin Input High ("H") Pulse Width	200		ns
tw(TBL)	TBiℕ Input Low ("L") Pulse Width	200		ns

Table 26.37 Timer B input (Pulse Width Measurement Mode)

Symbol Parameter	Parameter	Standard		Unit
Gymbol		Min	Max	
tc(tb)	TBin Input Cycle Time	400		ns
tw(TBH)	TBi⊪ Input High ("H") Pulse Width	200		ns
tw(TBL)	TBi⊪ Input Low ("L") Pulse Width	200		ns

Table 26.38 A/D Trigger Input

Symbol	Parameter	Standard		Unit
Cymbol		Min	Max	
tC(AD)	ADTRG Input High ("H") Pulse Width (required for re-trigger)	1000		ns
tw(ADL)	ADTRG Input Low ("L") Pulse Width	125		ns

Table 26.39 Serial I/O

Symbol	Parameter	Stan	Unit	
Symbol	Falantelei	Min	Max	Unit
tC(CK)	CLKi Input Cycle Time	200		ns
tw(ckH)	CLKi Input High ("H") Pulse Width	100		ns
tw(CKL)	CLKi Input Low ("L") Pulse Width	100		ns
td(C-Q)	TxDi Output Delay Time		80	ns
th(C-Q)	TxDi Hold Time	0		ns
tsu(D-C)	RxDi Input Set Up Time	30		ns
th(C-Q)	RxDi Input Hold Time	90		ns

Table 26.40 External Interrupt INTi input

Symbol	Symbol Parameter	Standard		Unit
Symbol		Min	Max	
tw(INH)	INTi Input High ("H") Pulse Width	250		ns
tw(INL)	INTi Input Low ("L") Pulse Width	250		ns

Switching Characteristics

(Vcc = 3.0 to 3.6V, Vss = 0V at Topr = -20 to 85°C, unless otherwise specified)

Symbol	Parameter	Measurement	Standard		Unit
-,		Condition	Min	Max	
td(BCLK-AD)	Address Output Delay Time			18	ns
th(BCLK-AD)	Address Output Hold Time (BCLK standard)		0		ns
th(RD-AD)	Address Output Hold Time (RD standard)		0		ns
th(WR-AD)	Address Output Hold Time (WR standard)		(Note 1)		ns
td(BCLK-CS)	Chip-select Signal Output Delay Time			18	ns
th(BCLK-CS)	Chip-select Signal Output Hold Time (BCLK standard)		0		ns
th(RD-CS)	Chip-select Signal Output Hold Time (RD standard)	See Figure 26.1	0		ns
th(wR-CS)	Chip-select Signal Output Hold Time (WR standard)	See Ligure 20.1	(Note 1)		ns
td(BCLK-ALE)	ALE Signal Output Delay Time			18	ns
th(BCLK-ALE)	ALE Signal Output Hold Time		-2		ns
td(BCLK-RD)	RD Signal Output Delay Time			18	ns
th(BCLK-RD)	RD Signal Output Hold Time		-3		ns
td(BCLK-WR)	WR Signal Output Delay Time			18	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(DB-WR)	Data Output Delay Time (WR standard)		(Note 1)		ns
th(WR-DB)	Data Output Hold Time (WR standard)]	(Note 1)		ns
tw(WR)	WR Output Width	1	(Note 1)		ns

Table 26.41 Memory Expansion Mode and Microprocessor Mode (with No Wait State)

NOTES:

1. Values can be obtained from the following equations according to the BCLK frequency.

$$td(DB - WR) = \frac{10^9}{f(BCLK)} - 20 \text{ [ns]}$$

$$th(WR - DB) = \frac{10^9}{f(BCLK) X 2} - 10 \text{ [ns]}$$

$$th(WR - AD) = \frac{10^9}{f(BCLK) X 2} - 10 \text{ [ns]}$$

$$th(WR - CS) = \frac{10^9}{f(BCLK) X 2} - 10 \text{ [ns]}$$

$$tw(WR) = \frac{10^9}{f(BCLK) X 2} - 15 \text{ [ns]}$$

Switching Characteristics

(Vcc = 3.0 to 3.6V, Vss = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 26.42 Memory Expansion Mode and Microprocessor Mode (With a Wait State, Accessing an External Memory)

Symbol	Parameter	Measurement Condition	Standard		Unit
			Min	Max	1
td(BCLK-AD)	Address Output Delay Time			18	ns
th(BCLK-AD)	Address Output Hold Time (BCLK standard)		0		ns
th(RD-AD)	Address Output Hold Time (RD standard)		0		ns
th(WR-AD)	Address Output Hold Time (WR standard)		(Note 1)		ns
td(BCLK-CS)	Chip-select Signal Output Delay Time			18	ns
th(BCLK-CS)	Chip-select Signal Output Hold Time (BCLK standard)		0		ns
th(RD-CS)	Chip-select Signal Output Hold Time (RD standard)		0		ns
th(wr-cs)	Chip-select Signal Output Hold Time (WR standard)	See Figure 26.1	(Note 1)		ns
td(BCLK-ALE)	ALE Signal Output Delay Time			18	ns
th(BCLK-ALE)	ALE Signal Output Hold Time		-2		ns
td(BCLK-RD)	RD Signal Output Delay Time			18	ns
th(BCLK-RD)	RD Signal Output Hold Time		-3		ns
td(BCLK-WR)	WR Signal Output Delay Time			18	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(DB-WR)	Data Output Delay Time (WR standard)		(Note 1)		ns
th(WR-DB)	Data Output Hold Time (WR standard)	1	(Note 1)		ns
tw(WR)	WR Output Width]	(Note 1)		ns

NOTES:

1. Values can be obtained from the following equations, according to BCLK frequency.

$td(DB - WR) = \frac{10^9 X n}{f(BCLK)} - 20$	[ns] (n=1 with 1 wait state, n=2 with 2 wait states and n=3 with 3 wait states)
$th(WR - DB) = \frac{10^9}{f(BCLK) X 2} - 10$	[ns]
$th(WR - AD) = \frac{10^9}{f(BCLK) X 2} - 10$	
$th(WR - CS) = \frac{10^9}{f(BCLK) X 2} - 10$	[ns]
$t_{W(WR)} = \frac{10^9 \text{ X n}}{f_{(BCLK)} \text{ X 2}} - 15$	[ns] (n=1 with 1 wait state, n=3 with 2 wait states and n=5 with 3 wait states)

Switching Characteristics

(Vcc = 3.0 to 3.6V, Vss = 0V at Topr = -20 to 85°C unless otherwise specified)

Table 26.43 Memory Expansion Mode and Microprocessor Mode

(With a Wait State, Accessing an External Memory and Selecting a Space with the Multiplexed Bus)

Symbol	Parameter	Measurement	Standard		Unit
0,		Condition	Min	Max	
td(BCLK-AD)	Address Output Delay Time			18	ns
th(BCLK-AD)	Address Output Hold Time (BCLK standard)	-	0		ns
th(RD-AD)	Address Output Hold Time (RD standard)	-	(Note 1)		ns
th(WR-AD)	Address Output Hold Time (WR standard)	-	(Note 1)		ns
td(BCLK-CS)	Chip-select Signal Output Delay Time	-		18	ns
th(BCLK-CS)	Chip-select Signal Output Hold Time (BCLK standard)	-	0		ns
th(RD-CS)	Chip-select Signal Output Hold Time (RD standard)	-	(Note 1)		ns
th(WR-CS)	Chip-select Signal Output Hold Time (WR standard)	See Figure 26.1	(Note 1)		ns
td(BCLK-RD)	RD Signal Output Delay Time			18	ns
th(BCLK-AD)	RD Signal Output Hold Time		-3		ns
td(BCLK-WR)	WR Signal Output Delay Time			18	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(DB-WR)	Data Output Delay Time (WR standard)		(Note 1)		ns
th(WR-DB)	Data Output Hold Time (WR standard)		(Note 1)		ns
td(BCLK-ALE)	ALE Signal Output Delay Time (BCLK standard)			18	ns
th(BCLK-ALE)	ALE Signal Output Hold Time (BCLK standard)		-2		ns
td(AD-ALE)	ALE Signal Output Delay Time (address standard)		(Note 1)		ns
th(ALE-AD)	ALE Signal Output Hold Time (address standard)		(Note 1)		ns
tdz(RD-AD)	Address Output High-Impedance Time			8	ns

NOTES:

1. Values can be obtained from the following equations, according to BCLK frequency.

$$th(RD - AD) = \frac{10^9}{f(BCLK) X 2} - 10 \text{ [ns]}$$

$$th(WR - AD) = \frac{10^9}{f(BCLK) X 2} - 10 \text{ [ns]}$$

$$th(RD - CS) = \frac{10^9}{f(BCLK) X 2} - 10 \text{ [ns]}$$

$$th(WR - CS) = \frac{10^9 X m}{f(BCLK) X 2} - 10 \text{ [ns]}$$

$$td(DB - WR) = \frac{10^9 X m}{f(BCLK) X 2} - 25 \text{ [ns] (m=3 with 2 wait states and m=5 with 3 wait states)}$$

$$th(WR - DB) = \frac{10^9}{f(BCLK) X 2} - 10 \text{ [ns]}$$

$$td(AD - ALE) = \frac{10^9}{f(BCLK) X 2} - 20 \text{ [ns]}$$

$$th(ALE - AD) = \frac{10^9}{f(BCLK) X 2} - 10 \text{ [ns]}$$

Switching Characteristics

(Vcc = 3.0 to 3.6V, Vss = 0V at Topr = -20 to 85°C unless otherwise specified)

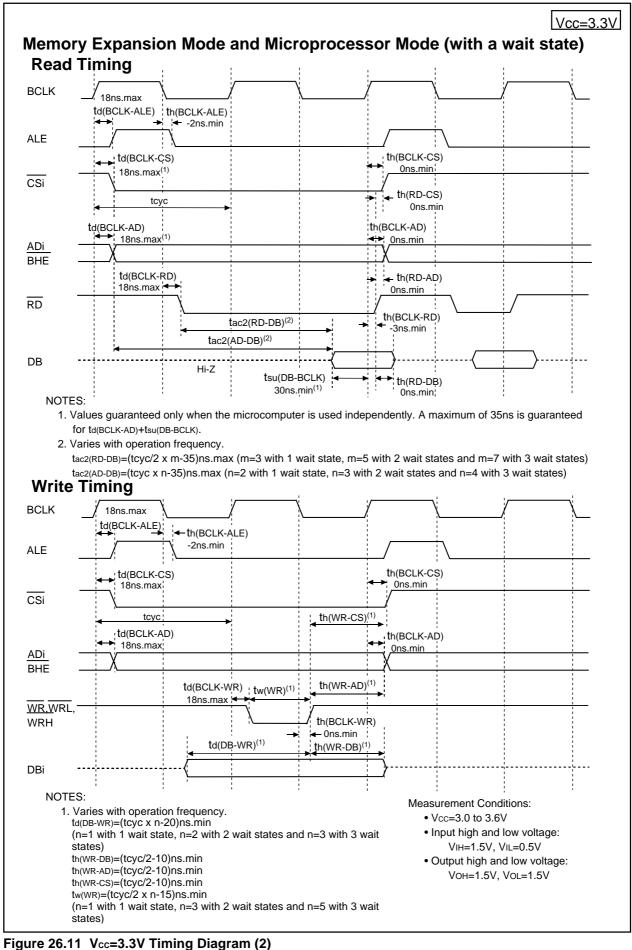
Table 26.44 Memory Expansion Mode and Microprocessor Mode (With a Wait State, Accessing an External Memory and Selecting the DRAM Area)

Symbol	Parameter	Measurement Condition	Standard		Unit
			Min	Max	1
td(BCLK-RAD)	Row Address Output Delay Time			18	ns
th(BCLK-RAD)	Row Address Output Hold Time (BCLK standard)		0		ns
td(BCLK-CAD)	Column Address Output Delay Time	-		18	ns
th(BCLK-CAD)	Column Address Output Hold Time (BCLK standard)	_	0		ns
th(RAS-RAD)	Row Address Output Hold Time after RAS Output	-	(Note 1)		ns
td(BCLK-RAS)	RAS Output Delay Time (BCLK standard)			18	ns
th(BCLK-RAS)	RAS Output Hold Time (BCLK standard)	See Figure 26.1	0		ns
trp	RAS High ("H") Hold Time]	(Note 1)		ns
td(BCLK-CAS)	CAS Output Delay Time (BCLK standard)			18	ns
th(BCLK-CAS)	CAS Output Hold Time (BCLK standard)		0		ns
td(BCLK-DW)	DW Output Delay Time (BCLK standard)	-		18	ns
th(BCLK-DW)	DW Output Hold Time (BCLK standard)		-3		ns
tsu(db-cas)	CAS Output Setup Time after DB output		(Note 1)		ns
th(BCLK-DB)	DB Signal Output Hold Time (BCLK standard)		-7		ns
tsu(Cas-Ras)	CAS Output Setup Time before RAS Output (refresh)		(Note 1)		ns

NOTES:

1. Values can be obtained from the following equations, according to the BCLK frequency.

$$th(RAS - RAD) = \frac{10^9}{f(BCLK) X 2} - 13 \text{ [ns]}$$


$$tRP = \frac{10^9 X 3}{f(BCLK) X 2} - 20 \text{ [ns]}$$

$$tsu(DB - CAS) = \frac{10^9}{f(BCLK)} - 20 \text{ [ns]}$$

$$tsu(CAS - RAS) = \frac{10^9}{f(BCLK) X 2} - 13 \text{ [ns]}$$

f(BCLK) X 2

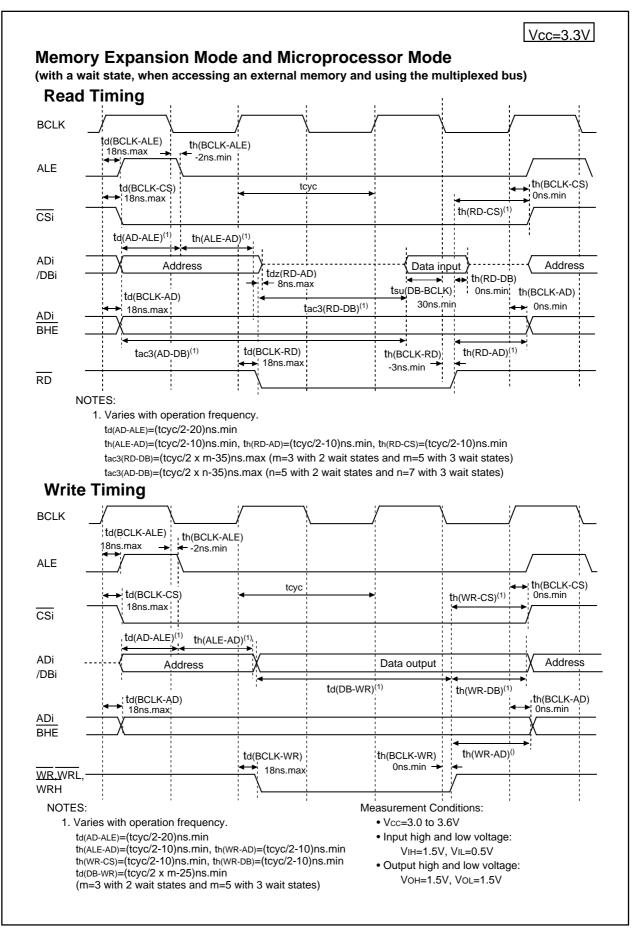


Figure 26.12 Vcc=3.3V Timing Diagram (3)

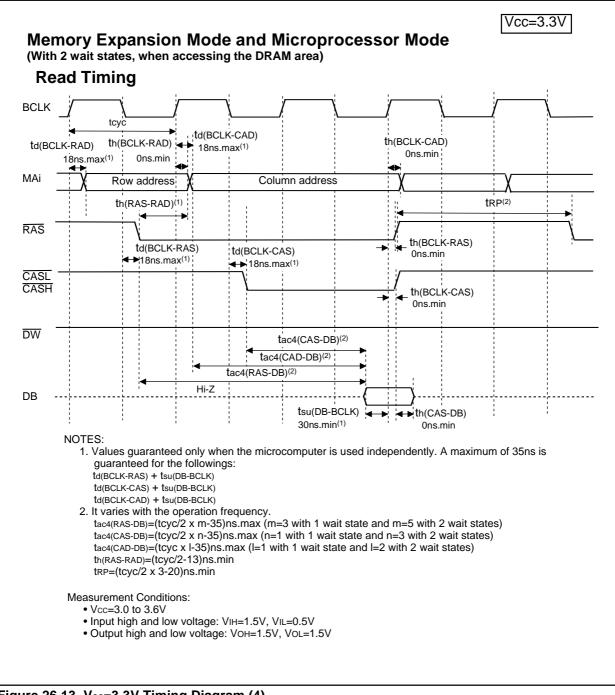


Figure 26.13 Vcc=3.3V Timing Diagram (4)

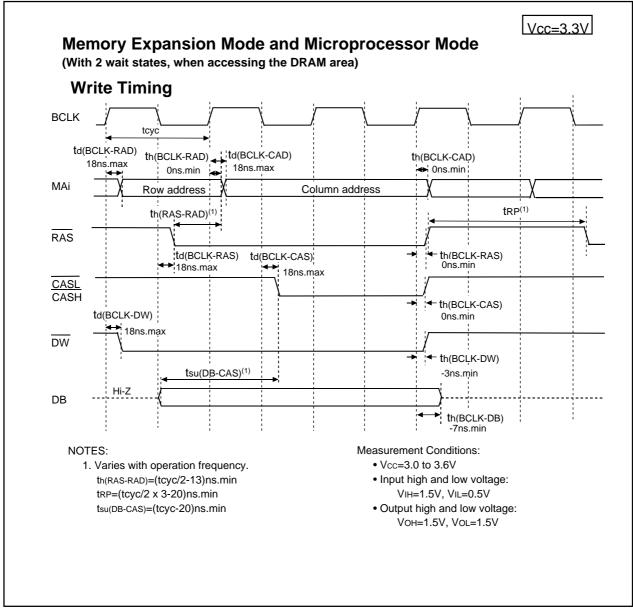


Figure 26.14 Vcc=3.3V Timing Diagram (5)

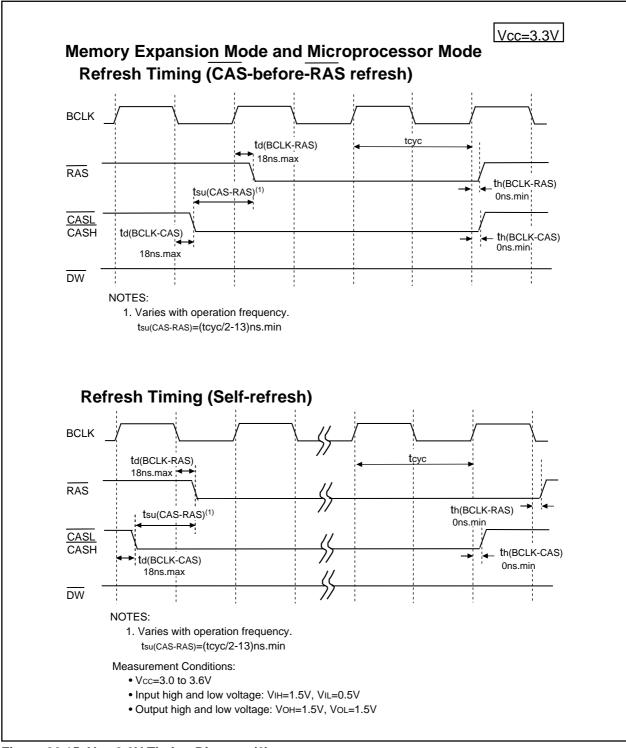


Figure 26.15 Vcc=3.3V Timing Diagram (6)

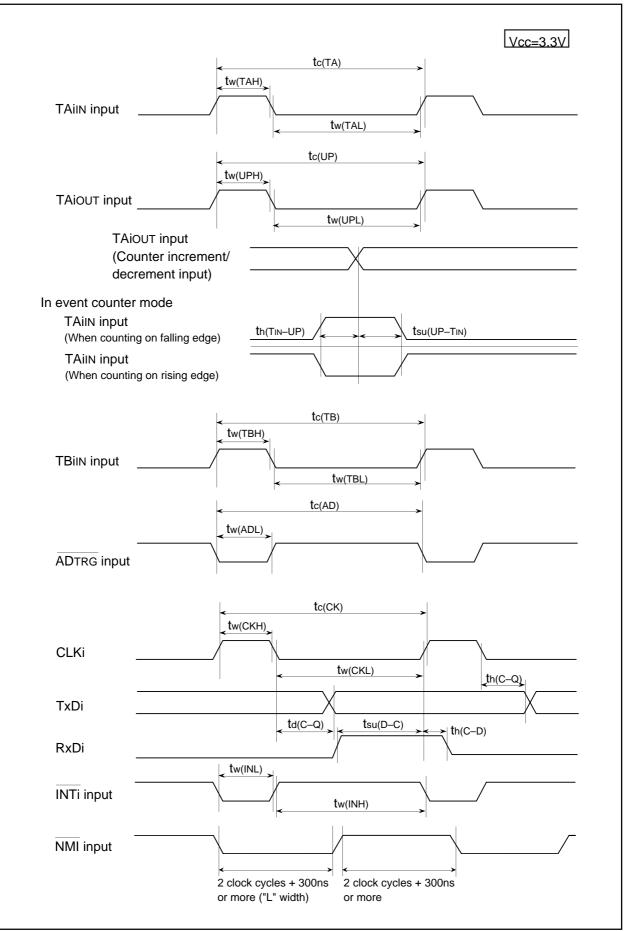


Figure 26.16 Vcc=3.3V Timing Diagram (7)

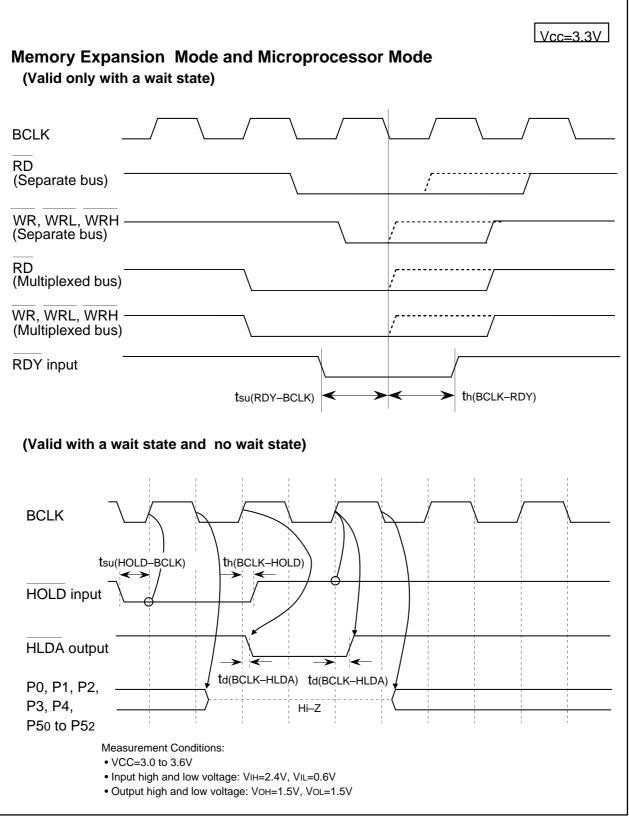


Figure 26.17 Vcc=3.3V Timing Diagram (8)

26.2 Electrical Characteristics (M32C/83T)

Table 26.45 Absolute Maximum Ratings

Symbol		Parameter	Condition	Value	Unit
Vcc	Supply Voltage		Vcc=AVcc	-0.3 to 6.0	V
AVcc	Analog Supply	Voltage	Vcc=AVcc	-0.3 to 6.0	V
Vi	Input Voltage	RESET, CNVss, BYTE, P00-P07, P10-P17, P20-P27,		-0.3 to Vcc+0.3	V
		P30-P37, P40-P47, P50-P57, P60-P67, P72-P77, P80-			
		P87, P90-P97, P100-P107, P110-P114, P120-P127,			
		P130-P137, P140-P146, P150-P157 ⁽¹⁾ , Vref, Xin			
		P70, P71		-0.3 to 6.0	V
Vo	Output Voltage	P0o-P07, P1o-P17, P2o-P27, P3o-P37, P4o-P47, P5o-		-0.3 to Vcc+0.3	V
		P57, P60-P67, P72-P77, P80-P84, P86, P87, P90-P97,			
		P100-P107, P110-P114, P120-P127, P130-P137, P140-			
		P146, P150-P157 ⁽¹⁾ , Xout			
Pd	Power Dissipati	on	Topr=25° C	400	mW
Topr	Operating Ambi	ent Temperature	T version	-40 to 85	°C
Tstg	Storage Tempe	rature		-65 to 150	°C

NOTES:

1. P11 to P15 are provided in the 144-pin package.

Standard Symbol Unit Parameter Min. Typ. Max. 4.2 5.0 V Vm Supply Voltage 5.5 AVcc Analog Supply Voltage Vcc V Vss Supply Voltage 0 V AVss Analog Supply Voltage 0 V νн Input High ("H") P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60-0.8Vcc V Vcc Voltage P67, P72-P77, P80-P87⁽³⁾, P90-P97, P100-P107, P110-P114, P120-P127, P130-P137, P140-P146, P150-P157⁽⁴⁾, XIN, RESET, CNVss, BYTE P70. P71 0.8Vcc 6.0 Vi∟ Input Low ("L") P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60-0 0.2Vcc V Voltage P67, P70-P77, P80-P87⁽³⁾, P90-P97, P100-P107, P110-P114, P120-P127, P130-P137, P140-P146, P150-P157⁽⁴⁾, XIN, RESET, CNVss, BYTE OH(peak) Peak Output P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60--10.0 mΑ High ("H") P67, P72-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110-Current⁽²⁾ P114, P120-P127, P130-P137, P140-P146, P150-P157⁽⁴⁾ OH(avg) Average Output P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60--5.0 mΑ High ("H") P67, P72-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110-Current⁽¹⁾ P114, P120-P127, P130-P137, P140-P146, P150-P157⁽⁴⁾ OL(peak) Peak Output Low P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60-10.0 mΑ ("L") Current⁽²⁾ P67, P70-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110-P114, P120-P127, P130-P137, P140-P146, P150-P157⁽⁴⁾ Average Output P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60-5.0 OL(avg) mΑ Low ("L") P67, P70-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110-Current⁽¹⁾ P114, P120-P127, P130-P137, P140-P146, P150-P157⁽⁴⁾ f(XIN) Main Clock Input Vcc=4.2 to 5.5V 0 32 MHz Frequency f(Xan) Sub Clock Oscillation Frequency 32.768 50 kHz

Table 26.46 Recommended Operating Conditions

(Vcc=4.2 to 5.5V, Vss=0V at Topr = -40 to 85°C (T version) unless otherwise specified)

NOTES:

- 1. Typical values when average output current is 100ms.
- Total IOL(peak) for P0, P1, P2, P86, P87, P9, P10, P11, P14 and P15 must be 80mA or less. Total IOH(peak) for P0, P1, P2, P86, P87, P9, P10, P11, P14 and P15 must be -80mA or less. Total IOL(peak) for P3, P4, P5, P6, P7, P80 to P84, P12 and P13 must be 80mA or less. Total IOH(peak) for P3, P4, P5, P6, P72 to P77, P80 to P84, P12 and P13 must be -80mA or less.
- 3. V⊩ and V∟ reference for P87 applies when P87 is used as a programmable input port. It does not apply when P87 is used as XαN.
- 4. P11 to P15 are provided in the 144-pin package only.

Table 26.47Electrical Characteristics (Vcc = 4.2 to 5.5 V, Vss = 0V

Vcc=5V

at Topr = -40 to 85°C(T version), f(XIN)=32MHz unless otherwise specified)

Symbol		Parameter	Condition	Standard			Unit	
					Min	Тур	Max	1
Vон	Output High ("H")	P00-P07, P10-P17, P20-P27, P	230-P37, P40-P47,	lo⊫-5mA	Vcc-2.0			V
	Voltage	P50-P57, P60-P67, P72-P77, P	980-P84, P86,					
		P87, P90-P97, P100-P107, P1	10-P114, P120-					
		P127, P130-P137, P140-P146,	P150-P157 ⁽¹⁾					
		P00-P07, P10-P17, P20-P27, F	230-P37, P40-P47,	Io ι ⊨-200μΑ	Vcc-0.3			1 1
		P50-P57, P60-P67, P72-P77, F	P80-P84, P86,					
		P87, P90-P97, P100-P107, P1						
		P127, P130-P137, P140-P146,	P150-P157 ⁽¹⁾					
		Холт		lo⊫-1mA	3.0			V
		Хсолт		No load applied		3.3		V
Val	Output Low ("L")	P00-P07, P10-P17, P20-P27, F	230-P37, P40-P47,	lα=5mA			2.0	V
	Voltage	P50-P57, P60-P67, P70-P77, F	980-P84, P86,					
		P87, P90-P97, P100-P107, P1	10-P114. P120-					
		P127, P130-P137, P140-P146,						
		P00-P07, P10-P17, P20-P27, F		la=200uA			0.45	V
		P50-P57, P60-P67, P70-P77, F						
		P87, P90-P97, P100-P107, P1						
		P127, P130-P137, P140-P146,						
		Холт		lo_=1mA			2.0	V
		Хсолт		No load applied		0		V
VT+-VT-	Hysteresis	HOLD, RDY, TA0IN-TA4IN, T	B0IN-TB5IN,		0.2		1.0	V
		INTO-INT5, ADTRG, CTSO-CT						
		CLK4, TA0our-TA4our, NMI,						
		RxD4, SCL0-SCL4, SDA0-S						
		RESET			0.2		1.8	V
Ін	Input High ("H")	P00-P07, P10-P17, P20-P27, P	30-P37 P40-P47	V⊫5V			5.0	μA
	Current	P50-P57, P60-P67, P70-P77, F					0.0	*** ·
		P100-P107, P110-P114, P120						
		P137, P140-P146, P150-P157						
		CNVss. BYTE	, AN, REOLT,					
lil	Input Low ("L")	P00-P07, P10-P17, P20-P27, F	30-P37 P40-P47	VI=0V			-5.0	μA
	Current	P50-P57, P60-P67, P70-P77, P					0.0	P
		P100-P107. P110-P114. P120						
		P137, P140-P146, P150-P157	,					
		CNVss, BYTE	γ , Λ M , Λ $LOL I$,					
Rpullup	Pull-up Resistance	P00-P07, P10-P17, P20-P27, F	30-P37 P40-P47	VI=0V	30	50	167	kΩ
TYPOLLOP		P50-P57, P60-P67, P72-P77, F			50	50	107	K22
		P87, P90-P97, P100-P107, P1						
		P127, P130-P137, P140-P146,						
Rfxin	Feedback Resistance		1 1301 1370			1.5		MΩ
Rfxcin	Feedback Resistance					10		MΩ
VRAM	RAM Standby Voltage				2.5			V
lcc	Power Supply	Measurement conditions:	f(XIN)=32 MHz, s	square wave.		40	54	mA
	Current	In single-chip mode, output	no division					
		pins are left open and other pins are connected to Vss	f(Xcin)=32 kHz, v	with a wait state,		470		μA
			Topr=25° C					
NOTES:			l opr=25° C whe	en the clock stops		0.4	20	μA

NOTES:

1. P11 to P15 are provided in the 144-pin package only.

Vcc=5V

Table 26.48 A/D Conversion Characteristics (VCC = AVCC = VREF = 4.2 to 5.5V, Vss = AVSS = 0V at Topr = -40 to 85°C (T version), f(XIN) = 32MHz unless otherwise specified)

Symbol	Parameter	Moasuron	Measurement Condition		Standard		
Symbol	T alameter	Weasurer		Min	Min Typ Max		Unit
-	Resolution	VREF=VCC				10	Bits
	Integral Nonlinearity Error VREF=Vcc=5V External op-a					±3	LSB
INL		ANEX0, ANEX1			10	LSB	
		VREF-VCC-SV	External op-amp			±7	LSB
			connection mode			=	LSB
DNL	Differential Nonlinearity Error					±1	LSB
-	Offset Error					±3	LSB
-	Gain Error					±3	LSB
RLADDER	Resistor Ladder	Vref=Vcc		8		40	kΩ
t CONV	10-bit Conversion Time			2.1			μs
t CONV	8-bit Conversion Time			1.8			μs
t SAMP	Sample Time			0.2			μs
Vref	Reference Voltage			2		Vcc	V
Via	Analog Input Voltage			0		Vref	V

NOTES:

1. Divide f(XIN), if exceeding 16 MHz, to keep ϕ AD frequency at 16 MHz or less.

Table 26.49 D/A Conversion Characteristics (VCC = VREF = 4.2 to 5.5V, VSS = AVSS = 0V at Topr = -40 to 85°C (T version), f(XIN) = 32MHz unless otherwise specified)

Symbol	Parameter	Measurement Condition	S	Unit		
	i alametei	Measurement Condition		Тур	Max	
-	Resolution				8	Bits
-	Absolute Accuracy				1.0	%
ts∪	Setup Time				3	μs
Ro	Output Resistance		4	10	20	kΩ
Ivref	Reference Power Supply Input Current	(Note 1)			1.5	mA

NOTES:

 Measurement results when using one D/A converter. The DAi register (i=0, 1) of the D/A converter not being used is set to "0016". The resistor ladder in the A/D converter is exclued. IVREF flows even if the VCUT bit in the ADiCON1 register is set to "0" (no VREF connection).

Table 26.50 Flash Memory Version Electrical Characteristics

Parameter		Unit		
Falameter	Min	Тур	Max	Offic
Program Time (per page)		8	120	ms
Block Erase Time (per block)		50	600	ms

NOTES:

1. Vcc= 4.2 to 5.5V at Topr= 0 to 60° C, unless otherwise specified

Vcc=5V

Timing Requirements (VCC = 4.2 to 5.5V, VSS = 0V at Topr = -40 to 85°C (T version) unless otherwise specified)

Table 26.51 External Clock Input

Symbol	Parameter	Star	Unit	
		Min	Max	
tc	External Clock Input Cycle Time	33		ns
tw(H)	External Clock Input High ("H") Pulse Width	13		ns
tw(L)	External Clock Input Low ("L") Pulse Width	13		ns
tr	External Clock Rise Time		5	ns
tf	External Clock Fall Time		5	ns

Timing Requirements

Vcc=5V

(VCC = 4.2 to 5.5V, VSS = 0V at Topr = -40 to 85°C (T version) unless otherwise specified)

Symbol	Parameter		Standard		
		Min	Max	Unit	
tc(ta)	TAin Input Cycle Time	100		ns	
tw(TAH)	TAi⊪ Input High ("H") Pulse Width	40		ns	
tw(tal)	TAin Input Low ("L") Pulse Width	40		ns	

Table 26.52 Timer A Input (Count Source Input in Event Counter Mode)

Table 26.53 Timer A Input (Gate Input in Timer Mode)

Symbol	Descusion		Standard		
	Parameter	Min	Max	Unit	
tc(ta)	TAin Input Cycle Time	400		ns	
tw(TAH)	TAi⊪ Input High ("H") Pulse Width	200		ns	
tw(TAL)	TAilN Input Low ("L") Pulse Width	200		ns	

Table 26.54 Timer A Input (External Trigger Input in One-Shot Timer Mode)

Symbol	Parameter	Stan	Unit	
	Falameter	Min	Max	Unit
tc(ta)	TAin Input Cycle Time	200		ns
tw(TAH)	TAin Input High ("H") Pulse Width	100		ns
tw(tal)	TAin Input Low ("L") Pulse Width	100		ns

Table 26.55 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter		Standard		
	Falameter	Min	Max	Unit	
tw(tah)	TAi⊪ Input High ("H") Pulse Width	100		ns	
tw(tal)	TAin Input Low ("L") Pulse Width	100		ns	

Table 26.56 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

Symbol	Parameter	Stan	- Unit	
		Min	Max	
tc(UP)	TAiour Input Cycle Time	2000		ns
tw(UPH)	TAiour Input High ("H") Pulse Width	1000		ns
tw(UPL)	TAiour Input Low ("L") Pulse Width	1000		ns
tsu(UP-TIN)	TAiour Input Setup Time	400		ns
th(TIN-UP)	TAiour Input Hold Time	400		ns

Timing Requirements

Vcc=5V

(VCC = 4.2 to 5.5V, VSS = 0V at Topr = -40 to 85° C (T version) unless otherwise specified)

Table 26.57 Timer B Input (Count Source Input in Event Counter Mode)

Symbol	Parameter	Star	Unit	
Symbol	Falanielei	Min	n Max	Onit
tc(TB)	TBin Input Cycle Time (counted on one edge)	100		ns
tw(твн)	TBin Input High ("H") Pulse Width (counted on one edge)	40		ns
tw(TBL)	TBin Input Low ("L") Pulse Width (counted on one edge)	40		ns
tc(TB)	TBin Input Cycle Time (counted on both edges)	200		ns
tw(TBH)	TBin Input High ("H") Pulse Width (counted on both edges)	80		ns
tw(TBL)	TBin Input Low ("L") Pulse Width (counted on both edges)	80		ns

Table 26.58 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter		Standard	
Symbol			Max	Unit
tc(tb)	TBin Input Cycle Time			ns
tw(твн)	TBi⊩ Input High ("H") Pulse Width			ns
tw(TBL)	TBi⊪ Input Low ("L") Pulse Width			ns

Table 26.59 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter		Standard	
Symbol	Falameter	Min	Max	Unit
tc(тв)	TBin Input Cycle Time			ns
tw(TBH)	TBi⊪ Input High ("H") Pulse Width			ns
tw(tbl)	TBi⊪ Input Low ("L") Pulse Width			ns

Table 26.60 A/D Trigger Input

Symbol	Parameter		Standard	
Cymbol			Max	Unit
tC(AD)	ADTRG Input Cycle Time (required for re-trigger)	1000		ns
tw(ADL)	ADTRG Input Low ("L") Pulse Width			ns

Table 26.61 Serial I/O

Symbol	Parameter		Standard	
Symbol			Max	- Unit
tc(ck)	CLKi Input Cycle Time	200		ns
tw(CKH)	CLKi Input High ("H") Pulse Width			ns
tw(CKL)	CLKi Input Low ("L") Pulse Width			ns
td(C-Q)	TxDi Output Delay Time		80	ns
th(c-q)	TxDi Hold Time			ns
tsu(D-C)	RxDi Input Set Up Time			ns
th(C-Q)	RxDi Input Hold Time 90			ns

Table 26.62 External Interrupt INTi Input

Symbol	Parameter		Standard	
Symbol			Max	Unit
tw(INH)	INTi Input High ("H") Pulse Width	250		ns
tw(INL)	INTi Input Low ("L") Pulse Width			ns

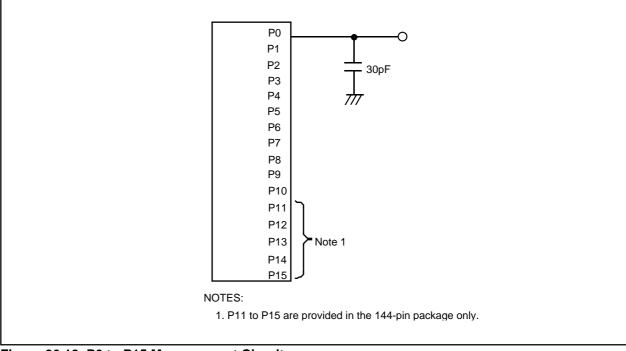


Figure 26.18 P0 to P15 Measurement Circuit

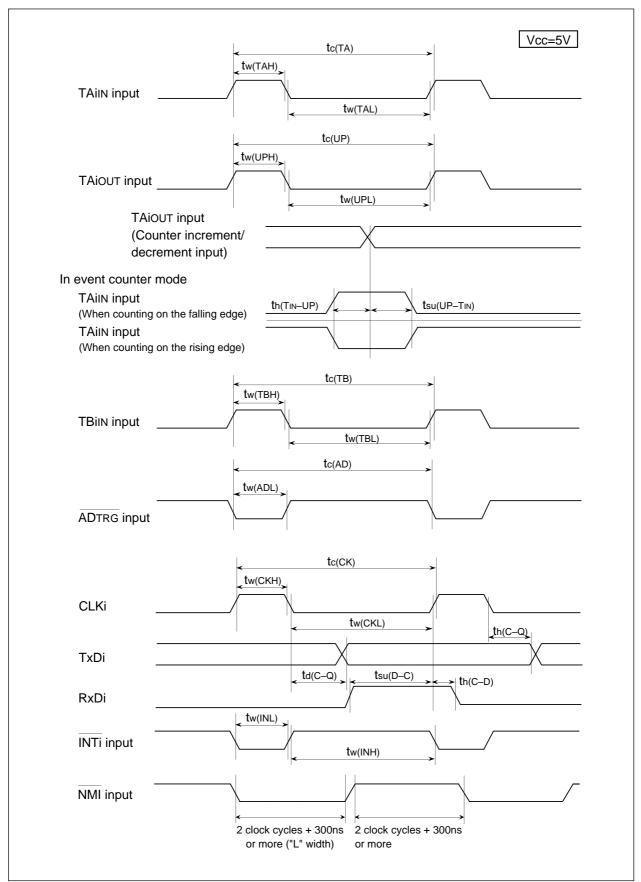


Figure 26.19 VCC = 5 V Timing Diagram(1)

27. Precautions

27.1 Processor Mode

27.1.1 Microprocessor Mode

SFR, internal RAM and external space can be accessed when in microprocessor mode. The internal ROM cannot be accessed.

The internal ROM cannot be accessed, despite entering memory expansion mode or single-chip mode , if the microcomputer begins operation in microprocessor mode while the CNVss is held high ("H") after reset.

27.2 Bus

27.2.1 HOLD Signal

When entering microprocessor mode or memory expansion mode from single-chip mode and using HOLD input, set the PM01 to PM00 bits to "112" (microprocessor mode) or to "102" (memory expansion mode) after setting the PD4_0 to PD4_7 bits in the PD4 register and the PD5_0 to PD5_2 bits in the PD5 register to "0" (input mode).

P40 to P47 (A16 to A22, A23, CS0 to CS3, MA8 to MA12) and P50 to P52 (RD/WR/BHE, RD/WRL,WRH) do not enter a high-impedance state even when an "L" signal is applied to the HOLD pin, if the PM01 to PM00 bits are set to "112" (microprocessor mode) or to "102" (memory expansion mode) after setting the PD4_0 to PD4_7 bits in the PD4 register and the PD5_0 to PD5_2 bits in the PD5 register to "1" (output mode) in single-chip mode.

27.2.2 External Bus

The internal ROM cannot be read when an "H" signal is applied to the CNVss pin and the hardware reset (hardware reset 1 or hardware reset 2) occurs.

27.3 SFR

27.3.1 100-Pin Package

Set address space for 03CB16, 03CE16, 03CF16, 03D216, 03D316 to "FF16" after reset when using the 100-pin package. 03DC16 must be set to "0016" after reset.

27.3.2 Register Settings

Table 27.1 lists registers containing bits which can only be written to. Set these registers with immediate values. When establishing the next value by altering the present value, write the present value to the RAM as well as to the register. Transfer the next value to the register after making changes in the RAM.

Register	Address	Register	Address
WDTS register	000E16	U2BRG register	033916
G0RI register	00EC16	U2TB register	033B16, 033A16
G1RI register	012C16	UDF register	034416
G2TB register	016D16, 016C16	TA0 register ⁽¹⁾	034716, 034616
G3TB register	017D16, 017C16	TA1 register ⁽¹⁾	034916, 034816
U4BRG register	02F916	TA2 register ⁽¹⁾	034B16, 034A16
U4TB register	02FB16, 02FA16	TA3 register ⁽¹⁾	034D16, 034C16
TA11 register	030316, 030216	TA4 register ⁽¹⁾	034F16, 034E16
TA21 register	030516, 030416	U0BRG register	036916
TA41 register	030716, 030616	U0TB register	036B16, 036A16
DTT register	030C16	U1BRG register	02E916
ICTB2 register	030D16	U1TB register	02EB16, 02EA16
U3BRG register	032916	AD0CON2 register	039416
U3TB register	032B16, 032A16		

Table 27.1 Registers with Write-only Bits

NOTES :

1. In one-shot timer mode and pulse width modulation mode only.

27.4 Clock Generation Circuit

27.4.1 PLL Frequency Synthesizer

Stabilize supply voltage when using the PLL frequency synthesizer. The ripple of supply voltage at 5V must be less than 10kHz in frequency, 0.5V (peak to peak) in voltage fluctuation range, and 1V/ms in voltage fluctuation rate. The ripple of supply voltage at 3.3V must be less than 100Hz in frequency, 0.2V (peak to peak) in voltage fluctuation range, and 0.1V/ms in voltage fluctuation rate.

27.4.2 Power Consumption Control

- When resetting the microcomputer to exit stop mode, apply an "L" signal to the RESET pin until the main clock oscillation stabilizes.
- Write at least 4 NOP instructions after the WAIT instruction or instructions to set the CM10 bit in the CM1 register to "1" (all clocks stop). When entering wait mode or stop mode, the instruction queue reads ahead to instructions following the WAIT instruction and instructions to set the CM10 bit to "1", and the program stops. The next instruction may be executed before entering wait mode or stop mode, depending on the combination of instructions and their execution timing.
- The followings are suggestions for reducing power consumption when programming or designing systems:

Ports: I/O ports maintains the same state despite the microcomputer entering wait mode or stop mode. Current flows through active output ports. Feedthrough current flows through input ports in a high-impedance state. Set unused ports as input ports and stablize electrical potential before entering wait mode or stop mode.

A/D Converter: If the A/D conversion is not performed, set the VCUT bit in the AD0CON1 register to "0"(no VREF connection). Set the VCUT bit to "1" (VREF connection) and wait at least 1 μ s before starting the A/D conversion.

D/A Converter: Set the DAi bit (i=0 to 1) in the DACON register to "0" (output disabled) and set the DAi register to "0016" when the D/A conversion is not performed.

Peripheral Function Stop: Set the CM02 bit in the CM0 register while in wait mode to stop unnecessary peripheral functions. However, this does not reduce power consumption because the peripheral function clock (fc32) generating from the sub clock does not stop. When in low-speed mode and low-power consumption mode, do not enter wait mode when the CM02 bit is set to "1" (peripheral clock stops in wait mode).

External Clock: When an external clock is selected as the CPU clock, set the CM05 bit in the CM0 register to "1" (main clock stops). This disables the XOUT pin and reduces power consumption. (When using an external clock input, the clock is applied regardless of the CM05 bit setting.)

27.4.3 Wait Mode

When entering wait mode, the instruction queue reads ahead to instructions following the WAIT instruction, and the program stops. Write at least 4 NOP instructions after WAIT instruction.

27.4.4 Stop Mode

- If stop mode is exited by any reset, apply an "L" signal to the RESET pin until a main clock oscillation is stabilized enough.
- When entering stop mode, the instruction queue reads ahead to instructions following the instruction setting the CM10 bit in the CM1 register to "1" (all clocks stopped), and the program stops. When the microcomputer exits stop mode, the instruction lined in the instruction queue is executed before the interrupt routine for recovery is done.

Write the JMP.B instruction as follows, after the instruction setting the CM10 bit to "1".

e.g.,	bset 0, prcr	; protection removed
	fset I	; I flag set
	bset 0, cm1	; all clocks stopped (stop mode)
	jmp.b LABEL_001	; jmp.b instruction executed (no instruction between jmp.b and LABEL)
LAB	EL_001;	
	nop	; nop (1)
	nop	; nop (2)
	nop	; nop (3)
	nop	; nop (4)
	mov.b #0, prcr	; Protection set
	•	
	•	
	•	

27.5 Protection

The PRC2 bit in the PRCR register is changed to "0" (write disable) when an instruction is written to any address after the PRC2 bit is set to "1" (write enable). Write instruction immediately after setting the PRC2 bit to "1" to change registers protected by the PRC2 bit. Do not generate an interrupt or a DMA transfer between the instruction to set the PRC2 bit to "1" and the following instruction.

27.6 Interrupts

27.6.1 ISP Setting

After reset, the ISP is set to "00000016". The program runs out of control if an interrupt is acknowledged before the ISP is set. Therefore, the ISP must be set before an interrupt request is acknowledged. Set the ISP to an even address, which allows interrupt sequences to be executed at a higher speed.

To use $\overline{\text{NMI}}$ interrupt, set the ISP at the beginning of the program. The $\overline{\text{NMI}}$ interrupt can be acknowledged after the first instruction has been executed after reset.

27.6.2 NMI Interrupt

- NMI interrupt cannot be denied. Connect the NMI pin to Vcc via a resistor (pull-up) when not in use.
- The P8_5 bit in the P8 register indicates the NMI pin value. Read the P8_5 bit only to determine the pin level after a NMI interrupt occurs.
- H" and "L" of a signal applied to the MMI pin must be over 2 CPU clock cycles + 300 ns wide.

27.6.3 INT Interrupt

• Edge sensitive

"H" and "L" of a signal applied to the INT0 to INT5 pins must be at least 250 ns wide, regardless of the CPU clock.

• Level sensitive

"H" and "L" of a signal applied to the INT0 to INT5 pins must be at least 1 CPU clock cycle + 200 ns wide. For example, "H" and "L" must be at least 234ns wide if XIN=30MHz with no division.

• The IR bit may change to "1" (interrupt requested) when switching the polarity of the INT0 to INT5 pins. Set the IR bit to "0" (no interrupt requested) after selecting the polarity. Figure 27.1 shows an example of the switching procedure for the INT interrupt.

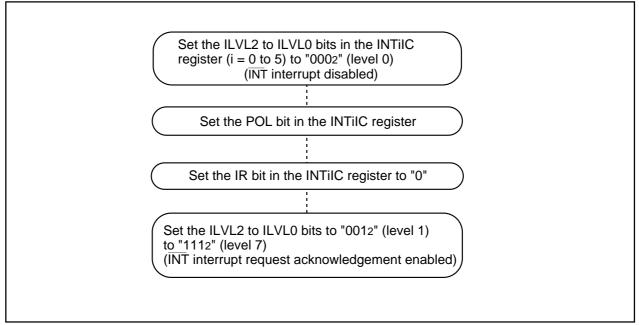


Figure 27.1 Switching Procedure for INT Interrupt

27.6.4 Watchdog Timer Interrupt

Reset the watchdog timer after a watchdog timer interrupt occurs.

27.6.5 Changing Interrupt Control Register

To change the interrupt control register while the interrupt request is disabled, follow the instructions below.

Changing Bits Except IR Bit

When an interrupt request occurs while executing an instruction, the IR bit may not be set to "1" (interrupt requested) and the interrupt may be ignored. If this is a problem, use the following instructions to change the register: AND, OR, BCLR, BSET

Changing IR bit

The IR bit may not change to "0" (no interrupt requested) depending on the instructions written. If this is a problem, use the following instruction to change the register: MOV

27.6.6 Changing IIOiIR Register (i = 0 to 11)

Use the following instructions to set bits 1 to 7 in the IIOiIR register to "0" (no interrupt requested). AND, BCLR

27.6.7 Changing RLVL Register

The DMAII bit is indeterminate after reset. When using the DMAII bit to generate an interrupt, set the interrupt control register after setting the DMACII bit to "0" (interrupt priority level 7 available for interrupts).

27.7 DMAC

- Set DMAC-associated registers while the MDi1 to MDi0 bits (i=0 to 3) in the channel to be used are set to "002" (DMA disabled). Set the MDi1 to MDi0 bits to "012" (single transfer) or "112" (repeat transfer) at the end of the setup procedure to start DMA requests.
- Do not set the DRQ bit in the DMiSL register to "0" (no request).

When a DMA request is generated but the receiving channel is not ready to receive⁽¹⁾, the DMA transfer does not occur and the DRQ bit is set to "0".

NOTES:

- 1. The MDi1 to MDi0 bits are set to "002" or the DCTi register is set to "000016" (transferred 0 times).
- To start a DMA transfer by a software trigger, set the DSR bit and DRQ bit in the DMiSL register to "1" simultaneously.

e.g.,

OR.B #0A0h,DMiSL Set the DSR and DRQ bits to "1" simultaneously.

- Do not generate a channel i DMA request when setting the MDi1 to MDi0 bits in the DMDj register (j=0,1) corresponding to channel i to "012" (single transfer) or "112" (repeat transfer), if the DCTi register of channel i is set to "1".
- Select the peripheral function which causes the DMA request after setting the DMA-associated registers. If none of the conditions above (setting INT interrupt as DMA request source) apply, do not write "1" to the DCTi register.
- Enable DMA⁽²⁾ after setting the DMiSL register (i=0 to 3) and waiting 6 BCLK cycles or more by program.

NOTES:

2. DMA is enabled when the values set in the MDi1 to MDi0 bits in the DMDj register are changed from "002" (DMA disabled) to "012" (single transfer) or "112" (repeat transfer).

27.8 Timer

27.8.1 Timers A and B

The timers stop after reset. Set the TAiS(i=0 to 4) bit or TBjS(j=0 to 5) bit in the TABSR register or TBSR register to "1" (starts counting) after setting operation mode, count source and counter.

Set the following registers and bits while the TAiS bit or TBjS bit is set to "0" (stops counting).

- TAiMR, TBjMR register
- TAi, TBj register
- UDF register
- TAZIE, TA0TGL, TA0TGH bits in the ONFS register
- TRGSR register

27.8.2 Timer A

27.8.2.1 Timer A (Timer Mode)

(a) The TAiS bit (i=0 to 4) in the TABSR register is set to "0" (stops counting) after reset. Set the TAiS bit to "1" (starts counting) after selecting operation mode and setting the TAi register.

- (b) The TAi register indicates the counter value during counting at any given time. However, the counter will read "FFFF16" when reloading. The setting value can be read after setting the TAi register while the counter is stopped and before the counter starts counting.
- (c) TA1OUT, TA2OUT and TA4OUT pins are placed in high-impedance states when an "L" signal is applied to the $\overline{\text{NMI}}$ pin while INV03 to INV02 bits in the INVC0 register are set to "112" (forced cutoff of the three-phase output by an "L" signal applied to the $\overline{\text{NMI}}$ pin)

27.8.2.2 Timer A (Event Counter Mode)

- (a) TAIS (i=0 to 4) bit in the TABSR register is set to "0" (stops counting) after reset. Set the TAIS bit to "1" (starts counting) after selecting operation mode and setting the TAI register.
- (b) The TAi register indicates the counter values during counting at any given time. However, the counter will read "FFFF16" during underflow and "000016" during overflow, when reloading. The setting value can be read after setting the TAi register while the counter is stopped and before the counter starts counting.
- (c) The TA10UT, TA20UT and TA40UT pins are placed in high-impedance states when an "L" signal is applied to the $\overline{\text{NMI}}$ pin while the INV03 to INV02 bit in the INVC0 register are set to "112" (forced cutoff of the three-phase output by an "L" signal applied to the $\overline{\text{NMI}}$ pin).

27.8.2.3 Timer A (One-shot Timer Mode)

(a) TAiS (i=0 to 4) bit in the TABSR register is set to "0" (stops counting) after reset. Set TAiS bit to "1" (starts counting) after selecting operation mode and setting the TAi register.

- (b) The followings occur when setting the TABSR register to "0" (stops counting) while counting:
 - The counter stops counting and the microcomputer reloads contents of the reload register.
 - The TAIOUT pin becomes low ("L").
 - The IR bit in the TAiIC register is set to "1" (interrupt requested) after 1 CPU clock cycle.
- (c) The output of the one-shot timer is synchronized with an internal count source. When set to an external trigger, there is a delay of 1 count source cycle maximum, from trigger input to the TAIIN pin to the one-shot timer output.

- (d) The IR bit is set to "1" when the timer operation mode is selected as follows:
 - one-shot timer mode is selected after reset.
 - timer mode is switched to one-shot timer mode.
 - event counter mode is switched to one-shot timer mode.

Therefore, set the IR bit to "0" by program when generating a timer Ai interrupt (IR bit), if the timer operation mode is selected as is described above.

- (e) When a trigger is generated while counting, the reload register reloads and continues counting after the counter has downcounted once following a re-trigger. To generate a trigger while counting, wait at least 1 count source cycle after the previous trigger has been generated and generate a re-trigger.
- (f) The TA10UT, TA20UT and TA40UT pins are placed in high-impedance states when an "L" signal is applied to the $\overline{\text{NMI}}$ pin while the INV03 to INV02 bits in the INVC0 register is set to "112" (forced cutoff of the three-phase output by an "L" signal applied to the $\overline{\text{NMI}}$ pin).
- (g) If an external trigger input is selected to start counting in timer A one-shot timer mode, do not provide another external trigger input again for 300 ns before the timer A counter value reaches "000016". One-shot timer may stop counting.

27.8.2.4 Timer A (Pulse Width Modulation Mode)

(a) TAiS(i=0 to 4) bit in the TABSR register is set to "0" (stops counting) after reset. Set TAiS bit to "1" (starts counting) after selecting an operating mode and setting the TAi register.

- (b) The IR bit is set to "1" when the timer operation mode is selected as follows:
 - PWM mode is selected after reset.
 - timer mode is switched to PWM mode.
 - event counter mode is switched to PWM mode.

Therefore, set the IR bit to "0" by program when generating a timer Ai interrupt (IR bit), if the timer operation mode is selected as is described above.

- (c) The followings occur when the TAiS bit is set to "0" (stops counting) while PWM pulse is output:
 - The counter stops counting.
 - The IR bit changes to "1" and the output level changes to low ("L") when TAiOUT pin is held high ("H").
 - The IR bit and the output level remain unchanged when TAiOUT pin is held low ("L").
- (d) The TA1OUT, TA2OUT and TA4OUT pins are placed in high-impedance states when an "L" signal is applied to the $\overline{\text{NMI}}$ pin while the INV03 to INV02 bits in the INVC0 register are set to "1" (three-phase output forced cutoff enabled).

27.8.3 Timer B

27.8.3.1 Timer B (Timer Mode, Event Counter Mode)

(a) TBiS (i=0 to 5) bit is set to "0" (stops counting) after reset. Set TBiS bit to "1" (starts counting) after selecting an operation mode and setting the TBi register.

The TB0S to TB2S bits are the bits 5 to 7 in the TABSR register. The TB3S to TB5S bits are bits 5 to 7 in the TBSR register.

(b) The TBi register indicates the counter value during counting at any given time. However, the counter will read "FFFF16" when reloading. The setting value can be read after setting the TBi register while the counter stops and before the counter starts counting.

27.8.3.2 Timer B (Pulse Period/Pulse Width Measurement Mode)

- (a) The IR bit in the TBiIC register is set to "1" (overflow) when the valid edge of a pulse to be measured is input and when the timer Bi counter overflows. The MR3 bit in the TBiMR register determines the interrupt source within an interrupt service routine.
- (b) Count overflow on a different timer if an interrupt source cannot be determined by the MR3 bit, such as when a pulse to be measured is input at the same time the timer overflows.
- (c) To set the MR3 bit in the TBiMR register to "0" (no overflow), set when the TBiS bit is set to "1" (count starts) and at least one count is counted after the MR3 bit is set to "1" (overflow).
- (d) The IR bit in the TBiIC register is used to detect overflow only. Use the MR3 bit only to determine interrupt source within an interrupt service routine.
- (e) Indeterminate values are transferred to the reload register during the first valid edge input following the start of the count. Timer B interrupt request is not acknowledged at this time.
- (f) The counter value is indeterminate at the start of a count. Therefore, the MR3 bit may change to "1" (overflow) and cause timer B interrupt requests to be generated, until a valid edge is input after the count begins.
- (g) The IR bit may be set to "1" (interrupt requested) if the MR1 to MR0 bits in the TBiMR register are set to a different value after a count begins. If the MR1 to MR0 bits are rewritten, but to the same value as before, the IR bit remains unchanged.
- (h) Pulse width measurement measures pulse width continuously. Use program to determine whether measurement results are high (""H") or low ("L").

27.9 Three-Phase Motor Control Timer Functions

27.9.1 Changing TAi and TAi1 (i=1, 2, 4) Registers

Do not write to the TAi and TAi1 registers at the same time timer B2 underflows. Follow the procedure below when rewriting the TAi1 register.

- (1) Write value to the TAi1 register
- (2) Wait 1 timer Ai count source cycle
- (3) Write the same value to the TAi1 register again

27.10 Serial I/O

27.10.1 Clock Synchronous Serial I/O Mode

27.10.1.1 Transmission / Reception

When the $\overline{\text{RTS}}$ function is used while an external clock is selected, the output level of the $\overline{\text{RTSi}}$ pin is held low ("L") indicating that the microcomputer is ready for reception. The transmitting microcomputer is notified that reception is possible. The output level of the $\overline{\text{RTSi}}$ pin becomes high ("H") when reception begins. Therefore, connecting the $\overline{\text{RTSi}}$ pin to the $\overline{\text{CTSi}}$ pin of the transmitting microcomputer synchronizes transmission and reception. The $\overline{\text{RTS}}$ function is disabled if an internal clock is selected.

The RTS2 pin and CLK2 pin are placed in high-impedance states when an "L" signal is applied to the NMI pin while the INV02 to INV01 bits in the INVC0 register are set to "112" (forced cutoff of the three-phase output by low-level signal ("L") applied to NMI pin).

27.10.1.2 Transmission

When an external clock is selected while the CKPOL bit in the UiC0 register is set to "0" (data is transmitted on the falling edge of the transfer clock and received on the rising edge) and the external clock is held high ("H") or when the CKPOL bit is set to "1" (data is transmitted on the rising edge of the transfer clock and received on the falling edge) and the external clock is held low ("L"), meet the following conditions:

- Set the TE bit in the UiC1 register to "1" (transmit enabled)
- Set the TI bit in the UiC1 register to "0" (data in the UiBT register)
- Apply "L" signal to the $\overline{\text{CTSi}}$ pin if the $\overline{\text{CTS}}$ function is selected

27.10.1.3 Reception

Activating the transmitter in clock synchronous serial I/O mode generates the shift clock. Therefore, set for transmission even if the microcomputer is used for reception only. Dummy data is output from the TxDi pin while receiving.

If an internal clock is selected, the shift clock is generated when the TE bit in the UiC1(i=0 to 2) registers is set to "1" (receive enable) and dummy data is set in the UiTB register. If an external clock is selected, the shift clock is generated when the external clock is input into CLKi pin while the TE bit is set to "1" (receive enable) and dummy data is set in the UiTB register.

When receiving data consecutively while the RE bit in the UiC1(i=0 to 2) register is set to "1" (data in the UiRB register) and the next data is received by the UARTi reception register, an overrun error occurs and the OER bit in the UiRB register becomes "1" (overrun error). In this case, the UiRB register is indeterminate. When overrun error occurs, program both reception and transmission registers to retransmit earlier data. The IR bit in the SiRIC does not change when an overrun error occurs.

When receiving data consecutively, feed dummy data to the low-order byte in the UiTB register every time a reception is made.

When an external clock is selected while the CKPOL bit in the UiC0 register is set to "0" (data is transmitted on the falling edge of the transfer clock and received on the rising edge) and the external clock is held high ("H") or when the CKPOL bit is set to "1" (data is transmitted on the rising edge of the transfer clock and received on the falling edge) and the external clock is held low ("L"), meet the following conditions:

- Set the RE bit in the UiC1 register to "1" (receive enabled)
- Set the TE bit in the UiC1 register to "1" (transmit enabled)
- Set the TI bit in the UiC1 register to "0" (data in the UiTB register)

27.10.2 UART Mode

- Set the UiERE bit in the UiC1 register after setting the UiMR register.
- The RTS₂ and CLK₂ pins will enter a high-impedance state when an "L" signal is applied to the NMI pin while the INV03 to INV02 bits in the INVC0 register are set to "112" (forced cutoff of the three-phase output by an "L" signal applied to the NMI pin).

27.10.3 Special Mode 2

The $\overline{\text{RTS}}_2$ and CLK_2 pins will enter high-impedance states when an "L" signal is applied to the $\overline{\text{NMI}}$ pin while the INV03 to INV02 bits in the INVC0 register are set to "112" (forced cutoff of the three-phase output by an "L" signal applied to the $\overline{\text{NMI}}$ pin).

27.11 A/D Converter

- Set the ADiCON0 (i=0,1) (bit 6 excluded), ADiCON1, and ADiCON2 registers while the A/D conversion is stopped (before trigger is generated).
- Wait a minimum of 1µs before starting the A/D conversion when changing the VCUT bit in the ADiCON1 register from "0" (VREF no connection) to "1" (VREF connection). Change the VCUT bit from "1" to "0" after the A/D conversion is completed.
- Insert capacitors between pins AVCC, VREF, analog input pin ANjk (j=none, 0, 2, 15; k=0 to 7) and AVss to prevent latch-ups and malfunctions due to noise and to minimize conversion errors. The same applies to pins VCC and Vss. Figure 27.2 shows the procedure.

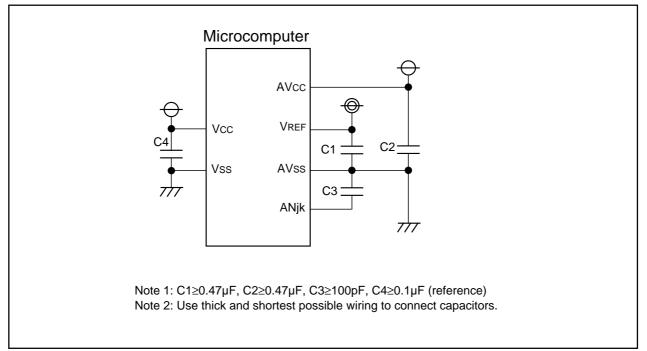


Figure 27.2 Use of Capacitors to Reduce Noise

- Set the bit in the port direction register, which corresponds to the pin being used as the analog input, to "0" (input mode). Set the bit in the port direction register, which corresponds to the ADTRG pin, to "0" (input mode) if the TRG1 to TRG0 bits in the ADICON2 register are set to "002" (ADTRG).
- When generating a key input interrupt, do not use the AN4 to AN7 pins as analog input pins (key input interrupt request is generated when the A/D input voltage becomes "L").
- When the sample and hold function is not activated, ØAD frequency must be 250kHz or more. If the sample and hold function is activated, ØAD frequency must be 1MHz or more.
- Set the CH2 to CH0 bits in the ADiCON0 register or the SCAN1 to SCAN0 bits in the ADiCON1 register to select analog input pins again when changing A/D conversion mode.

• Wrong values are stored in the ADij register (i=0,1; j=0 to 7) if the CPU reads the ADij register while the ADij register is storing results from a completed A/D conversion. This occurs when the CPU clock is set to a divided main clock or a sub clock.

In one-shot mode or single sweep mode, read the corresponding ADij register after verifying that the A/ D conversion has been completed. The IR bit in the ADiIC register can determine the completion of the A/D conversion.

In repeat mode, repeat sweep mode 0 and repeat sweep mode 1, use an undivided main clock as the CPU clock.

• Conversion results of the A/Di is indeterminate if the ADST bit in the ADiCON0 register (i=0,1) is set to "0" (A/D conversion stopped) and the conversion is forcibly terminated by program. The ADij register (j=0 to 7) not performing an A/D conversion may also be indeterminate.

If A/Di is forcibly terminated, do not use any values obtained from the ADij registers.

If either A/D0 or A/D1 is forcibly terminated while the ADS bit in the ADiCON2 register is set to "0" (channel replacement disabled), the other A/D converter, A/Di, will perform normally. The values of ADij registers not performing an A/D conversion remain unchanged.

27.12 Intelligent I/O

27.12.1 Register Setting

Operations controlled by the values written to the GiBT (i=0 to 3), GiBCR1, BTSR, GjTMCR0 to GjTMCR7 (j=0,1), GiTPR6, GiTPR7, GjTM0 to GjTM7, GiPOCR0 to GiPOCR7, GiPO0 to GiPO7, G3MK4 to G3MK7, GjFS, GiFE, G2RTP, and G3RTP registers are affected by the count source (fBTi) set in the BCK1 to BCK0 bits in the GiBCR0 register.

Set the BCK1 to BCK0 bits before setting the GiBT, GiBCR1, BTSR, GjTMCR0 to GjTMCR7, GiTPR6, GiTPR7, GjTM0 to GjTM7, GiPOCR0 to GiPOCR7, GiPO0 to GiPO7, G3MK4 to G3MK7, GjFS, GiFE, G2RTP, and G3RTP registers.

Operations controlled by the values written to the GjRI, GjTO, GiCR, GiRB, GiMR, GjEMR, GjETC, GjERC, GjIRF, GiTB, GjCMP0 to GjCMP3, GjMSK0, GjMSK1, GjTCRC, GjRCRC, IECR, IEAR, IETIF, IERIF, and G3FLG registers are affected by the transfer clock. Set transfer clock before setting the GjRI, GjTO, GiCR, GiRB, GiMR, GjEMR, GjETC, GjERC, GJIRF, GiTB, GJCMP0 to GJCMP3, GjMSK0,GjMSK1, GJTCRC, GJRCRC, IECR, IEAR, IETIF, IERIF, and G3FLG registers.

27.12.2 BTSR Register Setting

The BTSR register is a located in the intelligent I/O group 2. When starting the base timer using the BTiS bit in the BTSR register, set the BTiS bit to "1" (base timer starts counting) after selecting the count source for the intelligent I/O group 2. If the BTiS bit is not being used, set the BTiS bit to "0" (base timer reset) after selecting the count source for the intelligent I/O group 2.

Set only either the BTiS bit or the BTS bit in the GiBCR1 register to "1" when starting the base timer. If both BTiS bit and the BTS bit are set to "0", both bits must be set "0" when stopping the base timer.

27.13 Programmable I/O Port

Because ports P72 to P75, P80, and P81 have the three-phase PWM output forced cutoff function, they are affected by the three-phase motor control timer function and the $\overline{\text{NMI}}$ pin when these ports are set for output functions (port output, timer output, three-phase PWM output, serial I/O output, intelligent I/O output). Table 27.2 shows the relationship between the INVC0 register setting, the $\overline{\text{NMI}}$ pin input level and the state of output ports.

Table 27.2	INVC0	Register	and	the	NMI	Pin
------------	-------	----------	-----	-----	-----	-----

Setting Value of IN	IVC0 Register	Input Level	States of P72 to P75, P80, and P81
INV02 bit	INV03 bit	to NMI Pin	Pins (when setting an output pin)
0 (not using three-phase motor control function)	-	- Output functions selected in the PSL1, PSC, PS2, and PSL2, re	
1 (using three-phase motor control timer function	0 (three-phase PWM output disabled)	-	High-impedance
	1 (three-phase PWM output enabled) ⁽¹⁾	Н	Output functions selected in the PS1, PSL1, PSC, PS2, and PSL2, registers
		L (forcibly terminated)	High-impedance

NOTES :

1. The INV03 bit is set to "0" after an "L" signal is applied to the $\overline{\text{NMI}}$ pin.

The input threshold voltage differs with programmable I/O ports and peripheral functions. Therefore, if the level of the voltage applied to a pin shared by both programmable I/O ports and peripheral functions is not within the recommended operating condition, VIH and VIL (neither "H" nor "L"), the level determined will differ with the programmable I/O ports and peripheral functions.

27.14 Flash Memory Version

27.14.1 Differences Between Flash Memory Version and Masked ROM Version

Due to differences in internal ROM and layout pattern, flash memory version and mask ROM version have varying electrical characteristics such as attributes, performance margins, noise endurance capacity, and noise radiation. When switching to masked ROM version, administer system evaluation tests equal to those held on the flash memory version.

27.15 Noise

Connect a bypass capacitor (approx. $0.1\mu F$) between Vcc and Vss by shortest path, using thick wires.

27.16 Low Voltage Operations

The voltage down converter (VDC) is a circuit used to step down external supply voltage to the internal operation voltage of 3.3V. Disconnect the VDC when applying a 3.3V supply voltage to reduce power consumption.

Figure 27.3 shows the procedure for disconnecting the VDC.

Perform these settings immediately after reset, while the CPU clock is divided by 8. Do not set the VDC0 register (001B16) to other values. Furthermore, do not write to the VDC0 register when applying a supply voltage of 3.3V or more.

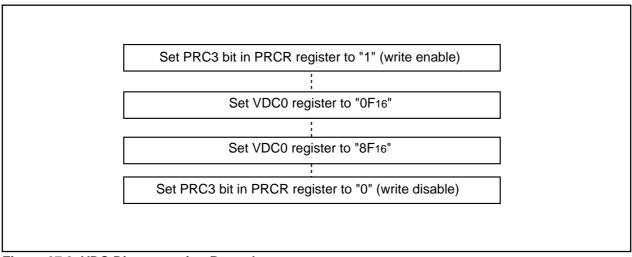
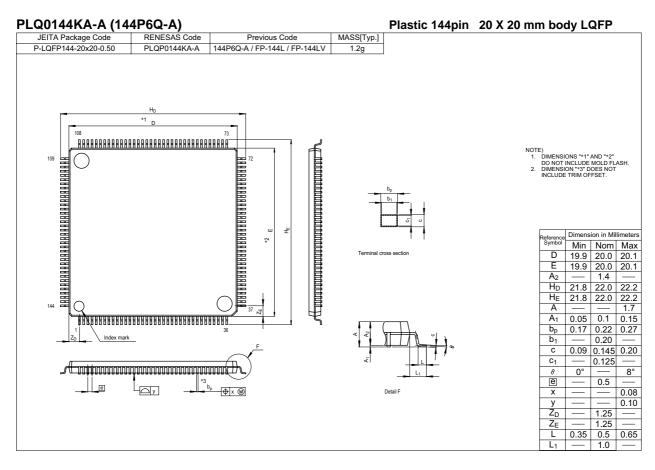
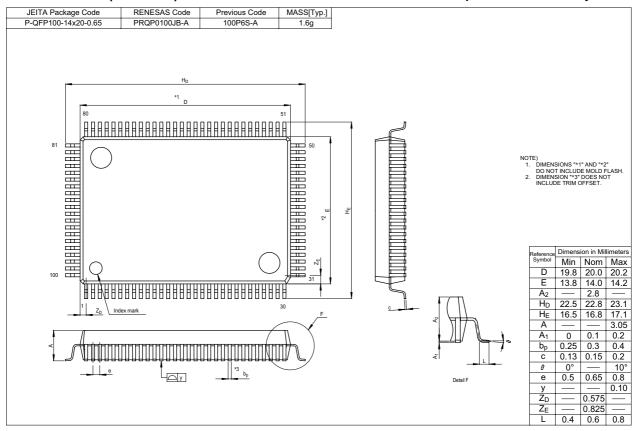
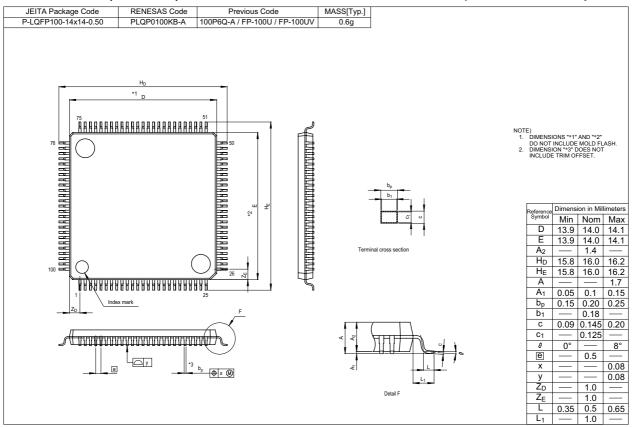



Figure 27.3 VDC Disconnection Procedure



Package Dimensions

PRQP0100JB-A (100P6S-A)


Plastic 100pin 14 X 20 mm body LQFP

RENESAS

PLQP0100KB-A (100P6Q-A)

Register Index

AD00 to AD07 230 AD0CON0 228 AD0CON1 229 AD0CON2 230 AD10 to AD17 233 AD1CON0 231 AD1CON1 232 AD1CON2 233 AIER 107

В

BTSR 257

С

COAFS 354 C0BPR 337 C0CONR 334 C0CTLR0 326 C0CTLR1 329 C0EIMKR 341 COEISTR 342 C0GMR0 343 C0GMR1 344 C0GMR2 344 C0GMR3 345 C0GMR4 345 C0IDR 333 COLMARO 343 C0LMAR1 344 C0LMAR2 344 C0LMAR3 345 C0LMAR4 345 COLMBRO 343 C0LMBR1 344 C0LMBR2 344 C0LMBR3 345 C0LMBR4 345 COMCTL0 to COMCTL15 346 COREC 337 C0SBS 349 COSIMKR 340 COSISTR 338

COSLOT0_0 350 COSLOT0 1 350 COSLOT0 2 351 COSLOT0_3 351 C0SLOT0_4 352 C0SLOT0_5 352 C0SLOT0_6 to C0SLOT0_13 353 C0SLOT0 14 353 C0SLOT0_15 353 C0SLOT1_0 350 C0SLOT1 1 350 C0SLOT1_2 351 C0SLOT1_3 351 C0SLOT1 4 352 C0SLOT1_5 352 C0SLOT1_6 to C0SLOT1_13 353 C0SLOT1_14 353 C0SLOT1_15 353 COSLPR 330 COSTR 331 C0TEC 336 C0TSR 336 CM0 67, 113 CM1 68 CM2 70 CPSRF 71 CRCD 243 **CRCIN 243**

D

DA0 to DA1 242 DACON 242 DCT0 to DCT3 119 DM0SL to DM3SL 116 DMA0 to DMA3 120 DMD0 to DMD1 117, 118 DRA0 to DRA3 120 DRAMCONT 360 DRC0 to DRC3 119 DS 52 DSA0 to DSA3 120 DTT 166

RENESAS

F

FMR0 395

G

G0BCR0 to G3BCR0 253 G0BCR1 and G1BCR1 254 G0BT to G3BT 253 G0CMP0 to G0CMP3 295 G0CR to G1CR 290 G0EMR to G1EMR 292 G0ERC to G1ERC 293 G0ETC to G1ETC 292 G0FE to G3FE 262 G0FS and G1FS 262 G0IRF to G1IRF 294 G0MR to G1MR 291 G0MSK0 to G0MSK1 295 G0PO0 TO G0PO7 261 G0POCR0 to G0POCR7 259 G0RB to G1RB 291 GORCRC to G1RCRC 295 G0RI to G1RI 289 G0TB to G1TB 294 G0TCRC to G1TCRC 295 G0TM0 to G0TM7 259 G0TMCR0 to G0TMCR7 258 G0TO to G1TO 289 G0TPR6 and G0TPR7 258 G1CMP0 to G1CMP3 295 G1MSK0 to G1MSK1 295 G1PO0 to G1PO7 261 G1POCR0 to G1POCR7 259 G1TM0 to G1TM7 259 G1TMCR0 to G1TMCR7 258 G1TPR6 and G1TPR7 258 G2BCR1 255 G2CR 307 G2MR 307 G2PO0 to G2PO7 261 G2POCR0 to G2POCR7 260 G2RB 306 G2RTP and G3RTP 263 G2TB 306 G3BCR1 256 G3CR 318 G3FLG 319

G3MK4 to G3MK7 261 G3MR 318 G3PO0 to G3PO7 261 G3POCR0 to G3POCR7 260 G3RB 317 G3TB 317 L ICTB2 167 IDB0 to IDB1 166 IEAR 308 IECR 308 **IERIF 309** IETIF 309 IFSR 105, 181 IIO0IE to IIO11IE 110 IIO0IR to IIO11IR 109 Interrupt Control 96, 97 INVC0 164 INVC1 165 IPS 383 Μ MCD 69 0 ONSF 138 Ρ P0 to P15 372 PCR 383 PD0 to PD15 371 PLC0 72 PLC1 73 PLV 72 PM0 49 PM1 50 PRCR 88 PS0 373 PS1 373 PS2 374 PS3 374 PS5 375 PS6 375

PS7

PS8 376

376

PS9 377 PSC 380 PSL0 378 PSL1 378 PSL2 379 PSL3 379 PUR0 381 PUR1 381 PUR2 381 PUR3 382 PUR4 382

R

REFCNT 360 RLVL 98, 126 RMAD0 to RMAD7 107 ROMCP 393

т

TA0 to TA4 136 TAOMR to TA4MR 137, 142, 145, 148, 150 TA1, TA2, TA4, TA11, TA21, TA41 167 TA1MR, TA2MR, TA4MR 169 TABSR 137, 153, 168 TB0 to TB5 152 TB0MR to TB5MR 153, 155, 157, 159 TB2 168 TB2MR 169 TB2SC 167 TBSR 154 TCSPR 71, 139 TRGSR 139, 168

U

U0BRG to U4BRG 175 U0C0 to U4C0 176 U0C1 to U4C1 177 U0MR to U4MR 175 U0RB to U4RB 174 U0SMR to U4SMR 177 U0SMR2 to U4SMR2 178 U0SMR3 to U4SMR3 179 U0SMR4 to U4SMR4 180 U0TB to U4TB 174 UDF 138

W

WCR 58 WDC 112 WDTS 112 Х X0R to X15R 245 XYC 245 Υ

YOR to Y15R 245

Rev.	Date		Description
		Page	Summary
1.01	2002-12	All	Full-fledged revision
			 Modify the notation system of registers and bits
		23	Reset
			 Delete the figure "Device's internal status after a reset is cleared".
		65	System Clock
			 Modify the figure "Clock Generation Circuit".
			 Add descriptions about the 'PLL clock'.
			 Modify the figure "Status Transition".
		88	Interrupt
			 Modify the figure "Intelligent I/O Interrupt and CAN Interrupt".
			 Add tables 'registers to be used and settings'.
			 Change symbols of the bits in the interrupt request register.
			 Change symbols of the bits in the interrupt enable register.
		137	Timer A
			 Modify the figure "Timer A Configuration".
			 Add tables 'registers to be used and settings'.
		154	Timer B
			 Modify the figure "Timer B Configuration".
			 Add tables 'registers to be used and settings'.
		163	Three-Phase Control Timer Function
			Change the bit name, the 'INV17bit' in the INVC1 register to reserved bit.
		174	Serial I/O
			 Modify the figure "UARTi Block Diagram".
			 Add the table 'registers to be used and settings' in each mode.
			 Add distributions about the 'clock-divided synchronous function (GCI mode)'.
			Add descriptions about the 'bus conflict detect function (IE mode)'.
		264	Intelligent I/O
			Modify the figure "Intelligent I/O Group 0 Block Diagram".
			Modify the figure "Intelligent I/O Group 1 Block Diagram".
			Modify the figure "Intelligent I/O Group 2 Block Diagram".
			Modify the figure "Intelligent I/O Group 3 Block Diagram".
			• Add the table 'registers and settings' associated with each function and mode.
			• Add a bit function of 'the BCK0 to BCK1 bit in the G0BCR0 to G3BCR0 register'.
			-Group 0 and 1
			• Add descriptions about the 'HDLC data processing mode'Group 0 and 1
			• Add distributions about the 'IEBus mode'Group2
			• Add descriptions about the '8-bit and 16-bit clock synchronous serial I/O
			function'Group3

Rev.	Date		Description
		Page	Summary
		338	A/D Convertor
			Modify the figure "A/D Convertor Block Diagram".
			Add the table 'pin settings'.
		355	D/A Convertor
			Add the table 'pin settings'.
		394	Usage Precaution
			Add descriptions about the 'PLL synthesizer'.
			Add descriptions about the 'Timer A' and 'Timer B'.
			Add descriptions about the 'Low-Voltage Operation'.
1.02	2003-1		Overview
		2-3	• Add -40 to 85°C to 'Operating ambient temperature' row in Table 1.1.1 and 1.1.2.
		3	• Delete 8-bit or 16-bit clock synchronous serial I/O:1 channel (group3) on
			'Peripheral function' row in Table 1.1.2.
			SFR
		33	• Modify 00?0 X0002 to 0000 X0002 on 'value after RESET' column on '017B16'
			row.
			System Clock
		78	• Modify 0 to 1 on 'PLC00' column and '10MHz' row in Table 1.8.2.
		78	• Modify the PLC02 to PLC0 bits and the PLC05 to PLC04 bits to the PLC0 register
			in the third step in Figure 1.8.13.
		80	Modify 1 to 0 on 'CM00' column and 'BCLK output' row in Table 1.8.5.
		447	DMAC
		117	Add the note 3 in Figure 1.11.2. Timer
		141	
		141	• Modify TA4 and TA1 to TA0 and TA2 on the TA1TGL and TA1TGH in the top figure of Table 1.14.5.
			• Modify TA4 and TA1 to TA1 and TA3 on the TA2TGL and TA2TGH in the top
			figure of Table 1.14.5.
			Modify TA4 and TA1 to TA2 and TA4 on the TA3TGL and TA3TGH in the top
			figure of Table 1.14.5.
			Modify TA4 and TA1 to TA3 and TA0 on the TA4TGL and TA4TGH in the top
			figure of Table 1.14.5.
			Serial I/O
		186	• Modify PD7_0=0 to PD7_2=0 on 'PD7 register' column and 'CLK2 input' row in
			Table 1.18.4.
		192	• Modify PD7_0=0 to PD7_2=0 on 'PD7 register' column and 'CLK2 input' row in
			Table 1.19.4.
		206	Modify a function description on 'UiRRM' row in Table 1.20.9.

Rev.	Date		Description
		Page	Summary
		207	Modify PD7_2=0 to PD7_0=0 on 'PD7 register' column and 'SRxD2 input' row in
			Table 1.20.11.
			Modify PD7_0=0 to PD7_2=0 on 'PD7 register' column and 'CLK2 input' row in
			Table 1.20.11.
		216	• Modify PS3_4=0 to PS3_5=0 on 'PS3 register' column and 'CLK4 input' row in
			Table 1.20.23.
			CAN Module
		226	Modify PSL2_2=0 to PSL2_1=0 on 'PSL1 and PSL2 registers' column and 'P82'
			row in Table 1.21.2.
			Intelligent I/O
		296	Modify Setting value of the GiPO0 register to Setting value of the GiPOk register
			as n and m on the second figure in Figure 1.22.26.
		304	• Modify RxD to ISRxD on 'IPOL' row and TxD to ISTxD on 'OPOL' row in Figure
			1.22.33.
		315	Modify IPS=1 to IPS1=1 on IPS registers column and 'P112' row in Table
			1.22.26.
		317	Modify TCRCRC to TCRCE on 'CRC' row in Table 1.22.28.
			• Delete SIOiTR and SIOiRR and add SRTiR in note 3 in Table 1.22.28.
		320	 Modify IER to OER in note 1 in the second figure of Figure 1.22.42.
		324	• Modify SIOiTR to SIO2TR and SIO5RR to SIO2RR in Table 1.22.30 and 1.22.36.
		334	Modify GiCR to G3CR in Table 1.22.41.
			DRAMC
		364	• Modify SRDF to SREF in note 3 in Figure 1.27.1.
		385	Modify IOUTC10 to OUTC10 on 'PSC_3' row in Figure 1.28.14.
		388	Modify P0 to P5 to P1 in note 1 in Table 1.28.17.
		200	Programable I/O Port
		390 391	 Modify INPC1 to INPC11 on 'PS1 register' column and 'Bit 4' row in Table 1.28.4. Modify INPC0 to INPC02 on 'PS2 register' column and 'Bit 0' row in table 1.28.5.
		393	Modify INPC0 to INPC02 on PS2 register countriand Bit 0 row in table 1.28.5. Modify ISCLK input to ISCLK0 input on 'Bit 1' row in table 1.28.12.
			Usage Precaution
		394	Modify PM0 to PM00 in "HOLD Signal"
			Modify all SP to ISP in (1) SP Setting of "Interrupts".
		398	Modify all TAi to TBi in 1. Timer Mode and Event Counter Mode of "Timer B".
		400	Modify the CAN module to the microcomputer in "Resetting CNVSS Pin with H".
			Delete a discription of 'Difference between Flash Memory version and Masked
			ROM'
			Electric Charactistics
		429	• Modify IOH=5mA to IOL=5mA on 'VOL' row and 'Mesurement Condition' column
			in Table 1.31.3.

4.40			Description
4 4 0		Page	Summary
1.10	2004-3	All Pages	Chapter numbers, section numbers, etc., added; Table and Figure numbers
			modified; Chapter sequence modified; Word Phrasing in Revision History
			changed
			Overview
		2, 3	 Tables 1.1 and 1.2 M32C/83 Group Performance
			Shortest Instruction Execution Time modified: 31.3ns(f(BCLK)=30MHz
			changed to 31.3ns(f(BCLK)=32MHz, 50ns(f(BCLK)=20MHz added;
			Performance details of Multifunction Timer, Intelligent I/O, Clock Generating
			Circuit, and Electrical Characteristics revised;
			Oscillator Stop Detect Function added;
			32MHz added to Supply Voltage and Power Consumption
			Note 3 added
		4	Figure 1.1 M32C/83 Block Diagram modified
		5	Table 1.3 M32C/83 Group Product deleted
		9, 13	• Tables 1.4 and 1.5 Pin Characteristics VREF pin changed from "analog pin"
		45 4 40	to "control pin"
		15 to 18	• Table 1.6 Pin Description SDA0 to SDA4 changed from "output" to "input";
			Descriptions of A/D-related pin functions revised
		20	Centeral Processing Unit
		20	Figure 2.1 CPU Register modified Memory
		23	• Figure 3.1 Memory Map Product deleted; Diagram modified
		25	SFR
		24 to 45	Value after reset and lisiting sequence modified
		211010	• "? : Indetermination" changed to "X : Indeterminate"
			Notation "Users cannot use any symbols with *" deleted
			Register names, symbols, and Values after RESET of addresses 001F16 to
			002516, 003016 to 003516, 005516 to 005616, 01AC16, and 01AE16 to 01BF16
			deleted
			 Notations added to PM0 and TCSPR registers
			Value after reset in the RLVL register modified
			Reset
		46	Figure 5.1 Reset Circuit modified
		47	• Figure 5.2 Reset Sequence Diagram modified; Note 1 added
		48	• 5.3 Watchdog Timer Reset added
		49	Figure 5.3 CPU Register after Reset modified
			Processor Mode
		50	6.2.2 Applying Vcc to CNVss Pin Contents added

Rev.	Date		Description
		Page	Summary
			Bus
		55	• 7.1.3.2 Multiplexed Bus revised
		60	• 7.2.4 Bus Timing revised
		64	• 7.6 RDY Signal revised
		65	• Figure 7.7 RD Signal Output Extended by RDY Signal modified
			Clock Generating Circuit
			Chapter name changed from "System Clock " to "Clock Generating Circuit"
		67	Table 8.1 Clock Generation Circuit Specifications
			Main clock clock frequency modified; "Ceramic oscillator" changed to "Ceramic
			resonator"; Reference point added to PLL Frequency Synthesizer
		68	Figure 8.1 Clock Generation Circuit revised
		69	• Figure 8.2 CM0 Register Bit 3 function changed from "Nothing is assigned" to
			"Reserved Bit"
		72	• Figure 8.5 CM2 Register CM21 bit function modified; Note 5 revised
		75	• Figure 8.8 PLC1 Register Note 3 revised; Note 4 added
		77	• 8.1.2 Sub Clock revised
		79	• Figure 8.11 Switching Procedure form On-chip Oscillator Clock to Main
			Clock modified
			• 8.1.4 PLL Clock revised
			• Table 8.2 Bit Settings to Use PLL Clock as CPU Clock Source Setting added
			for when f(XIN) is 8MHz
		80	• Figure 8.13 Procedure to Use PLL Clock as CPU Clock Source modified
		81	• 8.2 CPU Clock and BCLK revised
		84	• 8.5.2.2 Before Entering Wait Mode revised
		85	• 8.5.2.5 Entering Wait Mode added
		86	• 8.5.3 Stop Mode revised
			• 8.5.3.1 Before Entering Stop Mode revised
			• 8.5.3.3 Exiting Stop Mode revised
		87	• 8.5.3.4 Entering Stop Mode added
		88	Figure 8.15 Status Transition modified
			Interrupts
		93	• Table 10.1 Fixed Vector Table Point of reference changed
		95	• Table 10.2 Relocatable Vector Tables Reserved Space added
		99	• Figure 10.5 RLVL Register Value after reset changed; Note 3 revised; Note 4
			added
			• 10.6.2.3 RLVL2 to RLVL0 Bits revised
		103	• Figure 10.8 Interrupt Priority "Oscillation Stop Detect" added
		104	• Figure 10.9 Interrupt Priority Level Select Circuit modified
		106	• 10.8 NMI Interrupt revised

Rev.	Date		Description
		Page	Summary
		108	• "10.11 Intelligent I/O and CAN Interrupt" changed to "10.11 Intelligent I/O
			Interrupt and CAN Interrupt"
			• Precautions pertaining to Interrupts are compiled into one chapter, "27.
			Precaution"
			Watchdog Timer
		111	Contents revised
			DMAC
		115	• 12. DMAC revised
		114	• Table 12.1 DMAC Specifications CAN interrupt added to DNA Request
			Factors; Note 1 revised
			• Precautions pertaining to DMAC are compiled into one chapter, "27.
			Precaution"
			DMAC II
		125	Table 13.1 DMAC II Specifications Note 2 added
		126	• Figure 13.1 RLVL Register Values after reset modified; Note 3 revised; Note 4
			added
		129	• 13.3 Transfer Data Contents added
		130	• 13.4.2 Burst Transfer revised
			• 13.4.4 Chain Transfer revised
		132	• 13.5 Execution Time revised
			Timer
		135	• 14.1 Timer A Contents added
		140	• Table 14.1 Pin Settings for Output from TAiouT Pin (i= 0 to 4) modified
		149	• 14.1.4 Pulse Width Modulation Mode Settings changed for 16-bit PWM and
		1.50	8-bit PWM
		152	• 14.2 Timer B Contents added
		159	• Figure 14.22 TB0MR to TB5MR Registers (Pulse Period/ Pulse Width
			Measurement Mode) Values after reset modified
		4.04	Three-Phase Motor Control Timer Function
		161	• Table 15.1 Three-Phase Motor Control Timer Functions Specification
		100	modified
		162	Figure 15.1 Three-Phase Motor Control Function Block Diagram modified Figure 15.2 INVCO Register modified
		163	Figure 15.2 INVC0 Register modified Figure 15.2 INVC1 Register modified
		164 166	Figure 15.3 INVC1 Register modified Figure 15.5 ICTR2 Register TA1 TA2 TA4 TA11 TA21 and TA41 Registers
		166	• Figure 15.5 ICTB2 Register, TA1, TA2, TA4, TA11, TA21 and TA41 Registers
			and TB2SC Register Notes 2 and 3 added to ICTB2 register; Note 7 added to TAi and TAi1 registers
		168	• Figure 15.7 TAiMR Register (i=1, 2, 4) MR1 bit function modified
		100	

Rev.	Date		Description
		Page	Summary
		169	Figure 15.8 Triangular Wave Modulation Operation modified
		170	Figure 15.9 Sawtooth Wave Modulation Operation modified
			Serial I/O
		173	• Figure 16.2 U0TB to U4TB Registers and U0RB to U4RB Registers Note 3
			added to U0RB to U4RB registers
		175	• Figure 16.4 UiC0 Register Note 3 added to UFORM bit
		176	• Figure 16.5 UiC1 Register Note 2 added to UiLCH bit; Note 1 added to
			SCLKSTPB (UiERE) bit
		181	• Table 16.1 Clock Synchrnous Serial I/O Mode Specifications Explanation of
			CLK Polarity in Selectable Functions revised
		182 to 219	• Tables 16.2, 16.7, 16.12, 16.19, 16.24, and 16.34 Registers to be Used and
			Settings Points of reference deleted
		183	• Table 16.3 Pin Settings in Clock Synchronous Serial I/O Mode (1) revised
		184	 Figure 16.10 Transmit and Receive Operation modified
		188	• Table 16.7 Registers to be Used and Settings in UART Mode Function of the
			UiERE bit in the UiC1 register modified
		189	• Table 16.8 Pin Settings in UART (1) revised
		190	Figure 16.14 Transmit Operation modified
		192	Figure 16.17 Serial Data Logic Inverse modified
		195	• Table 16.12 Registers to be Used and Settings (I ² C Mode) Setting values for
			master and slave indicated separately
		196	• Table 16.13 I ² C Mode Functions "P61, P65, P72, P90, P75 Pin Functions"
			changed to "P61, P65, P72, P90, P95 Pin Functions"
		197, 198	 Tables 16.14 to 16.16 Pin Settings in I²C Mode modified
		200	16.3.4 Transfer Clock revised
		203	• Table 16.19 Registers to be Used and Settings in Special Mode 2 Functions
			of the UFORM bit in the UiC0 register and the UiRRM bit in the UiC1 register
			modified
		204	 Table 16.20 Pin Settings in Special Mode 2 (1) revised
			• Table 16.21 Pin Settings in Special Mode 2 (2) revised
			 Table 16.22 Pin Settings in Special Mode 2 (3) revised
		208	• Table 16.23 GCI Mode Specifications Explanations of Transmit/Receive Start
			Conditions revised
		210	Table 16.25 Pin Settings in GCI Mode (1) revised
			Table 16.26 Pin Settings in GCI Mode (2) revised
			Table 16.27 Pin Settings in GCI Mode (3) revised
		213	• Table 16.31 Pin Settings in IE Mode (2) revised
			• Table 16.32 Pin Settings in IE Mode (3) revised
		219	Figure 16.29 SIM Interface Operation modified

Rev.	Date		Description
		Page	Summary
		221	Figure 16.32 SIM Interface Format modified
			A/D Converter
			Sequence of content modified
		223	• Table 17.1 A/D Converter Specifications Explanaition of A/D Conversion
			Start Conditions revised; ϕ A/D frequency modified
		226, 227	• Figure 17.2 AD0CON0 Register, Figure 17.3 AD0CON1 Register ϕ A/D
			frequency modified
		229, 230	• Figure 17.5 AD1CON0 Register, Figure 17.6 AD1CON1 Register ϕ A/D
			frequency modified
		232	• Table 17.4 One-shot Mode Specifications Explanation of Start Condition
			revised
		235	• Table 17.9 Trigger Select Function Settings Table modified; Note 2 added
		237	• Figure 17.9 Analog Input Pin and External Sensor Equivalent Circuit
			Capacitance of the capacitor modified
		238 to 247	Sequence of the following Chapters have been changed: D/A Converter, CRC
			Calculation, XY Conversion
			Intelligent I/O
		248	 Figure 21.2 Intelligent I/O Group 1 Block Diagram modified
		251	• Figure 21.5 G0BT to G3BT Registers and G0BCR0 to G3BCR0 Registers
			Note 2 added to G0BT to G3BT registers, Note 3 deleted from G0BCR0 to
			G3BCR0 registers
		252	• Table 21.2 Base Timer Specifications Explanation of Counter increment/
		000	decrement mode in Selectable Function modified
		263	• Tables 21.3, 21.6, 21.8, 21.17, 21.23, 21.29, 21.31, 21.37, and 21,42
		266	Associated Register Settings Point of reference deleted Figure 21.18 Counter Increment Mode (Group 0 and 1) modified
		265	Figure 21.18 Counter Increment/Decrement Mode (Group 0 and 1) modified Figure 21.19 Counter Increment/Decrement Mode (Group 0 and 1) modified
		266	• Figure 21.20 Base Timer Operation in Two-Phase Pulse Signal Processing
		200	Mode Note 1 revised
		267	• 21.2 Time Measurement Function (Group 0 and 1) Contents added
		270	Figure 21.22 Time Measurement Function (2) modified
		271	• Figure 21.23 Prescaler Function and Gate Function Diagram modified; Note
			2 of Gate Function deleted
		272	• Table 21.7 Pin Settings for Waveform Generation Function modified
		273	Table 21.8 Waveform Generation Function Associated Register Settings
			Note 1 added
		274	• 21.3.1 Single-Phase Waveform Output Mode (Group 0 to 3) revised
			• Table 21.9 Single-Phase Waveform Output Mode Specifications revised
		275	• Figure 21.24 Single-Phase Waveform Output Mode modified

Rev.	Date		Description
		Page	Summary
		276	• Table 21.10 Phase-Delayed Waveform Output Mode Specifications revised
		277	 Figure 21.25 Phase-Delayed Waveform Output Mode modified
		278	• 21.3.3 Set/Reset Waveform Output (SR Waveform Output) Mode revised
			Table 21.11 SR Waveform Output Mode Specifications revised
		280	Figure 21.26 SR Waveform Output Mode modified
		281	• 21.3.4 Bit-Modulation PWM Output Mode revised
			Table 21.12 Bit Modulation PWM Output Mode revised
			• Figure 21.27 Bit Modulation PWM Mode Pulse numbering added
		283	• 21.3.5 Real-Time Port (RTP) Output Mode (Group 2 and 3) revised
			Table 21.14 RTP Output Mode Specifications Note 1 added
		284	 Figure 21.29 Real-Time Port Output Mode modified
		285	• 21.3.6 Parallel Real-Time Port Output Mode (Group 2 and 3) revised
			Table 21.15 Parallel RTP Output Mode Note 1 added
		286	Figure 21.31 Parallel RTP Output Mode modified
		290	• Figure 21.35 G0EMR to G1EMR Registers and G0ETC to G1ETC Registers
			Note 1 added
		291	 Figure 21.36 G0ERC to G1ERC Registers Note 1 added
		292	• Figure 21.37 G0IRF to G1IRF Registers and G0TB to G1TB Registers Notes
			1 and 2 in G0IRF to G1IRF registers revised; Note 1 added to G0TB to G1TB registers
		293	• Figure 21. 38 G0CMP0 to G0CMP3 Registers, G1CMP0 to G1CMP3 Registers, G0MSK0 to G0MSK1 Registers, G1MSK0 to G1MSK1 Registers, G0TCRC to G1TCRC Registers, and G0RCRC to G1RCRC Registers Note 1 revised and Note 2 added to G0TCRC to G1TCRC registers; Note 3 in G0RCRC to G1RCRC registers revised
		294	• Table 21.16 Clock Synchronous Serial I/O Mode Specifications (Group 0 and 1) Explanation of transfer clock revised
		297	• Table 21.22 UART Mode Specifications (Group 0 and 1) Explanation of transfer clock and Note 2 revised
		301	• Table 21.28 HDLC Processing Mode Specifications (Group 0 and 1) Explanation of transfer clock revised
		308	Table 21.30 Variable Clock Synchronous Serial I/O Mode Specifications (Group 2) Explanation of transfer clock revised
		312	• Table 21.36 IE Bus Mode Specification Explanation of transfer clock revised
		318	 Table 21.41 Clock Synchronous Serial I/O Mode (Group 3) Explanation of transfer clock revised
			CAN
		322	Bit symbols of each register are now capitalized (e.g. Reset0 is changed to RESET0)

Rev.	Date		Description
_		Page	Summary
		325	• 22.1.1.3 BASICCAN Bit revised
		344	• 22.1.16 CANi Message Slotj Control Register (CiMCTLj Register) (i=0, 1;
			j=0 to 15) Funtion of the INVALDATA/TRMACTIVE bit when set to "1" changed
			to "Transmits"; Note 4 in REMACTIVE deleted; RW modified to RO
			• Table 22.4 C0MCTLi Register (i=0 to 15) Setting and Transmit/Receive
			Mode Hyphens (-) changed to "0"
		345	• 22.1.16.4 REMACTIVE Bit revised
		346	• 22.1.16.5 RSPLOCK Bit revised
			Programmable I/O Port
		364	• 24.4 Function Select Register Bk (PSLk Register) (k=0 to 3) revised
		365	• 24.5 Function Select Register C (PSC Register) revised
			• 24.7 Port Control Register (PCR Register) revised
		367	• Figure 24.2 Programmable I/O Ports (2) modified
		369	Figure 24.5 PD0 to PD15 Registers Note 4 added
		371	• Figure 24.7 PS0 Register and PS1 Register PS0 register revised
		372	• Figure 24.8 PS2 Register and PS3 Register PS3 register revised
		376	• Figure 24.12 PSL0 Register and PSL1 Register Note 1 added to PSL1
			register
		377	• Figure 24.13 PSL2 Register and PSL3 Register PSL3 register revised
		378	Figure 24.14 PSC Register revised
		379	• Figure 24.15 PUR0 Register, PUR1 Register and PUR2 Register Note 1
			revised
		383	• Table 24.3 Port P6 Peripheral Function Output Control Bits 3 and 7
			modified
			• Table 24.4 Port P7 Peripheral Function Output Control Note 1 added to
			PSC register; Bit 0 modified
		384	• Table 24.6 Port P9 Peripheral Function Output Control Bit 2 and 6 modified
			Flash Memory Version
		387	• Table 25.1 Flash Memory Version Specifications Supply voltage modified
		389	• 25.2.1 ROM Code Protect Function revised
			• 25.2.2 ID Code Check Function revised
		393	• 25.3.1.3 FMR02 Bit revised
		395	• 25.3.3 Data Protect Function revised
		397	• 25.3.5.3 Clear status Register revised
		405	• 25.3.7.8 Rewriting the User ROM Area
		406	• 25.4.2 ID Code Check Function revised
		412	• 25.5.2 ROM Code Protect Function revised

Rev.	Date		Description
	Dato	Page	Summary
			Electrical Characteristics
		413	Table 26.1 Absolute Maximum Ratings VREF, XIN P70 and P71 deleted and
			XOUT added to Output Voltage
		414	• Table 26.2 Recommended Operation Conditions (Vcc= 3.0V to 5.5V at
			Topr= -20 to 85°C) Maximum value of 50MHz added to f(XCIN) Sub Clock
			Oscillation Frequency
		416	• Table 26.4 A/D Conversion Characteristics ϕ AD frequency modified
		416, 434	• Tables 26.6 Flash Memory Version Electrical Characteristics added
			Precautions
		450 to 472	
1.20	2004-6	All pages	Words standardized: On-chip oscillator, A/D converter and D/A converter
			Interrupts
		111	Figure 10.15 IIO0IE to IIO11IE Registers Note 2 added
			Watchdog Timer
		112	 Figure 11.1 Watchdog Timer Block Diagram modified
			Electrical Characteristics
		432	• Figure 26.8 Vcc=5V Timing Diagram (7) Figure modified
		449	• Figure 26.16 Vcc=3.3V Timing Diagram (7) Figure modified
1.31	2006-1	All Pages	M32C/83T version added; Package code changed: 144P6Q-A to PLQP0144KA-
			A, 100P6Q-A to PLQP0100KB-A, 100P6S-A to PRQP0100JB-A
		All Pages	Word standardized: Clock Generation Circuit , On-chip Oscillator, A/D Converter,
			D/A Converter, XY Conversion, Low -power consumption
			Overview
		1	• 1.1 Applications Automobile added
		2, 3	 Tables 1.1 and 1.2 M32C/83 Group (M32C/83, M32C/83T) Performance
		5	• Table 1.3 M32C/83 Group (1) (M32C/83) Information updated
			• Table 1.3 M32C/83 Group (2) (M32C/83T) M32C/83T product information
			added
			• Figure 1.2 Product Numbering System Classification modified
			• Table 1.4 Pin Characteristics for 144-Pin Package Note 1 added
			• Table 1.5 Pin Characteristics for 100-Pin Package Note 1 added
			Table 1.6 Pin Description modified, notes added
			Memory
		21	• Figure 3.1 Memory Map modified; Note 2 modified, notes 3 and 4 added
			Special Function Registers (SFR)
		22 to 23	Note 2 added
			Reset
		45	Figure 5.2 Reset Sequence Note 2 added

Rev.	Date		Description
Rev.	Dale	Page	Summary
		. 490	Processor Mode
		48	Chapter Note added
		49	• Figure 6.1 PM0 Register Note 9 added
		-15 50	• Figure 6.2 PM1 Register Note 6 added
			Bus
		52	Chapter note added
		02	• Figure 7.1 DS Register Note 2 added
		54	Table 7.2 Processor Mode and Port Function Note 3 modified
		58	• Table 7.3 WCR Register Note 3 added
			Clock Generation Circuit
		67	• Figure 8.2 CM0 Register Function of the CM07 bit modified
		68	• Figure 8.3 CM1 Register Note mark position changed
		71	• Figure 8.6 TCSPR and CPSRF Register Note 2 added for TCSPR register
		74	• Figure 8.9 Main Clock Circuit Connection modified
		75	Figure 8.10 Sub Clock Connection Circuit modified
		76	• 8.1.3.2 How to Use Oscillation Stop Detect Function partially modified
		78	• Figure 8.12 External Circuit with PLL Frequency Synthesizer modified
		80	Table 8.5 BLCK/CLKOUT Pin in Memory Expansion Mode and
			Microprocessor Mode Note 4 added
		81	• 8.5.1 Normal Operation Mode Description partially modified
		82	• 8.5.2 Wait Mode modified
		83	Table 8.6 Pin States in Wait Mode Note 2 added
		84-85	• 8.5.3 Stop Mode modified
		85	Table 8.8 Pin Status in Stop Mode Note 2 added
		86	• Figure 8.14 Status Transition in Wait Mode and Stop Mode The mode
			between stop mode and low-speed mode, low-power consumption mode
			changed; Note 2 deleted
			Interrupts
		97	• Figure 10.4 Interrupt Control Register (2) Note mark position changed
		98	• Figure 10.5 RLVL Register Note 3 modified
		109	• Figure 10.14 IIO0IR to IIO11IR Registers partially modified
		110	Figure 10.15 IIO0IE to IIO11IE Registers partially modified
			Watchdog Timer
		113	• Figure 11.3 CM0 Register Function of the CM07 bit modified
			DMAC
		115	• Table 12.1 DMAC Specifications Specification of DMA Transfer Cycles
			partially modified
		119	• Figure 12.4 DCT0 to DCT3 Registers Notes 3 and 4 modified; DRC0 to DRC3
			Registers Notes 2 and 4 modified

Rev.	Date		Description
		Page	Summary
		120	• Figure 12.5 DMA0 to DMA Registers Notes 3 and 4 modified; DSA0 to DSA3
			Registers Notes 3 and 4 modified
			DMACII
		126	Figure 13.1 RLVL Register Note 3 modified
		140	• 13.4.2 Burst Transfer partially added
			Timer
		139	Figure 14.7 TCSPR Register Note 2 added
		141-156	• Table 14.4 Specification in Event Counter Mode (when not processing two -
			phase pulse signal) to Table 14.7 Specifications in Pulse Width Modulation
			Mode; Table 14.9 Specifiations in Timer Mode and Table 14.10
			Specifications in Event Counter Mode Condition for "Write to Timer" modified
			Serial I/O
		173	• Figure 16.1 UARTi Block Diagram modified between transmit control circuit
			and CTSi/RTSi pins
		175	• Figure 16.3 U0BRG to U4BRG Registers Note 3 added
		176	Figure 16.4 U0C0 to U4C0 Registers Note 4 added
		177	• Figure 16.5 U0C1 to U4C1 Register and U0SMR to U4SMR Registers
			RI bit revised
		191	Figure 16.14 Transmit Operation Timing modified
		192	• 16.2.1 Bit Rate added
		204	• Table 16.19 Special Mode 2 Specifications Transmit Start Condition modified;
			Specification for Error Detection partially added
		221	Figure 16.29 SIM Interface Operation Timing modified
		005	A/D Converter
		225	Table 17.1 A/D Converter Specifications Note 3 added
		040	D/A Converter
		242	Figure 18.3 D/A Converter Equivalent Circuit modified
		250	Intelligent I/O • Figure 21.2 Intelligent I/O Group 1 Block Diagram modified
		250	• Table 21.7 Pin Settings for Waveform Generation Function PSL3 register
		217,213	added
		296	Table 21.16 Clock Synchronous Serial I/O Mode Specifications (Groups 0
			and 1) Specification for interrupt request modified
		297	• Table 21.19 Pin Settings (2) Bit and Setting modified for the PD8 register
		299	• Table 21.22 UART Mode Specifications Specification for interrupt request
			modified
		304	• Table 21.28 HDLC Processing Mode Specifications Specification for interrupt
			request modified
		1	

Rev.	Date	Description	
		Page	Summary
		314	• Table 21.36 IEBus Mode Specifications Specification for interrupt request
			modified
		315	• Table 21.37 Registers to be Used and Settings Description for the IPOL bit in
			the G2CR register is modified
			Programmable I/O Ports
		369	• Figure 24.2 Programmable I/O Ports (2) Figure modified
		384	• Table 24.1 Unassigned Pin Settings in Single-chip Mode Notes 2, 3, 4, and 6
			added
			• Table 24.2 Unassigned Pin Settings in Memory Expansion Mode and
			Microprocessor Mode Notes 2, 3, 4, and 6 added
		385	Figure 24.19 Unassigned Pin Handling Note 2 added
		387	• Table 24.7 Port P10 Peripheral Function Output Control Title modified
			Flash Memory Version
		393	Figure 25.2 ROMCP Register Note 4 added
			Electrical Characteristics
		453-461	• 26.2 Electrical Characteristics (M32C/83T) Newly added
		418	• Table 26.3 Electrical Characteristics Minimum standard values for VOH
			revised, values for ICC when f(XIN)=32 MHz, square wave, no division revised,
			one condition of "f(XIN)=32 MHz, square wave, no division" deleted
		426	• Table 26.23 Memory Expansion Mode and Microprocessor Mode Symbols
			for Row Address Output Delay Time and for Row Address Output Hold Time
		424	(BCLK standard) modified
		434 436	 Figure 26.8 Vcc=5 V Timing Diagram (7) Timing for NMI input added Table 26.24 Electrical Characteristics Minimum standard value for VOH
		430	revised
		444	• Table 26.44 Memory Expansion Mode and Microprocessor Mode Symbols
			for Row Address Output Delay Time and for Row Address Output Hold Time
			(BCLK standard) modified
		451	• Figure 26.8 Vcc=3.3 V Timing Diagram (7) Timing for NMI input added
		453-461	• 26.2 Electrical Characteristics (M32C/83T) Newly added
			Precautions
		476	• 27.4.3 Wait Mode modified
			• 27.4.4 Stop Mode modified
		472	27.8.2.3 Timer A (One-shot Timer Mode) Information (g) newly added

RENESAS 16/32-BIT SINGLE-CHIP MICROCOMPUTER HARDWARE MANUAL M32C/83 Group (M32C/83, M32C/83T) Publication Data: Rev.1.01 Dec. 2002 Rev.1.31 Jan. 31, 2006 Published by: Sales Strategic Planning Div. Renesas Technology Corp.

© 2006. Renesas Technology Corp., All rights reserved. Printed in Japan.

M32C/83 Group (M32C/83, M32C/83T) Hardware Manual

RenesasTechnologyCorp. 2-6-2, Ote-machi, Chiyoda-ku, Tokyo, 100-0004, Japan