

# 16/32

ardware

Manu

# M32C/84 Group (M32C/84, M32C/84T) Hardware Manual

# **RENESAS 16/32-BIT SINGLE-CHIP MICROCOMPUTER** M16C FAMILY / M32C/80 SERIES

Before using this material, please visit our website to verify that this is the most current document available.

Rev. 1.01 Revision Date: Jul. 07, 2005 RenesasTechnology www.renesas.com

#### Keep safety first in your circuit designs!

 Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

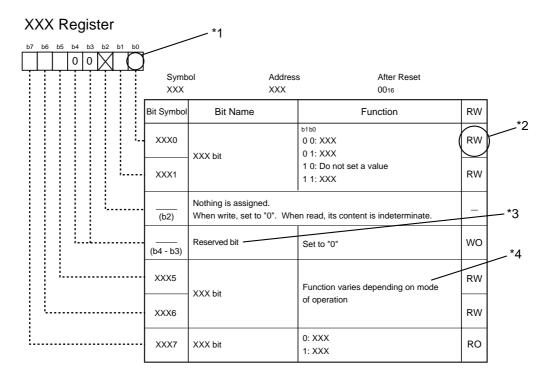
#### Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
  - Any diversion or reexport contrary to the export control laws and regulations of Japan and/ or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.


# How to Use This Manual

#### 1. Introduction

This hardware manual provides detailed information on the M32C/84 group (M32C/84, M32C/84T) microcomputers. Users are expected to have basic knowledge of electric circuits, logical circuits and microcomputers.

#### 2. Register Diagram

The symbols, and descriptions, used for bit function in each register are shown below.



\*1

Blank: Set to "0" or "1" according to the application

- 0: Set to "0"
- 1: Set to "1"
- X: Nothing is assigned

\*2

- RW: Read and write
- RO: Read only
- WO: Write only
- -: Nothing is assigned

\*3

Reserved bit

Reserved bit. Set to specified value.

\*4

Nothing is assigned

Nothing is assigned to the bit concerned. As the bit may be use for future functions, set to "0" when writing to this bit.

- Do not set a value
  - The operation is not guaranteed when a value is set.
- Function varies depending on mode of operation Bit function varies depending on peripheral function mode. Refer to respective register for each mode.

# **Table of Contents**

| Quick Reference by Address                                    | B-1 |
|---------------------------------------------------------------|-----|
| 1. Overview                                                   | 1   |
| 1.1 Applications                                              |     |
| 1.2 Performance Overview                                      |     |
| 1.3 Block Diagram                                             | 4   |
| 1.4 Product Information                                       | 5   |
| 1.5 Pin Assignments and Descriptions                          | 7   |
| 1.6 Pin Description                                           | 15  |
| 2. Central Processing Unit (CPU)                              | 19  |
| 2.1 General Registers                                         | 20  |
| 2.1.1 Data Registers (R0, R1, R2 and R3)                      |     |
| 2.1.2 Address Registers (A0 and A1)                           |     |
| 2.1.3 Static Base Register (SB)                               |     |
| 2.1.4 Frame Base Register (FB)                                |     |
| 2.1.5 Program Counter (PC)                                    |     |
| 2.1.6 Interrupt Table Register (INTB)                         |     |
| 2.1.7 User Stack Pointer (USP), Interrupt Stack Pointer (ISP) |     |
| 2.1.8 Flag Register (FLG)                                     |     |
| 2.2 High-Speed Interrupt Registers                            |     |
| 2.3 DMAC-Associated Registers                                 |     |
| 3. Memory                                                     | 22  |
| 4. Special Function Registers (SFR)                           | 23  |
| 5. Reset                                                      | 43  |
| 5.1 Hardware Reset 1                                          |     |
| 5.1.1 Reset on a Stable Supply Voltage                        |     |
| 5.1.2 Power-on Reset                                          |     |
| 5.2 Low Voltage Detection Reset (Hardware Reset 2)            | 45  |
| 5.3 Software Reset                                            |     |
| 5.4 Watchdog Timer Reset                                      |     |
| 5.5 Internal Space                                            |     |
| 6. Voltage Detection Circuit                                  | 48  |
| 6.1 Low Voltage Detection Interrupt                           | 52  |
| 6.1.1 Limitations on Exiting Stop/Wait Mode                   | 54  |
| 6.2 Cold Start-up / Warm Start-up Determine Function          | 54  |

| 7. | Processor Mode                                          | _ 55 |
|----|---------------------------------------------------------|------|
|    | 7.1 Types of Processor Mode                             | 55   |
|    | 7.2 Setting of Processor Mode                           |      |
| 8. | Bus                                                     |      |
|    | 8.1 Bus Settings                                        |      |
|    | 8.1.1 Selecting External Address Bus                    |      |
|    | 8.1.2 Selecting External Data Bus                       |      |
|    | 8.1.3 Selecting Separate/Multiplexed Bus                |      |
|    | 8.2 Bus Control                                         |      |
|    | 8.2.1 Address Bus and Data Bus                          | 63   |
|    | 8.2.2 Chip-Select Signal                                | 63   |
|    | 8.2.3 Read and Write Signals                            | 65   |
|    | 8.2.4 Bus Timing                                        |      |
|    | 8.2.5 ALE Signal                                        |      |
|    | 8.2.6 RDY Signal                                        |      |
|    | 8.2.7 HOLD Signal                                       | 76   |
|    | 8.2.8 External Bus Status when Accessing Internal Space | 76   |
|    | 8.2.9 BCLK Output                                       |      |
|    | 8.3 Page Mode Control Function                          | 77   |
| 9. | Clock Generation Circuit                                | 81   |
|    | 9.1 Types of the Clock Generation Circuit               |      |
|    | 9.1.1 Main Clock                                        |      |
|    | 9.1.2 Sub Clock                                         | 91   |
|    | 9.1.3 On-Chip Oscillator Clock                          | 92   |
|    | 9.1.4 PLL Clock                                         |      |
|    | 9.2 CPU Clock and BCLK                                  | 95   |
|    | 9.3 Peripheral Function Clock                           | 95   |
|    | 9.3.1 f1, f8, f32 and f2n                               | 95   |
|    | 9.3.2 fad                                               | 95   |
|    | 9.3.3 fC32                                              |      |
|    | 9.3.4 fcan                                              |      |
|    | 9.4 Clock Output Function                               | 96   |
|    | 9.5 Power Consumption Control                           |      |
|    | 9.5.1 Normal Operating Mode                             | 97   |
|    | 9.5.2 Wait Mode                                         | 98   |
|    | 9.5.3 Stop Mode                                         | 100  |
|    | 9.6 System Clock Protect Function                       | 105  |

| 10. | Protection                                               | 106 |
|-----|----------------------------------------------------------|-----|
| 11. | Interrupts                                               | 107 |
|     | 1.1 Types of Interrupts                                  |     |
| 11  | 1.2 Software Interrupts                                  |     |
|     | 11.2.1 Undefined Instruction Interrupt                   |     |
|     | 11.2.2 Overflow Interrupt                                |     |
|     | 11.2.3 BRK Interrupt                                     |     |
|     | 11.2.4 BRK2 Interrupt                                    |     |
|     | 11.2.5 INT Instruction Interrupt                         |     |
| 11  | 1.3 Hardware Interrupts                                  |     |
|     | 11.3.1 Special Interrupts                                |     |
|     | 11.3.2 Peripheral Function Interrupt                     |     |
| 1′  | 1.4 High-Speed Interrupt                                 | 110 |
| 1′  | 1.5 Interrupts and Interrupt Vectors                     | 110 |
|     | 11.5.1 Fixed Vector Tables                               | 111 |
|     | 11.5.2 Relocatable Vector Tables                         | 111 |
| 11  | 1.6 Interrupt Request Acknowledgement                    |     |
|     | 11.6.1 I Flag and IPL                                    | 114 |
|     | 11.6.2 Interrupt Control Register and RLVL Register      | 114 |
|     | 11.6.3 Interrupt Sequence                                |     |
|     | 11.6.4 Interrupt Response Time                           | 119 |
|     | 11.6.5 IPL Change when Interrupt Request is Acknowledged | 120 |
|     | 11.6.6 Saving a Register                                 |     |
|     | 11.6.7 Restoration from Interrupt Routine                |     |
|     | 11.6.8 Interrupt Priority                                |     |
|     | 11.6.9 Interrupt Priority Level Select Circuit           |     |
| 11  | 1.7 INT Interrupt                                        |     |
| 1′  | 1.8 NMI Interrupt(1)                                     |     |
| 1′  | 1.9 Key Input Interrupt                                  |     |
| 11  | 1.10 Address Match Interrupt                             |     |
| 1′  | 1.11 Intelligent I/O Interrupt and CAN Interrupt         |     |
| 12. | Watchdog Timer                                           | 131 |
| 12  | 2.1 Count Source Protection Mode                         |     |

| 13. DMAC                                                      | 135 |
|---------------------------------------------------------------|-----|
| 13.1 Transfer Cycle                                           |     |
| 13.1.1 Effect of Source and Destination Addresses             |     |
| 13.1.2 Effect of the DS Register                              |     |
| 13.1.3 Effect of Software Wait State                          |     |
| 13.1.4 Effect of RDY Signal                                   |     |
| 13.2 DMAC Transfer Cycle                                      |     |
| 13.3 Channel Priority and DMA Transfer Timing                 |     |
| 14. DMAC II                                                   | 146 |
| 14.1 DMAC II Settings                                         |     |
| 14.1.1 RLVL Register                                          |     |
| 14.1.2 DMAC II Index                                          |     |
| 14.1.3 Interrupt Control Register for the Peripheral Function | 150 |
| 14.1.4 Relocatable Vector Table for the Peripheral Function   |     |
| 14.1.5 IRLT Bit in the IIOiIE Register (i=0 to 4, 8 to 11)    | 150 |
| 14.2 DMAC II Performance                                      |     |
| 14.3 Transfer Data                                            |     |
| 14.3.1 Memory-to-memory Transfer                              | 150 |
| 14.3.2 Immediate Data Transfer                                |     |
| 14.3.3 Calculation Transfer                                   |     |
| 14.4 Transfer Modes                                           |     |
| 14.4.1 Single Transfer                                        |     |
| 14.4.2 Burst Transfer                                         |     |
| 14.5 Multiple Transfer                                        |     |
| 14.6 Chained Transfer                                         |     |
| 14.7 End-of-Transfer Interrupt                                |     |
| 14.8 Execution Time                                           | 153 |
| 15. Timer                                                     | 154 |
| 15.1 Timer A                                                  | 156 |
| 15.1.1 Timer Mode                                             |     |
| 15.1.2 Event Counter Mode                                     |     |
| 15.1.3 One-Shot Timer Mode                                    |     |
| 15.1.4 Pulse Width Modulation Mode                            | 170 |
| 15.2 Timer B                                                  | 173 |
| 15.2.1 Timer Mode                                             | 176 |
| 15.2.2 Event Counter Mode                                     | 177 |
| 15.2.3 Pulse Period/Pulse Width Measurement Mode              | 179 |

| 16. | Three-Phase Motor Control Timer Functions _         | 182 |
|-----|-----------------------------------------------------|-----|
| 17. | Serial I/O                                          | 193 |
| 17  | 7.1 Clock Synchronous Serial I/O Mode               |     |
|     | 17.1.1 Selecting CLK Polarity Selecting             |     |
|     | 17.1.2 Selecting LSB First or MSB First             |     |
|     | 17.1.3 Continuous Receive Mode                      |     |
|     | 17.1.4 Serial Data Logic Inverse                    | 208 |
| 17  | 2.2 Clock Asynchronous Serial I/O (UART) Mode       | 209 |
|     | 17.2.1 Transfer Speed                               | 213 |
|     | 17.2.2 Selecting LSB First or MSB First             | 214 |
|     | 17.2.3 Serial Data Logic Inverse                    |     |
|     | 17.2.4 TxD and RxD I/O Polarity Inverse             |     |
| 17  | 7.3 Special Mode 1 (I <sup>2</sup> C Mode)          |     |
|     | 17.3.1 Detecting Start Condition and Stop Condition | 222 |
|     | 17.3.2 Start Condition or Stop Condition Output     | 222 |
|     | 17.3.3 Arbitration                                  |     |
|     | 17.3.4 Transfer Clock                               |     |
|     | 17.3.5 SDA Output                                   |     |
|     | 17.3.6 SDA Input                                    | 225 |
|     | 17.3.7 ACK, NACK                                    | 225 |
|     | 17.3.8 Transmit and Receive Reset                   | 225 |
| 17  | 7.4 Special Mode 2                                  |     |
|     | 17.4.1 SSi Input Pin Function (i=0 to 4)            | 229 |
|     | 17.4.2 Clock Phase Setting Function                 | 230 |
| 17  | 7.5 Special Mode 3 (GCI Mode)                       |     |
| 17  | 7.6 Special Mode 4 (IE Mode)                        |     |
| 17  | 7.7 Special Mode 5 (SIM Mode)                       | 240 |
|     | 17.7.1 Parity Error Signal                          | 244 |
|     | 17.7.2 Format                                       | 245 |
| 18. | A/D Converter                                       | 246 |
| 18  | 3.1 Mode Description                                |     |
|     | 18.1.1 One-shot Mode                                |     |
|     | 18.1.2 Repeat Mode                                  |     |
|     | 18.1.3 Single Sweep Mode                            | 256 |
|     | 18.1.4 Repeat Sweep Mode 0                          | 257 |
|     | 18.1.5 Repeat Sweep Mode 1                          | 258 |
|     | 18.1.6 Multi-Port Single Sweep Mode                 |     |
|     | 18.1.7 Multi-Port Repeat Sweep Mode 0               |     |

| 18  | 8.2 Functions                                                         |           |
|-----|-----------------------------------------------------------------------|-----------|
|     | 18.2.1 Resolution Select Function                                     |           |
|     | 18.2.2 Sample and Hold Function                                       |           |
|     | 18.2.3 Trigger Select Function                                        |           |
|     | 18.2.4 DMAC Operating Mode                                            |           |
|     | 18.2.5 Extended Analog Input Pins                                     |           |
|     | 18.2.6 External Operating Amplifier (Op-Amp) Connection Mode          |           |
|     | 18.2.7 Power Consumption Reducing Function                            |           |
|     | 18.2.8 Output Impedance of Sensor Equivalent Circuit under A/D Conver | sion 263  |
| 19. | D/A Converter                                                         | 265       |
| 20. | CRC Calculation                                                       | 268       |
| 21. | X/Y Conversion                                                        | 270       |
| 22. | Intelligent I/O                                                       | 273       |
|     | 2.1 Base Timer                                                        |           |
| 22  | 2.2 Time Measurement Function                                         |           |
| 22  | 2.3 Waveform Generating Function                                      |           |
|     | 22.3.1 Single-Phase Waveform Output Mode                              |           |
|     | 22.3.2 Phase-Delayed Waveform Output Mode                             |           |
|     | 22.3.3 Set/Reset Waveform Output (SR Waveform Output) Mode            |           |
| 22  | 2.4 Communication Unit 0 and 1 Communication Function                 | 300       |
|     | 22.4.1 Clock Synchronous Serial I/O Mode (Communication Units 0 and   | ıd 1) 310 |
|     | 22.4.2 Clock Asynchronous Serial I/O (UART) Mode (Communication Uni   |           |
|     | 22.4.3 HDLC Data Processing Mode (Communication units 0 and 1)        |           |
| 23. | CAN Module                                                            | 320       |
| 2   | 3.1 CAN-Associated Registers                                          |           |
|     | 23.1.1 CAN0 Control Register 0 (C0CTLR0 Register)                     |           |
|     | 23.1.2 CAN0 Control Register 1 (C0CTLR1 Register)                     |           |
|     | 23.1.3 CAN0 Sleep Control Register (C0SLPR Register)                  |           |
|     | 23.1.4 CAN0 Status Register (C0STR Register)                          |           |
|     | 23.1.5 CAN0 Extended ID Register (C0IDR Register)                     |           |
|     | 23.1.6 CAN0 Configuration Register (C0CONR Register)                  |           |
|     | 23.1.7 CAN0 Baud Rate Prescaler (C0BRP Register)                      |           |
|     | 23.1.8 CAN0 Time Stamp Register (C0TSR Register)                      |           |
|     | 23.1.9 CAN0 Transmit Error Count Register (C0TEC Register)            |           |
|     | 23.1.10 CAN0 Receive Error Count Register (C0REC Register)            |           |
|     | 23.1.11 CAN0 Slot Interrupt Status Register (C0SISTR Register)        |           |
|     | 23.1.12 CAN0 Slot Interrupt Mask Register (C0SIMKR Register)          |           |

| 23.1.13 CAN0 Error Interrupt Mask Register (C0EIMKR Register)              | 341      |
|----------------------------------------------------------------------------|----------|
| 23.1.14 CAN0 Error Interrupt Status Register (C0EISTR Register)            | 342      |
| 23.1.15 CAN0 Error Factor Register (C0EFR Register)                        | 343      |
| 23.1.16 CAN0 Mode Register (C0MDR Register)                                | 344      |
| 23.1.17 CAN0 Single-Shot Control Register (C0SSCTLR Register)              | 346      |
| 23.1.18 CAN0 Single-Shot Status Register (C0SSSTR Register)                | 347      |
| 23.1.19 CAN0 Global Mask Register, CAN0 Local Mask Register A and CAN0 Lo  | cal Mask |
| Register B (C0GMRk, C0LMARk and C0LMBRk Registers) (k=0 to 4)              |          |
| 23.1.20 CAN0 Message Slot j Control Register (C0MCTLj Register) (j=0 to 15 | i) 355   |
| 23.1.21 CAN0 Slot Buffer Select Register (C0SBS Register)                  | 359      |
| 23.1.22 CAN0 Message Slot Buffer j (j=0,1)                                 | 360      |
| 23.1.23 CAN0 Acceptance Filter Support Register (C0AFS Register)           | 364      |
| 23.2 CAN Clock                                                             | 365      |
| 23.2.1 Main Clock Direct Mode                                              | 365      |
| 23.3 Timing with CAN-Associated Registers                                  | 366      |
| 23.3.1 CAN Module Reset Timing                                             | 366      |
| 23.3.2 CAN Transmit Timing                                                 | 366      |
| 23.3.3 CAN Receive Timing                                                  | 367      |
| 23.3.4 CAN Bus Error Timing                                                |          |
| 23.4 CAN Interrupts                                                        | 368      |
| 23.4.1 CAN0 Wake-Up Interrupt                                              |          |
| 23.4.2 CAN0j Interrupts                                                    | 368      |
| 24. Programmable I/O Ports                                                 | _ 372    |
| 24.1 Port Pi Direction Register (PDi Register, i=0 to 15)                  | 372      |
| 24.2 Port Pi Register (Pi Register, i=0 to 15)                             | 372      |
| 24.3 Function Select Register Aj (PSj Register) (j=0 to 3, 5, 8, 9)        | 372      |
| 24.4 Function Select Register B0 to B3 (PSL0 to PSL3 Registers)            | 372      |
| 24.5 Function Select Register C (PSC, PSC2, PSC3 Registers)                | 373      |
| 24.6 Function Select Register D (PSD1 Register)                            | 373      |
| 24.7 Pull-up Control Register 0 to 4 (PUR0 to PUR4 Registers)              | 373      |
| 24.8 Port Control Register (PCR Register)                                  | 373      |
| 24.9 Input Function Select Register (IPS and IPSA Registers)               | 373      |
| 24.10 Analog Input and Other Peripheral Function Input                     | 373      |
| 25. Flash Memory Version                                                   | _ 396    |
| 25.1 Memory Map                                                            |          |
| 25.1.1 Boot Mode                                                           |          |

| 25.2 Functions to Prevent the Flash Memory from Rewriting                | 398 |
|--------------------------------------------------------------------------|-----|
| 25.2.1 ROM Code Protect Function                                         | 398 |
| 25.2.2 ID Code Verify Function                                           | 398 |
| 25.3 CPU Rewrite Mode                                                    | 400 |
| 25.3.1 EW Mode 0                                                         | 400 |
| 25.3.2 EW Mode 1                                                         | 400 |
| 25.3.3 Flash Memory Control Register (FMR0 Register and FMR1 Register) . | 401 |
| 25.3.4 Precautions in CPU Rewrite Mode                                   | 407 |
| 25.3.5 Software Commands                                                 | 409 |
| 25.3.6 Data Protect Function                                             | 415 |
| 25.3.7 Status Register (SRD Register)                                    | 415 |
| 25.3.8 Full Status Check                                                 | 417 |
| 25.4 Standard Serial I/O Mode                                            | 419 |
| 25.4.1 ID Code Verify Function                                           | 419 |
| 25.4.2 Circuit Application in Standard Serial I/O Mode                   | 424 |
| 25.5 Parallel I/O Mode                                                   |     |
| 25.5.1 Boot ROM Area                                                     | 426 |
| 25.5.2 ROM Code Protect Function                                         | 426 |
| 26. Electrical Characteristics                                           | 427 |
| 26.1 Electrical Characteristics (M32C/84)                                | 427 |
| 26.2 Electrical Characteristics (M32C/84T)                               | 456 |
| 27. Precautions                                                          | 468 |
| 27.1 Restrictions to Use M32C/84T (High-Reliability Version)             | 468 |
| 27.2 Reset                                                               | 469 |
| 27.3 Bus                                                                 | 470 |
| 27.3.1 HOLD Signal                                                       | 470 |
| 27.3.2 External Bus                                                      | 470 |
| 27.4 SFR                                                                 | 471 |
| 27.4.1 100-Pin Package                                                   | 471 |
| 27.4.2 Register Settings                                                 | 471 |
| 27.5 Clock Generation Circuit                                            | 472 |
| 27.5.1 CPU Clock                                                         | 472 |
| 27.5.2 Sub Clock                                                         | 472 |
| 27.5.3 PLL Frequency Synthesizer                                         | 473 |
| 27.5.4 External Clock                                                    | 473 |
| 27.5.5 Clock Divide Ratio                                                | 473 |
| 27.5.6 Power Consumption Control                                         | 473 |
|                                                                          |     |

| 27.7 Interrupts                                                             |
|-----------------------------------------------------------------------------|
| 27.7.1 ISP Setting                                                          |
| 27.7.2 NMI Interrupt                                                        |
| 27.7.3 INT Interrupt                                                        |
| 27.7.4 Watchdog Timer Interrupt 478                                         |
| 27.7.5 Changing Interrupt Control Register                                  |
| 27.7.6 Changing IIOiIR Register (i = 0 to 4, 8 to 11)                       |
| 27.7.7 Changing RLVL Register 478                                           |
| 27.8 DMAC                                                                   |
| 27.9 Timer                                                                  |
| 27.9.1 Timers A and B 480                                                   |
| 27.9.2 Timer A                                                              |
| 27.9.3 Timer B                                                              |
| 27.10 Serial I/O                                                            |
| 27.10.1 Clock Synchronous Serial I/O Mode483                                |
| 27.10.2 UART Mode                                                           |
| 27.10.3 Special Mode 1 (I <sup>2</sup> C Mode)484                           |
| 27.11 A/D Converter                                                         |
| 27.12 Intelligent I/O487                                                    |
| 27.12.1 Register Setting                                                    |
| 27.13 Programmable I/O Ports 488                                            |
| 27.14 Flash Memory Version                                                  |
| 27.14.1 Differences Between Flash Memory Version and Masked ROM Version 489 |
| 27.14.2 Boot Mode                                                           |
| 27.15 Noise                                                                 |
| Package Dimensions 491                                                      |
| Register Index 493                                                          |

| Address | Register                                         | Page | Address | Register                                       | Page |
|---------|--------------------------------------------------|------|---------|------------------------------------------------|------|
| 000016  |                                                  |      | 003016  |                                                |      |
| 000116  |                                                  | -    | 003116  |                                                | 1    |
| 000216  |                                                  |      | 003216  |                                                | 1    |
| 000316  |                                                  |      | 003316  |                                                | 1    |
| 000416  | Processor Mode Register 0 (PM0)                  | 57   | 003416  |                                                | 1    |
| 000516  | Processor Mode Register 1 (PM1)                  | 58   | 003516  |                                                | 1    |
| 000616  | System Clock Control Register 0 (CM0)            | 83   | 003616  |                                                | 1    |
| 000716  | System Clock Control Register 1 (CM1)            | 84   | 003716  |                                                | 1    |
| 000816  |                                                  |      | 003816  |                                                |      |
| 000916  | Address Match Interrupt Enable Register (AIER)   | 126  | 003916  | Address Match Interrupt Register 6 (RMAD6)     | 126  |
| 000A16  | Protect Register (PRCR)                          | 106  | 003A16  |                                                |      |
| 000B16  | External Data Bus Width Control Register (DS)    | 60   | 003B16  |                                                |      |
| 000C16  |                                                  | 85   | 003C16  |                                                |      |
| 000D16  |                                                  | 86   | 003D16  | Address Match Interrupt Register 7 (RMAD7)     | 126  |
| 000E16  | Watchdog Timer Start Register (WDTS)             | 00   | 003E16  |                                                | 120  |
| 000E16  | Watchdog Timer Control Register (WDC)            | 132  | 003F16  |                                                |      |
| 001016  |                                                  |      | 004016  |                                                | -    |
| 001018  | Address Match Interrupt Register 0 (RMAD0)       | 126  | 004018  |                                                | -    |
| 001118  |                                                  | 120  | 004116  |                                                | -    |
| 001216  | Droppopr Mode Degister 2 (DM2)                   | 80   | 004216  |                                                | -    |
|         | Processor Mode Register 2 (PM2)                  | 89   |         |                                                | -    |
| 001416  |                                                  | 100  | 004416  |                                                | -    |
| 001516  | Address Match Interrupt Register 1 (RMAD1)       | 126  | 004516  |                                                | -    |
| 001616  |                                                  |      | 004616  |                                                | -    |
| 001716  | Voltage Detection Register 2 (VCR2)              | 50   | 004716  |                                                |      |
| 001816  |                                                  |      | 004816  | External Space Wait Control Register 0 (EWCR0) | -    |
| 001916  | Address Match Interrupt Register 2 (RMAD2)       | 126  | 004916  | External Space Wait Control Register 1 (EWCR1) | - 66 |
| 001A16  |                                                  |      | 004A16  | External Space Wait Control Register 2 (EWCR2) |      |
| 001B16  | Voltage Detection Register 1 (VCR1)              | 50   | 004B16  | External Space Wait Control Register 3 (EWCR3) |      |
| 001C16  |                                                  |      | 004C16  | Page Mode Wait Control Register 0 (PWCR0)      | 78   |
| 001D16  | Address Match Interrupt Register 3 (RMAD3)       | 126  | 004D16  | Page Mode Wait Control Register 1 (PWCR1)      | 79   |
| 001E16  |                                                  |      | 004E16  |                                                |      |
| 001F16  |                                                  |      | 004F16  |                                                |      |
| 002016  |                                                  |      | 005016  |                                                |      |
| 002116  |                                                  |      | 005116  |                                                |      |
| 002216  |                                                  |      | 005216  |                                                |      |
| 002316  |                                                  |      | 005316  |                                                | ]    |
| 002416  |                                                  |      | 005416  |                                                |      |
| 002516  |                                                  |      | 005516  | Flash Memory Control Register 1 (FMR1)         | 402  |
| 002616  | PLL Control Register 0 (PLC0)                    | 88   | 005616  |                                                |      |
| 002716  | PLL Control Register 1 (PLC1)                    | 88   | 005716  | Flash Memory Control Register 0 (FMR0)         | 401  |
| 002816  |                                                  |      | 005816  |                                                |      |
| 002916  | Address Match Interrupt Register 4 (RMAD4)       | 126  | 005916  |                                                | 1    |
| 002A16  |                                                  |      | 005A16  |                                                | 1    |
| 002B16  |                                                  |      | 005B16  |                                                | 1    |
| 002C16  |                                                  |      | 005C16  |                                                | 1    |
| 002D16  | Address Match Interrupt Register 5 (RMAD5)       | 126  | 005D16  |                                                | 1    |
| 002E16  |                                                  |      | 005E16  |                                                | 1    |
| 002E16  | Low Voltage Detection Interrupt Register (D4INT) | 51   | 005F16  |                                                | -    |

| Address | Register                                                       | Page | Address | Register                                                       | Page |
|---------|----------------------------------------------------------------|------|---------|----------------------------------------------------------------|------|
| 006016  |                                                                |      | 009016  | UART0 Transmit /NACK Interrupt Control Register (S0TIC)        |      |
| 006116  |                                                                |      | 009116  | UART1 Bus Conflict Detect Interrupt Control Register (BCN1IC)/ |      |
| 006216  |                                                                |      | 009116  | UART4 Bus Conflict Detect Interrupt Control Register (BCN4IC)  | )    |
| 006316  |                                                                |      | 009216  | UART1 Transmit/NACK Interrupt Control Register (S1TIC)         |      |
| 006416  |                                                                |      | 009316  | Key Input Interrupt Control Register (KUPIC)                   |      |
| 006516  |                                                                |      | 009416  | Timer B0 Interrupt Control Register (TB0IC)                    | 115  |
| 006616  |                                                                |      | 000540  | Intelligent I/O Interrupt Control Register 1 (IIO1IC)/         | 115  |
| 006716  |                                                                |      | 009516  | CAN Interrupt 4 Control Register (CAN4IC)                      |      |
| 006816  | DMA0 Interrupt Control Register (DM0IC)                        |      | 009616  | Timer B2 Interrupt Control Register (TB2IC)                    |      |
| 006916  | Timer B5 Interrupt Control Register (TB5IC)                    |      | 009716  | Intelligent I/O Interrupt Control Register 3 (IIO3IC)          |      |
| 006A16  | DMA2 Interrupt Control Register (DM2IC)                        |      | 009816  | Timer B4 Interrupt Control Register (TB4IC)                    |      |
| 006B16  | UART2 Receive /ACK Interrupt Control Register (S2RIC)          |      | 009916  | CAN Interrupt 5 Control Register (CAN5IC)                      |      |
| 006C16  | Timer A0 Interrupt Control Register (TA0IC)                    |      | 009A16  | INT4 Interrupt Control Register (INT4IC)                       | 116  |
| 006D16  | UART3 Receive /ACK Interrupt Control Register (S3RIC)          |      | 009B16  |                                                                |      |
| 006E16  | Timer A2 Interrupt Control Register (TA2IC)                    |      | 009C16  | INT2 Interrupt Control Register (INT2IC)                       | 116  |
| 006F16  | UART4 Receive /ACK Interrupt Control Register (S4RIC)          |      | 0000    | Intelligent I/O Interrupt Control Register 9 (IIO9IC)/         | 445  |
| 007016  | Timer A4 Interrupt Control Register (TA4IC)                    |      | 009D16  | CAN Interrupt 0 Control Register (CAN0IC)                      | 115  |
|         | UART0 Bus Conflict Detect Interrupt Control Register (BCN0IC)/ |      | 009E16  | INT0 Interrupt Control Register (INT0IC)                       | 116  |
| 007116  | UART3 Bus Conflict Detect Interrupt Control Register (BCN3IC)  | 115  | 009F16  | Exit Priority Control Register (RLVL)                          | 117  |
| 007216  | UART0 Receive/ACK Interrupt Control Register (S0RIC)           |      | 00A016  | Interrupt Request Register 0 (IIO0IR)                          |      |
| 007316  | A/D0 Conversion Interrupt Control Register (AD0IC)             |      | 00A116  | Interrupt Request Register 1 (IIO1IR)                          |      |
| 007416  | UART1 Receive/ACK Interrupt Control Register (S1RIC)           |      | 00A216  | Interrupt Request Register 2 (IIO2IR)                          |      |
|         | Intelligent I/O Interrupt Control Register 0 (IIO0IC)/         |      | 00A316  | Interrupt Request Register 3 (IIO3IR)                          | 129  |
| 007516  | CAN Interrupt 3 Control Register (CAN3IC)                      |      | 00A416  | Interrupt Request Register 4 (IIO4IR)                          |      |
| 007616  | Timer B1 Interrupt Control Register (TB1IC)                    |      | 00A516  | Interrupt Request Register 5 (IIO5IR)                          |      |
| 007716  | Intelligent I/O Interrupt Control Register 2 (IIO2IC)          |      | 00A616  |                                                                |      |
| 007816  | Timer B3 Interrupt Control Register (TB3IC)                    |      | 00A716  |                                                                | -    |
| 007916  | Intelligent I/O Interrupt Control Register 4 (IIO4IC)          |      | 00A816  | Interrupt Request Register 8 (IIO8IR)                          |      |
| 007A16  | INT5 Interrupt Control Register (INT5IC)                       | 116  | 00A916  | Interrupt Request Register 9 (IIO9IR)                          |      |
| 007B16  |                                                                |      | 00AA16  | Interrupt Request Register 10 (IIO10IR)                        | 129  |
| 007C16  | INT3 Interrupt Control Register (INT3IC)                       | 116  | 00AB16  | Interrupt Request Register 11 (IIO11IR)                        |      |
| 007D16  | Intelligent I/O Interrupt Control Register 8 (IIO8IC)          | 115  | 00AC16  |                                                                |      |
| 007E16  | INT1 Interrupt Control Register (INT1IC)                       | 116  | 00AD16  |                                                                |      |
|         | Intelligent I/O Interrupt Control Register 10 (IIO10IC)/       |      | 00AE16  |                                                                |      |
| 007F16  | CAN Interrupt 1 Control Register (CAN1IC)                      | 115  | 00AF16  |                                                                |      |
| 008016  |                                                                |      | 00B016  | Interrupt Enable Register 0 (IIO0IE)                           |      |
| 008116  | CAN Interrupt 2 Control Register (CAN2IC)                      | 115  |         | Interrupt Enable Register 1 (IIO1IE)                           |      |
| 008216  |                                                                |      |         | Interrupt Enable Register 2 (IIO2IE)                           | -    |
| 008316  |                                                                |      |         | Interrupt Enable Register 3 (IIO3IE)                           | 130  |
| 008416  |                                                                |      |         | Interrupt Enable Register 4 (IIO4IE)                           | -    |
| 008516  |                                                                |      |         | Interrupt Enable Register 5 (IIO5IE)                           |      |
| 008616  |                                                                |      | 00B616  |                                                                |      |
| 008716  |                                                                |      | 00B716  |                                                                | -    |
| 008816  | DMA1 Interrupt Control Register (DM1IC)                        |      |         | Interrupt Enable Register 8 (IIO8IE)                           |      |
| 008916  | UART2 Transmit /NACK Interrupt Control Register (S2TIC)        |      |         | Interrupt Enable Register 9 (IIO9IE)                           | 1    |
| 008A16  | DMA3 Interrupt Control Register (DM3IC)                        |      |         | Interrupt Enable Register 10 (IIO10IE)                         | 130  |
| 008B16  | UART3 Transmit /NACK Interrupt Control Register (S3TIC)        |      |         | Interrupt Enable Register 11 (IIO11IE)                         | 1    |
|         | Timer A1 Interrupt Control Register (TA1IC)                    | 115  | 00BC16  |                                                                |      |
|         | UART4 Transmit /NACK Interrupt Control Register (S4TIC)        |      | 00BD16  |                                                                | -    |
|         | Timer A3 Interrupt Control Register (TA3IC)                    |      | 00BE16  |                                                                | -    |
| 008F16  | UART2 Bus Conflict Detect Interrupt Control Register (BCN2IC)  |      | 00BF16  |                                                                | -    |
|         |                                                                |      |         |                                                                | 1    |

| Address | Register                                            | Page | Address | Register                                                       | Page  |
|---------|-----------------------------------------------------|------|---------|----------------------------------------------------------------|-------|
| 00C016  |                                                     |      |         | Data Compare Register 00 (G0CMP0)                              |       |
| 00C116  |                                                     |      |         | Data Compare Register 01 (G0CMP1)                              |       |
| 00C216  |                                                     |      | 00F216  | Data Compare Register 02 (G0CMP2)                              | 308   |
| 00C316  |                                                     |      | 00F316  | Data Compare Register 03 (G0CMP3)                              | 300   |
| 00C416  |                                                     |      | 00F416  | Data Mask Register 00 (G0MSK0)                                 |       |
| 00C516  |                                                     |      | 00F516  | Data Mask Register 01 (G0MSK1)                                 |       |
| 00C616  |                                                     |      | 00F616  | Communication Clock Select Register (CCS)                      | 309   |
| 00C716  |                                                     |      | 00F716  |                                                                |       |
| 00C816  |                                                     |      | 00F816  | Bossive CBC Code Bogister & (COBCBC)                           |       |
| 00C916  |                                                     |      | 00F916  | Receive CRC Code Register 0 (G0RCRC)                           | 308   |
| 00CA16  |                                                     |      | 00FA16  | Tramamit CBC Code Pagister 0 (COTCBC)                          | 300   |
| 00CB16  |                                                     |      | 00FB16  | Tramsmit CRC Code Register 0 (G0TCRC)                          |       |
| 00CC16  |                                                     |      | 00FC16  | SI/O Extended Mode Register 0 (G0EMR)                          | 303   |
| 00CD16  |                                                     |      | 00FD16  | SI/O Extended Receive Control Register 0 (G0ERC)               | 305   |
| 00CE16  |                                                     |      | 00FE16  | SI/O Special Communication Interrupt Detect Register 0 (G0IRF) | 306   |
| 00CF16  |                                                     |      | 00FF16  | SI/O Extended Transmit Control Register 0 (G0ETC)              | 304   |
| 00D016  |                                                     |      | 010016  | Time Measurement Register 10 (G1TM0)/                          |       |
| 00D116  |                                                     |      | 010116  | Waveform Generating Register 10 (G1PO0)                        |       |
| 00D216  |                                                     |      | 010216  | Time Measurement Register 11 (G1TM1)/                          | 1     |
| 00D316  |                                                     |      | 010316  | Waveform Generating Register 11 (G1PO1)                        |       |
| 00D416  |                                                     |      | 010416  | Time Measurement Register 12 (G1TM2)/                          | 1     |
| 00D516  |                                                     |      | 010516  | Waveform Generating Register 12 (G1PO2)                        |       |
| 00D616  | 1                                                   |      | 010616  | Time Measurement Register 13 (G1TM3)/                          | 1     |
| 00D716  | 1                                                   |      | 010716  | Waveform Generating Register 13 (G1PO3)                        | 279/  |
| 00D816  |                                                     |      | 010816  | Time Measurement Register 14 (G1TM4)/                          | 280   |
| 00D916  |                                                     |      | 010916  |                                                                |       |
| 00DA16  |                                                     |      | 010A16  | Time Measurement Register 15 (G1TM5)/                          | 1     |
| 00DB16  |                                                     |      |         | Waveform Generating Register 16 (G1PO5)                        |       |
| 00DC16  |                                                     |      |         | Time Measurement Register 16 (G1TM6)/                          | 1     |
| 00DD16  |                                                     |      |         | Waveform Generating Register 16 (G1PO6)                        |       |
| 00DE16  |                                                     |      |         | Time Measurement Register 17 (G1TM7)/                          | 1     |
| 00DF16  |                                                     |      |         | Waveform Generating Register 17 (G1PO7)                        |       |
| 00E016  | 1                                                   |      | 011016  | Waveform Generating Control Register 10 (G1POCR0)              |       |
| 00E116  |                                                     |      | 011116  | Waveform Generating Control Register 11 (G1POCR1)              | -     |
| 00E216  |                                                     |      | 011216  | Waveform Generating Control Register 12 (G1POCR2)              | -     |
| 00E316  |                                                     |      |         | Waveform Generating Control Register 13 (G1POCR3)              | -     |
| 00E416  |                                                     |      | 011416  | Waveform Generating Control Register 14 (G1POCR4)              | 279   |
| 00E516  |                                                     |      | 011516  | Waveform Generating Control Register 15 (G1POCR5)              | 1     |
| 00E616  |                                                     |      | 011616  | Waveform Generating Control Register 16 (G1POCR6)              | -     |
| 00E016  |                                                     |      | 011716  | Waveform Generating Control Register 17 (G1POCR7)              | -     |
| 00E716  | +                                                   |      | 011816  | Time Measurement Control Register 10 (G1TMCR0)                 | -     |
| 00E916  | SI/O Receive Buffer Register0 (G0RB)                | 301  | 011916  | Time Measurement Control Register 11 (G1TMCR1)                 | -     |
| 00E916  | Transmit Buffer/Receive Data Register 0 (G0TB/G0DR) | 307  |         | Time Measurement Control Register 12 (G1TMCR2)                 | -     |
| 00EA16  |                                                     | 507  |         | Time Measurement Control Register 12 (G1TMCR2)                 | -     |
|         |                                                     | 300  |         | Time Measurement Control Register 13 (G11MCR3)                 | - 278 |
|         | Receive Input Register 0 (G0RI)                     |      |         | Time Measurement Control Register 14 (G11MCR4)                 | -     |
|         | SI/O Communication Mode Register 0 (G0MR)           | 302  |         | Time Measurement Control Register 15 (G1TMCR5)                 | -     |
|         | Transmit Output Register 0 (G0TO)                   | 300  |         | - · · · · · · · · · · · · · · · · · · ·                        | -     |
|         | SI/O Communication Control Register 0 (G0CR)        | 301  | 011F16  | Time Measurement Control Register 17 (G1TMCR7)                 |       |

| Address          | Register                                                            | Page | Address | Register                                | Page |
|------------------|---------------------------------------------------------------------|------|---------|-----------------------------------------|------|
| 012016           |                                                                     |      | 015016  |                                         |      |
| 012116           | Base Timer Register1 (G1BT)                                         | 276  | 015116  |                                         |      |
| 012216           | Base Timer Control Register 10 (G1BCR0)                             | 276  | 015216  |                                         |      |
| 012316           | Base Timer Control Register 11 (G1BCR1)                             | 277  | 015316  |                                         |      |
| 012416           | Time Measurement Prescaler Register 16 (G1TPR6)                     |      | 015416  |                                         |      |
| 012516           | Time Measurement Prescaler Register 17 (G1TPR7)                     | 278  | 015516  |                                         |      |
| 012616           | Function Enable Register 1 (G1FE)                                   | 281  | 015616  |                                         |      |
| 012716           | Function Select Register 1 (G1FS)                                   | 280  | 015716  |                                         |      |
| 012816           |                                                                     |      | 015816  |                                         |      |
| 012916           | SI/O Receive Buffer Register 1 (G1RB)                               | 301  | 015916  |                                         |      |
| 012010<br>012A16 | Transmit Buffer/Receive Data Register 1 (G1TB/G1DR)                 | 307  | 015A16  |                                         |      |
| 012B16           |                                                                     | 001  | 015B16  |                                         |      |
|                  | Receive Input Register 1 (G1RI)                                     | 300  | 015C16  |                                         |      |
|                  | SI/O Communication Mode Register 1 (G1MR)                           | 302  | 015D16  |                                         |      |
|                  | Transmit Output Register 1 (G1TO)                                   | 302  | 015E16  |                                         |      |
| -                | SI/O Communication Control Register 1 (G1CR)                        | 301  | 015E16  |                                         |      |
| 012F16           | Data Compare Register 10 (G1CMP0)                                   | 301  | 015F16  |                                         |      |
| 013018           | Data Compare Register 11 (G1CMP1)                                   |      | 016016  |                                         |      |
| 013116           | Data Compare Register 12 (G1CMP2)                                   |      | 016116  |                                         |      |
| 013216           |                                                                     | 308  | 016216  |                                         |      |
|                  | Data Compare Register 13 (G1CMP3)<br>Data Mask Register 10 (G1MSK0) |      |         |                                         |      |
| 013416           |                                                                     |      | 016416  |                                         |      |
| 013516           | Data Mask Register 11 (G1MSK1)                                      |      | 016516  |                                         |      |
| 013616           |                                                                     |      | 016616  |                                         |      |
| 013716           |                                                                     |      | 016716  |                                         |      |
| 013816           | Receive CRC Code Register1 (G1RCRC)                                 |      | 016816  |                                         |      |
| 013916           | <b>.</b> ,                                                          | 308  | 016916  |                                         |      |
| 013A16           | Transmit CRC Code Register1 (G1TCRC)                                |      | 016A16  |                                         |      |
| 013B16           |                                                                     |      | 016B16  |                                         |      |
|                  | SI/O Extended Mode Register 1 (G1EMR)                               | 303  | 016C16  |                                         |      |
|                  | SI/O Extended Receive Control Register 1 (G1ERC)                    | 305  | 016D16  |                                         |      |
|                  | SI/O Special Communication Interrupt Detect Register 1 (G1IRF)      | 307  | 016E16  |                                         |      |
| 013F16           | SI/O Extended Transmit Control Register 1 (G1ETC)                   | 304  | 016F16  |                                         |      |
| 014016           |                                                                     |      | 017016  |                                         |      |
| 014116           |                                                                     |      | 017116  |                                         |      |
| 014216           |                                                                     |      | 017216  |                                         |      |
| 014316           |                                                                     |      | 017316  |                                         |      |
| 014416           |                                                                     |      | 017416  |                                         |      |
| 014516           |                                                                     |      | 017516  |                                         |      |
| 014616           |                                                                     |      | 017616  |                                         |      |
| 014716           |                                                                     |      | 017716  |                                         |      |
| 014816           |                                                                     |      | 017816  | Input Function Select Register (IPS)    | 389  |
| 014916           |                                                                     |      | 017916  | Input Function Select Register A (IPSA) | 390  |
| 014A16           |                                                                     |      | 017A16  |                                         |      |
| 014B16           |                                                                     |      | 017B16  |                                         |      |
| 014C16           |                                                                     |      | 017C16  |                                         |      |
| 014D16           |                                                                     |      | 017D16  |                                         |      |
| 014E16           |                                                                     |      | to      |                                         |      |
| 014F16           |                                                                     |      | 01DF16  |                                         |      |

| Address | Register                                                                                         | Page | Address | Register                                          | Page |
|---------|--------------------------------------------------------------------------------------------------|------|---------|---------------------------------------------------|------|
| 01E016  | CAN0 Message Slot Buffer 0 Standard ID0 (C0SLOT0_0)                                              |      | 021016  |                                                   |      |
| 01E116  | CAN0 Message Slot Buffer 0 Standard ID1 (C0SLOT0_1)                                              | 360  | 021116  | CAN0 Slot Interrupt Mask Register (C0SIMKR)       | 340  |
| 01E216  | CAN0 Message Slot Buffer 0 Extended ID0 (C0SLOT0_2)                                              |      | 021216  |                                                   |      |
| 01E316  | CAN0 Message Slot Buffer 0 Extended ID1 (C0SLOT0_3)                                              | 361  | 021316  |                                                   | 1    |
| 01E416  | CAN0 Message Slot Buffer 0 Extended ID2 (C0SLOT0_4)                                              |      | 021416  | CAN0 Error Interrupt Mask Register (C0EIMKR)      | 341  |
| 01E516  | CAN0 Message Slot Buffer 0 Data Length Code (C0SLOT0_5)                                          | 362  | 021516  | CAN0 Error Interrupt Status Register (C0EISTR)    | 342  |
| 01E616  | CAN0 Message Slot Buffer 0 Data 0 (C0SLOT0_6)                                                    |      | 021616  | CAN0 Error Cause Register (C0EFR)                 | 343  |
| 01E716  | CAN0 Message Slot Buffer 0 Data 1 (C0SLOT0_7)                                                    |      | 021716  | CAN0 Baud Rate Prescaler (C0BPR)                  | 335  |
| 01E816  | CAN0 Message Slot Buffer 0 Data 2 (C0SLOT0_8)                                                    |      | 021816  |                                                   |      |
| 01E916  | CAN0 Message Slot Buffer 0 Data 3 (C0SLOT0_9)                                                    |      | 021916  | CAN0 Mode Register (C0MDR)                        | 344  |
| 01EA16  | CAN0 Message Slot Buffer 0 Data 4 (C0SLOT0_10)                                                   |      | 021A16  |                                                   |      |
| 01EB16  |                                                                                                  | 363  | 021B16  |                                                   | -    |
| 01EC16  |                                                                                                  |      | 021C16  |                                                   | -    |
| 01ED16  |                                                                                                  |      | 021D16  |                                                   | -    |
| 01EE16  | CANO Message Slot Buffer 0 Time Stamp High-Order (COSLOT0_14)                                    |      | 021E16  |                                                   | -    |
| 01EF16  | CANO Message Slot Buffer 0 Time Stamp Low-Order (COSLOT0_15)                                     |      | 021E10  |                                                   | -    |
| 01F016  | CANO Message Slot Buffer 1 Standard ID0 (C0SLOT1_0)                                              |      | 022016  |                                                   |      |
| 01F116  | CAN0 Message Slot Buffer 1 Standard ID1 (C0SLOT1_1)                                              | 360  | 022010  | CAN0 Single Shot Control Register (C0SSCTLR)      | 346  |
| 01F216  | CANO Message Slot Buffer 1 Extended ID0 (C0SLOT1_2)                                              |      | 022116  |                                                   |      |
| 01F316  | CANO Message Slot Buffer 1 Extended ID1 (COSLOT1_3)                                              | 361  | 022216  |                                                   | -    |
| 01F416  | CANO Message Slot Buffer 1 Extended ID2 (C0SLOT1_4)                                              |      | 022316  |                                                   |      |
| 01F516  | CANO Message Slot Buffer 1 Data Length Code (COSLOT1_5)                                          | 362  | 022416  | CAN0 Single Shot Status Register (C0SSSTR)        | 347  |
| 01F616  | CANO Message Slot Buffer 1 Data 0 (C0SLOT1_6)                                                    |      | 022516  |                                                   |      |
| 01F716  | CANO Message Slot Buffer 1 Data 0 (COSLOT1_0)                                                    |      | 022016  |                                                   | -    |
| 01F816  | CANO Message Slot Buffer 1 Data 1 (COSLOT1_8)                                                    |      | 022716  | CANO Clobal Maak Pagiatar Standard IDO (COCMPO)   | 348  |
| 01F916  | CANO Message Slot Buffer 1 Data 2 (COSLOT 1_0)<br>CANO Message Slot Buffer 1 Data 3 (COSLOT 1_9) |      |         | CANO Global Mask Register Standard ID0 (C0GMR0)   |      |
| 01FA16  | CANO Message Slot Buffer 1 Data 3 (COSLOT 1_9)<br>CANO Message Slot Buffer 1 Data 4 (COSLOT 1_0) |      | 022916  | CANO Global Mask Register Standard ID1 (C0GMR1)   | 349  |
| 01FB16  | CANO Message Slot Buffer 1 Data 4 (COSLOT1_10)<br>CANO Message Slot Buffer 1 Data 5 (COSLOT1_11) | 363  | 022A16  | CANO Global Mask Register Extended ID0 (COGMR2)   | 350  |
|         |                                                                                                  |      | 022B16  | CANO Global Mask Register Extended ID1 (C0GMR3)   | 351  |
| 01FC16  | CANO Message Slot Buffer 1 Data 6 (COSLOT1_12)                                                   |      | 022C16  | CAN0 Global Mask Register Extended ID2 (C0GMR4)   | 352  |
| 01FD16  | CAN0 Message Slot Buffer 1 Data 7 (C0SLOT1_13)                                                   |      | 022D16  |                                                   | -    |
| 01FE16  | CANO Message Slot Buffer 1 Time Stamp High-Order (COSLOT1_14)                                    |      | 022E16  |                                                   | -    |
| 01FF16  | CAN0 Message Slot Buffer 1 Time Stamp Low-Order (C0SLOT1_15)                                     |      | 022F16  |                                                   |      |
| 020016  | CAN0 Control Register0 (C0CTLR0)                                                                 | 324  | 023016  | CAN0 Message Slot 0 Control Register (C0MCTL0)/   |      |
| 020116  |                                                                                                  |      |         | CANO Local Mask Register A Standard ID0 (C0LMAR0) | 348  |
| 020216  | CAN0 Status Register (C0STR)                                                                     | 329  | 023116  | CANO Message Slot 1 Control Register (COMCTL1)/   | 355/ |
| 020316  |                                                                                                  |      |         | CAN0Local Mask Register A Standard ID1 (C0LMAR1)  | 349  |
| 020416  | CAN0 Extended ID Register (C0IDR)                                                                | 332  | 023216  | CANO Message Slot 2 Control Register (COMCTL2)/   | 355/ |
| 020516  |                                                                                                  |      |         | CAN0 Local Mask Register A Extended ID0 (C0LMAR2) | -    |
| 020616  | CAN0 Configuration Register (C0CONR)                                                             | 333  | 023316  | CAN0 Message Slot 3 Control Register (C0MCTL3)/   | 355/ |
| 020716  |                                                                                                  |      | 020010  | CAN0 Local Mask Register A Extended ID1 (C0LMAR3) |      |
| 020816  | CAN0 Time Stamp Register (C0TSR)                                                                 | 336  | 023416  | CAN0 Message Slot 4 Control Register (C0MCTL4)/   | 355/ |
| 020916  |                                                                                                  |      |         | CAN0 Local Mask Register A Extended ID2 (C0LMAR4) |      |
| 020A16  | CAN0 Transmit Error Count Register (C0TEC)                                                       | 337  | 023516  | CAN0 Message Slot 5 Control Register (C0MCTL5)    |      |
| 020B16  | CAN0 Receive Error Count Register (C0REC)                                                        |      | 023616  | CAN0 Message Sot 6 Control Register (C0MCTL6)     | 355  |
| 020C16  | CAN0 Slot Interrupt Status Register (C0SISTR)                                                    | 338  | 023716  | CAN0 Message Slot 7 Control Register (C0MCTL7)    |      |
| 020D16  | CANO SIDE INTERTUPE STATUS REGISTER (CUSISTR)                                                    | 550  | 022046  | CAN0 Message Slot 8 Control register (C0MCTL8)/   | 355/ |
| 020E16  |                                                                                                  |      | 023816  | CAN0 Local Mask Register B Standard ID0 (C0LMBR0) | 348  |
| 020F16  |                                                                                                  |      |         |                                                   | 1    |

| Address          | 3                                                                                                               | Page | Address          | Register                                         | Page |
|------------------|-----------------------------------------------------------------------------------------------------------------|------|------------------|--------------------------------------------------|------|
| 023916           | CAN0 Message Slot 9 Control Register (C0MCTL9)/                                                                 | 355/ | 02C016           | X0 Register Y0 Register (X0R,Y0R)                |      |
|                  | CANO Local Mask Register B Standard ID1 (COLMBR1)                                                               | 349  | 02C116           |                                                  |      |
| 023A16           | CANO Message Slot 10 Control Register (COMCTL10)/                                                               | 355/ | 02C216           | X1 Register Y1 Register (X1R,Y1R)                |      |
|                  | CANO Local Mask Register B Extended ID0 (C0LMBR2)                                                               | 350  | 02C316           |                                                  |      |
| 023B16           | CANO Message Slot 11 Control Register (COMCTL11)/                                                               | 355/ | 02C416           | X2 Register Y2 Register (X2R,Y2R)                |      |
|                  | CANO Local Mask Register B Extended ID1 (C0LMBR3)                                                               | 351  | 02C516           |                                                  |      |
| 023C16           | CANO Message Slot 12 Control Register (COMCTL12)/                                                               | 355/ | 02C616           | X3 Register Y3 Register (X3R,Y3R)                |      |
|                  | CANO Local Mask Register B Extended ID2 (C0LMBR4)                                                               | 352  | 02C716           |                                                  |      |
| 023D16           | CANO Message Slot 13 Control Register (COMCTL13)                                                                | 255  | 02C816           | X4 Register Y4 Register (X4R,Y4R)                |      |
| 023E16           | CANO Message Slot 14 Control Register (COMCTL14)                                                                | 355  | 02C916           |                                                  |      |
| 023F16           | CANO Message Slot 15 Control Register(COMCTL15)                                                                 | 250  | 02CA16           | X5 Register Y5 Register (X5R,Y5R)                |      |
| 024016           | CANO Slot Buffer Select Register (COSBS)                                                                        | 359  | 02CB16           |                                                  |      |
| 024116           | CANO Control Register 1 (COCTLR1)                                                                               | 327  | 02CC16           | X6 Register Y6 Register (X6R,Y6R)                |      |
| 024216           | CAN0 Sleep Control Register (C0SLPR)                                                                            | 328  | 02CD16           |                                                  |      |
| 024316           |                                                                                                                 |      | 02CE16           | X7 Register Y7 Register (X7R,Y7R)                |      |
| 024416           | CAN0 Acceptance Filter Support Register (C0AFS)                                                                 | 364  | 02CF16           |                                                  | 270  |
| 024516           |                                                                                                                 |      | 02D016           | X8 Register Y8 Register (X8R,Y8R)                |      |
| 024616           |                                                                                                                 |      | 02D116           |                                                  |      |
| 024716           |                                                                                                                 |      | 02D216           | X9 Register Y9 Register (X9R,Y9R)                |      |
| 024816           |                                                                                                                 |      | 02D316           |                                                  |      |
| 024916           |                                                                                                                 |      | 02D416           | X10 Register Y10 Register (X10R,Y10R)            |      |
| 024A16           |                                                                                                                 |      | 02D516           |                                                  |      |
| 024B16           |                                                                                                                 |      | 02D616           | X11 Register Y11 Register (X11R,Y11R)            |      |
| 024C16           |                                                                                                                 |      | 02D716           |                                                  |      |
| 024D16           |                                                                                                                 |      | 02D816<br>02D916 | X12 Register Y12 Register (X12R,Y12R)            |      |
| 024E16           |                                                                                                                 |      | 02D916<br>02DA16 |                                                  |      |
| 024F16           |                                                                                                                 |      |                  | X13 Register Y13 Register (X13R,Y13R)            |      |
| 025016           |                                                                                                                 |      | 02DB16<br>02DC16 |                                                  |      |
| 025716           |                                                                                                                 |      | 02DC16           | X14 Register Y14 Register (X14R,Y14R)            |      |
| 025216           |                                                                                                                 |      | 02DD16           |                                                  |      |
| 025316           |                                                                                                                 |      | 02DE16           | X15 Register Y15 Register (X15R,Y15R)            |      |
| 025516           |                                                                                                                 |      | 02DF16           | X/Y Control Register (XYC)                       | 270  |
| 025616           |                                                                                                                 |      | 02E016<br>02E116 |                                                  | 210  |
| 025716           |                                                                                                                 |      | 02E116           |                                                  |      |
| 025816           |                                                                                                                 |      | 02E316           |                                                  |      |
| 025916           |                                                                                                                 |      | 02E316           | UART1 Special Mode Register 4 (U1SMR4)           | 201  |
| 025916<br>025A16 |                                                                                                                 |      | 02E416<br>02E516 | UART1 Special Mode Register 3 (U1SMR4)           | 201  |
| 025A16           |                                                                                                                 |      | 02E516<br>02E616 | UART1 Special Mode Register 2 (U1SMR3)           | 199  |
| 025B16           |                                                                                                                 |      | 02E016           | UART1 Special Mode Register (U1SMR2)             | 199  |
| 025D16           |                                                                                                                 |      | 02E716<br>02E816 | UART1 Transmit/Receive Mode Register (U1MR)      | 130  |
| 025E16           |                                                                                                                 |      | 02E016           | UART1 Bit Rate Register (U1BRG)                  | 196  |
| 025E16           |                                                                                                                 |      | 02E916           |                                                  |      |
| 025F16           |                                                                                                                 |      | 02EA16           | UART1 Transmit Buffer Register (U1TB)            | 195  |
| to               |                                                                                                                 |      |                  | UART1 Transmit/Receive Control Register 0 (U1C0) | 197  |
|                  |                                                                                                                 |      | 02EC16           |                                                  |      |
|                  | I contract of the second se |      |                  | UARTI Hanshiv Receive Control Register 1 (UTC1)  | 198  |
| 02BF16           |                                                                                                                 |      | 02EE16           |                                                  |      |

| Address          | Register                                                                                   | Page | Address          | Register                                          | Page |
|------------------|--------------------------------------------------------------------------------------------|------|------------------|---------------------------------------------------|------|
| 02F016           |                                                                                            |      | 032016           |                                                   |      |
| 02F116           |                                                                                            |      | 032116           |                                                   | 1    |
| 02F216           |                                                                                            |      | 032216           |                                                   |      |
| 02F316           |                                                                                            |      | 032316           |                                                   | 1    |
|                  | UART4 Special Mode Register 4 (U4SMR4)                                                     | 201  | 032416           | UART3 Special Mode Register 4 (U3SMR4)            | 201  |
| 02F516           | UART4 Special Mode Register 3 (U4SMR3)                                                     | 200  | 032516           | UART3 Special Mode Register 3 (U3SMR3)            | 200  |
| 02F616           | UART4 Special Mode Register 2 (U4SMR2)                                                     | 199  | 032616           | UART3 Special Mode Register 2 (U3SMR2)            | 199  |
| 02F716           | UART4 Special Mode Register (U4SMR)                                                        | 198  | 032716           | UART3 Special Mode Register (U3SMR)               | 198  |
| 02F816           | UART4 Transmit/Receive Mode Register (U4MR)                                                | 100  | 032816           | UART3 Transmit/Receive Mode Register (U3MR)       | 100  |
| 02F916           | UART4 Bit Rate Register (U4BRG)                                                            | 196  | 032916           | UART3 Bit Rate Register (U3BRG)                   | 196  |
| 02FA16           |                                                                                            |      | 032A16           |                                                   |      |
| 02FB16           | UART4 Transmit Buffer Register (U4TB)                                                      | 195  | 032A16           | UART3 Transmit Buffer Register (U3TB)             | 195  |
|                  | UART4 Transmit/Receive Control Register 0 (U4C0)                                           | 197  | 032D16           | UART3 Transmit/Receive Control Register 0 (U3C0)  | 197  |
| 02FC16           |                                                                                            | 197  | 032C16<br>032D16 | UART3 Transmit/Receive Control Register 0 (03C0)  |      |
|                  | UART4 Transmit/Receive Control Register 1 (U4C1)                                           | 196  |                  | UARTS Transmit/Receive Control Register 1 (USCT)  | 198  |
| 02FE16<br>02FF16 | UART4 Receive Buffer Register (U4RB)                                                       | 195  | 032E16<br>032F16 | UART3 Receive Buffer Register (U3RB)              | 195  |
| 030016           | Timer B3.B4.B5 Count Start Flag (TBSR)                                                     | 175  | 033016           |                                                   |      |
| 030116           |                                                                                            | 175  | 033116           |                                                   | -    |
| 030216           |                                                                                            |      | 033216           |                                                   | -    |
| 030216           | Timer A1-1 Register (TA11)                                                                 |      | 033316           |                                                   | -    |
|                  |                                                                                            | -    |                  | LIADT2 Special Made Degister 4 (LI2SMD4)          | 201  |
| 030416           | Timer A2-1 Register (TA21)                                                                 | 188  | 033416           | UART2 Special Mode Register 4 (U2SMR4)            | 201  |
| 030516           |                                                                                            | -    | 033516           | UART2 Special Mode Register 3 (U2SMR3)            | 200  |
| 030616           | Timer A4-1 Register (TA41)                                                                 |      | 033616           | UART2 Special Mode Register 2 (U2SMR2)            | 199  |
| 030716           | Three Dhase DWM Control Degister 0 (INI)(C0)                                               | 105  | 033716           | UART2 Special Mode Register (U2SMR)               | 198  |
| 030816           | Three-Phase PWM Control Register 0 (INVC0)                                                 | 185  | 033816           | UART2 Transmit/Receive Mode Register (U2MR)       | 196  |
| 030916           | Three-Phase PWM Control Register 1 (INVC1)                                                 | 186  | 033916           | UART2 Bit Rate Register (U2BRG)                   |      |
| 030A16           | Three-Phase Output Buffer Register 0 (IDB0)<br>Three-Phase Output Buffer Register 1 (IDB1) | 187  | 033A16           | UART2 Transmit Buffer Register (U2TB)             | 195  |
| 030B16           |                                                                                            | 107  | 033B16           | LIADTO Transmit/Dessive Control Desister 0 (LICO) | 107  |
| 030C16           | Dead Time Timer (DTT)                                                                      | 187  | 033C16           | UART2 Transmit/Receive Control Register 0 (U2C0)  | 197  |
| 030D16           | Timer B2 Interrupt Generating Frequency Set Counter (ICTB2)                                | 188  | 033D16           | UART2 Transmit/Receive Control Register 1 (U2C1)  | 198  |
| 030E16           |                                                                                            |      | 033E16           | UART2 Receive Buffer Register (U2RB)              | 195  |
| 030F16           |                                                                                            |      | 033F16           |                                                   | 450  |
| 031016           | Timer B3 Register (TB3)                                                                    |      | 034016           | Count Start Flag (TABSR)                          | 158  |
| 031116           |                                                                                            | -    | 034116           | Clock Prescaler Reset Flag (CPSRF)                | 87   |
| 031216           | Timer B4 Register (TB4)                                                                    | 173  | 034216           | One-Shot Start Flag (ONSF)                        | 159  |
| 031316           |                                                                                            |      | 034316           | Trigger Select Register (TRGSR)                   | 160  |
| 031416           | Timer B5 Register (TB5)                                                                    |      | 034416           | Up-Down Flag (UDF)                                | 159  |
| 031516           |                                                                                            |      | 034516           |                                                   |      |
| 031616           |                                                                                            |      | 034616           | Timer A0 Register (TA0)                           |      |
| 031716           |                                                                                            |      | 034716           |                                                   | -    |
| 031816           |                                                                                            |      | 034816           | Timer A1 Register (TA1)                           |      |
| 031916           |                                                                                            |      | 034916           |                                                   | -    |
| 031A16           |                                                                                            |      | 034A16           | Timer A2 Register (TA2)                           | 157  |
| 031B16           | Timer B3 Mode Register (TB3MR)                                                             |      | 034B16           |                                                   |      |
| 031C16           | Timer B4 Mode Register (TB4MR)                                                             | 174  | 034C16           | Timer A3 Register (TA3)                           |      |
| 031D16           | Timer B5 Mode Register (TB5MR)                                                             |      | 034D16           |                                                   |      |
| 031E16           |                                                                                            |      | 034E16           | Timor A4 Pogistor (TA4)                           |      |
| 031F16           | External Interrupt Request Source Select Register (IFSR)                                   | 124  | 034F16           | Timer A4 Register (TA4)                           |      |

| Address | Register                                         | Page | Address          | Register                               | Page                                    |
|---------|--------------------------------------------------|------|------------------|----------------------------------------|-----------------------------------------|
| 035016  | Timor B0 Pogistor (TB0)                          |      | 038016           | A/DO Bogistor() (AD00)                 |                                         |
| 035116  | Timer B0 Register (TB0)                          |      | 038116           | A/D0 Register0 (AD00)                  |                                         |
| 035216  | Timer D1 Desister (TD1)                          | 170  | 038216           | A/DO Descister 1 (AD01)                |                                         |
| 035316  | Timer B1 Register (TB1)                          | 173  | 038316           | A/D0 Register1 (AD01)                  |                                         |
| 035416  | Timer DO Decistor (TDO)                          |      | 038416           | A (D0 De rister 2 (AD02)               |                                         |
| 035516  | Timer B2 Register (TB2)                          |      | 038516           | A/D0 Register2 (AD02)                  |                                         |
| 035616  | Timer A0 Mode Register (TA0MR)                   |      | 038616           |                                        |                                         |
| 035716  | Timer A1 Mode Register (TA1MR)                   |      | 038716           | A/D0 Register3 (AD03)                  | 050                                     |
| 035816  | Timer A2 Mode Register (TA2MR)                   | 158  | 038816           |                                        | 253                                     |
| 035916  | Timer A3 Mode Register (TA3MR)                   |      | 038916           | A/D0 Register4 (AD04)                  |                                         |
| 035A16  | Timer A4 Mode Register (TA4MR)                   |      | 038A16           |                                        |                                         |
| 035B16  | Timer B0 Mode Register (TB0MR)                   |      | 038B16           | A/D0 Register5 (AD05)                  |                                         |
| 035C16  | Timer B1 Mode Register (TB1MR)                   | 174  | 038C16           |                                        |                                         |
| 035D16  | Timer B2 Mode Register (TB2MR)                   |      | 038D16           | A/D0 Register6 (AD06)                  |                                         |
| 035E16  | Timer B2 Special Mode Register (TB2SC)           | 188  | 038E16           |                                        |                                         |
| 035F16  | Count Source Prescaler Register (TCSPR)          | 87   | 038F16           | A/D0 Register7 (AD07)                  |                                         |
| 036016  |                                                  |      | 039016           |                                        |                                         |
| 036116  |                                                  |      | 039116           |                                        |                                         |
| 036216  |                                                  |      | 039216           | A/D0 Control Register 4 (AD0CON4)      | 253                                     |
| 036316  |                                                  |      | 039316           | <b></b>                                |                                         |
| 036416  | UART0 Special Mode Register 4 (U0SMR4)           | 201  | 039416           | A/D0 Control Register 2 (AD0CON2)      | 251                                     |
| 036516  | UART0 Special Mode Register 3 (U0SMR3)           | 200  | 039516           | A/D0 Control Register 3 (AD0CON3)      | 252                                     |
| 036616  | UART0 Special Mode Register 2 (U0SMR2)           | 199  | 039616           | A/D0 Control Register 0 (AD0CON0)      | 249                                     |
| 036716  | UART0 Special Mode Register (U0SMR)              | 198  | 039716           | A/D0 Control Register 1 (AD0CON1)      | 250                                     |
| 036816  | UART0 Transmit/Receive Mode Register (U0MR)      |      | 039816           | D/A Register 0 (DA0)                   | 267                                     |
| 036916  | UART0 Bit Rate Register (U0BRG)                  | 196  | 039916           |                                        |                                         |
| 036A16  |                                                  |      | 039A16           | D/A Register 1 (DA1)                   | 267                                     |
| 036B16  | UART0 Transmit Buffer Register (U0TB)            | 195  | 039B16           |                                        | -                                       |
| 036C16  | UART0 Transmit/Receive Control Register 0 (U0C0) | 197  | 039C16           | D/A Control Register (DACON)           | 267                                     |
| 036D16  | UART0 Transmit/Receive Control Register 1 (U0C1) | 198  | 039D16           |                                        |                                         |
| 036E16  |                                                  |      | 039E16           |                                        |                                         |
| 036F16  | UART0 Receive Buffer Register (U0RB)             | 195  | 039F16           |                                        |                                         |
| 037016  |                                                  |      | 03A016           | Function Select Register A8 (PS8)      | 381                                     |
| 037116  |                                                  |      | 03A116           | Function Select Register A9 (PS9)      | 382                                     |
| 037216  |                                                  |      | 03A216           | · · ·································· |                                         |
| 037316  |                                                  |      | 03A316           |                                        |                                         |
| 037416  |                                                  |      | 03A416           |                                        |                                         |
| 037516  |                                                  |      | 03A516           |                                        |                                         |
| 037616  |                                                  |      | 03A616           |                                        |                                         |
| 037716  |                                                  |      | 03A716           | Function Select Register D1 (PSD1)     | 382                                     |
| 037816  | DMA0 Request Source Select Register (DM0SL)      |      | 03A816           |                                        | 002                                     |
| 037916  | DMA1 Request Source Select Register (DM05L)      |      | 03A916           |                                        | ——————————————————————————————————————— |
| 037A16  | DMA2 Request Source Select Register (DM13L)      | 137  | 03A316           |                                        |                                         |
| 037B16  | DMA3 Request Source Select Register (DM2SL)      |      | 03AB16           |                                        |                                         |
| 037D16  | Divisio Request Source Select Register (DIVISSE) |      |                  | Function Select Register C2 (PSC2)     | 385                                     |
| 037C16  | CRC Data Register (CRCD)                         | 268  | 03AC16           |                                        | 385                                     |
| 037D16  | CRC Input Register (CRCIN)                       | 200  | 03AD16<br>03AE16 |                                        | 300                                     |
| 037E16  |                                                  |      |                  | Function Select Register C (PSC)       | 385                                     |
| 037 F16 |                                                  |      | USAF 16          |                                        | 303                                     |

| Address          | Register                           | Page |
|------------------|------------------------------------|------|
| 03B016           | Function Select Register A0 (PS0)  |      |
| 03B116           | Function Select Register A1 (PS1)  | 379  |
| 03B216           | Function Select Register B0 (PSL0) |      |
| 03B316           | Function Select Register B1 (PSL1) | 383  |
| 03B416           | Function Select Register A2 (PS2)  |      |
| 03B516           | Function Select Register A3 (PS3)  | 376  |
| 03B616           | Function Select Register B2 (PSL2) |      |
| 03B716           | Function Select Register B3 (PSL3) | 384  |
| 03B816           |                                    |      |
| 03B916           | Function Select Register A5 (PS5)  | 381  |
| 03BA16           |                                    | 301  |
| 03BB16           |                                    |      |
| 03BC16           |                                    |      |
| 03BD16           |                                    |      |
| 03BD16           |                                    |      |
| 03BE16<br>03BF16 |                                    |      |
|                  | Port P6 Pogistor (P6)              |      |
| 03C016           | Port P6 Register (P6)              | 378  |
| 03C116           | Port P7 Register (P7)              |      |
| 03C216           | Port P6 Direction Register (PD6)   | 377  |
| 03C316           | Port P7 Direction Register (PD7)   |      |
| 03C416           | Port P8 Register (P8)              | 378  |
| 03C516           | Port P9 Register (P9)              |      |
| 03C616           | Port P8 Direction Register (PD8)   | 377  |
| 03C716           | Port P9 Direction Register (PD9)   |      |
| 03C816           | Port P10 Register (P10)            | 378  |
| 03C916           | Port P11 Register (P11)            |      |
| 03CA16           | Port P10 Direction Register (PD10) | 377  |
| 03CB16           | Port P11 Direction Register(PD11)  |      |
| 03CC16           | Port P12 Register (P12)            | 378  |
| 03CD16           | Port P13 Register (P13)            |      |
| 03CE16           | Port P12 Direction Register (PD12) | 377  |
| 03CF16           | Port P13 Direction Register (PD13) |      |
| 03D016           | Port P14 Register (P14)            | 378  |
| 03D116           | Port P15 Register (P15)            |      |
| 03D216           | Port P14 Direction Register (PD14) | 377  |
| 03D316           | Port P15 Direction Register (PD15) |      |
| 03D416           |                                    | _    |
| 03D516           |                                    | _    |
| 03D616           |                                    | _    |
| 03D716           |                                    | _    |
| 03D816           |                                    | _    |
| 03D916           |                                    | _    |
| 03DA16           | · · · ·                            | 387  |
| 03DB16           | · · · ·                            | 388  |
| 03DC16           | Pull-Up Control Register 4 (PUR4)  |      |
| 03DD16           |                                    |      |
| 03DE16           |                                    |      |
| 03DF16           |                                    |      |

| Address | Register                          | Page |
|---------|-----------------------------------|------|
| 03E016  | Port P14 Register (P0)            |      |
| 03E116  | Port P14 Register (P1)            | 378  |
| 03E216  | Port P14 Direction Register (PD0) |      |
| 03E316  | Port P14 Direction Register (PD1) | 377  |
| 03E416  | Port P14 Register (P2)            | 070  |
| 03E516  | Port P14 Register (P3)            | 378  |
| 03E616  | Port P14 Direction Register (PD2) | 077  |
| 03E716  | Port P14 Direction Register (PD3) | 377  |
| 03E816  | Port P14 Register (P4)            | 070  |
| 03E916  | Port P14 Register (P5)            | 378  |
| 03EA16  | Port P14 Direction Register (PD4) | 077  |
| 03EB16  | Port P14 Direction Register (PD5) | 377  |
| 03EC16  |                                   |      |
| 03ED16  |                                   |      |
| 03EE16  |                                   |      |
| 03EF16  |                                   |      |
| 03F016  | Pull-up Control Register 0 (PUR0) | 0.07 |
| 03F116  | Pull-up Control Register 1 (PUR1) | 387  |
| 03F216  |                                   |      |
| 03F316  |                                   |      |
| 03F416  |                                   |      |
| 03F516  |                                   |      |
| 03F616  |                                   |      |
| 03F716  |                                   |      |
| 03F816  |                                   |      |
| 03F916  |                                   |      |
| 03FA16  |                                   |      |
| 03FB16  |                                   |      |
| 03FC16  |                                   |      |
| 03FD16  |                                   |      |
| 03FE16  |                                   |      |
| 03FF16  | Port Control Register (PCR)       | 389  |

# RENESAS

# M32C/84 Group (M32C/84, M32C/84T) SINGLE-CHIP 16/32-BIT CMOS MICROCOMPUTER

# 1. Overview

The M32C/84 group (M32C/84, M32C/84T) microcomputer is a single-chip control unit that utilizes highperformance silicon gate CMOS technology with the M32C/80 series CPU core. The M32C/84 group (M32C/84, M32C/84T) is available in 144-pin and 100-pin plastic molded LQFP/QFP packages. With a 16-Mbyte address space, this microcomputer combines advanced instruction manipulation capabilities to process complex instructions by less bytes and execute instructions at higher speed. It includes a multiplier and DMAC adequate for office automation, communication devices and industrial equipments, and other high-speed processing applications.

### **1.1 Applications**

Automobiles, audio, cameras, office equipment, communications equipment, portable equipment, etc.



Tables 1.1 and 1.2 list performance overview of the M32C/84 group (M32C/84, M32C/84T).

| Table 1.1 | M32C/84 Group | (M32C/84, | M32C/84T) | Performance | (144-Pin Package) |
|-----------|---------------|-----------|-----------|-------------|-------------------|
|-----------|---------------|-----------|-----------|-------------|-------------------|

|                                    | Characteristic                     | Performance                                                                                                                                     |                                                                                                   |  |  |  |
|------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|--|
|                                    |                                    | M32C/84                                                                                                                                         | M32C/84T                                                                                          |  |  |  |
| CPU                                | Basic Instructions                 | 108 instructions                                                                                                                                |                                                                                                   |  |  |  |
|                                    | Minimum Instruction Execution Time | 31.3 ns<br>(f(BCLK)=32 MHz, Vcc1=4.2 V to 5.5 V)<br>41.7 ns<br>(f(BCLK)=24 MHz, Vcc1=3.0 V to 5.5 V)                                            | 31.3 ns<br>(f(BCLK)=32 MHz, Vcc1=4.2 V to 5.5 V                                                   |  |  |  |
|                                    | Operating Mode                     | Single-chip mode, Memory expansion<br>mode and Microprocessor mode                                                                              | Single-chip mode                                                                                  |  |  |  |
|                                    | Address Space                      | 16 Mbytes                                                                                                                                       |                                                                                                   |  |  |  |
|                                    | Memory Capacity                    | See Table 1.3                                                                                                                                   |                                                                                                   |  |  |  |
| Peripheral                         |                                    |                                                                                                                                                 |                                                                                                   |  |  |  |
|                                    |                                    | 123 I/O pins and 1 input pin                                                                                                                    |                                                                                                   |  |  |  |
| Function                           | Multifunction Timer                | Timer A: 16 bits x 5 channels, Time<br>Three-phase motor control circuit                                                                        |                                                                                                   |  |  |  |
|                                    | Intelligent I/O                    | Time measurement function or Wa<br>16 bits x 8 channels<br>Communication function (Clock sy<br>chronous serial I/O, HDLC data pro               | nchronous serial I/O, Clock asyr                                                                  |  |  |  |
|                                    | Serial I/O                         | 5 Channels<br>Clock synchronous serial I/O, Clo<br>IEBus <sup>(1)</sup> , I <sup>2</sup> C bus <sup>(2)</sup>                                   |                                                                                                   |  |  |  |
|                                    | CAN Module                         | 1 channel Supporting CAN 2.0B specification                                                                                                     |                                                                                                   |  |  |  |
|                                    | A/D Converter                      | 10-bit A/D converter: 1 circuit, 34 c                                                                                                           | hannels                                                                                           |  |  |  |
|                                    | D/A Converter                      | 8 bits x 2 channels                                                                                                                             |                                                                                                   |  |  |  |
|                                    | DMAC                               | 4 channels                                                                                                                                      |                                                                                                   |  |  |  |
|                                    | DMAC II                            | Can be activated by all peripheral function interrupt sources<br>Immediate transfer, Calculation transfer and Chain transfer function           |                                                                                                   |  |  |  |
|                                    | CRC Calculation Circuit            | CRC-CCITT                                                                                                                                       |                                                                                                   |  |  |  |
|                                    | X/Y Converter                      | 16 bits x 16 bits                                                                                                                               |                                                                                                   |  |  |  |
|                                    | Watchdog Timer                     | 15 bits x 1 channel (with prescaler)                                                                                                            |                                                                                                   |  |  |  |
|                                    | Interrupt                          | 38 internal and 8 external sources,                                                                                                             |                                                                                                   |  |  |  |
|                                    | •                                  | Interrupt priority level: 7                                                                                                                     |                                                                                                   |  |  |  |
|                                    | Clock Generation Circuit           | 4 circuits<br>Main clock oscillation circuit(*), Sub<br>oscillator, PLL frequency synthesiz                                                     | er                                                                                                |  |  |  |
|                                    |                                    | (*)Equipped with a built-in feedback resistor. Ceramic resonator of crystal oscillator must be connected externally                             |                                                                                                   |  |  |  |
|                                    | Oscillation Stop Detect Function   | Main clock oscillation stop detect fu                                                                                                           |                                                                                                   |  |  |  |
|                                    | Voltage Detection Circuit          | Available (optional)                                                                                                                            | Not available <sup>(4)</sup>                                                                      |  |  |  |
| Electrical<br>Charact-<br>eristics | Supply Voltage                     | Vcc1=4.2 V to 5.5 V, Vcc2=3.0 V to Vcc1<br>(f(BCLK)=32 MHz)<br>Vcc1=3.0 V to 5.5 V, Vcc2=3.0 V to Vcc1<br>(f(BCLK)=24 MHz)                      |                                                                                                   |  |  |  |
|                                    | Power Consumption                  | 28 mA (Vcc1=Vcc2=5 V,<br>f(BCLK)=32 MHz)<br>22 mA (Vcc1=Vcc2=3.3 V,<br>f(BCLK)=24 MHz)<br>10μA (Vcc1=Vcc2=5 V,<br>f(BCLK)=32 kHz, in wait mode) | 28 mA (Vcc1=Vcc2=5 V,<br>f(BCLK)=32 MHz)<br>10μA (Vcc1=Vcc2=5 V,<br>f(BCLK)=32 kHz, in wait mode) |  |  |  |
| Flash                              | Program/Erase Supply Voltage       | 3.3 V $\pm$ 0.3 V or 5.0 V $\pm$ 0.5 V                                                                                                          | 5.0 V ± 0.5 V                                                                                     |  |  |  |
| Memory                             | Program and Erase Endurance        | 100 times (all space)                                                                                                                           |                                                                                                   |  |  |  |
| Operating                          | Ambient Temperature                | -20 to 85°C<br>-40 to 85°C (optional)                                                                                                           | -40 to 85°C (T version)                                                                           |  |  |  |
| Package                            |                                    | 144-pin plastic molded LQFP                                                                                                                     | 1                                                                                                 |  |  |  |
| IOTES:                             |                                    | - ·                                                                                                                                             |                                                                                                   |  |  |  |

1. IEBus is a trademark of NEC Electronics Corporation.

2.  $I^2C$  bus is a trademark of Koninklijke Philips Electronics N. V.

3. The supply voltage of M32C/84T (High-reliability version) must be VCC1=VCC2.

4. The cold start-up/warm start-up determine function is available only at the user's option.

All options are on a request basis.

| Table 1.2 | M32C/84 Group | o (M32C/84, | M32C/84T) | Performance ( | (100-Pin Package) |
|-----------|---------------|-------------|-----------|---------------|-------------------|
|-----------|---------------|-------------|-----------|---------------|-------------------|

|                                    | Characteristic                     | Perform<br>M32C/84                                                                                                                                                        | M32C/84T                                                                                          |  |  |  |  |
|------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|
| CPU                                | Basic Instructions                 | 108 instructions                                                                                                                                                          | 101320/041                                                                                        |  |  |  |  |
|                                    | Minimum Instruction Execution Time | 31.3 ns                                                                                                                                                                   | 31.3 ns                                                                                           |  |  |  |  |
|                                    |                                    | (f(BCLK)=32 MHz, Vcc1=4.2 V to 5.5 V)<br>41.7 ns<br>(f(BCLK)=24 MHz, Vcc1=3.0 V to 5.5 V)                                                                                 |                                                                                                   |  |  |  |  |
|                                    | Operating Mode                     | Single-chip mode, Memory expansion mode and Microprocessor mode                                                                                                           | Single-chip mode                                                                                  |  |  |  |  |
|                                    | Address Space                      | 16 Mbytes                                                                                                                                                                 |                                                                                                   |  |  |  |  |
|                                    | Memory Capacity                    | See Table 1.3                                                                                                                                                             |                                                                                                   |  |  |  |  |
| Peripheral                         | I/O Port                           | 87 I/O pins and 1 input pin                                                                                                                                               |                                                                                                   |  |  |  |  |
| Function                           | Multifunction Timer                | Timer A: 16 bits x 5 channels, Time<br>Three-phase motor control circuit                                                                                                  | er B: 16 bits x 6 channels                                                                        |  |  |  |  |
|                                    | Intelligent I/O                    |                                                                                                                                                                           | nchronous serial I/O, Clock asyn-                                                                 |  |  |  |  |
|                                    | Serial I/O                         | chronous serial I/O, HDLC data pro<br>5 Channels<br>Clock synchronous serial I/O, Clo<br>IEBus <sup>(1)</sup> , I <sup>2</sup> C bus <sup>(2)</sup>                       |                                                                                                   |  |  |  |  |
|                                    | CAN Module                         | 1 channel Supporting CAN 2.0B specification                                                                                                                               |                                                                                                   |  |  |  |  |
|                                    | A/D Converter                      | 10-bit A/D converter: 1 circuit, 26 channels                                                                                                                              |                                                                                                   |  |  |  |  |
|                                    | D/A Converter                      | 8 bits x 2 channels                                                                                                                                                       |                                                                                                   |  |  |  |  |
|                                    | DMAC                               | 4 channels                                                                                                                                                                |                                                                                                   |  |  |  |  |
|                                    | DMAC II                            | Can be activated by all peripheral function interrupt sources<br>Immediate transfer, Calculation transfer and Chain transfer functions                                    |                                                                                                   |  |  |  |  |
| 1                                  | CRC Calculation Circuit            | CRC-CCITT                                                                                                                                                                 |                                                                                                   |  |  |  |  |
|                                    | X/Y Converter                      | 16 bits x 16 bits                                                                                                                                                         |                                                                                                   |  |  |  |  |
|                                    | Watchdog Timer                     | 15 bits x 1 channel (with prescaler)                                                                                                                                      | 1                                                                                                 |  |  |  |  |
|                                    | Interrupt                          | 38 internal and 8 external sources, 5 software sources<br>Interrupt priority level: 7                                                                                     |                                                                                                   |  |  |  |  |
|                                    | Clock Generation Circuit           | 4 circuits<br>Main clock oscillation circuit(*), Sub<br>oscillator, PLL frequency synthesiz<br>(*)Equipped with a built-in feedba<br>crystal oscillator must be connected | er<br>ack resistor. Ceramic resonator or                                                          |  |  |  |  |
|                                    | Oscillation Stop Detect Function   | Main clock oscillation stop detect fu                                                                                                                                     | unction                                                                                           |  |  |  |  |
|                                    | Voltage Detection Circuit          | Available (optional)                                                                                                                                                      | Not available <sup>(4)</sup>                                                                      |  |  |  |  |
| Electrical<br>Charact-<br>eristics | Supply Voltage                     | Vcc1=4.2 V to 5.5 V, Vcc2=3.0 V to Vcc1<br>(f(BCLK)=32 MHz)<br>Vcc1=3.0 V to 5.5 V, Vcc2=3.0 V to Vcc1<br>(f(BCLK)=24 MHz)                                                |                                                                                                   |  |  |  |  |
|                                    | Power Consumption                  | 28 mA (Vcc1=Vcc2=5 V,<br>f(BCLK)=32 MHz)<br>22 mA (Vcc1=Vcc2=3.3 V,<br>f(BCLK)=24 MHz)<br>10μA (Vcc1=Vcc2=5 V,<br>f(BCLK)=32 kHz, in wait mode)                           | 28 mA (Vcc1=Vcc2=5 V,<br>f(BCLK)=32 MHz)<br>10μA (Vcc1=Vcc2=5 V,<br>f(BCLK)=32 kHz, in wait mode) |  |  |  |  |
| Flash                              | Program/Erase Supply Voltage       | 3.3 V $\pm$ 0.3 V or 5.0 V $\pm$ 0.5 V                                                                                                                                    | $5.0 \text{ V} \pm 0.5 \text{ V}$                                                                 |  |  |  |  |
| Memory                             |                                    | 100 times (all space)                                                                                                                                                     |                                                                                                   |  |  |  |  |
|                                    | g Ambient Temperature              | $-20$ to $85^{\circ}$ C<br>-40 to $85^{\circ}$ C (optional)                                                                                                               | -40 to 85°C (T version)                                                                           |  |  |  |  |
| 4                                  |                                    | 100-pin plastic molded LQFP/QFP                                                                                                                                           |                                                                                                   |  |  |  |  |

NOTES:

- 1. IEBus is a trademark of NEC Electronics Corporation.
- 2. I<sup>2</sup>C bus is a trademark of Koninklijke Philips Electronics N. V.
- 3. The supply voltage of M32C/84T (High-reliability version) must be Vcc1=Vcc2.
- 4. The cold start-up/warm start-up determine function is available only at the user's option.

All options are on a request basis.



#### 1.3 Block Diagram

Figure 1.1 shows a block diagram of the M32C/84 group (M32C/84, M32C/84T) microcomputer.

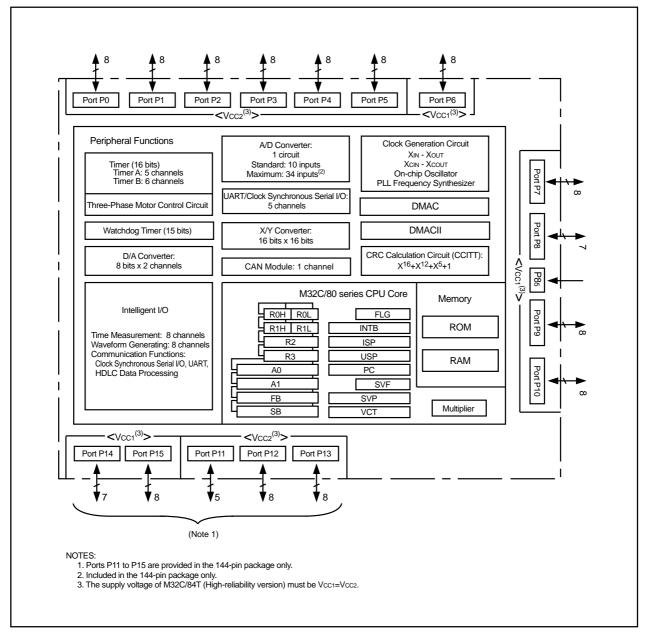



Figure 1.1 M32C/84 Group (M32C/84, M32C/84T) Block Diagram



#### **1.4 Product Information**

Table 1.3 lists product information. Figure 1.2 shows the product numbering system.

| Table 1.3 | M32C/84 Grou | p (1) (M32C/84) |
|-----------|--------------|-----------------|
|-----------|--------------|-----------------|

As of July, 2005

| Type Number    |     | Package                 | ROM<br>Capacity | RAM<br>Capacity | Remarks       |  |
|----------------|-----|-------------------------|-----------------|-----------------|---------------|--|
| M30845FJGP     |     | PLQP0144KA-A (144P6Q-A) |                 |                 |               |  |
| M30843FJGP     |     | PLQP0100KB-A (100P6Q-A) | 512K+4K         |                 |               |  |
| M30843FJFP     |     | PRQP0100JB-A (100P6S-A) |                 |                 |               |  |
| M30845FHGP     |     | PLQP0144KA-A (144P6Q-A) |                 |                 | Elech Mersery |  |
| M30843FHGP     |     | PLQP0100KB-A (100P6Q-A) | 384K+4K         |                 | Flash Memory  |  |
| M30843FHFP     |     | PRQP0100JB-A (100P6S-A) |                 | 24K             |               |  |
| M30845FWGP     |     | PLQP0144KA-A (144P6Q-A) | 22014 - 414     |                 |               |  |
| M30843FWGP     |     | PLQP0100KB-A (100P6Q-A) | 320K+4K         |                 |               |  |
| M30845MW-XXXGP |     | PLQP0144KA-A (144P6Q-A) |                 |                 |               |  |
| M30843MW-XXXGP |     | PLQP0100KB-A (100P6Q-A) | 320K            |                 |               |  |
| M30843MW-XXXFP |     | PRQP0100JB-A (100P6S-A) |                 |                 |               |  |
| M30842ME-XXXGP |     | PLQP0144KA-A (144P6Q-A) |                 |                 |               |  |
| M30840ME-XXXGP |     | PLQP0100KB-A (100P6Q-A) | 192K            | 16K             | Mask ROM      |  |
| M30840ME-XXXFP |     | PRQP0100JB-A (100P6S-A) |                 |                 |               |  |
| M30842MC-XXXGP |     | PLQP0144KA-A (144P6Q-A) |                 |                 |               |  |
| M30840MC-XXXGP |     | PLQP0100KB-A (100P6Q-A) | 128K            |                 |               |  |
| M30840MC-XXXFP |     | PRQP0100JB-A (100P6S-A) |                 | 4014            |               |  |
| M30842SGP      | (D) | PLQP0144KA-A (144P6Q-A) |                 | - 10K           |               |  |
| M30840SGP      | (D) | PLQP0100KB-A (100P6Q-A) |                 |                 | ROMless       |  |
| M30840SFP      | (D) | PRQP0100JB-A (100P6S-A) |                 |                 |               |  |

(D): Under Development

#### Table 1.3 M32C/84 Group (2) (T Version, M32C/84T)

As of July, 2005

| Type Number     |     | Package                 | ROM<br>Capacity | RAM<br>Capacity | Remarks                        |  |
|-----------------|-----|-------------------------|-----------------|-----------------|--------------------------------|--|
| M30845FJTGP     |     | PLQP0144KA-A (144P6Q-A) | 512K+4K         |                 |                                |  |
| M30843FJTGP     |     | PLQP0100KB-A (100P6Q-A) | 512N+4N         |                 | Flash Memory                   |  |
| M30845FHTGP     |     | PLQP0144KA-A (144P6Q-A) | 384K+4K         | 24K             | T Version<br>(High-releability |  |
| M30843FHTGP     |     | PLQP0100KB-A (100P6Q-A) | 304N+4N         |                 | 85° C Version)                 |  |
| M30843FWTGP     |     | PLQP0100KB-A (100P6Q-A) | 320K+4K         |                 |                                |  |
| M30842MCT-XXXGP | (D) | PLQP0144KA-A (144P6Q-A) | 128K            | 10K             | Mask ROM                       |  |
| M30840MCT-XXXGP | (D) | PLQP0100KB-A (100P6Q-A) | IZON            | IUK             |                                |  |

(D): Under Development



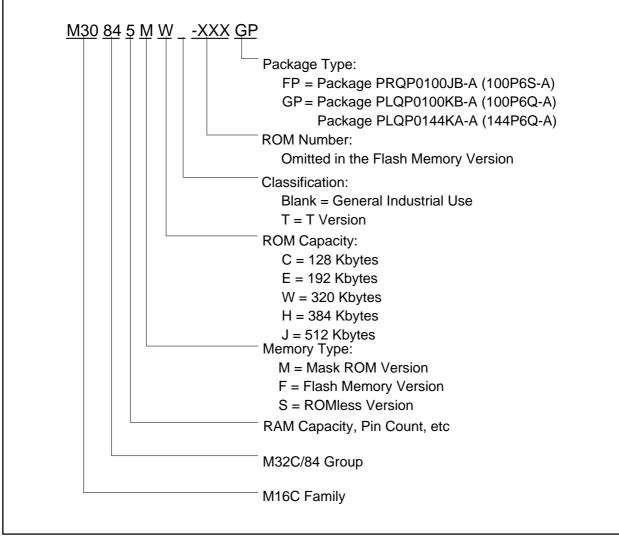



Figure 1.2 Product Numbering System



#### **1.5 Pin Assignments and Descriptions**

Figures 1.3 to 1.5 show pin assignments (top view).

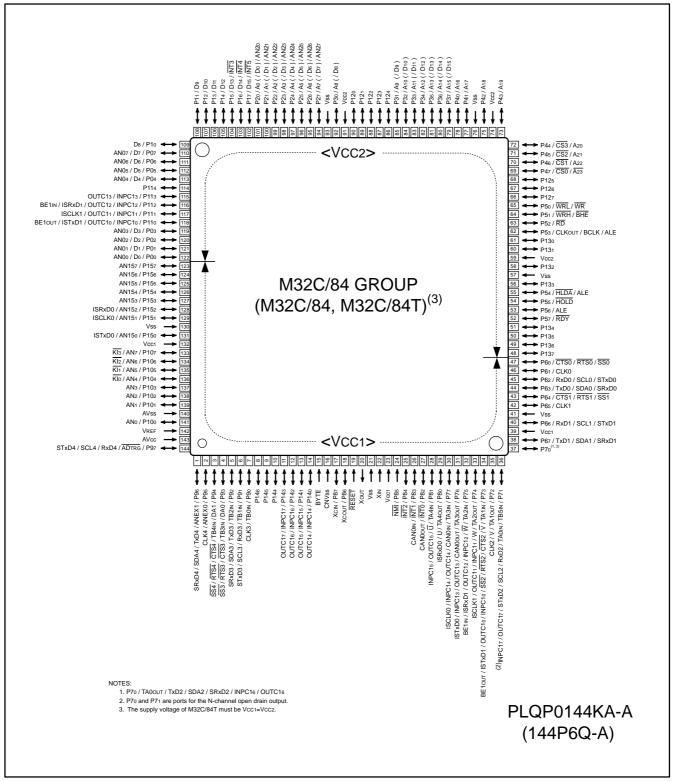



Figure 1.3 Pin Assignment for 144-Pin Package

| Pin<br>No. | Control<br>Pin | Port | Interrupt<br>Pin | Timer Pin   | UART/CAN Pin    | Intelligent I/O Pin         | Analog Pin | Bus Control Pin <sup>(1)</sup> |
|------------|----------------|------|------------------|-------------|-----------------|-----------------------------|------------|--------------------------------|
| 1          |                | P96  |                  |             | TxD4/SDA4/SRxD4 |                             | ANEX1      |                                |
| 2          |                | P95  |                  |             | CLK4            |                             | ANEX0      |                                |
| 3          |                | P94  |                  | TB4IN       | CTS4/RTS4/SS4   |                             | DA1        |                                |
| 4          |                | P93  |                  | TB3IN       | CTS3/RTS3/SS3   |                             | DA0        |                                |
| 5          |                | P92  |                  | TB2IN       | TxD3/SDA3/SRxD3 |                             |            |                                |
| 6          |                | P91  |                  | TB1IN       | RxD3/SCL3/STxD3 |                             |            |                                |
| 7          |                | P90  |                  | TB0IN       | CLK3            |                             |            |                                |
| 8          |                | P146 |                  |             |                 |                             |            |                                |
| 9          |                | P145 |                  |             |                 |                             |            |                                |
| 10         |                | P144 |                  |             |                 |                             |            |                                |
| 11         |                | P143 |                  |             |                 | INPC17/OUTC17               |            |                                |
| 12         |                | P142 |                  |             |                 | INPC16/OUTC16               |            |                                |
| 13         |                | P141 |                  |             |                 | INPC15/OUTC15               |            |                                |
| 14         |                | P140 |                  |             |                 | INPC14/OUTC14               |            |                                |
|            | BYTE           |      |                  |             |                 |                             |            |                                |
| 16         | CNVss          |      |                  |             |                 |                             |            |                                |
|            | Xcin           | P87  |                  |             |                 |                             |            |                                |
|            | Хсоит          | P86  |                  |             |                 |                             |            |                                |
|            | RESET          |      |                  |             |                 |                             |            |                                |
|            | Xout           |      |                  |             |                 |                             |            |                                |
| 21         | Vss            |      |                  |             |                 |                             |            |                                |
| 22         | Xin            |      |                  |             |                 |                             |            |                                |
| 23         | VCC1           |      |                  |             |                 |                             |            |                                |
| 24         |                | P85  | NMI              |             |                 |                             |            |                                |
| 25         |                | P84  | INT2             |             |                 |                             |            |                                |
| 26         |                | P83  | INT1             |             | CAN0IN          |                             |            |                                |
| 27         |                | P82  | INTO             |             | CAN0out         |                             |            |                                |
| 28         |                | P81  |                  | TA4IN/Ū     |                 | INPC15/OUTC15               |            |                                |
| 29         |                | P80  |                  | TA4out/U    |                 | ISRxD0                      |            |                                |
| 30         |                | P77  |                  | TA3IN       | CAN0IN          | INPC14/OUTC14/ISCLK0        |            |                                |
| 31         |                | P76  |                  | TA3out      | CAN0out         | INPC13/OUTC13/ISTxD0        |            |                                |
| 32         |                | P75  |                  | TA2IN/W     |                 | INPC12/OUTC12/ISRxD1/BE1IN  |            |                                |
| 33         |                | P74  |                  | TA2out/W    |                 | INPC11/OUTC11/ISCLK1        |            |                                |
| 34         |                | P73  |                  | TA1IN/V     | CTS2/RTS2/SS2   | INPC10/OUTC10/ISTxD1/BE1out |            |                                |
| 35         |                | P72  |                  | TA1out/V    | CLK2            |                             |            |                                |
| 36         |                | P71  |                  | TB5IN/TA0IN | RxD2/SCL2/STxD2 | INPC17/OUTC17               |            |                                |
| 37         |                | P70  |                  | TA0out      | TxD2/SDA2/SRxD2 | INPC16/OUTC16               |            |                                |
| 38         |                | P67  |                  | -           | TxD1/SDA1/SRxD1 |                             |            |                                |
|            | Vcc1           |      |                  |             |                 |                             |            |                                |
| 40         |                | P66  |                  |             | RxD1/SCL1/STxD1 |                             |            |                                |
|            | Vss            |      |                  |             |                 |                             |            |                                |
| 42         |                | P65  |                  |             | CLK1            |                             |            |                                |
| 43         |                | P64  |                  |             | CTS1/RTS1/SS1   |                             |            |                                |
| 44         |                | P63  |                  |             | TxD0/SDA0/SRxD0 |                             |            |                                |
| 45         |                | P62  |                  |             | RxD0/SCL0/STxD0 |                             |            |                                |
| 46         |                | P61  |                  |             | CLK0            |                             |            |                                |
| 47         |                | P60  |                  |             | CTS0/RTS0/SS0   |                             |            |                                |
|            |                | P137 |                  |             |                 |                             |            |                                |

#### Table 1.4 Pin Characteristics for 144-Pin Package

NOTES:



| Pin<br>No. | Control<br>Pin | Port       | Interrupt<br>Pin | Timer Pin | UART/CAN Pin | Intelligent I/O Pin | Analog Pin   | Bus Control Pin    |
|------------|----------------|------------|------------------|-----------|--------------|---------------------|--------------|--------------------|
| 49         |                | P136       |                  |           |              |                     |              |                    |
| 50         |                | P135       |                  |           |              |                     |              |                    |
| 51         |                | P134       |                  |           |              |                     |              |                    |
| 52         |                | P57        |                  |           |              |                     |              | RDY                |
| 53         |                | P56        |                  |           |              |                     |              | ALE                |
| 54         |                | P55        |                  |           |              |                     |              | HOLD               |
| 55         |                | P54        |                  |           |              |                     |              | HLDA/ALE           |
| 56         |                | P133       |                  |           |              |                     |              |                    |
| 57         | Vss            |            |                  |           |              |                     |              |                    |
| 58         |                | P132       |                  |           |              |                     |              |                    |
| 59         | VCC2           |            |                  |           |              |                     |              |                    |
| 60         |                | P131       |                  |           |              |                     |              |                    |
| 61         |                | P130       |                  |           |              |                     |              |                    |
| 62         |                | P53        |                  |           |              |                     |              | CLKout/BCLK/ALE    |
| 63         |                | P52        |                  |           |              |                     |              | RD                 |
| 64         |                | P51        |                  |           |              |                     |              | WRH/BHE            |
| 65         |                | P50        |                  |           |              |                     |              | WRL/WR             |
| 66         |                | P127       |                  |           |              |                     |              |                    |
| 67         |                | P126       |                  |           |              |                     |              |                    |
| 68         |                | P125       |                  |           |              |                     |              |                    |
| 69         |                | P47        |                  |           |              |                     |              | CS0/A23            |
| 70         |                | P46        |                  |           |              |                     |              | CS1/A22            |
| 71         |                | P45        |                  |           |              |                     |              | CS2/A21            |
| 72         |                | P44        |                  |           |              |                     |              | CS3/A20            |
| 73         |                | P43        |                  |           |              |                     |              | A19                |
| 74         | VCC2           | 1 10       |                  |           |              |                     |              | 1110               |
| 75         | 1002           | P42        |                  |           |              |                     |              | A18                |
| 76         | Vss            | 1 12       |                  |           |              |                     |              |                    |
| 77         | 100            | P41        |                  |           |              |                     |              | A17                |
| 78         |                | P40        |                  |           |              |                     |              | A16                |
| 79         |                | P37        |                  |           |              |                     |              | A15(/D15)          |
| 80         |                | P36        |                  |           |              |                     |              | A14(/D14)          |
| 81         |                | P35        |                  |           |              |                     |              | A13(/D13)          |
| 82         |                | P34        |                  |           |              |                     |              | A12(/D12)          |
| 83         |                | P33        |                  |           |              |                     |              | A11(/D11)          |
| 84         |                | P32        |                  |           |              |                     |              | A10(/D10)          |
| 85         |                | P31        |                  |           |              |                     |              | A9(/D9)            |
| 86         |                | P124       |                  |           |              |                     |              |                    |
| 87         |                | P124       |                  |           |              |                     |              |                    |
| 88         |                | P123       |                  |           |              |                     |              |                    |
| 89         |                | P121       |                  |           |              |                     |              |                    |
| 90         |                | P120       |                  |           |              |                     |              |                    |
| 91         | VCC2           | 1 120      |                  |           |              |                     |              |                    |
| 91         | V002           | P30        |                  |           |              |                     |              | A8(/D8)            |
| 92         | Vss            | 1.20       |                  |           |              |                     |              | 100/00)            |
| 93<br>94   | 1000           | P27        |                  |           |              |                     | AN27         | A7(/D7)            |
| 94<br>95   |                | P27<br>P26 |                  |           |              |                     | AN27<br>AN26 | A7(/D7)<br>A6(/D6) |
|            |                |            |                  |           |              |                     |              |                    |
| 96         |                | P25        |                  |           |              |                     | AN25         | A5(/D5)            |

NOTES:



| Pin<br>No. | Control<br>Pin | Port | Interrupt<br>Pin | Timer Pin | UART/CAN Pin    | Intelligent I/O Pin         | Analog Pin      | Bus Control Pin <sup>(1</sup> |
|------------|----------------|------|------------------|-----------|-----------------|-----------------------------|-----------------|-------------------------------|
| 97         |                | P24  |                  |           |                 |                             | AN24            | A4(/D4)                       |
| 98         |                | P23  |                  |           |                 |                             | AN23            | A3(/D3)                       |
| 99         |                | P22  |                  |           |                 |                             | AN22            | A2(/D2)                       |
| 100        |                | P21  |                  |           |                 |                             | AN21            | A1(/D1)                       |
| 101        |                | P20  |                  |           |                 |                             | AN20            | Ao(/Do)                       |
| 102        |                | P17  | INT5             |           |                 |                             |                 | D15                           |
| 103        |                | P16  | INT4             |           |                 |                             |                 | D14                           |
| 104        |                | P15  | INT3             |           |                 |                             |                 | D13                           |
| 105        |                | P14  |                  |           |                 |                             |                 | D12                           |
| 106        |                | P13  |                  |           |                 |                             |                 | D11                           |
| 107        |                | P12  |                  |           |                 |                             |                 | D10                           |
| 108        |                | P11  |                  |           |                 |                             |                 | D9                            |
| 109        |                | P10  |                  |           |                 |                             |                 | D8                            |
| 110        |                | P07  |                  |           |                 |                             | AN07            | D7                            |
| 111        |                | P06  |                  |           |                 |                             | AN06            | D6                            |
| 112        |                | P05  |                  |           |                 |                             | AN05            | D5                            |
| 113        |                | P04  |                  |           |                 |                             | AN04            | D4                            |
| 114        |                | P114 |                  |           |                 |                             |                 |                               |
| 115        |                | P113 |                  |           |                 | INPC13/OUTC13               |                 |                               |
| 116        |                | P112 |                  |           |                 | INPC12/OUTC12/ISRxD1/BE1IN  |                 |                               |
| 117        |                | P111 |                  |           |                 | INPC11/OUTC11/ISCLK1        |                 |                               |
| 118        |                | P110 |                  |           |                 | INPC10/OUTC10/ISTxD1/BE1out |                 |                               |
| 119        |                | P03  |                  |           |                 |                             | AN03            | D3                            |
| 120        |                | P02  |                  |           |                 |                             | AN02            | D2                            |
| 121        |                | P01  |                  |           |                 |                             | AN01            | D1                            |
| 122        |                | P00  |                  |           |                 |                             | AN00            | Do                            |
| 123        |                | P157 |                  |           |                 |                             | AN157           |                               |
| 124        |                | P156 |                  |           |                 |                             | AN156           |                               |
| 125        |                | P155 |                  |           |                 |                             | AN155           |                               |
| 126        |                | P154 |                  |           |                 |                             | AN154           |                               |
| 127        |                | P153 |                  |           |                 |                             | AN153           |                               |
| 128        |                | P152 |                  |           |                 | ISRxD0                      | AN152           |                               |
| 129        |                | P151 |                  |           |                 | ISCLK0                      | AN151           |                               |
| 130        | Vss            |      |                  |           |                 |                             |                 |                               |
| 131        |                | P150 |                  |           |                 | ISTxD0                      | AN150           |                               |
| 132        | Vcc1           |      |                  |           |                 |                             |                 |                               |
| 133        |                | P107 | КІз              |           |                 |                             | AN7             |                               |
| 134        |                | P106 | Kl2              |           |                 |                             | AN <sub>6</sub> |                               |
| 135        |                | P105 | KI1              |           |                 |                             | AN5             |                               |
| 136        |                | P104 | Klo              |           |                 |                             | AN4             |                               |
| 137        |                | P103 |                  |           |                 |                             | AN3             |                               |
| 138        |                | P102 |                  |           |                 |                             | AN <sub>2</sub> |                               |
| 139        |                | P101 |                  |           |                 |                             | AN1             |                               |
|            | AVss           |      |                  |           |                 |                             |                 |                               |
| 141        |                | P100 |                  |           |                 |                             | AN <sub>0</sub> |                               |
|            | Vref           |      |                  |           |                 |                             |                 |                               |
|            | AVcc           |      |                  |           |                 |                             |                 |                               |
| 144        |                | P97  |                  |           | RxD4/SCL4/STxD4 |                             | ADTRG           |                               |

#### Table 1.4 Pin Characteristics for 144-Pin Package (Continued)

NOTES:



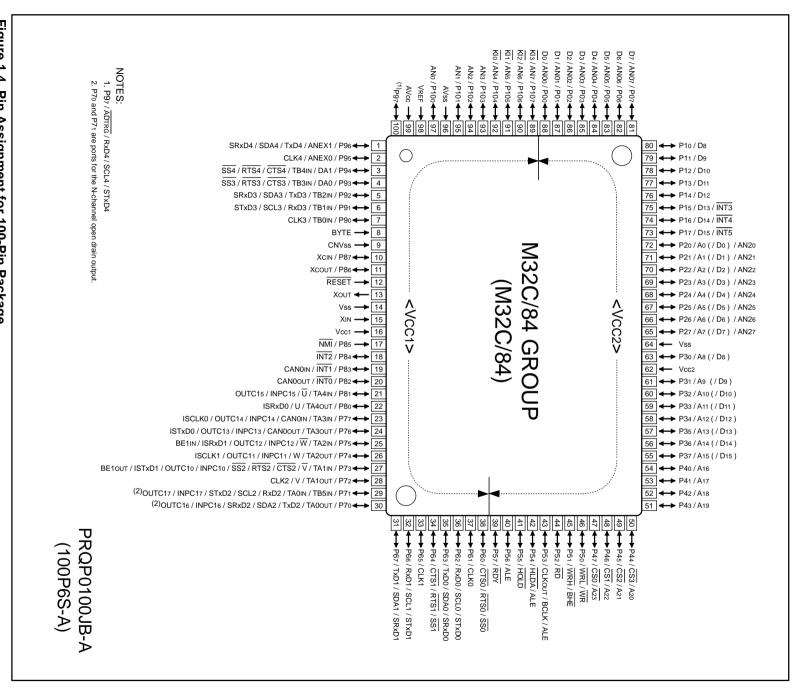



Figure 1.4 Pin Assignment for 100-Pin Package

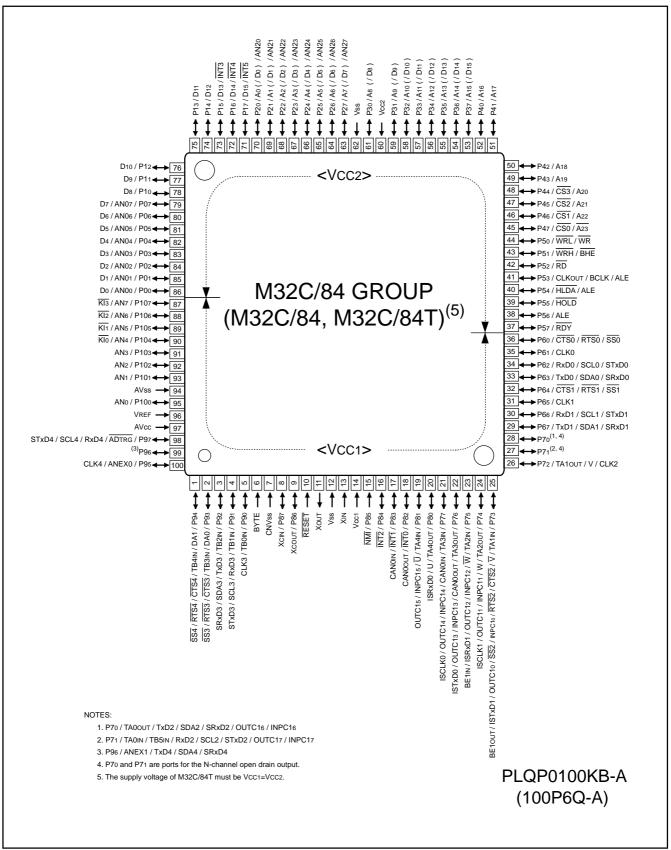



Figure 1.5 Pin Assignment for 100-Pin Package

RENESAS

| Pack<br>Pin | No.      | Control<br>Pin | Port       | Interrupt<br>Pin | Timer Pin           | UART/CAN Pin     | Intelligent I/O Pin                                 | Analog<br>Pin | Bus Control Pin <sup>(1)</sup> |
|-------------|----------|----------------|------------|------------------|---------------------|------------------|-----------------------------------------------------|---------------|--------------------------------|
| FP          | GP       |                |            |                  |                     |                  |                                                     |               |                                |
| 1           | 99       |                | P96        |                  |                     | TxD4/SDA4/SRxD4  |                                                     | ANEX1         |                                |
|             | 100      |                | P95        |                  |                     | CLK4             |                                                     | ANEX0         |                                |
| 3           | 1        |                | P94        |                  | TB4IN               | CTS4/RTS4/SS4    |                                                     | DA1           |                                |
| 4           | 2        |                | P93        |                  | TB3IN               |                  |                                                     | DA0           |                                |
| 5           | 3        |                | P92        |                  | TB2IN               | TxD3/SDA3/SRxD3  |                                                     |               |                                |
| 6           | 4        |                | P91        |                  | TB1IN               | RxD3/SCL3/STxD3  |                                                     |               |                                |
| 7           | 5        |                | P90        |                  | TB0IN               | CLK3             |                                                     |               |                                |
| 8           | 6        | BYTE           |            |                  |                     |                  |                                                     |               |                                |
| 9           | 7        | CNVss          | D0-        |                  |                     |                  |                                                     |               |                                |
| 10          | 8        | XCIN           | P87        |                  |                     |                  |                                                     |               |                                |
| 11          | 9        | XCOUT          | P86        |                  |                     |                  |                                                     |               |                                |
| 12          | 10       | RESET          |            |                  |                     |                  |                                                     |               |                                |
| 13          | 11       | Хоит           |            |                  |                     |                  |                                                     |               |                                |
| 14          | 12       | Vss            |            |                  |                     |                  |                                                     |               |                                |
| 15          | 13       | XIN            |            |                  |                     |                  |                                                     |               |                                |
| 16          | 14       | VCC1           | P85        | <u></u>          |                     |                  |                                                     |               |                                |
| 17          | 15       |                |            | NMI              |                     |                  |                                                     |               |                                |
| 18          | 16       |                | P84<br>P83 | INT2             |                     | O A NOW          |                                                     |               |                                |
| 19          | 17       |                |            | INT1             |                     |                  |                                                     |               |                                |
| 20          | 18       |                | P82<br>P81 | INT0             | TA4IN/U             | CAN0out          |                                                     |               |                                |
| 21          | 19       |                | P81<br>P80 |                  | TA4IN/U<br>TA4out/U |                  | INPC15/OUTC15                                       |               |                                |
| 22          | 20       |                | P60<br>P77 |                  | TA4001/0            | CAN0IN           | ISRxD0                                              |               |                                |
| 23          | 21       |                | P76        |                  | TA3IN<br>TA3OUT     | CANON<br>CANOOUT | INPC14/OUTC14/ISCLK0                                |               |                                |
| 24          | 22       |                | P76        |                  | TA3001<br>TA2IN/W   | CANOOUT          |                                                     |               |                                |
| 25          | 23<br>24 |                | P74        |                  | TA2IN/W<br>TA2OUT/W |                  | INPC12/OUTC12/ISRxD1/BE1IN                          |               |                                |
| 26          | 24<br>25 |                | P73        |                  |                     | CTS2/RTS2/SS2    | INPC11/OUTC11/ISCLK1<br>INPC10/OUTC10/ISTxD1/BE1OUT |               |                                |
| 27<br>28    | 25<br>26 |                | P72        |                  | TA1IN/V<br>TA1out/V | CLK2             |                                                     |               |                                |
| 20          | 20       |                | P71        |                  | TB5IN/TA0IN         | RxD2/SCL2/STxD2  | INPC17/OUTC17                                       |               |                                |
| 29<br>30    | 27       |                | P70        |                  | TA0out              | TxD2/SDA2/SRxD2  | INPC16/OUTC16                                       |               |                                |
| 31          | 20       |                | P67        |                  | 140001              | TxD1/SDA1/SRxD1  |                                                     |               |                                |
| 32          | 30       |                | P66        |                  |                     | RxD1/SCL1/STxD1  |                                                     |               |                                |
| 33          | 31       |                | P65        |                  |                     | CLK1             |                                                     |               |                                |
| 34          | 32       |                | P64        |                  |                     | CTS1/RTS1/SS1    |                                                     |               |                                |
| 35          | 33       |                | P63        |                  |                     | TxD0/SDA0/SRxD0  |                                                     |               |                                |
| 36          | 34       |                | P62        |                  |                     | RxD0/SCL0/STxD0  |                                                     |               |                                |
| 37          | 35       |                | P61        |                  |                     | CLK0             |                                                     |               |                                |
| 38          | 36       |                | P60        |                  |                     | CTS0/RTS0/SS0    |                                                     |               |                                |
| 39          | 37       |                | P57        |                  |                     | 0.00,11100,000   |                                                     |               | RDY                            |
| 40          | 38       |                | P56        |                  |                     |                  |                                                     |               | ALE                            |
| 40          | 39       |                | P55        |                  |                     |                  |                                                     |               | HOLD                           |
| 42          | 40       |                | P54        |                  |                     |                  |                                                     |               | HLDA/ALE                       |
| 43          | 41       |                | P53        |                  |                     |                  |                                                     |               | CLKout/BCLK/ALE                |
| 44          | 42       |                | P52        |                  |                     |                  |                                                     |               | RD                             |
| 45          | 43       |                | P51        |                  |                     |                  |                                                     |               | WRH/BHE                        |
| 46          | 44       |                | P50        |                  |                     |                  |                                                     |               | WRL/WR                         |
| 40          | 44       |                | P47        |                  |                     |                  |                                                     |               | CS0/A23                        |
| 47          | 45       |                | P46        |                  |                     |                  |                                                     |               | CS0/A23<br>CS1/A22             |
| 40<br>49    | 40       |                | P45        |                  |                     |                  |                                                     |               | CS1/A22<br>CS2/A21             |
| +9          | 47       |                | P44        |                  |                     |                  |                                                     |               | CS2/A21<br>CS3/A20             |

| Table 1.5 | Pin Characteristics for 100-Pin Package |
|-----------|-----------------------------------------|
|-----------|-----------------------------------------|

NOTES:



P16

P15

P14

P13

P12

**P1**1

P10

P07

P06

P05

P04

P03

P02

**P0**1

P00

P107

P106

P105

P104

P103

P102

P101

P100

P97

KIз

Kl<sub>2</sub>

KI1

KI0

INT4

INT3

D14

D13

D12

D11

D10

D9

D8

D7

D6

D5

D4

Dз

D2

D1

D<sub>0</sub>

AN07

AN06

AN05

AN04

AN03

AN02

**AN0**1

AN00

AN7

AN<sub>6</sub>

AN<sub>5</sub>

AN4

ANз

AN<sub>2</sub>

AN1

AN<sub>0</sub>

ADTRG

| Pack<br>Pin | kage<br>No. | Control<br>Pin | Port | Interrupt<br>Pin | Timer Pin | UART/CAN Pin | Intelligent I/O Pin | Analog<br>Pin | Bus Control Pin |
|-------------|-------------|----------------|------|------------------|-----------|--------------|---------------------|---------------|-----------------|
| FP          | GP          | Pin            |      | Pin              |           |              |                     | Pin           |                 |
| 51          | 49          |                | P43  |                  |           |              |                     |               | A19             |
| 52          | 50          |                | P42  |                  |           |              |                     |               | A18             |
| 53          | 51          |                | P41  |                  |           |              |                     |               | A17             |
| 54          | 52          |                | P40  |                  |           |              |                     |               | A16             |
| 55          | 53          |                | P37  |                  |           |              |                     |               | A15(/D15)       |
| 56          | 54          |                | P36  |                  |           |              |                     |               | A14(/D14)       |
| 57          | 55          |                | P35  |                  |           |              |                     |               | A13(/D13)       |
| 58          | 56          |                | P34  |                  |           |              |                     |               | A12(/D12)       |
| 59          | 57          |                | P33  |                  |           |              |                     |               | A11(/D11)       |
| 60          | 58          |                | P32  |                  |           |              |                     |               | A10(/D10)       |
| 61          | 59          |                | P31  |                  |           |              |                     |               | A9(/D9)         |
| 62          | 60          | Vcc2           |      |                  |           |              |                     |               |                 |
| 63          | 61          |                | P30  |                  |           |              |                     |               | A8(/D8)         |
| 64          | 62          | Vss            |      |                  |           |              |                     |               |                 |
| 65          | 63          |                | P27  |                  |           |              |                     | AN27          | A7(/D7)         |
| 66          | 64          |                | P26  |                  |           |              |                     | AN26          | A6(/D6)         |
| 67          | 65          |                | P25  |                  |           |              |                     | AN25          | A5(/D5)         |
| 68          | 66          |                | P24  |                  |           |              |                     | AN24          | A4(/D4)         |
| 69          | 67          |                | P23  |                  |           |              |                     | AN23          | Аз(/Dз)         |
| 70          | 68          |                | P22  |                  |           |              |                     | AN22          | A2(/D2)         |
| 71          | 69          |                | P21  |                  |           |              |                     | AN21          | A1(/D1)         |
| 72          | 70          |                | P20  |                  |           |              |                     | AN20          | Ao(/Do)         |
| 73          | 71          |                | P17  | INT5             |           |              |                     |               | D15             |

100 NOTES:

98

74 72

75

76 74

77 75

78

79 77

80 78

81 79

82 80

83 81

84 82

85 83

86 84

87 85

88 86

89

90 88

91 89

92

93 91

94 92

95 93

96 94

97 95

98 96

99 97

87

90

AVss

Vref

AVcc

73

76

1. Bus control pins in M32C/84T cannot be used.



RxD4/SCL4/STxD4

#### **1.6 Pin Description**

#### Table 1.6 Pin Description (100-Pin and 144-Pin Packages)

| Classsfication       | Symbol     | I/О Туре | Supply<br>Voltage | Function                                                                                   |
|----------------------|------------|----------|-------------------|--------------------------------------------------------------------------------------------|
| Power Supply         | VCC1, VCC2 | I        | -                 | Apply 3.0 to 5.5V to both VCC1 and VCC2 pins. Apply 0V to the                              |
|                      | Vss        |          |                   | Vss pin. Vcc1 $\ge$ Vcc2 <sup>(1, 2)</sup>                                                 |
| Analog Power         | AVcc       | I        | VCC1              | Supplies power to the A/D converter. Connect the AVcc pin to                               |
| Supply               | AVss       |          |                   | VCC1 and the AVss pin to Vss                                                               |
| Reset Input          | RESET      | I        | VCC1              | The microcomputer is in a reset state when "L" is applied to the RESET pir                 |
| CNVss                | CNVss      | I        | VCC1              | Switches processor mode. Connect the CNVss pin to Vss to start up                          |
|                      |            |          |                   | in single-chip mode or to Vcc1 to start up in microprocessor mode                          |
| Input to Switch      | BYTE       | I        | VCC1              | Switches data bus width in external memory space 3. The data                               |
| External Data Bus    |            |          |                   | bus is 16 bits wide when the BYTE pin is held "L" and 8 bits wide                          |
| Width <sup>(3)</sup> |            |          |                   | when it is held "H". Set to either. Connect the BYTE pin to Vss                            |
|                      |            |          |                   | to use the microcomputer in single-chip mode                                               |
| Bus Control          | Do to D7   | I/O      | VCC2              | Inputs and outputs data (Do to D7) while accessing an external                             |
| Pins <sup>(3)</sup>  |            |          |                   | memory space with separate bus                                                             |
|                      | D8 to D15  | I/O      | VCC2              | Inputs and outputs data (D8 to D15) while accessing an external                            |
|                      |            |          |                   | memory space with 16-bit separate bus                                                      |
|                      | A0 to A22  | 0        | VCC2              | Outputs address bits A0 to A22                                                             |
|                      | A23        | 0        | VCC2              | Outputs inversed address bit A23                                                           |
|                      | Ao/Do to   | I/O      | VCC2              | Inputs and outputs data (Do to D7) and outputs 8 low-order                                 |
|                      | A7/D7      |          |                   | address bits (A0 to A7) by time-sharing while accessing an                                 |
|                      |            |          |                   | external memory space with multiplexed bus                                                 |
|                      | A8/D8 to   | I/O      | VCC2              | Inputs and outputs data (D8 to D15) and outputs 8 middle-order                             |
|                      | A15/D15    |          |                   | address bits (A8 to A15) by time-sharing while accessing an                                |
|                      |            |          |                   | external memory space with 16-bit multiplexed bus                                          |
|                      | CS0 to CS3 | 0        | VCC2              | Outputs CS0 to CS3 that are chip-select signals specifying an external space               |
|                      | WRL / WR   | 0        | VCC2              | Outputs WRL, WRH, (WR, BHE) and RD signals. WRL and                                        |
|                      | WRH / BHE  |          |                   | $\overline{WRH}$ can be switched with $\overline{WR}$ and $\overline{BHE}$ by program      |
|                      | RD         |          |                   | ■ WRL, WRH and RD selected:                                                                |
|                      |            |          |                   | If external data bus is 16 bits wide, data is written to an even                           |
|                      |            |          |                   | address in external memory space when WRL is held "L".                                     |
|                      |            |          |                   | Data is written to an odd address when $\overline{WRH}$ is held "L".                       |
|                      |            |          |                   | Data is read when RD is held "L".                                                          |
|                      |            |          |                   | ■ WR, BHE and RD selected:                                                                 |
|                      |            |          |                   | Data is written to external memory space when WR is held "L".                              |
|                      |            |          |                   | Data in an external memory space is read when $\overline{RD}$ is held "L".                 |
|                      |            |          |                   | An odd address is accessed when BHE is held "L".                                           |
|                      |            |          |                   | Select $\overline{WR}$ , $\overline{BHE}$ and $\overline{RD}$ for external 8-bit data bus. |
|                      | ALE        | 0        | VCC2              | ALE is a signal latching the address                                                       |
|                      | HOLD       | I        | VCC2              | The microcomputer is placed in a hold state while the HOLD pin is held "L"                 |
|                      | HLDA       | 0        | VCC2              | Outputs an "L" signal while the microcomputer is placed in a hold state                    |
|                      | RDY        | I        | VCC2              | Bus is placed in a wait state while the RDY pin is held "L"                                |

I : Input O : Output I/O : Input and output NOTES:

1. VCC1 is hereinafter referred to as VCC unless otherwise noted.

2. Apply 4.2 to 5.5V to the Vcc1 and Vcc2 pins when using M32C/84T. Vcc1=Vcc2.



### Table 1.6 Pin Description (100-Pin and 144-Pin Packages) (Continued)

| Classsfication             | Symbol                              | I/O Type | Supply<br>Voltage | Function                                                           |  |
|----------------------------|-------------------------------------|----------|-------------------|--------------------------------------------------------------------|--|
| Main Clock Input           | Xin                                 | Ι        | VCC1              | I/O pins for the main clock oscillation circuit. Connect a ceramic |  |
| Main Clask Output          | Vout                                | 0        | Vcc1              | - resonator or crystal oscillator between XIN and XOUT. To apply   |  |
| Main Clock Output          |                                     | 0        | VCC1              | external clock, apply it to XIN and leave XOUT open                |  |
| Sub Clock Input            | XCIN                                | I        | VCC1              | I/O pins for the sub clock oscillation circuit. Connect a crystal  |  |
| Sub Clock Output           | Xcout                               | 0        | Vcc1              | oscillator between XCIN and XCOUT. To apply external clock,        |  |
|                            |                                     | 0        | VCCI              | apply it to XCIN and leave XCOUT open                              |  |
| BCLK Output <sup>(1)</sup> | BCLK                                | 0        | VCC2              | Outputs BCLK signal                                                |  |
| Clock Output               | CLKOUT                              | 0        | VCC2              | Outputs the clock having the same frequency as fC, f8 or f32       |  |
| INT Interrupt              | INT0 to INT2                        | I        | VCC1              | Input pins for the INT interrupt                                   |  |
| Input                      | INT3 to INT5                        | I        | VCC2              |                                                                    |  |
| NMI Interrupt Input        | NMI                                 | I        | VCC1              | Input pin for the MMI interrupt                                    |  |
| Key Input Interrupt        | KI0 to KI3                          | I        | VCC1              | Input pins for the key input interrupt                             |  |
| Timer A                    | TA0OUT to                           | I/O      | VCC1              | I/O pins for the timer A0 to A4                                    |  |
|                            | TA40UT                              |          |                   | (TA0out is a pin for the N-channel open drain output.)             |  |
|                            | TA0IN to                            | I        | VCC1              | Input pins for the timer A0 to A4                                  |  |
|                            | TA4IN                               |          |                   |                                                                    |  |
| Timer B                    | TB0IN to                            | I        | VCC1              | Input pins for the timer B0 to B5                                  |  |
|                            | TB5IN                               |          |                   |                                                                    |  |
| Three-phase Motor          | $U, \overline{U}, V, \overline{V},$ | 0        | VCC1              | Output pins for the three-phase motor control timer                |  |
| Control Timer Output       | W, W                                |          |                   |                                                                    |  |
| Serial I/O                 | CTS0 to CTS4                        | I        | VCC1              | lutput pins for data transmission control                          |  |
|                            | RTS0 to RTS4                        | 0        | VCC1              | Output pins for data reception control                             |  |
|                            | CLK0 to CLK4                        | I/O      | VCC1              | Inputs and outputs the transfer clock                              |  |
|                            | RxD0 to RxD4                        | I        | VCC1              | Inputs serial data                                                 |  |
|                            | TxD0 to TxD4                        | 0        | VCC1              | Outputs serial data                                                |  |
|                            |                                     |          |                   | (TxD2 is a pin for the N-channel open drain output.)               |  |
| I <sup>2</sup> C Mode      | SDA0 to                             | I/O      | VCC1              | Inputs and outputs serial data                                     |  |
|                            | SDA4                                |          |                   | (SDA2 is a pin for the N-channel open drain output.)               |  |
|                            | SCL0 to                             | I/O      | VCC1              | Inputs and outputs the transfer clock                              |  |
|                            | SCL4                                |          |                   | (SCL2 is a pin for the N-channel open drain output.)               |  |
| Serial I/O                 | STxD0 to                            | 0        | VCC1              | Outputs serial data when slave mode is selected                    |  |
| Special Function           | STxD4                               |          |                   | (STxD2 is a pin for the N-channel open drain output.)              |  |
|                            | SRxD0 to                            | I        | VCC1              | Inputs serial data when slave mode is selected                     |  |
|                            | SRxD4                               |          |                   |                                                                    |  |
|                            | SS0 to SS4                          | I        | VCC1              | Input pins to control serial I/O special function                  |  |

I : Input NOTES:

1. Bus control pins in M32C/84T cannot be used.



| Table 1.6 | Pin Description | (100-Pin and 1 | 44-Pin Packages) | (Continued) |
|-----------|-----------------|----------------|------------------|-------------|
|-----------|-----------------|----------------|------------------|-------------|

| Classsfication             | Symbol                                     | I/О Туре | Supply<br>Voltage                                                     | Function                                                                                          |
|----------------------------|--------------------------------------------|----------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Reference<br>Voltage Input | Vref                                       | I        | -                                                                     | Applies reference voltage to the A/D converter and D/A converter                                  |
| A/D Converter              | AN0 to AN7<br>AN00 to AN07<br>AN20 to AN27 | I        | VCC1                                                                  | Analog input pins for the A/D converter                                                           |
|                            | ADTRG                                      | I        | VCC1                                                                  | Input pin for an external A/D trigger                                                             |
|                            | ANEX0                                      | I/O      | VCC1                                                                  | Extended analog input pin for the A/D converter and output pin in external op-amp connection mode |
|                            | ANEX1                                      | I        | VCC1                                                                  | Extended analog input pin for the A/D converter                                                   |
| D/A Converter              | DA0, DA1                                   | 0        | VCC1                                                                  | Output pin for the D/A converter                                                                  |
| Intelligent I/O            | INPC10 to INPC13                           | I        | Vcc1/Vcc2 <sup>(1)</sup> Input pins for the time measurement function |                                                                                                   |
|                            | INPC14 to INPC17                           | I        | VCC1                                                                  |                                                                                                   |
|                            | OUTC10 to OUTC13                           | 0        | VCC1/VCC2 <sup>(1)</sup>                                              | Output pins for the waveform generating function                                                  |
|                            | OUTC14 to OUTC17                           | 0        | VCC1                                                                  | (OUTC16 and OUTC17 assgined to P70 and P71 are pins for the N-channel open drain output.)         |
|                            | ISCLK0                                     | I/O      | VCC1                                                                  | Inputs and outputs the clock for the intellignet I/O communication                                |
|                            | ISCLK1                                     | I/O      | VCC1/VCC2 <sup>(1)</sup>                                              | function                                                                                          |
|                            | ISRXD0                                     | I        | VCC1                                                                  | Inputs data for the intellignet I/O communication function                                        |
|                            | ISRXD1                                     | I        | VCC1/VCC2 <sup>(1)</sup>                                              |                                                                                                   |
|                            | ISTXD0                                     | 0        | VCC1                                                                  | Outputs data for the intellignet I/O communication function                                       |
|                            | ISTXD1                                     | 0        | VCC1/VCC2 <sup>(1)</sup>                                              |                                                                                                   |
|                            | BE1IN                                      | I        | VCC1/VCC2 <sup>(1)</sup>                                              | Inputs data for the intellignet I/O communication function                                        |
|                            | BE1OUT                                     | 0        | VCC1/VCC2 <sup>(1)</sup>                                              | Outputs data for the intellignet I/O communication function                                       |
| CAN                        | CAN0IN                                     | I        | VCC1                                                                  | Input pin for the CAN communication function                                                      |
|                            | CAN0out                                    | 0        | VCC1                                                                  | Output pin for the CAN communication function                                                     |
| I/O Ports                  | P00 to P07                                 | I/O      | VCC2                                                                  | I/O ports for CMOS. Each port can be programmed for input or                                      |
|                            | P10 to P17                                 |          |                                                                       | output under the control of the direction register. An input port                                 |
|                            | P20 to P27                                 |          |                                                                       | can be set, by program, for a pull-up resistor available or for no                                |
|                            | P30 to P37                                 |          |                                                                       | pull-up resister available in 4-bit units                                                         |
|                            | P40 to P47                                 |          |                                                                       |                                                                                                   |
|                            | P50 to P57                                 |          |                                                                       |                                                                                                   |
|                            | P60 to P67                                 | I/O      | VCC1                                                                  | I/O ports having equivalent functions to P0                                                       |
|                            | P70 to P77                                 |          |                                                                       | (P70 and P71 are ports for the N-channel open drain output.)                                      |
|                            | P90 to P97                                 |          |                                                                       |                                                                                                   |
|                            | P100 to P107                               |          |                                                                       |                                                                                                   |
|                            | P80 to P84<br>P86, P87                     | I/O      | VCC1                                                                  | I/O ports having equivalent functions to P0                                                       |
| Input Port                 | P85                                        | 1        | VCC1                                                                  | Shares a pin with NMI. NMI input state can be got by reading P85                                  |

I : Input O : Output I/O : Input and output NOTES:

1. VCc2 is not available in the 100-pin package. Vcc1 only available.

| Classsfication | Symbol         | I/О Туре | Supply<br>Voltage | Function                                    |
|----------------|----------------|----------|-------------------|---------------------------------------------|
| A/D Converter  | AN150 to AN157 | I        | VCC1              | Analog input pins for the A/D converter     |
| I/O Ports      | P110 to P114   | I/O      | VCC2              | I/O ports having equivalent functions to P0 |
|                | P120 to P127   |          |                   |                                             |
|                | P130 to P137   |          |                   |                                             |
|                | P140 to P146   | I/O      | VCC1              | I/O ports having equivalent functions to P0 |
|                | P150 to P157   |          |                   |                                             |

Table 1.6 Pin Description (144-Pin Package only) (Continued)

I : Input O : Output I/O : Input and output



# 2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU registers.

The register bank is comprised of 8 registers (R0, R1, R2, R3, A0, A1, SB and FB) out of 28 CPU registers. Two sets of register banks are provided.

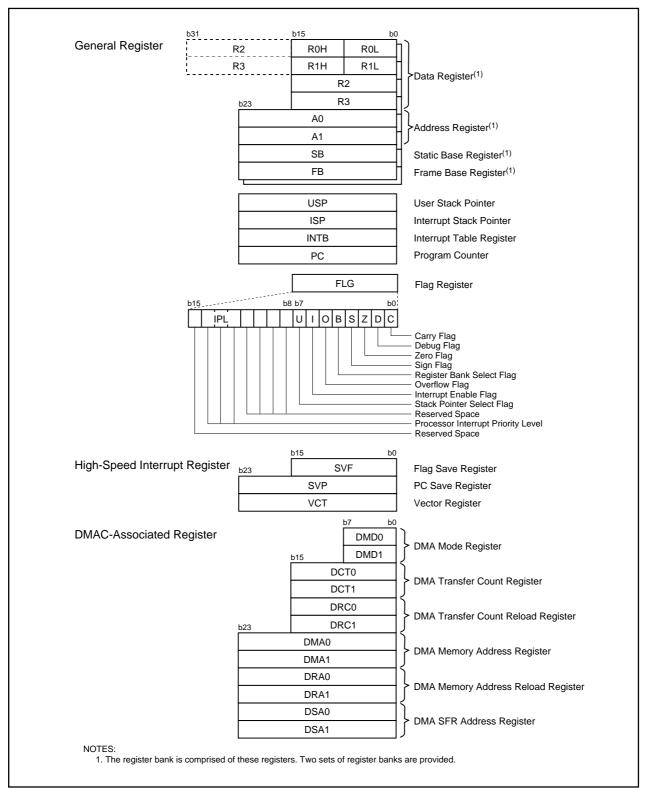



Figure 2.1 CPU Register

## 2.1 General Registers

## 2.1.1 Data Registers (R0, R1, R2 and R3)

R0, R1, R2 and R3 are 16-bit registers for transfer, arithmetic and logic operations. R0 and R1 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R0 can be combined with R2 to be used as a 32-bit data register (R2R0). The same applies to R1 and R3.

## 2.1.2 Address Registers (A0 and A1)

A0 and A1 are 24-bit registers for A0-/A1-indirect addressing, A0-/A1-relative addressing, transfer, arithmetic and logic operations.

## 2.1.3 Static Base Register (SB)

SB is a 24-bit register for SB-relative addressing.

## 2.1.4 Frame Base Register (FB)

FB is a 24-bit register for FB-relative addressing.

## 2.1.5 Program Counter (PC)

PC, 24 bits wide, indicates the address of an instruction to be executed.

## 2.1.6 Interrupt Table Register (INTB)

INTB is a 24-bit register indicating the starting address of an relocatable interrupt vector table.

### 2.1.7 User Stack Pointer (USP), Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP and ISP, are 24 bits wide each. The U flag is used to switch between USP and ISP. Refer to **2.1.8 Flag Register (FLG)** for details on the U flag. Set USP and ISP to even addresses to execute an interrupt sequence efficiently.

## 2.1.8 Flag Register (FLG)

FLG is a 16-bit register indicating a CPU state.

### 2.1.8.1 Carry Flag (C)

The C flag indicates whether carry or borrow has occurred after executing an instruction.

### 2.1.8.2 Debug Flag (D)

The D flag is for debug only. Set to "0".

### 2.1.8.3 Zero Flag (Z)

The Z flag is set to "1" when the value of zero is obtained from an arithmetic operation; otherwise "0".

### 2.1.8.4 Sign Flag (S)

The S flag is set to "1" when a negative value is obtained from an arithmetic operation; otherwise "0".

### 2.1.8.5 Register Bank Select Flag (B)

The register bank 0 is selected when the B flag is set to "0". The register bank 1 is selected when this flag is set to "1".

### 2.1.8.6 Overflow Flag (O)

The O flag is set to "1" when the result of an arithmetic operation overflows; otherwise "0".

### 2.1.8.7 Interrupt Enable Flag (I)

The I flag enables a maskable interrupt.

Interrupt is disabled when the I flag is set to "0" and enabled when the I flag is set to "1". The I flag is set to "0" when an interrupt is acknowledged.

### 2.1.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to "0". USP is selected when this flag is set to "1". The U flag is set to "0" when a hardware interrupt is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

### 2.1.8.9 Processor Interrupt Priority Level (IPL)

IPL, 3 bits wide, assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has greater priority than IPL, the interrupt is enabled.

### 2.1.8.10 Reserved Space

When writing to a reserved space, set to "0". When reading, its content is indeterminate.

### 2.2 High-Speed Interrupt Registers

Registers associated with the high-speed interrupt are as follows:

- Flag save register (SVF)
- PC save register (SVP)
- Vector register (VCT)

Refer to **11.4 High-Speed Interrupt** for details.

### 2.3 DMAC-Associated Registers

Registers associated with DMAC are as follows:

- DMA mode register (DMD0, DMD1)
- DMA transfer count register (DCT0, DCT1)
- DMA transfer count reload register (DRC0, DRC1)
- DMA memory address register (DMA0, DMA1)
- DMA SFR address register (DSA0, DSA1)
- DMA memory address reload register (DRA0, DRA1)

Refer to **13. DMAC** for details.

# 3. Memory

Figure 3.1 shows a memory map of the M32C/84 group (M32C/84, M32C/84T).

The M32C/84 group (M32C/84, M32C/84T) provides 16-Mbyte address space from addresses 00000016 to FFFFF16.

The internal ROM is allocated lower addresses beginning with address FFFFFF16. For example, a 64-Kbyte internal ROM is allocated in addresses FF000016 to FFFFFF16.

The fixed interrupt vectors are allocated addresses FFFFDC16 to FFFFF16. It stores the starting address of each interrupt routine. Refer to **11. Interrupt** for details.

The internal RAM is allocated higher addresses beginning with address 00040016. For example, a 10-Kbyte internal RAM is allocated addresses 00040016 to 002BFF16. Besides storing data, it becomes stacks when the subroutine is called or an interrupt is acknowleged.

SFR, consisting of control registers for peripheral functions such as I/O port, A/D converter, serial I/O, and timers, is allocated addresses 00000016 to 0003FF16. All blank spaces within SFR are reserved and cannot be accessed by users.

The special page vectors are allocated addresses FFFE0016 to FFFFDB16. It is used for the JMPS instruction and JSRS instruction. Refer to the Renesas publication **M32C/80 Series Software Manual** for details. In memory expansion mode and microprocessor mode, some spaces are reserved and cannot be accessed by users.

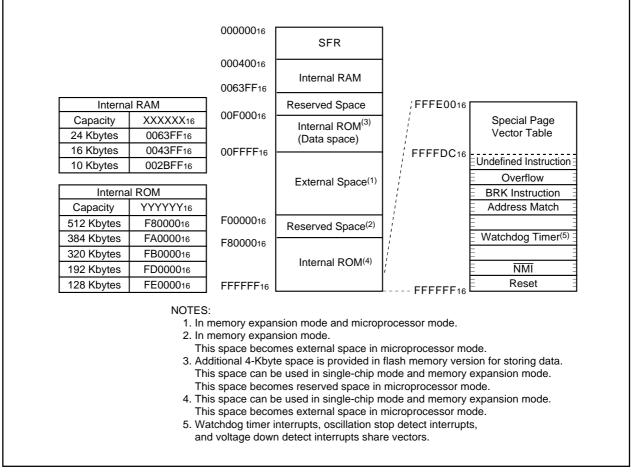



Figure 3.1 Memory Map

# 4. Special Function Registers (SFR)

| Address | Register                                                 | Symbol | Value after RESET                                        |
|---------|----------------------------------------------------------|--------|----------------------------------------------------------|
| 000016  |                                                          | ,      |                                                          |
| 000116  |                                                          |        |                                                          |
| 000216  |                                                          |        |                                                          |
| 000316  |                                                          |        |                                                          |
| 000416  | Processor Mode Register 0 <sup>(1)</sup>                 | PM0    | 1000 00002(CNVss pin ="L")<br>0000 00112(CNVss pin ="H") |
| 000516  | Processor Mode Register 1                                | PM1    | 0016                                                     |
| 000616  | System Clock Control Register 0                          | CM0    | 0000 10002                                               |
| 000716  | System Clock Control Register 1                          | CM1    | 0010 00002                                               |
| 000816  | , .                                                      |        |                                                          |
| 000916  | Address Match Interrupt Enable Register                  | AIER   | 0016                                                     |
| 000A16  | Protect Register                                         | PRCR   | XXXX 00002                                               |
| 000/110 |                                                          |        | XXXX 10002(BYTE pin ="L")                                |
| 000B16  | External Data Bus Width Control Register <sup>(2)</sup>  | DS     | XXXX 00002(BYTE pin ="H")                                |
| 000C16  | Main Clock Division Register                             | MCD    | XXX0 10002                                               |
| 000D16  | Oscillation Stop Detection Register                      | CM2    | 0016                                                     |
| 000E16  | Watchdog Timer Start Register                            | WDTS   | XX16                                                     |
| 000F16  | Watchdog Timer Control Register                          | WDC    | 000X XXXX2                                               |
| 001016  |                                                          |        |                                                          |
| 001116  | Address Match Interrupt Register 0                       | RMAD0  | 0000016                                                  |
| 001216  |                                                          |        |                                                          |
| 001316  | Processor Mode Register 2                                | PM2    | 0016                                                     |
| 001416  |                                                          |        |                                                          |
| 001516  | Address Match Interrupt Register 1                       | RMAD1  | 0000016                                                  |
| 001616  |                                                          |        |                                                          |
| 001716  | Voltage Detection Register 2 <sup>(2)</sup>              | VCR2   | 0016                                                     |
| 001816  |                                                          |        |                                                          |
| 001916  | Address Match Interrupt Register 2                       | RMAD2  | 0000016                                                  |
| 001A16  |                                                          |        |                                                          |
| 001B16  | Voltage Detection Register 1 <sup>(2)</sup>              | VCR1   | 0000 10002                                               |
| 001C16  |                                                          |        |                                                          |
| 001D16  | Address Match Interrupt Register 3                       | RMAD3  | 0000016                                                  |
| 001E16  |                                                          |        |                                                          |
| 001F16  |                                                          |        |                                                          |
| 002016  |                                                          |        |                                                          |
| 002116  |                                                          |        |                                                          |
| 002216  |                                                          |        |                                                          |
| 002316  |                                                          |        |                                                          |
| 002416  |                                                          |        |                                                          |
| 002516  |                                                          |        |                                                          |
| 002616  | PLL Control Register 0                                   | PLC0   | 0001 X0102                                               |
| 002716  | PLL Control Register 1                                   | PLC1   | 000X 00002                                               |
| 002816  | 5                                                        |        |                                                          |
| 002916  | Address Match Interrupt Register 4                       | RMAD4  | 0000016                                                  |
| 002A16  |                                                          |        |                                                          |
| 002B16  |                                                          |        |                                                          |
| 002D10  |                                                          |        |                                                          |
| 002D16  | Address Match Interrupt Register 5                       | RMAD5  | 0000016                                                  |
| 002E16  |                                                          |        |                                                          |
| 002E16  | Voltage Down Detection Interrupt Register <sup>(2)</sup> | D4INT  | 0016                                                     |
|         | terminate                                                |        |                                                          |

Blank spaces are reserved. No access is allowed.

NOTES:

- 1. The PM01 and PM00 bits in the PM1 register maintain values set before reset even if software reset or watchdog timer reset is performed.
- 2. These registers in M32C/84T cannot be used.



| Address                                                                      | Register                                              | Symbol | Value after RESET                                                  |
|------------------------------------------------------------------------------|-------------------------------------------------------|--------|--------------------------------------------------------------------|
| 003016                                                                       |                                                       |        |                                                                    |
| 003116                                                                       |                                                       |        |                                                                    |
| 003216                                                                       |                                                       |        |                                                                    |
| 003316                                                                       |                                                       |        |                                                                    |
| 003416                                                                       |                                                       |        |                                                                    |
| 003516                                                                       |                                                       |        |                                                                    |
| 003616                                                                       |                                                       |        |                                                                    |
| 003716                                                                       |                                                       |        |                                                                    |
| 003816                                                                       |                                                       |        |                                                                    |
| 003916                                                                       | Address Match Interrupt Register 6                    | RMAD6  | 0000016                                                            |
| 003A16                                                                       |                                                       |        |                                                                    |
| 003B16                                                                       |                                                       |        |                                                                    |
| 003C16                                                                       |                                                       |        |                                                                    |
| 003D16                                                                       | Address Match Interrupt Register 7                    | RMAD7  | 0000016                                                            |
| 003E16                                                                       |                                                       |        |                                                                    |
| 003F16                                                                       |                                                       |        |                                                                    |
| 004016                                                                       |                                                       |        |                                                                    |
| 004116                                                                       |                                                       |        |                                                                    |
| 004216                                                                       |                                                       |        |                                                                    |
| 004316                                                                       |                                                       |        |                                                                    |
| 004416                                                                       |                                                       |        |                                                                    |
| 004516                                                                       |                                                       |        |                                                                    |
| 004616                                                                       |                                                       |        |                                                                    |
| 004716                                                                       |                                                       |        |                                                                    |
| 004816                                                                       | External Space Wait Control Register 0 <sup>(1)</sup> | EWCR0  | X0X0 00112                                                         |
| 004916                                                                       | External Space Wait Control Register 1 <sup>(1)</sup> | EWCR1  | X0X0 00112                                                         |
| 004A16                                                                       | External Space Wait Control Register 2 <sup>(1)</sup> | EWCR2  | X0X0 00112                                                         |
| 004B16                                                                       | External Space Wait Control Register 3 <sup>(1)</sup> | EWCR3  | X0X0 00112                                                         |
| 004C16                                                                       | Page Mode Wait Control Register 0 <sup>(2)</sup>      | PWCR0  | 0001 00012                                                         |
| 004D16                                                                       | Page Mode Wait Control Register 1 <sup>(2)</sup>      | PWCR1  | 0001 00012                                                         |
| 004E16                                                                       |                                                       |        |                                                                    |
| 004F16                                                                       |                                                       |        |                                                                    |
| 005016                                                                       |                                                       |        |                                                                    |
| 005116                                                                       |                                                       |        |                                                                    |
| 005216                                                                       |                                                       |        |                                                                    |
| 005316                                                                       |                                                       |        |                                                                    |
| 005416                                                                       |                                                       |        |                                                                    |
| 005516                                                                       | Flash Memory Control Register 1                       | FMR1   | 0000 01012                                                         |
| 005616                                                                       |                                                       |        |                                                                    |
| 005716                                                                       | Flash Memory Control Register 0                       | FMR0   | 0000 00012(Flash memory version)<br>XXXX XXX02(Masked ROM version) |
| 005816                                                                       |                                                       |        |                                                                    |
| 005916                                                                       |                                                       |        |                                                                    |
| 005A16                                                                       |                                                       |        |                                                                    |
| 005B16                                                                       |                                                       |        |                                                                    |
|                                                                              |                                                       |        |                                                                    |
|                                                                              |                                                       |        |                                                                    |
|                                                                              |                                                       |        |                                                                    |
| 005F16                                                                       |                                                       |        |                                                                    |
| 005716<br>005816<br>005916<br>005A16<br>005B16<br>005C16<br>005D16<br>005E16 | Flash Memory Control Register 0                       | FMR0   |                                                                    |

Blank spaces are reserved. No access is allowed.

NOTES:

- 1. These registers in M32C/84T cannot be used.
- 2. These registers can be used only in the ROMless version.

| Address          | Register                                                   | Symbol        | Value after RESET        |
|------------------|------------------------------------------------------------|---------------|--------------------------|
| 006016           |                                                            |               |                          |
| 006116           |                                                            |               |                          |
| 006216           |                                                            |               |                          |
| 006316           |                                                            |               |                          |
| 006416           |                                                            |               |                          |
| 006516           |                                                            |               |                          |
| 006616           |                                                            |               |                          |
| 006716           |                                                            |               |                          |
| 006816           | DMA0 Interrupt Control Register                            | DM0IC         | XXXX X0002               |
| 006916           | Timer B5 Interrupt Control Register                        | TB5IC         | XXXX X0002               |
| 006A16           | DMA2 Interrupt Control Register                            | DM2IC         | XXXX X0002               |
| 006B16           | UART2 Receive /ACK Interrupt Control Register              | S2RIC         | XXXX X0002               |
| 006C16           | Timer A0 Interrupt Control Register                        | TAOIC         | XXXX X0002               |
| 006D16           | UART3 Receive /ACK Interrupt Control Register              | S3RIC         | XXXX X0002               |
| 006E16           | Timer A2 Interrupt Control Register                        | TA2IC         | XXXX X0002               |
| 006F16           | UART4 Receive /ACK Interrupt Control Register              | S4RIC         | XXXX X0002               |
| 007016           | Timer A4 Interrupt Control Register                        | TA4IC         | XXXX X0002               |
| 007116           | UART0/UART3 Bus Conflict Detect Interrupt Control Register | BCN0IC/BCN3IC | XXXX X0002               |
| 007216           | UARTO Receive/ACK Interrupt Control Register               | SORIC         | XXXX X0002               |
| 007316           | A/D0 Conversion Interrupt Control Register                 | ADOIC         | XXXX X0002               |
| 007416           | UART1 Receive/ACK Interrupt Control Register               | S1RIC         | XXXX X0002               |
| 007516           | Intelligent I/O Interrupt Control Register 0               | IIO0IC        | XXXX X0002               |
| 007616           | Timer B1 Interrupt Control Register                        | TB1IC         | XXXX X0002               |
| 007716           | Intelligent I/O Interrupt Control Register 2               | IIO2IC        | XXXX X0002               |
| 007816           | Timer B3 Interrupt Control Register                        | TB3IC         | XXXX X0002               |
| 007916           | Intelligent I/O Interrupt Control Register 4               | IIO4IC        | XXXX X0002               |
| 007A16           | INT5 Interrupt Control Register                            | INT5IC        | XX00 X0002               |
| 007B16           |                                                            |               | 700070002                |
| 007C16           | INT3 Interrupt Control Register                            | INT3IC        | XX00 X0002               |
| 007016           | Intelligent I/O Interrupt Control Register 8               | IIO8IC        | XXXX X0002               |
| 007E16           | INT1 Interrupt Control Register                            | INT1IC        | XX00 X0002               |
| 007 210          | Intelligent I/O Interrupt Control Register 10/             |               | 77700 770002             |
| 007F16           | CAN Interrupt 1 Control Register                           | CAN1IC        | XXXX X0002               |
| 008016           | OAN Interrupt 1 Control Register                           | OANTO         |                          |
| 008116           | CAN Interrupt 2 Control Register                           | CAN2IC        | XXXX X0002               |
| 008216           |                                                            | 0/11/210      | 77777770002              |
| 008316           |                                                            |               |                          |
| 008416           |                                                            |               |                          |
| 008516           |                                                            |               |                          |
| 008616           |                                                            |               |                          |
| 008716           |                                                            |               |                          |
| 008716           | DMA1 Interrupt Control Register                            | DM1IC         | XXXX X0002               |
| 008916           | UART2 Transmit /NACK Interrupt Control Register            | S2TIC         | XXXX X0002               |
| 008916<br>008A16 | DMA3 Interrupt Control Register                            | DM3IC         | XXXX X0002<br>XXXX X0002 |
| 008A16           | UART3 Transmit /NACK Interrupt Control Register            | S3TIC         | XXXX X0002               |
| 008C16           | Timer A1 Interrupt Control Register                        | TA1IC         | XXXX X0002               |
| 008D16           | UART4 Transmit /NACK Interrupt Control Register            | S4TIC         | XXXX X0002               |
| 008D16           | Timer A3 Interrupt Control Register                        | TA3IC         | XXXX X0002               |
| 008E16<br>008F16 | UART2 Bus Conflict Detect Interrupt Control Register       | BCN2IC        | XXXX X0002<br>XXXX X0002 |
| UUOF16           | UARTZ DUS COMMICI DELECT INTERNUPT CONTROL REGISTER        | DUNZIU        | ^^^^ AUUU2               |



| Address | Register                                                   | Symbol        | Value after RESET |
|---------|------------------------------------------------------------|---------------|-------------------|
| 009016  | UART0 Transmit /NACK Interrupt Control Register            | SOTIC         | XXXX X0002        |
| 009116  | UART1/UART4 Bus Conflict Detect Interrupt Control Register | BCN1IC/BCN4IC | XXXX X0002        |
| 009216  | UART1 Transmit/NACK Interrupt Control Register             | S1TIC         | XXXX X0002        |
| 009316  | Key Input Interrupt Control Register                       | KUPIC         | XXXX X0002        |
| 009416  | Timer B0 Interrupt Control Register                        | TB0IC         | XXXX X0002        |
| 009516  | Intelligent I/O Interrupt Control Register 1               | IIO1IC        | XXXX X0002        |
| 009616  | Timer B2 Interrupt Control Register                        | TB2IC         | XXXX X0002        |
| 009716  | Intelligent I/O Interrupt Control Register 3               | IIO3IC        | XXXX X0002        |
| 009816  | Timer B4 Interrupt Control Register                        | TB4IC         | XXXX X0002        |
| 009916  |                                                            |               |                   |
| 009A16  | INT4 Interrupt Control Register                            | INT4IC        | XX00 X0002        |
| 009B16  |                                                            |               |                   |
| 009C16  | INT2 Interrupt Control Register                            | INT2IC        | XX00 X0002        |
|         | Intelligent I/O Interrupt Control Register 9/              | IIO9IC        |                   |
| 009D16  | CAN Interrupt 0 Control Register                           | CANOIC        | XXXX X0002        |
| 009E16  | INT0 Interrupt Control Register                            | INTOIC        | XX00 X0002        |
| 009F16  | Exit Priority Control Register                             | RLVL          | XXXX 00002        |
| 00A016  | Interrupt Request Register 0                               | IIO0IR        | 0000 000X2        |
| 00A116  | Interrupt Request Register 1                               | IIO1IR        | 0000 000X2        |
| 00A216  | Interrupt Request Register 2                               | IIO2IR        | 0000 000X2        |
| 00A316  | Interrupt Request Register 3                               | IIO3IR        | 0000 000X2        |
| 00A416  | Interrupt Request Register 4                               | IIO4IR        | 0000 000X2        |
| 00A516  |                                                            |               |                   |
| 00A616  |                                                            |               |                   |
| 00A716  |                                                            |               |                   |
| 00A816  | Interrupt Request Register 8                               | IIO8IR        | 0000 000X2        |
| 00A916  | Interrupt Request Register 9                               | IIO9IR        | 0000 000X2        |
| 00AA16  | Interrupt Request Register 10                              | IIO10IR       | 0000 000X2        |
| 00AB16  | Interrupt Request Register 11                              | IIO11IR       | 0000 000X2        |
| 00AC16  |                                                            |               |                   |
| 00AD16  |                                                            |               |                   |
| 00AE16  |                                                            |               |                   |
| 00AF16  |                                                            |               |                   |
| 00B016  | Interrupt Enable Register 0                                | IIO0IE        | 0016              |
| 00B116  | Interrupt Enable Register 1                                | IIO1IE        | 0016              |
| 00B216  | Interrupt Enable Register 2                                | IIO2IE        | 0016              |
| 00B316  | Interrupt Enable Register 3                                | IIO3IE        | 0016              |
| 00B416  | Interrupt Enable Register 4                                | IIO4IE        | 0016              |
| 00B516  |                                                            |               |                   |
| 00B616  |                                                            |               |                   |
| 00B716  |                                                            |               |                   |
| 00B816  | Interrupt Enable Register 8                                | IIO8IE        | 0016              |
| 00B916  | Interrupt Enable Register 9                                | IIO9IE        | 0016              |
| 00BA16  | Interrupt Enable Register 10                               | IIO10IE       | 0016              |
| 00BB16  | Interrupt Enable Register 11                               | IIO11IE       | 0016              |
| 00BC16  |                                                            |               |                   |
| 00BD16  |                                                            |               |                   |
|         |                                                            |               | 1                 |
| 00BE16  |                                                            |               |                   |



| Address | Register                                | Symbol    | Value after RESET |
|---------|-----------------------------------------|-----------|-------------------|
| 00C016  |                                         |           |                   |
| 00C116  |                                         |           |                   |
| 00C216  |                                         |           |                   |
| 00C316  |                                         |           |                   |
| 00C416  |                                         |           |                   |
| 00C516  |                                         |           |                   |
| 00C616  |                                         |           |                   |
| 00C716  |                                         |           |                   |
| 00C816  |                                         |           |                   |
| 00C916  |                                         |           |                   |
| 00CA16  |                                         |           |                   |
| 00CB16  |                                         |           |                   |
| 00CC16  |                                         |           |                   |
| 00CD16  |                                         |           |                   |
| 00CE16  |                                         |           |                   |
| 00CF16  |                                         |           |                   |
| 00D016  |                                         |           |                   |
| 00D116  |                                         |           |                   |
| 00D216  |                                         |           |                   |
| 00D316  |                                         |           |                   |
| 00D416  |                                         |           |                   |
| 00D516  |                                         |           |                   |
| 00D616  |                                         |           |                   |
| 00D716  |                                         |           |                   |
| 00D816  |                                         |           |                   |
| 00D916  |                                         |           |                   |
| 00DA16  |                                         |           |                   |
| 00DB16  |                                         |           |                   |
| 00DC16  |                                         |           |                   |
| 00DD16  |                                         |           |                   |
| 00DE16  |                                         |           |                   |
| 00DF16  |                                         |           |                   |
| 00E016  |                                         |           |                   |
| 00E116  |                                         |           |                   |
| 00E216  |                                         |           |                   |
| 00E316  |                                         |           |                   |
| 00E416  |                                         |           |                   |
| 00E516  |                                         |           |                   |
| 00E616  |                                         |           |                   |
| 00E716  |                                         |           |                   |
| 00E816  |                                         |           | XXXX XXXX2        |
| 00E916  | SI/O Receive Buffer Register 0          | GORB      | X000 XXXX2        |
| 00EA16  | Transmit Buffer/Receive Data Register 0 | G0TB/G0DR | XX16              |
| 00EB16  |                                         |           |                   |
| 00EC16  | Receive Input Register 0                | GORI      | XX16              |
| 00ED16  | SI/O Communication Mode Register 0      | GOMR      | 0016              |
| 00EE16  | Transmit Output Register 0              | GOTO      | XX16              |
| 00EF16  | SI/O Communication Control Register 0   | GOCR      | 0000 X0112        |
|         |                                         |           | 0000 //0112       |



| Address | Register                                               | Symbol      | Value after RESET |
|---------|--------------------------------------------------------|-------------|-------------------|
| 00F016  | Data Compare Register 00                               | G0CMP0      | XX16              |
| 00F116  | Data Compare Register 01                               | G0CMP1      | XX16              |
| 00F216  | Data Compare Register 02                               | G0CMP2      | XX16              |
| 00F316  | Data Compare Register 03                               | G0CMP3      | XX16              |
| 00F416  | Data Mask Register 00                                  | G0MSK0      | XX16              |
| 00F516  | Data Mask Register 01                                  | G0MSK1      | XX16              |
| 00F616  | Communication Clock Select Register                    | CCS         | XXXX 00002        |
| 00F716  |                                                        |             |                   |
| 00F816  |                                                        | 0.000       | XX16              |
| 00F916  | Receive CRC Code Register 0                            | GORCRC      | XX16              |
| 00FA16  |                                                        | 0.705.0     | 0016              |
| 00FB16  | Transmit CRC Code Register 0                           | GOTCRC      | 0016              |
| 00FC16  | SI/O Extended Mode Register 0                          | G0EMR       | 0016              |
| 00FD16  | SI/O Extended Receive Control Register 0               | G0ERC       | 0016              |
| 00FE16  | SI/O Special Communication Interrupt Detect Register 0 | G0IRF       | 0016              |
| 00FF16  | SI/O Extended Transmit Control Register 0              | GOETC       | 0000 0XXX2        |
| 010016  |                                                        |             | XX16              |
| 010116  | Time Measurement/Waveform Generating Register 10       | G1TM0/G1PO0 | XX16              |
| 010216  |                                                        |             | XX16              |
| 010316  | Time Measurement/Waveform Generating Register 11       | G1TM1/G1PO1 | XX16              |
| 010416  |                                                        |             | XX16              |
| 010516  | Time Measurement/Waveform Generating Register 12       | G1TM2/G1PO2 | XX16              |
| 010616  |                                                        |             | XX16              |
| 010716  | Time Measurement/Waveform Generating Register 13       | G1TM3/G1PO3 | XX16              |
| 010816  |                                                        |             | XX16              |
| 010916  | Time Measurement/Waveform Generating Register 14       | G1TM4/G1PO4 | XX16              |
| 010A16  |                                                        |             | XX16              |
| 010B16  | Time Measurement/Waveform Generating Register 15       | G1TM5/G1PO5 | XX16              |
| 010C16  |                                                        |             | XX16              |
| 010D16  | Time Measurement/Waveform Generating Register 16       | G1TM6/G1PO6 | XX16              |
| 010E16  |                                                        |             | XX16              |
| 010F16  | Time Measurement/Waveform Generating Register 17       | G1TM7/G1PO7 | XX16              |
| 011016  | Waveform Generating Control Register 10                | G1POCR0     | 0000 X0002        |
| 011116  | Waveform Generating Control Register 11                | G1POCR1     | 0X00 X0002        |
| 011216  | Waveform Generating Control Register 12                | G1POCR2     | 0X00 X0002        |
| 011316  | Waveform Generating Control Register 13                | G1POCR3     | 0X00 X0002        |
| 011416  | Waveform Generating Control Register 14                | G1POCR4     | 0X00 X0002        |
| 011516  | Waveform Generating Control Register 15                | G1POCR5     | 0X00 X0002        |
| 011616  | Waveform Generating Control Register 16                | G1POCR6     | 0X00 X0002        |
| 011716  | Waveform Generating Control Register 17                | G1POCR7     | 0X00 X0002        |
| 011816  | Time Measurement Control Register 10                   | G1TMCR0     | 0016              |
| 011916  | Time Measurement Control Register 11                   | G1TMCR1     | 0016              |
| 011A16  | Time Measurement Control Register 12                   | G1TMCR2     | 0016              |
| 011B16  | Time Measurement Control Register 13                   | G1TMCR3     | 0016              |
| 011C16  | Time Measurement Control Register 14                   | G1TMCR4     | 0016              |
| 011D16  | Time Measurement Control Register 15                   | G1TMCR5     | 0016              |
| 011E16  | Time Measurement Control Register 16                   | G1TMCR6     | 0016              |
| 011F16  | Time Measurement Control Register 17                   | G1TMCR7     | 0016              |



| Address | Register                                               | Symbol    | Value after RESET |
|---------|--------------------------------------------------------|-----------|-------------------|
| 012016  |                                                        |           | XX16              |
| 012116  | Base Timer Register 1                                  | G1BT      | XX16              |
| 012216  | Base Timer Control Register 10                         | G1BCR0    | 0016              |
| 012316  | Base Timer Control Register 11                         | G1BCR1    | X000 000X2        |
| 012416  | Time Measurement Prescaler Register 16                 | G1TPR6    | 0016              |
| 012516  | Time Measurement Prescaler Register 17                 | G1TPR7    | 0016              |
| 012616  | Function Enable Register 1                             | G1FE      | 0016              |
| 012716  | Function Select Register 1                             | G1FS      | 0016              |
| 012816  |                                                        |           | XXXX XXXX2        |
| 012916  | SI/O Receive Buffer Register 1                         | G1RB      | X000 XXXX2        |
| 012A16  | Transmit Buffer/Receive Data Register 1                | G1TB/G1DR | XX16              |
| 012B16  |                                                        |           |                   |
| 012C16  | Receive Input Register 1                               | G1RI      | XX16              |
| 012D16  | SI/O Communication Mode Register 1                     | G1MR      | 0016              |
| 012E16  | Transmit Output Register 1                             | G1TO      | XX16              |
| 012F16  | SI/O Communication Control Register 1                  | G1CR      | 0000 X0112        |
| 013016  | Data Compare Register 10                               | G1CMP0    | XX16              |
| 013116  | Data Compare Register 11                               | G1CMP1    | XX16              |
| 013216  | Data Compare Register 12                               | G1CMP2    | XX16              |
| 013316  | Data Compare Register 13                               | G1CMP3    | XX16              |
| 013416  | Data Mask Register 10                                  | G1MSK0    | XX16              |
| 013516  | Data Mask Register 11                                  | G1MSK1    | XX16              |
| 013616  |                                                        |           |                   |
| 013716  |                                                        |           |                   |
| 013816  |                                                        |           | XX16              |
| 013916  | Receive CRC Code Register 1                            | G1RCRC    | XX16              |
| 013A16  |                                                        |           | 0016              |
| 013B16  | Transmit CRC Code Register 1                           | G1TCRC    | 0016              |
| 013C16  | SI/O Extended Mode Register 1                          | G1EMR     | 0016              |
| 013D16  | SI/O Extended Receive Control Register 1               | G1ERC     | 0016              |
| 013E16  | SI/O Special Communication Interrupt Detect Register 1 | G1IRF     | 0016              |
| 013F16  | SI/O Extended Transmit Control Register 1              | G1ETC     | 0000 0XXX2        |
| 014016  |                                                        |           |                   |
| 014116  |                                                        |           |                   |
| 014216  |                                                        |           |                   |
| 014316  |                                                        |           |                   |
| 014416  |                                                        |           |                   |
| 014516  |                                                        |           |                   |
| 014616  |                                                        |           |                   |
| 014716  |                                                        |           |                   |
| 014816  |                                                        |           |                   |
| 014916  |                                                        |           |                   |
| 014A16  |                                                        |           |                   |
| 014B16  |                                                        |           |                   |
| 014C16  |                                                        |           |                   |
| 014D16  |                                                        |           |                   |
| 014E16  |                                                        |           |                   |
| 014F16  |                                                        |           |                   |

| Address | Register                         | Symbol | Value after RESET |
|---------|----------------------------------|--------|-------------------|
| 015016  |                                  |        |                   |
| 015116  |                                  |        |                   |
| 015216  |                                  |        |                   |
| 015316  |                                  |        |                   |
| 015416  |                                  |        |                   |
| 015516  |                                  |        |                   |
| 015616  |                                  |        |                   |
| 015716  |                                  |        |                   |
| 015816  |                                  |        |                   |
| 015916  |                                  |        |                   |
| 015A16  |                                  |        |                   |
| 015B16  |                                  |        |                   |
| 015C16  |                                  |        |                   |
| 015D16  |                                  |        |                   |
| 015E16  |                                  |        |                   |
| 015F16  |                                  |        |                   |
| 016016  |                                  |        |                   |
| 016116  |                                  |        |                   |
| 016216  |                                  |        |                   |
| 016316  |                                  |        |                   |
| 016416  |                                  |        |                   |
| 016516  |                                  |        |                   |
| 016616  |                                  |        |                   |
| 016716  |                                  |        |                   |
| 016816  |                                  |        |                   |
| 016916  |                                  |        |                   |
| 016A16  |                                  |        |                   |
| 016B16  |                                  |        |                   |
| 016C16  |                                  |        |                   |
| 016D16  |                                  |        |                   |
| 016E16  |                                  |        |                   |
| 016F16  |                                  |        |                   |
| 017016  |                                  |        |                   |
| 017116  |                                  |        |                   |
| 017216  |                                  |        |                   |
| 017316  |                                  |        |                   |
| 017416  |                                  |        |                   |
| 017516  |                                  |        |                   |
| 017616  |                                  |        |                   |
| 017716  |                                  |        |                   |
| 017816  | Input Function Select Register   | IPS    | 0016              |
| 017916  | Input Function Select Register A | IPSA   | 0016              |
| 017A16  |                                  |        |                   |
| 017B16  |                                  |        |                   |
| 017C16  |                                  |        |                   |
| 017D16  |                                  |        |                   |
| to      |                                  |        |                   |
| 01DF16  |                                  |        |                   |
|         | arminata                         |        |                   |



| Address          | Register                                            | Symbol         | Value after RESET         |
|------------------|-----------------------------------------------------|----------------|---------------------------|
| 01E016           | CAN0 Message Slot Buffer 0 Standard ID0             | COSLOTO_0      | XX16                      |
| 01E116           | CAN0 Message Slot Buffer 0 Standard ID1             | C0SLOT0_1      | XX16                      |
| 01E216           | CAN0 Message Slot Buffer 0 Extended ID0             | C0SLOT0_2      | XX16                      |
| 01E316           | CAN0 Message Slot Buffer 0 Extended ID1             | C0SLOT0_3      | XX16                      |
| 01E416           | CAN0 Message Slot Buffer 0 Extended ID2             | C0SLOT0_4      | XX16                      |
| 01E516           | CAN0 Message Slot Buffer 0 Data Length Code         | C0SLOT0_5      | XX16                      |
| 01E616           | CAN0 Message Slot Buffer 0 Data 0                   | C0SLOT0_6      | XX16                      |
| 01E716           | CAN0 Message Slot Buffer 0 Data 1                   | C0SLOT0_7      | XX16                      |
| 01E816           | CAN0 Message Slot Buffer 0 Data 2                   | C0SLOT0_8      | XX16                      |
| 01E916           | CAN0 Message Slot Buffer 0 Data 3                   | C0SLOT0_9      | XX16                      |
| 01EA16           | CAN0 Message Slot Buffer 0 Data 4                   | C0SLOT0_10     | XX16                      |
| 01EB16           | CAN0 Message Slot Buffer 0 Data 5                   | <br>C0SLOT0_11 | XX16                      |
| 01EC16           | CAN0 Message Slot Buffer 0 Data 6                   | <br>C0SLOT0_12 | XX16                      |
| 01ED16           | CAN0 Message Slot Buffer 0 Data 7                   | C0SLOT0_13     | XX16                      |
| 01EE16           | CAN0 Message Slot Buffer 0 Time Stamp High-Order    | C0SLOT0_14     | XX16                      |
| 01EF16           | CAN0 Message Slot Buffer 0 Time Stamp Low-Order     | <br>C0SLOT0_15 | XX16                      |
| 01F016           | CAN0 Message Slot Buffer 1 Standard ID0             | C0SLOT1_0      | XX16                      |
| 01F116           | CANO Message Slot Buffer 1 Standard ID1             | C0SLOT1 1      | XX16                      |
| 01F216           | CANO Message Slot Buffer 1 Extended ID0             | C0SLOT1_2      | XX16                      |
| 01F316           | CANO Message Slot Buffer 1 Extended ID1             | C0SLOT1_3      | XX16                      |
| 01F416           | CANO Message Slot Buffer 1 Extended ID2             | C0SLOT1_4      | XX16                      |
| 01F516           | CANO Message Slot Buffer 1 Data Length Code         | C0SLOT1_5      | XX16                      |
| 01F616           | CANO Message Slot Buffer 1 Data 0                   | C0SLOT1_6      | XX16                      |
| 01F716           | CANO Message Slot Buffer 1 Data 1                   | C0SLOT1_7      | XX16                      |
| 01F816           | CANO Message Slot Buffer 1 Data 2                   | C0SLOT1_8      | XX16                      |
| 01F916           | CANO Message Slot Buffer 1 Data 3                   | C0SLOT1_9      | XX16                      |
| 01FA16           | CANO Message Slot Buffer 1 Data 4                   | C0SLOT1_0      | XX16                      |
| 01FB16           | CANO Message Slot Buffer 1 Data 5                   | C0SLOT1_11     | XX16                      |
| 01FC16           | CANO Message Slot Buffer 1 Data 6                   | C0SLOT1_12     | XX16                      |
| 01FD16           | CANO Message Slot Buffer 1 Data 7                   | C0SLOT1_12     | XX16                      |
| 01FE16           | CANO Message Slot Buffer 1 Time Stamp High-Order    | C0SLOT1_14     | XX16                      |
| 01FF16           | CANO Message Slot Buffer 1 Time Stamp Low-Order     | C0SLOT1_15     | XX16                      |
| 020016           | or the message of the build in this clamp how order | 0002011_10     | XX01 0X012 <sup>(1)</sup> |
| 020116           | CAN0 Control Register 0                             | C0CTLR0        | XXXX 00002 <sup>(1)</sup> |
| 020116           |                                                     |                | 0000 00002 <sup>(1)</sup> |
| 020316           | CAN0 Status Register                                | COSTR          | X000 0X012 <sup>(1)</sup> |
| 020016           |                                                     |                | 0016 <sup>(1)</sup>       |
| 020516           | CAN0 Extended ID Register                           | COIDR          | 0016 <sup>(1)</sup>       |
| 020616           |                                                     |                | 0000 XXX2 <sup>(1)</sup>  |
| 020716           | CAN0 Configuration Register                         | COCONR         | 0000 00002 <sup>(1)</sup> |
| 020716           |                                                     |                | 0016 <sup>(1)</sup>       |
| 020916           | CAN0 Time Stamp Register                            | COTSR          | 0016 <sup>(1)</sup>       |
| 020916<br>020A16 | CAN0 Transmit Error Count Register                  | COTEC          | 0016 <sup>(1)</sup>       |
| 020A16           | CANO Receive Error Count Register                   | COREC          | 0016 <sup>(1)</sup>       |
| 020B16<br>020C16 | Onito Receive Entit Obunit Register                 |                | 0016 <sup>(1)</sup>       |
| 020C18           | CAN0 Slot Interrupt Status Register                 | COSISTR        | 0016 <sup>(1)</sup>       |
| 020D16<br>020E16 |                                                     |                |                           |
|                  |                                                     | 1              | 1                         |

Blank spaces are reserved. No access is allowed.

NOTES:

1. Values are obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) after reset and supplying the clock to the CAN module.

| Address | Register                                | Symbol    | Value after RESET         |          |
|---------|-----------------------------------------|-----------|---------------------------|----------|
| 021016  |                                         | 000114//5 | 0016 <sup>(2)</sup>       |          |
| 021116  | CAN0 Slot Interrupt Mask Register       | COSIMKR   | 0016 <sup>(2)</sup>       |          |
| 021216  |                                         |           |                           |          |
| 021316  |                                         |           |                           |          |
| 021416  | CAN0 Error Interrupt Mask Register      | C0EIMKR   | XXXX X0002 <sup>(2)</sup> | _        |
| 021516  | CAN0 Error Interrupt Status Register    | COEISTR   | XXXX X0002 <sup>(2)</sup> |          |
| 021616  | CAN0 Error Cause Register               | COEFR     | 0016 <sup>(2)</sup>       | _        |
| 021716  | CAN0 Baud Rate Prescaler                | COBRP     | 0000 00012 <sup>(2)</sup> | -        |
| 021816  |                                         |           |                           | _        |
| 021916  | CAN0 Mode Register                      | COMDR     | XXXX XX002 <sup>(2)</sup> |          |
| 021A16  | 5                                       |           |                           |          |
| 021B16  |                                         |           |                           | _        |
| 021C16  |                                         |           |                           | _        |
| 021D16  |                                         |           |                           | _        |
| 021D10  |                                         |           |                           | -        |
| 021E16  |                                         |           |                           |          |
| 021116  |                                         |           | 0016 <sup>(2)</sup>       | -        |
| 022016  | CAN0 Single-Shot Control Register       | COSSCTLR  | 0016 <sup>(2)</sup>       |          |
| 022116  |                                         |           |                           |          |
| 022216  |                                         |           |                           | _        |
| 022316  |                                         |           | 0016 <sup>(2)</sup>       | _        |
| 022416  | CAN0 Single-Shot Status Register        | COSSSTR   | 0016 <sup>(2)</sup>       |          |
|         |                                         |           | 0016(-/                   | _        |
| 022616  |                                         |           |                           | _        |
| 022716  |                                         | 0000450   | (2)                       | _        |
| 022816  | CANO Global Mask Register Standard ID0  | C0GMR0    | XXX0 00002 <sup>(2)</sup> | _        |
| 022916  | CANO Global Mask Register Standard ID1  | C0GMR1    | XX00 00002 <sup>(2)</sup> | _        |
| 022A16  | CAN0 Global Mask Register Extended ID0  | C0GMR2    | XXXX 00002 <sup>(2)</sup> | _        |
| 022B16  | CAN0 Global Mask Register Extended ID1  | C0GMR3    | 0016 <sup>(2)</sup>       |          |
| 022C16  | CAN0 Global Mask Register Extended ID2  | C0GMR4    | XX00 00002 <sup>(2)</sup> |          |
| 022D16  |                                         |           |                           |          |
| 022E16  |                                         |           |                           |          |
| 022F16  |                                         |           |                           | (Note 1) |
| 023016  | CAN0 Message Slot 0 Control Register /  | COMCTL0/  | 0000 00002 <sup>(2)</sup> |          |
| 023016  | CAN0 Local Mask Register A Standard ID0 | COLMARO   | XXX0 00002 <sup>(2)</sup> |          |
| 000140  | CAN0 Message Slot 1 Control Register /  | C0MCTL1/  | 0000 00002 <sup>(2)</sup> |          |
| 023116  | CAN0 Local Mask Register A Standard ID1 | C0LMAR1   | XX00 00002 <sup>(2)</sup> |          |
| 0000    | CAN0 Message Slot 2 Control Register /  | C0MCTL2/  | 0000 00002 <sup>(2)</sup> |          |
| 023216  | CAN0 Local Mask Register A Extended ID0 | C0LMAR2   | XXXX 00002 <sup>(2)</sup> |          |
| 0000    | CAN0 Message Slot 3 Control Register /  | C0MCTL3/  | 0016 <sup>(2)</sup>       |          |
| 023316  | CAN0 local Mask Register A Extended ID1 | C0LMAR3   | 0016 <sup>(2)</sup>       |          |
|         | CAN0 Message Slot 4 Control Register /  | C0MCTL4/  | 0000 00002 <sup>(2)</sup> |          |
| 023416  | CAN0 Local Mask Register A Extended ID2 | C0LMAR4   | XX00 00002 <sup>(2)</sup> |          |
| 023516  | CAN0 Message Slot 5 Control Register    | C0MCTL5   | 0016 <sup>(2)</sup>       | -1       |
| 023616  | CAN0 Message Slot 6 Control Register    | C0MCTL6   | 0016 <sup>(2)</sup>       | -1       |
| 023716  | CANO Message Slot 7 Control Register    | COMCTL7   | 0016 <sup>(2)</sup>       | -        |
|         | CANO Message Slot 8 Control Register /  | COMCTL8/  | 0000 00002 <sup>(2)</sup> | -  _     |
| 023816  | CAN0 Local Mask Register B Standard ID0 | COLMBRO   | XXX0 00002 <sup>(2)</sup> |          |

Blank spaces are reserved. No access is allowed.

NOTES:

- 1. The BANKSEL bit in the COCTLR1 register switches functions for addresses 022016 to 023F16.
- 2. Values are obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) after reset and supplying the clock to the CAN module.

| Address | Register                                | Symbol    | Value after RESET         |          |
|---------|-----------------------------------------|-----------|---------------------------|----------|
| 0000    | CAN0 Message Slot 9 Control Register /  | C0MCTL9/  | 0000 00002 <sup>(2)</sup> |          |
| 023916  | CAN0 Local Mask Register B Standard ID1 | C0LMBR1   | XX00 00002 <sup>(2)</sup> | I T      |
|         | CAN0 Message Slot 10 Control Register / | C0MCTL10/ | 0000 00002 <sup>(2)</sup> |          |
| 023A16  | CAN0 Local Mask Register B Extended ID0 | C0LMBR2   | XXXX 00002 <sup>(2)</sup> |          |
|         | CAN0 Message Slot 11 Control Register / | C0MCTL11/ | 0016 <sup>(2)</sup>       |          |
| 023B16  | CAN0 Local Mask Register B Extended ID1 | C0LMBR3   | 0016 <sup>(2)</sup>       | (Note 1) |
| 0000    | CAN0 Message Slot 12 Control Register / | C0MCTL12/ | 0000 00002 <sup>(2)</sup> |          |
| 023C16  | CAN0 Local Mask Register B Extended ID2 | C0LMBR4   | XX00 00002 <sup>(2)</sup> |          |
| 023D16  | CAN0 Message Slot 13 Control Register   | C0MCTL13  | 0016 <sup>(2)</sup>       |          |
| 023E16  | CAN0 Message Slot 14 Control Register   | C0MCTL14  | 0016 <sup>(2)</sup>       |          |
| 023F16  | CAN0 Message Slot 15 Control Register   | C0MCTL15  | 0016 <sup>(2)</sup>       |          |
| 024016  | CAN0 Slot Buffer Select Register        | COSBS     | 0016 <sup>(2)</sup>       |          |
| 024116  | CAN0 Control Register 1                 | C0CTLR1   | X000 00XX2 <sup>(2)</sup> |          |
| 024216  | CAN0 Sleep Control Register             | COSLPR    | XXXX XXX02                |          |
| 024316  |                                         |           |                           |          |
| 024416  | CANO Accontance Filter Support Desister | COAFS     | 0016 <sup>(2)</sup>       |          |
| 024516  | CAN0 Acceptance Filter Support Register | COAFS     | 0116 <sup>(2)</sup>       |          |
| 024616  |                                         |           |                           |          |
| 024716  |                                         |           |                           |          |
| 024816  |                                         |           |                           |          |
| 024916  |                                         |           |                           |          |
| 024A16  |                                         |           |                           |          |
| 024B16  |                                         |           |                           |          |
| 024C16  |                                         |           |                           |          |
| 024D16  |                                         |           |                           |          |
| 024E16  |                                         |           |                           |          |
| 024F16  |                                         |           |                           |          |
| 025016  |                                         |           |                           |          |
| 025116  |                                         |           |                           |          |
| 025216  |                                         |           |                           |          |
| 025316  |                                         |           |                           |          |
| 025416  |                                         |           |                           |          |
| 025516  |                                         |           |                           |          |
| 025616  |                                         |           |                           |          |
| 025716  |                                         |           |                           |          |
| 025816  |                                         |           |                           |          |
| 025916  |                                         |           |                           |          |
| 025A16  |                                         |           |                           |          |
| 025B16  |                                         |           |                           | _        |
| 025C16  |                                         |           |                           |          |
| 025D16  |                                         |           |                           |          |
| to      |                                         |           |                           |          |
| 02BF16  |                                         |           |                           |          |

Blank spaces are reserved. No access is allowed.

NOTES:

- 1. The BANKSEL bit in the COCTLR1 register switches functions for addresses 022016 to 023F16.
- 2. Values are obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) after reset and supplying the clock to the CAN module.



| Address | Register                                  | Symbol     | Value after RESET |
|---------|-------------------------------------------|------------|-------------------|
| 02C016  |                                           |            | XX16              |
| 02C116  | X0 Register Y0 Register                   | X0R,Y0R    | XX16              |
| 02C216  |                                           | YAD YAD    | XX16              |
| 02C316  | X1 Register Y1 Register                   | X1R,Y1R    | XX16              |
| 02C416  |                                           |            | XX16              |
| 02C516  | X2 Register Y2 Register                   | X2R,Y2R    | XX16              |
| 02C616  |                                           |            | XX16              |
| 02C716  | X3 Register Y3 Register                   | X3R,Y3R    | XX16              |
| 02C816  |                                           | Y ID Y ID  | XX16              |
| 02C916  | X4 Register Y4 Register                   | X4R,Y4R    | XX16              |
| 02CA16  |                                           |            | XX16              |
| 02CB16  | X5 Register Y5 Register                   | X5R,Y5R    | XX16              |
| 02CC16  |                                           | YOD YOD    | XX16              |
| 02CD16  | X6 Register Y6 Register                   | X6R,Y6R    | XX16              |
| 02CE16  |                                           |            | XX16              |
| 02CF16  | X7 Register Y7 Register                   | X7R,Y7R    | XX16              |
| 02D016  |                                           |            | XX16              |
| 02D116  | X8 Register Y8 Register X8R,Y8R           | X8R,Y8R    | XX16              |
| 02D216  | Vo Desister Vo Desister                   |            | XX16              |
| 02D316  | X9 Register Y9 Register                   | X9R,Y9R    | XX16              |
| 02D416  | V40 Desister V40 Desister                 | X10R,Y10R  | XX16              |
| 02D516  | X10 Register Y10 Register                 |            | XX16              |
| 02D616  | V44 Desister V44 Desister                 | X11R,Y11R  | XX16              |
| 02D716  | X11 Register Y11 Register                 |            | XX16              |
| 02D816  | V40 Desister V40 Desister                 | VAOD VAOD  | XX16              |
| 02D916  | X12 Register Y12 Register                 | X12R,Y12R  | XX16              |
| 02DA16  | V12 Pagistor V12 Pagistor                 | X13R,Y13R  | XX16              |
| 02DB16  | X13 Register Y13 Register                 |            | XX16              |
| 02DC16  | V14 Pagistor V14 Pagistor                 | X14R,Y14R  | XX16              |
| 02DD16  | X14 Register Y14 Register                 | A14K, 114K | XX16              |
| 02DE16  | X15 Register Y15 Register                 | X15R,Y15R  | XX16              |
| 02DF16  |                                           | A15K,115K  | XX16              |
| 02E016  | X/Y Control Register                      | XYC        | XXXX XX002        |
| 02E116  |                                           |            |                   |
| 02E216  |                                           |            |                   |
| 02E316  |                                           |            |                   |
| 02E416  | UART1 Special Mode Register 4             | U1SMR4     | 0016              |
| 02E516  | UART1 Special Mode Register 3             | U1SMR3     | 0016              |
| 02E616  | UART1 Special Mode Register 2             | U1SMR2     | 0016              |
| 02E716  | UART1 Special Mode Register               | U1SMR      | 0016              |
| 02E816  | UART1 Transmit/Receive Mode Register      | U1MR       | 0016              |
| 02E916  | UART1 Bit Rate Register                   | U1BRG      | XX16              |
| 02EA16  | UART1 Transmit Buffer Register            | U1TB       | XX16              |
| 02EB16  |                                           |            | XX16              |
| 02EC16  | UART1 Transmit/Receive Control Register 0 | U1C0       | 0000 10002        |
| 02ED16  | UART1 Transmit/Receive Control Register 1 | U1C1       | 0000 00102        |
| 02EE16  | UART1 Receive Buffer Register             | U1RB       | XX16              |
| 02EF16  |                                           |            | XX16              |

| Address          | Register                                            | Symbol | Value after RESET        |
|------------------|-----------------------------------------------------|--------|--------------------------|
| 02F016           |                                                     |        |                          |
| 02F116           |                                                     |        |                          |
| 02F216           |                                                     |        |                          |
| 02F316           |                                                     |        |                          |
| 02F416           | UART4 Special Mode Register 4                       | U4SMR4 | 0016                     |
| 02F516           | UART4 Special Mode Register 3                       | U4SMR3 | 0016                     |
| 02F616           | UART4 Special Mode Register 2                       | U4SMR2 | 0016                     |
| 02F716           | UART4 Special Mode Register                         | U4SMR  | 0016                     |
| 02F816           | UART4 Transmit/Receive Mode Register                | U4MR   | 0016                     |
| 02F916           | UART4 Bit Rate Register                             | U4BRG  | XX16                     |
| 02FA16           | -                                                   |        | XX16                     |
| 02FB16           | UART4 Transmit Buffer Register                      | U4TB   | XX16                     |
| 02FC16           | UART4 Transmit/Receive Control Register 0           | U4C0   | 0000 10002               |
| 02FD16           | UART4 Transmit/Receive Control Register 1           | U4C1   | 0000 00102               |
| 02FE16           |                                                     |        | XX16                     |
| 02FF16           | UART4 Receive Buffer Register                       | U4RB   | XX16                     |
| 030016           | Timer B3, B4, B5 Count Start Flag                   | TBSR   | 000X XXXX2               |
| 030116           |                                                     |        |                          |
| 030216           |                                                     |        | XX16                     |
| 030316           | Timer A1-1 Register                                 | TA11   | XX16                     |
| 030416           |                                                     |        | XX16                     |
| 030516           | Timer A2-1 Register                                 | TA21   | XX16                     |
| 030616           |                                                     |        | XX16                     |
| 030716           | Timer A4-1 Register                                 | TA41   | XX16                     |
| 030816           | Three-Phase PWM Control Register 0                  | INVC0  | 0016                     |
| 030916           | Three-Phase PWM Control Register 0                  | INVC1  | 0016                     |
| 030916<br>030A16 | Three-Phase Output Buffer Register 0                | IDB0   | XX11 11112               |
| 030A16           | Three-Phase Output Buffer Register 1                | IDB0   | XX11 11112<br>XX11 11112 |
| 030D16           | Dead Time Timer                                     | DTT    | XX11 11112<br>XX16       |
| 030C16           | Timer B2 Interrupt Generation Frequency Set Counter | ICTB2  | XX16                     |
| 030D16           | Timer bz interrupt Generation Frequency Set Counter | 10162  | AA10                     |
| 030E16           |                                                     |        |                          |
| 030F16           |                                                     |        | XX16                     |
|                  | Timer B3 Register                                   | TB3    |                          |
| 031116           | -                                                   |        | XX16                     |
| 031216           | Timer B4 Register                                   | TB4    | XX16                     |
| 031316           | č                                                   |        | XX16                     |
| 031416           | Timer B5 Register                                   | TB5    | XX16                     |
| 031516           |                                                     | -      | XX16                     |
| 031616           |                                                     |        |                          |
| 031716           |                                                     |        |                          |
| 031816           |                                                     |        |                          |
| 031916           |                                                     |        |                          |
| 031A16           |                                                     |        |                          |
| 031B16           | Timer B3 Mode Register                              | TB3MR  | 00XX 00002               |
| 031C16           | Timer B4 Mode Register                              | TB4MR  | 00XX 00002               |
| 031D16           | Timer B5 Mode Register                              | TB5MR  | 00XX 00002               |
| 031E16           |                                                     |        |                          |
| 031F16           | External Interrupt Cause Select Register            | IFSR   | 0016                     |



| Address | Register                                  | Symbol | Value after RESET |
|---------|-------------------------------------------|--------|-------------------|
| 032016  |                                           |        |                   |
| 032116  |                                           |        |                   |
| 032216  |                                           |        |                   |
| 032316  |                                           |        |                   |
| 032416  | UART3 Special Mode Register 4             | U3SMR4 | 0016              |
| 032516  | UART3 Special Mode Register 3             | U3SMR3 | 0016              |
| 032616  | UART3 Special Mode Register 2             | U3SMR2 | 0016              |
| 032716  | UART3 Special Mode Register               | U3SMR  | 0016              |
| 032816  | UART3 Transmit/Receive Mode Register      | U3MR   | 0016              |
| 032916  | UART3 Bit Rate Register                   | U3BRG  | XX16              |
| 032A16  |                                           |        | XX16              |
| 032B16  | UART3 Transmit Buffer Register            | U3TB   | XX16              |
| 032C16  | UART3 Transmit/Receive Control Register 0 | U3C0   | 0000 10002        |
| 032D16  | UART3 Transmit/Receive Control Register 1 | U3C1   | 0000 00102        |
| 032E16  |                                           |        | XX16              |
| 032F16  | UART3 Receive Buffer Register             | U3RB   | XX16              |
| 033016  |                                           |        |                   |
| 033116  |                                           |        |                   |
| 033216  |                                           |        |                   |
| 033316  |                                           |        |                   |
| 033416  | UART2 Special Mode Register 4             | U2SMR4 | 0016              |
| 033516  | UART2 Special Mode Register 3             | U2SMR3 | 0016              |
| 033616  | UART2 Special Mode Register 2             | U2SMR2 | 0016              |
| 033716  | UART2 Special Mode Register               | U2SMR  | 0016              |
| 033816  | UART2 Transmit/Receive Mode Register      | U2MR   | 0016              |
| 033916  | UART2 Bit Rate Register                   | U2BRG  | XX16              |
| 033A16  |                                           |        | XX16              |
| 033B16  | UART2 Transmit Buffer Register            | U2TB   | XX16              |
| 033C16  | UART2 Transmit/Receive Control Register 0 | U2C0   | 0000 10002        |
| 033D16  | UART2 Transmit/Receive Control Register 1 | U2C1   | 0000 00102        |
| 033E16  |                                           |        | XX16              |
| 033F16  | UART2 Receive Buffer Register             | U2RB   | XX16              |
| 034016  | Count Start Flag                          | TABSR  | 0016              |
| 034116  | Clock Prescaler Reset Flag                | CPSRF  | 0XXX XXXX2        |
| 034216  | One-Shot Start Flag                       | ONSF   | 0016              |
| 034316  | Trigger Select Register                   | TRGSR  | 0016              |
| 034416  | Up/Down Flag                              | UDF    | 0016              |
| 034516  |                                           |        |                   |
| 034616  |                                           |        | XX16              |
| 034716  | Timer A0 Register                         | TA0    | XX16              |
| 034816  |                                           |        | XX16              |
| 034916  | Timer A1 Register                         | TA1    | XX16              |
| 034A16  |                                           |        | XX16              |
| 034B16  | Timer A2 Register                         | TA2    | XX16              |
| 034C16  |                                           |        | XX16              |
| 034D16  | Timer A3 Register                         | TA3    | XX16              |
| 034E16  |                                           |        | XX16              |
| 034F16  | Timer A4 Register                         | TA4    | XX16              |



| Address | Register                                       | Symbol | Value after RESET |
|---------|------------------------------------------------|--------|-------------------|
| 035016  |                                                |        | XX16              |
| 035116  | Timer B0 Register                              | TB0    | XX16              |
| 035216  |                                                |        | XX16              |
| 035316  | Timer B1 Register                              | TB1    | XX16              |
| 035416  |                                                |        | XX16              |
| 035516  | Timer B2 Register                              | TB2    | XX16              |
| 035616  | Timer A0 Mode Register                         | TA0MR  | 0016              |
| 035716  | Timer A1 Mode Register                         | TA1MR  | 0016              |
| 035816  | Timer A2 Mode Register                         | TA2MR  | 0016              |
| 035916  | Timer A3 Mode Register                         | TA3MR  | 0016              |
| 035A16  | Timer A4 Mode Register                         | TA4MR  | 0016              |
| 035B16  | Timer B0 Mode Register                         | TB0MR  | 00XX 00002        |
| 035C16  | Timer B1 Mode Register                         | TB1MR  | 00XX 00002        |
| 035D16  | Timer B2 Mode Register                         | TB2MR  | 00XX 00002        |
| 035E16  | Timer B2 Special Mode Register                 | TB2SC  | XXXX XXX02        |
| 035F16  | Count Source Prescaler Register <sup>(1)</sup> | TCSPR  | 0XXX 00002        |
| 036016  | -                                              |        |                   |
| 036116  |                                                |        |                   |
| 036216  |                                                |        |                   |
| 036316  |                                                |        |                   |
| 036416  | UART0 Special Mode Register 4                  | U0SMR4 | 0016              |
| 036516  | UART0 Special Mode Register 3                  | U0SMR3 | 0016              |
| 036616  | UART0 Special Mode Register 2                  | U0SMR2 | 0016              |
| 036716  | UART0 Special Mode Register                    | U0SMR  | 0016              |
| 036816  | UART0 Transmit/Receive Mode Register           | U0MR   | 0016              |
| 036916  | UART0 Bit Rate Register                        | U0BRG  | XX16              |
| 036A16  |                                                |        | XX16              |
| 036B16  | UART0 Transmit Buffer Register                 | U0TB   | XX16              |
| 036C16  | UART0 Transmit/Receive Control Register 0      | U0C0   | 0000 10002        |
| 036D16  | UART0 Transmit/Receive Control Register 1      | U0C1   | 0000 00102        |
| 036E16  |                                                |        | XX16              |
| 036F16  | UART0 Receive Buffer Register                  | UORB   | XX16              |
| 037016  |                                                |        |                   |
| 037116  |                                                |        |                   |
| 037216  |                                                |        |                   |
| 037316  |                                                |        |                   |
| 037416  |                                                |        |                   |
| 037516  |                                                |        |                   |
| 037616  |                                                |        |                   |
| 037716  |                                                |        |                   |
| 037816  | DMA0 Request Source Select Register            | DM0SL  | 0X00 00002        |
| 037916  | DMA1 Request Source Select Register            | DM1SL  | 0X00 00002        |
| 037A16  | DMA2 Request Source Select Register            | DM2SL  | 0X00 00002        |
| 037B16  | DMA3 Request Source Select Register            | DM3SL  | 0X00 00002        |
| 037C16  | · · · ·                                        |        | XX16              |
| 037D16  | CRC Data Register                              | CRCD   | XX16              |
| 037E16  | CRC Input Register                             | CRCIN  | XX16              |
|         |                                                |        |                   |

Blank spaces are reserved. No access is allowed.

NOTES:

1. The TCSPR register maintains values set before reset, even after software reset or watchdog timer reset has been performed.

| Address | Register                | Symbol  | Value after RESET |
|---------|-------------------------|---------|-------------------|
| 038016  |                         | 1000    | XXXX XXXX2        |
| 038116  | A/D0 Register 0         | AD00    | 0000 00002        |
| 038216  |                         | 4004    | XX16              |
| 038316  | A/D0 Register 1         | AD01    | XX16              |
| 038416  |                         | 4.000   | XX16              |
| 038516  | A/D0 Register 2         | AD02    | XX16              |
| 038616  | A/DO De sister O        | 1000    | XX16              |
| 038716  | A/D0 Register 3         | AD03    | XX16              |
| 038816  |                         | 4004    | XX16              |
| 038916  | A/D0 Register 4         | AD04    | XX16              |
| 038A16  |                         | 1005    | XX16              |
| 038B16  | A/D0 Register 5         | AD05    | XX16              |
| 038C16  | A/DO De sister O        | 1000    | XX16              |
| 038D16  | A/D0 Register 6         | AD06    | XX16              |
| 038E16  |                         | AD07    | XX16              |
| 038F16  | A/D0 Register 7         |         | XX16              |
| 039016  |                         |         |                   |
| 039116  |                         |         |                   |
| 039216  | A/D0 Control Register 4 | AD0CON4 | XXXX 00XX2        |
| 039316  |                         |         |                   |
| 039416  | A/D0 Control Register 2 | AD0CON2 | XX0X X0002        |
| 039516  | A/D0 Control Register 3 | AD0CON3 | XXXX X0002        |
| 039616  | A/D0 Control Register 0 | AD0CON0 | 0016              |
| 039716  | A/D0 Control Register 1 | AD0CON1 | 0016              |
| 039816  | D/A Register 0          | DA0     | XX16              |
| 039916  |                         |         |                   |
| 039A16  | D/A Register 1          | DA1     | XX16              |
| 039B16  |                         |         |                   |
| 039C16  | D/A Control Register    | DACON   | XXXX XX002        |
| 039D16  |                         |         |                   |
| 039E16  |                         |         |                   |
| 039F16  |                         |         |                   |



#### <144-pin Package>

| Address | Register                    | Symbol | Value after RESET |
|---------|-----------------------------|--------|-------------------|
| 03A016  | Function Select Register A8 | PS8    | X000 00002        |
| 03A116  | Function Select Register A9 | PS9    | 0016              |
| 03A216  |                             |        |                   |
| 03A316  |                             |        |                   |
| 03A416  |                             |        |                   |
| 03A516  |                             |        |                   |
| 03A616  |                             |        |                   |
| 03A716  | Function Select Register D1 | PSD1   | X0XX XX002        |
| 03A816  |                             |        |                   |
| 03A916  |                             |        |                   |
| 03AA16  |                             |        |                   |
| 03AB16  |                             |        |                   |
| 03AC16  | Function Select Register C2 | PSC2   | XXXX X00X2        |
| 03AD16  | Function Select Register C3 | PSC3   | X0XX XXXX2        |
| 03AE16  | U U                         |        |                   |
| 03AF16  | Function Select Register C  | PSC    | 00X0 00002        |
| 03B016  | Function Select Register A0 | PS0    | 0016              |
| 03B116  | Function Select Register A1 | PS1    | 0016              |
| 03B216  | Function Select Register B0 | PSL0   | 0016              |
| 03B316  | Function Select Register B1 | PSL1   | 0016              |
| 03B416  | Function Select Register A2 | PS2    | 00X0 00002        |
| 03B516  | Function Select Register A3 | PS3    | 0016              |
| 03B616  | Function Select Register B2 | PSL2   | 00X0 00002        |
| 03B716  | Function Select Register B3 | PSL3   | 0016              |
| 03B816  |                             | 1 623  | 0010              |
| 03B916  | Function Select Register A5 | PS5    | XXX0 00002        |
| 03BA16  |                             | 100    |                   |
| 03BB16  |                             |        |                   |
| 03BC16  |                             |        |                   |
| 03BD16  |                             |        |                   |
| 03BE16  |                             |        |                   |
| 03BF16  |                             |        |                   |
| 03C016  | Port P6 Register            | P6     | XX16              |
| 03C016  | Port P7 Register            | P7     | XX16              |
|         |                             |        |                   |
| 03C216  | Port P6 Direction Register  | PD6    | 0016              |
| 03C316  | Port P7 Direction Register  | PD7    | 0016              |
| 03C416  | Port P8 Register            | P8     | XX16              |
| 03C516  | Port P9 Register            | P9     | XX16              |
| 03C616  | Port P8 Direction Register  | PD8    | 00X0 00002        |
| 03C716  | Port P9 Direction Register  | PD9    | 0016              |
| 03C816  | Port P10 Register           | P10    | XX16              |
| 03C916  | Port P11 Register           | P11    | XX16              |
| 03CA16  | Port P10 Direction Register | PD10   | 0016              |
| 03CB16  | Port P11 Direction Register | PD11   | XXX0 00002        |
| 03CC16  | Port P12 Register           | P12    | XX16              |
| 03CD16  | Port P13 Register           | P13    | XX16              |
| 03CE16  | Port P12 Direction Register | PD12   | 0016              |
| 03CF16  | Port P13 Direction Register | PD13   | 0016              |

X: Indeterminate



### <144-pin Package>

| Address | Register                    | Symbol | Value after RESET |
|---------|-----------------------------|--------|-------------------|
| 03D016  | Port P14 Register           | P14    | XX16              |
| 03D116  | Port P15 Register           | P15    | XX16              |
| 03D216  | Port P14 Direction Register | PD14   | X000 00002        |
| 03D316  | Port P15 Direction Register | PD15   | 0016              |
| 03D416  |                             |        |                   |
| 03D516  |                             |        |                   |
| 03D616  |                             |        |                   |
| 03D716  |                             |        |                   |
| 03D816  |                             |        |                   |
| 03D916  |                             |        |                   |
| 03DA16  | Pull-Up Control Register 2  | PUR2   | 0016              |
| 03DB16  | Pull-Up Control Register 3  | PUR3   | 0016              |
| 03DC16  | Pull-Up Control Register 4  | PUR4   | XXXX 00002        |
| 03DD16  |                             |        |                   |
| 03DE16  |                             |        |                   |
| 03DF16  |                             |        |                   |
| 03E016  | Port P0 Register            | P0     | XX16              |
| 03E116  | Port P1 Register            | P1     | XX16              |
| 03E216  | Port P0 Direction Register  | PD0    | 0016              |
| 03E316  | Port P1 Direction Register  | PD1    | 0016              |
| 03E416  | Port P2 Register            | P2     | XX16              |
| 03E516  | Port P3 Register            | P3     | XX16              |
| 03E616  | Port P2 Direction Register  | PD2    | 0016              |
| 03E716  | Port P3 Direction Register  | PD3    | 0016              |
| 03E816  | Port P4 Register            | P4     | XX16              |
| 03E916  | Port P5 Register            | P5     | XX16              |
| 03EA16  | Port P4 Direction Register  | PD4    | 0016              |
| 03EB16  | Port P5 Direction Register  | PD5    | 0016              |
| 03EC16  |                             |        |                   |
| 03ED16  |                             |        |                   |
| 03EE16  |                             |        |                   |
| 03EF16  |                             |        |                   |
| 03F016  | Pull-Up Control Register 0  | PUR0   | 0016              |
| 03F116  | Pull-Up Control Register 1  | PUR1   | XXXX 00002        |
| 03F216  |                             |        |                   |
| 03F316  |                             |        |                   |
| 03F416  |                             |        |                   |
| 03F516  |                             |        |                   |
| 03F616  |                             |        |                   |
| 03F716  |                             |        |                   |
| 03F816  |                             |        |                   |
| 03F916  |                             |        |                   |
| 03FA16  |                             |        |                   |
| 03FB16  |                             |        |                   |
| 03FC16  |                             |        |                   |
| 03FD16  |                             |        |                   |
| 03FE16  |                             |        |                   |
| 03FE16  | Port Control Register       | PCR    | XXXX XXX02        |

X: Indeterminate



### <100-pin Package>

| Address | Register                                | Symbol | Value after RESET |
|---------|-----------------------------------------|--------|-------------------|
| 03A016  |                                         |        |                   |
| 03A116  |                                         |        |                   |
| 03A216  |                                         |        |                   |
| 03A316  |                                         |        |                   |
| 03A416  |                                         |        |                   |
| 03A516  |                                         |        |                   |
| 03A616  |                                         |        |                   |
| 03A716  | Function Select Register D1             | PSD1   | X0XX XX002        |
| 03A816  | , i i i i i i i i i i i i i i i i i i i |        |                   |
| 03A916  |                                         |        |                   |
| 03AA16  |                                         |        |                   |
| 03AB16  |                                         |        |                   |
| 03AC16  | Function Select Register C2             | PSC2   | XXXX X00X2        |
| 03AD16  | Function Select Register C3             | PSC3   | X0XX XXXX2        |
| 03AE16  |                                         |        |                   |
| 03AF16  | Function Select Register C              | PSC    | 00X0 00002        |
| 03B016  | Function Select Register A0             | PS0    | 0016              |
| 03B116  | Function Select Register A1             | PS1    | 0016              |
| 03B216  | Function Select Register B0             | PSL0   | 0016              |
| 03B316  | Function Select Register B1             | PSL1   | 0016              |
| 03B416  | Function Select Register A2             | PS2    | 00X0 00002        |
| 03B516  | Function Select Register A3             | PS3    | 0016              |
| 03B616  | Function Select Register B2             | PSL2   | 00X0 00002        |
| 03B716  | Function Select Register B3             | PSL3   | 0016              |
| 03B816  |                                         |        |                   |
| 03B916  |                                         |        |                   |
| 03BA16  |                                         |        |                   |
| 03BB16  |                                         |        |                   |
| 03BC16  |                                         |        |                   |
| 03BD16  |                                         |        |                   |
| 03BE16  |                                         |        |                   |
| 03BF16  |                                         |        |                   |
| 03C016  | Port P6 Register                        | P6     | XX16              |
| 03C116  | Port P7 Register                        | P7     | XX16              |
| 03C216  | Port P6 Direction Register              | PD6    | 0016              |
|         | Port P7 Direction Register              | PD7    | 0016              |
| 03C416  | Port P8 Register                        | P8     | XX16              |
| 03C516  | Port P9 Register                        | P9     | XX16              |
| 03C616  | Port P8 Direction Register              | PD8    | 00X0 00002        |
| 03C716  | Port P9 Direction Register              | PD9    | 0016              |
| 03C816  | Port P10 Register                       | P10    | XX16              |
| 03C916  | -                                       |        |                   |
| 03CA16  | Port P10 Direction Register             | PD10   | 0016              |
| 03CB16  | Set default value to "FF16"             |        |                   |
| 03CC16  | -                                       |        |                   |
| 03CD16  |                                         |        |                   |
| 03CE16  | Set default value to "FF16"             |        |                   |
| 03CF16  | Set default value to "FF16"             |        |                   |

X: Indeterminate



#### <100-pin Package>

| Address | Register                    | Symbol | Value after RESET |
|---------|-----------------------------|--------|-------------------|
| 03D016  |                             |        |                   |
| 03D116  |                             |        |                   |
| 03D216  | Set default value to "FF16" |        |                   |
| 03D316  | Set default value to "FF16" |        |                   |
| 03D416  |                             |        |                   |
| 03D516  |                             |        |                   |
| 03D616  |                             |        |                   |
| 03D716  |                             |        |                   |
| 03D816  |                             |        |                   |
| 03D916  |                             |        |                   |
|         | Pull-Up Control Register 2  | PUR2   | 0016              |
|         | Pull-Up Control Register 3  | PUR3   | 0016              |
| 03DC16  | Set default value to "0016" |        |                   |
| 03DD16  |                             |        |                   |
| 03DE16  |                             |        |                   |
| 03DF16  |                             |        |                   |
| 03E016  | Port P0 Register            | P0     | XX16              |
| 03E116  | Port P1 Register            | P1     | XX16              |
| 03E216  | Port P0 Direction Register  | PD0    | 0016              |
| 03E316  | Port P1 Direction Register  | PD1    | 0016              |
| 03E416  | Port P2 Register            | P2     | XX16              |
| 03E516  | Port P3 Register            | P3     | XX16              |
| 03E616  | Port P2 Direction Register  | PD2    | 0016              |
| 03E716  | Port P3 Direction Register  | PD3    | 0016              |
| 03E816  | Port P4 Register            | P4     | XX16              |
| 03E916  | Port P5 Register            | P5     | XX16              |
| 03EA16  | Port P4 Direction Register  | PD4    | 0016              |
| 03EB16  | Port P5 Direction Register  | PD5    | 0016              |
| 03EC16  |                             |        |                   |
| 03ED16  |                             |        |                   |
| 03EE16  |                             |        |                   |
| 03EF16  |                             |        |                   |
| 03F016  | Pull-up Control Register 0  | PUR0   | 0016              |
| 03F116  | Pull-up Control Register 1  | PUR1   | XXXX 00002        |
| 03F216  |                             |        |                   |
| 03F316  |                             |        |                   |
| 03F416  |                             |        |                   |
| 03F516  |                             |        |                   |
| 03F616  |                             |        |                   |
| 03F716  |                             |        |                   |
| 03F816  |                             |        |                   |
| 03F916  |                             |        |                   |
| 03FA16  |                             |        |                   |
| 03FB16  |                             |        |                   |
| 03FC16  |                             |        |                   |
| 03FD16  |                             |        |                   |
| 03FE16  |                             |        |                   |
| 03FF16  | Port Control Register       | PCR    | XXXX XXX02        |
|         | ~                           |        | 1                 |

X: Indeterminate



# 5. Reset

Hardware reset 1, brown-out detection reset (hardware reset 2), software reset and watchdog timer reset are available to reset the microcomputer.

# 5.1 Hardware Reset 1

Pins, the CPU and SFR are reset by setting the RESET pin. If the supply voltage meets the recommended operating conditions, all pins are reset when a low-level ("L") signal is applied to the RESET pin (see **Table 5.1**). The oscillation circuit is also reset and the main clock starts oscillating. The CPU and SFR are reset when the signal applied to the RESET pin changes "L" to high level ("H"). The microcomputer executes the program in an address indicated by the reset vector. The internal RAM is not reset. When an "L" signal is applied to the RESET pin while writing data to the internal RAM, the internal RAM is in an indeterminate state.

Figure 5.1 shows an example of the reset circuit. Figure 5.2 shows a reset sequence. Table 5.1 lists pin states while the  $\overline{\text{RESET}}$  pin is held "L".

# 5.1.1 Reset on a Stable Supply Voltage

- (1) Apply an "L" signal to the RESET pin
- (2) Provide 20 or more clock cycle inputs into the XIN pin
- (3) Apply an "H" signal to the  $\overline{\text{RESET}}$  pin

# 5.1.2 Power-on Reset

- (1) Apply an "L" signal to the RESET pin
- (2) Raise the supply voltage to the recommended operating level
- (3) Insert td(P-R) ms as wait time for the internal voltage to stabilize
- (4) Provide 20 or more clock cycle inputs into the XIN pin
- (5) Apply an "H" signal to the RESET pin

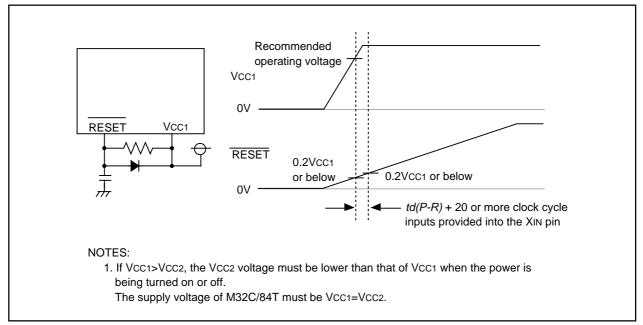



Figure 5.1 Reset Circuit

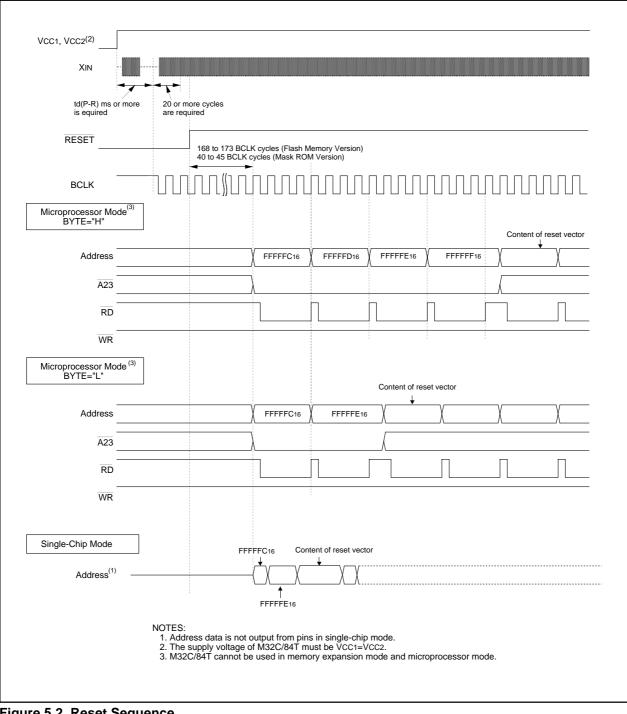



Figure 5.2 Reset Sequence



|                          | Pin States <sup>(2)</sup>   |                                                                |                             |  |  |  |
|--------------------------|-----------------------------|----------------------------------------------------------------|-----------------------------|--|--|--|
| Pin Name                 | CNVss=Vss                   | CNVss=Vcc                                                      |                             |  |  |  |
|                          |                             | BYTE=Vss                                                       | BYTE=Vcc                    |  |  |  |
| P0                       | Input port (high-impedance) | Inputs data (high-impedance)                                   |                             |  |  |  |
| P1                       | Input port (high-impedance) | Inputs data (high-impedance)                                   | Input port (high-impedance) |  |  |  |
| P2, P3, P4               | Input port (high-impedance) | Output addresses (indeterminate)                               |                             |  |  |  |
| P50                      | Input port (high-impedance) | Outputs the $\overline{WR}$ signal ("H") <sup>(3)</sup>        |                             |  |  |  |
| P51                      | Input port (high-impedance) | Outputs the BHE signal (indeterminate)                         |                             |  |  |  |
| P52                      | Input port (high-impedance) | Outputs the $\overline{\text{RD}}$ signal ("H") <sup>(3)</sup> |                             |  |  |  |
| P53                      | Input port (high-impedance) | Outputs the BCLK <sup>(3)</sup>                                |                             |  |  |  |
| P54                      | Input port (high-impedance) | Outputs the HLDA signal (Output signal depends on an input     |                             |  |  |  |
|                          |                             | signal to the HOLD pin.) <sup>(3)</sup>                        |                             |  |  |  |
| P55                      | Input port (high-impedance) | Inputs the HOLD signal (high-impedance)                        |                             |  |  |  |
| P56                      | Input port (high-impedance) | Outputs an "H" signal <sup>(3)</sup>                           |                             |  |  |  |
| P57                      | Input port (high-impedance) | Inputs the RDY signal (high-impedance)                         |                             |  |  |  |
| P6 to P15 <sup>(1)</sup> | Input port (high-impedance) | Input port (high-impedance)                                    |                             |  |  |  |

### Table 5.1 Pin States while RESET Pin is Held "L"

NOTES:

1. Ports P11 to P15 are provided in the 144-pin package only.

- 2. The availability of pull-up resistors is indeterminate until internal supply voltage stabilizes.
- 3. Each port is in this state after power is on and internal supply voltage stabilizes, but in an indeterminate state until internal supply voltage stabilizes.

# 5.2 Brown-Out Detection Reset (Hardware Reset 2)

Pins, the CPU and SFR are reset by using the built-in voltage detection circuit, which monitors the voltage applied to the VCC1 pin.

When the VC26 bit in the VCR2 register is set to "1" (reset level detection circuit enabled), pins, the CPU and SFR are reset as soon as the voltage applied to the VCC1 pin drops to Vdet3 or below.

Then, pins, the CPU and SFR are reset as soon as the voltage applied to the Vcc1 pin reaches Vdet3r or above. The microcomputer executes the program in an address determined by the reset vector.

The microcomputer executes the program after detecting Vdet3r and waiting td(S-R) ms. The same pins and registers are reset by the hardware reset 1 and brown-out detection reset, and are also placed in the same reset state.

The microcomputer cannot exit stop mode by brown-out detection reset.

Figure 5.3 shows an example of brown-out detection reset operation.

NOTES:

1. Brown-out detection reset cannot be used in M32C/84T.



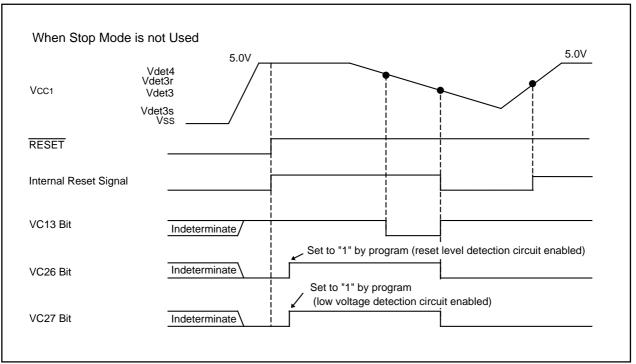



Figure 5.3 Brown-out Detection Reset (Hardware Reset 2)

# 5.3 Software Reset

Pins, the CPU and SFR are reset when the PM03 bit in the PM0 register is set to "1" (microcomputer reset). Then the microcomputer executes the program in an address determined by the reset vector.

Set the PM03 bit to "1" while the main clock is selected as the CPU clock and the main clock oscillation is stable.

In the software reset, the microcomputer does not reset a part of the SFR. Refer to **4. SFR** for details. Processor mode remains unchanged since the PM01 and PM00 bits in the PM0 register are not reset.

# 5.4 Watchdog Timer Reset

Pins, the CPU and SFR are reset when the CM06 bit in the CM0 register is set to "1" (reset) and the watchdog timer underflows. Then the microcomputer executes the program in an address determined by the reset vector.

In the watchdog timer reset, the microcomputer does not reset a part of the SFR. Refer to **4. SFR** for details. Processor mode remains unchanged since the PM01 and PM00 bits in the PM0 register are not reset.



## 5.5 Internal Space

Figure 5.4 shows CPU register states after reset. Refer to 4. SFR for SFR states after reset.

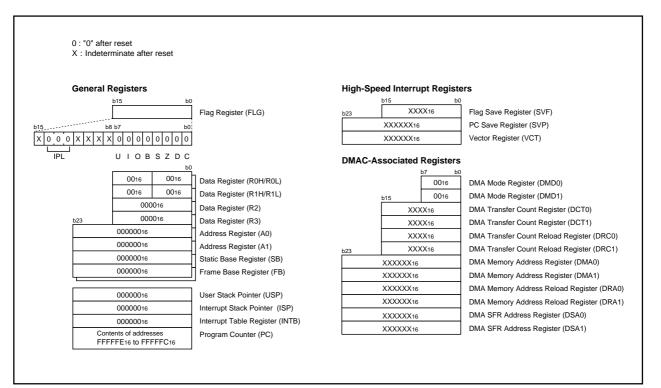



Figure 5.4 CPU Register States after Reset



# 6. Voltage Detection Circuit

### NOTE

The voltage detection circuit in M32C/84T cannot be used.

However, the cold start-up/warm start-up determine function is available.

The voltage detection circuit consists of the reset level detection circuit and the low voltage detection circuit. The reset level detection circuit monitors the voltage applied to the Vcc1 pin. The microcomputer is reset if the reset level detection circuit detects Vcc1 is Vdet3 or below. This circuit is disabled when the microcomputer is in stop mode.

The voltage detection circuit also monitors the voltage applied to the VCC1 pin. The low voltage detection signal is generated when the low voltage detection circuit detects VCC1 is above or below Vdet4. This signal generates the low voltage detection interrupt. The VC13 bit in the VCR1 register determines whether VCC1 is above or below Vdet4.

The voltage detection circuit is available when VCC1=4.2V to 5.5V.

Figure 6.1 shows a block diagram of the voltage detection circuit.

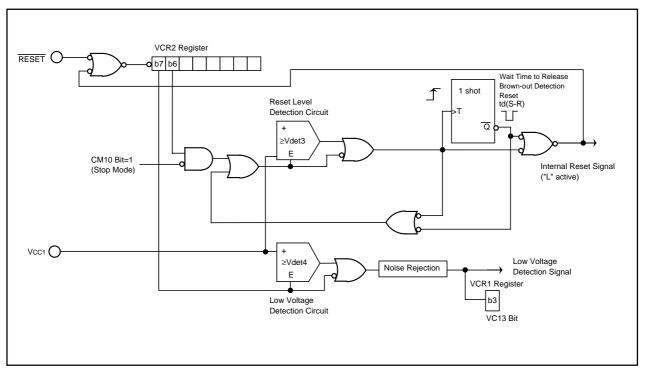



Figure 6.1 Voltage Detection Circuit Block Diagram



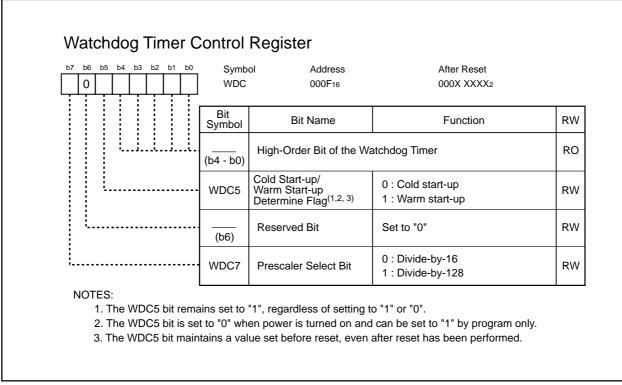
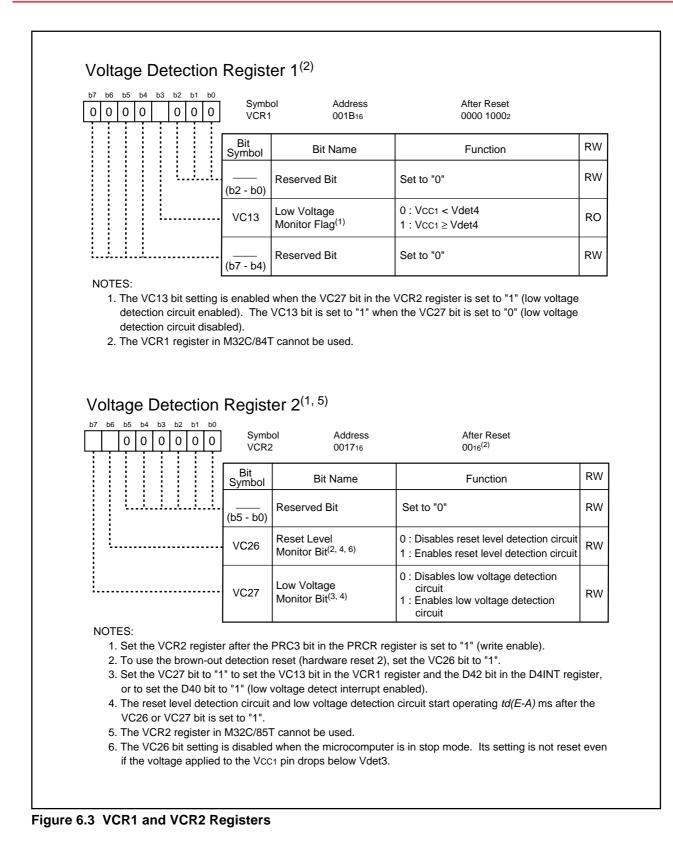




Figure 6.2 WDC Register







| b7 b6 b5 b4 b3 b2 b1 b0                                                                                                                                                                                                                                                                            | Symb<br>D4IN                                                                                                                     |                                                                                                                                                                                           | After Reset<br>0016                                                                                                                                                                                                                   |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                                                                                                                                                                                                    | Bit<br>Symbol                                                                                                                    | Bit Name                                                                                                                                                                                  | Function                                                                                                                                                                                                                              | RV  |
|                                                                                                                                                                                                                                                                                                    | D40                                                                                                                              | Low Voltage Detection<br>Interrupt Enable Bit <sup>(2)</sup>                                                                                                                              | 0: Disables the interrupt<br>1: Enables the interrupt                                                                                                                                                                                 | RV  |
|                                                                                                                                                                                                                                                                                                    | D41                                                                                                                              | Stop/Wait Mode<br>Deactivation<br>Control Bit <sup>(3)</sup>                                                                                                                              | <ul> <li>0: Disabled (cannot use the low voltage detection interrupt to exit stop/wait mode)</li> <li>1: Enabled (can use the low voltage detection interrupt to exit stop/wait mode)</li> </ul>                                      | RV  |
|                                                                                                                                                                                                                                                                                                    | D42                                                                                                                              | Voltage Change<br>Detect Flag <sup>(4, 5)</sup>                                                                                                                                           | 0: Not detected<br>1: Detects above or below Vdet4                                                                                                                                                                                    | RV  |
|                                                                                                                                                                                                                                                                                                    | D43                                                                                                                              | WDT Overflow<br>Detect Flag <sup>(5)</sup>                                                                                                                                                | 0: Not detected<br>1: Detected                                                                                                                                                                                                        | R٧  |
|                                                                                                                                                                                                                                                                                                    | DF0                                                                                                                              | Sampling Clock                                                                                                                                                                            | <sup>b5 b4</sup><br>0 0 : CPU clock divided by 8<br>0 1 : CPU clock divided by 16                                                                                                                                                     | RV  |
|                                                                                                                                                                                                                                                                                                    | DF1                                                                                                                              | Select Bit                                                                                                                                                                                | 1 0 : CPU clock divided by 32<br>1 1 : CPU clock divided by 64                                                                                                                                                                        | RV  |
|                                                                                                                                                                                                                                                                                                    | (b7 - b6)                                                                                                                        | Reserved Bit                                                                                                                                                                              | When read,<br>its content is indeterminate                                                                                                                                                                                            | RC  |
| <ol> <li>2. The D40 bit setting is<br/>detection circuit ena<br/>Use the following pri<br/>(1) Set the VC27 bit<br/>(2) Wait td(E-A) ms<br/>(3) Wait required sa<br/>(4) Set the D40 bit t</li> <li>3. When exiting stop m<br/>set the D41 bit to "1</li> <li>4. The D42 bit setting is</li> </ol> | s enabled<br>bled).<br>ocedure to<br>t to "1"<br>to start ope<br>impling tim<br>o "1"<br>node using<br>" after sett<br>s enabled | when the VC27 bit in the V<br>set the D40 bit to "1":<br>erating the voltage detection<br>ie (see Table 6.2)<br>the low voltage detection<br>ing it to "0".<br>when the VC27 bit in the V | register is set to "1" (write enable).<br>/CR2 register is set to "1" (low voltage<br>on circuit<br>circuit again after having already done<br>VCR2 register is set to "1" (low voltage<br>on the VC27 bit is set to "0" (low voltage | so, |

Figure 6.4 D4INT Register



# 6.1 Low Voltage Detection Interrupt

If the D40 bit in the D4INT register is set to "1" (low voltage detection interrupt enabled), low voltage detection interrupt request is generated when the voltage applied to the Vcc1 pin rises above or drops below Vdet4. The low voltage detection interrupt shares the same interrupt vector with the watchdog timer interrupt and oscillation stop detection interrupt. The D42 bit in the D4INT register determines whether the low voltage detection interrupt has been generated. Read the D42 bit using an interrupt routine when using the low voltage detection interrupt at the same time as the watchdog timer interrupt and oscillation stop detection stop detection interrupt as the watchdog timer interrupt and oscillation stop detection interrupt at the same time as the watchdog timer interrupt and oscillation stop detection interrupt.

Set the D41 bit in the D4INT register to "1" (enabled) to use the low voltage detection interrupt to exit stop mode or wait mode.

The D42 bit is set to "1" (more or less than Vdet4 detected) as soon as the voltage applied to the Vcc1 pin reaches Vdet4 due to the voltage rise and voltage drop. When the D42 bit setting changes "0" to "1", low voltage detection interrupt request is generated. Set the D42 bit to "0" (not detected) by program. However, when the D41 bit is set to "1" and the microcomputer is in stop mode or wait mode, low voltage detection interrupt request is generated, regardless of the D42 bit setting, if the voltage applied to the Vcc1 pin is detected to be higher than Vdet4. The microcomputer then exits stop mode or wait mode.

Table 6.1 shows how a low voltage detection interrupt request is generated.

The DF1 and DF0 bits in the D4INT register determine sampling period that detects the voltage applied to the VCC1 pin rises above or drops below Vdet4. Table 6.2 shows the sampling periods.

| VC27 Bit | D40 Bit  | D41 Bit          | D42 Bit <sup>(4)</sup> | VC13<br>Bit <sup>(3)</sup> |
|----------|----------|------------------|------------------------|----------------------------|
| 1        | 1        | "0" or "1"       | "0" to"1"              | "0" to"1"<br>"1" to"0"     |
|          | I        | 1                | -                      | "0" to"1"                  |
|          | VC27 Bit | VC27 Bit D40 Bit |                        |                            |

Table 6.1 Conditions to Generate Low Voltage Detection Interrupt Request

- : "0" or "1"

NOTES:

1. All states excluding wait mode and stop mode are handled as normal operating mode. (Refer to 9. Clock Generation Circuit.)

#### 2. Refer to 6.1.1 Limitations for Exiting Stop/Wait Mode.

- 3. Sampling begins after the VC13 bit setting changes. An interrupt request is generated after sampling is completed. See Figure 6.6 for details.
- 4. Set to "0" by program before generating an interrupt.

#### Table 6.2 Sampling Periods

| CPU<br>Clock |             | Sampling     | Clock (µs)   |              |
|--------------|-------------|--------------|--------------|--------------|
| (MHz)        | Divide-by-8 | Divide-by-16 | Divide-by-32 | Divide-by-64 |
| 16           | 3.0         | 6.0          | 12.0         | 24.0         |
| 32           | 1.5         | 3.0          | 6.0          | 12.0         |



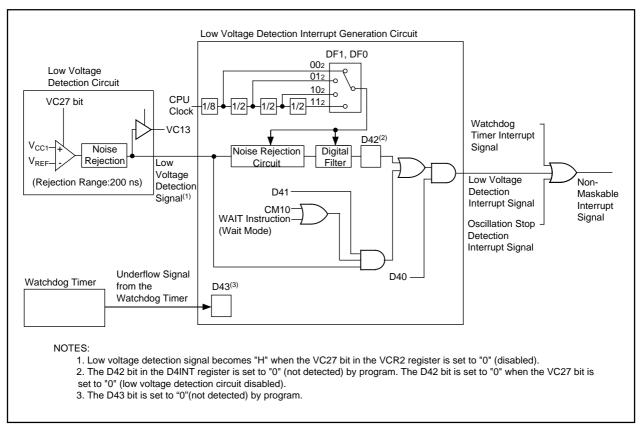



Figure 6.5 Low Voltage Detection Interrupt Generation Circuit

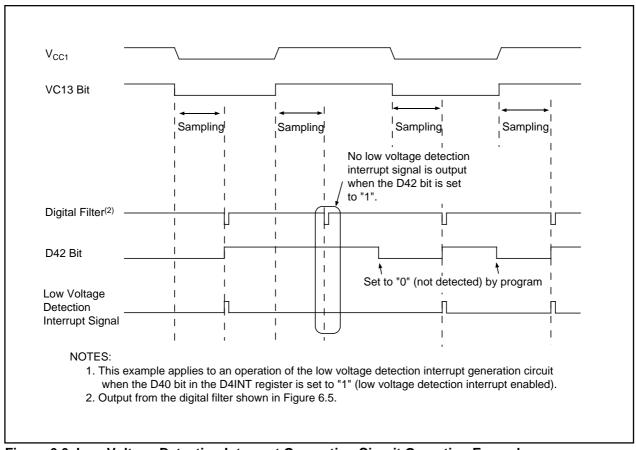



Figure 6.6 Low Voltage Detection Interrupt Generation Circuit Operation Example

# 6.1.1 Limitations on Exiting Stop/Wait Mode

The low voltage detection interrupt is generated and the microcomputer exits stop mode as soon as the CM10 bit in the CM1 register is set to "1" (all clocks stopped) under the conditions below. Additionally, if WAIT instruction is executed under these same conditions, the low voltage detection interrupt is immediately generated and the microcomputer exits wait mode.

- the VC27 bit in the VCR2 register is set to "1" (low voltage detection circuit enabled),
- the D40 bit in the D4INT register is set to "1" (low voltage detection interrupt enabled),
- the D41 bit in the D4INT register is set to "1" (low voltage detection interrupt is used to exit stop/wait mode), and
- the voltage applied to the VCC1 pin is higher than Vdet4 (the VC13 bit in the VCR1 register is set to "1")

Set the CM10 bit to "1" when the VC13 bit is "0" (Vcc1 < Vdet4), if the microcomputer is set to enter stop/ wait mode when the voltage applied to the Vcc1 pin drops below Vdet4 and to exit stop/wait mode when the voltage applied rises to Vdet4 or above.

# 6.2 Cold Start-up / Warm Start-up Determine Function

The WDC5 bit in the WDC register determines either cold start-up, power-on reset, or warm start-up, reset during the microcomputer running. Default value of the WDC5 bit is "0" (cold start-up) when power-on. It is set to "1" (warm start-up) by writing desired values to the WDC register. The WDC5 bit is not reset, regardless of a software reset or reset signal input.

Figure 6.7 shows a block diagram of the cold start-up/warm start-up determine function. Figure 6.8 shows its operation exmaple.

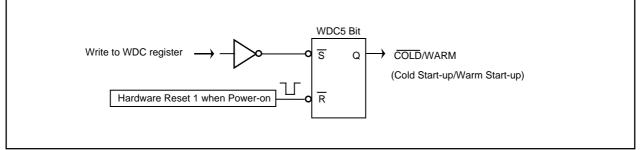



Figure 6.7 Cold Start-up/Warm Start-up Determine Function Block Diagram

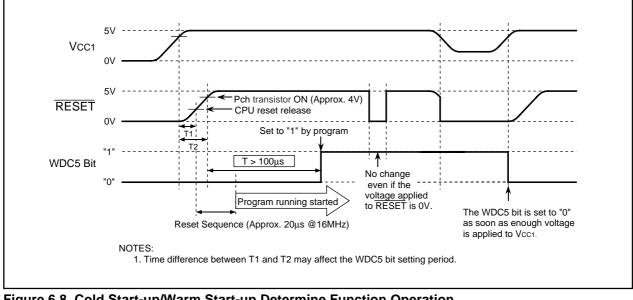



Figure 6.8 Cold Start-up/Warm Start-up Determine Function Operation

# 7. Processor Mode

#### NOTE

Use M32C/84T in single-chip mode only.

M32C/84T cannot be used in memory expansion mode and microprocessor mode.

# 7.1 Types of Processor Mode

Single-chip mode, memory expansion mode or microprocessor mode can be selected as a processor mode. Table 7.1 lists a feature of the processor mode.

#### Table 7.1 Processor Mode Feature

| Processor Mode        | Accessable Space                                               | Pin Status as I/O Ports                                                    |
|-----------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|
| Single-chip Mode      | SFR, Internal RAM, Internal ROM                                | All pins assigned to I/O ports or to I/O pins for the peripheral functions |
| Memory Expansion Mode | SFR, Internal RAM, Internal ROM, External Space <sup>(1)</sup> | Some pins assigned to bus control pins <sup>(1)</sup>                      |
| Microprocessor Mode   | SFR, Internal RAM, External Space <sup>(1)</sup>               | Some pins assigned to bus control pins <sup>(1)</sup>                      |

NOTES:

1. Refer to 8. Bus for details.



## 7.2 Setting of Processor Mode

The CNVss pin state and the PM01 and PM00 bit settings in the PM0 register determine which processor mode is selected. Table 7.2 lists processor mode after hardware reset. Table 7.3 lists processor mode selected by PM01 and PM00 bit settings.

#### Table 7.2 Processor Mode after Hardware Reset

| Input Level into the CNVss pin | Processor Mode      |
|--------------------------------|---------------------|
| Vss                            | Single-chip Mode    |
| VCC1 <sup>(1, 2)</sup>         | Microprocessor Mode |

NOTES:

1. The internal ROM cannot be accessed, regardless of PM01 and PM00 bit settings, when applying Vcc1 to the CNVss pin and generating the hardware reset (hardware reset 1 or brown-out detection reset).

2. Multiplex bus cannot be assigned to all CS areas.

| Table 7.3 | Processor M  | ode Selected | by the PM01    | and PM00 bit Settings   |
|-----------|--------------|--------------|----------------|-------------------------|
|           | 110003301 10 | ouc ociccicu | by the rate of | and I mov bit octilings |

| PM01 and PM00 Bits | Processor Mode           |
|--------------------|--------------------------|
| 002                | Single-chip Mode         |
| 012                | Memory Expansion Mode    |
| 102                | Do not set to this value |
| 112                | Microprocessor Mode      |

If the PM01 and PM00 bits are rewritten, the mode corresponding to the PM01 and PM00 bits is selected regardless of CNVss pin level.

Do not change the PM01 and PM00 bits to "012" (memory expansion mode) or "112" (microprocessor mode) when the PM07 to PM02 bits in the PM0 register are being rewritten.

Do not enter microprocessor mode while the CPU is executing a program in the internal ROM.

Do not enter single-chip mode or memory expansion mode from microprocessor mode while the CPU is executing a program in an external memory space, the same address assigned for the internal ROM.

The internal ROM cannot be accessed, regardless of PM01 and PM00 bit settings, when applying Vcc1 to the CNVSS pin and generating the hardware reset (hardware reset 1 or low voltage detection reset).

Figures 7.1 and 7.2 show the PM0 register and PM1 register. Figure 7.3 shows a memory map in each processor mode.



| b7 b6 b5                                                                                                  | b4 b3 b2 b1 b0                                                                                                                                                                                                                                                                                                                                                                                       | Symbo<br>PM0                                                                                                                                                                                                                 | ol Address<br>0004 <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                           | After Reset<br>1000 00002 (CNVss = "L")<br>0000 00112 (CNVss = "H")                                                                                                                                                                                          |                            |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                      | Bit<br>Symbol                                                                                                                                                                                                                | Bit Name                                                                                                                                                                                                                                                                                                                                                                                                                   | Function                                                                                                                                                                                                                                                     | RV                         |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                      | PM00                                                                                                                                                                                                                         | Processor Mode Bit <sup>(2, 3)</sup>                                                                                                                                                                                                                                                                                                                                                                                       | 0 0: Single-chip mode<br>0 1: Memory expansion mode <sup>(8)</sup>                                                                                                                                                                                           | RV                         |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                      | PM01                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 0: Do not set to this value<br>1 1: Microprocessor mode <sup>(8)</sup>                                                                                                                                                                                     | RV                         |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                      | PM02                                                                                                                                                                                                                         | R/W Mode Select Bit                                                                                                                                                                                                                                                                                                                                                                                                        | 0: RD / BHE / WR<br>1: RD / WRH / WRL                                                                                                                                                                                                                        | RV                         |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                      | PM03                                                                                                                                                                                                                         | Software Reset Bit                                                                                                                                                                                                                                                                                                                                                                                                         | The microcomputer is reset when<br>this bit is set to "1". When read, its<br>content is "0".                                                                                                                                                                 | RV                         |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                      | PM04                                                                                                                                                                                                                         | Multiplexed Bus Space                                                                                                                                                                                                                                                                                                                                                                                                      | $^{b5 b4}_{0 0}$ 0 : Multiplexed bus is not used 0 1 : Access the CS2 area using the bus                                                                                                                                                                     |                            |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                      | PM05                                                                                                                                                                                                                         | Select Bit <sup>(4)</sup>                                                                                                                                                                                                                                                                                                                                                                                                  | 0 1 : Access the $\overline{CS1}$ area using the bus<br>1 1 : Access all $\overline{CS}$ areas using the bus <sup>(5)</sup>                                                                                                                                  |                            |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                      | (b6)                                                                                                                                                                                                                         | Reserved Bit                                                                                                                                                                                                                                                                                                                                                                                                               | Set to "0"                                                                                                                                                                                                                                                   | RV                         |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                      | PM07                                                                                                                                                                                                                         | BCLK Output<br>Disable Bit <sup>(6)</sup>                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>0 : BCLK is output<sup>(7)</sup></li> <li>1 : BCLK is not output<br/>The CM01 and CM00 bits in the<br/>CM0 register determine pin functions</li> </ul>                                                                                              | R۷                         |
| 2. The<br>tim<br>3. Se<br>PM<br>4. The<br>5. The<br>sta<br>Wr<br>acc<br>CS<br>6. No<br>ter<br>CN<br>7. Wr | write the PM0 reg<br>e PM01 and PM00<br>her reset has perfor<br>t the PM01 and PI<br>101 and PM00 bits<br>e PM04 and PM05<br>e PM04 and PM05<br>e Set the PM05 a<br>boo not set the F<br>e PM05 and PM04<br>rts up with the sep<br>nen the PM05 and<br>cess each 64-Kby<br>ode 0. The microco<br>to CS3 in mode<br>BCLK is output in<br>minated in microp<br>101 and CM00 bits<br>in the PM07 bit is | ) bits main<br>rmed.<br>M00 bits to<br>5 bits are a<br>nd PM04 b<br>2M05 and I<br>4 bits cann<br>parate bus<br>I PM04 bits<br>te chip-sel<br>computer a<br>a 3.<br>a single-chi<br>rocessor n<br>s in the CM<br>s set to "0" | tain values set before reserve<br>or "012" or "112" separately.<br>available in memory expan-<br>pits to "002" in mode 0.<br>PM04 bits to "012" in mode<br>to be set to "112" in micro<br>e after reset.<br>Is are set to "112" in memo-<br>ect-assigned address spa-<br>ccesses the CS0 to CS2 in<br>ip mode even if the PM07<br>mode or memory expansion<br>//0 register to "002" (I/O po-<br>' (BCLK output), set the C | processor mode since the microcomputer<br>ry expansion mode, the microcomputer<br>ice. The multiplexed bus is not available<br>in mode 1, CSO and CS1 in mode 2 and<br>bit is set to "0". When a clock output is<br>on mode, set the PM07 bit to "1" and the | ter<br>r cai<br>le in<br>d |

Figure 7.1 PM0 Register



| Bit<br>Symbol         Bit Name         Function           PM10         External Memory Space         b1 b0<br>0 0 : Mode 0 (A20 to A23 for P44 to<br>0 1 : Mode 1 (A20 for P44,<br>CS2 to CS0 for P45 to P47)           1 0 : Mode 2 (A20, A21 for P44, P4<br>CS1, CS0 for P46, P47)           1 1 : Mode 3         | P47)<br>RV       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Symbol         Bit Name         Function           PM10         PM10         b1b0<br>0 0 : Mode 0 (A20 to A23 for P44 to<br>0 1 : Mode 1 (A20 for P44,<br>CS2 to CS0 for P45 to P47)           Internal Memory Space         Mode Bit <sup>(2, 4)</sup> D1 : Mode 2 (A20, A21 for P44, P4<br>CS1, CS0 for P46, P47) | P47)             |
| PM10         External Memory Space         0 0 : Mode 0 (A20 to A23 for P44 to 0 1 : Mode 1 (A20 for P44, CS2 to CS0 for P45 to P47)           Mode Bit <sup>(2, 4)</sup> 1 : Mode 2 (A20, A21 for P44, P4                                                                                                          |                  |
| Mode Bit <sup>(2, 4)</sup><br>1 0 : Mode 2 (A20, A21 for P44, P4<br>CS1, CS0 for P46, P47)                                                                                                                                                                                                                          |                  |
| (CS3 to CS0 for P44 to P47)                                                                                                                                                                                                                                                                                         | <sup>5,</sup> RV |
| PM12 Internal Memory 0 : No wait state<br>Wait Bit 1 : Wait state                                                                                                                                                                                                                                                   | RV               |
| PM13 SFR Area Wait Bit 0 : 1 wait state<br>1 : 2 Wait states                                                                                                                                                                                                                                                        | RV               |
| PM14 PM14 ALE Pin Select Bit <sup>(2, 4)</sup> 0 1 : P53/BCLK <sup>(3)</sup>                                                                                                                                                                                                                                        | RV               |
| PM15 PM15 1 0 : P56<br>1 1 : P54/HLDA                                                                                                                                                                                                                                                                               | RV               |
| (b7-b6) Reserved Bit Set to "0"                                                                                                                                                                                                                                                                                     | RV               |

4. M32C/84T cannot be used in memory expansion mode and microprocessor mode.

Figure 7.2 PM1 Register



| )         | Single-Chip            |                        | Memory                                  | Memory Expansion Mode        | ode                                    |                  | Microprocessor Mode                    | or Mode                        |                                        |
|-----------|------------------------|------------------------|-----------------------------------------|------------------------------|----------------------------------------|------------------|----------------------------------------|--------------------------------|----------------------------------------|
|           | Mode                   | Mode 0                 | Mode 1                                  | Mode 2                       | Mode 3                                 | Mode 0           | Mode 1                                 | Mode 2                         | Mode 3                                 |
| 0000016   | SFR                    | SFR                    | SFR                                     | SFR                          | SFR                                    | SFR              | SFR                                    | SFR                            | SFR                                    |
| 00040016  | Internal RAM           | Internal RAM           | Internal RAM                            | Internal RAM                 | Internal RAM                           | Internal RAM     | Internal RAM                           | Internal RAM                   | Internal RAM                           |
| Ř         | Reserved Space         | Reserved Space         | Reserved Space                          | Reserved Space               | Reserved Space                         | Reserved Space   | Reserved Space                         | Reserved Space                 | Reserved Space                         |
| 00F00016  | Block A <sup>(3)</sup> | Block A <sup>(3)</sup> | Block A <sup>(3)</sup>                  | Block A <sup>(3)</sup>       | Block A <sup>(3)</sup>                 |                  |                                        |                                |                                        |
| 0.1000016 |                        | Evternal Space ()      | CS1<br>2 Mbytes <sup>(1)</sup> External |                              | Not Used                               |                  | <u>CS</u> 1<br>2 Mbytes <sup>(1)</sup> |                                | Not Used                               |
| 10000016  |                        |                        | Space0                                  |                              | <u>CS1</u> 1 Mbyte<br>External Space 0 |                  | External Space 0                       | CS1<br>4 Mbytes <sup>(2)</sup> | <u>CS1</u> 1 Mbyte<br>External Space 0 |
| 20000016  |                        |                        | CS2<br>Mbid00                           | External space 0             | CS2 1 Mbyte<br>External Space 1        | Ectored Concord  | CS2<br>2 Mbvtes                        | External space U               | <u>CS2</u> 1 Mbyte<br>External Space 1 |
| 30000016  |                        |                        | External Space 1                        |                              |                                        |                  | External Space 1                       |                                |                                        |
| 4000016   | Not Used               | External Space 2       | External Space 2                        | External Space 2             | Not Used                               | External Space 2 | External Space 2                       | External Space 2               | Not Used                               |
|           |                        |                        | 2 Mhvtes                                |                              | CS3 1 Mbyte<br>External Space 2        |                  | Not I Isad                             |                                | CS3 1 Mbyte<br>External Space 2        |
|           |                        | External Space 3       | External Space 3                        | 3 Mbytes<br>External Space 3 | Not Used                               |                  | 5                                      | <u>CS0</u><br>4 Mbvtes         |                                        |
| 9         |                        | I                      | Not Used                                |                              | CS0 1 Mbyte<br>External Space 3        | External Space 3 | CSO                                    | External Space 3               | NOT USED                               |
|           |                        | Reserved Space         | Reserved Space                          | Reserved Space               | Reserved Space                         |                  | Z Mbytes<br>External Snace 3           |                                | CS0 1 Mbvte                            |
|           | Internal ROM           | Internal ROM           | Internal ROM                            | Internal ROM                 | Internal ROM                           |                  |                                        |                                | External Space 3                       |

# 8. Bus

In memory expansion mode or microprocessor mode, some pins function as bus control pins to control the address bus and data bus. A0 to A22, A23, D0 to D15, CS0 to CS3, WRL/WR, WRH/BHE, RD, BCLK/ALE, HLDA/ALE, HOLD, ALE, RDY are used as bus control pins.

#### NOTE

Bus control pins in M32C/84T cannot be used.

#### 8.1 Bus Settings

The BYTE pin, the DS register, the PM05 and PM04 bits in the PM0 register and the PM11 and PM10 bits in the PM1 register determine bus settings.

Table 8.1 lists how to change bus settings. Figure 8.1 shows the DS register.

#### Table 8.1 Bus Settings

| Bus Setting                                       | Changed By                         |
|---------------------------------------------------|------------------------------------|
| Selecting External Address Bus Width              | DS register                        |
| Setting Bus Width after Reset                     | BYTE pin (external space 3 only)   |
| Selecting Between Separate Bus or Multiplexed Bus | PM05 and PM04 bits in PM0 register |
| Number of Chip-Select                             | PM11 and PM10 bits in PM1 register |

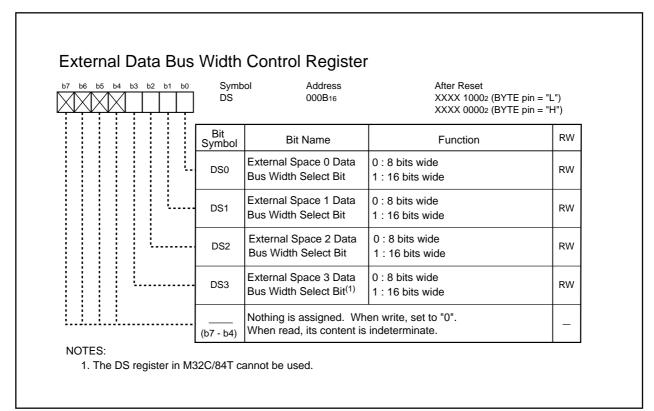



Figure 8.1 DS Register



# 8.1.1 Selecting External Address Bus

The number of externally-output address buses, the number of chip-select signals and chip-select-assigned address space ( $\overline{CS}$  area) vary depending on each external space mode. The PM11 and PM10 bits in the PM1 register determine the external space mode.

# 8.1.2 Selecting External Data Bus

The DS register selects either external 8-bit or 16-bit data bus per external space. The data bus in the external space 3, after reset, becomes 16 bits wide when a low-level ("L") signal is applied to the BYTE pin and 8 bits wide when a high-level ("H") signal is applied. Keep the BYTE pin input level while the microcomputer is operating. Internal bus is always 16 bits wide.

# 8.1.3 Selecting Separate/Multiplexed Bus

The PM05 and PM04 bits in the PM0 register determine either separate or multiplexed bus as bus format.

#### 8.1.3.1 Separate Bus

The separate bus is a bus format which allows the microcomputer to input and output data and address separatelly. The DS register selects 8-bit or 16-bit data bus as the external data bus per external space. If all DSi bits in the DS register (i=0 to 3) are set to "0" (8-bit data bus), port P0 becomes the data bus and port P1, the programmable I/O port. If one of the DSi bits is set to "1" (16-bit data bus), ports P0 and P1 become the data bus. Port P1 is indeterminate when the microcomputer accesses a space where the DSi bit is set to "0".

The EWCRi register (i=0 to 3) determines the number of software wait states inserted, when the microcomputer accesses space using the separate bus.

#### 8.1.3.2 Multiplexed Bus

The multiplexed bus is a bus format which allow the microcomputer to input and output data and address by timesharing. Do to D7 are multiplexed with A0 to A7 in space accessed by the 8-bit data bus. Do to D15 are multiplexed with A0 to A15 in space accessed by the 16-bit data bus. The DSi bit controls the data bus width. The EWCRi register (i=0 to 3) controls the number of software wait states inserted, when the microcomputer accesses a space using the multiplexed bus. Refer to **8.2.4 Bus Timing** for details.

The multiplexed bus can be assigned to access the  $\overline{CS1}$  area,  $\overline{CS2}$  area or all  $\overline{CS}$  areas. However, because the microcomputer starts operation using the separate bus after reset, the multiplexed bus cannot be assigned to access all  $\overline{CS}$  areas in microprocessor mode. When the PM05 and PM04 bits in the PM0 register are set to "112" (access all  $\overline{CS}$  areas with the bus), 16 low-order bits, from A0 to A15, of an address are output. See **Table 8.2** for details.



|                                         | 10003301             |                                                                                                                                                                                                       |                                                                     |                           |                                                              |                                                                           |                                                              |  |
|-----------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------|--|
| Processor<br>Mode                       | Single-<br>Chip Mode | Memo                                                                                                                                                                                                  | ry Expansion Mc                                                     | ode/ Microproces          | sor Mode                                                     | Memory Exp                                                                | ansion Mode                                                  |  |
| PM05 to<br>PM04 Bits in<br>PM0 Register |                      | the Multip<br>Access All Othe                                                                                                                                                                         | "102"<br>or CS2 using<br>lexed Bus<br>r CS Areas using<br>arate Bus | Access all $\overline{C}$ | 02"<br>S Areas using<br>arate Bus                            | "112" <sup>(1)</sup><br>(Access all CS Areas using<br>the Multiplexed Bus |                                                              |  |
| Data Bus Width                          |                      | Access all<br>external space with<br>8-bit data bus                                                                                                                                                   | Access one or more<br>external space with<br>16-bit data bus        |                           | Access one or more<br>external space with<br>16-bit data bus | Access all<br>external space with<br>8-bit data bus                       | Access one or more<br>external space with<br>16-bit data bus |  |
| P00 to P07                              | I/O port             | Data bus<br>Do to D7                                                                                                                                                                                  | Data bus<br>Do to D7                                                | Data bus<br>Do to D7      | Data bus<br>Do to D7                                         | I/O port                                                                  | I/O port                                                     |  |
| P10 to P17                              | I/O port             | I/O port                                                                                                                                                                                              | Data bus<br>D8 to D15                                               | I/O port                  | Data bus<br>D8 to D15                                        | I/O port                                                                  | I/O port                                                     |  |
| P20 to P27                              | I/O port             | Address bus<br>Data bus <sup>(2)</sup><br>A0/D0 to A7/D7                                                                                                                                              | Address bus<br>Data bus <sup>(2)</sup><br>Ao/Do to A7/D7            | Address bus<br>Ao to A7   | Address bus<br>Ao to A7                                      | Address bus<br>Data bus<br>A0/D0 to A7/D7                                 | Address bus<br>Data bus<br>A0/D0 to A7/D7                    |  |
| P30 to P37                              | I/O port             | Address bus<br>A8 to A15                                                                                                                                                                              | Address bus/<br>Data bus <sup>(2)</sup><br>A8/D8 to A15/D15         | Address bus<br>A8 to A15  | Address bus<br>A8 to A15                                     | Address bus<br>A8 to A15                                                  | Address bus/<br>Data bus<br>A8/D8 to A15/D15                 |  |
| P40 to P43                              | I/O port             | Address bus<br>A16 to A19                                                                                                                                                                             | Address bus<br>A16 to A19                                           | Address bus<br>A16 to A19 | Address bus<br>A16 to A19                                    | I/O port                                                                  | I/O port                                                     |  |
| P44 to P46                              | I/O port             | CS (Chip-select signal) or Address bus (A20 to A22)<br>(Refer to 8.2 Bus Control for details) <sup>(4)</sup>                                                                                          |                                                                     |                           |                                                              |                                                                           |                                                              |  |
| P47                                     | I/O port             | CS (Chip-select signal) or Address bus (Ā23)<br>(Refer to 8.2 Bus Control for details) <sup>(4)</sup>                                                                                                 |                                                                     |                           |                                                              |                                                                           |                                                              |  |
| P50 to P53                              | I/O port             | Outputs $\overline{RD}$ , $\overline{WRL}$ , $\overline{WRH}$ and BCLK or outputs $\overline{RD}$ , $\overline{BHE}$ , $\overline{WR}$ and BCLK (Refer to 8.2 Bus Control for details) <sup>(3)</sup> |                                                                     |                           |                                                              |                                                                           |                                                              |  |
| P54                                     | I/O port             | HDLA (3)                                                                                                                                                                                              | HDLA (3)                                                            | HDLA (3)                  | HDLA (3)                                                     | HDLA (3)                                                                  | HDLA (3)                                                     |  |
| P55                                     | I/O port             | HOLD                                                                                                                                                                                                  | HOLD                                                                | HOLD                      | HOLD                                                         | HOLD                                                                      | HOLD                                                         |  |
| P56                                     | I/O port             | ALE (3)                                                                                                                                                                                               | ALE (3)                                                             | ALE (3)                   | ALE (3)                                                      | ALE (3)                                                                   | ALE (3)                                                      |  |
| P57                                     | I/O port             | RDY                                                                                                                                                                                                   | RDY                                                                 | RDY                       | RDY                                                          | RDY                                                                       | RDY                                                          |  |

Table 8.2 Processor Mode and Port Function

NOTES:

1. The PM05 and PM04 bits cannot be set to "112" (access all CS areas using multiplexed bus) in microprocessor mode because the microcomputer starts operation using the separate bus after reset.

When the PM05 and PM04 bits are set to "112" in memory expansion mode, the microcomputer accesses 64-Kbyte memory space per chip-select using the address bus .

These ports become address buses when accessing space using the separate bus.
 The PM15 and PM14 bits in the PM1 register determines which pin outputs the ALE signal. The PM02 bit in the PM0 register selects either "WRL,WRH" or "BHE,WR" combination.

P56 provides an indeterminate output when the PM15 and PM14 bits to "002" (no ALE). It cannot be used as an I/O port. 4. The PM11 and PM10 bits in the PM1 register determine the CS signal and address bus.



#### 8.2 Bus Control

Signals, required to access external devices, are provided and software wait states are inserted as follows. The signals are available in memory expansion mode and microprocessor mode only.

## 8.2.1 Address Bus and Data Bus

Address bus is a signal accessing 16-Mbyte space and uses 24 control pins; A0 to A22 and  $\overline{A23}$ .  $\overline{A23}$  is the inversed output signal of the highest-order address bit.

Data bus is a signal for data input and output. The DS register selects an 8-bit data bus from Do to D7 or a 16-bit data bus from D0 to D15 for each external space. When applying a high-level ("H") signal to the BYTE pin, the data bus accessing the external memory space 3 becomes an 8-bit data bus after reset. When applying a low-level ("L") signal to the BYTE pin, the data bus accessing the external memory space 3 becomes the external memory space 3 becomes the 16-bit data bus.

When changing single-chip mode to memory expansion mode, the address bus is in an indeterminate state until the microcomputer accesses an external memory space.

# 8.2.2 Chip-Select Signal

Chip-select signal shares pins with A<sub>20</sub> to A<sub>22</sub> and  $\overline{A_{23}}$ . The PM11 and PM10 bits in the PM1 register determine which  $\overline{CS}$  area is accessed and how many chip-select signals are output. A maximum of four chip-select signals can be output.

In microprocessor mode, no chip-select signal, aside from  $\overline{A_{23}}$  which can perform as a chip-select signal, is output after reset.

The chip-select signal becomes "L" while the microcomputer is accessing the external  $\overline{CSi}$  area (i=0 to 3). It becomes "H" while the microcomputer is accessing other external memory space.

Figure 8.2 shows an example of the address bus and chip-select signal output.



When the microcomputer accesses the external

space j specified by another chip-select signal in the

Example 1:

#### next cycle after having accessed the external space i, signal changes but the address bus does not. both address bus and chip-select signal change. Access Access SFR, Access Access External Internal External External Space ROM/RAM Space i Space i Area Data Bus Data Data Bus Data Address Bus Address Bus Address Address **Chip-Select Signal Chip-Select Signal** CSk CSk Chip-Select Signal CSp i = 0 to 3 k = 0 to 3 k = 0 to 3 p= 0 to 3, excluding k j = 0 to 3, excluding i (See Figure 7.3 for i, j and p, k) Example 3: Example 4: When the microcomputer accesses the space i When the microcomputer does not access any specified by the same chip-select signal in the next space in the next cycle after having accessed an cycle after having accessed the external space i, external space (no pre-fetch of an instruction is the address bus changes but the chip-select signal generated), neither address bus nor chip-select does not. signal changes. Access Access Access External External External No Access Space i Space i Space Data Bus Data Data Data Bus Address Bus Address Bus Address Address **Chip-Select Signal** Chip-Select Signal CSk CSk i = 0 to 3 k = 0 to 3 k = 0 to 3 (See Figure 7.3 for i and k) NOTES: The above applies to the address bus and chip-select signal in two consecutive cycles. By combining these examples, a chip-select signal extended by two or more cycles may be output.

Example 2:

When the microcomputer accesses the SFR or the internal ROM/RAM area in the next cycle after

having accessed an external space, the chip-select

Figure 8.2 Address Bus and Chip-Select Signal Outputs (Separate Bus)

# 8.2.3 Read and Write Signals

When using a16-bit data bus, the PM02 bit in the PM0 register selects a combination of the " $\overline{RD}$ ,  $\overline{WR}$  and  $\overline{BHE}$ " signals or the " $\overline{RD}$ ,  $\overline{WRL}$  and  $\overline{WRH}$ " signals to determine the read or write signal. When the DS3 to DS0 bits in the DS register are set to "0" (8-bit data bus), set the PM02 bit to "0" ( $\overline{RD}/\overline{WR}/\overline{BHE}$ ). When any of the DS3 to DS0 bits are set to "1" (16-bit data bus) to access an 8-bit space, the combination of " $\overline{RD}$ ,  $\overline{WR}$  and  $\overline{BHE}$ " is automatically selected regardless of the PM02 bit setting. Tables 8.3 and 8.4 list each signal operation.

The  $\overline{RD}$ ,  $\overline{WR}$  and  $\overline{BHE}$  signals are combined for the read or write signal after reset.

When changing the combination of "RD, WRL and WRH", set the PM02 bit first to write data to an external memory.

| ,        |    | - 3              |          |                                           |
|----------|----|------------------|----------|-------------------------------------------|
| Data Bus | RD | WRL              | WRH      | Status of External Data Bus               |
|          | L  | Н                | Н        | Read data                                 |
| 16 Bits  | Н  | L                | Н        | Write 1-byte data to even address         |
|          | Н  | Н                | L        | Write 1-byte data to odd address          |
|          | Н  | L                | L        | Write data to both even and odd addresses |
| 8 Bits   | Н  | L(1)             | Not used | Write 1-byte data                         |
| O DIIS   | L  | H <sup>(1)</sup> | Not used | Read 1-byte data                          |

#### Table 8.3 RD, WRL and WRH Signals

NOTES:

1. The  $\overline{WR}$  signal is used instead of the  $\overline{WRL}$  signal.

| Table 8.4 RD, WR and BHE Signals | Table 8.4 | RD, | WR | and BHE | Signals |
|----------------------------------|-----------|-----|----|---------|---------|
|----------------------------------|-----------|-----|----|---------|---------|

| Data Bus                                                                           | RD                                | WR | BHE      | A0                                   | Status of External Data Bus                |
|------------------------------------------------------------------------------------|-----------------------------------|----|----------|--------------------------------------|--------------------------------------------|
|                                                                                    | Н                                 | L  | L        | Н                                    | Write 1-byte data to odd address           |
|                                                                                    | L                                 | Н  | L        | Н                                    | Read 1-byte data from odd address          |
| 16 BitsHLHLWrite 1-byte data to even addressLHHLRead 1-byte data from even address | Write 1-byte data to even address |    |          |                                      |                                            |
| TO DIIS                                                                            | L                                 | Н  | Н        | L Read 1-byte data from even address |                                            |
|                                                                                    | Н                                 | L  | L        | L                                    | Write data to both even and odd addresses  |
|                                                                                    | L                                 | Н  | L        | L                                    | Read data from both even and odd addresses |
| 0.01                                                                               | Н                                 | L  | Not used | H/L                                  | Write 1-byte data                          |
| 8 Bits                                                                             | L                                 | Н  | Not used | H/L                                  | Read 1-byte data                           |



# 8.2.4 Bus Timing

Bus cycle for the internal ROM and internal RAM is basically one BCLK cycle. When the PM12 bit in the PM1 register is set to "1" (wait state), the bus cycles are two BCLK cycles.

Bus cycles for the SFR are basically two BCLK cycles.

Basic bus cycle for an external space is  $2\emptyset$  (1 $\emptyset$ +1 $\emptyset$ ) to read and to write. Bus cycle is selected by the EWCRi register (i=0 to 3) from 12 types of separate bus settings and 7 types of multiplexed bus settings. If the EWCRi04 to EWCRi00 bits are set to "000112" (1 $\emptyset$ +3 $\emptyset$ ), bus cycles are four BCLK cycles.

Figure 8.3 shows the EWCRi register. Figures 8.4 to 8.8 show bus timing in an external space.

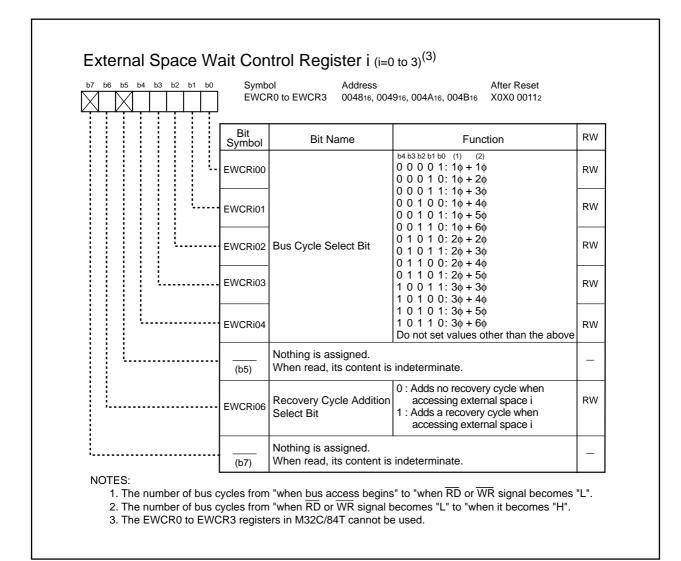



Figure 8.3 EWCR0 to EWCR3 Registers



| Space              | External Bus    | PM1 R    | egister  | EWCRi Register<br>(i=0 to 3) | Rue Cycles    |  |  |  |  |        |               |
|--------------------|-----------------|----------|----------|------------------------------|---------------|--|--|--|--|--------|---------------|
| Space              | Status          | PM13 Bit | PM12 Bit | EWCRi04 to<br>EWCRi00 Bits   | Bus Cycles    |  |  |  |  |        |               |
| SFR                |                 | 0        |          |                              | 2 BCLK cycles |  |  |  |  |        |               |
| JER                |                 | 1        |          |                              | 3 BCLK cycles |  |  |  |  |        |               |
| Internal           |                 |          | 0        |                              | 1 BCLK cycles |  |  |  |  |        |               |
| ROM/RAM            |                 |          | 1        |                              | 2 BCLK cycles |  |  |  |  |        |               |
|                    |                 |          |          | 000012                       | 2 BCLK cycles |  |  |  |  |        |               |
|                    |                 |          |          | 000102                       | 3 BCLK cycles |  |  |  |  |        |               |
|                    |                 |          |          | 000112                       | 4 BCLK cycles |  |  |  |  |        |               |
|                    |                 |          |          | 001002                       | 5 BCLK cycles |  |  |  |  |        |               |
| Separate Bus       |                 |          | 001012   | 6 BCLK cycles                |               |  |  |  |  |        |               |
|                    |                 |          | 001102   | 7 BCLK cycles                |               |  |  |  |  |        |               |
|                    |                 |          | 010102   | 4 BCLK cycles                |               |  |  |  |  |        |               |
|                    |                 |          |          |                              |               |  |  |  |  | 010112 | 5 BCLK cycles |
|                    |                 |          |          | 011002                       | 6 BCLK cycles |  |  |  |  |        |               |
| External<br>Memory |                 |          |          | 100112                       | 6 BCLK cycles |  |  |  |  |        |               |
| ,                  |                 |          |          | 101002                       | 7 BCLK cycles |  |  |  |  |        |               |
|                    |                 |          |          | 101102                       | 9 BCLK cycles |  |  |  |  |        |               |
|                    |                 |          |          | 010102                       | 4 BCLK cycles |  |  |  |  |        |               |
|                    |                 |          |          | 010112                       | 5 BCLK cycles |  |  |  |  |        |               |
|                    |                 |          |          | 011012                       | 7 BCLK cycles |  |  |  |  |        |               |
|                    | Multiplexed Bus |          |          | 100112                       | 6 BCLK cycles |  |  |  |  |        |               |
|                    |                 |          |          | 101002                       | 7 BCLK cycles |  |  |  |  |        |               |
|                    |                 |          |          | 101012                       | 8 BCLK cycles |  |  |  |  |        |               |
|                    |                 |          |          | 101102                       | 9 BCLK cycles |  |  |  |  |        |               |

Table 8.5 Software Wait State and Bus Cycle



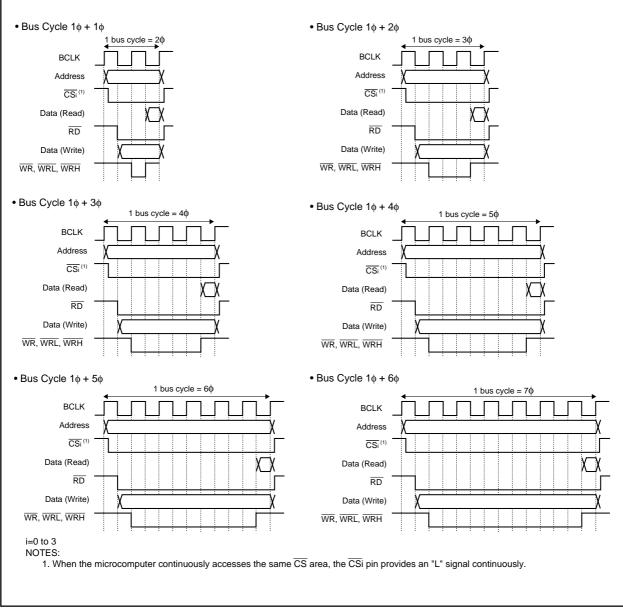



Figure 8.4 Bus Cycle with Separate Bus (1)



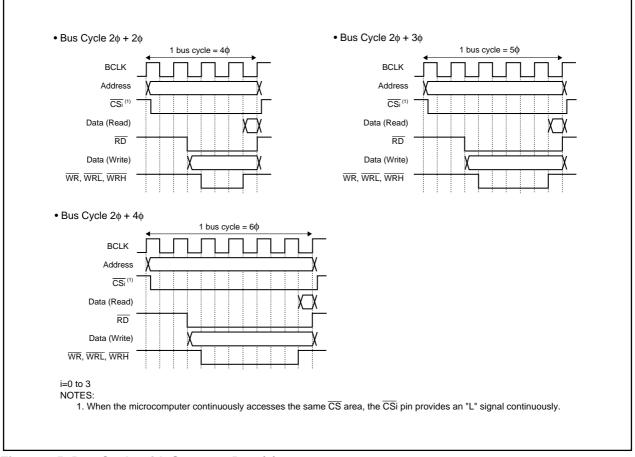



Figure 8.5 Bus Cycle with Separate Bus (2)



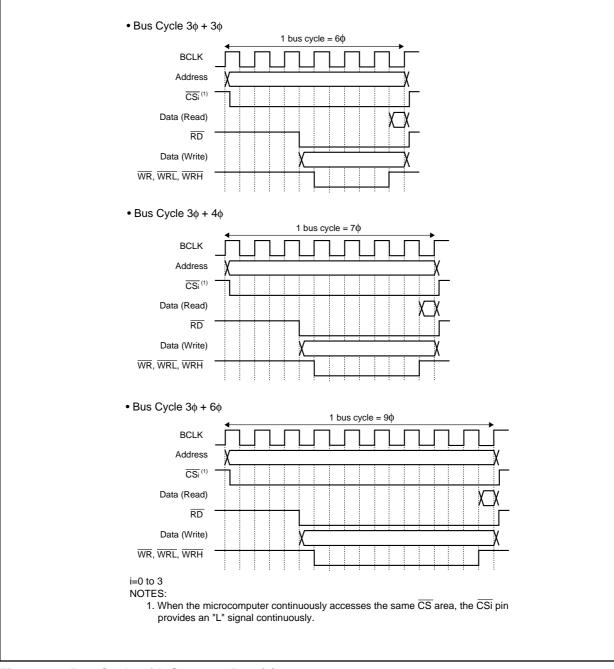



Figure 8.6 Bus Cycle with Separate Bus (3)



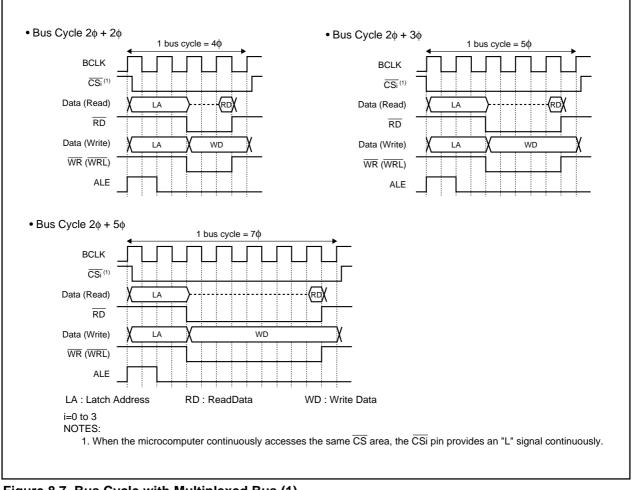



Figure 8.7 Bus Cycle with Multiplexed Bus (1)



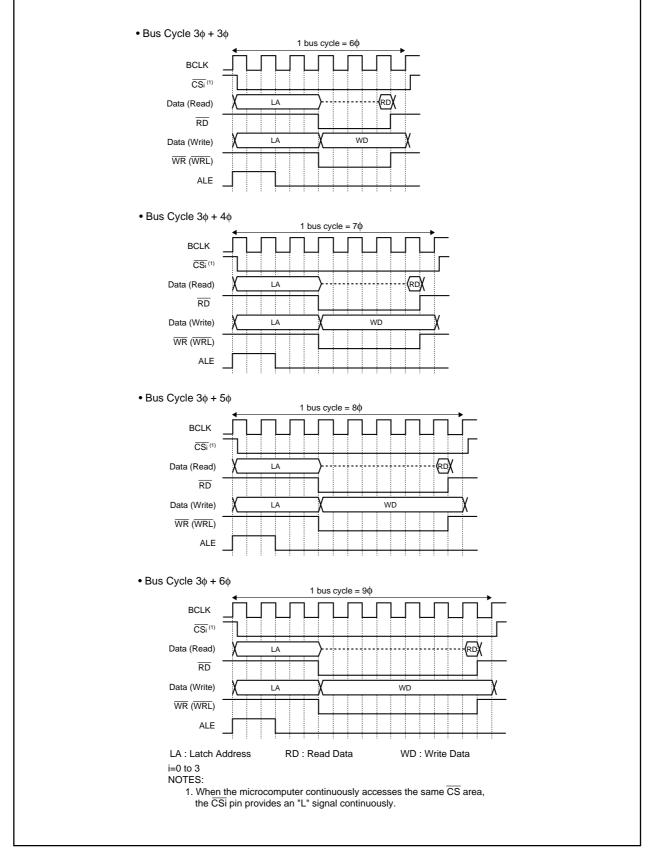



Figure 8.8 Bus Cycle with Multiplexed Bus (2)

#### 8.2.4.1 Bus Cycle with Recovery Cycle Added

The EWCRi06 bit in the EWCRi register (i=0 to 3) determines whether the recovery cycle is added or not. In the recovery cycle, addresses and wrie data outputs are provided continuously (using the separate bus only). Devices, which take longer address hold time and data hold time to write data, are connectable.

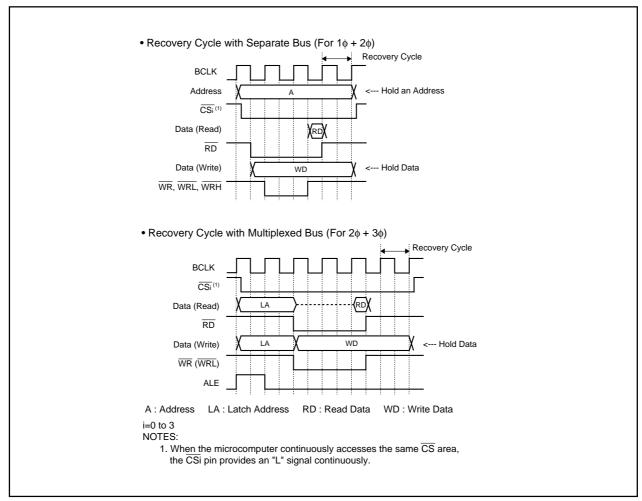



Figure 8.9 Recovery Cycle



## 8.2.5 ALE Signal

The ALE signal latches an address of the multiplexed bus. Latch an address on the falling edge of the ALE signal. The PM15 and PM14 bits in the PM1 register determine the output pin for the ALE signal. The ALE signal is output to internal space and external space.

| r                                        |                                                                                               |                                          |                             |
|------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------|
|                                          | -                                                                                             |                                          | Due                         |
| (1) 8-Bit Data                           | Bus                                                                                           | (2) 16-Bit Data                          | Dus                         |
| ALE                                      |                                                                                               | ALE                                      | 1                           |
| Do/Ao to D7/A7                           | Address Data <sup>(1)</sup>                                                                   | D0/A0 to D15/A15                         | Address Data <sup>(1)</sup> |
| A8 to A15                                | X Address X                                                                                   |                                          |                             |
| A16 to A19                               | Address <sup>(2)</sup>                                                                        | A16 to A19                               | Address <sup>(2)</sup>      |
| A20/CS3<br>A21/CS2<br>A22/CS1<br>A23/CS0 | Address or CS                                                                                 | A20/CS3<br>A21/CS2<br>A22/CS1<br>A23/CS0 | Address or CS               |
|                                          | NOTES:<br>1. D0/A0 to D7/A7 are placed in high-imp<br>2. When the multiplexed bus is selected |                                          |                             |
|                                          |                                                                                               |                                          |                             |

Figure 8.10 ALE Signal and Address/Data Bus

# 8.2.6 RDY Signal

The RDY signal facilitates access to external devices requiring longer access time. When a low-level ("L") signal is applied to the RDY pin on the falling edge of the last BCLK of the bus cycle, wait states are inserted into the bus cycle. When a high-level ("H") signal is applied to the RDY pin on the falling edge of BCLK, the bus cycle starts running again.

Table 8.6 lists microcomputer states when the  $\overline{RDY}$  signal inserts wait states into the bus cycle. Figure 8.11 shows an example of the  $\overline{RD}$  signal that is extended by the  $\overline{RDY}$  signal.

Table 8.6 Microcomputer States in Wait State<sup>(1)</sup>

| Item                                                                                                                                            | State                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Oscillation                                                                                                                                     | On                                                                           |
| $\overline{RD}$ Signal, $\overline{WR}$ Signal, Address Bus, Data Bus, $\overline{CS}$ , ALE Signal, $\overline{HLDA}$ , Programmable I/O Ports | Maintains the same state as when $\overline{\text{RDY}}$ signal was received |
| Internal Peripheral Circuits                                                                                                                    | On                                                                           |

NOTES:

1. The RDY signal cannot be accepted immediately before software wait states are inserted.



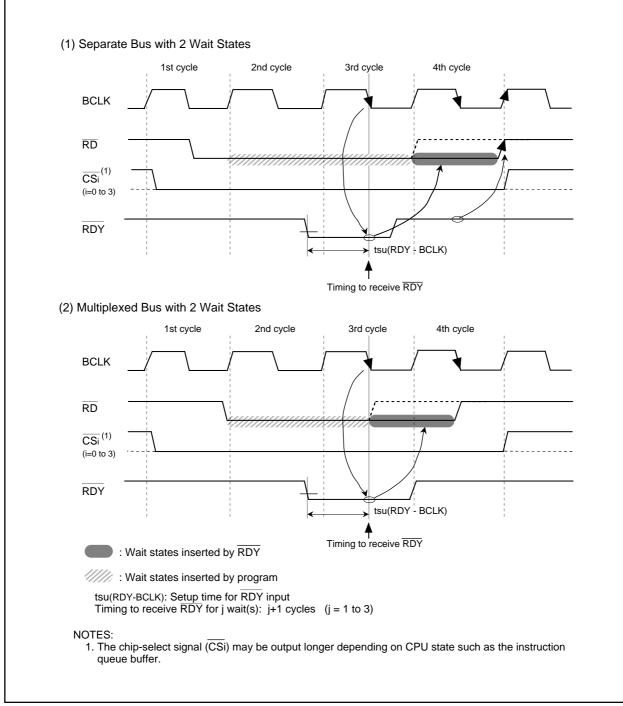



Figure 8.11 RD Signal Output Extended by RDY Signal



# 8.2.7 HOLD Signal

The HOLD signal transfers bus privileges from the CPU to external circuits. When a low-level ("L") signal is applied to the HOLD pin, the microcomputer enters a hold state after bus access is completed. While the HOLD pin is held "L", the microcomputer is in a hold state and the HLDA pin outputs an "L" signal. Table 8.7 shows the microcomputer status in a hold state.

Bus is used in the following priority order: HOLD, DMAC, CPU.

# $\overline{HOLD}$ > DMAC > CPU

#### Figure 8.12 Bus Priority Order

| Table 8.7 Microcomputer Status in Hold Stat |
|---------------------------------------------|
|---------------------------------------------|

| Item                                                                                                                                  | Status                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Oscillation                                                                                                                           | On                                                                     |
| $\overline{\text{RD}}$ Signal, $\overline{\text{WR}}$ Signal, Address Bus, Data Bus, $\overline{\text{CS}}$ , $\overline{\text{BHE}}$ | High-impedance                                                         |
| Programmable I/O Ports: P0 to P15                                                                                                     | Maintains the same state as when $\overline{\text{HOLD}}$ was received |
| HLDA                                                                                                                                  | Outputs "L"                                                            |
| Internal Peripheral Circuits                                                                                                          | On (excluding the watchdog timer)                                      |
| ALE Signal                                                                                                                            | Outputs "L"                                                            |

# 8.2.8 External Bus Status when Accessing Internal Space

Table 8.8 shows external bus states when an internal space is accessed.

| -              |                |                                                          |
|----------------|----------------|----------------------------------------------------------|
| Item           |                | State when Accessing SFR, Internal ROM, and Internal RAM |
| Address E      | Bus            | Holds address of external space last accessed            |
| Data           | When Read      | High-impedance                                           |
| Bus When Write | High-impedance |                                                          |
| RD, WR, V      | WRL, WRH       | Outputs "H"                                              |
| BHE            |                | Holds state of external space last accessed              |
| CS             |                | Outputs "H"                                              |
| ALE            |                | Outputs ALE                                              |

# 8.2.9 BCLK Output

The CPU clock operates the CPU. P53 outputs the CPU clock signal as BCLK when the PM07 bit in the PM0 register is set to "0" (BCLK) and the CM01 and CM00 bits in the CM0 register are set to "002" (I/O port P53).

No BCLK is output in single-chip mode. Refer to 9. Clock Generation Circuit for details.

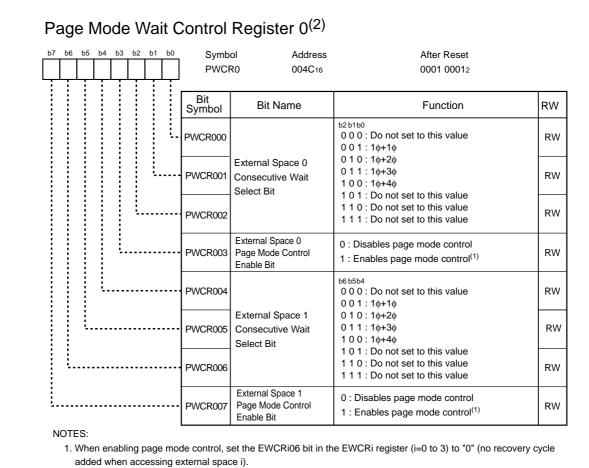
# 8.3 Page Mode Control Function

#### NOTE

The page mode control function can be used in the ROMless version only.

The page mode control functin allows the microcimputer to be read data in the external memory, associated with page mode, at high speeds. If the 21 high-order bits of consecutive addresses accessed by the microcomputer remains the same, access time to each address following the first access is shortened. The EWCRi (i=0 to 3) registers determine how many wait states are inserted to access the first address. The PWCR0 and PWCR1 registers determine how many wait states are inserted to access the consecutive addresses following the first address.

Use the following procedure to enable the page mode control.


- (1) Set the EWCRi04 to EWCRi00 (i=0 to 3) bits in the EWCRi register
- (2) Set the PWCRj02 to PWCRj00 (j=0, 1) bits and the PWCRj06 to PWCRj04 bits in the PWCRj register
- (3) Set the PWCRj03 and PWCRj07 bits in the PWCRj register to "1" (page mode control enabled)

When using the page mode control, access data in all external space only with the page mode control. It is not allowed to combine the page mode control access and normal access to data in each external space.

Set the PM05 and PM04 bits in the PM0 register to "002" (multiplexed bus not used). The page mode control function and multiplexed bus cannot be used at the same time.

Figure 8.13 shows the PWCR0 register. Figure 8.14 shows the PWCR1 register. Figure 8.15 shows an example of the external bus operation with the page mode control function.





2. M32C/84T cannot be used in memory expansion mode and microprocessor mode.

Figure 8.13 PWCR0 Register



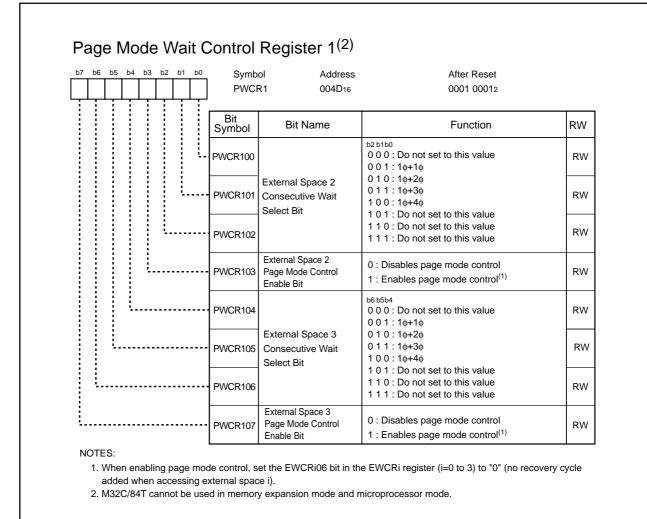



Figure 8.14 PWCR1 Register





# 9. Clock Generation Circuit

# 9.1 Types of the Clock Generation Circuit

Four circuits are included to generate the system clock signal:

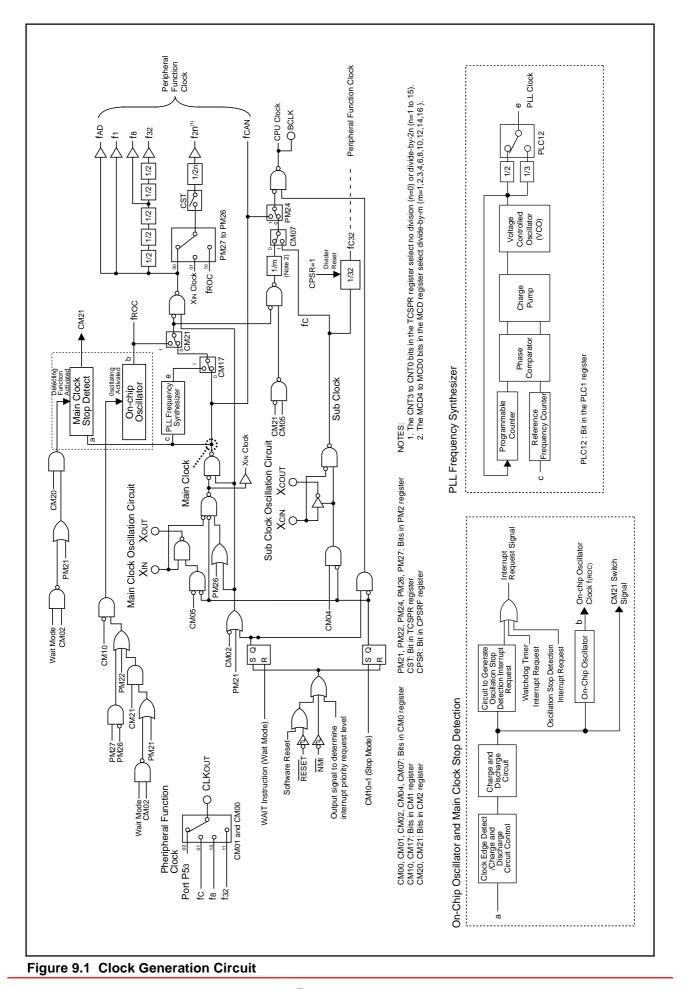

- Main clock oscillation circuit
- Sub clock oscillation circuit
- On-chip oscillator
- PLL frequency synthesizer

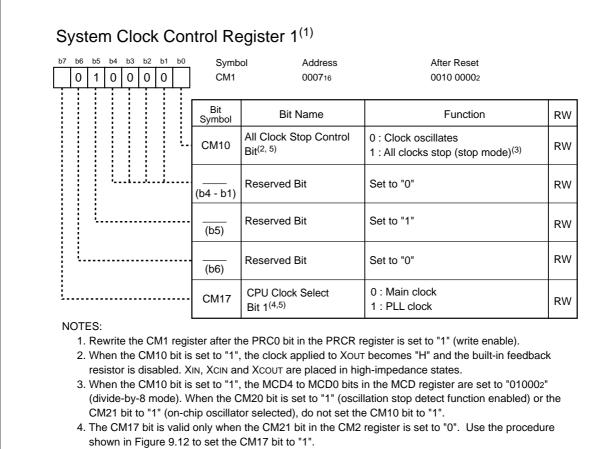
Table 9.1 lists specifications of the clock generation circuit. Figure 9.1 shows a block diagram of the clock generation circuit. Figures 9.2 to 9.8 show registers controlling the clock.

| Item                                                | Main Clock<br>Oscillation Circuit                        | Sub Clock<br>Oscillation Circuit                   | On-chip Oscillator                                                                                                                                                                  | PLL Frequency<br>Synthesizer                             |
|-----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Use                                                 | CPU clock source,<br>Peripheral function<br>clock source | CPU clock source,<br>Timer A and B clock<br>source | CPU clock source,<br>Peripheral function<br>clock source                                                                                                                            | CPU clock source,<br>Peripheral function<br>clock source |
| Clock Frequency                                     | Up to 32 MHz                                             | 32.768 kHz                                         | Approx. 1 MHz                                                                                                                                                                       | Up to 32 MHz<br>(See Table 9.3)                          |
| Connectable<br>Osillator or<br>Additional Circuit   | Ceramic resonator<br>Crystal oscillator                  | Crystal oscillator                                 |                                                                                                                                                                                     |                                                          |
| Pins for Oscillator<br>or for Additional<br>Circuit | Xin, Xout                                                | Xcin, Xcout                                        |                                                                                                                                                                                     |                                                          |
| Oscillation Stop /<br>Restart Function              | Available                                                | Available                                          | Available                                                                                                                                                                           | Available                                                |
| Oscillator State<br>after Reset                     | Oscillating                                              | Stopped                                            | Stopped                                                                                                                                                                             | Stopped                                                  |
| Other                                               | Externally generated clock can be applied.               | Externally generated clock can be applied.         | When the main clock<br>stops oscillating, the<br>on-chip oscillator<br>starts oscillating auto-<br>matically and<br>becomes clock source<br>for the CPU and<br>peripheral function. |                                                          |

#### Table 9.1 Clock Generation Circuit Specifications






| b7 b6 b5 | 5 b4 b3 b2 b1 b0 | Symb<br>CM0   | ool Address<br>000616                                              | After Reset<br>0000 10002                                                                                                          |    |
|----------|------------------|---------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----|
|          |                  | Bit<br>Symbol | Bit Name                                                           | Function                                                                                                                           | RW |
|          |                  | - CM00        | Clock Output Function                                              | <sup>b1 b0</sup><br>0 0 : I/O port P53<br>0 1 : Outputs fc                                                                         | RV |
|          |                  | CM01          | Select Bit <sup>(2)</sup>                                          | 1 0 : Outputs f8<br>1 1 : Outputs f3                                                                                               | RV |
|          |                  | CM02          | In Wait Mode, Peripheral<br>Function Clock Stop Bit <sup>(9)</sup> | <ul> <li>0 : Peripheral clock does not stop in wait mode</li> <li>1 : Peripheral clock stops in wait mode<sup>(3)</sup></li> </ul> | RV |
|          |                  | CM03          | XCIN-XCOUT Drive<br>Capacity Select Bit <sup>(11)</sup>            | 0 : Low<br>1 : High                                                                                                                | RW |
|          |                  | - CM04        | Port Xc Switch Bit                                                 | 0 : I/O port function<br>1 : XCIN-XCOUT oscillation function <sup>(4)</sup>                                                        | R٧ |
|          |                  | CM05          | Main Clock (XIN-XOUT)<br>Stop Bit <sup>(5, 9)</sup>                | 0 : Main clock oscillates<br>1 : Main clock stops <sup>(6)</sup>                                                                   | RV |
|          |                  | CM06          | Watchdog Timer<br>Function Select Bit                              | 0 : Watchdog timer interrupt<br>1 : Reset <sup>(7)</sup>                                                                           | RV |
|          |                  | CM07          | CPU Clock Select<br>Bit 0 <sup>(8, 9, 10)</sup>                    | 0: Clock selected by the CM21 bit<br>divided by MCD register setting<br>1: Sub clock                                               | R٧ |

NOTES:

- 1. Rewrite the CM0 register after the PRC0 bit in the PRCR register is set to "1" (write enable).
- 2. When the PM07 bit in the PM0 register is set to "0" (BCLK output), set the CM01 and CM00 bits to "002". When the PM15 and PM14 bits in the PM1 register are set to "012" (ALE output to P53), set the CM01 and CM00 bits to "002". When the PM07 bit is set to "1" (function selected in the CM01 and CM00 bits) in microprocessor or memory expansion mode, and the CM01 and CM00 bits are set to "002", an "L" signal is output from port P53 (port P53 does not function as an I/O port).
- 3. fc32 does not stop running. When the CM02 bit is set to "1", the PLL clock cannot be used in wait mode.
- 4. When setting the CM04 bit is set to "1", set the PD8\_7 and PD8\_6 bits in the PD8 register to "002" (port P87 and P86 in input mode) and the PU25 bit in the PUR2 register to "0" (no pull-up).
- 5. When entering low-power consumption mode or on-chip oscillator low-power consumption mode, the CM05 bit stops running the main clock. The CM05 bit cannot detect whether the main clock stops or not. To stop running the main clock, set the CM05 bit to "1" after the CM07 bit is set to "1" with a stable sub clock oscillation or after the CM21 bit in the CM2 register is set to "1" (on-chip oscillator clock). When the CM05 bit is set to "1", the clock applied to XOUT becomes "H". The built-in feedback resistor remains ON. XIN is pulled up to XOUT ("H" level) via the feedback resistor.
- 6. When the CM05 bit is set to "1", the MCD4 to MCD0 bits in the MCD register are set to "010002" (divide-by-8 mode). In on-chip oscillation mode, the MCD4 to MCD0 bits are not set to "010002" even if the CM05 bit terminates XIN-XOUT.
- 7. Once the CM06 bit is set to "1", it cannot be set to "0" by program.
- 8. After the CM04 bit is set to "1" with a stable sub clock oscillation, set the CM07 bit to "1" from "0". After the CM05 bit is set to "0" with a stable main clock oscillation, set the CM07 bit to "0" from "1". Do not set the CM07 bit and CM04 or CM05 bit simultaneously.
- 9. When the PM21 bit in the PM2 register is set to "1" (clock change disable), the CM02, CM05 and CM07 bits do not change even when written.
- 10. After the CM07 bit is set to "0", set the PM21 bit to "1".
- 11. When stop mode is entered, the CM03 bit is set to "1".

#### Figure 9.2 CM0 Register





5. If the PM21 bit in the PM2 register is set to "1" (clock change disable), the CM10 and CM17 bits do not change when written.

If the PM22 bit in the PM2 register is set to "1" (on-chip oscillator clock as watchdog timer count source), the CM10 bit setting does not change when written.

Figure 9.3 CM1 Register



| b7 b6 b5 b4 | b3 b2 b1 b0 | Symbo<br>MCD  | ol Address<br>000C16                                | After Reset<br>XXX0 10002                                                                       |    |
|-------------|-------------|---------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------|----|
|             |             | Bit<br>Symbol | Bit Name                                            | Function                                                                                        | R٧ |
|             |             | MCD0          |                                                     | b4 b3 b2 b1 b0<br>1 0 0 1 0 : Divide-by-1(no division)<br>mode                                  | RW |
|             |             | MCD1          |                                                     | 0 0 0 1 0 : Divide-by-2 mode<br>0 0 0 1 1 : Divide-by-3 mode                                    | RW |
|             |             | MCD2          | Main Clock Division<br>Select Bit <sup>(2, 4)</sup> | 0 0 1 0 0 : Divide-by-4 mode<br>0 0 1 1 0 : Divide-by-6 mode<br>0 1 0 0 0 : Divide-by-8 mode    | RW |
|             |             | MCD3          |                                                     | 0 1 0 1 0 : Divide-by-10 mode<br>0 1 1 0 0 : Divide-by-12 mode<br>0 1 1 1 0 : Divide-by-14 mode | RW |
|             |             | MCD4          |                                                     | 0 0 0 0 0 0 : Divide-by-16 mode<br>(Note 3)                                                     | RW |
|             |             | (b7 - b5)     | Reserved Bit                                        | When read, its content is indeterminate                                                         | RC |

The MCD4 to MCD0 bits are not set to "010002" even if the CM05 bit in the CM0 register is set to "1" (XIN-XOUT stopped) in on-chip oscillator mode.

3. Bit combinations cannot be set not listed above.

4. Access CAN-associated register addresses after setting the MCD4 to MCD0 bits are set to "100102", when the PM24 bit in the PM2 register is set to "0" (clock selected by the CM07 bit).

Figure 9.4 MCD Register



| b7 b6 b5 b4 b3 b2 b1 b0<br>0 0 0 0 0 0 0                                                                                                                                       | Symb<br>CM2                                                           | ol Address<br>000D16                                                                                                                                           | After Reset<br>0016                                                                                                                                                                                                                                                                                 |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                                                                                                                                                                                | Bit<br>Symbol                                                         | Bit Name                                                                                                                                                       | Function                                                                                                                                                                                                                                                                                            | RW            |
|                                                                                                                                                                                | CM20                                                                  | Oscillation Stop Detection<br>Enable Bit <sup>(2)</sup>                                                                                                        | 0: Disables oscillation stop detect function<br>1: Enables oscillation stop detect function                                                                                                                                                                                                         | RW            |
|                                                                                                                                                                                | CM21                                                                  | CPU Clock<br>Select Bit 2 <sup>(3, 4)</sup>                                                                                                                    | 0: Clock selected by the CM17 bit<br>1: On-chip oscillator clock                                                                                                                                                                                                                                    | RW            |
|                                                                                                                                                                                | CM22                                                                  | Oscillation Stop Detection<br>Flag <sup>(5)</sup>                                                                                                              | 0: Main clock does not stop<br>1: Detects a main clock stop                                                                                                                                                                                                                                         | RW            |
|                                                                                                                                                                                | CM23                                                                  | Main Clock Monitor<br>Flag <sup>(6)</sup>                                                                                                                      | 0: Main clock oscillates<br>1: Main clock stops                                                                                                                                                                                                                                                     | RO            |
|                                                                                                                                                                                | (b7 - b4)                                                             | Reserved Bit                                                                                                                                                   | Set to "0"                                                                                                                                                                                                                                                                                          | RW            |
| <ol> <li>If the PM21 bit in the line of the change when written.</li> <li>When a main clock os Although the main clo CPU clock source after 4. When the CM20 bit is</li> </ol> | PM2 regis<br>cillation st<br>ck starts c<br>er the main<br>set to "1" | ter is set to "1" (clock chang<br>op is detected while the CM<br>scillating, the CM21 bit is n<br>n clock resumes oscillating,<br>and the CM22 bit is set to " | ister is set to "1" (write enable).<br>ge disable), the CM20 bit setting does r<br>20 bit is set to "1", the CM21 bit is set t<br>ot set to "0". If the main clock is used<br>set the CM21 bit to "0" by program.<br>1", do not set the CM21 bit to "0".<br>"1". The CM22 bit can only be set to "0 | to "1<br>as a |

If the CM22 bit is set to "0" by program while the main clock stops, the CM22 bit cannot be set to "1" until the next main clock stop is detected.

6. Determine the main clock state by reading the CM23 bit several times after the oscillation stop detection interrupt is generated.

Figure 9.5 CM2 Register



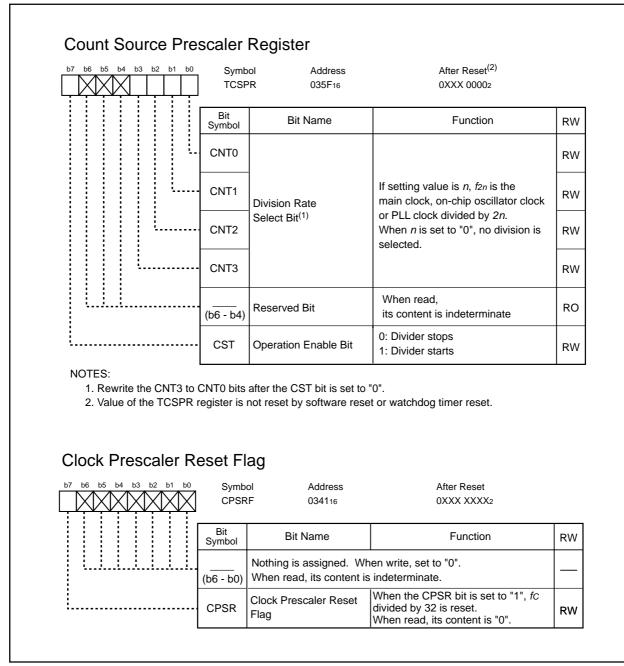



Figure 9.6 TCSPR and CPSRF Registers



| b7 b6 b5 |      | Symb<br>PLC0  |                                                   | After Reset<br>0001 X0102                                                                   |    |
|----------|------|---------------|---------------------------------------------------|---------------------------------------------------------------------------------------------|----|
|          |      | Bit<br>Symbol | Bit Name                                          | Function                                                                                    | RV |
|          |      | PLC00         |                                                   | b2 b1 b0                                                                                    | RW |
|          | l    | PLC01         | Programmable Counter<br>Select Bit <sup>(3)</sup> | 0 1 1 : Multiply-by-6<br>1 0 0 : Multiply-by-8<br>Do not set to values other than the above | RW |
|          |      | PLC02         |                                                   |                                                                                             | RW |
|          | <br> | (b3)          | Reserved Bit                                      | When read,<br>its content is indeterminate                                                  | RC |
|          | <br> | (b4)          | Reserved Bit                                      | Set to "1"                                                                                  | RW |
|          | <br> | (b5)          | Reserved Bit                                      | Set to "0"                                                                                  | RW |
|          | <br> | (b6)          | Reserved Bit                                      | Set to "1"                                                                                  | RV |
| <u>.</u> | <br> | PLC07         | Operation Enable Bit <sup>(4)</sup>               | 0: PLL is Off<br>1: PLL is On                                                               | RW |

#### NOTES:

1. Rewrite the PLC0 register after the PRC0 bit in the PRCR register is set to "1" (write enable).

2. If the PM21 bit in the PM2 register is set to "1" (clock change disable), the PLC0 register setting does not change when written.

3. Set the PLC02 to PLC00 bits when the PLC07 bit is set to "0". Once these bits are set, they cannot be changed.

4. Set the CM17 bit in the CM1 register to "0" (main clock as CPU clock source) and the PLC07 bit to "0" before entering wait or stop mode.

5. Set the PLC0 and PLC1 registers simultaneously in 16-bit units.

# PLL Control Register 1<sup>(1, 2, 3, 4)</sup>

| b7 b6 b5 b4 b3 b2 b1 b0<br>0 0 0 0 1 0 1 0 | Symb<br>PLC1  |                                  | After Reset<br>000X 00002               |    |
|--------------------------------------------|---------------|----------------------------------|-----------------------------------------|----|
|                                            | Bit<br>Symbol | Bit Name                         | Function                                | RW |
|                                            | (b0)          | Reserved Bit                     | Set to "0"                              | RW |
| · · · · · · · · · · · · · · · · · · ·      | (b1)          | Reserved Bit                     | Set to "1"                              | RW |
|                                            | PLC12         | PLL Clock Division<br>Switch Bit | 0 : Divide-by-2<br>1 : Divide-by-3      | RW |
|                                            | (b3)          | Reserved Bit                     | Set to "0"                              | RW |
|                                            | (b4)          | Reserved Bit                     | When read, its content is indeterminate | RO |
|                                            | (b7 - b5)     | Reserved Bit                     | Set to "0"                              | RW |

NOTES:

1. Rewrite the PLC1 register after the PRC0 bit in the PRCR register is set to "1" (write enable).

2. If the PM21 bit in the PM2 register is set to "1" (clock change disable), the PLC1 register does not

change when written.

3. Set the PLC1 register when the PLC07 bit is set to "0" (PLL off).

4. Set the PLC0 and PLC1 registers simultaneously in 16-bit units.

# Figure 9.7 PLC0 and PLC1 Registers



| b7 b6 b5 b4 b3                                                                         | b2 b1 b0                                                                                       | Symb<br>PM2                                                                            | ol Address<br>001316                                                                           | After Reset<br>0016                                                                                                                                                            |    |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                                                        |                                                                                                | Bit<br>Symbol                                                                          | Bit Name                                                                                       | Function                                                                                                                                                                       | RV |
|                                                                                        |                                                                                                | (b0)                                                                                   | Reserved Bit                                                                                   | Set to "0"                                                                                                                                                                     | R٧ |
|                                                                                        |                                                                                                | PM21                                                                                   | System Clock Protect<br>Bit <sup>(2, 3)</sup>                                                  | 0 : Protects the clock by a PRCR<br>register setting<br>1 : Disables a clock change                                                                                            | RW |
|                                                                                        |                                                                                                | PM22                                                                                   | WDT Count Source<br>Protect Bit <sup>(2, 4)</sup>                                              | <ul> <li>0 : Selects BCLK as count source of<br/>the watchdog timer</li> <li>1 : Selects the on-chip oscillator<br/>clock as count source of the<br/>watchdog timer</li> </ul> | RV |
|                                                                                        |                                                                                                | (b3)                                                                                   | Reserved Bit                                                                                   | Set to "0"                                                                                                                                                                     | RW |
|                                                                                        |                                                                                                |                                                                                        | CPU Clock Select Bit 3                                                                         | 0 : Clock selected by the CM07 bit<br>1 : Main Clock                                                                                                                           | RW |
|                                                                                        |                                                                                                | PM25                                                                                   | CAN Clock Select Bit                                                                           | 0 : f1<br>1 : Main Clock                                                                                                                                                       | R٧ |
|                                                                                        |                                                                                                | PM26                                                                                   | f2n Count source                                                                               | b7 b6<br>0 0 : Peripheral function clock<br>0 1 : Xin clock                                                                                                                    | RW |
|                                                                                        |                                                                                                | PM27                                                                                   | Select Bit                                                                                     | 1 0 : On-chip oscillator clock<br>1 1 : Do not set to this value                                                                                                               | RW |
| 2. Once the P<br>3. When the F<br>the CPU cl<br>nothing is c<br>• the CM0<br>• the CM0 | M22 and PM<br>PM21 bit is s<br>ock keeps ru<br>changed eve<br>2 bit in the C<br>5 bit in the C | A21 bits ar<br>et to "1",<br>unning whe<br>en if followi<br>CM0 registe<br>CM0 registe | e set to "1", they can not be<br>en the WAIT instruction is e<br>ng bits are set to either "0" | xecuted;<br>or "1".<br>clock is not stopped in wait mode.)<br>pped.)                                                                                                           |    |

• all bits in the PLC0 and PLC1 registers (PLL frequency synthesizer function settings are not changed.)
4. When the PM22 bit is set to "1",

the on-chip oscillator clock becomes a count source of the watchdog timer after the on-chip oscillator starts; write to the CM10 bit is disabled (the microcomputer does not enter stop mode.); the watchdog timer keeps running when the microcomputer is in wait mode and hold state.

Figure 9.8 PM2 Register



# 9.1.1 Main Clock

Main clock oscillation circuit generates the main clock. The main clock becomes clock source of the CPU clock and peripheral function clock.

The main clock oscillation circuit is configured by connecting an oscillator or resonator between the XIN and XOUT pins. The circuit has a built-in feedback resistor. The feedback resistor is separated from the oscillation circuit in stop mode to reduce power consumption. An external clock can be applied to the XIN pin in the main clock oscillation circuit. Figure 9.9 shows an example of a main clock circuit connection. Circuit constants vary depending on each oscillator. Use the circuit constant recommended by each oscillator manufacturer.

The main clock divided-by-eight becomes a CPU clock source after reset.

To reduce power consumption, set the CM05 bit in the CM0 register to "1" (main clock stopped) after switching the CPU clock source to the sub clock or on-chip oscillator clock. In this case, the clock applied to XOUT becomes high ("H"). XIN is pulled up by XOUT via the feedback resistor which remains on. When an external clock is applied to the XIN pin, do not set the CM05 bit to "1".

All clocks, including the main clock, stop in stop mode. Refer to **9.5 Power Consumption Control** for details.

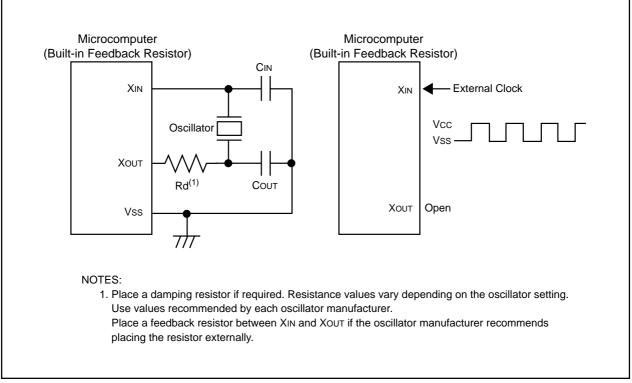
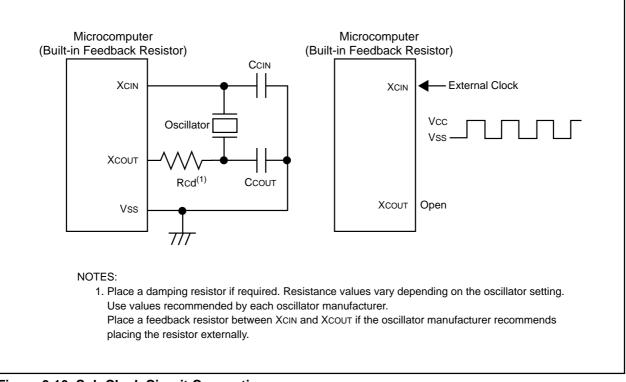



Figure 9.9 Main Clock Circuit Connection



# 9.1.2 Sub Clock


Sub clock oscillation circuit generates the sub clock. The sub clock becomes clock source of the CPU clock and for the timers A and B. The same frequency, fc, as the sub clock can be output from the CLKOUT pin.

The sub clock oscillation circuit is configured by connecting a crystal oscillator between the XCIN and XCOUT pins. The circuit has a built-in feedback resistor. The feedback resistor is separated from the oscillation circuit in stop mode to reduce power consumption. An external clock can be applied to the XCIN pin. Figure 9.10 shows an example of a sub clock circuit connection. Circuit constants vary depending on each oscillator. Use the circuit constant recommended by each oscillator manufacturer.

The sub clock stops after reset. The feedback resistor is separated from the oscillation circuit. When the PD8\_6 and PD8\_7 bits in the PD8 register are set to "0" (input mode) and the PU25 bit in the PUR2 register is set to "0" (no pull-up), set the CM04 bit in the CM0 register to "1" (XCIN-XCOUT oscillation function). The sub clock oscillation circuit starts oscillating. To apply an external clock to the XCIN pin, set the CM04 bit to "1" when the PD8\_7 bit is set to "0" and the PU25 bit to "0". The clock applied to the XCIN pin becomes a clock source of the sub clock.

When the CM07 bit in the CM0 register is set to "1" (sub clock) after the sub clock oscillation has stabilized, the sub clock becomes a CPU clock source.

All clocks, including the sub clock, stop in stop mode. Refer to **9.5 Power Consumption Control** for details.







# 9.1.3 On-Chip Oscillator Clock

On-chip oscillator generates the on-chip oscillator clock. The 1-MHz on-chip oscillator clock becomes a clock source of the CPU clock and peripheral function clock.

The on-chip oscillator clock stops after reset. When the CM21 bit in the CM2 register is set to "1" (on-chip oscillator clock), the on-chip oscillator starts oscillating. Instead of the main clock, the on-chip oscillator clock becomes clock source of the CPU clock and peripheral function clock.

Table 9.2 shows bit settings for on-chip oscillator start condition.

| Table 9.2 Bit Settings for On-Chip Oscillator Start Co | ondition |
|--------------------------------------------------------|----------|
|--------------------------------------------------------|----------|

| CM2 Register | PM       | 2 Register         | Used as                                                                                     |  |
|--------------|----------|--------------------|---------------------------------------------------------------------------------------------|--|
| CM21 Bit     | PM22 Bit | PM27 and PM26 Bits | Used as                                                                                     |  |
| 1            | 0        | 0 0                | CPU clock source or peripheral function clock source                                        |  |
| 0            | 1        | 0 0                | Watchdog timer operating clock source<br>(The clock keeps running when entering stop mode.) |  |
| 0            | 0        | 0 1                | f2n count source                                                                            |  |

#### 9.1.3.1 Oscillation Stop Detect Function

When the main clock is terminated by external source, the on-chip oscillator automatically starts oscillating to generate another clock.

When the CM 20 bit in the CM2 registser is set to "1" (oscillation stop detect function enabled), an oscillation stop detection interrupt request is generated as soon as the main clock stops. Simultaneously, the onchip oscillator starts oscillating. Instead of the main clock, the on-chip oscillator clock becomes clock source for the CPU clock and peripheral function clock. Associated bits are set as follows:

- The CM21 bit is set to "1" (on-chip oscillator clock becomes a clock source of the CPU clock.)
- The CM22 bit is set to "1" (main clock stop is detected.)
- The CM23 bit is set to "1" (main clock stops.) (See Figure 9.14)

### 9.1.3.2 How to Use Oscillation Stop Detect Function

- The oscillation stop detection interrupt shares vectors with the watchdog timer interrupt and the low voltage detection interrupt. When these interrupts are used simultaneously, read the CM22 bit with an interrupt routine to determine if an oscillation stop detection interrupt request has been generated.
- When the main clock resumes running after an oscillation stop is detected, set the main clock as clock source of the CPU clock and peripheral function clock. Figure 9.11 shows the procedure to switch the on-chip oscillator clock to the main clock.
- In low-speed mode, when the main clock is stopped by setting the CM20 bit to "1", the oscillation stop detection interrupt request is generated. Simultaneously, the on-chip oscillator starts oscillating. The sub clock remains the CPU clock source. The on-chip oscillator clock becomes a clock source for the peripheral function clock.
- When the peripheral function clock stops running, the oscillation stop detect function is also disabled. To enter wait mode while the oscillation stop detect function is in use, set the CM02 bit in the CM0 register to "0" (peripheral clock does not stop in wait mode).
- The oscillation stop detect function is provided to handle main clock stop caused by external source. Set the CM20 bit to "0" (oscillation stop detect function disabled) when the main clock is terminated by program, i.e., entering stop mode or setting the CM05 bit to "1" (main clock oscillation stop).
- When the main clock frequency is 2MHz or less, the oscillation stop detect function is not available. Set the CM20 bit to "0".

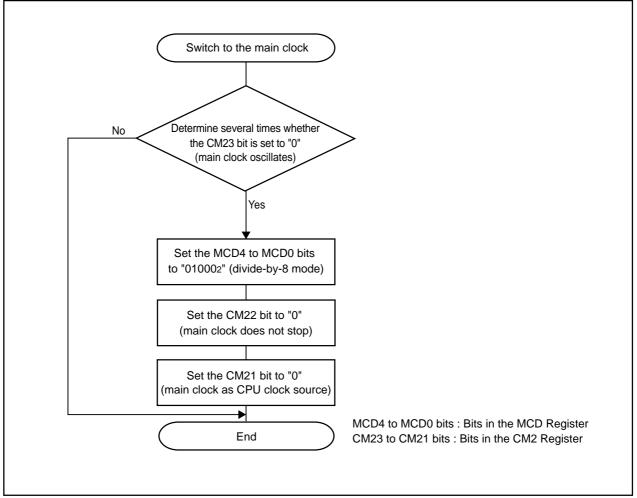



Figure 9.11 Switching Procedure from On-chip Oscillator Clock to Main Clock



# 9.1.4 PLL Clock

The PLL frequency synthesizer generates the PLL clock based on the main clock. The PLL clock can be used as clock source for the CPU clock and peripheral function clock.

The PLL frequency synthesizer stops after reset. When the PLC07 bit is set to "1" (PLL on), the PLL frequency synthesizer starts operating. Wait *tsu(PLL)* ms for the PLL clock to stabilize.

The PLL clock can either be the clock output from the voltage controlled oscillator (VCO) divided-by-2 or divided-by-3. When the PLL clock is used as a clock source for the CPU clock or peripheral function clock, set each bit as is shown in Table 9.3. Figure 9.12 shows the procedure to use the PLL clock as the CPU clock source.

To enter wait or stop mode, set the CM17 bit to "0" (main clock as CPU clock source), set the PLC07 bit in the PLC0 register to "0" (PLL off) and then enter wait or stop mode.

| f(XIN) |           | PLC0 Register | PLC1 Register | PLL Clock |            |   |        |
|--------|-----------|---------------|---------------|-----------|------------|---|--------|
|        | PLC02 Bit | PLC01 Bit     | PLC00 Bit     | CM21 Bit  | I LL OIOCK |   |        |
| 10 MHz | 0         | 1             | 1             | 0         | 30 MHz     |   |        |
|        | 0         | 1             |               |           | 1          | 1 | 20 MHz |
| 8 MHz  | 1         | 0             | 0             | 0         | 32 MHz     |   |        |
|        |           | 0             | 0             | 1         | 21.3 MHz   |   |        |

Table 9.3 Bit Settings to Use PLL Clock as CPU Clock Source

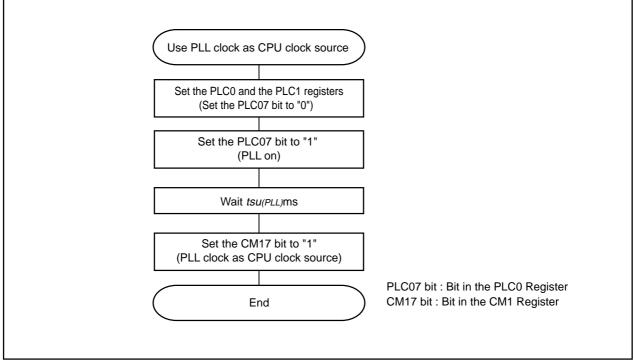



Figure 9.12 Procedure to Use PLL Clock as CPU Clock Source



# 9.2 CPU Clock and BCLK

The CPU operating clock is referred to as the CPU clock. The CPU clock is also a count source for the watchdog timer. After reset, the CPU clock is the main clock divided-by-8. In memory expansion or microprocessor mode, the clock having the same frequency as the CPU clock can be output from the BCLK pin as BCLK. Refer to **9.4 Clock Output Function** for details.

The main clock, sub clock, on-chip oscillator clock or PLL clock can be selected as a clock source for the CPU clock. Table 9.4 shows CPU clock source and bit settings.

When the main clock, on-chip oscillator clock or PLL clock is selected as a clock source of the CPU clock, the selected clock divided-by-1 (no division), -2, -3, -4, -6, -8, -10, -12, -14 or -16 becomes the CPU clock. The MCD4 to MCD0 bits in the MCD register select the clock division.

When the microcomputer enters stop mode or low-power consumption mode (except when the on-chip oscillator clock is the CPU clock), the MCD4 to MCD0 bits are set to "010002" (divide-by-8 mode). Therefore, when the main clock starts running, the CPU clock enters medium-speed mode (divide-by-8).

| Table 9.4 | CPU | Clock | Source | and | Bit | Settings |
|-----------|-----|-------|--------|-----|-----|----------|
|-----------|-----|-------|--------|-----|-----|----------|

| CPU Clock Source                                   | CM0 Register | CM1 Register | CM2 Register | PM2 Register |
|----------------------------------------------------|--------------|--------------|--------------|--------------|
|                                                    | CM07 Bit     | CM17 Bit     | CM21 Bit     | PM24 Bit     |
| Main Clock                                         | 0            | 0            | 0            | 0            |
| Main Clock (Main Clock Direct Mode) <sup>(1)</sup> | 0            | 0            | 0            | 1            |
| Sub Clock                                          | 1            | 0            | 0            | 0            |
| On-Chip Oscillator Clock                           | 0            | 0            | 1            | 0            |
| PLL Clock                                          | 0            | 1            | 0            | 0            |

NOTES:

1. Refer to 23.2 CAN Clock for details.

# 9.3 Peripheral Function Clock

The peripheral function clock becomes an operating clock or count source for peripheral functions excluding the watchdog timer.

# 9.3.1 f1, f8, f32 and f2n

f1, f8 and f32 are the peripheral function clock, selected by the CM21 bit, divided-by-1, -8, or -32. The PM27 and PM26 bits in the PM2 register selects a f2n count source from the peripheral clock, XIN clock, and the on-chip oscillator clock. The CNT3 to CNT0 bits in the TCSPR register selects a f2n division. (n=1 to 15. No division when n=0.)

f1, f8, f32 and f2n stop when the CM02 bit in the CM0 register to "1" (peripheral function stops in wait mode) to enter wait mode or when in low-power consumption mode.

f1, f8 and f2n are used as an operating clock of the serial I/O and count source of the timers A and B. f1 is also used as an operating clock for the intelligent I/O.

The CLKOUT pin outputs f8 and f32 . Refer to **9.4 Clock Output Function** for details.

# 9.3.2 fad

fAD is an operating clock for the A/D converter and has the same frequency as either the main clock<sup>(1)</sup> or the on-chip oscillator clock. The CM21 bit determines which clock is selected.

If the CM02 bit is set to "1" (peripheral function stop in wait mode) to enter wait mode, fAD stops. fAD also stops in low-power consumption mode.

### NOTES:

1. The PLL clock, instead of the main clock, when the CM17 bit is set to "1" (PLL clock).

# 9.3.3 fC32

fC32 is the sub clock divided by 32. fC32 is used as a count source for the timers A and B. fC32 is available when the sub clock is running.

# 9.3.4 fcan

fCAN has the same frequency as the main clock. It is a clock for the CAN module only.

# 9.4 Clock Output Function

The CLKOUT pin outputs fC, f8 or f32.

In memory expansion mode or microprocessor mode, a clock having the same frequency as the CPU clock can be output from the BCLK pin as BCLK.

Table 9.5 lists CLKOUT pin function in single-chip mode. Table 9.6 lists CLKOUT pin function in memory expansion mode and microprocessor mode.

| PM0 Register <sup>(1)</sup> | CM0 Re   | gister <sup>(2)</sup> |                     |  |  |  |
|-----------------------------|----------|-----------------------|---------------------|--|--|--|
| PM07 Bit                    | CM01 Bit | CM00 Bit              | CLKOUT Pin Function |  |  |  |
|                             | 0        | 0                     | P53 I/O port        |  |  |  |
| 1                           | 0        | 1                     | Outputs fc          |  |  |  |
| 1                           | 1        | 0                     | Outputs f8          |  |  |  |
| 1                           | 1        | 1                     | Outputs f32         |  |  |  |
|                             |          |                       |                     |  |  |  |

#### Table 9.5 CLKOUT Pin in Single-Chip Mode

- : Can be set to either "0" or "1"

NOTES:

1. Rewrite the PM0 register after the PRC1 bit in the PRCR register is set to "1" (write enable).

2. Rewrite the CM0 register after the PRC0 bit in the PRCR register is set to "1" (write enable).

| PM1 Register <sup>(1)</sup> |          | PM0 Register <sup>(1)</sup> | CM0 R    | egister <sup>(2)</sup> | CLKOUT Pin Function   |
|-----------------------------|----------|-----------------------------|----------|------------------------|-----------------------|
| PM15 Bit                    | PM14 Bit | PM07 Bit                    | CM01 Bit | CM00 Bit               |                       |
|                             |          | 0                           | 0 (3)    | 0 (3)                  | Outputs BCLK          |
|                             |          | 1                           | 0        | 0                      | Outputs "L" (not P53) |
| 002, 102, 112,              |          | 1                           | 0        | 1                      | Outputs fc            |
|                             |          | 1                           | 1        | 0                      | Outputs f8            |
|                             |          | 1                           | 1        | 1                      | Outputs f32           |
| 0                           | 1        |                             | 0 (3)    | 0 (3)                  | Outputs ALE           |

#### Table 9.6 CLKOUT Pin in Memory Expansion Mode and Microprocessor Mode

- : Can be set to either "0" or "1"

NOTES:

1. Rewrite the PM1 and PM0 registers after the PRC1 bit in the PRCR register is set to "1" (write enable).

2. Rewrite the CM0 register after the PRC0 bit in the PRCR register is set to "1" (write enable).

- 3. When the PM07 bit is set to "0" (selected in the CM01 and CM00 bits) or the PM15 and PM14 bits are set to "012" (P53/BCLK), set the CM01 and CM00 bits to "002" (I/O port P53).
- 4. M32C/84T cannot be used in memory expansion mode and microprocessor mode.

# 9.5 Power Consumption Control

Normal operating mode, wait mode and stop mode are provided as the power consumption control. All mode states, except wait mode and stop mode, are called normal operating mode in this section. Figure 9.13 shows a block diagram of status transition in wait mode and stop mode. Figure 9.14 shows a block diagram of status transition in all modes.

# 9.5.1 Normal Operating Mode

The normal operating mode is further separated into six modes.

In normal operating mode, the CPU clock and peripheral function clock are supplied to operate the CPU and peripheral function. The power consumption control is enabled by controlling a CPU clock frequency. The higher the CPU clock frequency is, the more processing power increases. The lower the CPU clock frequency is, the more power consumption decreases. When unnecessary oscillation circuit stops, power consumption is further reduced.

#### 9.5.1.1 High-Speed Mode

The main clock<sup>(1)</sup> becomes the CPU clock and a clock source of the peripheral function clock. When the sub clock runs, fC32 can be used as a count source for the timers A and B.

#### 9.5.1.2 Medium-Speed Mode

The main  $clock^{(1)}$  divided-by-2, -3, -4, -6, -8, -10, -12, -14, or -16 becomes the CPU clock. The main  $clock^{(1)}$  is a clock source for the peripheral function clock. When the sub clock runs, fC32 can be used as a count source for the timers A and B.

#### 9.5.1.3 Low-Speed Mode

The sub clock becomes the CPU clock . The main clock<sup>(1)</sup> is a clock source for the peripheral function clock. fC32 can be used as a count source for the timers A and B.

### 9.5.1.4 Low-Power Consumption Mode

The microcomputer enters low-power consumption mode when the main clock stops in low-speed mode. The sub clock becomes the CPU clock. Only fC32 can be used as a count source for the timers A and B and the peripheral function clock. In low-power consumption mode, the MCD4 to MCD0 bits in the MCD register are set to "010002" (divide-by-8 mode). Therefore, when the main clock resumes running, the microcomputer is in midium-speed mode (divide-by-8 mode).

### 9.5.1.5 On-Chip Oscillator Mode

The on-chip oscillator clock divided-by-1 (no division), -2, -3, 4-, -6, -8, -10, -12, -14, or -16 becomes the CPU clock. The on-chip oscillator clock is a clock source for the peripheral function clock. When the sub clock runs, fC32 can be used as a count source for the timers A and B.

#### 9.5.1.6 On-Chip Oscillator Low-Power Consumption Mode

The microcomputer enters on-chip oscillator low-power consumption mode when the main clock stops in on-chip oscillator mode . The on-chip oscillator clock divided-by-1 (no division), -2, -3, -4, -6, -8, -10, - 12, -14, or -16 becomes the CPU clock. The on-chip oscillator clock is a clock source for the peripheral function clock. When the sub clock runs, fC32 can be used as a count source for the timers A and B.

NOTES:

1. The PLL clock, instead of the main clock, when the CM17 bit is set to "1" (PLL clock).

Switch the CPU clock after the clock to be switched to stabilize. Sub clock oscillation will take longer<sup>(2)</sup> to stabilize. Wait, by program, until the clock stabilizes directly after turning the microcomputer on or exiting stop mode.

To switch the on-chip oscillator clock to the main clock, enter medium-speed mode (divide-by-8) after the main clock is divided by eight in on-chip oscillator mode (the MCD4 to MCD0 bits in the MCD register are set to "010002").

Do not enter on-chip oscillator mode or on-chip oscillator low-power consumption mode from low-speed mode or low-power consumption mode and vice versa.

#### NOTES:

2. Contact your oscillator manufacturer for oscillation stabilization time.

### 9.5.2 Wait Mode

In wait mode, the CPU clock stops running. The CPU and watchdog timer, operated by the CPU clock, also stop. When the PM22 bit in the PM2 register is set to "1" (on-chip oscillator clock as watchdog timer count source), the watchdog timer continues operating. Because the main clock, sub clock and on-chip oscillator clock continue running, peripheral functions using these clocks also continue operating.

#### 9.5.2.1 Peripheral Function Clock Stop Function

If the CM02 bit in the CM0 register is set to "1" (peripheral function clock stops in wait mode), f1, f8, f32, f2n (when peripheral clock is selected as a count source), and fAD stop in wait mode. Power consumption can be reduced. f2n, when XIN clock or on-chip oscillator clock is selected as a count source, and fC32 do not stop running.

#### 9.5.2.2 Entering Wait Mode

If wait mode is entered after setting the CM02 bit to "1", set the MCD4 to MCD0 bits in the MCD register to be the 10-MHz or less CPU clock flequency after dividing the main clock. Enter wait mode after setting the followings.

Initial Setting

Set each interrupt priority level after setting the exit priority level, required to exit wait mode and controlled by the RLVL2 to RLVL0 bits in the RLVL register, to "7".

#### Before Entering Wait Mode

- (1) Set the I flag to "0"
- (2) Set the interrupt priority level of the interrupt being used to exit wait mode
- (3) Set the interrupt priority levels of the interrupts, not being used to exit wait mode, to "0"
- (4) Set IPL in the FLG register. Then set the exit priority level to the same level as IPL Interrupt priority level of the interrupt used to exit wait mode > IPL = the exit priority level
- (5) Set the PRC0 bit in the PRCR register to "1"
- (6) If the CPU clock source is the PLL clock, set the CM17 bit in the CM1 register to "0" (main clock) and PLC07 bit in the PLC0 register to "0" (PLL off)
- (7) Set the I flag to "1"
- (8) Execute the WAIT instruction

After Exiting Wait Mode

Set the exit priority level to "7" as soon as exiting wait mode.

RENESAS

#### 9.5.2.3 Pin Status in Wait Mode

Table 9.7 lists pin states in wait mode.

| Table 9.7 | Pin States | in Wait Mode |
|-----------|------------|--------------|
|-----------|------------|--------------|

| Pin                                                                            |                           | Memory Expansion Mode <sup>(1)</sup><br>Microprocessor Mode <sup>(1)</sup> | Single-Chip Mode                 |  |  |
|--------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------|----------------------------------|--|--|
| Address Bus, Data Bus, $\overline{CS0}$ to $\overline{CS3}$ , $\overline{BHE}$ |                           | Maintains state immediately<br>before entering wait mode                   |                                  |  |  |
| RD, WR, WRL,                                                                   | WRH                       | "H"                                                                        |                                  |  |  |
| HLDA, BCLK                                                                     |                           | "H"                                                                        |                                  |  |  |
| ALE                                                                            |                           | "L"                                                                        |                                  |  |  |
| Ports                                                                          |                           | Maintains state immediately before entering wait mode                      |                                  |  |  |
| CLKOUT                                                                         | When fc is selected       | Outputs clock                                                              |                                  |  |  |
|                                                                                | When f8, f32 are selected | Outputs the clock when the CM02 bit in the CM0 register is set to "0"      |                                  |  |  |
|                                                                                |                           | (peripheral function clock does not stop in wait mode).                    |                                  |  |  |
|                                                                                |                           | Maintains state immediately before e                                       | entering wait mode when the CM02 |  |  |
|                                                                                |                           | bit is set to "1" (peripheral function clock stops in wait mode).          |                                  |  |  |

NOTES:

1. M32C/84T cannot be used in memory expansion mode and microprocessor mode.

#### 9.5.2.4 Exiting Wait Mode

Wait mode is exited by the hardware reset, NMI interrupt or peripheral function interrupts.

When the hardware reset or  $\overline{\text{NMI}}$  interrupt, but not the peripheral function interrupts, is used to exit wait mode, set the ILVL2 to ILVL0 bits for the peripheral function interrupts to "0002" (interrupt disabled) before executing the WAIT instruction.

CM02 bit setting affects the peripheral function interrupts. When the CM02 bit in the CM0 register is set to "0" (peripheral function clock does not stop in wait mode), all peripheral function interrupts can be used to exit wait mode. When the CM02 bit is set to "1" (peripheral function clock stops in wait mode), peripheral functions using the peripheral function clock stop. Therefore, the peripheral function interrupts caused by an external clock, fC32, or f2n whose count source is the XIN clock or on-chip oscillator clock, can be used to exit wait mode.

The CPU clock used when exiting wait mode by the peripheral function interrupts or  $\overline{\text{NMI}}$  interrupt is the same CPU clock used when the WAIT instruction is executed.

Table 9.8 shows interrupts to be used to exit wait mode and usage conditions.



| Interrupt                              | When CM02=0                                              | When CM02=1                                                                                                                  |
|----------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| NMI Interrupt                          | Available                                                | Available                                                                                                                    |
| Serial I/O Interrupt                   | Available when the internal and external clocks are used | Available when the external clock or f2n<br>(when XIN clock or on-chip oscillator is<br>selected) is used                    |
| Key Input Interrupt                    | Available                                                | Available                                                                                                                    |
| A/D Conversion Interrupt               | Available in single or single-sweep mode                 | Do not use                                                                                                                   |
| Timer A Interrupt<br>Timer B Interrupt | Available in all modes                                   | Available in event counter mode or when<br>count source is fC32 or f2n (when XIN<br>clock or on-chip oscillator is selected) |
| INT Interrupt                          | Available                                                | Available                                                                                                                    |
| Low Voltage Detection<br>Interrupt     | Available                                                | Available                                                                                                                    |
| CAN Interrupt                          | Available                                                | Do not use                                                                                                                   |
| Intelligent I/O Interrupt              | Available                                                | Do not use                                                                                                                   |

#### Table 9.8 Interrupts to Exit Wait Mode

# 9.5.3 Stop Mode

In stop mode, all oscillators and resonators stop. The CPU clock and peripheral function clock, as well as the CPU and peripheral functions operated by these clocks, also stop. The least power required to operate the microcomputer is in stop mode. The internal RAM holds its data when the voltage applied to the VCC1 and VCC2 pins is VRAM or more. If the voltage applied to the VCC1 and VCC2 pins is 2.7V or less, the voltage must be Vcc1  $\ge$  Vcc2  $\ge$  VRAM<sup>(1)</sup>.

The following interrupts can be used to exit stop mode:

- NMI interrupt
- Key Input Interrupt
- INT interrupt
- Timer A and B interrupt (Available when the timer counts external pulse, having its 100Hz or less frequency, in event counter mode)
- Low voltage detection interrupt (Refer to 6.1 Low Voltage Detection Interrupt for usage conditions)

NOTES:

1. The supply voltage of M32C/84T must be VCC1=VCC2.



#### 9.5.3.1 Entering Stop Mode

Stop mode is entered when setting the CM10 bit in the CM10 register to "1" (all clocks stops). The MCD4 to MCD0 bits in the MCD register become set to "010002" (divide-by-8 mode). Enter stop mode after setting the followings.

### Initial Setting

Set each interrupt priority level after setting the exit priority level, required to exit stop mode, controlled by the RLVL2 to RLVL0 bits in the RLVL register, to "7".

#### Before Entering stop mode

- (1) Set the I flag to "0"
- (2) Set the interrupt priority level of the interrupt being used to exit stop mode
- (3) Set the interrupt priority levels of the interrupts, not being used to exit stop mode, to "0"
- (4) Set IPL in the FLG register. Then set the exit priority level to the same level as IPL Interrupt priority level of the interrupt used to exit stop mode > IPL = the exit priority level
- (5) Set the PRC0 bit in the PRCR register to "1" (write enable)
- (6) Select the main clock as the CPU clock
  - When the CPU clock source is the sub clock,
    - (a) set the CM05 bit in the CM0 register to "0" (main clock oscillates)
    - (b) set the CM07 bit in the CM0 register to "0" (clock selected by the CM21 bit divided by MCD register setting)
  - When the CPU clock source is the PLL clock,
    - (a) set the CM17 bit in the CM1 register to "0" (main clock)
    - (b) set the PLC07 bit in the PLC0 register to "0" (PLL off)
  - When main clock direct mode is used,
    - (a) set the PRC1 bit in the PRCR register to "1" (write enable)
    - (b) set the PM24 bit in the PM2 register to "0" (clock selected by the CM07 bit)
  - When the CPU clock source is the on-chip oscillator clock,
    - (a) set MCD4 to MCD0 bits to "010002" (divide-by-8 mode)
    - (b) set the CM05 bit to "0" (main clock oscillates)
  - (c) set the CM21 bit in the CM2 register to "0" (clock selected by the CM17 bit)
- (7) The oscillation stop detect function is used, set the CM20 bit in the CM2 register to "0" (oscillation stop detect function disabled)
- (8) Set the I flag to "1"
- (9) Set the CM10 bit to "1" (all clocks stops)
- After Exiting Stop Mode

Set the exit priority level to "7" as soon as exiting stop mode.



#### 9.5.3.2 Exiting Stop Mode

Stop mode is exited by the hardware reset,  $\overline{\text{NMI}}$  interrupt or peripheral function interrupts (key input interrupt and  $\overline{\text{INT}}$  interrupt).

When the hardware reset or  $\overline{\text{NMI}}$  interrupt, but not the peripheral function interrupts, is used to exit wait mode, set all ILVL2 to ILVL0 bits in the interrupt control registers for the peripheral function interrupt to "0002" (interrupt disabled) before setting the CM10 bit to "1" (all clocks stops).

#### 9.5.3.3 Pin Status in Stop Mode

Table 9.9 lists pin status in stop mode.

#### Table 9.9 Pin Status in Stop Mode

|                                                                                                     | Pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Memory Expansion Mode <sup>(1)</sup><br>Microprocessor Mode <sup>(1)</sup> | Single-Chip Mode |  |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------|--|
| Address Bus, Data Bus, $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ , $\overline{\text{BHE}}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maintains state immediately before                                         |                  |  |
|                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | entering stop mode                                                         |                  |  |
| RD, WR, WF                                                                                          | RL, WRH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | "H"                                                                        |                  |  |
| HLDA, BCLK                                                                                          | < colored and set of the set of t | "H"                                                                        |                  |  |
| ALE                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | "H"                                                                        |                  |  |
| Ports                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maintains state immediately before entering stop mode                      |                  |  |
| CLKOUT                                                                                              | When fc selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | "H"                                                                        |                  |  |
| When f8, f32 selected                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maintains state immediately before entering stop mode                      |                  |  |
| Xin                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Placed in a high-impedance state                                           |                  |  |
| Хоит                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | "H"                                                                        |                  |  |
| XCIN, XCOUT                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Placed in a high-impedance state                                           |                  |  |

NOTES:

1. M32C/84T cannot be used in memory expansion mode and microprocessor mode.



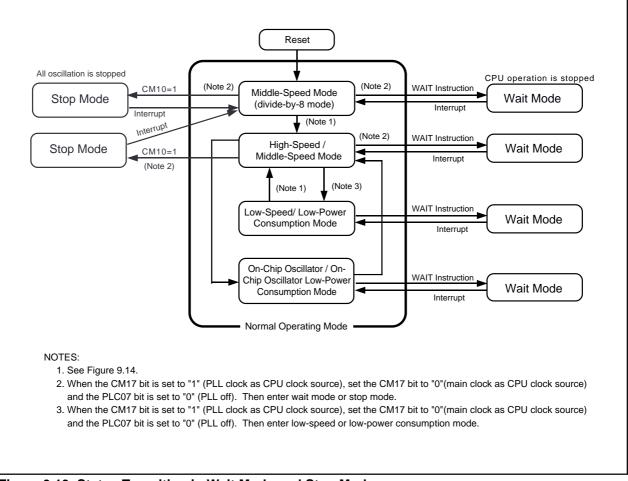



Figure 9.13 Status Transition in Wait Mode and Stop Mode



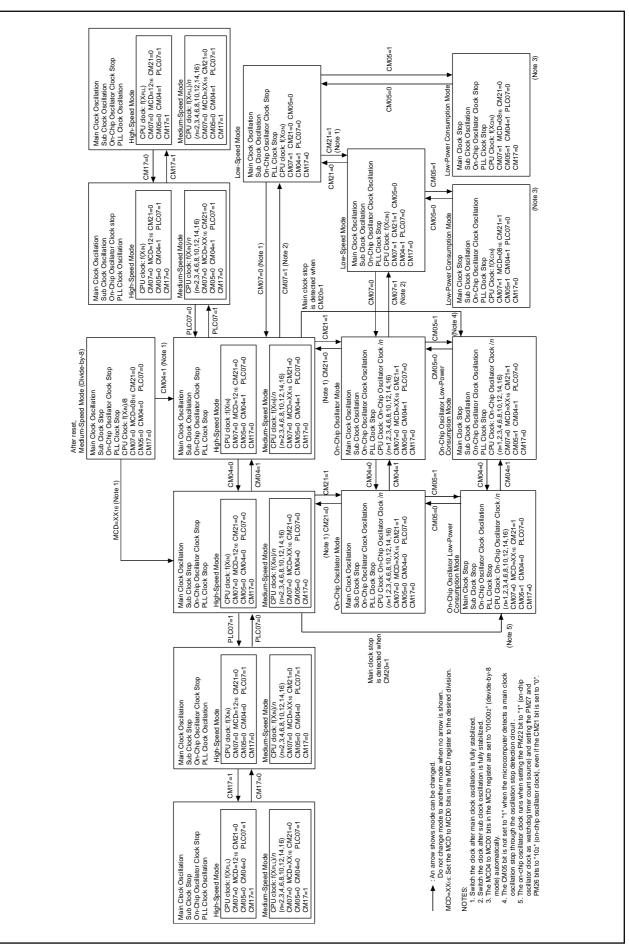



Figure 9.14 Status Transition



# 9.6 System Clock Protect Function

The system clock protect function prohibits the CPU clock from changing clock sources when the main clock is selected as the CPU clock source. This prevents the CPU clock from stopping the program crash. When the PM21 bit in the PM2 register is set to "1" (clock change disable), the following bits cannot be written to:

- The CM02 bit, CM05 bit and CM07 bit in the CM0 register
- The CM10 bit and CM17 bit in the CM1 register
- The CM20 bit in the CM2 register
- All bits in the PLC0 and PLC1 registers

The CPU clock continues running when the WAIT instruction is executed.

To use the system clock protect function, set the CM05 bit in the CM0 register to "0" (main clock oscillation) and CM07 bit to "0" (main clock as BCLK clock source) and follow the procedure below.

(1) Set the PRC1 bit in the PRCR register to "1" (write enable).

(2) Set the PM21 bit in the PM2 register to "1" (protects the clock).

(3) Set the PRC1 bit in the PRCR register to "0" (write disable).

When the PM21 bit is set to "1", do not execute the WAIT instruction.



# 10. Protection

The protection function protects important registers from being easily overwritten when a program runs out of control.

Figure 10.1 shows the PRCR register. Each bit in the PRCR register protects the following registers:

- The PRC0 bit protects the CM0, CM1, CM2, MCD, PLC0 and PLC1 registers;
- The PRC1 bit protects the PM0, PM1, PM2, INVC0 and INVC1 registers;
- The PRC2 bit protects the PD9 and PS3 registers;
- The PRC3 bit protects the VCR2 and D4INT registers.

The PRC2 bit is set to "0" (write disable) when data is written to a desired address after setting the PRC2 bit to "1" (write enable). Set the PD9 and PS3 registers immediately after setting the PRC2 bit in the PRCR register to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the following instruction. The PRC0, PRC1 and PRC3 bits are not set to "0" even if data is written to desired addresses. Set the PRC0, PRC1 and PRC3 bits to "0" by program.

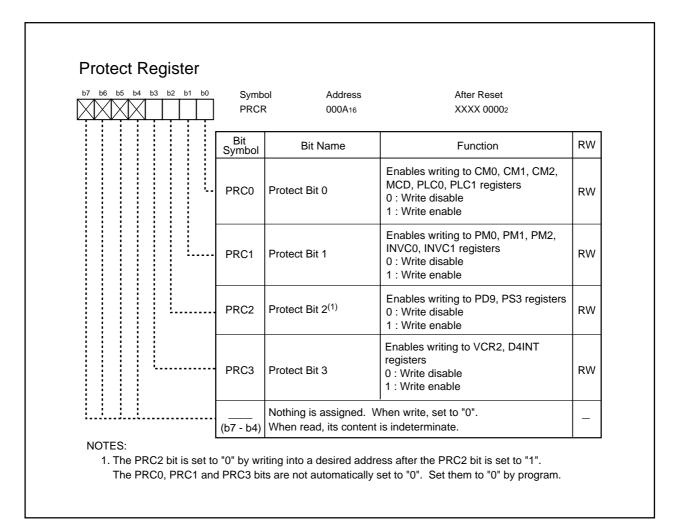



Figure 10.1 PRCR Register



# 11. Interrupts

# 11.1 Types of Interrupts

Figure 11.1 shows types of interrupts.



## Figure 11.1 Interrupts

Maskable Interrupt

The I flag enables or disables an interrupt.

The interrupt priority order based on interrupt priority level can be changed.

### Non-Maskable Interrupt

The I flag does not enable nor disable an interrupt .

The interrupt priority order based on interrupt priority level cannot be changed.



# **11.2 Software Interrupts**

Software interrupt occurs when an instruction is executed. The software interrupts are non-maskable interrupts.

## **11.2.1 Undefined Instruction Interrupt**

The undefined instruction interrupt occurs when the UND instruction is executed.

## 11.2.2 Overflow Interrupt

The overflow interrupt occurs when the O flag in the FLG register is set to "1" (overflow of arithmetic operation) and the INTO instruction is executed.

Instructions to set the O flag are :

ABS, ADC, ADCF, ADD, ADDX, CMP, CMPX, DIV, DIVU, DIVX, NEG, RMPA, SBB, SCMPU, SHA, SUB, SUBX

### 11.2.3 BRK Interrupt

The BRK interrupt occurs when the BRK instruction is executed.

## 11.2.4 BRK2 Interrupt

The BRK2 interrupt occurs when the BRK2 instruction is executed. Do not use this interrupt. For development support tools only.

## 11.2.5 INT Instruction Interrupt

The INT instruction interrupt occurs when the INT instruction is executed. The INT instruction can select software interrupt numbers 0 to 63. Software interrupt numbers 8 to 48, 52 to 54 and 57 are assigned to the vector table used for the peripheral function interrupt. Therefore, the microcomputer executes the same interrupt routine when the INT instruction is executed as when a peripheral function interrupt occurs.

When the INT instruction is executed, the FLG register and PC are saved to the stack. PC also stores the relocatable vector of specified software interrupt numbers. Where the stack is saved varies depending on a software interrupt number. ISP is selected as the stack for software interrupt numbers 0 to 31 (setting the U flag to "0"). SP, which is set before the INT instruction is executed, is selected as the stack for software interrupt numbers 32 to 63 (the U flag is not changed).

With the peripheral function interrupt, the FLG register is saved and the U flag is set to "0" (ISP select) when an interrupt request is acknowledged. With software interrupt numbers 32 to 48, 52 to 54 and 57, SP to be used varies depending on whether the interrupt is generated by the peripheral function interrupt request or by the INT instruction.



## 11.3 Hardware Interrupts

Special interrupts and peripheral function interrupts are available as hardware interrupts.

## **11.3.1 Special Interrupts**

Special interrupts are non-maskable interrupts.

#### 11.3.1.1 NMI Interrupt

The NMI interrupt occurs when a signal applied to the NMI pin changes from a high-level ("H") signal to a low-level ("L") signal. Refer to **11.8** NMI Interrupt for details.

#### 11.3.1.2 Watchdog Timer Interrupt

The watchdog timer interrupt occurs when a count source of the watchdog timer underflows. Refer to **12. Watchdog Timer** for details.

#### 11.3.1.3 Oscillation Stop Detection Interrupt

The oscillation stop detection interrupt occurs when the microcomputer detects a main clock oscillation stop. Refer to **9. Clock Generation Circuit** for details.

#### 11.3.1.4 Low Voltage Detection Interrupt

The low voltage detection interrupt occurs when the voltage applied to Vcc1 is above or below Vdet4. Refer to **6. Voltage Detection Circuit** for details.

#### NOTES:

1. Low voltage detection interrupt cannot be used in M32C/84T.

#### 11.3.1.5 Single-Step Interrupt

Do not use the single-step interrupt. For development support tool only.

#### 11.3.1.6 Address Match Interrupt

The address match interrupt occurs immediately before executing an instruction that is stored into an address indicated by the RMADi register (i=0 to 7) when the AIERi bit in the AIER register is set to "1" (address match interrupt enabled). Set the starting address of the instruction in the RMADi register. The address match interrupt does not occur when a table data or addresses of the instruction other than the starting address, if the instruction has multiple addresses, is set. Refer to **11.10 Address Match Interrupt** for details.

# **11.3.2 Peripheral Function Interrupt**

The peripheral function interrupt occurs when a request from the peripheral functions in the microcomputer is acknowledged. The peripheral function interrupts and software interrupt numbers 8 to 48, 52 to 54 and 57 for the INT instruction use the same interrupt vector table. The peripheral function interrupt is a maskable interrupt.

See **Table 11.2** about how the peripheral function interrupt occurs. Refer to the descriptions of each function for details.

## **11.4 High-Speed Interrupt**

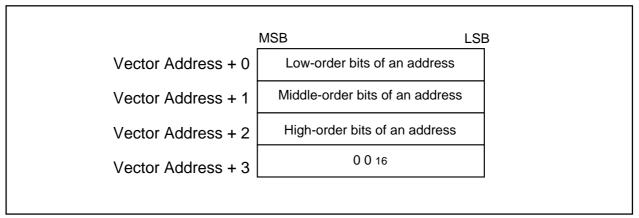
The high-speed interrupt executes an interrupt sequence in five cycles and returns from the interrupt in three cycles.

When the FSIT bit in the RLVL register is set to "1" (interrupt priority level 7 available for the high-speed interrupt), the ILVL2 to ILVL0 bits in the interrupt control registers can be set to "1112" (level 7) to use the high-speed interrupt.

Only one interrupt can be set as the high-speed interrupt. When using the high-speed interrupt, do not set multiple interrupts to interrupt priority level 7. Set the DMAII bit in the RLVL register to "0" (interrupt priority level 7 available for interrupts).

Set the starting address of the high-speed interrupt routine in the VCT register.

When the high-speed interrupt is acknowledged, the FLG register is saved into the SVF register and PC is saved into the SVP register. The program is executed from an address indicated by the VCT register. Execute the FREIT instruction to return from the high-speed interrupt routine.


The values saved into the SVF and SVP registers are restored to the FLG register and PC by executing the FREIT instruction.

The high-speed interrupt and the DMA2 and DMA3 use the same register. When using the high-speed interrupt, neither DMA2 nor DMA3 is available. DMA0 and DMA1 can be used.

## **11.5 Interrupts and Interrupt Vectors**

There are four bytes in one vector. Set the starting address of interrupt routine in each vector table. When an interrupt request is acknowledged, the interrupt routine is executed from the address set in the interrupt vectors.

Figure 11.2 shows the interrupt vector.







# 11.5.1 Fixed Vector Tables

The fixed vector tables are allocated addresses FFFFDC16 to FFFFF16. Table 11.1 lists the fixed vector tables. Refer to **25.2 Functions to Prevent Flash Memory from Rewriting** for fixed vectors of flash memory.

| Interrupt<br>Generated by | Vector Addresses<br>Address (L) to Address (H) | Remarks                                                                                                                                                             | Reference                                             |
|---------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Undefined<br>Instruction  | FFFFDC16 to FFFFDF16                           |                                                                                                                                                                     |                                                       |
| Overflow                  | FFFFE016 to FFFFE316                           |                                                                                                                                                                     | M32C/80 Series                                        |
| BRK Instruction           | FFFFE416 to FFFFE716                           | If the content of address FFFFE716 is<br>FF16, a program is executed from the<br>address stored into software interrupt<br>number 0 in the relocatable vector table | Software Manual                                       |
| Address Match             | FFFFE816 to FFFFEB16                           |                                                                                                                                                                     |                                                       |
| -                         | FFFFEC16 to FFFFEF16                           | Reserved space                                                                                                                                                      |                                                       |
| Watchdog Timer            | FFFFF016 to FFFFF316                           | These addresses are used for the watchdog timer interrupt, oscillation stop detection interrupt, and low voltage detection interrupt <sup>(1)</sup>                 | Reset,<br>Clock Generation Circuit,<br>Watchdog Timer |
| -                         | FFFFF416 to FFFFF716                           | Reserved space                                                                                                                                                      |                                                       |
| NMI                       | FFFFF816 to FFFFFB16                           |                                                                                                                                                                     |                                                       |
| Reset                     | FFFFFC16 to FFFFFF16                           |                                                                                                                                                                     | Reset                                                 |

#### Table 11.1 Fixed Vector Table

NOTES:

1. Low voltage detection interrupt cannot be used in M32C/84T.

# 11.5.2 Relocatable Vector Tables

The relocatable vector tables occupy 256 bytes from the starting address set in the INTB register. Table 11.2 lists the relocatable vector tables.

Set an even address as the starting address of the vector table set in the INTB register to increase interrupt sequence execution rate.



#### Table 11.2 Relocatable Vector Tables

| Interrupt Generated by                  | Vector Table Address<br>Address(L) to Address(H) <sup>(1)</sup> | Software<br>Interrupt Number | Reference       |
|-----------------------------------------|-----------------------------------------------------------------|------------------------------|-----------------|
| BRK Instruction <sup>(2)</sup>          | +0 to +3 (000016 to 000316)                                     | 0                            | M32C/80 Series  |
| Reserved Space                          | +4 to +31 (000416 to 001F16)                                    | 1 to 7                       | Software Manual |
| DMA0                                    | +32 to +35 (002016 to 002316)                                   | 8                            | DMAC            |
| DMA1                                    | +36 to +39 (002416 to 002716)                                   | 9                            | -               |
| DMA2                                    | +40 to +43 (002816 to 002B16)                                   | 10                           |                 |
| DMA3                                    | +44 to +47 (002C16 to 002F16)                                   | 11                           |                 |
| Timer A0                                | +48 to +51 (003016 to 003316)                                   | 12                           | Timer A         |
| Timer A1                                | +52 to +55 (003416 to 003716)                                   | 13                           |                 |
| Timer A2                                | +56 to +59 (003816 to 003B16)                                   | 14                           |                 |
| Timer A3                                | +60 to +63 (003C16 to 003F16)                                   | 15                           | -               |
| Timer A4                                | +64 to +67 (004016 to 004316)                                   | 16                           | -               |
| UART0 Transmission, NACK <sup>(3)</sup> | +68 to +71 (004416 to 004716)                                   | 17                           | Serial I/O      |
| UART0 Reception, ACK <sup>(3)</sup>     | +72 to +75 (004816 to 004B16)                                   | 18                           | -               |
| UART1 Transmission, NACK <sup>(3)</sup> | +76 to +79 (004C16 to 004F16)                                   | 19                           |                 |
| UART1 Reception, ACK <sup>(3)</sup>     | +80 to +83 (005016 to 005316)                                   | 20                           |                 |
| Timer B0                                | +84 to +87 (005416 to 005716)                                   | 21                           | Timer B         |
| Timer B1                                | +88 to +91 (005816 to 005B16)                                   | 22                           |                 |
| Timer B2                                | +92 to +95 (005C16 to 005F16)                                   | 23                           | •               |
| Timer B3                                | +96 to +99 (006016 to 006316)                                   | 24                           |                 |
| Timer B4                                | +100 to +103 (006416 to 006716)                                 | 25                           |                 |
| INT5                                    | +104 to +107 (006816 to 006B16)                                 | 26                           | Interrupt       |
| ĪNT4                                    | +108 to +111 (006C16 to 006F16)                                 | 27                           | *               |
| ĪNT3                                    | +112 to +115 (007016 to 007316)                                 | 28                           | *               |
| ĪNT2                                    | +116 to +119 (007416 to 007716)                                 | 29                           | *               |
| ĪNT1                                    | +120 to +123 (007816 to 007B16)                                 | 30                           | *               |
| ĪNT0                                    | +124 to +127 (007C16 to 007F16)                                 | 31                           |                 |
| Timer B5                                | +128 to +131 (008016 to 008316)                                 | 32                           | Timer B         |
| UART2 Transmission, NACK <sup>(3)</sup> | +132 to +135 (008416 to 008716)                                 | 33                           | Serial I/O      |
| UART2 Reception, ACK <sup>(3)</sup>     | +136 to +139 (008816 to 008B16)                                 | 34                           |                 |
| UART3 Transmission, NACK <sup>(3)</sup> | +140 to +143 (008C16 to 008F16)                                 | 35                           |                 |
| UART3 Reception, ACK <sup>(3)</sup>     | +144 to +147 (009016 to 009316)                                 | 36                           |                 |
| UART4 Transmission, NACK <sup>(3)</sup> | +148 to +151 (009416 to 009716)                                 | 37                           |                 |
| UART4 Reception, ACK <sup>(3)</sup>     | +152 to +155 (009816 to 009B16)                                 | 38                           |                 |

#### Table 11.2 Relocatable Vector Tables (Continued)

| Interrupt Generated by                             | Vector Table Address                        | Software         | Reference       |
|----------------------------------------------------|---------------------------------------------|------------------|-----------------|
|                                                    | Address("L") to Address("H") <sup>(1)</sup> | Interrupt Number |                 |
| Bus Conflict Detect, Start Condition Detect,       | +156 to +159 (009C16 to 009F16)             | 39               | Serial I/O      |
| Stop Condition Detect (UART2) <sup>(3)</sup>       |                                             |                  |                 |
| Bus Conflict Detect, Start Condition Detect,       | +160 to +163 (00A016 to 00A316)             | 40               |                 |
| Stop Condition Detect (UART3/UART0) <sup>(4)</sup> |                                             |                  |                 |
| Bus Conflict Detect, Start Condition Select,       | +164 to +167 (00A416 to 00A716)             | 41               |                 |
| Stop Condition Detect(UART4/UART1) <sup>(4)</sup>  |                                             |                  |                 |
| A/D0                                               | +168 to +171 (00A816 to 00AB16)             | 42               | A/D Converter   |
| Key Input                                          | +172 to +175 (00AC16 to 00AF16)             | 43               | Interrupts      |
| Intelligent I/O Interrupt 0                        | +176 to +179 (00B016 to 00B316)             | 44               | Intelligent I/O |
| Intelligent I/O Interrupt 1                        | +180 to +183 (00B416 to 00B716)             | 45               |                 |
| Intelligent I/O Interrupt 2                        | +184 to +187 (00B816 to 00BB16)             | 46               |                 |
| Intelligent I/O Interrupt 3                        | +188 to +191 (00BC16 to 00BF16)             | 47               |                 |
| Intelligent I/O Interrupt 4                        | +192 to +195 (00C016 to 00C316)             | 48               |                 |
| Reserved Space                                     | +196 to +207 (00C416 to 00CF16)             | 49 to 51         |                 |
| Intelligent I/O Interrupt 8                        | +208 to +211 (00D016 to 00D316)             | 52               | Intelligent I/O |
| Intelligent I/O Interrupt 9, CAN 0                 | +212 to +215 (00D416 to 00D716)             | 53               | Intelligent I/O |
| Intelligent I/O Interrupt 10, CAN 1                | +216 to +219 (00D816 to 00DB16)             | 54               | CAN             |
| Reserved Space                                     | +220 to +227 (00DC16 to 00E316)             | 55, 56           |                 |
| CAN 2                                              | +228 to +231 (00E416 to 00E716)             | 57               | CAN             |
| Reserved Space                                     | +232 to +255 (00E816 to 00FF16)             | 58 to 63         |                 |
| INT Instruction <sup>(2)</sup>                     | +0 to +3 (000016 to 000316) to              | 0 to 63          | Interrupts      |
|                                                    | +252 to +255 (00FC16 to 00FF16)             |                  |                 |

NOTES:

- 1. These addresses are relative to those in the INTB register.
- 2. The I flag does not disable interrupts.
- 3. In I<sup>2</sup>C mode, NACK, ACK or start/stop condition detection causes interrupts to be generated.
- 4. The IFSR6 bit in the IFSR register determines whether these addresses are used for an interrupt in UART0 or in UART3.

The IFSR7 bit in the IFSR register determines whether these addresses are used for an interrupt in UART1 or in UART4.



# **11.6 Interrupt Request Acknowledgement**

Software interrupts and special interrupts occur when conditions to generate an interrupt are met. The peripheral function interrupts are acknowledged when all conditions below are met.

- I flag = "1"
- IR bit = "1"
- ILVL2 to ILVL0 bits > IPL

The I flag, IPL, IR bit and ILVL2 to ILVL0 bits are independent of each other. The I flag and IPL are in the FLG register. The IR bit and ILVL2 to ILVL0 bits are in the interrupt control register.

# 11.6.1 | Flag and IPL

The I flag enables or disables maskable interrupts. When the I flag is set to "1" (enable), all maskable interrupts are enabled; when the I flag is set to "0" (disable), they are disabled. The I flag is automatically set to "0" after reset.

IPL, consisting of three bits, indicates the interrupt priority level from level 0 to level 7.

If a requested interrupt has higher priority level than indicated by IPL, the interrupt is acknowledged. Table 11.3 lists interrupt priority levels associated with IPL.

| IPL2 | IPL1 | IPL0 | Interrupt Priority Levels            |
|------|------|------|--------------------------------------|
| 0    | 0    | 0    | Level 1 and above                    |
| 0    | 0    | 1    | Level 2 and above                    |
| 0    | 1    | 0    | Level 3 and above                    |
| 0    | 1    | 1    | Level 4 and above                    |
| 1    | 0    | 0    | Level 5 and above                    |
| 1    | 0    | 1    | Level 6 and above                    |
| 1    | 1    | 0    | Level 7 and above                    |
| 1    | 1    | 1    | All maskable interrupts are disabled |

**Table 11.3 Interrupt Priority Levels** 

# 11.6.2 Interrupt Control Register and RLVL Register

The peripheral function interrupts use interrupt control registers to control each interrupt. Figures 11.3 and 11.4 show the interrupt control register. Figure 11.5 shows the RLVL register.



| b7 b6 b5 b4 b3 b2 | b1 b0 | Symbol        |                         | Address            |                                                                               | After Re |     |
|-------------------|-------|---------------|-------------------------|--------------------|-------------------------------------------------------------------------------|----------|-----|
|                   |       | TA0IC to      |                         |                    | 5, 006E16, 008E16, 007016                                                     | XXXX X   |     |
|                   |       | TB0IC to      |                         |                    | , 009616, 007816, 009816, 006916                                              | XXXX X   |     |
|                   |       | S0TIC to      |                         |                    | , 008916, 008B16, 008D16                                                      | XXXX X   |     |
|                   |       | SORIC to      |                         |                    | , 006B16, 006D16, 006F16                                                      | XXXX X   |     |
|                   | 11    |               | o BCN4IC                |                    | , 008F16, 007116 <sup>(1)</sup> , 009116 <sup>(2)</sup>                       | XXXX X   |     |
|                   | 11    | DM0IC to      | DM3IC                   |                    | , 006A16, 008A16                                                              | XXXX X   | (00 |
|                   | 11    | AD0IC         |                         | 007316             |                                                                               | XXXX X   | (00 |
|                   | 11    | KUPIC         |                         | 009316             |                                                                               | XXXX X   | (00 |
|                   | 11    | IIO0IC to     |                         |                    | , 007716, 009716, 007916                                                      | XXXX X   | (00 |
|                   | 11    | IIO8IC to     |                         | 007D16, 009D16     |                                                                               | XXXX X   |     |
|                   |       | CAN0IC0       | to CAN2IC               | 009D16, 007F16     | s, 008116 <sup>(3)</sup>                                                      | XXXX X   | (00 |
|                   |       | Bit<br>Symbol | Bi                      | t Name             | Function                                                                      |          | R١  |
|                   |       | ILVL0         |                         |                    | <sup>b2 b1 b0</sup><br>0 0 0 : Level 0 (interrupt disablec<br>0 0 1 : Level 1 | (k       | R۱  |
|                   |       | ILVL1         | Interrupt<br>Select Bit | Priority Level     | 0 1 0 : Level 2<br>0 1 1 : Level 3<br>1 0 0 : Level 4                         |          | R١  |
|                   |       | ILVL2         |                         |                    | 1 0 1 : Level 5<br>1 1 0 : Level 6<br>1 1 1 : Level 7                         |          | R١  |
|                   |       | IR            | Interrupt               | Request Bit        | 0 : No interrupt requested<br>1 : Interrupt requested <sup>(4)</sup>          |          | R١  |
|                   |       |               | Nothing is              | s assigned. W      | hen write, set to "0".                                                        |          |     |
|                   |       | (b7 - b4)     | When rea                | ad, its content is | s indeterminate.                                                              |          | _   |

The IIO10IC register shares an address with the CAN1IC register.

4. The IR bit can be set to "0" only (do not set to "1").



| b7 b6 b5 | b4 b3 b2 b1 b0 |               | to INT2IC 009E16,                                   | After Reset<br>007E16, 009C16 XX00 X0002<br>009A16, 007A16 XX00 X0002            |    |
|----------|----------------|---------------|-----------------------------------------------------|----------------------------------------------------------------------------------|----|
|          |                | Bit<br>Symbol | Bit Name                                            | Function                                                                         | RW |
|          |                | ILVL0         |                                                     | b2 b1 b0<br>0 0 0 : Level 0 (interrupt disabled)<br>0 0 1 : Level 1              | RW |
|          | · · · · ·      | ILVL1         | Interrupt Priority Level<br>Select Bit              | 0 1 0 : Level 2<br>0 1 1 : Level 3<br>1 0 0 : Level 4                            | RW |
|          |                | · ILVL2       |                                                     | 1 0 1 : Level 5<br>1 1 0 : Level 6<br>1 1 1 : Level 7                            | RW |
|          |                | IR            | Interrupt Request Bit                               | 0 : Requests no interrupt<br>1 : Requests an interrupt <sup>(2)</sup>            | RW |
|          |                | POL           | Polarity Switch Bit                                 | 0 : Selects falling edge or "L" <sup>(3)</sup><br>1 : Selects rising edge or "H" | RW |
|          |                | LVS           | Level Sensitive/Edge<br>Sensitive Switch Bit        | 0 : Edge sensitive<br>1 : Level sensitive <sup>(4)</sup>                         | RW |
|          |                | (b7 - b6)     | Nothing is assigned. Wh<br>When read, its content i |                                                                                  | -  |

- 2. The IR bit can be set to "0" only (do not set to "1").
- 3. Set the POL bit to "0" when a corresponding bit in the IFSR register is set to "1" (both edges).

4. When setting the LVS bit to "1", set a corresponding bit in the IFSR register to "0" (one edge).

Figure 11.4 Interrupt Control Register (2)

# 11.6.2.1 ILVL2 to ILVL0 Bits

The ILVL2 to ILVL0 bits determines an interrupt priority level. The higher the interrupt priority level is, the higher the interrupt priority is.

When an interrupt request is generated, its interrupt priority level is compared to IPL. This interrupt is acknowledged only when its interrupt priority level is higher than IPL. When the ILVL2 to ILVL0 bits are set to "0002" (level 0), its interrupt is ignored.

#### 11.6.2.2 IR Bit

The IR bit is automatically set to "1" (interrupt requested) when an interrupt request is generated. The IR bit is automatically set to "0" (no interrupt requested) after an interrupt request is acknowledged and an interrupt routine in the corresponding interrupt vector is executed.

The IR bit can be set to "0" by program. Do not set to "1".

| b7 b6 b5                              | b4 b3 b2 b1 b0                                                                                              | Symbo<br>RLVL                                                  | bl Address<br>009F16                                                                                                       | After Reset<br>XXXX 00002                                                                                                                                                                                                                                     |                      |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                                       |                                                                                                             | Bit<br>Symbol                                                  | Bit Name                                                                                                                   | Function                                                                                                                                                                                                                                                      | RV                   |
|                                       |                                                                                                             | RLVL0                                                          |                                                                                                                            | b2b1b0<br>0 0 0 : Level 0<br>0 0 1 : Level 1                                                                                                                                                                                                                  | R١                   |
|                                       |                                                                                                             | RLVL1                                                          | Stop/Wait Mode Exit<br>Minimum Interrupt Priority<br>Level Control Bit <sup>(1)</sup>                                      | 0 1 0 : Level 2<br>0 1 1 : Level 3<br>1 0 0 : Level 4                                                                                                                                                                                                         | R                    |
|                                       |                                                                                                             | RLVL2                                                          |                                                                                                                            | 1 0 1 : Level 5<br>1 1 0 : Level 6<br>1 1 1 : Level 7                                                                                                                                                                                                         | R۱                   |
|                                       |                                                                                                             | FSIT                                                           | High-Speed Interrupt<br>Set Bit <sup>(2)</sup>                                                                             | <ol> <li>0: Interrupt priority level 7 is used<br/>for normal interrupt</li> <li>1: Interrupt priority level 7 is used<br/>for high-speed interrupt</li> </ol>                                                                                                | R۱                   |
|                                       |                                                                                                             | (b4)                                                           | Nothing is assigned. Wh<br>When read, its content is                                                                       |                                                                                                                                                                                                                                                               | _                    |
|                                       |                                                                                                             | DMAII                                                          | DMA II Select Bit <sup>(4)</sup>                                                                                           | <ul> <li>0: Interrupt priority level 7 is used<br/>for interrupt</li> <li>1: Interrupt priority level 7 is used<br/>for DMA II transfer<sup>(3)</sup></li> </ul>                                                                                              | R١                   |
|                                       |                                                                                                             | (b7 - b6)                                                      | Nothing is assigned. Wh<br>When read, its content is                                                                       | -                                                                                                                                                                                                                                                             | -                    |
| the<br>the<br>2. Wh<br>inte<br>3. Set | I level set in the RI<br>FLG register.<br>en the FSIT bit is a<br>errupt. In this case<br>the ILVL2 to ILVL | _VL2 to RL<br>set to "1", a<br>e, set only c<br>.0 bits in the | VL0 bits. Set the RLVL2 t<br>on interrupt having the inte<br>one interrupt to the interrup<br>e interrupt control register | uested interrupt priority level is higher<br>o RLVL0 bits to the same value as IPI<br>rrupt priority level 7 becomes the high<br>of priority level 7 and the DMAII bit to "<br>after setting the DMAII bit to "1".<br>DMAII bit to "1". Set the FSIT bit to ' | L in<br>-spe<br>'0". |

4. The DMAII bit becomes indeterminate after reset. To use the DMAII bit for an interrupt setting, set it to "0" before setting the interrupt control register.

Figure 11.5 RLVL Register

#### 11.6.2.3 RLVL2 to RLVL0 Bits

When using an interrupt to exit stop or wait mode, refer to **9.5.2 Wait Mode** and **9.5.3 Stop Mode** for details.

# **11.6.3 Interrupt Sequence**

The interrupt sequence is performed between an interrupt request acknowledgment and interrupt routine execution.

When an interrupt request is generated while an instruction is executed, the CPU determines its interrupt priority level after the instruction is completed. The CPU starts the interrupt sequence from the following cycle. However, in regards to the SCMPU, SIN, SMOVB, SMOVF, SMOVU, SSTR, SOUT or RMPA instruction, if an interrupt request is generated while executing the instruction, the microcomputer suspends the instruction to start the interrupt sequence.

The interrupt sequence is performed as follows:

- (1) The CPU obtains interrupt information (interrupt number and interrupt request level) by reading address 00000016 (address 00000216 for the high-speed interrupt). Then, the IR bit applicable to the interrupt information is set to "0" (interrupt requested).
- (2) The FLG register, prior to an interrupt sequence, is saved to a temporary register<sup>(1)</sup> within the CPU.
- (3) Each bit in the FLG register is set as follows:
  - The I flag is set to "0" (interrupt disabled)
  - The D flag is set to "0" (single-step disabled)
  - The U flag is set to "0" (ISP selected)
- (4) A temporary register within the CPU is saved to the stack; or to the SVF register for the high-speed interrupt.
- (5) PC is saved to the stack; or to the SVP register for the high-speed interrupt.
- (6) The interrupt priority level of the acknowledged interrupt is set in IPL .
- (7) A relocatable vector corresponding to the acknowledged interrupt is stored into PC.

After the interrupt sequence is completed, an instruction is executed from the starting address of the interrupt routine.

#### NOTES:

1. Temporary register cannot be modified by users.



## 11.6.4 Interrupt Response Time

Figure 11.6 shows an interrupt response time. Interrupt response time is the period between an interrupt generation and the execution of the first instruction in an interrupt routine. Interrupt response time includes the period between an interrupt request generation and the completed execution of an instruction ((a) on Figure 11.6) and the period required to perform an interrupt sequence ((b) on Figure 11.6).

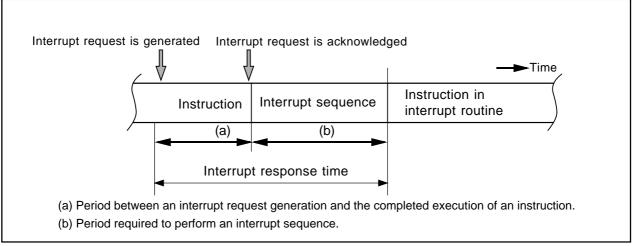



Figure 11.6 Interrupt Response Time

Time (a) varies depending on an instruction being executed. The DIVX instruction requires the longest time (a); 42 cycles when an immediate value or register is set as the divisor.

When the divisor is a value in the memory, the following value is added.

| <ul> <li>Normal addressing</li> </ul>         | : 2 + X      |
|-----------------------------------------------|--------------|
| <ul> <li>Index addressing</li> </ul>          | : 3 + X      |
| <ul> <li>Indirect addressing</li> </ul>       | : 5 + X + 2Y |
| <ul> <li>Indirect index addressing</li> </ul> | : 6 + X + 2Y |

X is the number of wait states for a divisor space. Y is the number of wait states for the space that stores indirect addresses. If X and Y are in an odd address or in 8-bit bus space, the X and Y value must be doubled.

Table 11.4 lists time (b) shown Figure 11.6.



| Interrupt                                  | Interrupt Vector Address          | 16-Bit Bus | 8-Bit Bus |
|--------------------------------------------|-----------------------------------|------------|-----------|
| Peripheral Function                        | Even address                      | 14 cycles  | 16 cycles |
|                                            | Odd address <sup>(1)</sup>        | 16 cycles  | 16 cycles |
| INT Instruction                            | Even address                      | 12 cycles  | 14 cycles |
|                                            | Odd address <sup>(1)</sup>        | 14 cycles  | 14 cycles |
| NMI                                        | Even address <sup>(2)</sup>       | 13 cycles  | 15 cycles |
| Watchdog Timer                             |                                   |            |           |
| Undefined Instruction                      |                                   |            |           |
| Address Match                              |                                   |            |           |
| Overflow                                   | Even address <sup>(2)</sup>       | 14 cycles  | 16 cycles |
| BRK Instruction (relocatable vector table) | Even address                      | 17 cycles  | 19 cycles |
|                                            | Odd address <sup>(1)</sup>        | 19 cycles  | 19 cycles |
| BRK Instruction (fixed vector table)       | Even address <sup>(2)</sup>       | 19 cycles  | 21 cycles |
| High-Speed Interrupt                       | Vector table is internal register | 5 cycles   |           |

Table 11.4 Interrupt Sequence Execution Time

NOTES:

1. Allocate interrupt vectors in even addresses.

2. Vectors are fixed to even addresses.

# 11.6.5 IPL Change when Interrupt Request is Acknowledged

When a peripheral function interrupt request is acknowledged, IPL sets the priority level for the acknowledged interrupt.

Software interrupts and special interrupts have no interrupt priority level. If an interrupt request that has no interrupt priority level is acknowledged, the value shown in Table 11.5 is set in IPL as the interrupt priority level.

| Table 11.5 Inte | errupts without Ir | nterrupt Priority | / Levels and IPL |
|-----------------|--------------------|-------------------|------------------|
|-----------------|--------------------|-------------------|------------------|

| Interrupt Source                                                       | Level Set to IPL |
|------------------------------------------------------------------------|------------------|
| Watchdog Timer, NMI, Oscillation Stop Detection, Low Voltage Detection | 7                |
| Reset                                                                  | 0                |
| Software, Address Match                                                | Not changed      |

NOTES:

1. Low voltage detection interrupt cannot be used in M32C/84T.



# 11.6.6 Saving a Register

In the interrupt sequence, the FLG register and PC are saved to the stack.

After the FLG register is saved to the stack, 16 high-order bits and 16 low-order bits of PC, extended to 32 bits, are saved to the stack. Figure 11.7 shows stack states before and after an interrupt request is acknowledged.

Other important registers are saved by program at the beginning of an interrupt routine. The PUSHM instruction can save several registers<sup>(1)</sup> in the register bank used.

Refer to 11.4 High-Speed Interrupt for the high-speed interrupt.

#### NOTES:

1. Can be selected from the R0, R1, R2, R3, A0, A1, SB and FB registers.

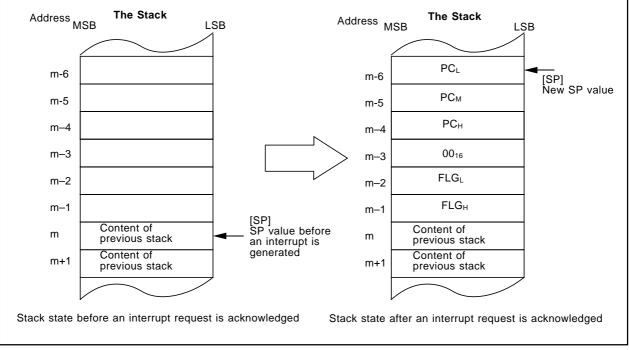



Figure 11.7 Stack States

# **11.6.7** Restoration from Interrupt Routine

When the REIT instruction is executed at the end of an interrupt routine, the FLG register and PC before the interrupt sequence is performed, which have been saved to the stack, are automatically restored. The program, executed before an interrupt request was acknowledged, starts running again. Refer to **11.4 High-Speed Interrupt** for the high-speed interrupt.

Restore registers saved by program in an interrupt routine by the POPM instruction or others before the REIT and FREIT instructions. Register bank is switched back to the bank used prior to the interrupt sequence by the REIT or FREIT instruction.



# 11.6.8 Interrupt Priority

If two or more interrupt requests are existed at the same sampling points (a timing to detect whether an interrupt request is generated or not), the interrupt with the highest priority is acknowledged.

Set the ILVL2 to ILVL0 bits to select the desired priority level for maskable interrupts (peripheral function interrupt).

Priority levels of special interrupts such as reset (reset has the highest priority) and watchdog timer are set by hardware. Figure 11.8 shows priority levels of hardware interrupts.

The interrupt priority does not affect software interrupts. Executing instruction causes the microcomputer to execute an interrupt routine.

Oscillation Stop DetectionReset > NMI >Watchdog> Peripheral Function > Address MatchLow voltage Detection<sup>(1)</sup>

NOTES:

1. Low voltage detection interrupt cannot be used in M32C/84T.

#### Figure 11.8 Interrupt Priority

# **11.6.9 Interrupt Priority Level Select Circuit**

The interrupt priority level select circuit selects the highest priority interrupt when two or more interrupt requests are existed at the same sampling point.

Figure 11.9 shows the interrupt priority level select circuit.



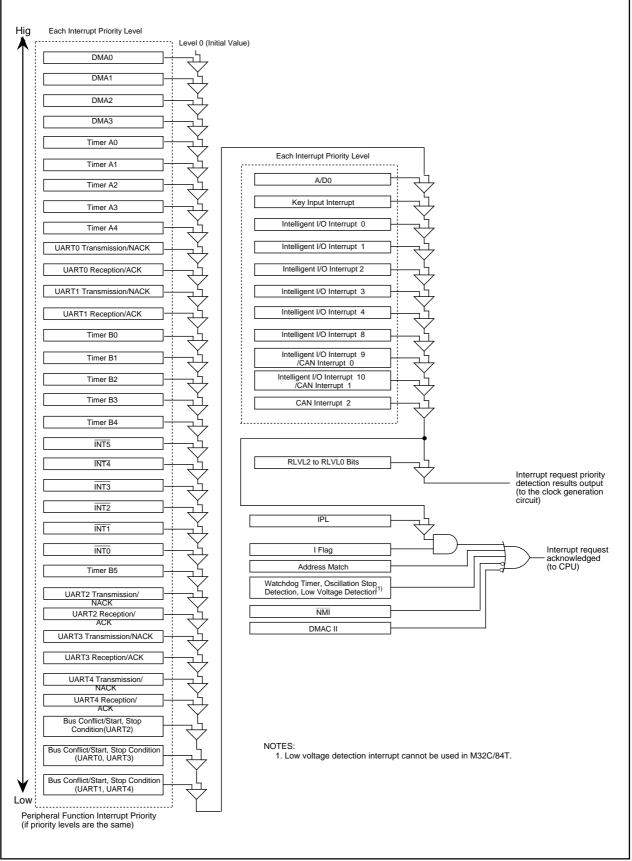



Figure 11.9 Interrupt Priority Level Select Circuit

## 11.7 INT Interrupt

External input generates the  $\overline{INTi}$  interrupt (i = 0 to 5). The LVS bit in the INTiIC register selects either edge sensitive triggering to generate an interrupt on any edge or level sensitive triggering to generate an interrupt at an applied signal level. The POL bit in the INTIIC register determines the polarity.

For edge sensitive, when the IFSRi bit in the IFSR register is set to "1", an interrupt occurs on both rising and falling edges of the external input. If the IFSRi bit is set to "1", set the POL bit in the corresponding register to "0" (falling edge).

For level sensitive, set the IFSRi bit to "0" (single edge). When the INTi pin input level reaches the level set in the POL bit, the IR bit in the INTiIC register is set to "1". The IR bit remains unchanged even if the INTi pin level is changed. The IR bit is set to "0" when the INTi interrupt is acknowledged or when the IR bit is written to "0" by program.

Figure 11.10 shows the IFSR register.

| b7 b6 b5 | b4 | b3 | b2 | b1   | b0 | Symb<br>IFSR  | ol Address<br>031F16                              | After Reset<br>0016                                                                                                                                                      |     |
|----------|----|----|----|------|----|---------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|          |    |    |    |      |    | Bit<br>Symbol | Bit Name                                          | Function                                                                                                                                                                 | RW  |
|          |    |    |    |      |    | IFSR0         | INT0 Interrupt Polarity Select Bit <sup>(1)</sup> | 0 : One edge<br>1 : Both edges                                                                                                                                           | RW  |
|          |    |    |    | i.   |    | IFSR1         | INT1 Interrupt Polarity Select Bit <sup>(1)</sup> | 0 : One edge<br>1 : Both edges                                                                                                                                           | RW  |
|          |    |    |    |      |    | IFSR2         | INT2 Interrupt Polarity Select Bit <sup>(1)</sup> | 0 : One edge<br>1 : Both edges                                                                                                                                           | RW  |
|          |    |    |    |      |    | IFSR3         | INT3 Interrupt Polarity Select Bit <sup>(1)</sup> | 0 : One edge<br>1 : Both edges                                                                                                                                           | RW  |
|          |    |    |    | •••• |    | IFSR4         | INT4 Interrupt Polarity select bit <sup>(1)</sup> | 0 : One edge<br>1 : Both edges                                                                                                                                           | RW  |
|          |    |    |    |      |    | IFSR5         | INT5 Interrupt Polarity Select Bit <sup>(1)</sup> | 0 : One edge<br>1 : Both edges                                                                                                                                           | RV  |
|          |    |    |    |      |    | IFSR6         | UART0, UART3<br>Interrupt Source<br>Select Bit    | <ul> <li>0 : UART3 bus conflict, start condition detect, stop condition detect</li> <li>1 : UART0 bus conflict, start condition detect, stop condition detect</li> </ul> | D\A |
|          |    |    |    |      |    | IFSR7         | UART1, UART4<br>Interrupt Source<br>Select Bit    | <ul> <li>0 : UART4 bus conflict, start condition detect, stop condition detect</li> <li>1 : UART1 bus conflict, start condition detect, stop condition detect</li> </ul> | DIA |

Figure 11.10 IFSR Register



## 11.8 NMI Interrupt<sup>(1)</sup>

The  $\overline{\text{NMI}}$  interrupt occurs when a signal applied to the  $\overline{\text{NMI}}$  pin changes from a high-level ("H") signal to a low-level ("L") signal. The  $\overline{\text{NMI}}$  interrupt is a non-maskable interrupt. Although the P85/ $\overline{\text{NMI}}$  pin is used as the  $\overline{\text{NMI}}$  interrupt pin, the P8\_5 bit in the P8 register indicates the input level for this pin.

## NOTES:

1. When the NMI interrupt is not used, connect the NMI pin to VCC1 via a resistor. Because the NMI interrupt cannot be ignored, the pin must be connected.

## 11.9 Key Input Interrupt

Key input interrupt request is generated when one of the signals applied to the P104 to P107 pins in input mode is on the falling edge. The key input interrupt can be also used as key-on wake-up function to exit wait or stop mode. To use the key input interrupt, do not use P104 to P107 as A/D input ports. Figure 11.11 shows a block diagram of the key input interrupt. When an "L" signal is applied to any pins in input mode, signals applied to other pins are not detected as an interrupt request signal.

When the PSC\_7 bit in the PSC register<sup>(2)</sup> is set to "1" (key input interrupt disabled), no key input interrupt occurs regardless of interrupt control register settings. When the PSC\_7 bit is set to "1", no input from a port pin is available even when in input mode.

#### NOTES:

2. Refer to 24. Programmable I/O Ports about the PSC register.

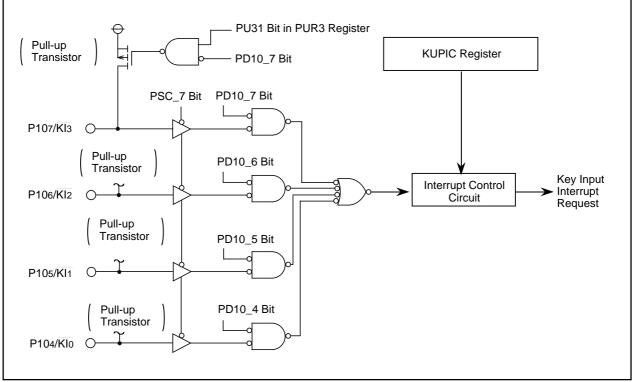



Figure 11.11 Key Input Interrupt

## 11.10 Address Match Interrupt

The address match interrupt occurs immediately before executing an instruction that is stored into an address indicated by the RMADi register (i=0 to 7). The address match interrupt can be set in eight addresses. The AIERi bit in the AIER register determines whether the interrupt is enabled or disabled. The I flag and IPL do not affect the address match interrupt.

Figure 11.12 shows registers associated with the address match interrupt.

The starting address of an instruction must be set in the RMADi register. The address match interrupt does not occur when a table data or addresses other than the starting address of the instruction is set.

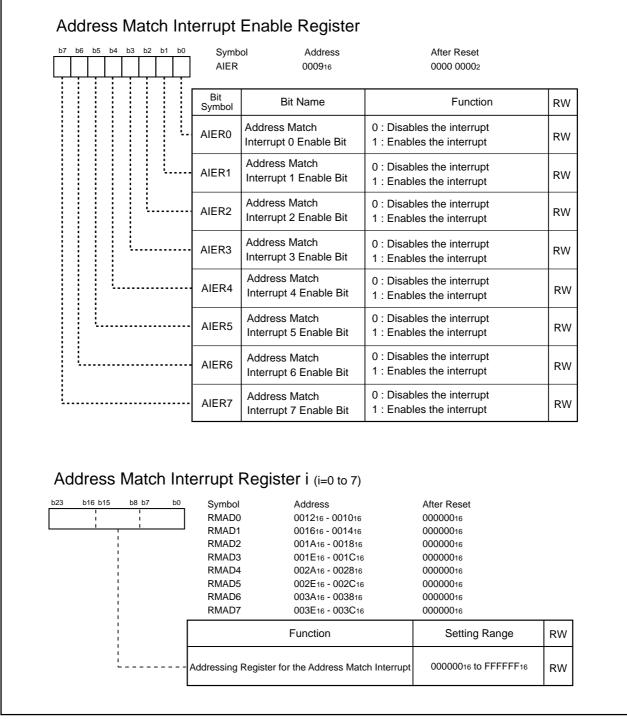



Figure 11.12 AIER Register and RMAD0 to RMAD7 Registers

## 11.11 Intelligent I/O Interrupt and CAN Interrupt

The intelligent I/O interrupt and CAN interrupt are assigned to software interrupt numbers 44 to 48, 52 to 54, and 57.

When using the intelligent I/O interrupt or CAN interrupt, set the IRLT bit in the IIOiIE register (i = 0 to 4, 8 to 11) to "1" (interrupt request for interrupt used).

Various interrupt requests cause the intelligent I/O interrupt to occur. When an interrupt request is generated with each intelligent I/O or CAN functions, the corresponding bit in the IIOiIR register is set to "1" (interrupt requested). When the corresponding bit in the IIOiIE register is set to "1" (interrupt enabled), the IR bit in the corresponding IIOiIC register is set to "1" (interrupt requested).

After the IR bit setting changes "0" to "1", the IR bit remains set to "1" when a bit in the IIOiIR register is set to "1" by another interrupt request and the corresponding bit in the IIOiIE register is set to "1".

Bits in the IIOiIR register are not set to "0" automatically, even if an interrupt is acknowledged. Set each bit to "0" by program. If these bit settings are left "1", all generated interrupt requests are ignored.

Figure 11.13 shows a block diagram of the intelligent I/O interrupt and CAN interrupt. Figure 11.14 shows the IIOiIR register. Figure 11.15 shows the IIOiIE register.

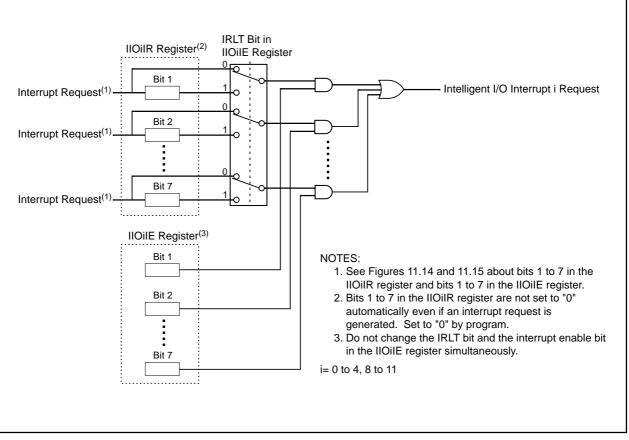



Figure 11.13 Intelligent I/O Interrupt and CAN Interrupt

# The CAN0j (j=0 to 2) interrupt is provided as the CAN interrupt. The following registers are required for the CAN interrupts:

• Bits 7 in the IIO9IR to IIO11IR registers and Bits 7 in the IIO9IE to IIO11IE registers for the CAN00 to CAN02 interrupts.

The CANOIC and CAN1IC registers share addresses with the following registers:

- The CANOIC register shares an address with the IIO9IC register.
- The CAN1IC register shares an address with the IIO10IC register.

Refer to 23.4 CAN Interrupt for details.

When using the intelligent I/O interrupt or CAN interrupt to activate DMAC II, set the IRLT bit in the IIOiIE register to "0" (interrupt request is used for DMAC, DMAC II) to enable the interrupt request that the IIOiIE register requires.



| Interrupt Request       | Registe         | PL                                                                                       |    |
|-------------------------|-----------------|------------------------------------------------------------------------------------------|----|
| b7 b6 b5 b4 b3 b2 b1 b0 | Symbo<br>IIO0IR | Address     After Reset       to IIO4IR, IIO8IR to IIO11IR     See below     0000 000X2  |    |
|                         | Bit<br>Symbol   | Function                                                                                 | RW |
|                         | (b0)            | Nothing is assigned. When write, set to "0".<br>When read, its content is indeterminate. | -  |
|                         | (Note 1)        | 0 : Requests no interrupt<br>1 : Requests an interrupt <sup>(2)</sup>                    | RW |
|                         | (Note 1)        | 0 : Requests no interrupt<br>1 : Requests an interrupt <sup>(2)</sup>                    | RW |
|                         | (b1)            | Reserved bit. Set to "0".<br>When read, its content is indeterminate.                    | RW |
|                         | (Note 1)        | 0 : Requests no interrupt<br>1 : Requests an interrupt <sup>(2)</sup>                    | RW |
|                         | (Note 1)        | 0 : Requests no interrupt<br>1 : Requests an interrupt <sup>(2)</sup>                    | RW |
|                         | (Note 1)        | 0 : Requests no interrupt<br>1 : Requests an interrupt <sup>(2)</sup>                    | RW |
|                         | (Note 1)        | 0 : Requests no interrupt<br>1 : Requests an interrupt <sup>(2)</sup>                    | RW |

#### NOTES:

1. See table below for bit symbols.

2. Only "0" can be set (nothing is changed even if "1" is set).

Bit Symbols for the Interrupt Request Register

| Symbol                                                                    | Address                                                                                                                                      | Bit 7                                                                                                                 | Bit 6                                                                                                    | Bit 5                                                                                                     | Bit 4                                                                                                          | Bit 3                                                                            | Bit 2                                    | Bit 1                                         | Bit 0               |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------|---------------------|
| IIO0IR                                                                    | 00A016                                                                                                                                       | -                                                                                                                     | -                                                                                                        | SIO0RR                                                                                                    | G0RIR                                                                                                          | -                                                                                | TM13R/PO13R                              | -                                             | -                   |
| IIO1IR                                                                    | 00A116                                                                                                                                       | -                                                                                                                     | -                                                                                                        | SIO0TR                                                                                                    | G0TOR                                                                                                          | -                                                                                | TM14R/PO14R                              | -                                             | -                   |
| IIO2IR                                                                    | 00A216                                                                                                                                       | -                                                                                                                     | -                                                                                                        | SIO1RR                                                                                                    | G1RIR                                                                                                          | -                                                                                | TM12R/PO12R                              | -                                             | -                   |
| <b>IIO3IR</b>                                                             | 00A316                                                                                                                                       | -                                                                                                                     | -                                                                                                        | SIO1TR                                                                                                    | G1TOR                                                                                                          | -                                                                                | TM10R/PO10R                              | -                                             | -                   |
| IIO4IR                                                                    | 00A416                                                                                                                                       | SRT0R                                                                                                                 | SRT1R                                                                                                    | -                                                                                                         | BT1R                                                                                                           | -                                                                                | TM17R/PO17R                              | -                                             | -                   |
| IIO8IR                                                                    | 00A816                                                                                                                                       | -                                                                                                                     | -                                                                                                        | -                                                                                                         | -                                                                                                              | -                                                                                | -                                        | TM11R/PO11R                                   | -                   |
| IIO9IR                                                                    | 00A916                                                                                                                                       | CAN00R                                                                                                                | -                                                                                                        | -                                                                                                         | -                                                                                                              | -                                                                                | -                                        | TM15R/PO15R                                   | -                   |
| IIO10IR                                                                   | 00AA16                                                                                                                                       | CAN01R                                                                                                                | -                                                                                                        | -                                                                                                         | -                                                                                                              | -                                                                                | -                                        | TM16R/PO16R                                   | -                   |
| IIO11IR                                                                   | 00AB16                                                                                                                                       | CAN02R                                                                                                                | -                                                                                                        | _                                                                                                         | _                                                                                                              |                                                                                  |                                          |                                               |                     |
|                                                                           | 00/10/10                                                                                                                                     | 0/ 110211                                                                                                             |                                                                                                          |                                                                                                           | -                                                                                                              | -                                                                                | -                                        | -                                             | -                   |
| T1R<br>M1jR                                                               | : Intelliger<br>: Intelliger                                                                                                                 | nt I/O Base<br>nt I/O Time                                                                                            | Measurem                                                                                                 |                                                                                                           | ipt Request                                                                                                    |                                                                                  | -                                        |                                               | -                   |
| T1R<br>M1jR<br>O1jR                                                       | : Intelliger<br>: Intelliger<br>: Intelliger                                                                                                 | nt I/O Base<br>nt I/O Time<br>nt I/O Wave                                                                             | Measurem<br>form Gene                                                                                    | ent j Interru<br>erating Fund                                                                             | ipt Request<br>ction j Interru                                                                                 | upt Request                                                                      |                                          | -                                             |                     |
| T1R<br>M1jR                                                               | : Intelliger<br>: Intelliger<br>: Intelliger<br>: Intelliger                                                                                 | nt I/O Base<br>nt I/O Time<br>nt I/O Wave<br>nt I/O Comm                                                              | Measurem<br>form Gene<br>nunication                                                                      | ent j Interru<br>erating Fund<br>Unit i Rece                                                              | ipt Request<br>ction j Interru<br>ive Interrup                                                                 | upt Request<br>t Request                                                         |                                          |                                               |                     |
| T1R<br>M1jR<br>O1jR                                                       | : Intelliger<br>: Intelliger<br>: Intelliger<br>: Intelliger                                                                                 | nt I/O Base<br>nt I/O Time<br>nt I/O Wave<br>nt I/O Comm                                                              | Measurem<br>form Gene<br>nunication                                                                      | ent j Interru<br>erating Fund<br>Unit i Rece                                                              | ipt Request<br>ction j Interru                                                                                 | upt Request<br>t Request                                                         |                                          |                                               |                     |
| T1R<br>M1jR<br>O1jR<br>IOiRR                                              | : Intelliger<br>: Intelliger<br>: Intelliger<br>: Intelliger<br>: Intelliger<br>: Intelliger                                                 | nt I/O Base<br>ht I/O Time<br>ht I/O Wave<br>ht I/O Comm<br>ht I/O Comm                                               | Measurem<br>form Gene<br>nunication<br>nunication                                                        | ent j Interru<br>erating Fund<br>Unit i Rece<br>Unit i Trans                                              | ipt Request<br>ction j Interru<br>ive Interrup<br>smit Interrup                                                | upt Requesi<br>t Request<br>ot Request                                           |                                          | -<br>quest (TO: Output                        | <u> </u>            |
| ottr<br>M1jr<br>O1jr<br>IOirr<br>IOirr                                    | Intelliger<br>Intelliger<br>Intelliger<br>Intelliger<br>Intelliger<br>Intelliger                                                             | nt I/O Base<br>nt I/O Time<br>nt I/O Wave<br>nt I/O Comm<br>nt I/O Comm<br>nt I/O Comm                                | Measurem<br>form Gene<br>nunication<br>nunication<br>nunication                                          | ent j Interru<br>erating Fund<br>Unit i Rece<br>Unit i Trans<br>Unit i HDL(                               | ipt Request<br>ction j Interru<br>ive Interrup<br>smit Interrup<br>C Data Proc                                 | upt Request<br>t Request<br>ot Request<br>essing Fun                             | ction Interrupt Re                       | -<br>quest (TO: Output<br>quest (RI: Input to | to Trans            |
| T1R<br>M1jR<br>O1jR<br>IOiRR<br>IOiRR<br>IOiTR                            | : Intelliger<br>: Intelliger<br>: Intelliger<br>: Intelliger<br>: Intelliger<br>: Intelliger<br>: Intelliger                                 | nt I/O Base<br>nt I/O Time<br>nt I/O Wave<br>nt I/O Comr<br>nt I/O Comr<br>nt I/O Comr<br>nt I/O Comr                 | Measurem<br>form Gene<br>nunication<br>nunication<br>nunication<br>nunication                            | ent j Interru<br>erating Fund<br>Unit i Rece<br>Unit i Trans<br>Unit i HDLO<br>Unit i HDLO                | ipt Request<br>ction j Interru<br>ive Interrup<br>smit Interrup<br>C Data Proc                                 | upt Request<br>t Request<br>ot Request<br>essing Fun<br>essing Fun               | ction Interrupt Re<br>ction Interrupt Re |                                               | to Trans            |
| T1R<br>M1jR<br>O1jR<br>IOiRR<br>IOiTR<br>IOiTR<br>IOTR<br>IIOR            | : Intelliger<br>: Intelliger<br>: Intelliger<br>: Intelliger<br>: Intelliger<br>: Intelliger<br>: Intelliger<br>: Intelliger                 | nt I/O Base<br>nt I/O Time<br>nt I/O Wave<br>nt I/O Comm<br>nt I/O Comm<br>nt I/O Comm<br>nt I/O Comm<br>nt I/O Speci | Measurem<br>form Gene<br>nunication<br>nunication<br>nunication<br>nunication<br>al Commu                | ent j Interru<br>erating Fund<br>Unit i Rece<br>Unit i Trans<br>Unit i HDLO<br>Unit i HDLO<br>nication Fu | ipt Request<br>ction j Interru<br>ive Interrup<br>smit Interrup<br>C Data Proc<br>C Data Proc                  | upt Request<br>t Request<br>ot Request<br>essing Fun<br>essing Fun<br>upt Reques | ction Interrupt Re<br>ction Interrupt Re | quest (RI: Input to                           | to Trans<br>Receive |
| T1R<br>M1jR<br>O1jR<br>IOiRR<br>IOiRR<br>IOiTR<br>SiTOR<br>SiRIR<br>IRT1R | : Intelliger<br>: Intelliger<br>: Intelliger<br>: Intelliger<br>: Intelliger<br>: Intelliger<br>: Intelliger<br>: Intelliger<br>: Intelliger | nt I/O Base<br>nt I/O Time<br>nt I/O Wave<br>nt I/O Comm<br>nt I/O Comm<br>nt I/O Comm<br>nt I/O Comm<br>nt I/O Speci | Measurem<br>form Gene<br>nunication<br>nunication<br>nunication<br>nunication<br>al Commu<br>ion Functic | ent j Interru<br>erating Fund<br>Unit i Rece<br>Unit i Trans<br>Unit i HDLO<br>Unit i HDLO<br>nication Fu | upt Request<br>ction j Interru<br>ive Interrup<br>smit Interrup<br>C Data Proc<br>C Data Proc<br>nction Interr | upt Request<br>t Request<br>ot Request<br>essing Fun<br>essing Fun<br>upt Reques | ction Interrupt Re<br>ction Interrupt Re | quest (RI: Input to                           | to Trans            |

## Figure 11.14 IIO0IR to IIO4IR, IIO8IR to IIO11IR Registers

| $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | b4 b3 b2                                                                                                                                                                                                                                                                                                                                                                            | 2 b1 b0                                                                                                                                                                                                           | Symbo<br>IIO0IE                                                                                                                                                                                                                                    | l<br>to IIO4IE, II                                                                                                                                               | O8IE to IIC                                                                                                                                     |                                           |                                                                                                                                                        | ter Reset<br>000 00002                                                                                                  |                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                     | Γ                                                                                                                                                                                                                 | Bit<br>Symbol                                                                                                                                                                                                                                      | Bit Na                                                                                                                                                           | ime                                                                                                                                             |                                           | Functi                                                                                                                                                 | on                                                                                                                      | RW                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                   | IRLT                                                                                                                                                                                                                                               | Interrupt Ro<br>Select Bit <sup>(2</sup>                                                                                                                         |                                                                                                                                                 |                                           | pt request is used t<br>pt request is used t                                                                                                           |                                                                                                                         | II RW                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                   | (Note 1)                                                                                                                                                                                                                                           |                                                                                                                                                                  |                                                                                                                                                 |                                           | es an interrupt by b<br>s an interrupt by b                                                                                                            |                                                                                                                         | 181/                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                   | (Note 1)                                                                                                                                                                                                                                           |                                                                                                                                                                  |                                                                                                                                                 |                                           | es an interrupt by b<br>es an interrupt by b                                                                                                           | -                                                                                                                       | 1 8 1/1                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                   | (b3)                                                                                                                                                                                                                                               | Reserved E                                                                                                                                                       | Bit                                                                                                                                             | Set to "0"                                |                                                                                                                                                        |                                                                                                                         | RW                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                   | (Note 1)                                                                                                                                                                                                                                           |                                                                                                                                                                  |                                                                                                                                                 | 1                                         | es an interrupt by b<br>s an interrupt by b                                                                                                            |                                                                                                                         |                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                   | (Note 1)                                                                                                                                                                                                                                           |                                                                                                                                                                  |                                                                                                                                                 | 1                                         | es an interrupt by b<br>s an interrupt by b                                                                                                            | -                                                                                                                       |                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                   | (Note 1)                                                                                                                                                                                                                                           |                                                                                                                                                                  |                                                                                                                                                 |                                           | es an interrupt by b<br>s an interrupt by b                                                                                                            | -                                                                                                                       | 1 8 1/1                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                   | (Note 1)                                                                                                                                                                                                                                           |                                                                                                                                                                  |                                                                                                                                                 |                                           | es an interrupt by b                                                                                                                                   |                                                                                                                         |                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TES:                                                                                                                                                                                                                                                                                                                                                                                | L                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                    |                                                                                                                                                                  |                                                                                                                                                 |                                           | s an interrupt by b                                                                                                                                    | -                                                                                                                       | 1 8 1/1                                                               |
| 1<br>2<br>Bit Symbo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . See table<br>. If an interr<br>ols for the                                                                                                                                                                                                                                                                                                                                        | Interrupt I                                                                                                                                                                                                       | it symbols.                                                                                                                                                                                                                                        | -                                                                                                                                                                | <br>et bit 1, 2, 4                                                                                                                              | 1 : Enable                                |                                                                                                                                                        | it 7 in IIOiIR registe                                                                                                  | 1 8 1/1                                                               |
| 1<br>2<br>Bit Symbol<br>Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . See table<br>. If an interrols for the<br>Address                                                                                                                                                                                                                                                                                                                                 | rupt request                                                                                                                                                                                                      | it symbols.<br>t is used for                                                                                                                                                                                                                       | -                                                                                                                                                                | Bit 4                                                                                                                                           | 1 : Enable                                | after the IRLT bit is                                                                                                                                  | it 7 in IIOiIR registe                                                                                                  | Bit 0                                                                 |
| 1<br>2<br>Bit Symbol<br>IIO0IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . See table<br>. If an interrols for the<br>Address<br>00B016                                                                                                                                                                                                                                                                                                                       | rupt request<br>Interrupt I<br>Bit 7<br>-                                                                                                                                                                         | it symbols.<br>t is used for<br>Enable Re                                                                                                                                                                                                          | gister<br>Bit 5<br>SIO0RE                                                                                                                                        | Bit 4<br>G0RIE                                                                                                                                  | 1 : Enable<br>to 7 to "1" :               | after the IRLT bit is<br>Bit 2<br>TM13E/PO13E                                                                                                          | it 7 in IIOiIR registe<br>s set to "1".                                                                                 | Bit 0                                                                 |
| 1<br>2<br>Bit Symbol<br>IIO0IE<br>IIO1IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . See table<br>. If an interrols for the<br>Address<br>00B016<br>00B116                                                                                                                                                                                                                                                                                                             | rupt request<br>Interrupt I<br>Bit 7<br>-<br>-                                                                                                                                                                    | it symbols.<br>t is used for<br>Enable Re<br>Bit 6                                                                                                                                                                                                 | gister<br>Bit 5<br>SIO0RE<br>SIO0TE                                                                                                                              | Bit 4<br>GORIE<br>GOTOE                                                                                                                         | 1 : Enable<br>to 7 to "1" :               | after the IRLT bit is<br>Bit 2<br>TM13E/PO13E<br>TM14E/PO14E                                                                                           | it 7 in IIOiIR registe<br>s set to "1".                                                                                 | er<br>Bit 0<br>IRLT<br>IRLT                                           |
| 1<br>2<br>Bit Symbol<br>IIO0IE<br>IIO1IE<br>IIO2IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . See table<br>. If an interrols for the<br>Address<br>00B016<br>00B116<br>00B216                                                                                                                                                                                                                                                                                                   | rupt request<br>Interrupt I<br>Bit 7<br>-<br>-<br>-                                                                                                                                                               | it symbols.<br>t is used for<br>Enable Re<br>Bit 6<br>-<br>-<br>-                                                                                                                                                                                  | Bit 5<br>SIO0RE<br>SIO0TE<br>SIO1RE                                                                                                                              | Bit 4<br>GORIE<br>GOTOE<br>G1RIE                                                                                                                | 1 : Enable<br>to 7 to "1" ;<br>Bit 3      | after the IRLT bit is<br>Bit 2<br>TM13E/PO13E<br>TM14E/PO14E<br>TM12E/PO12E                                                                            | it 7 in IIOiIR registe<br>s set to "1".<br>Bit 1                                                                        | Bit 0<br>IRLT<br>IRLT<br>IRLT                                         |
| 1<br>2<br>Bit Symbol<br>IIO0IE<br>IIO1IE<br>IIO2IE<br>IIO3IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | See table<br>If an interrols for the<br>Address<br>00B016<br>00B116<br>00B216<br>00B316                                                                                                                                                                                                                                                                                             | rupt request<br>Interrupt I<br>Bit 7<br>-<br>-<br>-<br>-                                                                                                                                                          | it symbols.<br>t is used for<br>Enable Re<br>Bit 6<br>-<br>-<br>-                                                                                                                                                                                  | gister<br>Bit 5<br>SIO0RE<br>SIO0TE                                                                                                                              | Bit 4<br>GORIE<br>GOTOE<br>G1RIE<br>G1TOE                                                                                                       | 1 : Enable<br>to 7 to "1" ;<br>Bit 3<br>- | after the IRLT bit is<br>Bit 2<br>TM13E/PO13E<br>TM14E/PO14E<br>TM12E/PO12E<br>TM10E/PO10E                                                             | it 7 in IIOiIR registe<br>s set to "1".<br>Bit 1<br>-<br>-                                                              | Bit 0<br>IRLT<br>IRLT<br>IRLT<br>IRLT                                 |
| 1<br>2<br>Bit Symbol<br>IIO0IE<br>IIO1IE<br>IIO2IE<br>IIO3IE<br>IIO4IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . See table<br>. If an interrols for the<br>Address<br>00B016<br>00B116<br>00B216<br>00B316<br>00B416                                                                                                                                                                                                                                                                               | rupt request<br>Interrupt I<br>Bit 7<br>-<br>-<br>-                                                                                                                                                               | it symbols.<br>t is used for<br>Enable Re<br>Bit 6<br>-<br>-<br>-                                                                                                                                                                                  | Bit 5<br>SIO0RE<br>SIO0TE<br>SIO1RE                                                                                                                              | Bit 4<br>GORIE<br>GOTOE<br>G1RIE                                                                                                                | 1 : Enable<br>to 7 to "1" ;<br>Bit 3<br>- | after the IRLT bit is<br>Bit 2<br>TM13E/PO13E<br>TM14E/PO14E<br>TM12E/PO12E                                                                            | it 7 in IIOiIR registers<br>s set to "1".<br>Bit 1<br>-<br>-<br>-<br>-<br>-<br>-                                        | Bit 0<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT                         |
| 1<br>2<br>Bit Symbol<br>IIO0IE<br>IIO1IE<br>IIO2IE<br>IIO3IE<br>IIO4IE<br>IIO8IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . See table<br>. If an intern<br>ols for the<br>Address<br>00B016<br>00B116<br>00B216<br>00B316<br>00B416<br>00B816                                                                                                                                                                                                                                                                 | Interrupt l<br>Bit 7<br>-<br>-<br>-<br>SRT0E<br>-                                                                                                                                                                 | it symbols.<br>t is used for<br>Enable Re<br>Bit 6<br>-<br>-<br>-<br>SRT1E<br>-                                                                                                                                                                    | gister<br>Bit 5<br>SIO0RE<br>SIO0TE<br>SIO1RE<br>SIO1TE<br>-                                                                                                     | Bit 4<br>GORIE<br>G0TOE<br>G1RIE<br>G1TOE<br>BT1E<br>-                                                                                          | 1 : Enable                                | after the IRLT bit is<br>Bit 2<br>TM13E/PO13E<br>TM14E/PO14E<br>TM12E/PO12E<br>TM10E/PO10E                                                             | it 7 in IIOiIR register<br>s set to "1".<br>Bit 1<br>-<br>-<br>-<br>-<br>TM11E/PO11E                                    | Bit 0<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT                 |
| 1<br>2<br>Bit Symbol<br>IIO0IE<br>IIO1IE<br>IIO2IE<br>IIO3IE<br>IIO4IE<br>IIO8IE<br>IIO9IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . See table<br>. If an interrols for the<br>Address<br>00B016<br>00B116<br>00B216<br>00B316<br>00B416<br>00B816<br>00B916                                                                                                                                                                                                                                                           | Interrupt I<br>Bit 7<br>-<br>-<br>-<br>SRT0E<br>-<br>CAN00E                                                                                                                                                       | it symbols.<br>t is used for<br>Enable Re<br>Bit 6<br>-<br>-<br>-<br>SRT1E<br>-<br>-                                                                                                                                                               | gister<br>Bit 5<br>SIO0RE<br>SIO0TE<br>SIO1RE<br>SIO1TE<br>-<br>-                                                                                                | Bit 4<br>GORIE<br>GOTOE<br>G1RIE<br>G1TOE<br>BT1E<br>-<br>-                                                                                     | 1 : Enable                                | Bit 2<br>TM13E/PO13E<br>TM14E/PO14E<br>TM12E/PO12E<br>TM10E/PO10E<br>TM17E/PO17E                                                                       | it 7 in IIOiIR register<br>s set to "1".<br>Bit 1<br>-<br>-<br>-<br>-<br>TM11E/PO11E<br>TM15E/PO15E                     | Bit 0<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT         |
| 1<br>2<br>Bit Symbol<br>IIO0IE<br>IIO1IE<br>IIO2IE<br>IIO3IE<br>IIO4IE<br>IIO8IE<br>IIO9IE<br>IIO10IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . See table<br>. If an interrols for the<br>Address<br>00B016<br>00B116<br>00B216<br>00B316<br>00B416<br>00B816<br>00B916<br>00BA16                                                                                                                                                                                                                                                 | Interrupt l<br>Bit 7<br>-<br>-<br>-<br>SRT0E<br>-<br>CAN00E<br>CAN01E                                                                                                                                             | it symbols.<br>t is used for<br>Enable Re<br>Bit 6<br>-<br>-<br>-<br>SRT1E<br>-                                                                                                                                                                    | gister<br>Bit 5<br>SIO0RE<br>SIO0TE<br>SIO1RE<br>SIO1TE<br>-                                                                                                     | Bit 4<br>GORIE<br>G0TOE<br>G1RIE<br>G1TOE<br>BT1E<br>-                                                                                          | 1 : Enable                                | after the IRLT bit is<br>Bit 2<br>TM13E/PO13E<br>TM14E/PO14E<br>TM12E/PO12E<br>TM10E/PO10E                                                             | it 7 in IIOiIR register<br>s set to "1".<br>Bit 1<br>-<br>-<br>-<br>-<br>TM11E/PO11E                                    | Bit 0<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT |
| 1<br>2<br>Bit Symbol<br>IIO0IE<br>IIO1IE<br>IIO2IE<br>IIO3IE<br>IIO4IE<br>IIO4IE<br>IIO9IE<br>IIO10IE<br>IIO10IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . See table<br>. If an interr<br>ols for the<br>Address<br>00B016<br>00B116<br>00B216<br>00B316<br>00B416<br>00B816<br>00B916<br>00BA16<br>00BB16                                                                                                                                                                                                                                   | Interrupt I<br>Bit 7<br>-<br>-<br>-<br>SRT0E<br>-<br>CAN00E<br>CAN01E<br>CAN02E                                                                                                                                   | it symbols.<br>t is used for<br>Enable Re<br>Bit 6<br>-<br>-<br>-<br>SRT1E<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                 | gister<br>Bit 5<br>SIO0RE<br>SIO0TE<br>SIO1RE<br>SIO1RE<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                         | Bit 4<br>GORIE<br>GOTOE<br>G1RIE<br>G1TOE<br>BT1E<br>-<br>-<br>-<br>-<br>-                                                                      | 1 : Enable                                | Bit 2<br>TM13E/PO13E<br>TM14E/PO14E<br>TM12E/PO12E<br>TM10E/PO10E<br>TM17E/PO17E                                                                       | it 7 in IIOiIR register<br>s set to "1".<br>Bit 1<br>-<br>-<br>-<br>-<br>TM11E/PO11E<br>TM15E/PO15E                     | Bit 0<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT         |
| 1<br>2<br>Bit Symbol<br>IIO0IE<br>IIO1IE<br>IIO2IE<br>IIO2IE<br>IIO4IE<br>IIO4IE<br>IIO9IE<br>IIO10IE<br>IIO11IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . See table<br>. If an interr<br>ols for the<br>Address<br>00B016<br>00B116<br>00B216<br>00B316<br>00B416<br>00B816<br>00B416<br>00BA16<br>00BA16<br>00BB16<br>: Intelligent                                                                                                                                                                                                        | Interrupt I<br>Bit 7<br>-<br>-<br>-<br>SRT0E<br>-<br>CAN00E<br>CAN01E<br>CAN02E<br>mt I/O Base                                                                                                                    | it symbols.<br>t is used for<br>Enable Re<br>Bit 6<br>-<br>-<br>-<br>SRT1E<br>-<br>-<br>-<br>-<br>Timer Inter                                                                                                                                      | gister<br>Bit 5<br>SIO0RE<br>SIO0TE<br>SIO1RE<br>SIO1RE<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-           | Bit 4<br>GORIE<br>GOTOE<br>G1RIE<br>G1TOE<br>BT1E<br>-<br>-<br>-<br>-<br>-                                                                      | 1 : Enable                                | Bit 2<br>TM13E/PO13E<br>TM14E/PO14E<br>TM12E/PO12E<br>TM10E/PO10E<br>TM17E/PO17E                                                                       | it 7 in IIOiIR register<br>s set to "1".<br>Bit 1<br>-<br>-<br>-<br>-<br>TM11E/PO11E<br>TM15E/PO15E                     | Bit 0<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT |
| 1<br>2<br>Bit Symbol<br>IIO0IE<br>IIO1IE<br>IIO2IE<br>IIO2IE<br>IIO4IE<br>IIO4IE<br>IIO9IE<br>IIO10E<br>IIO10E<br>IIO11E<br>IIO11E<br>IIO11E<br>IIO11E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | See table<br>If an interrols for the<br>Address<br>00B016<br>00B116<br>00B216<br>00B316<br>00B416<br>00B816<br>00B916<br>00BA16<br>00BB16<br>: Intelliger                                                                                                                                                                                                                           | Interrupt I<br>Bit 7<br>-<br>-<br>-<br>SRT0E<br>-<br>CAN00E<br>CAN01E<br>CAN02E<br>th I/O Base<br>th I/O Time                                                                                                     | it symbols.<br>t is used for<br>Enable Re<br>Bit 6<br>-<br>-<br>-<br>-<br>SRT1E<br>-<br>-<br>-<br>Timer Intern<br>Measureme                                                                                                                        | gister<br>Bit 5<br>SIO0RE<br>SIO0TE<br>SIO1RE<br>SIO1RE<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-           | Bit 4<br>GORIE<br>GOTOE<br>G1RIE<br>G1TOE<br>BT1E<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                        | 1 : Enable                                | Bit 2<br>TM13E/PO13E<br>TM14E/PO14E<br>TM12E/PO12E<br>TM10E/PO10E<br>TM17E/PO17E                                                                       | it 7 in IIOiIR register<br>s set to "1".<br>Bit 1<br>-<br>-<br>-<br>-<br>TM11E/PO11E<br>TM15E/PO15E                     | Bit 0<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT |
| 1<br>2<br>Bit Symbol<br>IIO0IE<br>IIO1IE<br>IIO2IE<br>IIO2IE<br>IIO4IE<br>IIO4IE<br>IIO9IE<br>IIO10IE<br>IIO11IE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | See table<br>If an interrols for the<br>Address<br>00B016<br>00B116<br>00B216<br>00B316<br>00B416<br>00B816<br>00BA16<br>00BA16<br>00BB16<br>: Intelliger<br>: Intelliger                                                                                                                                                                                                           | Interrupt l<br>Bit 7<br>-<br>-<br>-<br>SRT0E<br>-<br>CAN00E<br>CAN01E<br>CAN02E<br>nt I/O Base<br>nt I/O Time<br>nt I/O Wave                                                                                      | it symbols.<br>t is used for<br>Enable Re<br>Bit 6<br>-<br>-<br>-<br>-<br>SRT1E<br>-<br>-<br>-<br>Timer Intern<br>Measureme<br>form Gener                                                                                                          | gister<br>Bit 5<br>SIO0RE<br>SIO0TE<br>SIO1RE<br>SIO1RE<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-           | Bit 4<br>GORIE<br>GOTOE<br>G1RIE<br>G1TOE<br>BT1E<br>-<br>-<br>-<br>-<br>-<br>t Enabled<br>on j Interrup                                        | 1 : Enable                                | Bit 2<br>TM13E/PO13E<br>TM14E/PO14E<br>TM12E/PO12E<br>TM10E/PO10E<br>TM17E/PO17E                                                                       | it 7 in IIOiIR register<br>s set to "1".<br>Bit 1<br>-<br>-<br>-<br>-<br>TM11E/PO11E<br>TM15E/PO15E                     | Bit 0<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT |
| 1<br>2<br>3it Symbol<br>11001E<br>11011E<br>11021E<br>11021E<br>11041E<br>11041E<br>11041E<br>11041E<br>11041E<br>11010E<br>11010E<br>110111E<br>110111E<br>110111E<br>110111E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | See table<br>If an interrols for the<br>Address<br>00B016<br>00B116<br>00B216<br>00B316<br>00B416<br>00B416<br>00B816<br>00BA16<br>00BB16<br>: Intelliger<br>: Intelliger<br>: Intelliger<br>: Intelliger                                                                                                                                                                           | Interrupt l<br>Bit 7<br>-<br>-<br>-<br>SRT0E<br>-<br>CAN00E<br>CAN01E<br>CAN02E<br>mt I/O Base<br>nt I/O Time<br>nt I/O Wave<br>nt I/O Comr                                                                       | it symbols.<br>t is used for<br>Enable Re<br>Bit 6<br>-<br>-<br>-<br>-<br>SRT1E<br>-<br>-<br>Timer Intern<br>Measurement<br>form Gener<br>nunication I                                                                                             | gister<br>Bit 5<br>SIO0RE<br>SIO0TE<br>SIO1RE<br>SIO1RE<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-           | Bit 4<br>GORIE<br>GOTOE<br>G1RIE<br>G1TOE<br>BT1E<br>-<br>-<br>-<br>-<br>t Enabled<br>on j Interrupt                                            | 1 : Enable                                | Bit 2<br>TM13E/PO13E<br>TM14E/PO14E<br>TM12E/PO12E<br>TM10E/PO10E<br>TM17E/PO17E                                                                       | it 7 in IIOiIR register<br>s set to "1".<br>Bit 1<br>-<br>-<br>-<br>-<br>TM11E/PO11E<br>TM15E/PO15E                     | Bit 0<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT |
| 1<br>2<br>Bit Symbol<br>IIO0IE<br>IIO1IE<br>IIO2IE<br>IIO2IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO10E<br>IIO10E<br>IIO10E<br>IIO11E<br>ST1E<br>TM1jE<br>PO1jE<br>SIOIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | See table<br>If an interrols for the<br>Address<br>00B016<br>00B116<br>00B216<br>00B316<br>00B416<br>00B816<br>00B816<br>00BB16<br>: Intelliger<br>: Intelliger<br>: Intelliger<br>: Intelliger<br>: Intelliger                                                                                                                                                                     | Interrupt I<br>Bit 7<br>-<br>-<br>-<br>SRT0E<br>-<br>CAN00E<br>CAN01E<br>CAN01E<br>CAN02E<br>Int I/O Base<br>nt I/O Time<br>nt I/O Comr<br>nt I/O Comr                                                            | it symbols.<br>t is used for<br>Enable Re<br>Bit 6<br>-<br>-<br>-<br>-<br>SRT1E<br>-<br>-<br>Timer Intern<br>Measureme<br>form Gener<br>nunication U                                                                                               | gister<br>Bit 5<br>SIO0RE<br>SIO0TE<br>SIO1RE<br>SIO1RE<br>SIO1TE<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Bit 4<br>GORIE<br>GOTOE<br>G1RIE<br>G1TOE<br>BT1E<br>-<br>-<br>-<br>t Enabled<br>on j Interrupt<br>e Interrupt                                  | 1 : Enable                                | Bit 2<br>TM13E/PO13E<br>TM14E/PO14E<br>TM12E/PO12E<br>TM10E/PO10E<br>TM17E/PO17E                                                                       | it 7 in IIOiIR register<br>s set to "1".<br>Bit 1<br>-<br>-<br>-<br>TM11E/PO11E<br>TM15E/PO15E<br>TM16E/PO16E<br>-      | Bit 0<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT |
| 1<br>2<br>Bit Symbol<br>IIO0IE<br>IIO1IE<br>IIO2IE<br>IIO2IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>I | See table<br>If an interrols for the<br>Address<br>00B016<br>00B116<br>00B216<br>00B316<br>00B416<br>00B416<br>00B816<br>00B416<br>00B416<br>00B416<br>00B416<br>00B416<br>1ntelliger<br>Intelliger<br>Intelliger<br>Intelliger<br>Intelliger<br>Intelliger                                                                                                                         | Interrupt I<br>Bit 7<br>-<br>-<br>-<br>SRT0E<br>-<br>CAN00E<br>CAN01E<br>CAN01E<br>CAN02E<br>I/O Base<br>nt I/O Base<br>nt I/O Comr<br>nt I/O Comr<br>nt I/O Comr<br>nt I/O Comr                                  | it symbols.<br>t is used for<br>Enable Re<br>Bit 6<br>-<br>-<br>-<br>-<br>SRT1E<br>-<br>-<br>-<br>Timer Intern<br>Measureme<br>form Gener<br>nunication I<br>nunication I<br>nunication I<br>nunication I                                          | gister<br>Bit 5<br>SIO0RE<br>SIO0RE<br>SIO1RE<br>SIO1RE<br>SIO1RE<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Bit 4<br>GORIE<br>GOTOE<br>G1RIE<br>G1TOE<br>BT1E<br>-<br>-<br>-<br>-<br>t Enabled<br>on j Interrupt<br>e Interrupt<br>Data Proce<br>Data Proce | 1 : Enable                                | after the IRLT bit is<br>Bit 2<br>TM13E/PO13E<br>TM14E/PO14E<br>TM12E/PO12E<br>TM10E/PO10E<br>TM17E/PO17E<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | it 7 in IIOiIR register<br>s set to "1".<br>Bit 1<br>-<br>-<br>-<br>TM11E/PO11E<br>TM15E/PO15E<br>TM16E/PO16E<br>-<br>- | Bit 0<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT |
| 1<br>2<br>Bit Symbol<br>IIO0IE<br>IIO1IE<br>IIO2IE<br>IIO2IE<br>IIO3IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>IIO4IE<br>I | See table<br>If an interrols for the<br>Address<br>00B016<br>00B116<br>00B216<br>00B316<br>00B416<br>00B816<br>00B816<br>00BA16<br>00BA16<br>00BB16<br>: Intelliger<br>: Intelliger | Interrupt l<br>Bit 7<br>-<br>-<br>-<br>SRT0E<br>-<br>CAN00E<br>CAN01E<br>CAN01E<br>CAN02E<br>nt I/O Base<br>nt I/O Time<br>nt I/O Comr<br>nt I/O Comr<br>nt I/O Comr<br>nt I/O Comr<br>nt I/O Comr<br>nt I/O Comr | it symbols.<br>t is used for<br>Enable Re<br>Bit 6<br>-<br>-<br>-<br>-<br>-<br>SRT1E<br>-<br>-<br>-<br>-<br>Timer Intern<br>Measurement<br>form Gener<br>nunication I<br>nunication I<br>nunication I<br>nunication I<br>nunication I<br>al Commun | gister<br>Bit 5<br>SIO0RE<br>SIO0RE<br>SIO1RE<br>SIO1RE<br>SIO1RE<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Bit 4<br>GORIE<br>GOTOE<br>G1RIE<br>G1TOE<br>BT1E<br>-<br>-<br>-<br>t Enabled<br>on j Interrupt<br>nit Interrupt<br>Data Proce<br>Data Proce    | 1 : Enable                                | after the IRLT bit is<br>Bit 2<br>TM13E/PO13E<br>TM14E/PO14E<br>TM12E/PO12E<br>TM10E/PO10E<br>TM17E/PO17E<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | s set to "1".<br>Bit 1<br>-<br>-<br>-<br>TM11E/PO11E<br>TM15E/PO15E<br>TM16E/PO16E<br>-<br>-                            | Bit 0<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT<br>IRLT |

#### Figure 11.15 IIO0IE to IIO4IE, IIO8IE to IIO11IE Registers



## 12. Watchdog Timer

The watchdog timer monitors the program executions and detects defective program. It allows the microcomputer to trigger a reset or to generate an interrupt if the program error occurs. The watchdog timer contains a 15-bit counter, which is decremented by the CPU clock that the prescaler divides. The CM06 bit in the CM0 register determines whether a watchdog timer interrupt request or reset is generated if the watchdog timer underflows. The CM06 bit can only be set to "1" (reset). Once the CM06 bit is set to "1", it cannot be changed to "0" (watchdog timer interrupt) by program. The CM06 bit is set to "0" only after reset. When the main clock, on-chip oscillator clock, or PLL clock runs as the CPU clock, the WDC7 bit in the WDC register determine whether the prescaler divides the clock by 16 or by 128. When the sub clock runs as the CPU clock, the prescaler divides the clock by 2 regardless of the WDC7 bit setting. Watchdog timer cycle is calculated as follows. Marginal errors, due to the prescaler, may occur in watchdog timer cycle.

When the main clock, on-chip oscillator clock, or PLL clock is selected as the CPU clock,

Watchdog timer cycle = Divide-by-16 or -128 prescaler x counter value of watchdog timer (32768) CPU clock

When the sub clock is selected as the CPU clock,

Watchdog timer cycle = Divide-by-2 prescaler x counter value of watchdog timer (32768) CPU clock

For example, if the CPU clock frequency is 30MHz and the prescaler divides it by 16, the watchdog timer cycle is approximately 17.5 ms.

The watchdog timer is reset when the WDTS register is set and when a watchdog timer interrupt request is generated. The prescaler is reset only when the microcomputer is reset. Both watchdog timer and prescaler stop after reset. They begin counting when the WDTS register is set.

The watchdog timer and prescaler stop in stop mode, wait mode and hold state. They resume counting from the value held when the mode or state is exited.

Figure 12.1 shows a block diagram of the watchdog timer. Figure 12.2 shows registers associated with the watchdog timer.

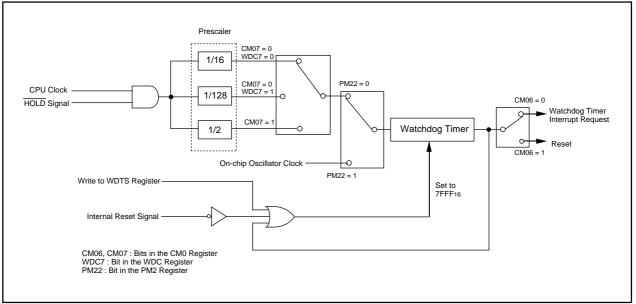



Figure 12.1 Watchdog Timer Block Diagram

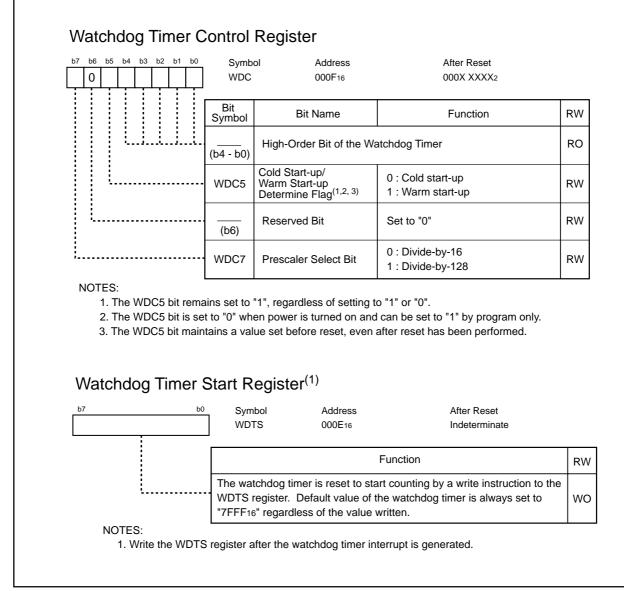



Figure 12.2 WDC Register and WDTS Register



| b7 b6 b | b5 b4 | b3 | b2 | b1 | b0 | Symb<br>CM0   | ol Address<br>000616                                               | After Reset<br>0000 10002                                                                                                          |    |
|---------|-------|----|----|----|----|---------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----|
|         |       |    |    |    |    | Bit<br>Symbol | Bit Name                                                           | Function                                                                                                                           | RW |
|         |       |    |    |    |    | CM00          | Clock Output Function                                              | <sup>b1 b0</sup><br>0 0 : I/O port P53<br>0 1 : Outputs fc                                                                         | RW |
|         |       |    |    |    |    | CM01          | Select Bit <sup>(2)</sup>                                          | 1 0 : Outputs f8<br>1 1 : Outputs f32                                                                                              | RW |
|         |       |    |    |    |    | CM02          | In Wait Mode, Peripheral<br>Function Clock Stop Bit <sup>(9)</sup> | <ul> <li>0 : Peripheral clock does not stop in wait mode</li> <li>1 : Peripheral clock stops in wait mode<sup>(3)</sup></li> </ul> | RW |
|         |       |    |    |    |    | CM03          | XcIN-XCOUT Drive<br>Capacity Select Bit <sup>(11)</sup>            | 0 : Low<br>1 : High                                                                                                                | RW |
|         |       |    |    |    |    | CM04          | Port Xc Switch Bit                                                 | 0 : I/O port function 1 : XCIN-XCOUT oscillation function <sup>(4)</sup>                                                           | RW |
|         |       |    |    |    |    | CM05          | Main Clock (XIN-XOUT)<br>Stop Bit <sup>(5, 9)</sup>                | 0 : Main clock oscillates<br>1 : Main clock stops <sup>(6)</sup>                                                                   | RW |
| · · · · |       |    |    |    |    | CM06          | Watchdog Timer<br>Function Select Bit                              | 0 : Watchdog timer interrupt<br>1 : Reset <sup>(7)</sup>                                                                           | RW |
|         |       |    |    |    |    | CM07          | CPU Clock Select<br>Bit 0 <sup>(8, 9, 10)</sup>                    | 0: Clock selected by the CM21 bit<br>divided by MCD register setting<br>1: Sub clock                                               | RW |

NOTES:

- 1. Rewrite the CM0 register after the PRC0 bit in the PRCR register is set to "1" (write enable).
- 2. When the PM07 bit in the PM0 register is set to "0" (BCLK output), set the CM01 and CM00 bits to "002". When the PM15 and PM14 bits in the PM1 register are set to "012" (ALE output to P53), set the CM01 and CM00 bits to "002". When the PM07 bit is set to "1" (function selected in the CM01 and CM00 bits) in microprocessor or memory expansion mode, and the CM01 and CM00 bits are set to "002", an "L" signal is output from port P53 (port P53 does not function as an I/O port).
- 3. fc32 does not stop running. When the CM02 bit is set to "1", the PLL clock cannot be used in wait mode.
- 4. When setting the CM04 bit is set to "1", set the PD8\_7 and PD8\_6 bits in the PD8 register to "002" (port P87 and P86 in input mode) and the PU25 bit in the PUR2 register to "0" (no pull-up).
- 5. When entering low-power consumption mode or on-chip oscillator low-power consumption mode, the CM05 bit stops running the main clock. The CM05 bit cannot detect whether the main clock stops or not. To stop running the main clock, set the CM05 bit to "1" after the CM07 bit is set to "1" with a stable sub clock oscillation or after the CM21 bit in the CM2 register is set to "1" (on-chip oscillator clock). When the CM05 bit is set to "1", the clock applied to XOUT becomes "H". The built-in feedback resistor remains ON. XIN is pulled up to XOUT ("H" level) via the feedback resistor.
- 6. When the CM05 bit is set to "1", the MCD4 to MCD0 bits in the MCD register are set to "010002" (divide-by-8 mode). In on-chip oscillation mode, the MCD4 to MCD0 bits are not set to "010002" even if the CM05 bit terminates XIN-XOUT.
- 7. Once the CM06 bit is set to "1", it cannot be set to "0" by program.
- 8. After the CM04 bit is set to "1" with a stable sub clock oscillation, set the CM07 bit to "1" from "0". After the CM05 bit is set to "0" with a stable main clock oscillation, set the CM07 bit to "0" from "1". Do not set the CM07 bit and CM04 or CM05 bit simultaneously.
- 9. When the PM21 bit in the PM2 register is set to "1" (clock change disable), the CM02, CM05 and CM07 bits do not change even when written.
- 10. After the CM07 bit is set to "0", set the PM21 bit to "1".
- 11. When stop mode is entered, the CM03 bit is set to "1".

#### Figure 12.3 CM0 Register



## 12.1 Count Source Protection Mode

In count source protection mode, the on-chip oscillator clock is used as a count source for the watchdog timer. The count source protection mode allows the on-chip oscillator clock to run continuously, maintaining watchdog timer operation even if the program error occurs and the CPU clock stops running. Follow the procedures below when using this mode.

- (1) Set the PRC0 bit in the PRCR register to "1" (write to CM0 register enabled)
- (2) Set the PRC1 bit in the PRCR register to "1" (write to PM2 register enabled)
- (3) Set the CM06 bit in the CM0 register to "1" (reset when the watchdog timer overflows)
- (4) Set the PM22 bit in the PM2 register to "1" (the on-chip oscillator clock as a count source of the watchdog timer)
- (5) Set the PRC0 bit to "0" (write to CM0 register disabled)
- (6) Set the PRC1 bit to "0" (write to PM2 register disabled)
- (7) Write to the WDTS register (the watchdog timer starts counting)

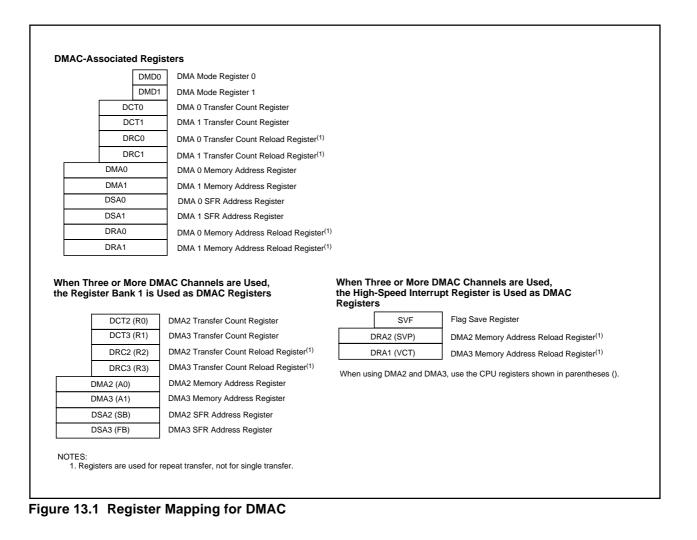
The followings will occur when the PM22 bit is set to "1".

• The on-chip oscillator starts oscillating and the on-chip oscillator clock becomes a count source for the watchdog timer.

Watchdog timer cycle = Counter value of watchdog timer (32768) On-chip oscillator clock

- Write to the CM10 bit in the CM1 register is disabled. (The bit setting remains unchanged even if set it to "1". The microcomputer does not enter stop mode.)
- In wait mode or hold state, the watchdog timer continues running. However, the watchdog timer interrupt cannot be used to exit wait mode.




## 13. DMAC

This microcomputer contains four DMAC (direct memory access controller) channels that allow data to be sent to memory without using the CPU. DMAC transmits a 8- or 16-bit data from a source address to a destination address whenever a transmit request occurs. DMA0 and DMA1 must be prioritized if using DMAC. DMA2 and DMA3 share registers required for high-speed interrupts. High-speed interrupts cannot be used when using three or more DMAC channels.

The CPU and DMAC use the same data bus, but DMAC has a higher bus access privilege than the CPU. The cycle-steal method employed on DMAC enables high-speed operation between a transfer request and the complete transmission of 16-bit (word) or 8-bit (byte) data. Figure 13.1 shows a mapping of registers to be used for DMAC. Table 13.1 lists specifications of DMAC. Figures 13.2 to 13.5 show registers associated with DMAC.

Because the registers shown in Figure 13.1 are allocated in the CPU, use the LDC instruction to write to the registers. To set the DCT2, DCT3, DRC2, DRC3, DMA2 and DMA3 registers, set the B flag to "1" (register bank 1) and set the R0 to R3, A0 and A1 registers with the MOV instruction.

To set the DSA2 and DSA3 registers, set the B flag to "1" and set the SB and FB registers with the LDC instruction. To set the DRA2 and DRA3 registers, set the SVP and VCT registers with the LDC instruction.





DMAC starts a data transfer by setting the DSR bit in the DMiSL register (i=0 to 3) or by using an interrupt request, generated by the functions determined by the DSEL 4 to DSEL0 bits in the DMiSL register, as a DMA request. Unlike interrupt requests, the I flag and interrupt control register do not affect DMA. Therefore, a DMA request can be acknowledged even if an interrupt is disabled and cannot be acknowledged. In addition, the IR bit in the interrupt control register does not change when a DMA request is acknowledged.

| ltem               |                        | Specification                                                                          |
|--------------------|------------------------|----------------------------------------------------------------------------------------|
| Channels           |                        | 4 channels (cycle-steal method)                                                        |
| Transfer Memo      | ry Space               | <ul> <li>From a desired address in a 16-Mbyte space to a fixed address in a</li> </ul> |
|                    |                        | 16-Mbyte space                                                                         |
|                    |                        | • From a fixed address in a 16-Mbyte space to a desired address in a                   |
|                    |                        | 16-Mbyte space                                                                         |
| Maximum Byte       | s Transferred          | 128 Kbytes (when a 16-bit data is transferred) or 64 Kbytes (with an 8-                |
|                    |                        | bit data is transferred)                                                               |
| DMA Request \$     | Source <sup>(1)</sup>  | Falling edge or both edges of signals applied to the INTO to INT3 pins                 |
|                    |                        | Timers A0 to A4 interrupt requests                                                     |
|                    |                        | Timers B0 to B5 interrupt requests                                                     |
|                    |                        | UART0 to UART4 transmit and receive interrupt requests                                 |
|                    |                        | A/D0 conversion interrupt request                                                      |
|                    |                        | Intelligent I/O interrupt request                                                      |
|                    |                        | CAN interrupt request                                                                  |
|                    |                        | Software trigger                                                                       |
| Channel Priority   | y                      | DMA0 > DMA1 > DMA2 > DMA3 (DMA0 has highest priority)                                  |
| Transfer Unit      |                        | 8 bits, 16 bits                                                                        |
| Destination Ad     | dress                  | Forward/fixed (forward and fixed directions cannot be specified when                   |
|                    |                        | specifying source and destination addresses simultaneously)                            |
| Transfer Mode      | Single Transfer        | Transfer is completed when the DCTi register (i = 0 to 3) is set to "000016"           |
|                    | Repeat Transfer        | When the DCTi register is set to "000016", the value of the DRCi register              |
|                    |                        | is reloaded into the DCTi register and the DMA transfer is continued                   |
| DMA Interrupt Requ | uest Generation Timing | When the DCTi register changes "000116" to "000016"                                    |
| DMA Startup        | Single Transfer        | DMA starts when a DMA request is generated after the DCTi register is                  |
|                    |                        | set to "000116" or more and the MDi1 and MD0 bits in the DMDj register                 |
|                    |                        | (j = 0, 1) are set to "012" (single transfer)                                          |
|                    | Repeat Transfer        | DMA starts when a DMA request is generated after the DCTi register is                  |
|                    |                        | set to "000116" or more and the MDi1 and MD0 bits are set to "112"                     |
|                    |                        | (repeat transfer)                                                                      |
| DMA Stop           | Single Transfer        | DMA stops when the MDi1 and MDi0 bits are set to "002" (DMA dis-                       |
|                    |                        | abled) and the DCTi register is set to "000016" (0 DMA transfer) by DMA                |
|                    |                        | transfer or write                                                                      |
|                    | Repeat Transfer        | DMA stops when the MDi1 and MDi0 bits are set to "002" and the DCTi                    |
|                    |                        | register is set to "000016" and the DRCi register set to "000016"                      |
| Reload Timing      | to the DCTi            | When the DCTi register is set to "000016" from "000116" in repeat trans-               |
| or DMAi Regist     | er                     | fer mode                                                                               |
| DMA Transfer (     | Cycles                 | Minimum 3 cycles between SFR and internal RAM                                          |
|                    |                        |                                                                                        |

| Table 13.1 | DMAC Specifications   |
|------------|-----------------------|
|            | DIVIAC Specifications |

NOTES:

1. The IR bit in the interrupt control register does not change when a DMA request is acknowledged.

Г

| b7 b6 b5 b4 b3 b2 b1 b0                                             | Symb<br>DM05                                                       | ol Address<br>SL to DM3SL 037816, 037916        | After Reset<br>5, 037A16, 037B16 0X00 00002                                                                                                |    |
|---------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                                     | Bit<br>Symbol                                                      | Bit Name                                        | Function                                                                                                                                   | RW |
|                                                                     | DSEL0                                                              |                                                 |                                                                                                                                            | RW |
|                                                                     | DSEL1                                                              |                                                 |                                                                                                                                            | RW |
|                                                                     | DSEL2                                                              | DMA Request Source<br>Select Bit <sup>(1)</sup> | See Table 13.2 for the DMiSL<br>register (i = 0 to 3) function                                                                             | RW |
|                                                                     | DSEL3                                                              |                                                 |                                                                                                                                            | RW |
|                                                                     | DSEL4                                                              |                                                 |                                                                                                                                            | RW |
|                                                                     | DSR                                                                | Software DMA<br>Request Bit <sup>(2)</sup>      | When a software trigger is selected,<br>a DMA request is generated by<br>setting this bit to "1" (When read, its<br>content is always "0") | RW |
|                                                                     | (b6)                                                               | Reserved Bit                                    | When read,<br>its content is indeterminate                                                                                                 | RO |
|                                                                     | DRQ                                                                | DMA Request Bit <sup>(2, 3)</sup>               | 0 : Not requested<br>1 : Requested                                                                                                         | RW |
| registers are set to "00<br>DSEL4 to DSEL0 bit s<br>e.g., MOV.B #08 | D2" (DMA)<br>settings ar<br>3h, DMiSl<br>set to "1", s<br>h, DMiSL | disabled). Also, set the DI<br>e changed.       | and MDi0 bits in the DMD0 and DMD1<br>RQ bit to "1" simultaneously when the<br>ultaneously.                                                |    |

Figure 13.2 DM0SL to DM3SL Registers



| Table 13.2 DM  | iSL Register (i = 0                    | to 3) Function                                         |                                        |                                                        |
|----------------|----------------------------------------|--------------------------------------------------------|----------------------------------------|--------------------------------------------------------|
| Setting Value  |                                        | DMA Request                                            | Source                                 |                                                        |
| b4 b3 b2 b1 b0 | DMA0                                   | DMA1                                                   | DMA2                                   | DMA3                                                   |
| 0 0 0 0 0      |                                        | Softwar                                                | e trigger                              |                                                        |
| 00001          | Falling Edge of INT0                   | Falling Edge of INT1                                   | Falling Edge of INT2                   | Falling Edge of INT3 <sup>(1,2)</sup>                  |
| 0 0 0 1 0      | Both Edges of INT0                     | Both Edges of INT1                                     | Both Edges of INT2                     | Both Edges of INT3 <sup>(1,2)</sup>                    |
| 00011          |                                        | Timer A0 Inte                                          | rrupt Request                          |                                                        |
| 0 0 1 0 0      |                                        | Timer A1 Inte                                          | rrupt Request                          |                                                        |
| 00101          |                                        | Timer A2 Inte                                          | rrupt Request                          |                                                        |
| 0 0 1 1 0      |                                        | Timer A3 Inte                                          | rrupt Request                          |                                                        |
| 00111          |                                        | Timer A4 Inte                                          | rrupt Request                          |                                                        |
| 0 1 0 0 0      |                                        | Timer B0 Inte                                          | errupt Request                         |                                                        |
| 0 1 0 0 1      |                                        | Timer B1 Inte                                          | errupt Request                         |                                                        |
| 0 1 0 1 0      |                                        | Timer B2 Inte                                          | errupt Request                         |                                                        |
| 01011          |                                        | Timer B3 Inte                                          | errupt Request                         |                                                        |
| 0 1 1 0 0      |                                        | Timer B4 Inte                                          | rrupt Request                          |                                                        |
| 0 1 1 0 1      |                                        | Timer B5 Inte                                          | rrupt Request                          |                                                        |
| 0 1 1 1 0      |                                        | UART0 Transmit                                         | Interrupt Request                      |                                                        |
| 0 1 1 1 1      |                                        | UART0 Receive or AC                                    | CK Interrupt Request <sup>(3)</sup>    |                                                        |
| 1 0 0 0 0      |                                        | UART1 Transmit                                         | Interrupt Request                      |                                                        |
| 10001          |                                        | UART1 Receive or AC                                    | CK Interrupt Request <sup>(3)</sup>    |                                                        |
| 10010          |                                        | UART2 Transmit                                         | Interrupt Request                      |                                                        |
| 10011          |                                        | UART2 Receive or AC                                    | CK Interrupt Request <sup>(3)</sup>    |                                                        |
| 10100          |                                        | UART3 Transmit                                         | Interrupt Request                      |                                                        |
| 10101          |                                        | UART3 Receive or AC                                    | CK Interrupt Request <sup>(3)</sup>    |                                                        |
| 10110          |                                        | UART4 Transmit                                         | Interrupt Request                      |                                                        |
| 10111          |                                        | UART4 Receive or AC                                    | CK Interrupt Request <sup>(3)</sup>    |                                                        |
| 1 1 0 0 0      |                                        | A/D0 Interrupt                                         | Request                                |                                                        |
| 1 1 0 0 1      | Intelligent I/O<br>Interrupt 0 Request |                                                        | Intelligent I/O<br>Interrupt 2 Request | Intelligent I/O<br>Interrupt 9 Request <sup>(4)</sup>  |
| 1 1 0 1 0      | Intelligent I/O<br>Interrupt 1 Request | Intelligent I/O<br>Interrupt 8 Request                 | Intelligent I/O<br>Interrupt 3 Request | Intelligent I/O<br>Interrupt 10 Request <sup>(5)</sup> |
| 1 1 0 1 1      | Intelligent I/O<br>Interrupt 2 Request | Intelligent I/O<br>Interrupt 9 Request <sup>(4)</sup>  | Intelligent I/O<br>Interrupt 4 Request | CAN Interrupt 2<br>Request                             |
| 1 1 1 0 0      | Intelligent I/O<br>Interrupt 3 Request | Intelligent I/O<br>Interrupt 10 Request <sup>(5)</sup> |                                        | Intelligent I/O<br>Interrupt 0 Request                 |
| 1 1 1 0 1      | Intelligent I/O<br>Interrupt 4 Request | CAN Interrupt 2<br>Request                             |                                        | Intelligent I/O<br>Interrupt 1 Request                 |
| 1 1 1 1 0      |                                        | Intelligent I/O<br>Interrupt 0 Request                 |                                        | Intelligent I/O<br>Interrupt 2 Request                 |
| 1 1 1 1 1      |                                        | Intelligent I/O<br>Interrupt 1 Request                 | Intelligent I/O<br>Interrupt 8 Request | Intelligent I/O<br>Interrupt 3 Request                 |
|                |                                        |                                                        |                                        |                                                        |

#### Table 13.2 DMiSL Register (i = 0 to 3) Function

NOTES:

1. If the INT3 pin is used for data bus in memory expansion mode or microprocessor mode, a DMA3 interrupt request cannot be generated by a signal applied to the INT3 pin.

2. The falling edge and both edges of a signal applied to the INTj pin (j=0 to 3) cause a DMA request generation. The INT interrupt (the POL bit in the INTjIC register, the LVS bit, the IFSR register) is not affected and vice versa.

3. Use the UkSMR register and UkSMR2 register (k=0 to 4) to switch between the UARTk receive and the ACK interrupt as a DMA request source.

To use the ACK interrupt for a DMA reqest, set the IICM bit in the UkSMR register to "1" and the IICM2 bit in the UkSMR2 register to "0".

4. The same setting is used to generate an intelligent I/O interrupt 9 request and a CAN interrupt 0 request.

5. The same setting is used to generate an intelligent I/O interrupt 10 request and a CAN interrupt 1 request.



| b7 b6 b5 b4 | b3 b2 b1 b0 | Symb<br>DMD0  |                                            | After Reset<br>ernal Register) 0016                                                                                       |    |
|-------------|-------------|---------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----|
|             |             | Bit<br>Symbol | Bit Name                                   | Function                                                                                                                  | RW |
|             |             | MD00          | Channel 0 Transfer                         | <sup>b1 b0</sup><br>0 0 : DMA disabled<br>0 1 : Single transfer                                                           | RW |
|             |             | MD01          | Mode Select Bit                            | 1 0 : Do not set to this value<br>1 1 : Repeat transfer                                                                   | RW |
|             |             | BW0           | Channel 0 Transfer<br>Unit Select Bit      | 0 : 8 bits<br>1 : 16 bits                                                                                                 | RW |
|             |             | RW0           | Channel 0 Transfer<br>Direction Select Bit | <ul><li>0 : Fixed address to memory (forward direction)</li><li>1 : Memory (forward direction) to fixed address</li></ul> | RW |
|             |             | MD10          | Channel 1 Transfer                         | 0 0 : DMA disabled<br>0 1 : Single transfer                                                                               | RW |
| ļ           |             | MD11          | Mode Select Bit                            | 1 0 : Do not set to this value<br>1 1 : Repeat transfer                                                                   | RW |
|             |             | BW1           | Channel 1 Transfer<br>Unit Select Bit      | 0 : 8 bits<br>1 : 16 bits                                                                                                 | RW |
|             |             | RW1           | Channel 1 Transfer<br>Direction Select Bit | 0 : Fixed address to memory (forward direction)<br>1 : Memory (forward direction) to fixed address                        | RW |

NOTES:

1. Use the LDC instruction to set the DMD0 register.

## DMA Mode Register 1<sup>(1)</sup>

| b7 b6 b5 b4 b3 b2 b1 b0 | Symbo<br>DMD1 |                                            | After Reset<br>ernal register) 0016                                                                                       |    |
|-------------------------|---------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----|
|                         | Bit<br>Symbol | Bit Name                                   | Function                                                                                                                  | RV |
|                         | MD20          | Channel 2 Transfer                         | <sup>b1 b0</sup><br>0 0 : DMA disabled<br>0 1 : Single transfer                                                           | RV |
|                         | MD21          | Mode Select Bit                            | 1 0 : Do not set to this value<br>1 1 : Repeat transfer                                                                   | RV |
|                         | BW2           | Channel 2 Transfer<br>Unit Select Bit      | 0 : 8 bits<br>1 : 16 bits                                                                                                 | RV |
|                         | RW2           | Channel 2 Transfer<br>Direction Select Bit | <ul><li>0 : Fixed address to memory (forward direction)</li><li>1 : Memory (forward direction) to fixed address</li></ul> | RV |
|                         | MD30          | Channel 3 Transfer                         | <sup>b5 b4</sup><br>0 0 : DMA disabled<br>0 1 : Single transfer                                                           | RV |
|                         | MD31          | Mode Select Bit                            | 1 0 : Do not set to this value<br>1 1 : Repeat transfer                                                                   | RV |
| [ <u>.</u>              | BW3           | Channel 3 Transfer<br>Unit Select Bit      | 0 : 8 bits<br>1 : 16 bits                                                                                                 | RV |
|                         | RW3           | Channel 3 Transfer<br>Direction Select Bit | <ul><li>0 : Fixed address to memory (forward direction)</li><li>1 : Memory (forward direction) to fixed address</li></ul> | RV |

1. Use the LDC instruction to set the DMD1 register.

#### Figure 13.3 DMD0 and DMD1 Registers



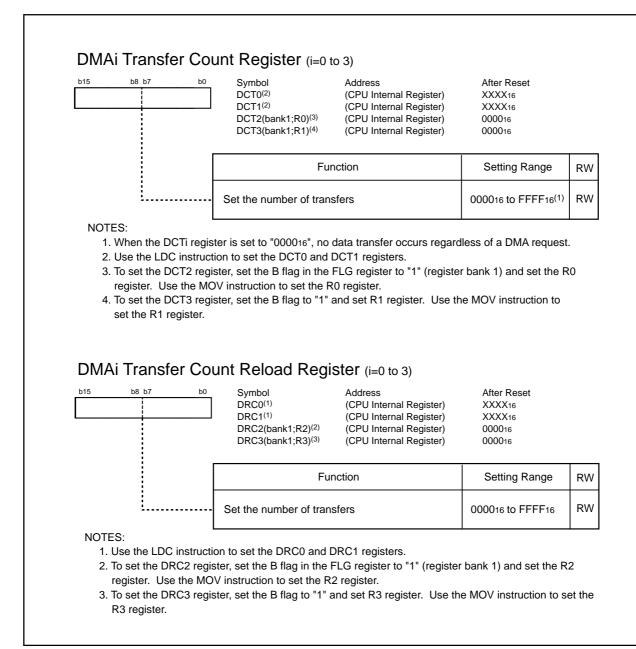
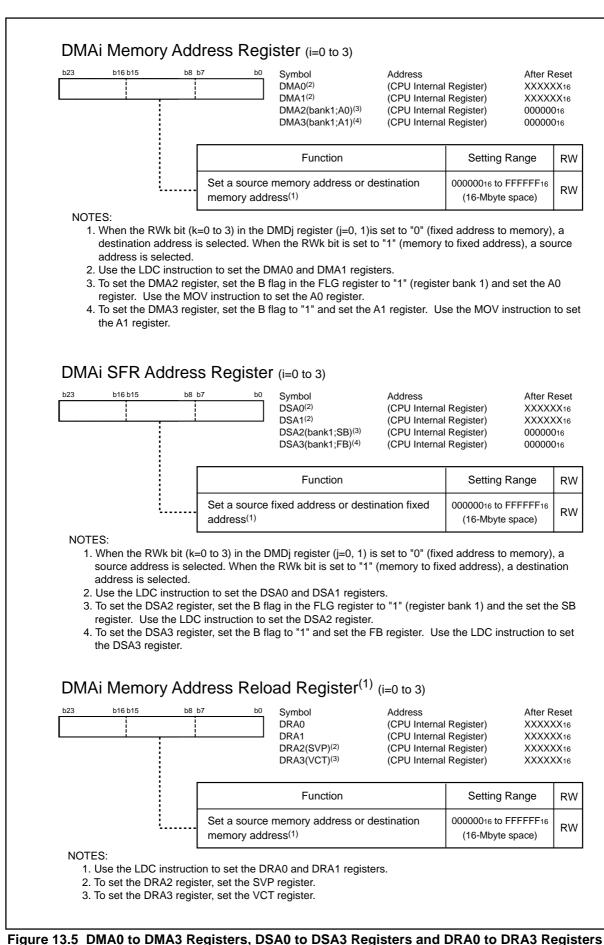




Figure 13.4 DCT0 to DCT3 Registers and DRC0 to DRC3 Registers





RENESAS

## 13.1 Transfer Cycle

Transfer cycle contains a bus cycle to read data from a memory or the SFR area (source read) and a bus cycle to write data to a memory space or the SFR area (destination write). The number of read and write bus cycles depends on source and destination addresses. In memory expansion mode and microprocessor mode, the number of read and write bus cycles also depends on DS register setting. Software wait state insertion and the  $\overline{\text{RDY}}$  signal make a bus cycle longer.

## 13.1.1 Effect of Source and Destination Addresses

When a 16-bit data is transferred with a 16-bit data bus and a source address starting with an odd address, source read cycle is incremented by one bus cycle, compared to a source address starting with an even address.

When a 16-bit data is transferred with a 16-bit data bus and a destination address starting with an odd address, a destination write cycle is incremented by one bus cycle, compared to a destination address starting with an even address.

## 13.1.2 Effect of the DS Register

In an external space in memory expansion or microprocessor mode, transfer cycle varies depending on the data bus used at the source and destination addresses. See **Figure 8.1** for details about the DS register.

- When an 8-bit data bus (the DSi bit in the DS register is set to "0" (i=0 to 3)), accessing both source address and destination address, is used to transfer a 16-bit data, 8-bit data is transferred twice. Therefore, two bus cycles are required to read the data and another two bus cycles to write the data.
- When an 8-bit data bus (the DSi bit in the DS register is set to "0" (i=0 to 3)), accessing source address, and a 16-bit data bus, accessing destination address, are used to transfer a 16-bit data, 8-bit data is read twice but is written once as 16-bit data. Therefore, two bus cycles are required for reading and one bus cycle is for writing.
- When a 16-bit data bus, accessing source address, and an 8-bit data bus, accessing destination address, are used to transfer a 16-bit data, 16-bit data is read once and 8-bit data is written twice. Therefore, one bus cycle is required for reading and two bus cycles is for writing.

## 13.1.3 Effect of Software Wait State

When the SFR area or memory space with software wait states is accessed, the number of CPU clock cycles is incremented by software wait states.

Figure 13.6 shows an example of a transfer cycle for the source-read bus cycle. In Figure 13.6, the number of source-read bus cycles is illustrated under different conditions, provided that the destination address is an address of an external space with the destination-write cycle as two CPU clock cycles (=one bus cycle). In effect, the destination-write bus cycle is also affected by each condition and the transfer cycles change accordingly. To calculate a transfer cycle, apply respective conditions to both destination-write bus cycle and source-read bus cycle. As shown in example (2) of Figure 13.6, when an 8-bit data bus, accessing both source and destination addresses, is used to transfer a 16-bit data, two bus cycles each are required for the source-read bus cycle and destination-write bus cycle.

## 13.1.4 Effect of RDY Signal

In memory expansion or microprocessor mode, the RDY signal affects a bus cycle if a source address or destination address is allocated address in an external space. Refer to **8.2.6** RDY Signal for details.



| Address<br>Bus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CPU Use                                | Source X                      | Destination                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | CPU Use    |                  |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|------------------|-------|
| <br>RD Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |            |                  |       |
| WR Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                               |                              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |            |                  |       |
| Data bus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CPU Use                                | Source                        | Destina                      | tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | CPU Use    |                  |       |
| Or when                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | bit data is trans<br>16-bit data is tr | sferred from a cansferred and | an odd sour<br>d 8-bit bus i | s used to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | a source : | address          |       |
| Address<br>Bus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CPU Use                                | Source Source                 | rce + 1 De                   | estination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X         | CI         | PU Use           |       |
| RD Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |            |                  |       |
| WR Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |            |                  |       |
| Data Bus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CPU Use                                | Source                        | Source + 1                   | Destinati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | on X      | С          | PU Use           |       |
| (3) When one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e wait state is i                      | nserted into t                | he source-r                  | ead bus o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | cycle und | ler the co | onditions in     | (1)   |
| CPU Clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CPU Use                                | Source                        |                              | ead bus of the second s | cycle und |            | U Use            | (1)   |
| CPU Clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                               |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |            |                  | (1)   |
| Address<br>Bus<br>RD Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | Source                        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X         | CPI        |                  | (1)   |
| CPU Clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CPU Use                                | Source                        |                              | estination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ion       | CPI        | U Use<br>CPU Use | ····· |
| CPU Clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CPU Use<br>CPU Use                     | Source                        |                              | estination<br>Destinat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | der the co | U Use<br>CPU Use | (2    |
| CPU Clock<br>Address<br>Bus<br>RD Signal<br>WR Signal<br>Data Bus<br>(4) When on<br>CPU Clock<br>Address<br>Bus<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CPU Use<br>CPU Use                     | Source                        |                              | estination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | CPI        | U Use<br>CPU Use | (2    |
| CPU Clock<br>Address<br>Bus<br>RD Signal<br>WR Signal<br>Data Bus<br>(4) When on<br>CPU Clock<br>Address<br>Bus<br>TD<br>Address<br>Bus<br>CPU Clock<br>CPU CloCK | CPU Use<br>CPU Use                     | Source                        |                              | estination<br>Destinat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | der the co | U Use<br>CPU Use | (2    |
| CPU Clock<br>Address<br>Bus<br>RD Signal<br>WR Signal<br>Data Bus<br>(4) When on<br>CPU Clock<br>Address<br>Bus<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CPU Use<br>CPU Use                     | Source                        |                              | estination<br>Destinat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | der the co | UUse<br>CPUUse   | (2    |

Figure 13.6 Transfer Cycle Examples with the Source-Read Bus Cycle

## 13.2 DMAC Transfer Cycle

The number of DMAC transfer cycle can be calculated as follows.

Any combination of even or odd transfer read and write addresses are possible. Table 13.3 lists the number of DMAC transfer cycles. Table 13.4 lists coefficient j, k.

Transfer cycles per transfer = Number of read cycle x j + Number of write cycle x k

| Table 13.3 | DMAC | Transfer | Cycles |
|------------|------|----------|--------|
|------------|------|----------|--------|

| Transfer Unit        | Bus Width | Access Address     | Single-C | hip Mode | Memory Expansion Mode<br>Microprocessor Mode |       |  |
|----------------------|-----------|--------------------|----------|----------|----------------------------------------------|-------|--|
|                      | Bao maan  | / 100000 / 1001000 | Read     | Write    | Read                                         | Write |  |
|                      |           |                    | Cycle    | Cycle    | Cycle                                        | Cycle |  |
|                      | 16-bit    | Even               | 1        | 1        | 1                                            | 1     |  |
| 8-bit transfers      |           | Odd                | 1        | 1        | 1                                            | 1     |  |
| (BWi bit in the DMDp | 8-bit     | Even               |          | —        | 1                                            | 1     |  |
| register = 0)        |           | Odd                |          | —        | 1                                            | 1     |  |
|                      | 16-bit    | Even               | 1        | 1        | 1                                            | 1     |  |
| 16-bit transfers     |           | Odd                | 2        | 2        | 2                                            | 2     |  |
| (BWi bit = 1)        | 8-bit     | Even               | _        | —        | 2                                            | 2     |  |
|                      |           | Odd                |          |          | 2                                            | 2     |  |

i= 0 to 3, p = 0 to 1

#### Table 13.4 Coefficient j, k

| Inte               | ernal Space       |      | External Space                                                  |
|--------------------|-------------------|------|-----------------------------------------------------------------|
| Internal ROM       | Internal ROM      | SFR  |                                                                 |
| or internal RAM    | or internal RAM   | area | j and k BCLK cycles shown in Table 8.5.                         |
| with no wait state | with a wait state |      | Add one cycle to j or k cycles when inserting a recovery cycle. |
| j=1                | j=2               | j=2  |                                                                 |
| k=1                | k=2               | k=2  |                                                                 |

j, k=2 to 9

## 13.3 Channel Priority and DMA Transfer Timing

When multiple DMA requests are generated in the same sampling period, between the falling edge of the CPU clock and the next falling edge, the DRQ bit in the DMiSL register (i = 0 to 3) is set to "1" (requested) simultaneously. Channel priority in this case is : DMA0 > DMA1 > DMA2 > DMA3.

Figure 13.7 shows an example of the DMA transfer by external source.

In Figure 13.7, the DMA0 request having highest priority is received first to start a transfer when a DMA0 request and DMA1 request are generated simultaneously. After one DMA0 transfer is completed, the bus privilege is returned to the CPU. When the CPU has completed one bus access, the DMA1 transfer starts. After one DMA1 transfer is completed, the privilege is again returned to the CPU.

In addition, DMA requests cannot be counted up since each channel has one DRQ bit. Therefore, when DMA requests, as DMA1 in Figure 13.7, occur more than once before receiving bus privilege, the DRQ bit is set to "0" as soon as privilege is acquired. The bus privilege is returned to the CPU when one transfer is completed.



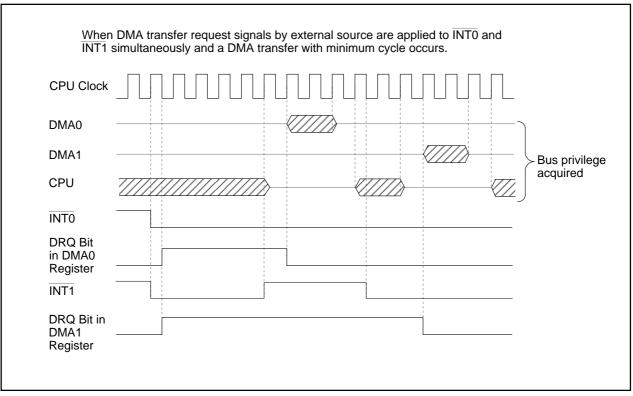



Figure 13.7 DMA Transfer by External Source



## 14. DMAC II

DMAC II performs memory-to-memory transfer, immediate data transfer and calculation transfer, which transfers the sum of two data added by an interrupt request from any peripheral functions. Table 14.1 lists specifications of DMAC II.

| Item                       | Specification                                                                         |
|----------------------------|---------------------------------------------------------------------------------------|
| DMAC II Request Source     | Interrupt requests generated by all peripheral functions when the ILVL2 to            |
|                            | ILVL0 bits are set to "1112"                                                          |
| Transfer Data              | • Data in memory is transferred to memory (memory-to-memory transfer)                 |
|                            | <ul> <li>Immediate data is transferred to memory (immediate data transfer)</li> </ul> |
|                            | • Data in memory (or immediate data) + data in memory are transferred to              |
|                            | memory (calculation transfer)                                                         |
| Transfer Block             | 8 bits or 16 bits                                                                     |
| Transfer Space             | 64-Kbyte space in addresses 0000016 to 0FFFF16 <sup>(1, 2)</sup>                      |
| Transfer Direction         | Fixed or forward address                                                              |
|                            | Selected separately for each source address and destination address                   |
| Transfer Mode              | Single transfer, burst transfer                                                       |
| Chained Transfer Function  | Parameters (transfer count, transfer address and other information) are               |
|                            | switched when transfer counter reaches zero                                           |
| End-of-Transfer Interrupt  | Interrupt occurs when a transfer counter reaches zero                                 |
| Multiple Transfer Function | Multiple data can be transferred by a generated request for one DMAC II transfer      |
| NOTES:                     |                                                                                       |

- 1. When transferring a 16-bit data to destination address 0FFFF16, it is transferred to 0FFFF16 and 1000016. The same transfer occurs when the source address is 0FFF16.
- 2. The actual space where transfer can occurs is limited due to internal RAM capacity.

## 14.1 DMAC II Settings

DMAC II can be made available by setting up the following registers and tables.

- RLVL register
- DMAC II Index
- Interrupt control register of the peripheral function causing a DMAC II request
- The relocatable vector table of the peripheral function causing a DMAC II request
- IRLT bit in the IIOiIE register (i = 0 to 4, 8 to 11) if using the intelligent I/O or CAN interrupt Refer to 11. Interrupts for details on the IIOiIE register.

## 14.1.1 RLVL Register

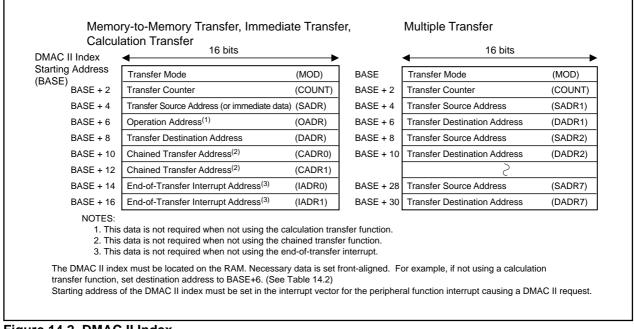
When the DMAII bit is set to "1" (DMAC II transfer) and the FSIT bit to "0" (normal interrupt), DMAC II is activated by an interrupt request from any peripheral function with the ILVL2 to ILVL0 bits in the interrupt control register set to "1112" (level 7).

Figure 14.1 shows the RLVL register.

|                                        | b4 b3 b2 b1 b0                                                                                           | Symbo<br>RLVL                                            | ol Address<br>009F16                                                                                                       | After Reset<br>XXXX 00002                                                                                                                                                                                         |                       |
|----------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                                        |                                                                                                          | Bit<br>Symbol                                            | Bit Name                                                                                                                   | Function                                                                                                                                                                                                          | RW                    |
|                                        |                                                                                                          | RLVL0                                                    |                                                                                                                            | <sup>b2 b1 b0</sup><br>0 0 0 : Level 0<br>0 0 1 : Level 1                                                                                                                                                         | RW                    |
|                                        |                                                                                                          | RLVL1                                                    | Stop/Wait Mode Exit<br>Minimum Interrupt Priority<br>Level Control Bit <sup>(1)</sup>                                      | 0 1 0 : Level 2<br>0 1 1 : Level 3<br>1 0 0 : Level 4                                                                                                                                                             | RW                    |
|                                        |                                                                                                          | RLVL2                                                    |                                                                                                                            | 1 0 1 : Level 5<br>1 1 0 : Level 6<br>1 1 1 : Level 7                                                                                                                                                             | RW                    |
|                                        |                                                                                                          | FSIT                                                     | High-Speed Interrupt<br>Set Bit <sup>(2)</sup>                                                                             | <ol> <li>0: Interrupt priority level 7 is used<br/>for normal interrupt</li> <li>1: Interrupt priority level 7 is used<br/>for high-speed interrupt</li> </ol>                                                    | RW                    |
|                                        |                                                                                                          | (b4)                                                     |                                                                                                                            | is assigned. When write, set to "0".<br>ead, its content is indeterminate.                                                                                                                                        |                       |
|                                        |                                                                                                          | DMAII                                                    | DMA II Select Bit <sup>(4)</sup>                                                                                           | <ul> <li>0: Interrupt priority level 7 is used<br/>for interrupt</li> <li>1: Interrupt priority level 7 is used<br/>for DMA II transfer<sup>(3)</sup></li> </ul>                                                  | RW                    |
|                                        |                                                                                                          | (b7 - b6)                                                | Nothing is assigned. Whe When read, its content is                                                                         |                                                                                                                                                                                                                   | -                     |
| the<br>the<br>2. Whe<br>inte<br>3. Set | level set in the RL<br>FLG register.<br>en the FSIT bit is s<br>rrupt. In this case<br>the ILVL2 to ILVL | VL2 to RL<br>set to "1", a<br>set only c<br>0 bits in th | VL0 bits. Set the RLVL2 t<br>an interrupt having the inte<br>one interrupt to the interrup<br>e interrupt control register | uested interrupt priority level is higher<br>o RLVL0 bits to the same value as IP<br>rrupt priority level 7 becomes the high<br>of priority level 7 and the DMAII bit to "<br>after setting the DMAII bit to "1". | L in<br>-spee<br>'0". |

4. The DMAII bit becomes indeterminate after reset. To use the DMAII bit for an interrupt setting, set it to "0" before setting the interrupt control register.

Figure 14.1 RLVL Register




## 14.1.2 DMAC II Index

The DMAC II index is a data table which comprises 8 to 18 bytes (maximum 32 bytes when the multiple transfer function is selected). The DMAC II index stores parameters for transfer mode, transfer counter, source address (or immediate data), operation address as an address to be calculated, destination address, chained transfer address, and end-of-transfer interrupt address.

This DMAC II index must be located on the RAM area.

Figure 14.2 shows a configuration of the DMAC II index. Table 14.2 lists a configuration of the DMAC II index in transfer mode.





The followings are details of the DMAC II index. Set these parameters in the specified order listed in Table 14.2, according to DMAC II transfer mode.

#### • Transfer mode (MOD)

Two-byte data is required to set transfer mode. Figure 14.3 shows a configuration for transfer mode.

#### • Transfer counter (COUNT)

Two-byte data is required to set the number of transfer.

#### • Transfer source address (SADR)

Two-byte data is required to set the source memory address or immediate data.

#### • Operation address (OADR)

Two-byte data is required to set a memory address to be calculated. Set this data only when using the calculation transfer function.

#### • Transfer destination address (DADR)

Two-byte data is required to set the destination memory address.

#### Chained transfer address (CADR)

Four-byte data is required to set the starting address of the DMAC II index for the next transfer. Set this data only when using the chained transfer function.

#### • End-of-transfer interrupt address (IADR)

Four-byte data is required to set a jump address for end-of-transfer interrupt processing. Set this data only when using the end-of-transfer interrupt.

RENESAS

| Transfer Data                |          | emory-to-Me<br>nmediate Da | emory Trans<br>ata Transfer | fer      |          |          | Multiple Transfer |          |                             |
|------------------------------|----------|----------------------------|-----------------------------|----------|----------|----------|-------------------|----------|-----------------------------|
| Chained Transfer             | Not Used | Used                       | Not Used                    | Used     | Not Used | Used     | Not Used          | Used     | Not Available               |
| End-of-Transfer<br>Interrupt | Not Used | Not Used                   | Used                        | Used     | Not Used | Not Used | Used              | Used     | Not Available               |
|                              | MOD      | MOD                        | MOD                         | MOD      | MOD      | MOD      | MOD               | MOD      | MOD                         |
|                              | COUNT    | COUNT                      | COUNT                       | COUNT    | COUNT    | COUNT    | COUNT             | COUNT    | COUNT                       |
|                              | SADR     | SADR                       | SADR                        | SADR     | SADR     | SADR     | SADR              | SADR     | SADR1                       |
|                              | DADR     | DADR                       | DADR                        | DADR     | OADR     | OADR     | OADR              | OADR     | DADR1                       |
| DMAC II                      | 8 bytes  | CADR0                      | IADR0                       | CADR0    | DADR     | DADR     | DADR              | DADR     |                             |
| Index                        | 0.29100  | CADR1                      | IADR1                       | CADR1    | 10 bytes | CADR0    | IADR0             | CADR0    |                             |
|                              |          | 12 bytes                   | 12 bytes                    | IADR0    |          | CADR1    | IADR1             | CADR1    | SADRi                       |
|                              |          | ,                          | ,                           | IADR1    |          | 14 bytes | 14 bytes          | IADR0    | DADRi                       |
|                              |          |                            |                             | 16 bytes |          |          |                   | IADR1    | i=1 to 7                    |
|                              |          |                            |                             |          |          |          |                   | 18 bytes | max. 32 bytes<br>(when i=7) |

| b15 b8 b7 | ΪΠ |      |   |                              |                                              |                                                         |                                                           |    |
|-----------|----|------|---|------------------------------|----------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|----|
|           |    |      |   | Bit<br>Symbol                | Bit Name                                     | Function<br>(MULT=0)                                    | Function<br>(MULT=1)                                      | RW |
|           |    |      |   | SIZE                         | Transfer Unit<br>Select Bit                  | 0: 8 bits<br>1: 16 bits                                 |                                                           | RW |
|           |    |      | ļ | IMM                          | Transfer Data<br>Select Bit                  | 0: Immediate data<br>1: Memory                          | Set to "1"                                                | RW |
|           |    |      |   | UPDS                         | Transfer Source<br>Direction Select Bit      | 0: Fixed address<br>1: Forward address                  |                                                           | RW |
|           |    |      |   | UPDD                         | Transfer Destination<br>Direction Select Bit | 0: Fixed address<br>1: Forward address                  |                                                           | RW |
|           |    |      |   | OPER/<br>CNT0 <sup>(2)</sup> | Calculation Transfer<br>Function Select Bit  | 0: Not used<br>1: Used                                  | <sup>b6 b5 b4</sup><br>0 0 0: Do not set<br>to this value | RW |
|           |    |      |   | BRST/<br>CNT1 <sup>(2)</sup> | Burst Transfer<br>Select Bit                 | 0: Single transfer<br>1: Burst transfer                 | 0 0 1: Once<br>0 1 0: Twice<br>:                          | RW |
|           |    |      |   | INTE/<br>CNT2 <sup>(2)</sup> | End-of-Transfer<br>Interrupt Select Bit      | 0: Interrupt not used<br>1: Use interrupt               | :<br>1 1 0: 6 times<br>1 1 1: 7 times                     | RW |
|           |    |      |   | CHAIN                        | Chained Transfer<br>Select Bit               | 0: Chained transfer not used<br>1: Use chained transfer | Set to "0"                                                | RW |
|           |    | •••• |   | (b14 - b8)                   |                                              | d. When write, set to "0'<br>tent is indeterminate.     |                                                           | _  |
|           |    |      |   | MULT                         | Multiple Transfer<br>Select Bit              | 0: Multiple<br>transfer not used                        | 1: Use multiple transfer                                  | RW |

NOTES:

1. MOD must be located on the RAM.

2. When the MULT bit is set to "0" (no multiple transfer), bits 6 to 4 becomes the INTE, OPER and BRST bits. When the MULT bit is set to "1" (multiple transfer), bits 6 to 4 becomes the CNT2 to CNT0 bits.

#### Figure 14.3 MOD



## 14.1.3 Interrupt Control Register for the Peripheral Function

For the peripheral function interrupt activating DMAC II, set the ILVL2 to ILVL0 bits to "1112" (level 7).

## 14.1.4 Relocatable Vector Table for the Peripheral Function

Set the starting address of the DMAC II index in the interrupt vector for the peripheral function interrupt activating DMAC II.

When using the chained transfer, the relocatable vector table must be located in the RAM.

## 14.1.5 IRLT Bit in the IIOiIE Register (i=0 to 4, 8 to 11)

When the intelligent I/O interrupt or CAN interrupt is used to activate DMAC II, set the IRLT bit in the IIOiIE register of the interrupt to "0".

## 14.2 DMAC II Performance

Function to activate DMAC II is selected by setting the DMA II bit to "1" (DMAC II transfer). DMAC II is activated by all peripheral function interrupts with the ILVL2 to ILVL0 bits set to "1112" (level 7). These peripheral function interrupt request signals become DMAC II transfer request signals and the peripheral function interrupt cannot be used.

When an interrupt request is generated by setting the ILVL2 to ILVL0 bits to "1112" (level 7), DMAC II is activated regardless of what state the I flag and IPL are in.

## 14.3 Transfer Data

DMAC II transfers 8-bit or 16-bit data.

- Memory-to-memory transfer : Data is transferred from a desired memory location in a 64-Kbyte space (Addresses 0000016 to 0FFFF16) to another desired memory location in the same space.
- Immediate data transfer : Immediate data is transferred to a desired memory location in a 64-Kbyte space.
- Calculation transfer : Two 8-bit or16-bit data are added together and the result is transferred to a desired memory location in a 64-Kbyte space.

When a 16-bit data is transferred to the destination address 0FFFF16, it is transferred to 0FFFF16 and 1000016. The same transfer occurs when the source address is 0FFFF16. Actual transferable space varies depending on the internal RAM capacity.

#### 14.3.1 Memory-to-memory Transfer

Data transfer between any two memory locations can be:

- a transfer from a fixed address to another fixed address
- a transfer from a fixed address to a relocatable address
- a transfer from a relocatable address to a fixed address
- a transfer from a relocatable address to another relocatable address

When a relocatable address is selected, the address is incremented, after a transfer, for the next transfer. In a 8-bit transfer, the transfer address is incremented by one. In a 16-bit transfer, the transfer address is incremented by two.

When a source or destination address exceeds address 0FFFF16 as a result of address incrementation, the source or destination address returns to address 0000016 and continues incrementation. Maintain source and destination address at address 0FFFF16 or below.

## 14.3.2 Immediate Data Transfer

DMAC II transfers immediate data to any memory location. A fixed or relocatable address can be selected as the destination address. Store the immediate data into SADR. To transfer an 8-bit immediate data, write the data in the low-order byte of SADR (high-order byte is ignored).

## 14.3.3 Calculation Transfer

After two memory data or an immediate data and memory data are added together, DMAC II transfers calculated result to any memory location. SADR must have one memory location address to be calculated or immediate data and OADR must have the other memory location address to be calculated. Fixed or relocatable address can be selected as source and destination addresses when using a memory + memory calculation transfer. If the transfer source address is relocatable, the operation address also becomes relocatable. Fixed or relocatable address can be selected as the transfer destination address when using an immediate data + memory calculation transfer.

## 14.4 Transfer Modes

Single and burst transfers are available. The BRST bit in MOD selects transfer method, either single transfer or burst transfer. COUNT determines how many transfers occur. No transfer occurs when COUNT is set to "000016".

## 14.4.1 Single Transfer

For every transfer request source, DMAC II transfers one transfer unit of 8-bit or 16-bit data once. When the source or destination address is relocatable, the address is incremented, after a transfer, for the next transfer.

COUNT is decremented every time a transfer occurs. When using the end-of-transfer interrupt, the interrupt is acknowledged when COUNT reaches "0".

## 14.4.2 Burst Transfer

For every transfer request source, DMAC II continuously transfers data the number of times determined by COUNT. COUNT is decremented every time a transfer occurs. The burst transfer ends when COUNT reaches "0". The end-of-transfer interrupt is acknowledged when the burst transfer ends if using the endof-transfer interrupt. All interrupts are ignored while the burst transfer is in progress.

#### 14.5 Multiple Transfer

The MULT bit in MOD selects the multiple transfer. When using the multiple transfer, select the memory-tomemory transfer. One transfer request source initiates multiple transfers. The CNT2 to CNT0 bits in MOD selects the number of transfers from "0012" (once) to "1112" (7 times). Do not set the CNT2 to CNT0 bits to "0002".

The transfer source and destination addresses for each transfer must be allocated alternately in addresses following MOD and COUNT. When the multiple transfer is selected, the calculation transfer, burst transfer, end-of-transfer interrupt and chained transfer cannot be used.



## 14.6 Chained Transfer

The CHAIN bit in MOD selects the chained transfer.

The following process initiates the chained transfer.

- (1) Transfer, caused by a transfer request source, occurs according to the content of the DMAC II index. The vectors of the request source indicates where the DMAC II index is allocated. For each request, the BRST bit selects either single or burst transfer.
- (2) When COUNT reaches "0", the contents of CADR1 and CADR0 are written to the vector of the request source. When the INTE bit in MOD is set to "1", the end-of-transfer interrupt is generated simultaneously.
- (3) When the next DMAC II transfer request is generated, transfer occurs according to the contents of the DMAC II index indicated by the peripheral function interrupt vector rewritten in (2).

Figure 14.4 shows the relocatable vector and DMACII index when the chained transfer is in progress. For the chained transfer, the relocatable vector table must be located in the RAM.

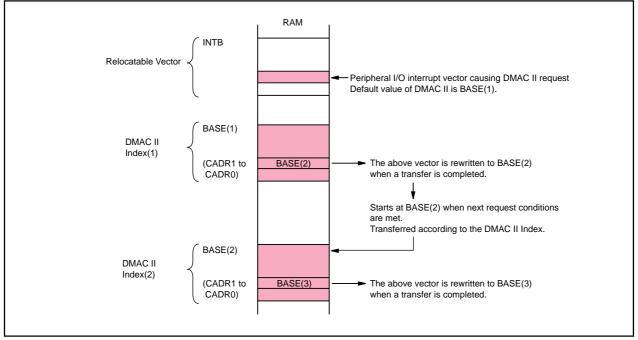



Figure 14.4 Relocatable Vector and DMAC II Index

## 14.7 End-of-Transfer Interrupt

The INTE bit in MOD selects the end-of-transfer interrupt. Set the starting address of the end-of-transfer interrupt routine in IADR1 and IADR0. The end-of-transfer interrupt is generated when COUNT reaches "0."

14. DMACII



## 14.8 Execution Time

DMAC II execution cycle is calculated by the following equations:

Multiple transfers:  $t = 21+(11 + b + c) \times k$  cycles Other than multiple transfers:  $t = 6 + (26 + a + b + c + d) \times m + (4 + e) \times n$  cycles

a: If IMM = 0 (source of transfer is immediate data), a = 0;

if IMM = 1 (source of transfer is memory), a = -1

b: If UPDS = 1 (source transfer address is a relocatable address), b = 0;

if UPDS = 0 (source transfer address is a fixed address), b = 1

- c: If UPDD = 1 (destination transfer address is a relocatable address), c = 0;
- if UPDD = 0 (destination transfer address is a fixed address), c = 1
- d: If OPER = 0 (calculation function is not selected), d = 0;
  - if OPER = 1 (calculation function is selected) and UPDS = 0 (source of transfer is immediate data or fixed address memory), d = 7;
  - if OPER = 1 (calculation function is selected) and UPDS = 1 (source of transfer is relocatable address memory), d = 8

e: If CHAIN = 0 (chained transfer is not selected), e = 0; if CHAIN = 1 (chained transfer is selected), e = 4

m: BRST = 0 (single transfer), m = 1; BRST = 1 (burst transfer), m = the value set in transfer counter

n: If COUNT = 1, n = 0; if COUNT = 2 or more, n = 1

k: Number of transfers set in the CNT2 to CNT0 bits

The equations above are approximations. The number of cycles may vary depending on CPU state, bus wait state, and DMAC II index allocation.

The first instruction from the end-of-transfer interrupt routine is executed in the eighth cycle after the DMAC II transfer is completed.

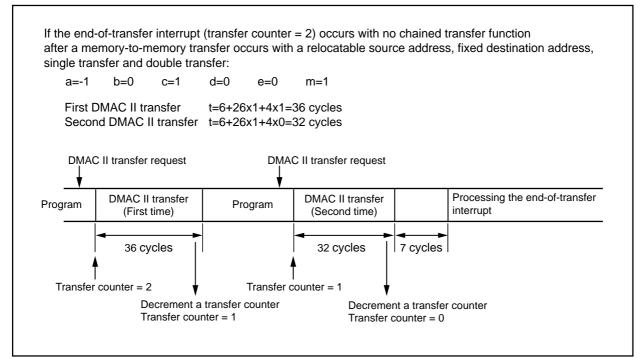



Figure 14.5 Transfer Cycle

When an interrupt request as a DMAC II transfer request source and another interrupt request with higher priority (e.g., NMI or watchdog timer) are generated simultaneously, the interrupt with higher priority takes precedence over the DMAC II transfer. The pending DMAC II transfer starts after the interrupt sequence has been completed.

RENESAS

## 15. Timer

The microcomputer has eleven 16-bit timers. Five timers A and six timers B have different functions. Each timer functions independently. The count source for each timer becomes the clock for timer operations including counting and reloading, etc. Figures 15.1 and 15.2 show block diagrams of timer A and timer B configuration.

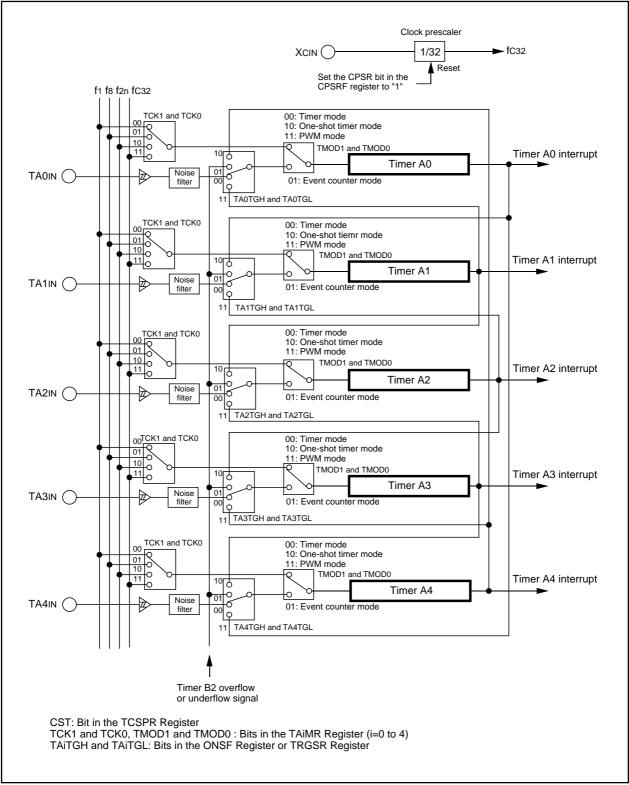



Figure 15.1 Timer A Configuration

RENESAS

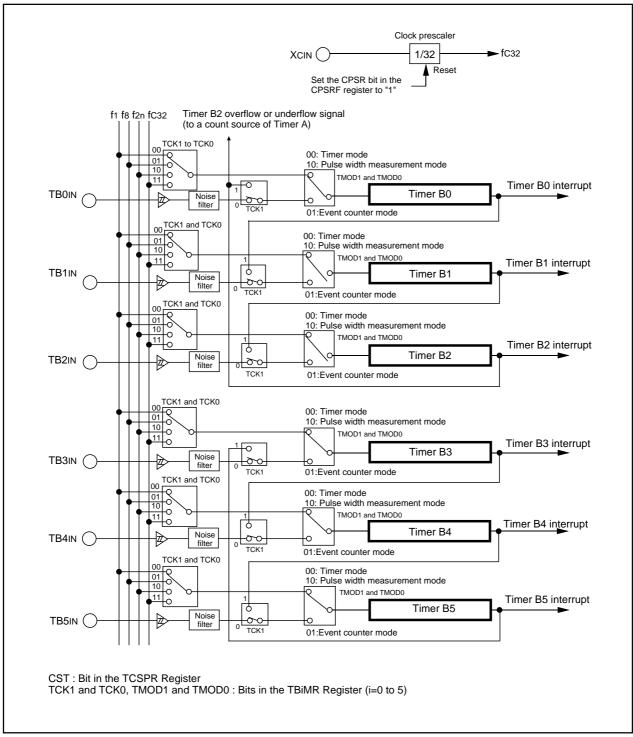



Figure 15.2 Timer B Configuration



## 15.1 Timer A

Figure 15.3 shows a block diagram of the timer A. Figures 15.4 to 15.7 show registers associated with the timer A.

The timer A supports the following four modes. Except in event counter mode, all timers A0 to A4 have the same function. The TMOD1 and TMOD0 bits in the TAiMR register (i=0 to 4) determine which mode is used.

- Timer mode: The timer counts an internal count source.
- Event counter mode: The timer counts an external pulse or an overflow and underflow of other timers.
- One-shot timer mode: The timer outputs one valid pulse until a counter value reaches "000016".
- Pulse width modulation mode: The timer continuously outputs desired pulse widths.

Table 15.1 lists TAiOUT pin settings when used as an output. Table 15.2 lists TAiIN and TAiOUT pin settings when used as an input.

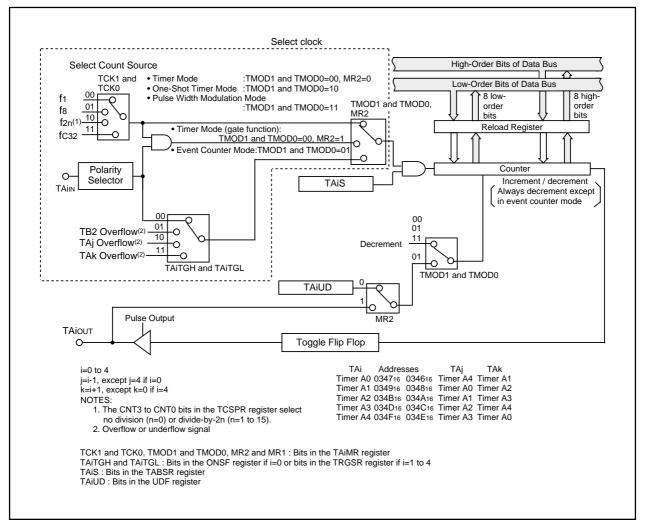



Figure 15.3 Timer A Block Diagram



| b15 b8 b7 b0                                                                                                                       | TA0 to TA2 03                                                                                                              | dress<br>4716-034616, 034916-034816, 034B16-034<br>4D16-034C16, 034F16-034E16                                                                                                                                                                            | After Rese<br>A16 Indetermir<br>Indetermir                                                                                | nate      |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------|
|                                                                                                                                    | Mode                                                                                                                       | Function                                                                                                                                                                                                                                                 | Setting Range                                                                                                             | RW        |
|                                                                                                                                    | Timer Mode                                                                                                                 | If setting value is $n$ , count source is divided by $n+1$ .                                                                                                                                                                                             | 000016 to FFFF16                                                                                                          | RW        |
|                                                                                                                                    | Event Counter<br>Mode <sup>(2)</sup>                                                                                       | If setting value is $n$ , count source<br>is divided by <i>FFFF16</i> - $n+1$ when<br>the counter is incremented<br>and by $n+1$ when the counter is<br>decremented.                                                                                     | 000016 to FFFF16                                                                                                          | RW        |
|                                                                                                                                    | One-Shot Timer<br>Mode <sup>(4)</sup>                                                                                      | If setting value is <i>n</i> , count source is divided by <i>n</i> , then stops.                                                                                                                                                                         | 000016 to FFFF16 <sup>(3)</sup>                                                                                           | wc        |
|                                                                                                                                    | Pulse Width<br>Modulation Mode <sup>(5)</sup><br>(16-Bit PWM)                                                              | If count source frequency is $fj$<br>and setting value of the TAi<br>register is $n$ ,<br>PWM cycle: $(2^{16}-1)/fj$<br>"H" width of PWM pulse: $n/fj$                                                                                                   | 000016 to FFFE16 <sup>(3)</sup>                                                                                           | wc        |
|                                                                                                                                    | Pulse Width<br>Modulation Mode <sup>(5)</sup><br>(8-Bit PWM)                                                               | If count source frequency is $fj$ ,<br>setting value of high-order bits in<br>the TAi register is $n$ and setting<br>value of low-order bits in the TAi<br>register is $m$ ,<br>PWM cycle: $(2^8-1)x(m+1) / fj$<br>"H" width of PWM pulse: $(m+1)n / fj$ | 0016 to FE16 <sup>(3)</sup><br>(High-order<br>address bits)<br>0016 to FF16 <sup>(3)</sup><br>(Low-order<br>address bits) | wc        |
| timer counter overflow<br>3. Use the MOV instruct<br>4. When the TAi register<br>request is not genera<br>5. When the TAi register | its how many pulse<br>ws and underflows<br>ion to set the TAi r<br>r is set to "000016",<br>ited.<br>r is set to "000016", |                                                                                                                                                                                                                                                          | the timer Ai interrup                                                                                                     | ot<br>OUT |

Figure 15.4 TA0 to TA4 Registers



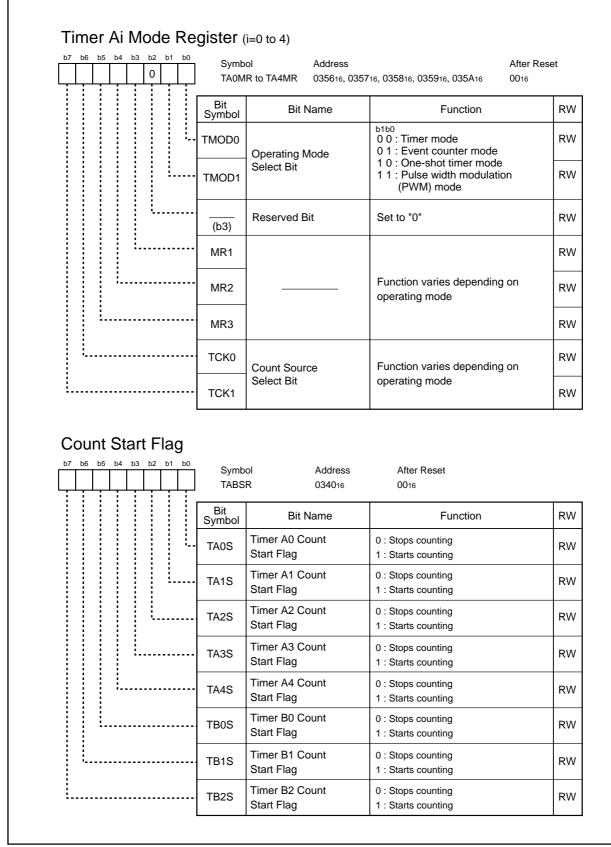



Figure 15.5 TA0MR to TA4MR Registers and TABSR Register

RENESAS

| b7 b6 b5 | b4 b3 | 3 b2 | b1    | b0                                      | Symb                           | ol Address                                                                          | After Reset                                                                                                                                 |    |
|----------|-------|------|-------|-----------------------------------------|--------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----|
|          |       |      | L.    | Ļ                                       | UDF                            | 034416                                                                              | 0016                                                                                                                                        |    |
|          |       |      |       |                                         | Bit<br>Symbol                  | Bit Name                                                                            | Function                                                                                                                                    | RW |
|          |       |      |       |                                         | TA0UD                          | Timer A0<br>Up/Down Flag <sup>(2)</sup>                                             | 0 : Decrement<br>1 : Increment                                                                                                              | RW |
|          |       |      | ĺ.    |                                         | TA1UD                          | Timer A1<br>Up/Down Flag <sup>(2)</sup>                                             | 0 : Decrement<br>1 : Increment                                                                                                              | RW |
|          |       | Į.   |       |                                         | TA2UD                          | Timer A2<br>Up/Down Flag <sup>(2)</sup>                                             | 0 : Decrement<br>1 : Increment                                                                                                              | RW |
|          |       |      |       |                                         | TA3UD                          | Timer A3<br>Up/Down Flag <sup>(2)</sup>                                             | 0 : Decrement<br>1 : Increment                                                                                                              | RW |
|          |       |      | TA4UD | Timer A4<br>Up/Down Flag <sup>(2)</sup> | 0 : Decrement<br>1 : Increment | RW                                                                                  |                                                                                                                                             |    |
|          |       |      |       |                                         | TA2P                           | Timer A2 Two-Phase<br>Pulse Signal Processing<br>Function Select Bit <sup>(3)</sup> | <ul> <li>0 : Disables two-phase pulse signal processing function</li> <li>1 : Enables two-phase pulse signal processing function</li> </ul> | wo |
| ļ        |       |      | ••••  |                                         | ТАЗР                           | Timer A3 Two-Phase<br>Pulse Signal Processing<br>Function Select Bit <sup>(3)</sup> | <ul> <li>0 : Disables two-phase pulse signal processing function</li> <li>1 : Enables two-phase pulse signal processing function</li> </ul> | wo |
|          |       |      |       |                                         | TA4P                           | Timer A4 Two-Phase<br>Pulse Signal Processing<br>Function Select Bit <sup>(3)</sup> | <ul> <li>0 : Disables two-phase pulse signal processing function</li> <li>1 : Enables two-phase pulse signal processing function</li> </ul> | wo |

NOTES:

1. Use the MOV instruction to set the UDF register.

2. This bit is enabled when the MR2 bit in the TAiMR register (i=0 to 4) is set to "0" (the UDF register causes increment/decrement switching) in event counter mode.

3. Set this bit to "0" when not using the two-phase pulse signal processing function.

## **One-Shot Start Flag**

| b7 b6 b5 b4 b3 b2 b1 b0 | Symb<br>ONSF  |                                                | After Reset<br>0016                                                                                          |    |
|-------------------------|---------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----|
|                         | Bit<br>Symbol | Bit Name                                       | Function                                                                                                     | RW |
|                         | TA0OS         | Timer A0 One-Shot<br>Start Flag <sup>(1)</sup> | 0 : In an idle state<br>1 : Starts the timer                                                                 | RW |
|                         | TA1OS         | Timer A1 One-Shot<br>Start Flag <sup>(1)</sup> | 0 : In an idle state<br>1 : Starts the timer                                                                 | RW |
|                         | TA2OS         | Timer A2 One-Shot<br>Start Flag <sup>(1)</sup> | 0 : In an idle state<br>1 : Starts the timer                                                                 | RW |
|                         | TA3OS         | Timer A3 One-Shot<br>Start Flag <sup>(1)</sup> | 0 : In an idle state<br>1 : Starts the timer                                                                 | RW |
|                         | TA4OS         | Timer A4 One-Shot<br>Start Flag <sup>(1)</sup> | 0 : In an idle state<br>1 : Starts the timer                                                                 | RW |
|                         | TAZIE         | Z-Phase Input Enable Bit                       | 0 : Disables Z-phase input<br>1 : Enables Z-phase input                                                      | RW |
| l                       | TAOTGL        | Timer A0 Event/Trigger                         | <sup>b7b6</sup><br>0 0 : Selects an input to the TA0IN pin<br>0 1 : Selects the TB2 overflows <sup>(2)</sup> | RW |
|                         | TA0TGH        | Select Bit                                     | 1 0 : Selects the TA4 overflows <sup>(2)</sup><br>1 1 : Selects the TA1 overflows <sup>(2)</sup>             | RW |

#### NOTES:

1. When read, this bit is set to "0".

2. Overflow or underflow.

Figure 15.6 UDF Register and ONSF Register



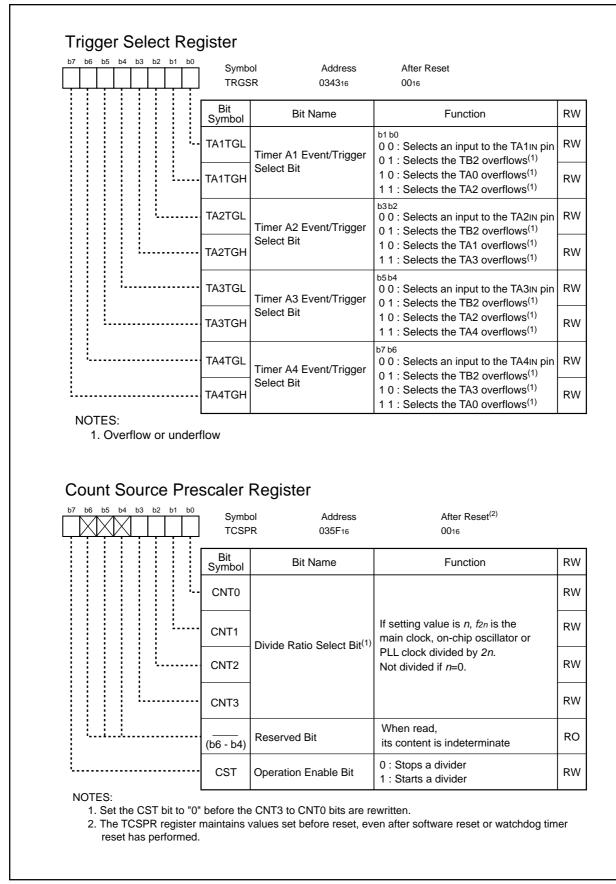



Figure 15.7 TRGSR Register and TCSPR Register

| Pin                       |                    | Setting              |              |  |  |  |  |  |
|---------------------------|--------------------|----------------------|--------------|--|--|--|--|--|
|                           | PS1, PS2 Registers | PSL1, PSL2 Registers | PSC Register |  |  |  |  |  |
| P70/TA00UT <sup>(1)</sup> | PS1_0= 1           | PSL1_0=1             | PSC_0= 0     |  |  |  |  |  |
| Р72/ТА1оυт                | PS1_2= 1           | PSL1_2=1             | PSC_2= 0     |  |  |  |  |  |
| Р74/ТА2оυт                | PS1_4= 1           | PSL1_4=0             | PSC_4= 0     |  |  |  |  |  |
| Р76/ТАЗОUТ                | PS1_6= 1           | PSL1_6=1             | PSC_6= 0     |  |  |  |  |  |
| Р80/ТА400т                | PS2_0= 1           | PSL2_0=0             | _            |  |  |  |  |  |

## Table 15.1 Pin Settings for Output from TAioUT Pin (i=0 to 4)

NOTES:

1. P70/TA00UT is a port for the N-channel open drain output.

## Table 15.2 Pin Settings for Input to TAiN and TAiOUT Pins (i=0 to 4)

| Pin        | Setting            |                    |  |  |
|------------|--------------------|--------------------|--|--|
|            | PS1, PS2 Registers | PD7, PD8 Registers |  |  |
| P70/TA00UT | PS1_0=0            | PD7_0=0            |  |  |
| P71/TA0IN  | PS1_1=0            | PD7_1=0            |  |  |
| P72/TA1out | PS1_2=0            | PD7_2=0            |  |  |
| P73/TA1IN  | PS1_3=0            | PD7_3=0            |  |  |
| P74TA2out  | PS1_4=0            | PD7_4=0            |  |  |
| P75/TA2IN  | PS1_5=0            | PD7_5=0            |  |  |
| Ρ76ΤΑ3Ουτ  | PS1_6=0            | PD7_6=0            |  |  |
| P77/TA3IN  | PS1_7=0            | PD7_7=0            |  |  |
| Р80/ТА40∪т | PS2_0=0            | PD8_0=0            |  |  |
| P81/TA4IN  | PS2_1=0            | PD8_1=0            |  |  |



# 15.1.1 Timer Mode

In timer mode, the timer counts an internally generated count source (see **Table 15.3**). Figure 15.8 shows the TAiMR register (i=0 to 4) in timer mode.

| Item                                | Specification                                                                              |  |  |  |  |  |
|-------------------------------------|--------------------------------------------------------------------------------------------|--|--|--|--|--|
| Count Source                        | f1, f8, f2n <sup>(1)</sup> , fC32                                                          |  |  |  |  |  |
| Counting Operation                  | The timer decrements a counter value                                                       |  |  |  |  |  |
|                                     | When the timer counter underflows, content of the reload register is reloaded into the     |  |  |  |  |  |
|                                     | count register and counting resumes.                                                       |  |  |  |  |  |
| Divide Ratio                        | I/(n+1) n: setting value of the TAi register (i=0 to 4) 000016 to FFFF16                   |  |  |  |  |  |
| Counter Start Condition             | The TAiS bit in the TABSR register is set to "1" (starts counting)                         |  |  |  |  |  |
| Counter Stop Condition              | The TAiS bit is set to "0" (stops counting)                                                |  |  |  |  |  |
| Interrupt Request Generation Timing | he timer counter underflows                                                                |  |  |  |  |  |
| TAiIN Pin Function                  | Programmable I/O port or gate input                                                        |  |  |  |  |  |
| TAIOUT Pin Function                 | Programmable I/O port or pulse output                                                      |  |  |  |  |  |
| Read from Timer                     | he TAi register indicates counter value                                                    |  |  |  |  |  |
| Write to Timer                      | • While the timer counter stops, the value written to the TAi register is also written to  |  |  |  |  |  |
|                                     | both reload register and counter                                                           |  |  |  |  |  |
|                                     | • While counting, the value written to the TAi register is written to the reload register  |  |  |  |  |  |
|                                     | (It is transferred to the counter at the next reload timing)                               |  |  |  |  |  |
| Selectable Function                 | Gate function                                                                              |  |  |  |  |  |
|                                     | Input signal to the TAin pin determines whether the timer counter starts or stops counting |  |  |  |  |  |
|                                     | Pulse output function                                                                      |  |  |  |  |  |
|                                     | The polarity of the TAiOUT pin is inversed whenever the timer counter underflows           |  |  |  |  |  |

#### Table 15.3 Timer Mode Specifications

NOTES:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).



| b7 b6 b5 |    | 0<br>0<br>i | Symb<br>TA0M  |                          | After Rese<br>716, 035816, 035916, 035A16 0016                                                                                                       | ≠t |
|----------|----|-------------|---------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|          |    |             | Bit<br>Symbol | Bit Name                 | Function                                                                                                                                             | R٧ |
|          |    |             | TMOD0         | Operating Mode           | b1b0<br>0 0 : Timer mode                                                                                                                             | RW |
|          |    |             | TMOD1         | Select Bit               | 00. Hiner mode                                                                                                                                       | RW |
|          | L. |             | (b2)          | Reserved Bit             | Set to "0"                                                                                                                                           | RW |
|          |    |             | MR1           | Gate Function            | b4b3<br>0 X : Gate function disabled <sup>(1)</sup><br>(TAiN pin is a programmable I/O pin)                                                          | RW |
|          |    |             | MR2           | Select Bit               | <ul> <li>1 0 : Timer counts only while the<br/>TAilN pin is held "L"</li> <li>1 1 : Timer counts only while the<br/>TAilN pin is held "H"</li> </ul> | RW |
|          |    |             | MR3           | Set to "0" in timer mode |                                                                                                                                                      | RW |
|          |    |             | TCK0          | Count Source             | b7b6<br>0 0 : f1<br>0 1 : f8                                                                                                                         | RW |
|          |    |             | TCK1          | Select Bit               | 1 0 : $f_{2n}^{(2)}$<br>1 1 : fC32                                                                                                                   | RW |

Figure 15.8 TA0MR to TA4MR Registers



# 15.1.2 Event Counter Mode

In event counter mode, the timer counts how many external signals are applied or how many times another timer counter overflows and underflows. The timers A2, A3 and A4 can count externally generated two-phase signals. Table 15.4 lists specifications in event counter mode (when not handling a two-phase pulse signal). Table 15.5 lists specifications in event counter mode (when handling a two-phase signal with the timers A2, A3 and A4). Figure 15.9 shows the TAiMR register (i=0 to 4) in event counter mode.

|                                                                             | Duleo Signal |
|-----------------------------------------------------------------------------|--------------|
| Table 15.4 Event Counter Mode Specifications (When Not Processing Two-phase | Fuise Signal |

| Item                                | Specification                                                                                                        |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Count Source                        | • External signal applied to the TAiIN pin (i = 0 to 4) (valid edge can be selected by program)                      |
|                                     | • Timer B2 overflow or underflow signal, timer Aj overflow or underflow signal (j=i-1,                               |
|                                     | except j=4 if i=0) and timer Ak overflow or underflow signal (k=i+1, except k=0 if i=4)                              |
| Counting Operation                  | • External signal and program can determine whether the timer increments or decre-                                   |
|                                     | ments a counter value                                                                                                |
|                                     | • When the timer counter underflows or overflows, content of the reload register is                                  |
|                                     | reloaded into the count register and counting resumes. When the free-running count                                   |
|                                     | function is selected, the timer counter continues running without reloading.                                         |
| Divide Ratio                        | • 1/(FFFF16 - n + 1) for counter increment                                                                           |
|                                     | • $1/(n + 1)$ for counter decrement $n$ : setting value of the TAi register 0000 <sub>16</sub> to FFFF <sub>16</sub> |
| Counter Start Condition             | The TAiS bit in the TABSR register is set to "1" (starts counting)                                                   |
| Counter Stop Condition              | The TAiS bit is set to "0" (stops counting)                                                                          |
| Interrupt Request Generation Timing | The timer counter overflows or underflows                                                                            |
| TAilN Pin Function                  | Programmable I/O port or count source input                                                                          |
| TAIOUT Pin Function                 | Programmable I/O port, pulse output or input selecting a counter increment or decrement                              |
| Read from Timer                     | The TAi register indicates counter value                                                                             |
| Write to Timer                      | • When the timer counter stops, the value written to the TAi register is also written to                             |
|                                     | both reload register and counter                                                                                     |
|                                     | • While counting, the value written to the TAi register is written to the reload register                            |
|                                     | (It is transferred to the counter at the next reload timing)                                                         |
| Selectable Function                 | Free-running count function                                                                                          |
|                                     | Content of the reload register is not reloaded even if the timer counter overflows or                                |
|                                     | underflows                                                                                                           |
|                                     | Pulse output function                                                                                                |
|                                     | The polarity of the TAiOUT pin is inversed whenever the timer counter overflows or                                   |
|                                     | underflows                                                                                                           |



| Item                                | Specification                                                                                                 |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Count Source                        | Two-phase pulse signal applied to the TAiIN and TAiOUT pins (i = 2 to 4)                                      |
| Counting Operation                  | Two-phase pulse signal determines whether the timer increments or decrements a                                |
|                                     | counter value                                                                                                 |
|                                     | • When the timer counter overflows or underflows, content of the reload register is                           |
|                                     | reloaded into the count register and counting resumes. With the free-running count                            |
|                                     | function, the timer counter continues running without reloading.                                              |
| Divide Ratio                        | • $1/(FFFF_{16} - n + 1)$ for counter increment                                                               |
|                                     | • $1/(n + 1)$ for counter decrement <i>n</i> : setting value of the TAi register 000016 to FFFF16             |
| Counter Start Condition             | The TAiS bit in the TABSR register is set to "1" (starts counting)                                            |
| Counter Stop Condition              | The TAiS bit is set to "0" (stops counting)                                                                   |
| Interrupt Request Generation Timing | The timer counter overflows or underflows                                                                     |
| TAilN Pin Function                  | Two-phase pulse signal is applied                                                                             |
| TAio∪⊤ Pin Function                 | Two-phase pulse signal is applied                                                                             |
| Read from Timer                     | The TAi register indicates the counter value                                                                  |
| Write to Timer                      | • When the timer counter stops, the value written to the TAi register is also written to                      |
|                                     | both reload register and counter                                                                              |
|                                     | • While counting, the value written to the TAi register is written to the reload register                     |
|                                     | (It is transferred to the counter at the next reload timing)                                                  |
| Selectable Function <sup>(1)</sup>  | Normal processing operation (the timer A2 and timer A3)                                                       |
|                                     | While a high-level ("H") signal is applied to the TAjOUT pin (j = 2 or 3), the timer                          |
|                                     | increments a counter value on the rising edge of the TAjIN pin or decrements a                                |
|                                     | counter on the falling edge.                                                                                  |
|                                     |                                                                                                               |
|                                     | TAJIN Increment Increment Decrement Decrement Decrement                                                       |
|                                     | <ul> <li>Multiply-by-4 processing operation (the timer A3 and timer A4)</li> </ul>                            |
|                                     | While an "H" signal is applied to the TAkout pin (k = 3 or 4) on the rising edge of the                       |
|                                     | TAkin pin, the timer increments a counter value on the rising and falling edges of the                        |
|                                     | TAKIN pin, the time increments a counter value of the fishing and failing edges of the TAKOUT and TAKIN pins. |
|                                     | While an "H" signal is applied to the TAkout pin on the falling edge of the TAkin pin, the                    |
|                                     | timer decrements a counter value on the rising and falling edges of the TAKOUT and                            |
|                                     | TAkin pins.                                                                                                   |
|                                     |                                                                                                               |
|                                     |                                                                                                               |
|                                     | Increment on all edges Decrement on all edges                                                                 |
|                                     |                                                                                                               |
| NOTES:                              |                                                                                                               |

# Table 15.5 Event Counter Mode Specifications (When Processing Two-phase Pulse Signal on Timer A2, A3 and A4)

1. Only timer A3 operation can be selected. The timer A2 is for the normal processing operation. The timer A4 is for the multiply-by-4 operation.



| b7 b6 b5 b4 | b3 b2 b1 b0 |               |                                                                               | s<br>035716, 035816, 035916,                                                                                                   | After Reset<br>035A16 0016                                                      |    |
|-------------|-------------|---------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----|
|             |             | Bit<br>Symbol | Bit Name                                                                      | Function<br>(When not processing<br>two-phase pulse signal)                                                                    | Function<br>(When processing<br>two-phase pulse signal)                         | RW |
|             |             |               | Operating Mode                                                                | <sup>b1b0</sup><br>0 1 : Event counter mode <sup>(1)</sup>                                                                     |                                                                                 | RW |
|             | · · · ·     | TMOD1         | Select Bit                                                                    |                                                                                                                                |                                                                                 | RW |
|             | L           | (b2)          | Reserved Bit                                                                  | Set to "0"                                                                                                                     |                                                                                 | RW |
|             |             |               | Count Polarity<br>Select Bit <sup>(2)</sup>                                   | <ul><li>0 : Counts falling edges<br/>of an external signal</li><li>1 : Counts rising edges<br/>of an external signal</li></ul> | Set to "0"                                                                      | RW |
| ·           |             | • MR2         | Increment/Decrement<br>Switching Source<br>Select Bit                         | 0 : UDF registser<br>setting<br>1 : Input signal to<br>TAio∪⊤ pin <sup>(3)</sup>                                               | Set to "1"                                                                      | RV |
|             |             | - MR3         | Set to "0" in event co                                                        | unter mode                                                                                                                     |                                                                                 | R٧ |
|             |             | тско          | Count Operation<br>Type Select Bit                                            | 0 : Reloading<br>1 : Free running                                                                                              |                                                                                 | RV |
|             |             | - тск1        | Two-Phase Pulse<br>Signal Processing<br>Operation Select Bit <sup>(4,5)</sup> | Set to "0"                                                                                                                     | 0 : Normal processing<br>operation<br>1 : Multiply-by-4<br>processing operation | RV |

NOTES:

- 1. The TAiTGH and TAiTGL bits in the ONSF or TRGSR register determine the count source in the event counter mode.
- 2. MR1 bit setting is enabled only when counting how many times external signals are applied.
- 3. The timer decrements a counter value when an "L" signal is applied to the TAiOUT pin and the timer
- increments a counter value when an "H" signal is applied to the TAiOUT pin.
- 4. The TCK1 bit is enabled only in the TA3MR register.
- 5. For two-phase pulse signal processing, set the TAjP bit in the UDF register (j=2 to 4) to "1" (two-phase pulse signal processing function enabled). Also, set the TAiTGH and TAiTGL bits to "002" (input to the TAjın pin).

Figure 15.9 TA0MR to TA4MR Registers



## 15.1.2.1 Counter Reset by Two-Phase Pulse Signal Processing

Z-phase input resets the timer counter when processing a two-phase pulse signal.

This function can be used in timer A3 event counter mode, two-phase pulse signal processing, freerunning count operation type or multiply-by-4 processing. The Z-phase signal is applied to the INT2 pin. When the TAZIE bit in the ONSF register is set to "1" (Z-phase input enabled), Z-phase input can reset the timer counter. To reset the counter by a Z-phase input, set the TA3 register to "000016" beforehand.

Z-phase input is enabled when the edge of the signal applied to the INT2 pin is detected. The POL bit in the INT2IC register can determine edge polarity. The Z-phase must have a pulse width of one timer A3 count source cycle or more . Figure 15.10 shows two-phase pulses (A-phase and B-phase) and the Z-phase.

Z-phase input resets the timer counter in the next count source following Z-phase input. Figure 15.11 shows the counter reset timing.

Timer A3 interrupt request is generated twice continuously when a timer A3 overflow or underflow, and a counter reset by  $\overline{INT2}$  input occur at the same time. Do not use the timer A3 interrupt request when this function is used.

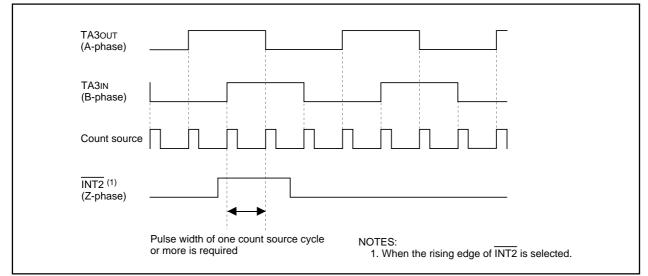



Figure 15.10 Two-Phase Pulse (A-phase and B-phase) and Z-phase

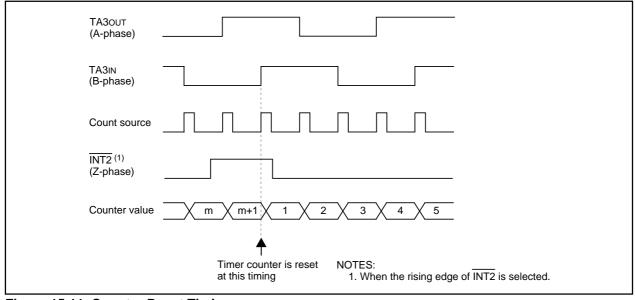



Figure 15.11 Counter Reset Timing



## 15.1.3 One-Shot Timer Mode

In one-shot timer mode, the timer operates only once for each trigger (see **Table 15.6**). Once a trigger occurs, the timer starts and continues operating for a desired period. Figure 15.12 shows the TAiMR register (i=0 to 4) in one-shot timer mode.

| Item                                | Specification                                                                             |  |  |  |  |
|-------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|
| Count Source                        | f1, f8, f2n <sup>(1)</sup> , fC32                                                         |  |  |  |  |
| Counting Operation                  | The timer decrements a counter value                                                      |  |  |  |  |
|                                     | When the timer counter reaches "000016", it stops counting after reloading.               |  |  |  |  |
|                                     | If a trigger occurs while counting, content of the reload register is reloaded into the   |  |  |  |  |
|                                     | count register and counting resumes.                                                      |  |  |  |  |
| Divide Ratio                        | 1/n <i>n</i> : setting value of the TAi register (i=0 to 4) 000016 to FFFF16,             |  |  |  |  |
|                                     | but the timer counter does not run if n=000016                                            |  |  |  |  |
| Counter Start Condition             | The TAiS bit in the TABSR register is set to "1" (starts counting) and following triggers |  |  |  |  |
|                                     | occur:                                                                                    |  |  |  |  |
|                                     | External trigger input is provided                                                        |  |  |  |  |
|                                     | Timer counter overflows or underflows                                                     |  |  |  |  |
|                                     | <ul> <li>The TAiOS bit in the ONSF register is set to "1" (timer started)</li> </ul>      |  |  |  |  |
| Counter Stop Condition              | <ul> <li>After the timer counter has reached "000016" and is reloaded</li> </ul>          |  |  |  |  |
|                                     | <ul> <li>When the TAiS bit is set to "0" (stops counting)</li> </ul>                      |  |  |  |  |
| Interrupt Request Generation Timing | The timer counter reaches "000016"                                                        |  |  |  |  |
| TAilN Pin Function                  | Programmable I/O port or trigger input                                                    |  |  |  |  |
| TAio∪⊤ Pin Function                 | Programmable I/O port or pulse output                                                     |  |  |  |  |
| Read from Timer                     | The value in the TAi register is indeterminate when read                                  |  |  |  |  |
| Write to Timer                      | • When the timer counter stops, the value written to the TAi register is also written to  |  |  |  |  |
|                                     | both reload register and counter                                                          |  |  |  |  |
|                                     | • While counting, the value written to the TAi register is written to the reload register |  |  |  |  |
|                                     | (It is transferred to the counter at the next reload timing)                              |  |  |  |  |

## **Table 15.6 One-Shot Timer Mode Specifications**

NOTES:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).



|  |  |     | [                                             | I                                                                                           |                                                                               | 1  |
|--|--|-----|-----------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----|
|  |  |     | Bit<br>Symbol                                 | Bit Name                                                                                    | Function                                                                      | RV |
|  |  |     | TMOD0                                         | Operating Mode                                                                              | <sup>b1b0</sup><br>1 0 : One-shot timer mode                                  | RV |
|  |  |     | TMOD1                                         | Select Bit                                                                                  |                                                                               | RV |
|  |  |     | (b2)                                          | Reserved Bit                                                                                | Set to "0"                                                                    | _  |
|  |  | MR1 | External Trigger Select<br>Bit <sup>(1)</sup> | 0 : Falling edge of input signal to TAim pin<br>1 : Rising edge of input signal to TAim pin | RV                                                                            |    |
|  |  |     | MR2                                           | Trigger Select Bit                                                                          | 0 : The TAiOS bit is enabled<br>1 : Selected by the TAiTGH and<br>TAiTGL bits | RV |
|  |  | MR3 | Set to "0" in the one-sho                     | ot timer mode                                                                               | R۷                                                                            |    |
|  |  |     | TCK0                                          | Count Source                                                                                | b7b6<br>0 0 : f1<br>0 1 : f8                                                  | RV |
|  |  |     | TCK1                                          | Select Bit                                                                                  | $1 0 : f_{2n}^{(2)} \\ 1 1 : f_{C32}$                                         | RV |

Figure 15.12 TA0MR to TA4MR Registers



# 15.1.4 Pulse Width Modulation Mode

In pulse width modulation mode, the timer outputs pulse of desired width continuously (see **Table 15.7**). The timer counter functions as either 16-bit pulse width modulator or 8-bit pulse width modulator. Figure 15.13 shows the TAiMR register (i=0 to 4) in pulse width modulation mode. Figures 15.14 and 15.15 show examples of how a 16-bit pulse width modulator operates and of how an 8-bit pulse width modulator operates.

| Item                                | Specification                                                                             |  |  |  |  |  |
|-------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|--|
| Count Source                        | f1, f8, f2n <sup>(1)</sup> , fC32                                                         |  |  |  |  |  |
| Counting Operation                  | The timer decrements a counter value                                                      |  |  |  |  |  |
|                                     | (The counter functions as an 8-bit or a 16-bit pulse width modulator)                     |  |  |  |  |  |
|                                     | Content of the reload register is reloaded on the rising edge of PWM pulse and count-     |  |  |  |  |  |
|                                     | ing continues.                                                                            |  |  |  |  |  |
|                                     | The timer is not affected by a trigger that is generated during counting.                 |  |  |  |  |  |
| 16-Bit PWM                          | • "H" width = $n/f_j$ $n$ : setting value of the TAi register 000016 to FFFE16            |  |  |  |  |  |
|                                     | f: count source frequency                                                                 |  |  |  |  |  |
|                                     | • Cycle = $(2^{16}-1)/f_j$ fixed                                                          |  |  |  |  |  |
| 8-Bit PWM                           | • "H" width $= n x (m+1) / f_j$                                                           |  |  |  |  |  |
|                                     | • Cycles = $(2^{\beta}-1) x (m+1) / f_j$                                                  |  |  |  |  |  |
|                                     | <i>m</i> : setting value of low-order bit address of the TAi register 0016 to FF16        |  |  |  |  |  |
|                                     | <i>n</i> : setting value of high-order bit address of the TAi register 0016 to FE16       |  |  |  |  |  |
| Counter Start Condition             | External trigger input is provided                                                        |  |  |  |  |  |
|                                     | Timer counter overflows or underflows                                                     |  |  |  |  |  |
|                                     | • The TAiS bit in the TABSR register is set to "1" (starts counting)                      |  |  |  |  |  |
| Counter Stop Condition              | The TAiS bit is set to "0" (stops counting)                                               |  |  |  |  |  |
| Interrupt Request Generation Timing | On the falling edge of the PWM pulse                                                      |  |  |  |  |  |
| TAilN Pin Function                  | Programmable I/O port or trigger input                                                    |  |  |  |  |  |
| TAio∪⊤ Pin Function                 | Pulse output                                                                              |  |  |  |  |  |
| Read from Timer                     | The value in the TAi register is indeterminate when read                                  |  |  |  |  |  |
| Write to Timer                      | • When the timer counter stops, the value written to the TAi register is also written to  |  |  |  |  |  |
|                                     | both reload register and counter                                                          |  |  |  |  |  |
|                                     | • While counting, the value written to the TAi register is written to the reload register |  |  |  |  |  |
|                                     | (It is transferred to the counter at the next reload timing)                              |  |  |  |  |  |

| Table 15.7 | Pulse Width | Modulation | Mode Specificat | ions |
|------------|-------------|------------|-----------------|------|
|------------|-------------|------------|-----------------|------|

NOTES:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

| b7 b6 b5 b4 b3 b2 b1 b0<br>0 1 1 |                                                                   | b1 b0                            | Symb<br>TA0M                              |                                                                 | After Rese<br>716, 035816, 035916, 035A16 0016                                                                                                                           | et |
|----------------------------------|-------------------------------------------------------------------|----------------------------------|-------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                  |                                                                   |                                  | Bit<br>Symbol                             | Bit Name                                                        | Function                                                                                                                                                                 | RW |
|                                  |                                                                   |                                  | TMOD0                                     | Operating Mode                                                  | b1b0<br>1 1 : Pulse width modulation (PWM)                                                                                                                               | RW |
|                                  |                                                                   |                                  | TMOD1                                     | Select Bit                                                      | mode                                                                                                                                                                     | RW |
|                                  |                                                                   |                                  | (b2)                                      | Reserved Bit                                                    | Set to "0"                                                                                                                                                               | RW |
|                                  |                                                                   |                                  | MR1                                       | External Trigger Select<br>Bit <sup>(1)</sup>                   | 0 : Falling edge of input signal to TAiוא pin<br>1 : Rising edge of input signal to TAiוא pin                                                                            | RW |
|                                  |                                                                   |                                  | MR2                                       | Trigger Select Bit                                              | 0 : The TAiS bit is enabled<br>1 : Selected by the TAiTGH and TAiTGL<br>bits                                                                                             | RW |
|                                  |                                                                   |                                  | MR3                                       | 16/8-Bit PWM Mode<br>Select Bit                                 | 0: Functions as a 16-bit pulse width modulator<br>1: Functions as an 8-bit pulse width modulator                                                                         |    |
|                                  |                                                                   |                                  | TCK0                                      | Count Source                                                    | b7b6<br>0 0 : f1<br>0 1 : f8                                                                                                                                             | RW |
|                                  |                                                                   |                                  | TCK1                                      | Select Bit                                                      | 1 0 : $f_{2n}^{(2)}$<br>1 1 : $f_{C32}$                                                                                                                                  | RW |
| ",<br>T<br>"                     | IR1 bit settin<br>002" (input to<br>AiTGL bits a<br>112" (TAi ove | the TA<br>are set to<br>rflow ar | iın pin). T<br>o "012" (TE<br>nd underflo | he MR1 bit can be set to e<br>32 overflow and underflow<br>ow). | iTGL bits in the TRGSR register are se<br>either "0" or "1" when the TAiTGH and<br>r), "102" (TAi overflow and underflow) o<br>division (n=0) or divide-by-2n (n=1 to 15 | r  |

Figure 15.13 TA0MR to TA4MR Registers



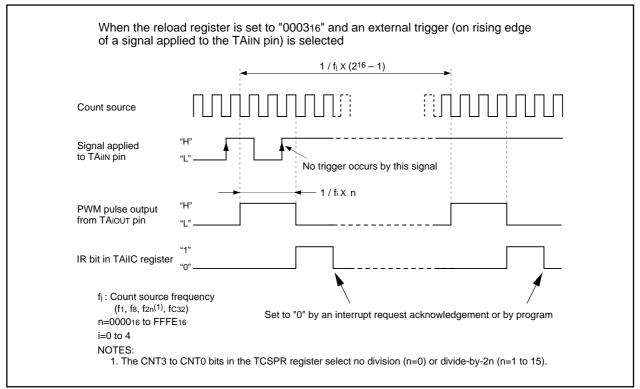
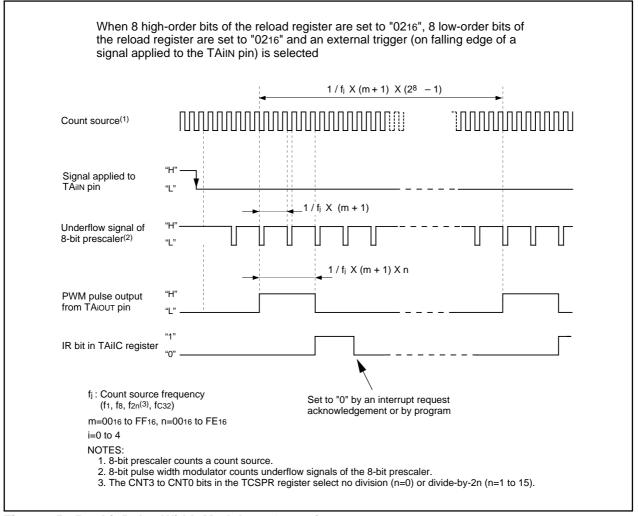
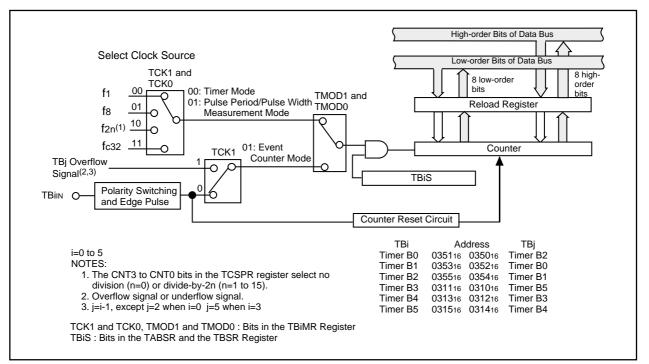



Figure 15.14 16-bit Pulse Width Modulator Operation





Figure 15.15 8-bit Pulse Width Modulator Operation

# 15.2 Timer B

Figure 15.16 shows a block diagram of the timer B. Figures 15.17 to 15.19 show registers associated with the timer B. The timer B supports the following three modes. The TMOD1 and TMOD0 bits in the TBiMR register (i=0 to 5) determine which mode is used.

- Timer mode : The timer counts an internal count source.
- Event counter mode : The timer counts pulses from an external source or overflow and underflow of another timer.
- Pulse period/pulse width measurement mode : The timer measures pulse period or pulse width of an external signal.

Table 15.8 lists TBin pin settings.





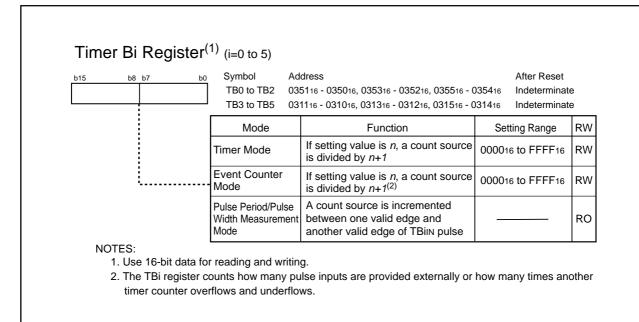
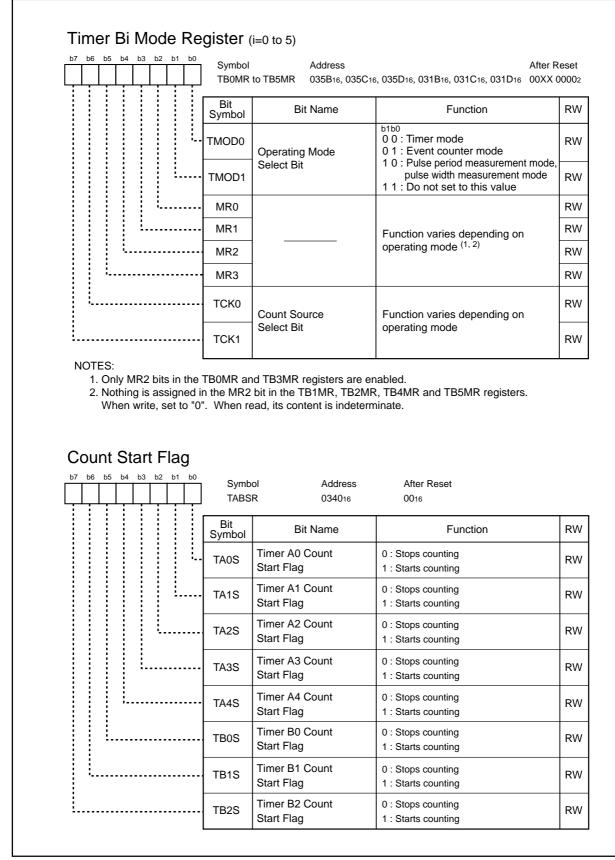




Figure 15.17 TB0 to TB5 Registers





| b7 b6 b5 b4 b3 b2 b1 b0 | Symb<br>TBSR  |                                                       | After Reset<br>000X XXXX2                 |    |
|-------------------------|---------------|-------------------------------------------------------|-------------------------------------------|----|
|                         | Bit<br>Symbol | Bit Name                                              | Function                                  | RW |
|                         | (b4 - b0)     | Nothing is assigned. Whe<br>When read, its content is |                                           | -  |
|                         | TB3S          | Timer B3 Count<br>Start Flag                          | 0 : Stops counting<br>1 : Starts counting | RW |
|                         | TB4S          | Timer B4 Count<br>Start Flag                          | 0 : Stops counting<br>1 : Starts counting | RW |
|                         | TB5S          | Timer B5 Count<br>Start Flag                          | 0 : Stops counting<br>1 : Starts counting | RW |

Figure 15.19 TBSR Register

| Port Name | Function | Setting                           |                                   |  |
|-----------|----------|-----------------------------------|-----------------------------------|--|
|           |          | PS1, PS3 <sup>(1)</sup> Registers | PD7, PD9 <sup>(1)</sup> Registers |  |
| P90       | TB0in    | PS3_0=0                           | PD9_0=0                           |  |
| P91       | TB1IN    | PS3_1=0                           | PD9_1=0                           |  |
| P92       | TB2IN    | PS3_2=0                           | PD9_2=0                           |  |
| P93       | TB3IN    | PS3_3=0                           | PD9_3=0                           |  |
| P94       | TB4IN    | PS3_4=0                           | PD9_4=0                           |  |
| P71       | ΤΒ5ιΝ    | PS1_1=0                           | PD7_1=0                           |  |

NOTES:

 Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" ( write enable). Do not generate an interrupt or a DMA transfer between the instruction to set the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.



## 15.2.1 Timer Mode

In timer mode, the timer counts an internally generated count source (see **Table 15.9**). Figure 15.20 shows the TBiMR register (i=0 to 5) in timer mode.

| Item                                | Specification                                                                             |  |  |  |  |
|-------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|
| Count Source                        | f1, f8, f2n <sup>(1)</sup> , fC32                                                         |  |  |  |  |
| Counting Operation                  | The timer decrements a counter value                                                      |  |  |  |  |
|                                     | When the timer counter underflows, content of the reload register is reloaded into the    |  |  |  |  |
|                                     | count register and counting resumes                                                       |  |  |  |  |
| Divide Ratio                        | 1/(n+1) n: setting value of the TBi register (i=0 to 5) 000016 to FFFF16                  |  |  |  |  |
| Counter Start Condition             | The TBiS bits in the TABSR and TBSR registers are set to "1" (starts counting)            |  |  |  |  |
| Counter Stop Condition              | The TBiS bit is set to "0" (stops counting)                                               |  |  |  |  |
| Interrupt Request Generation Timing | Timer counter underflows                                                                  |  |  |  |  |
| TBilN Pin Function                  | Programmable I/O port                                                                     |  |  |  |  |
| Read from Timer                     | The TBi register indicates counter value                                                  |  |  |  |  |
| Write to Timer                      | • When the timer counter stops, the value written to the TBi register is also written to  |  |  |  |  |
|                                     | both reload register and counter                                                          |  |  |  |  |
|                                     | • While counting, the value written to the TBi register is written to the reload register |  |  |  |  |
|                                     | (It is transferred to the counter at the next reload timing)                              |  |  |  |  |

#### Table 15.9 Timer Mode Specifications

NOTES:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

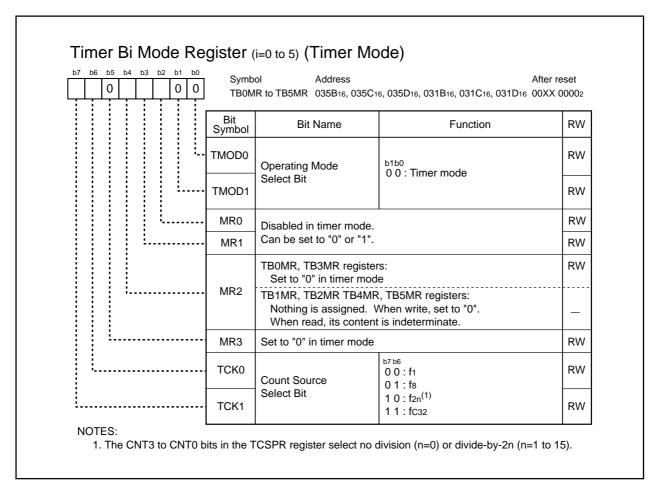



Figure 15.20 TB0MR to TB5MR Registers



# 15.2.2 Event Counter Mode

In event counter mode, the timer counts how many external signals are applied or how many times another timer overflows and underflows. (See **Table 15.10**) Figure 15.21 shows the TBiMR register (i=0 to 5) in event counter mode.

| Table 15.10 Event Counter Mode Specificatio |
|---------------------------------------------|
|---------------------------------------------|

| Item                                | Specification                                                                             |  |  |  |  |
|-------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|
| Count Source                        | • External signal applied to the TBiIN pin (i = 0 to 5) (valid edge can be selected by    |  |  |  |  |
|                                     | program)                                                                                  |  |  |  |  |
|                                     | • TBj overflow or underflow signal (j=i-1, except j=2 when i=0, j=5 when i=3)             |  |  |  |  |
| Counting Operation                  | The timer decrements a counter value                                                      |  |  |  |  |
|                                     | When the timer counter underflows, content of the reload register is reloaded into the    |  |  |  |  |
|                                     | count register to continue counting                                                       |  |  |  |  |
| Divide Ratio                        | 1/(n+1) n: setting value of the TBi register 000016 to FFFF16                             |  |  |  |  |
| Counter Start Condition             | The TBiS bits in the TABSR and TBSR register are set to "1" (starts counting)             |  |  |  |  |
| Counter Stop Condition              | The TBiS bit is set to "0" (stops counting)                                               |  |  |  |  |
| Interrupt Request Generation Timing | The timer counter underflows                                                              |  |  |  |  |
| TBiIN Pin Function                  | Programmable I/O port or count source input                                               |  |  |  |  |
| Read from Timer                     | The TBi register indicates counter value                                                  |  |  |  |  |
| Write to Timer                      | • When the timer counter stops, the value written to the TBi register is also written to  |  |  |  |  |
|                                     | both reload register and counter                                                          |  |  |  |  |
|                                     | • While counting, the value written to the TBi register is written to the reload register |  |  |  |  |
|                                     | (It is transferred to the counter at the next reload timing)                              |  |  |  |  |



| b7 b6 b5 b4 b3 b2 | b1 b0<br>0 1 | Symb<br>TB0M  |                                                                             | After re<br>16, 035D16, 031B16, 031C16, 031D16 00XX (                                                                 |                                                                |  |    |
|-------------------|--------------|---------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|----|
|                   |              | Bit<br>Symbol | Bit Name                                                                    | Function                                                                                                              | RW                                                             |  |    |
|                   |              | TMOD0         | Operating Mode                                                              | b1b0                                                                                                                  | R٧                                                             |  |    |
|                   |              | TMOD1         | Select Bit                                                                  | 0 1 : Event counter mode                                                                                              | R٧                                                             |  |    |
|                   |              | MR0           | Count Polarity Select                                                       | b3b2<br>0 0 : Counts falling edges of external signal<br>0 1 : Counts rising edges of external signal                 | RV                                                             |  |    |
|                   |              | MR1           | Bit <sup>(1)</sup>                                                          | <ul><li>1 0 : Counts falling and rising edges of<br/>external signal</li><li>1 1 : Do not set to this value</li></ul> | RW                                                             |  |    |
|                   |              |               |                                                                             |                                                                                                                       | TB0MR and TB3MR registers:<br>Set to "0" in event counter mode |  | RW |
|                   |              |               | TB1MR, TB2MR, TB4MI<br>Nothing is assigned. Wh<br>When read, its content is | nen write, set to "0".                                                                                                | -                                                              |  |    |
|                   |              | MR3           | Disabled in event counte<br>When read, its content is                       | r mode. When write, set to "0".<br>s indeterminate.                                                                   | _                                                              |  |    |
| <u> </u>          |              | TCK0          | Disabled in event counte<br>Can be set to "0" or "1".                       | r mode.                                                                                                               | RW                                                             |  |    |
|                   |              | TCK1          | Event Clock<br>Select Bit                                                   | 0 : Input signal from the TBiIN pin<br>1 : TBj overflows <sup>(2)</sup>                                               | RW                                                             |  |    |

either "0" or "1", when the TCK1 bit is set to "1".

2. j=i - 1, except j=2 when i=0 and j=5 when i=3.

Figure 15.21 TB0MR to TB5MR Registers



# 15.2.3 Pulse Period/Pulse Width Measurement Mode

In pulse period/pulse width measurement mode, the timer measures pulse period or pulse width of an external signal. (See **Table 15.11**) Figure 15.22 shows the TBiMR register (i=0 to 5) in pulse period/pulse width measurement mode. Figure 15.23 shows an operation example in pulse period measurement mode. Figure 15.24 shows an operation example in the pulse width measurement mode.

| Item                                | Specification                                                                              |  |  |
|-------------------------------------|--------------------------------------------------------------------------------------------|--|--|
| Count Source                        | f1, f8, f2n <sup>(3)</sup> , fC32                                                          |  |  |
| Counting Operation                  | The timer increments a counter value                                                       |  |  |
|                                     | Counter value is transferred to the reload register on the valid edge of a pulse to be     |  |  |
|                                     | measured. It is set to "000016" and the timer continues counting                           |  |  |
| Counter Start Condition             | The TBiS bits (i=0 to 5) in the TABSR and TBSR register are set to "1" (starts counting)   |  |  |
| Counter Stop Condition              | The TBiS bit is set to "0" (stops counting)                                                |  |  |
| Interrupt Request Generation Timing | <ul> <li>On the valid edge of a pulse to be measured<sup>(1)</sup></li> </ul>              |  |  |
|                                     | The timer counter overflows                                                                |  |  |
|                                     | The MR3 bit in the TBiMR register is set to "1" (overflow) simultaneously. When the        |  |  |
|                                     | TBiS bit is set to "1" (start counting) and the next count source is counted after setting |  |  |
|                                     | the MR3 bit to "1" (overflow), the MR3 bit can be set to "0" (no overflow) by writing to   |  |  |
|                                     | the TBiMR register.                                                                        |  |  |
| TBiin Pin Function                  | Input for a pulse to be measured                                                           |  |  |
| Read from Timer                     | The TBi register indicates reload register values (measurement results) <sup>(2)</sup>     |  |  |
| Write to Timer                      | Value written to the TBi register can be written to neither reload register nor counter    |  |  |

Table 15.11 Pulse Period/Pulse Width Measurement Mode Specifications

NOTES:

- 1. No interrupt request is generated when the pulse to be measured is on the first valid edge after the timer has started counting.
- 2. The TBi register is in an indeterminate state until the pulse to be measured is on the second valid edge after the timer has started counting.
- 3. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).



| b6 b5 b4 b3 b2 b1 b0<br>1 0                                                                                       | Symb<br>TB0M                                                                                   |                                                                                                                                                 | After re<br>6, 035D16, 031B16, 031C16, 031D16 00XX (                                                                                                                       |    |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                                                                                   | Bit<br>Symbol                                                                                  | Bit Name                                                                                                                                        | Function                                                                                                                                                                   | RV |
|                                                                                                                   | TMOD0                                                                                          | DD0 Operating Mode                                                                                                                              | <sup>b1b0</sup><br>1 0 : Pulse period measurement mode,                                                                                                                    | RW |
|                                                                                                                   | TMOD1                                                                                          | Select Bit                                                                                                                                      | Pulse width measurement mode                                                                                                                                               | RW |
|                                                                                                                   | MR0                                                                                            | Measurement Mode                                                                                                                                | b3b2<br>0 0 : Pulse period measurement 1<br>0 1 : Pulse period measurement 2                                                                                               | RW |
|                                                                                                                   | MR1                                                                                            | Select Bit <sup>(1)</sup>                                                                                                                       | 1 0 : Pulse width measurement<br>1 1 : Do not set to this value                                                                                                            | RW |
|                                                                                                                   |                                                                                                | TB0MR, TB3MR registers:<br>Set to "0" in pulse period/pulse width measurement mode                                                              |                                                                                                                                                                            | RW |
| i                                                                                                                 | MR2                                                                                            | TB1MR, TB2MR TB4MR, TB5MR registers:<br>Nothing is assigned. When write, set to "0".<br>When read, its content is indeterminate.                |                                                                                                                                                                            | _  |
| МR3<br>тСК0                                                                                                       |                                                                                                | Timer Bi Overflow Flag <sup>(2)</sup>                                                                                                           | 0 : No overflow<br>1 : Overflow                                                                                                                                            | RC |
|                                                                                                                   |                                                                                                | TCK0<br>Count Source                                                                                                                            | b7b6<br>0 0 : f1<br>0 1 : f8                                                                                                                                               | RW |
|                                                                                                                   | TCK1                                                                                           | Select Bit                                                                                                                                      | 1 0 : f <sub>2n</sub> <sup>(3)</sup><br>1 1 : fC32                                                                                                                         | RW |
| Pulse period meas<br>Measures betwe<br>Pulse period meas<br>Measures betwe<br>Pulse width measu<br>Measures betwe | urement 1<br>een the fal<br>urement 2<br>een the ris<br>rement (t<br>een a fallin<br>ng edge a | (the MR1 and MR0 bits ar<br>ing edge and the next risin<br>he MR1 and MR0 bits are<br>g edge and the next rising<br>nd the next falling edge of | re set to "002") :<br>ng edge of a pulse to be measured<br>re set to "012") :<br>g edge of a pulse to be measured<br>set to "102") :<br>edge of a pulse to be measured and |    |

of the count source are counted, while the TBiS bits in the TABSR and TBSR registers are set to "1" (starts counting).

The MR3 bit cannot be set to "1" by program.

3. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

Figure 15.22 TB0MR to TB5MR Registers



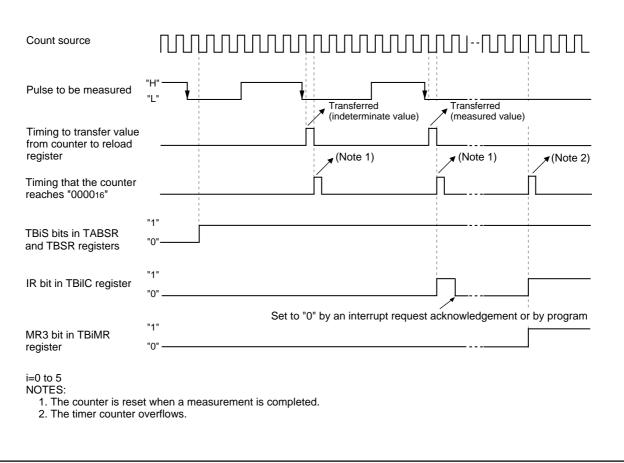



Figure 15.23 Operation Example in Pulse Period Measurement Mode



Figure 15.24 Operation Example in Pulse Width Measurement Mode

# 16. Three-Phase Motor Control Timer Functions

Three-phase motor driving waveform can be output by using the timers A1, A2, A4 and B2. Table 16.1 lists specifications of the three-phase motor control timer functions. Table 16.2 lists pin settings. Figure 16.1 shows a block diagram. Figures 16.2 to 16.7 show registers associated with the three-phase motor control timer functions.

| Item                              | Specification                                                                   |
|-----------------------------------|---------------------------------------------------------------------------------|
| Three-Phase Waveform Output Pin   | Six pins (U, $\overline{U}$ , V, $\overline{V}$ , W, $\overline{W}$ )           |
| Forced Cutoff <sup>(1)</sup>      | Apply a low-level ("L") signal to the NMI pin                                   |
| Timers to be Used                 | Timer A4, A1, A2 (used in one-shot timer mode):                                 |
|                                   | Timer A4: U- and $\overline{U}$ -phase waveform control                         |
|                                   | Timer A1: V- and $\overline{V}$ -phase waveform control                         |
|                                   | Timer A2: W- and $\overline{W}$ -phase waveform control                         |
|                                   | Timer B2 (used in timer mode):                                                  |
|                                   | Carrier wave cycle control                                                      |
|                                   | Dead time timer (three 8-bit timers share reload register):                     |
|                                   | Dead time control                                                               |
| Output Waveform                   | Triangular wave modulation, Sawtooth wave modulation                            |
|                                   | Can output a high-level waveform or a low-level waveform for one cycle;         |
|                                   | Can set positive-phase level and negative-phase level separately                |
| Carrier Wave Cycle                | Triangular wave modulation: <i>count source</i> x ( <i>m+1</i> ) x 2            |
|                                   | Sawtooth wave modulation: <i>count source</i> x (m+1)                           |
|                                   | m. setting value of the TB2 register, 000016 to FFFF16                          |
|                                   | Count source: f1, f8, f2n <sup>(2)</sup> , fc32                                 |
| Three-Phase PWM Output Width      | Triangular wave modulation: <i>count source</i> x <i>n</i> x 2                  |
|                                   | Sawtooth wave modulation: <i>count source</i> x n                               |
|                                   | n: setting value of the TA4, TA1 and TA2 register (of the TA4, TA41, TA1, TA11, |
|                                   | TA2 and TA21 registers when setting the INV11 bit to "1"), 000116 to FFFF16     |
|                                   | Count source: f1, f8, f2n <sup>(2)</sup> , fc32                                 |
| Dead Time                         | Count source x p, or no dead time                                               |
|                                   | p: setting value of the DTT register, 0116 to FF16                              |
|                                   | Count source: f1, or f1 divided by 2                                            |
| Active Level                      | Selected from a high level ("H") or low level ("L")                             |
| Positive- and Negative-Phase Con- | Positive and negative-phases concurrent active disable function                 |
| current Active Disable Function   | Positive and negative-phases concurrent active detect function                  |
| Interrupt Frequency               | For the timer B2 interrupt, one carrier wave cycle-to-cycle basis through 15    |
|                                   | time- carrier wave cycle-to-cycle basis can be selected                         |

Table 16.1 Three-Phase Motor Control Timer Functions Specification

#### NOTES:

- 1. Forced cutoff by the signal applied to the NMI pin is available when the INV02 bit is set to "1" (threephase motor control timer functions) and the INV03 bit is set to "1" (three-phase motor control timer output enabled).
- 2. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

## Table 16.2 Pin Settings

| Pin   | Setting                           |                      |              |  |  |  |  |
|-------|-----------------------------------|----------------------|--------------|--|--|--|--|
|       | PS1, PS2 Registers <sup>(1)</sup> | PSL1, PSL2 Registers | PSC Register |  |  |  |  |
| P72/V | PS1_2 =1                          | PSL1_2 =0            | PSC_2 =1     |  |  |  |  |
| P73/V | PS1_3 =1                          | PSL1_3 =1            | PSC_3 =0     |  |  |  |  |
| P74/W | PS1_4 =1                          | PSL1_4 =1            | PSC_4 =0     |  |  |  |  |
| P75/W | PS1_5 =1                          | PSL1_5 =0            |              |  |  |  |  |
| P80/U | PS2_0 =1                          | PSL2_0 =1            |              |  |  |  |  |
| P81/Ū | PS2_1 =1                          | PSL2_1 =0            |              |  |  |  |  |

NOTES:

1. Set the PS1\_5 to PS1\_2 bits and PS2\_1 and PS2\_0 bits in the PS1 and PS2 registers to "1" after the INV02 bit is set to "1".



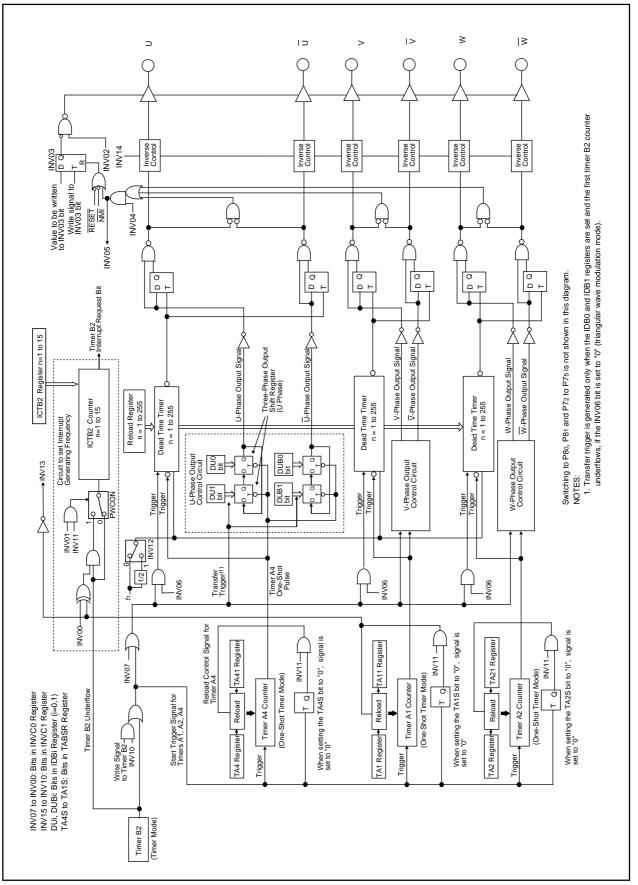



Figure 16.1 Three-Phase Motor Control Timer Functions Block Diagram

| b6 b5 | b4 b3 | b2 b | 1 60 | Sym<br>INV    |                                                                                         | After Reset<br>0016                                                                                                                                                                                                                     |    |
|-------|-------|------|------|---------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|       |       |      |      | Bit<br>Symbol | Bit Name                                                                                | Function                                                                                                                                                                                                                                | RW |
|       |       |      |      | INV00         | Interrupt Enable Output<br>Polarity Select Bit <sup>(3)</sup>                           | <ol> <li>The ICTB2 counter is incremented by one on the<br/>rising edge of the timer A1 reload control signal</li> <li>The ICTB2 counter is incremented by one on the<br/>falling edge of the timer A1 reload control signal</li> </ol> | RW |
|       |       |      |      | INV01         | Interrupt Enable Output<br>Specification Bit <sup>(2, 3)</sup>                          | <ul><li>0: ICTB2 counter is incremented by one when<br/>timer B2 counter underflows</li><li>1: Selected by the INV00 bit</li></ul>                                                                                                      | RW |
|       |       |      |      | INV02         | Mode Select Bit <sup>(4, 5, 6)</sup>                                                    | 0: No three-phase control timer function<br>1: Three-phase control timer function                                                                                                                                                       | RW |
|       |       |      |      | INV03         | Output Control Bit <sup>(6, 7)</sup>                                                    | 0: Disables three-phase control timer output<br>1: Enables three-phase control timer output                                                                                                                                             | RW |
|       |       |      |      | INV04         | Positive and Negative-<br>Phases Concurrent Active<br>Disable Function Enable Bit       | 0: Enables concurrent active output<br>1: Disables concurrent active output                                                                                                                                                             | RW |
|       |       |      |      | INV05         | Positive and Negative-<br>Phases Concurrent Active<br>Output Detect Flag <sup>(8)</sup> | 0: Not detected<br>1: Detected                                                                                                                                                                                                          | RW |
|       |       |      |      | INV06         | Modulation Mode<br>Select <sup>(9, 10)</sup>                                            | 0: Triangular wave modulation mode<br>1: Sawtooth wave modulation mode                                                                                                                                                                  | RW |
|       |       |      |      | INV07         | Software Trigger Select                                                                 | Transfer trigger is generated when the<br>INV07 bit is set to "1". Trigger to the dead<br>time timer is also generated when setting the<br>INV06 bit to "1". Its value is "0" when read.                                                | RW |

NOTES:

1. Set the INVC0 register after the PRC1 bit in the PRCR register is set to "1" (write enable). Rewrite the INV02 to INV00 and INV06 bits when the timers A1,A2, A4 and B2 stop.

- 2. Set the INV01 bit to "1" after setting the ICTB2 register.
- 3. The INV01 and INV00 bit settings are enabled only when the INV11 bit in the INVC1 register is set to "1" (three-phase mode 1). The ICTB2 counter is incremented by one every time the timer B2 counter underflows, regardless of INV01 and INV00bit settings, when the INV11 bit is set to "0" (three-phase mode). When setting the INV01 bit to "1", set the timer A1 count start flag before the first timer B2 counter underflows. When the INV00 bit is set to "1", the first interrupt is generated when the timer B2 counter underflows n-1 times, if n is the value set in the ICTB2 counter. Subsequent interrupts are generated every n times the timer B2 counter underflows.
- 4. Set the INV02 bit to "1" to operate the dead time timer, U-, V-and W-phase output control circuits and ICTB2 counter.
- 5. Set pins after the INV02 bit is set to "1". See Table 16.2 for pin settings.
- 6. When the INV02 bit is set to "1" and the INV03 bit to "0", the U,  $\overline{U}$ , V,  $\overline{V}$ , W and  $\overline{W}$  pins, including pins shared with other output functions, are all placed in high-impedance states.
- 7. The INV03 bit is set to "0" when the followings occurs :

- Reset

- A concurrent active state occurs while the INV04 bit is set to "1"
- The INV03 bit is set to "0" by program An "H" signal applied to the NMI pin changes to an "L" signal
- 8. The INV05 bit can not be set to "1" by program. Set the INV04 bit to "0", as well, when setting the INV05 bit to "0".
- 9. The following table describes how the INV06 bit setting works.

| Item                                                                                            | INV06 = 0                                                                                         | INV06 = 1                                                                                |  |  |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|
| Mode                                                                                            | Triangular wave modulation mode                                                                   | Sawtooth wave modulation mode                                                            |  |  |
| Timing to Transfer from the IDB0<br>and IDB1 Registers to Three-<br>Phase Output Shift Register | Transferred once by generating a<br>transfer trigger after setting the IDB0<br>and IDB1 registers | Transferred every time a transfer trigger is generated                                   |  |  |
| Timing to Trigger the Dead Time<br>Timer when the INV16 Bit=0                                   | On the falling edge of a one-shot pulse of the timer A1, A2 or A4                                 | By a transfer trigger, or the falling edge of a one-shot pulse of the timer A1, A2 or A4 |  |  |
| INV13 Bit                                                                                       | Enabled when the INV11 bit=1 and the INV06 bit=0                                                  | Disabled                                                                                 |  |  |

Transfer trigger : Timer B2 counter underflows and write to the INV07 bit, or write to the TB2 register when INV10 = 1 10. When the INV06 bit is set to "1", set the INV11 bit to "0" (three-phase mode 0) and the PWCON bit in the TB2SC register to "0" (timer B2 counter underflows).

#### Figure 16.2 INVC0 Register



| b6         b5         b4         b3         b2         b1         b0           0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1< | Symbo<br>INVC1                                                                   |                                                                                                 | After Reset<br>0016                                                                                                                                                                 |            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bit<br>Symbol                                                                    | Bit Name                                                                                        | Function                                                                                                                                                                            | R١         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | INV10                                                                            | Timer A1, A2 and A4<br>Start Trigger Select Bit                                                 | <ul><li>0: Timer B2 counter underflows</li><li>1: Timer B2 counter underflows and write to the TB2 register</li></ul>                                                               | R١         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | INV11                                                                            | Timer A1-1, A2-1 and A4-1 Control Bit <sup>(2, 3)</sup>                                         | 0: Three-phase mode 0<br>1: Three-phase mode 1                                                                                                                                      | R۱         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | INV12                                                                            | Dead Time Timer<br>Count Source Select Bit                                                      | 0 : f1<br>1 : f1 divided-by-2                                                                                                                                                       | R۱         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | INV13                                                                            | Carrier Wave Detect Flag <sup>(4)</sup>                                                         | 0: Timer A1 reload control signal is "0"<br>1: Timer A1 reload control signal is "1"                                                                                                | R          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | INV14                                                                            | Output Polarity Control Bit                                                                     | 0 : Active "L" of an output waveform<br>1 : Active "H" of an output waveform                                                                                                        | R١         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | INV15                                                                            | Dead Time Disable Bit                                                                           | 0: Enables dead time<br>1: Disables dead time                                                                                                                                       | RV         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | INV16                                                                            | Dead Time Timer Trigger<br>Select Bit                                                           | <ul> <li>0: Falling edge of a one-shot pulse of the timer A1, A2 and A4<sup>(5)</sup></li> <li>1: Rising edge of the three-phase output shift register (U-, V-, W-phase)</li> </ul> |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (b7)                                                                             | Reserved Bit                                                                                    | Set to "0"                                                                                                                                                                          | R۱         |
| The timers A1, A2, A4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , and B2 r                                                                       | the PRC1 bit in the PRCR<br>nust be stopped during re<br>INV11 bit setting works.               | register is set to "1" (write enable).<br>write.                                                                                                                                    |            |
| ltem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  | INV11 = 0                                                                                       | JNV11 = 1                                                                                                                                                                           |            |
| Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Three-pl                                                                         | nase mode 0                                                                                     | Three-phase mode 1                                                                                                                                                                  |            |
| TA11, TA21 and TA41 Registers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Not use                                                                          | t                                                                                               | Used                                                                                                                                                                                |            |
| INV01 and INV00 Bit in the INVC0 Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | increme                                                                          | I. The ICTB2 counter is<br>nted whenever the timer E<br>underflows                              | 32 Enabled                                                                                                                                                                          |            |
| INV13 Bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Disabled                                                                         | 1                                                                                               | Enabled when INV11=1 and INV0                                                                                                                                                       | 6=0        |
| INV11 bit to "0". Also<br>"0" (Timer B2 counter<br>4. The INV13 bit setting<br>mode) and the INV11<br>5. If the following conditi<br>• The INV15 bit is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , when the<br>underflow<br>is enabled<br>bit to "1".<br>ons are al<br>set to "0" | INV11 bit is set to "0", se<br>/s).<br>I only when the INV06 bit<br>I met, set the INV16 bit to | awtooth wave modulation mode), set th<br>at the PWCON bit in the TB2SC register<br>is set to "0" (Triangular wave modulation<br>"1".<br>ave different values when the INV03 bi      | r to<br>on |

Figure 16.3 INVC1 Register



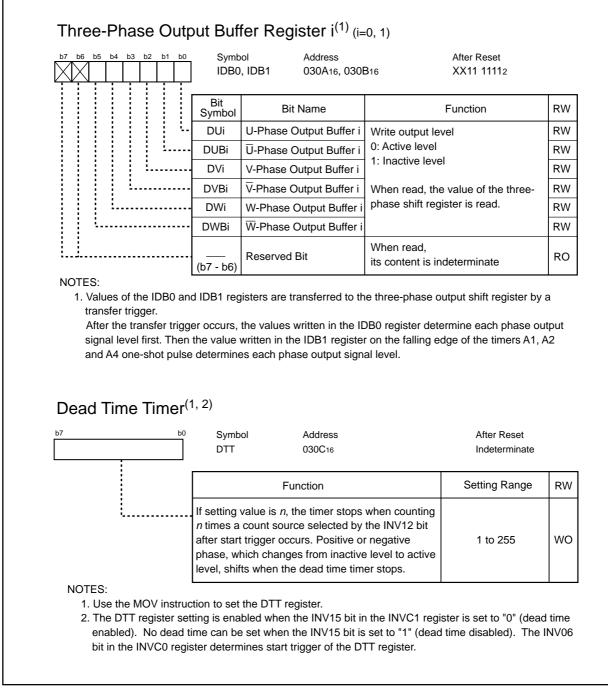
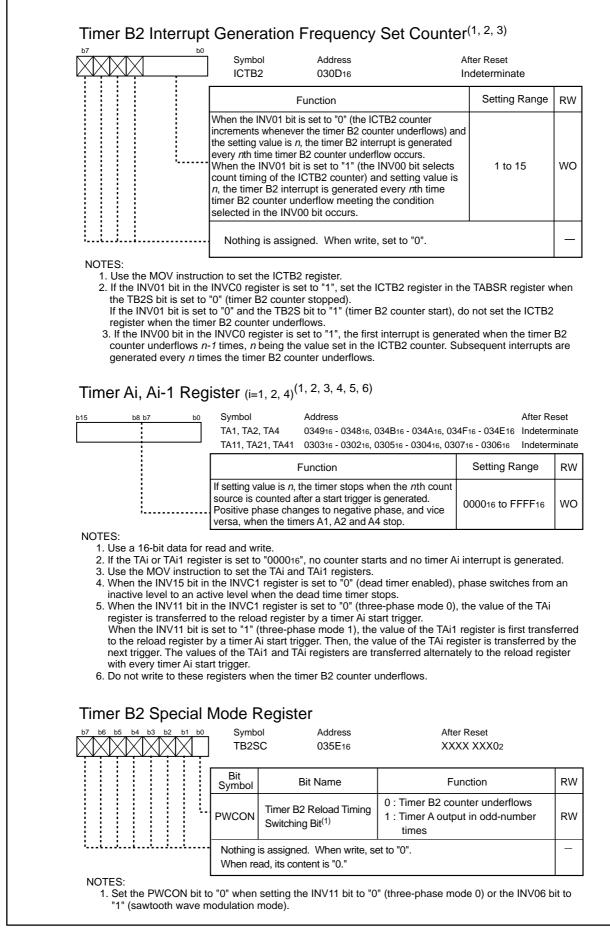
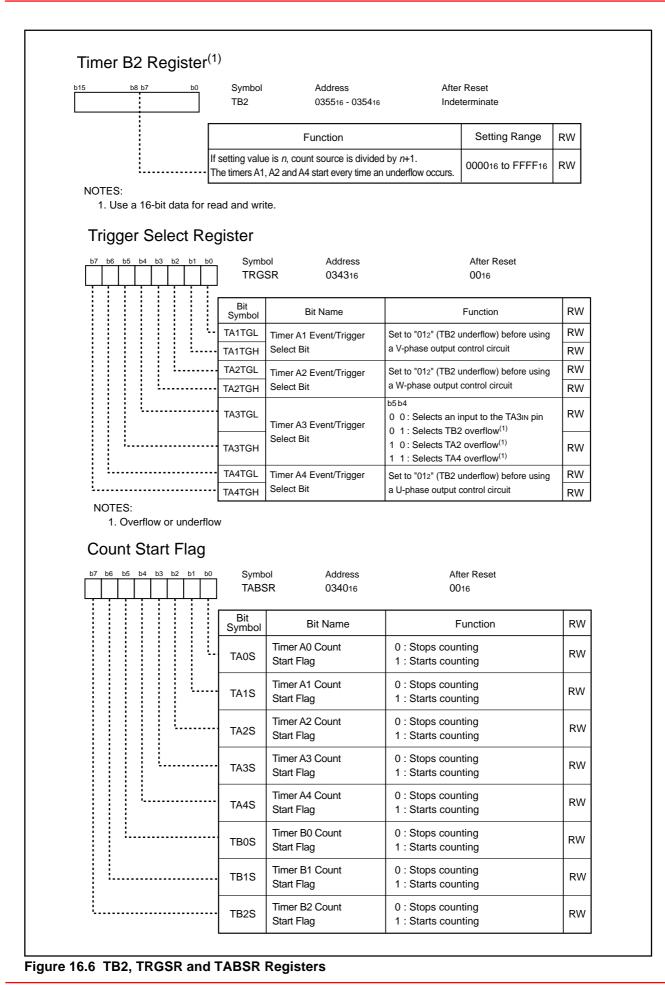




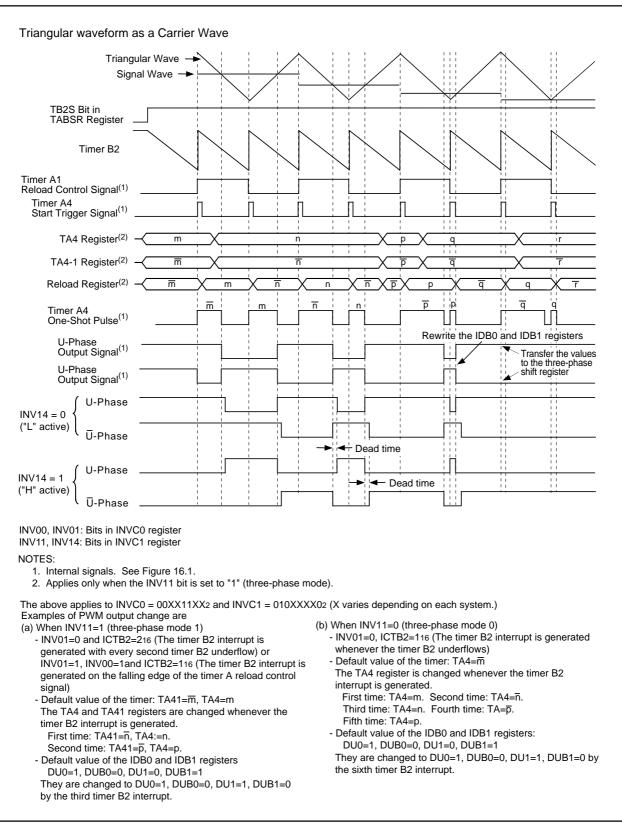

Figure 16.4 IDB0 and IDB1 registers, DTT Register





#### Figure 16.5 ICTB2 Register, TA1, TA2, TA4, TA11, TA21 and TA41 Registers, TB2SC Register






|                | 0 1 0  | Symb<br>TA1M                                                                    | ol Add<br>IR, TA2MR, TA4MR 035                                                                                                                                                                                                                     | ress After Reset<br>716, 035816, 035A16 0016                                                                                                                                                                                                                                                                                                                                 |     |
|----------------|--------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                |        | Bit<br>Symbol                                                                   | Bit Name                                                                                                                                                                                                                                           | Function                                                                                                                                                                                                                                                                                                                                                                     | R   |
|                |        | TMOD0<br>TMOD1                                                                  | Operating Mode<br>Select Bit                                                                                                                                                                                                                       | Set to "102" (one-shot timer<br>mode) when using the three-phase<br>motor control timer function                                                                                                                                                                                                                                                                             | R   |
|                |        | MR0                                                                             | Reserved Bit                                                                                                                                                                                                                                       | Set to "0"                                                                                                                                                                                                                                                                                                                                                                   | R   |
|                |        | MR1                                                                             | External Trigger Select Bit                                                                                                                                                                                                                        | Set to "0" when using the three-phase motor control timer function                                                                                                                                                                                                                                                                                                           | R   |
|                |        | MR2                                                                             | Trigger Select Bit                                                                                                                                                                                                                                 | Set to "1" (selected by the TRGSR register) when using the three-<br>phase motor control timer function                                                                                                                                                                                                                                                                      | R   |
|                |        | MR3                                                                             | Set to "0" with the three-ph                                                                                                                                                                                                                       | hase motor control timer function                                                                                                                                                                                                                                                                                                                                            | R١  |
|                |        | ТСК0                                                                            | Count Source Select Bit                                                                                                                                                                                                                            | b7 b6<br>0 0 : f1<br>0 1 : f8                                                                                                                                                                                                                                                                                                                                                | R   |
|                |        |                                                                                 |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                              | 1   |
|                |        |                                                                                 |                                                                                                                                                                                                                                                    | 1 0 : f <sub>2n</sub> <sup>(1)</sup><br>1 1 : f <sub>C32</sub><br>livision (n=0) or divide-by-2n (n=1 to 1                                                                                                                                                                                                                                                                   |     |
| 1. The CNT3 to |        | its in the T                                                                    | CSPR register select no d                                                                                                                                                                                                                          | 1 0 : f2n <sup>(1)</sup><br>1 1 : fC32                                                                                                                                                                                                                                                                                                                                       |     |
| 1. The CNT3 to | ode Re | its in the T<br>egister<br>Symb                                                 | CSPR register select no d                                                                                                                                                                                                                          | 1 0 : f <sub>2n</sub> <sup>(1)</sup><br>1 1 : f <sub>C32</sub><br>livision (n=0) or divide-by-2n (n=1 to 1<br>After Reset                                                                                                                                                                                                                                                    | 5). |
| 1. The CNT3 to | ode Re | its in the T<br>Egister<br>Symb<br>TB2N<br>Bit                                  | CSPR register select no d<br>ol Address<br>/IR 035D16                                                                                                                                                                                              | 1 0 : f <sub>2n</sub> <sup>(1)</sup><br>1 1 : f <sub>C32</sub><br>livision (n=0) or divide-by-2n (n=1 to 1<br>After Reset<br>00XX 00002<br>Function<br>Set to "002" (timer mode) when using<br>the three-phase motor control timer                                                                                                                                           | R   |
| 1. The CNT3 to | ode Re | its in the T<br>egister<br>Symb<br>TB2N<br>Bit<br>Symbol<br>TMOD0               | CSPR register select no d<br>ol Address<br>//R 035D16<br>Bit Name<br>Operating Mode<br>Select Bit<br>Disabled when using the t<br>When write, set to "0".                                                                                          | 1 0 : f <sub>2n</sub> <sup>(1)</sup><br>1 1 : f <sub>C32</sub><br>livision (n=0) or divide-by-2n (n=1 to 1<br>After Reset<br>00XX 00002<br>Function<br>Set to "002" (timer mode) when using<br>the three-phase motor control timer<br>function<br>hree-phase motor control timer function.                                                                                   | 5). |
| 1. The CNT3 to | ode Re | its in the T<br>egister<br>Symbol<br>TMOD0<br>TMOD1<br>MR0                      | CSPR register select no d<br>ol Address<br>//R 035D16<br>Bit Name<br>Operating Mode<br>Select Bit<br>Disabled when using the t<br>When write, set to "0".<br>When read, its content is i                                                           | 1 0 : f <sub>2n</sub> <sup>(1)</sup><br>1 1 : f <sub>C32</sub><br>livision (n=0) or divide-by-2n (n=1 to 1<br>After Reset<br>00XX 00002<br>Function<br>Set to "002" (timer mode) when using<br>the three-phase motor control timer<br>function<br>hree-phase motor control timer function.                                                                                   | 5). |
| 1. The CNT3 to | ode Re | egister<br>Symb<br>TB2N<br>Bit<br>Symbol<br>TMOD0<br>TMOD1<br>MR0<br>MR1        | CSPR register select no d<br>ol Address<br>//R 035D16<br>Bit Name<br>Operating Mode<br>Select Bit<br>Disabled when using the t<br>When write, set to "0".<br>When read, its content is i                                                           | 1 0 : f <sub>2n</sub> <sup>(1)</sup><br>1 1 : f <sub>C32</sub><br>livision (n=0) or divide-by-2n (n=1 to 1<br>After Reset<br>00XX 00002<br>Function<br>Set to "002" (timer mode) when using<br>the three-phase motor control timer<br>function<br>hree-phase motor control timer function.<br>ndeterminate.<br>e-phase motor control timer function<br>en write, set to "0". | 5). |
| 1. The CNT3 to | ode Re | egister<br>Symb<br>TB2N<br>Bit<br>Symbol<br>TMOD0<br>TMOD1<br>MR0<br>MR1<br>MR2 | CSPR register select no d<br>ol Address<br>/IR 035D16<br>Bit Name<br>Operating Mode<br>Select Bit<br>Disabled when using the t<br>When write, set to "0".<br>When read, its content is i<br>Set to "0" when using thre<br>Nothing is assigned. Whe | 1 0 : f <sub>2n</sub> <sup>(1)</sup><br>1 1 : f <sub>C32</sub><br>livision (n=0) or divide-by-2n (n=1 to 1<br>After Reset<br>00XX 00002<br>Function<br>Set to "002" (timer mode) when using<br>the three-phase motor control timer<br>function<br>hree-phase motor control timer function.<br>ndeterminate.<br>e-phase motor control timer function<br>en write, set to "0". | 5). |

Figure 16.7 TA1MR, TA2MR and TA4MR Registers, TB2MR Register



The three-phase motor control timer function is available by setting the INV02 bit in the INVC0 register to "1". The timer B2 is used for carrier wave control and the timers A1, A2, A4 for three-phase PWM output  $(U, \overline{U}, V, \overline{V}, W, \overline{W})$  control. An exclusive dead time timer controls dead time. Figure 16.8 shows an example of the triangular modulation waveform. Figure 16.9 shows an example of the sawtooth modulation waveform.



## Figure 16.8 Triangular Wave Modulation Operation



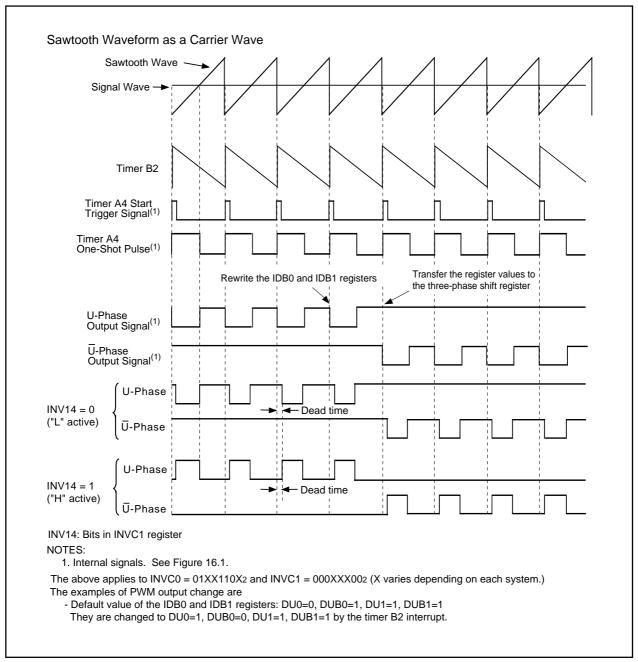



Figure 16.9 Sawtooth Wave Modulation Operation



# 17. Serial I/O

Serial I/O consists of five channels (UART0 to UART4).

Each UARTi (i=0 to 4) has an exclusive timer to generate the transfer clock and operates independently.

Figure 17.1 shows a UARTi block diagram.

UARTi supports the following modes :

- Clock synchronous serial I/O mode
- Clock asynchronous serial I/O mode (UART mode)
- Special mode 1 (I<sup>2</sup>C mode)
- Special mode 2
- Special mode 3 (Clock-divided synchronous function, GCI mode)
- Special mode 4 (Bus conflict detect function, IE mode)
- Special mode 5 (SIM mode)

Figures 17.2 to 17.9 show registers associated with UARTi.

Refer to the tables listing each mode for register and pin settings.



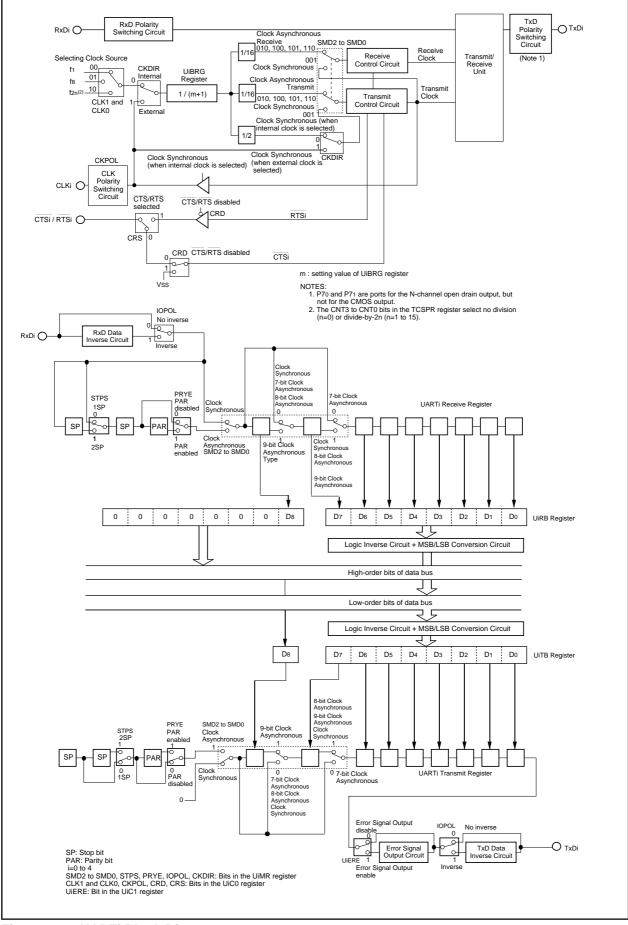



Figure 17.1 UARTi Block Diagram



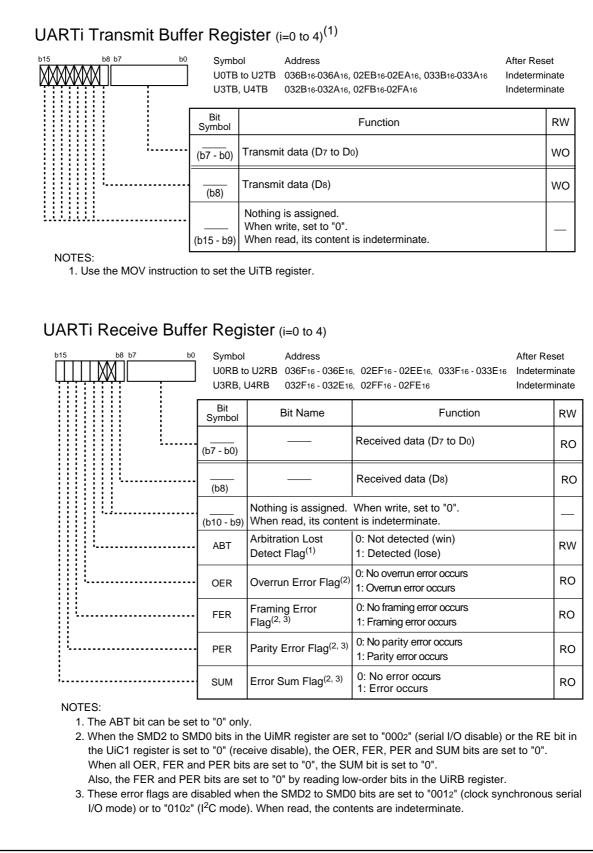



Figure 17.2 U0TB to U4TB Registers and U0RB to U4RB Registers

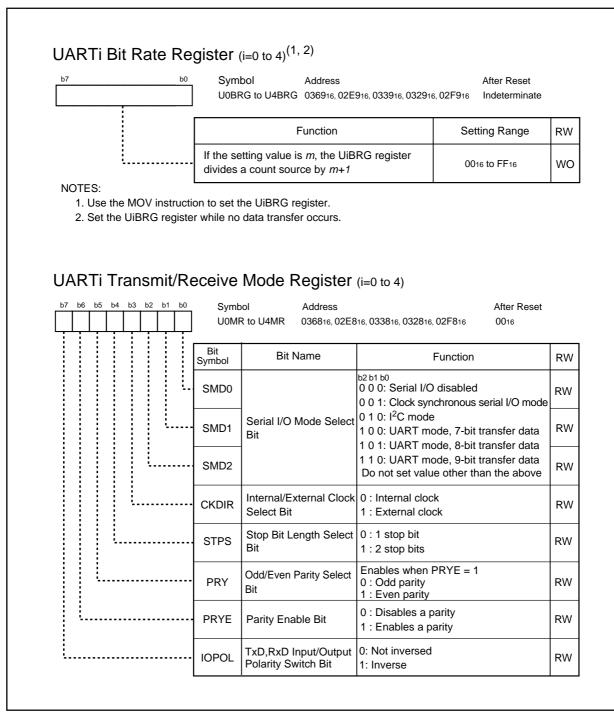



Figure 17.3 U0BRG to U4BRG Registers and U0MR to U4MR Registers



|        |    | Bit<br>Symbol | Bit Name                                     | E continu                                                                                                                                                                                                                                                        |    |
|--------|----|---------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|        |    |               |                                              | Function                                                                                                                                                                                                                                                         | RW |
|        | 11 | CLK0          | UiBRG Count                                  | b1 b0<br>0 0: Selects f1<br>0 1: Selects f8                                                                                                                                                                                                                      | RW |
|        | ·  | CLK1          | Source Select Bit                            | 1 0: Selects $f_{2n}^{(2)}$<br>1 1: Do not set to this value                                                                                                                                                                                                     | RW |
|        |    | CRS           | CST/RTS Function<br>Select Bit               | Enabled when CRD=0<br>0 : Selects CTS function<br>1 : Selects RTS function                                                                                                                                                                                       | RW |
|        |    | TXEPT         | Transmit Register<br>Empty Flag              | <ul> <li>0 : Data in the transmit register<br/>(during transmission)</li> <li>1 : No data in the transmit register<br/>(transmission is completed)</li> </ul>                                                                                                    | RO |
|        |    |               | CTS/RTS Disable<br>Bit                       | 0 : Enables CTS/RTS function<br>1 : Disables CTS/RTS function                                                                                                                                                                                                    | RW |
|        |    | NCH           | Data Output Select<br>Bit <sup>(1)</sup>     | <ul> <li>0 : TxDi/SDAi and SCLi are ports for the<br/>CMOS output</li> <li>1 : TxDi/SDAi and SCLi are ports for the<br/>N-channel open drain output</li> </ul>                                                                                                   | RW |
|        |    | CKPOL         | CLK Polarity<br>Select Bit                   | <ul> <li>0 : Data is transmitted on the falling edge<br/>of the transfer clock and data is<br/>received on the rising edge</li> <li>1 : Data is transmitted on the rising edge of<br/>the transfer clock and data is received<br/>on the falling edge</li> </ul> | RW |
|        |    | UFORM         | Transfer Format<br>Select Bit <sup>(3)</sup> | 0 : LSB first<br>1 : MSB first                                                                                                                                                                                                                                   | RW |
| NOTES: | I  |               |                                              |                                                                                                                                                                                                                                                                  |    |

Set the UFORM bit to "1" when setting the SMD2 to SMD0 bits to"0102" (I<sup>2</sup>C mode), or to "0" when setting them to "1002" (UART mode, 7-bit transfer data) or "1102" (UART mode, 9-bit transfer data).

Figure 17.4 U0C0 to U4C0 Registers



| UARTi Transmit/R        | eceive                                                                                                                    | e Control Re                                                                                                 | egister 1 (i=0 to 4)                                                                                                                                                                      |    |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| b7 b6 b5 b4 b3 b2 b1 b0 | Symbol         Address         After F           U0C1 to U4C1         036D16, 02ED16, 033D16, 032D16, 02FD16         0000 |                                                                                                              |                                                                                                                                                                                           |    |
|                         | Bit<br>Symbol                                                                                                             | Bit Name                                                                                                     | Function                                                                                                                                                                                  | RW |
|                         | TE                                                                                                                        | Transmit<br>Enable Bit                                                                                       | 0: Transmit disable<br>1: Transmit enable                                                                                                                                                 | RW |
|                         | TI                                                                                                                        | Transmit Buffer<br>Empty Flag                                                                                | 0: Data in the UiTB register<br>1: No data in the UiTB register                                                                                                                           | RO |
|                         | RE                                                                                                                        | Receive<br>Enable Bit                                                                                        | 0: Receive disable<br>1: Receive enable                                                                                                                                                   | RW |
|                         | RI                                                                                                                        | Receive         0: No data in the UiRB register           Complete Flag         1: Data in the UiRB register |                                                                                                                                                                                           | RO |
|                         | UilRS                                                                                                                     | UARTi Transmit<br>Interrupt Cause<br>Select Bit                                                              | 0: No data in the UiTB register (TI = 1)<br>1: Transmission is completed (TXEPT = 1)                                                                                                      |    |
|                         | UiRRM                                                                                                                     | UARTi<br>Continuous<br>Receive Mode<br>Enable Bit                                                            | 0: Disables continuous receive mode to be entered<br>1: Enables continuous receive mode to be entered                                                                                     | RW |
|                         | UiLCH                                                                                                                     | Data Logic<br>Select Bit <sup>(2)</sup>                                                                      | 0: Not inversed<br>1: Inverse                                                                                                                                                             | RW |
|                         | SCLKSTPB<br>/UiERE                                                                                                        | Clock-Divided<br>Synchronous Stop<br>Bit /<br>Error Signal<br>Output Enable<br>Bit <sup>(1)</sup>            | Clock-divided synchronous stop bit (special mode 3)<br>0: Stops synchronizing<br>1: Starts synchronizing<br>Error signal output enable bit (special mode 5)<br>0: Not output<br>1: Output | RW |

#### NOTES:

1. Set the SCLKSTPB/UiERE bit after setting the SMD2 to SMD0 bits in the UiMR register.

2. The UiLCH bit setting is enabled when setting the SMD2 to SMD0 bits to "0012" (clock syncronous serial I/O mode), "1002" (UART mode, 7-bit transfer data) or "1012" (UART mode, 8-bit transfer data). Set the UiLCH bit to "0" when setting the SMD2 to SMD0 bits to "0102" (I<sup>2</sup>C mode) or "1102" (UART mode, 9-bit transfer data).

#### UARTi Special Mode Register (i=0 to 4)

| b7 b6 | 6 b5 b4 b3 b2 b1 b0 |  | Symb<br>U0SN |  |               | After Reset<br>0016                                       |                                                                                   |                                         |                                                               |                       |
|-------|---------------------|--|--------------|--|---------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------|-----------------------|
|       |                     |  |              |  | Bit<br>Symbol | Bit Name                                                  | Function                                                                          | RW                                      |                                                               |                       |
|       |                     |  |              |  |               | [                                                         | IICM                                                                              | I <sup>2</sup> C Mode Select Bit        | 0: Except I <sup>2</sup> C mode<br>1: I <sup>2</sup> C mode   | RW                    |
|       |                     |  |              |  |               | ABC                                                       | Arbitration Lost Detect<br>Flag Control Bit                                       | 0: Update per bit<br>1: Update per byte | RW                                                            |                       |
|       |                     |  |              |  |               |                                                           | BBS                                                                               | Bus Busy Flag                           | 0: Stop condition detected<br>1: Start condition detected (Bu | isy) RW <sup>(1</sup> |
|       |                     |  |              |  |               |                                                           | LSYN                                                                              | SCLL Sync Output<br>Enable Bit          | 0: Disabled<br>1: Enabled                                     | RW                    |
|       |                     |  |              |  | ABSCS         | Bus Conflict Detect<br>Sampling Clock Select Bit          | 0: Rising edge of transfer clocd<br>1: Timer Aj underflow(j=0 to 4) <sup>(2</sup> |                                         |                                                               |                       |
|       |                     |  |              |  | ACSE          | Auto Clear Function Select<br>Bit for Transmit Enable Bit | 0: No auto clear function<br>1: Auto clear at bus conflict                        | RW                                      |                                                               |                       |
|       |                     |  |              |  |               |                                                           |                                                                                   | Transmit Start<br>Condition Select Bit  | 0: Not related to RxDi<br>1: Synchronized with RxDi           | RW                    |
|       |                     |  |              |  |               |                                                           | SCLKDIV                                                                           | Clock Divide<br>Synchronous Bit         | (Note 3)                                                      | RW                    |

#### NOTES:

1. The BBS bit is set to "0" by program. It is unchanged if set to "1".

2. UART0: timer A3 underflow signal, UART1: timer A4 underflow signal,

UART2: timer A0 underflow signal, UART3: timer A3 underflow signal,

UART4: timer A4 underflow signal.

3. Refer to notes for the SU1HIM bit in the UiSMR2 register.

#### Figure 17.5 U0C1 to U4C1 Registers and U0SMR to U4SMR Registers

RENESAS

Γ

| b7 b6 t | 5 b4 t               | b3 b2 b1 b0                                              |              |                                       | Iress After Re:<br>616, 02E616, 033616, 032616, 02F616 0016 | set |
|---------|----------------------|----------------------------------------------------------|--------------|---------------------------------------|-------------------------------------------------------------|-----|
|         |                      |                                                          | Bit<br>Symbo | Bit Name                              | Function                                                    | RV  |
|         |                      |                                                          | IICM2        | 2 I <sup>2</sup> C Mode Select Bit    | 2 (Note 1)                                                  | RV  |
|         |                      |                                                          | CSC          | Clock Synchronous                     | Bit 0: Disabled<br>1: Enabled                               | RV  |
|         |                      |                                                          | swc          | SCL Wait Output Bit                   | 0: Disabled<br>1: Enabled                                   | RV  |
|         |                      |                                                          | ALS          | SDA Output Stop Bit                   | 0: Output<br>1: No output                                   | RV  |
|         |                      |                                                          | STC          | UARTi Initialize Bit                  | 0: Disabled<br>1: Enabled                                   | RV  |
|         |                      |                                                          | SWC          | 2 SCL Wait Output Bir                 | 0: Transfer clock<br>1: "L" output                          | RV  |
| ļ       |                      |                                                          |              | SDA Output Inhibit I                  | Bit 0: Output<br>1: No output (high-impedance)              | RV  |
|         |                      |                                                          | SU1HI        | M External Clock<br>Synchronous Enabl | e Bit (Note 2)                                              | RV  |
| 2. T    | Refer to<br>The exte | <b>Table 17.14</b> .<br>ernal clock sy<br>V bit in the U | nchrono      |                                       | cted by combining the SU1HIM bit and the                    |     |
|         | -                    | CLKDIV bit in<br>SMR Registe                             |              | SU1HIM bit in the UiSMR2 Register     | External Clock Synchronous Function Selection               |     |
|         |                      | 0                                                        |              | 0                                     | No synchronization                                          |     |

1

0 or 1

Same division as the external clock

External clock divided by 2

Figure 17.6 U0SMR2 to U4SMR2 Registers

0

1



| b7 b6 b | b7 b6 b5 b4 b3 b2 b1 b0 |  |     |               | Symbol         Address         After Reset           U0SMR3 to U4SMR3         036516, 02E516, 033516, 032516, 02F516         0016 |                                                                                                                                                                                                                   |    |  |  |
|---------|-------------------------|--|-----|---------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|
|         |                         |  |     | Bit<br>Symbol | Bit Name                                                                                                                          | Function                                                                                                                                                                                                          | RW |  |  |
|         |                         |  |     | SSE           | SS Pin Function<br>Enable Bit <sup>(1)</sup>                                                                                      | 0: Disables SS pin function<br>1: Enables SS pin function                                                                                                                                                         | RV |  |  |
|         |                         |  |     | СКРН          | Clock Phase<br>Set Bit                                                                                                            | 0: No clock delay<br>1: Clock delay                                                                                                                                                                               | RW |  |  |
|         |                         |  |     | DINC          | Serial Input Port<br>Set Bit                                                                                                      | 0: Selects the TxDi and RxDi pins<br>(master mode)<br>1: Selects the STxDi and SRxDi pins<br>(slave mode)                                                                                                         | RV |  |  |
|         |                         |  |     | NODC          | Clock Output<br>Select Bit                                                                                                        | 0: CMOS output<br>1: N-channel open drain output                                                                                                                                                                  | RW |  |  |
|         |                         |  |     | ERR           | Fault Error Flag <sup>(2)</sup>                                                                                                   | 0: No error<br>1: Error                                                                                                                                                                                           | RW |  |  |
|         |                         |  |     | DL0           | SDAi Digital Delay<br>Time Set Bit <sup>(3, 4)</sup>                                                                              | <sup>b7 b6 b5</sup><br>000 : No delay<br>001 : 1-to-2 cycles of BRG count source<br>010 : 2-to-3 cycles of BRG count source<br>011 : 3-to-4 cycles of BRG count source<br>100 : 4-to-5 cycles of BRG count source | RV |  |  |
| ·       |                         |  | DL1 | R٧            |                                                                                                                                   |                                                                                                                                                                                                                   |    |  |  |
|         |                         |  | DL2 |               | 101 : 5-to-6 cycles of BRG count source<br>110 : 6-to-7 cycles of BRG count source<br>111 : 7-to-8 cycles of BRG count source     |                                                                                                                                                                                                                   |    |  |  |

2. The ERR bit is set to "0" by program. It is unchanged if set to "1".

3. Digital delay is generated from a SDAi output by the DL2 to DL0 bits in I<sup>2</sup>C mode. Set these bits to "0002" (no delay) except in the I<sup>2</sup>C mode.

4. When the external clock is selected, approximately 100ns delay is added.

Figure 17.7 U0SMR3 to U4SMR3 Registers



| b7 b6 b5 b4 b | b3 b2 b1 b0 | Symb<br>U0SM  |                                                  | After R<br>02E416, 033416, 032416, 02F416 0016                                                 | Reset |
|---------------|-------------|---------------|--------------------------------------------------|------------------------------------------------------------------------------------------------|-------|
|               |             | Bit<br>Symbol | Bit Name                                         | Function                                                                                       | RV    |
|               |             | STAREQ        | Start Condition<br>Generate Bit <sup>(1)</sup>   | 0: Clear<br>1: Start                                                                           | RV    |
|               |             | RSTAREQ       | Restart Condition<br>Generate Bit <sup>(1)</sup> | 0: Clear<br>1: Start                                                                           | RV    |
|               |             | STPREQ        | Stop Condition<br>Generate Bit <sup>(1)</sup>    | 0: Clear<br>1: Start                                                                           | RV    |
|               |             | STSPSEL       | SCL, SDA Output<br>Select Bit                    | 0: Selects the serial I/O circuit<br>1: Selects the start/stop condition<br>generating circuit | RV    |
|               |             | ACKD          | ACK Data Bit                                     | 0: ACK<br>1: NACK                                                                              | RV    |
|               |             | ACKC          | ACK Data Output<br>Enable Bit                    | 0: Serial I/O data output<br>1: ACK data output                                                | RV    |
|               |             | SCLHI         | SCL Output Stop<br>Enable Bit                    | 0: Disabled<br>1: Enabled                                                                      | RV    |
| L             |             | SWC9          | SCL Wait Output Bit 3                            | 0: SCL "L" hold disabled<br>1: SCL "L" hold enabled                                            | RV    |

Figure 17.8 U0SMR4 to U4SMR4 Registers



| b7 b6 b5 l | b4 b3 b2 b1 b0 | Symb<br>IFSR  | ol Address<br>031F16                                 | After Reset<br>0016                                                                                                                                                      |    |
|------------|----------------|---------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|            |                | Bit<br>Symbol | Bit Name                                             | Function                                                                                                                                                                 | RW |
|            |                | IFSR0         | INT0 Interrupt Polarity<br>Select Bit <sup>(1)</sup> | 0 : One edge<br>1 : Both edges                                                                                                                                           | RW |
|            |                | IFSR1         | INT1 Interrupt Polarity<br>Select Bit <sup>(1)</sup> | 0 : One edge<br>1 : Both edges                                                                                                                                           | RW |
|            |                | IFSR2         | INT2 Interrupt Polarity<br>Select Bit <sup>(1)</sup> | 0 : One edge<br>1 : Both edges                                                                                                                                           | RW |
|            |                | IFSR3         | INT3 Interrupt Polarity<br>Select Bit <sup>(1)</sup> | 0 : One edge<br>1 : Both edges                                                                                                                                           | RW |
|            |                | IFSR4         | INT4 Interrupt Polarity select bit <sup>(1)</sup>    | 0 : One edge<br>1 : Both edges                                                                                                                                           | RW |
|            |                |               | INT5 Interrupt Polarity<br>Select Bit <sup>(1)</sup> | 0 : One edge<br>1 : Both edges                                                                                                                                           | RV |
|            |                | IFSR6         | UART0, UART3<br>Interrupt Source<br>Select Bit       | <ul> <li>0 : UART3 bus conflict, start condition detect, stop condition detect</li> <li>1 : UART0 bus conflict, start condition detect, stop condition detect</li> </ul> | ₽W |
|            |                | IFSR7         | UART1, UART4<br>Interrupt Source<br>Select Bit       | <ul> <li>0 : UART4 bus conflict, start condition detect, stop condition detect</li> <li>1 : UART1 bus conflict, start condition detect, stop condition detect</li> </ul> |    |

1. Set this bit to "0" to select a level-sensitive triggering.

When setting this bit to "1", set the POL bit in the INTIIC register (i = 0 to 5) to "0" (falling edge).





## 17.1 Clock Synchronous Serial I/O Mode

In clock synchronous serial I/O mode, data is transmitted and received with the transfer clock. Table 17.1 lists specifications of clock synchronous serial I/O mode. Table 17.2 lists register settings. Tables 17.3 to 17.5 list pin settings. When UARTi (i=0 to 4) operating mode is selected, the TxDi pin outputs a high-level ("H") signal before transfer starts (the TxDi pin is in a high-impedance state when the N-channel open drain output is selected). Figure 17.10 shows transmit and receive timings in clock synchronous serial I/O mode.

| Item                                | Specification                                                                                                                                           |  |  |  |  |  |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Transfer Data Format                | Transfer data : 8 bits long                                                                                                                             |  |  |  |  |  |
| Transfer Clock                      | • The CKDIR bit in the UiMR register (i=0 to 4) is set to "0" (internal clock selected): $f_j$                                                          |  |  |  |  |  |
|                                     | 2(m+1) f=f1, f8, f2n <sup>(1)</sup> m:setting value of the UiBRG register, 0016 to FF16                                                                 |  |  |  |  |  |
|                                     | • The CKDIR bit is set to "1" (external clock selected) : an input from the CLKi pin                                                                    |  |  |  |  |  |
| Transmit/Receive Control            | Selected from the $\overline{\text{CTS}}$ function, $\overline{\text{RTS}}$ function or $\overline{\text{CTS}}/\overline{\text{RTS}}$ function disabled |  |  |  |  |  |
| Transmit Start Condition            | To start transmitting, the following requirements must be $met^{(2)}$ :                                                                                 |  |  |  |  |  |
|                                     | - Set the TE bit in the UiC1 register to "1" (transmit enable)                                                                                          |  |  |  |  |  |
|                                     | - Set the TI bit in the UiC1 register to "0" (data in the UiTB register)                                                                                |  |  |  |  |  |
|                                     | - Apply a low-level ("L") signal to the $\overline{\text{CTSi}}$ pin when the $\overline{\text{CTS}}$ function is selected                              |  |  |  |  |  |
| Receive Start Condition             | To start receiving, the following requirements must be met <sup>(2)</sup> :                                                                             |  |  |  |  |  |
|                                     | - Set the RE bit in the UiC1 register to "1" (receive enable)                                                                                           |  |  |  |  |  |
|                                     | - Set the TE bit to "1" (transmit enable)                                                                                                               |  |  |  |  |  |
|                                     | - Set the TI bit to "0" (data in the UiTB register)                                                                                                     |  |  |  |  |  |
| Interrupt Request Generation Timing | While transmitting, the following conditions can be selected:                                                                                           |  |  |  |  |  |
|                                     | - The UiIRS bit in the UiC1 register is set to "0" (no data in the transmit buffer):                                                                    |  |  |  |  |  |
|                                     | when data is transferred from the UiTB register to the UARTi transmit register (transfer started)                                                       |  |  |  |  |  |
|                                     | - The UiIRS bit is set to "1" (transmission completed):                                                                                                 |  |  |  |  |  |
|                                     | when a data transfer from the UARTi transmit register is completed                                                                                      |  |  |  |  |  |
|                                     | While receiving                                                                                                                                         |  |  |  |  |  |
|                                     | When data is transferred from the UARTi receive register to the UiRB register (reception completed)                                                     |  |  |  |  |  |
| Error Detect                        | Overrun error <sup>(3)</sup>                                                                                                                            |  |  |  |  |  |
|                                     | This error occurs when the seventh bit of the next received data is read before reading                                                                 |  |  |  |  |  |
|                                     | the UiRB register                                                                                                                                       |  |  |  |  |  |
| Selectable Function                 | CLK polarity                                                                                                                                            |  |  |  |  |  |
|                                     | Transferred data output and input are provided on either the rising edge or falling edge                                                                |  |  |  |  |  |
|                                     | of the transfer clock                                                                                                                                   |  |  |  |  |  |
|                                     | LSB first or MSB first                                                                                                                                  |  |  |  |  |  |
|                                     | Data is transmitted or received in either bit 0 or in bit 7                                                                                             |  |  |  |  |  |
|                                     | Continuous receive mode                                                                                                                                 |  |  |  |  |  |
|                                     | Data can be received simultaneously by reading the UiRB register                                                                                        |  |  |  |  |  |
|                                     | Serial data logic inverse                                                                                                                               |  |  |  |  |  |
|                                     | This function inverses transmitted/received data logically                                                                                              |  |  |  |  |  |

| Table 17.1 | <b>Clock Synchronous</b> | Serial I/O Mode S | pecifications |
|------------|--------------------------|-------------------|---------------|
|            |                          |                   | poontoutiono  |

#### NOTES:

- 1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).
- 2. To start transmission/reception when selecting the external clock, these conditions must be met after the CKPOL bit in the UiC0 register is set to "0" (data is transmitted on the falling edge of the transfer clock and data is received on the rising edge) and the CLKi pin is held "H", or when the CKPOL bit is set to "1" (data is transmitted on the rising edge of the transfer clock and data is received on the falling edge) and the CLKi pin is held "H".
- 3. If an overrun error occurs, the UiRB register is indeterminate. The IR bit in the SiRIC register does not change to "1" (interrupt requested).

| Register | Bit          | Function                                                        |  |  |  |  |  |
|----------|--------------|-----------------------------------------------------------------|--|--|--|--|--|
| UiTB     | 7 to 0       | Set transmit data                                               |  |  |  |  |  |
| UiRB     | 7 to 0       | Received data can be read                                       |  |  |  |  |  |
|          | OER          | Overrun error flag                                              |  |  |  |  |  |
| UiBRG    | 7 to 0       | Set bit rate                                                    |  |  |  |  |  |
| UiMR     | SMD2 to SMD0 | Set to "0012"                                                   |  |  |  |  |  |
|          | CKDIR        | Select the internal clock or external clock                     |  |  |  |  |  |
|          | IOPOL        | Set to "0"                                                      |  |  |  |  |  |
| UiC0     | CLK1, CLK0   | Select count source for the UiBRG register                      |  |  |  |  |  |
|          | CRS          | Select CTS or RTS when using either                             |  |  |  |  |  |
|          | TXEPT        | Transmit register empty flag                                    |  |  |  |  |  |
|          | CRD          | Enables or disables the CTS or RTS function                     |  |  |  |  |  |
|          | NCH          | Select output format of the TxDi pin                            |  |  |  |  |  |
|          | CKPOL        | Select transmit clock polarity                                  |  |  |  |  |  |
|          | UFORM        | Select either LSB first or MSB first                            |  |  |  |  |  |
| UiC1     | TE           | Set to "1" to enable data transmission and reception            |  |  |  |  |  |
|          | ТІ           | Transmit buffer empty flag                                      |  |  |  |  |  |
|          | RE           | Set to "1" to enable data reception                             |  |  |  |  |  |
|          | RI           | Reception complete flag                                         |  |  |  |  |  |
|          | UilRS        | Select what causes the UARTi transmit interrupt to be generated |  |  |  |  |  |
|          | UiRRM        | Set to "1" when using continuous receive mode                   |  |  |  |  |  |
|          | UiLCH        | Set to "1" when using data logic inverse                        |  |  |  |  |  |
|          | SCLKSTPB     | Set to "0"                                                      |  |  |  |  |  |
| UiSMR    | 7 to 0       | Set to "0016"                                                   |  |  |  |  |  |
| UiSMR2   | 7 to 0       | Set to "0016"                                                   |  |  |  |  |  |
| UiSMR3   | 2 to 0       | Set to "0002"                                                   |  |  |  |  |  |
|          | NODC         | Select clock output format                                      |  |  |  |  |  |
|          | 7 to 4       | Set to "00002"                                                  |  |  |  |  |  |
| UiSMR4   | 7 to 0       | Set to "0016"                                                   |  |  |  |  |  |

| Table 17.2 | Reaister | Settinas | in Clock | Synchronous | Serial I/O Mode |
|------------|----------|----------|----------|-------------|-----------------|
|            |          |          |          | -,          |                 |

i=0 to 4



| Port | Function    |              | Setting       |              |
|------|-------------|--------------|---------------|--------------|
|      |             | PS0 Register | PSL0 Register | PD6 Register |
| P60  | CTS0 input  | PS0_0=0      | -             | PD6_0=0      |
|      | RTS0 output | PS0_0=1      | -             | -            |
| P61  | CLK0 input  | PS0_1=0      | -             | PD6_1=0      |
|      | CLK0 output | PS0_1=1      | -             | -            |
| P62  | RxD0 input  | PS0_2=0      | -             | PD6_2=0      |
| P63  | TxD0 output | PS0_3=1      | -             | -            |
| P64  | CTS1 input  | PS0_4=0      | -             | PD6_4=0      |
|      | RTS1 output | PS0_4=1      | PSL0_4=0      | -            |
| P65  | CLK1 input  | PS0_5=0      | -             | PD6_5=0      |
|      | CLK1 output | PS0_5=1      | -             | -            |
| P66  | RxD1 input  | PS0_6=0      | -             | PD6_6=0      |
| P67  | TxD1 output | PS0_7=1      | -             | -            |

### Table 17.3 Pin Settings in Clock Synchronous Serial I/O Mode (1)

### Table 17.4 Pin Settings (2)

| Port               | Function    |              | Se            | etting       |              |
|--------------------|-------------|--------------|---------------|--------------|--------------|
|                    |             | PS1 Register | PSL1 Register | PSC Register | PD7 Register |
| P70 <sup>(1)</sup> | TxD2 output | PS1_0=1      | PSL1_0=0      | PSC_0=0      | -            |
| P71 <sup>(1)</sup> | RxD2 input  | PS1_1=0      | -             | -            | PD7_1=0      |
| P72                | CLK2 input  | PS1_2=0      | -             | -            | PD7_2=0      |
|                    | CLK2 output | PS1_2=1      | PSL1_2=0      | PSC_2=0      | -            |
| P73                | CTS2 input  | PS1_3=0      | -             | -            | PD7_3=0      |
|                    | RTS2 output | PS1_3=1      | PSL1_3=0      | PSC_3=0      | -            |

NOTES:

1. P70 and P71 are ports for the N-channel open drain output.

#### Table 17.5 Pin Settings (3)

| Port | Function    |                             | Setting       |                             |  |  |  |
|------|-------------|-----------------------------|---------------|-----------------------------|--|--|--|
|      |             | PS3 Register <sup>(1)</sup> | PSL3 Register | PD9 Register <sup>(1)</sup> |  |  |  |
| P90  | CLK3 input  | PS3_0=0                     | -             | PD9_0=0                     |  |  |  |
|      | CLK3 output | PS3_0=1                     | -             | -                           |  |  |  |
| P91  | RxD3 input  | PS3_1=0                     | -             | PD9_1=0                     |  |  |  |
| P92  | TxD3 output | PS3_2=1                     | PSL3_2=0      | -                           |  |  |  |
| P93  | CTS3 input  | PS3_3=0                     | PSL3_3=0      | PD9_3=0                     |  |  |  |
|      | RTS3 output | PS3_3=1                     | -             | -                           |  |  |  |
| P94  | CTS4 input  | PS3_4=0                     | PSL3_4=0      | PD9_4=0                     |  |  |  |
|      | RTS4 output | PS3_4=1                     | -             | -                           |  |  |  |
| P95  | CLK4 input  | PS3_5=0                     | PSL3_5=0      | PD9_5=0                     |  |  |  |
|      | CLK4 output | PS3_5=1                     | -             | -                           |  |  |  |
| P96  | TxD4 output | PS3_6=1                     | -             | -                           |  |  |  |
| P97  | RxD4 input  | PS3_7=0                     | -             | PD9_7=0                     |  |  |  |

NOTES:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

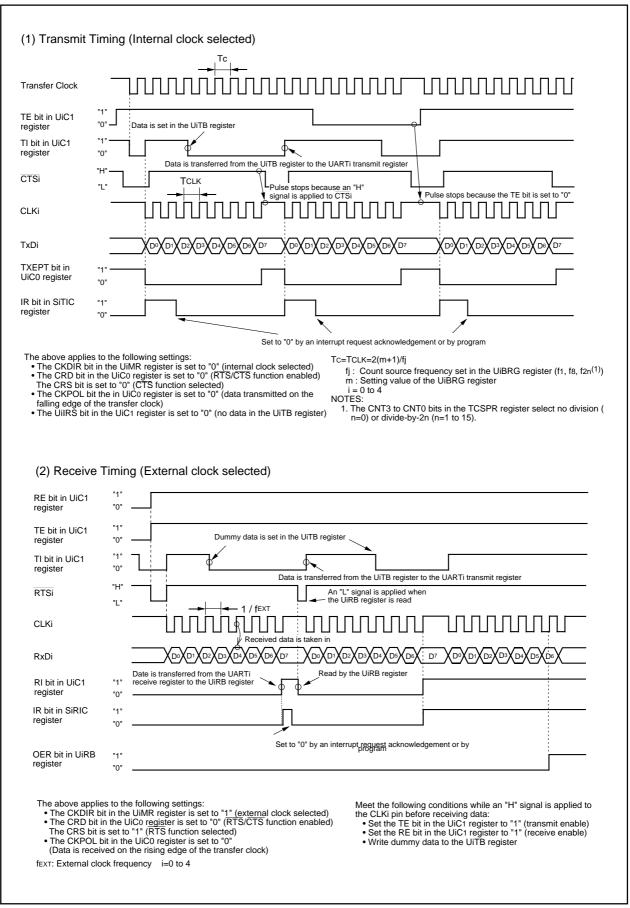



Figure 17.10 Transmit and Receive Operation

RENESAS

### 17.1.1 Selecting CLK Polarity Selecting

As shown in Figure 17.11, the CKPOL bit in the UiC0 register (i=0 to 4) determines the polarity of the transfer clock.

|                              | CKPOL bit in the UiC0 register (i=0 to 4) is set to "0" ansmitted on the falling edge of the transfer clock and data is received on the rising edge)                                                                               |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CLKi –                       |                                                                                                                                                                                                                                    |
| TXDi _                       | D0 D1 D2 D3 D4 D5 D6 D7                                                                                                                                                                                                            |
| <br>RXDi                     | $1 \ D_0 \ D_1 \ D_2 \ D_3 \ D_4 \ D_5 \ D_6 \ D_7$                                                                                                                                                                                |
| 2.                           | ES:<br>The CLKi pin is held high ("H") when no data is transferred.<br>The above applies when the UFORM bit in the UiC0 register is set to "0" (LSB first)<br>and the UiLCH bit in the UiC1 register is set to "0" (not inversed). |
| (2) When the<br>(Data is tra | CKPOL bit in the UiC0 register is set to "1" ansmitted on the rising edge)                                                                                                                                                         |
| CLKi _                       |                                                                                                                                                                                                                                    |
| TXDi                         | $D_0$ $D_1$ $D_2$ $D_3$ $D_4$ $D_5$ $D_6$ $D_7$                                                                                                                                                                                    |
| <br>RXDi                     | $D_0 \ D_1 \ D_2 \ D_3 \ D_4 \ D_5 \ D_6 \ D_7$                                                                                                                                                                                    |
| 4.                           | ES:<br>The CLKi pin is held low ("L") when no data is transferred.<br>The above applies when the UFORM bit in the UiC0 register is set to "0" (LSB first)<br>and the UiLCH bit in the UiC1 register is set to "0" (not inversed).  |

Figure 17.11 Transfer Clock Polarity

### 17.1.2 Selecting LSB First or MSB First

As shown in Figure 17.12, the UFORM bit in the UiC0 register (i=0 to 4) determines a data transfer format.

| (1) When the UFORM bit in the UiC0 register (i=0 to 4) is set to "0"<br>(LSB first)                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                     |
| TXDi         D0         D1         D2         D3         D4         D5         D6         D7                                                                                                                                                                                        |
| RXDi D0 \_ D1 \_ D2 \_ D3 \_ D4 \_ D5 \_ D6 \_ D7                                                                                                                                                                                                                                   |
| NOTES:<br>1. The above applies when the CKPOL bit in the UiC0 register is set to "0" (data is<br>transmitted on the falling edge of the transfer clock and received on the rising<br>edge) and the UiLCH bit in the UiC1 register is set to "0" (not inversed).                     |
| (2) When the UFORM bit in the UiC0 register is set to "1" (MSB first)                                                                                                                                                                                                               |
| СЬКІ                                                                                                                                                                                                                                                                                |
| TxDi         D7         D6         D5         D4         D3         D2         D1         D0                                                                                                                                                                                        |
| RXDi D7 \_D6 \_D5 \_D4 \_D3 \_D2 \_D1 \_D0                                                                                                                                                                                                                                          |
| <ul> <li>NOTES:</li> <li>2. The above applies when the CKPOL bit in the UiC0 register is set to "0" (data is transmitted on the falling edge of the transfer clock and received on the rising edge) and the UiLCH bit in the UiC1 register is set to "0" (not inversed).</li> </ul> |

Figure 17.12 Transfer Format



### 17.1.3 Continuous Receive Mode

When the UiRRM bit in the UiC1 register (i=0 to 4) is set to "1" (continuous receive mode), the TI bit is set to "0" (data in the UiTB register) by reading the UiRB register. When the UiRRM bit is set to "1", do not set dummy data in the UiTB register by program.

### 17.1.4 Serial Data Logic Inverse

When the UiLCH bit (i=0 to 4) in the UiC1 register is set to "1" (inverse), data logic written in the UiTB register is inversed when transmitted. The inversed receive data logic can be read by reading the UiRB register. Figure 17.13 shows a switching example of the serial data logic.

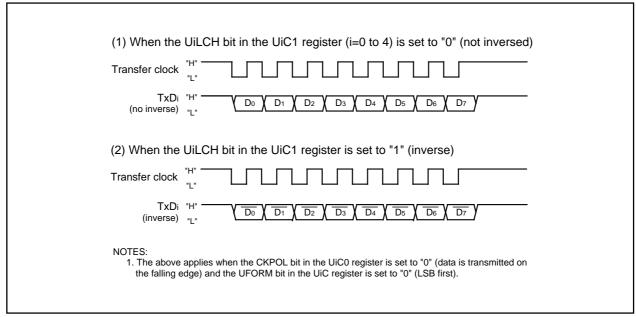



Figure 17.13 Serial Data Logic Inverse



# 17.2 Clock Asynchronous Serial I/O (UART) Mode

In UART mode, data is transmitted and received after setting a desired bit rate and data transfer format. Table 17.6 lists specifications of UART mode.

| Item                     | Specification                                                                                           |
|--------------------------|---------------------------------------------------------------------------------------------------------|
| Transfer Data Format     | Character bit (transfer data) : selected from 7 bits, 8 bits, or 9 bits long                            |
|                          | Start bit: 1 bit long                                                                                   |
|                          | <ul> <li>Parity bit: selected from odd, even, or none</li> </ul>                                        |
|                          | Stop bit: selected from 1 bit or 2 bits long                                                            |
| Transfer Clock           | • The CKDIR bit in the UiMR register is set to "0" (internal clock selected):                           |
|                          | $f_j/16(m+1)$ $f_j = f_1, f_8, f_{2n}(1)$ <i>m</i> . setting value of the UiBRG register, 0016 to FF_16 |
|                          | <ul> <li>The CKDIR bit is set to "1" (external clock selected):</li> </ul>                              |
|                          | <i>fEXT/16(m+1) fEXT</i> : clock applied to the CLKi pin                                                |
| Transmit/Receive Control | Select from CTS function, RTS function or CTS/RTS function disabled                                     |
| Transmit Start Condition | To start transmitting, the following requirements must be met:                                          |
|                          | - Set the TE bit in the UiC1 register to "1" (transmit enable)                                          |
|                          | - Set the TI bit in the UiC1 register to "0" (data in the UiTB register)                                |
|                          | - Apply a low-velel ("L") signal to the CTS pin when the CTS function is selected                       |
| Receive Start Condition  | To start receiving, the following requirements must be met:                                             |
|                          | - Set the RE bit in the UiC1 register to "1" (receive enable)                                           |
|                          | - The start bit is detected                                                                             |
| Interrupt Request        | While transmitting, the following condition can be selected:                                            |
| Generation Timing        | - The UiIRS bit in the UiC1 register is set to "0" (no data in the UiTB register):                      |
| -                        | when data is transferred from the UiTB register to the UARTi transmit register (transfer started)       |
|                          | - The UiIRS bit is set to "1" (transmission completed):                                                 |
|                          | when data transmission from the UARTi transfer register is completed                                    |
|                          | While receiving                                                                                         |
|                          | when data is transferred from the UARTi receive register to the UiRB register (reception completed)     |
| Error Detect             | • Overrun error <sup>(2)</sup>                                                                          |
|                          | This error occurs when the bit before the last stop bit of the next received data is read               |
|                          | prior to reading the UiRB register (the first stop bit when selecting 2 stop bits)                      |
|                          | Framing error                                                                                           |
|                          | This error occurs when the number of stop bits set is not detected                                      |
|                          | Parity error                                                                                            |
|                          | When parity is enabled, this error occurs when the number of "1" in parity and charac-                  |
|                          | ter bits does not match the number of "1" set                                                           |
|                          | • Error sum flag                                                                                        |
|                          | This flag is set to "1" when any of an overrun, framing or parity errors occur                          |
| Selectable Function      | LSB first or MSB first                                                                                  |
|                          | Data is transmitted or received in either bit 0 or in bit 7                                             |
|                          | •Serial data logic inverse                                                                              |
|                          | Logic values of data to be transmitted and received data are inversed. The start bit                    |
|                          | and stop bit are not inversed                                                                           |
|                          | •TxD and RxD I/O polarity Inverse                                                                       |
|                          | TxD pin output and RxD pin input are inversed. All I/O data levels are also inversed                    |
|                          |                                                                                                         |

#### Table 17.6 UART Mode Specifications

NOTES:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

2. If an overrun error occurs, the UiRB register is indeterminate. The IR bit in the SiRIC register remains unchanged as "1" (interrupt requested).

Table 17.7 lists register settings. Tables 17.8 to 17.10 list pin settings. When UARTi (i=0 to 4) operating mode is selected, the TxDi pin outputs a high-level ("H") signal before transfer is started (the TxDi pin is in a high-impedance state when the N-channel open drain output is selected). Figure 17.14 shows an example of a transmit operation in UART mode. Figure 17.15 shows an example of a receive operation in UART mode.

| Register | Bit          | Function                                                                      |
|----------|--------------|-------------------------------------------------------------------------------|
| UiTB     | 8 to 0       | Set transmit data <sup>(1)</sup>                                              |
| UiRB     | 8 to 0       | Received data can be read <sup>(1)</sup>                                      |
|          | OER, FER,    | Error flags                                                                   |
|          | PER, SUM     |                                                                               |
| UiBRG    | 7 to 0       | Set bit rate                                                                  |
| UiMR     | SMD2 to SMD0 | Set to "1002" when transfer data is 7 bits long                               |
|          |              | Set to "1012" when transfer data is 8 bits long                               |
|          |              | Set to "1102" when transfer data is 9 bits long                               |
|          | CKDIR        | Select the internal clock or external clock                                   |
|          | STPS         | Select stop bit length                                                        |
|          | PRY, PRYE    | Select parity enable or disable, odd or even                                  |
|          | IOPOL        | Select TxD and RxD I/O polarity                                               |
| UiC0     | CLK1, CLK0   | Select count source for the UiBRG register                                    |
|          | CRS          | Select either CTS or RTS when using either                                    |
|          | TXEPT        | Transfer register empty flag                                                  |
|          | CRD          | Enables or disables the CTS or RTS function                                   |
|          | NCH          | Select output format of the TxDi pin                                          |
|          | CKPOL        | Set to "0"                                                                    |
|          | UFORM        | Select the LSB first or MSB first when a transfer data is 8 bits long         |
|          |              | Set to "0" when transfer data is 7 bits or 9 bits long                        |
| UiC1     | TE           | Set to "1" to enable data transmission                                        |
|          | ТІ           | Transfer buffer empty flag                                                    |
|          | RE           | Set to "1" to enable data reception                                           |
|          | RI           | Reception complete flag                                                       |
|          | UiIRS        | Select what causes the UARTi transmit interrupt to be generated               |
|          | UiRRM        | Set to "0"                                                                    |
|          | UiLCH        | Select whether data logic is inversed or not inversed when a transfer data is |
|          |              | 7 bits or 8 bits long. Set to "0" when transfer data is 9 bits long           |
|          | UiERE        | Set to either "0" or "1"                                                      |
| UiSMR    | 7 to 0       | Set to "0016"                                                                 |
| UiSMR2   | 7 to 0       | Set to "0016"                                                                 |
| UiSMR3   | 7 to 0       | Set to "0016"                                                                 |
| UiSMR4   | 7 to 0       | Set to "0016"                                                                 |

Table 17.7 Register Settings in UART Mode

NOTES:

1. Use bits 0 to 6 when transfer data is 7 bits long, bits 0 to 7 when 8 bits long, bits 0 to 8 when 9 bits long.



| Port | Function    |              | Setting       |              |
|------|-------------|--------------|---------------|--------------|
|      |             | PS0 Register | PSL0 Register | PD6 Register |
| P60  | CTS0 input  | PS0_0=0      | -             | PD6_0=0      |
|      | RTS0 output | PS0_0=1      | -             | -            |
| P61  | CLK0 input  | PS0_1=0      | -             | PD6_1=0      |
| P62  | RxD0 input  | PS0_2=0      | -             | PD6_2=0      |
| P63  | TxD0 output | PS0_3=1      | -             | -            |
| P64  | CTS1 input  | PS0_4=0      | -             | PD6_4=0      |
|      | RTS1 output | PS0_4=1      | PSL0_4=0      | -            |
| P65  | CLK1 input  | PS0_5=0      | -             | PD6_5=0      |
| P66  | RxD1 input  | PS0_6=0      | -             | PD6_6=0      |
| P67  | TxD1 output | PS0_7=1      | -             | _            |

#### Table 17.8 Pin Settings in UART Mode (1)

### Table 17.9 Pin Settings (2)

| Port               | Function    |              | Setti         | ng           |              |
|--------------------|-------------|--------------|---------------|--------------|--------------|
|                    |             | PS1 Register | PSL1 Register | PSC Register | PD7 Register |
| P70 <sup>(1)</sup> | TxD2 output | PS1_0=1      | PSL1_0=0      | PSC_0=0      | -            |
| P71 <sup>(1)</sup> | RxD2 input  | PS1_1=0      | -             | -            | PD7_1=0      |
| P72                | CLK2 input  | PS1_2=0      | -             | -            | PD7_2=0      |
| P73                | CTS2 input  | PS1_3=0      | -             | -            | PD7_3=0      |
|                    | RTS2 output | PS1_3=1      | PSL1_3=0      | PSC_3=0      | _            |

NOTES:

1. P70 and P71 are ports for the N-channel open drain output.

#### Table 17.10 Pin Settings (3)

| Port | Function    |                             | Setting       |                             |
|------|-------------|-----------------------------|---------------|-----------------------------|
|      |             | PS3 Register <sup>(1)</sup> | PSL3 Register | PD9 Register <sup>(1)</sup> |
| P90  | CLK3 input  | PS3_0=0                     | -             | PD9_0=0                     |
| P91  | RxD3 input  | PS3_1=0                     | -             | PD9_1=0                     |
| P92  | TxD3 output | PS3_2=1                     | PSL3_2=0      | -                           |
| P93  | CTS3 input  | PS3_3=0                     | PSL3_3=0      | PD9_3=0                     |
|      | RTS3 output | PS3_3=1                     | -             | -                           |
| P94  | CTS4 input  | PS3_4=0                     | PSL3_4=0      | PD9_4=0                     |
|      | RTS4 output | PS3_4=1                     | -             | -                           |
| P95  | CLK4 input  | PS3_5=0                     | PSL3_5=0      | PD9_5=0                     |
| P96  | TxD4 output | PS3_6=1                     | -             | -                           |
| P97  | RxD4 input  | PS3_7=0                     | -             | PD9_7=0                     |

NOTES:

1. Set the PD9 and PS3 registers set immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.



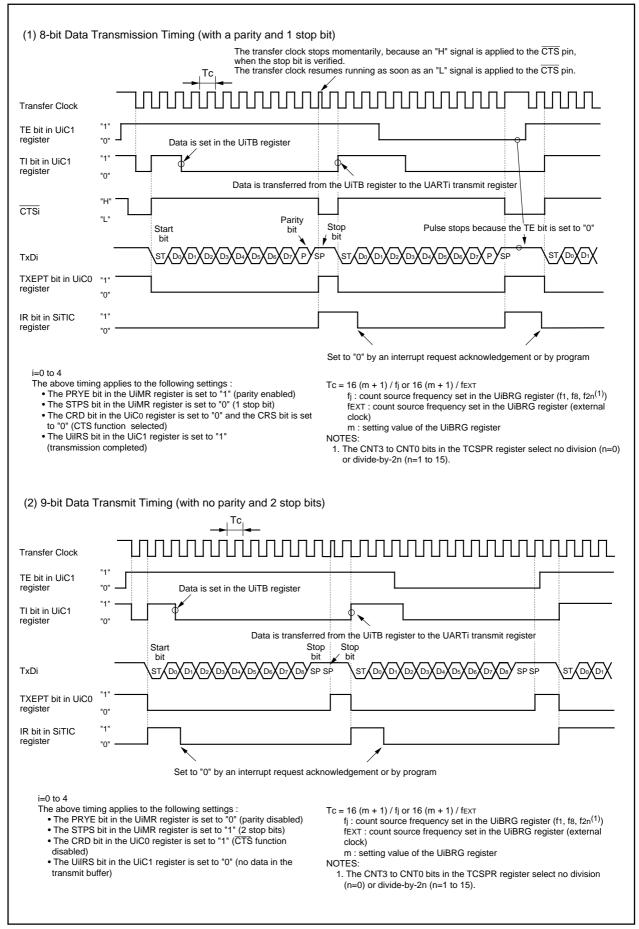



Figure 17.14 Transmit Operation

RENESAS

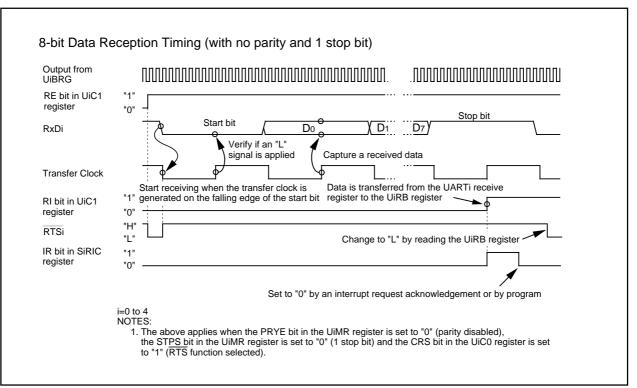



Figure 17.15 Receive Operation

### 17.2.1 Transfer Speed

In UART mode, transfer speed is clock frequency which is divided by a setting value of the UiBRG (i=0 to 4) register and again divided by 16. Table 17.11 lists an example of transfer speed setting.

| Bit Rate | Count<br>Source |                               | unction Clock:<br>MHz    |                               | unction Clock:<br>MHz    | Peripheral Fu<br>32N          | inction Clock:<br>/Hz    |
|----------|-----------------|-------------------------------|--------------------------|-------------------------------|--------------------------|-------------------------------|--------------------------|
| (bps)    | of<br>UiBRG     | Setting Value<br>of UiBRG: // | Actual Bit Rate<br>(bps) | Setting Value<br>of UiBRG: // | Actual Bit Rate<br>(bps) | Setting Value<br>of UiBRG: // | Actual Bit Rate<br>(bps) |
| 1200     | f8              | 103 (67h)                     | 1202                     | 155 (96h)                     | 1202                     | 207 (CFh)                     | 1202                     |
| 2400     | f8              | 51 (33h)                      | 2404                     | 77 (46h)                      | 2404                     | 103 (67h)                     | 2404                     |
| 4800     | f8              | 25 (19h)                      | 4808                     | 38 (26h)                      | 4808                     | 51 (33h)                      | 4808                     |
| 9600     | f1              | 103 (67h)                     | 9615                     | 155 (96h)                     | 9615                     | 207 (CFh)                     | 9615                     |
| 14400    | f1              | 68 (44h)                      | 14493                    | 103 (67h)                     | 14423                    | 138 (8Ah)                     | 14388                    |
| 19200    | f1              | 51 (33h)                      | 19231                    | 77 (46h)                      | 19231                    | 103 (67h)                     | 19231                    |
| 28800    | f1              | 34 (22h)                      | 28571                    | 51 (33h)                      | 28846                    | 68 (44h)                      | 28986                    |
| 31250    | f1              | 31 (1Fh)                      | 31250                    | 47 (2Fh)                      | 31250                    | 63 (3Fh)                      | 31250                    |
| 38400    | f1              | 25 (19h)                      | 38462                    | 38 (26h)                      | 38462                    | 51 (33h)                      | 38462                    |
| 51200    | f1              | 19 (13h)                      | 50000                    | 28 (1Ch)                      | 51724                    | 38 (26h)                      | 51282                    |

Table 17.11 Transfer Speed

### 17.2.2 Selecting LSB First or MSB First

As shown in Figure 17.16, the UFORM bit in the UiC0 register (i=0 to 4) determines data transfer format. This function is available for 8-bit transfer data.

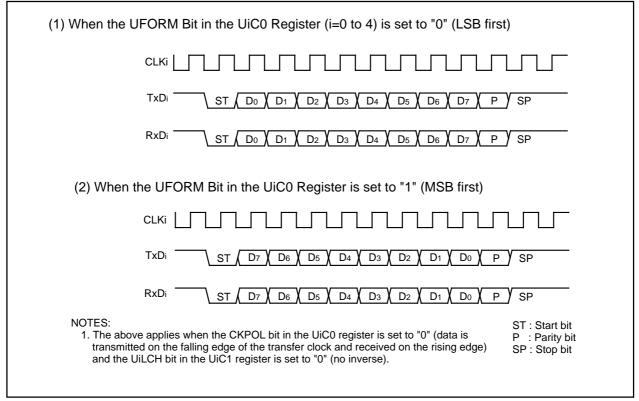



Figure 17.16 Transfer Format

### 17.2.3 Serial Data Logic Inverse

When the UiLCH bit (i=0 to 4) in the UiC1 register is set to "1" (inverse), data logic written in the UiTB register is inversed when transmitted. The inversed receive data logic can be read by reading the UiRB register. Figure 17.17 shows a switching example of the serial data logic.

| (1) When the         | UiLCH bit in the UiC1 register (i=0 to 4) is set to "0" (no inverse)                                                                                                                         |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transfer Clock       |                                                                                                                                                                                              |
| TxDi<br>(no inverse) |                                                                                                                                                                                              |
| (2) When the         | JiLCH bit in the UiC1 register is set to "1" (inverse)                                                                                                                                       |
| Transfer Clock       |                                                                                                                                                                                              |
| TxDi<br>(inverse)    |                                                                                                                                                                                              |
| the S                | above applies to when the UFORM bit in the UiC0 register is set to "0" (LSB first),<br>TPS bit in the UiMR register is set to "0" (1 stop bit) and the PRYE bit is set to "1"<br>y enabled). |

Figure 17.17 Serial Data Logic Inverse

### 17.2.4 TxD and RxD I/O Polarity Inverse

TxD pin output and RxD pin input are inversed. All I/O data level, including the start bit, stop bit and parity bit, are inversed. Figure 17.18 shows TxD and RxD I/O polarity inverse.

| Transfer Clock       |                                                                                                                                                                                                                                                      |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TxDi<br>(no inverse) | "H" ST / D0 / D1 / D2 / D3 / D4 / D5 / D6 / D7 / P / SP                                                                                                                                                                                              |
| RxDi<br>(no inverse) | "H" ST / D0 / D1 / D2 / D3 / D4 / D5 / D6 / D7 / P / SP                                                                                                                                                                                              |
| (2) When the         | IOPOL bit in the UiMR register is set to "1" (inverse)                                                                                                                                                                                               |
| Fransfer Clock       |                                                                                                                                                                                                                                                      |
| TxDi<br>(inverse)    | $[H]_{L^{''}} \longrightarrow ST \left( \overline{D_0} \right) \overline{D_1} \left( \overline{D_2} \right) \overline{D_3} \left( \overline{D_4} \right) \overline{D_5} \left( \overline{D_6} \right) \overline{D_7} \left( \overline{P} \right) SP$ |
| RxDi<br>(inverse)    | $ \begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                               |
| OTES:                | applies when the UFORM bit in the UiC0 register is set to "0" (LSB P : Even parity                                                                                                                                                                   |

Figure 17.18 TxD and RxD I/O Polarity Inverse



## 17.3 Special Mode 1 (I<sup>2</sup>C Mode)

 $I^2C$  mode is a mode to communicate with external devices with a simplified  $I^2C$ . Table 17.12 lists specifications of  $I^2C$  mode. Table 17.13 lists register settings, Table 17.14 lists each function. Figure 17.19 shows a block diagram of  $I^2C$  mode. Figure 17.20 shows timings for transfer to the UiRB register and interrupts. Tables 17.15 to 17.17 list pin settings.

As shown in Table 17.12, I<sup>2</sup>C mode is entered when the SMD2 to SMD0 bits in the UiMR register is set to "0102" and the IICM bit in the UiSMR register is set to "1". Output signal from the SDAi pin changes after the SCLi pin level becomes low ("L") and stabilizes due to a SDAi transmit output via the delay circuit.

| Item                | Specifications                                                                                  |  |
|---------------------|-------------------------------------------------------------------------------------------------|--|
| Interrupt           | Start condition detect, stop condition detect, no acknowledgment detect, acknowledgment         |  |
|                     | detect                                                                                          |  |
| Selectable Function | Arbitration lost                                                                                |  |
|                     | The update timing of the ABT bit in the UiRB register can be selected.                          |  |
|                     | Refer to 17.3.3 Arbitration                                                                     |  |
|                     | • SDAi digital delay                                                                            |  |
|                     | Selected from no digital delay or 2 to 8 cycle delay of the count source of the UiBRG register. |  |
|                     | Refer to 17.3.5 SDA Output                                                                      |  |
|                     | Clock phase setting                                                                             |  |
|                     | Selected from clock delay or no clock delay.                                                    |  |
|                     | Refer to 17.3.4 Transfer clock                                                                  |  |

Table 17.12 I<sup>2</sup>C Mode Specifications



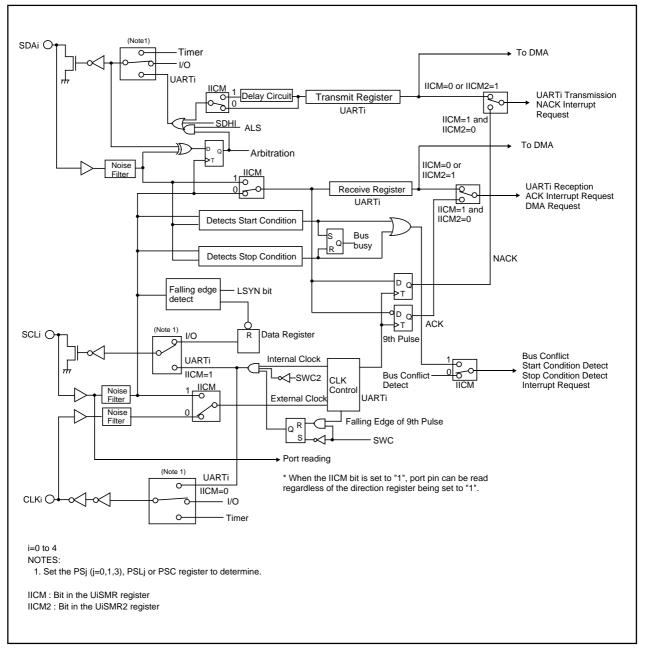



Figure 17.19 I<sup>2</sup>C Mode Block Diagram



## Table 17.13 Register Settings in I<sup>2</sup>C Mode

| Register | Bit             | Function                                                      |                                        |  |  |
|----------|-----------------|---------------------------------------------------------------|----------------------------------------|--|--|
|          | 7.4.0           | Master                                                        | Slave                                  |  |  |
| UiTB     | 7 to 0          | Set transmit data                                             |                                        |  |  |
| UiRB     | 7 to 0          | Received data can be read                                     |                                        |  |  |
|          | 8               | ACK or NACK bit can be read                                   |                                        |  |  |
|          | ABT             | Arbitration lost detect flag                                  | Disabled                               |  |  |
|          | OER             | Overrun error flag                                            |                                        |  |  |
| UiBRG    | 7 to 0          | Set bit rate                                                  | Disabled                               |  |  |
| UiMR     | SMD2 to SMD0    | Set to "0102"                                                 |                                        |  |  |
|          | CKDIR           | Set to "0"                                                    | Set to "1"                             |  |  |
|          | IOPOL           | Set to "0"                                                    |                                        |  |  |
| UiC0     | CLK1, CLK0      | Select count source of the UiBRG register                     | Disabled                               |  |  |
|          | CRS             | Disabled because the CRD bit is set to "1"                    |                                        |  |  |
|          | TXEPT           | Transfer register empty flag                                  |                                        |  |  |
|          | CRD, NCH        | Set to "1"                                                    |                                        |  |  |
|          | CKPOL           | Set to "0"                                                    |                                        |  |  |
|          | UFORM           | Set to "1"                                                    |                                        |  |  |
| UiC1     | TE              | Set to "1" to enable data transmission                        |                                        |  |  |
|          | TI              | Transfer buffer empty flag                                    |                                        |  |  |
|          | RE              | Set to "1" to enable data reception                           |                                        |  |  |
|          | RI              | Reception complete flag                                       |                                        |  |  |
|          | UiRRM, UiLCH,   | Set to "0"                                                    |                                        |  |  |
|          | UiERE           |                                                               |                                        |  |  |
| UiSMR    | IICM            | Set to "1"                                                    |                                        |  |  |
|          | ABC             | Select an arbitration lost detect timing Disabled             |                                        |  |  |
|          | BBS             | Bus busy flag                                                 |                                        |  |  |
|          | 7 to 3          | Set to "000002"                                               |                                        |  |  |
| UiSMR2   | IICM2           | See Table 17.14                                               |                                        |  |  |
|          | CSC             | Set to "1" to enable clock synchronization                    | Set to "0"                             |  |  |
|          | SWC             | Set to "1" to fix an "L" signal output from SCLi o            | n the falling edge of the ninth bit    |  |  |
|          |                 | of the transfer clock                                         |                                        |  |  |
|          | ALS             | Set to "1" to terminate SDAi output when Not used. Set to "0" |                                        |  |  |
|          |                 | detecting the arbitration lost                                |                                        |  |  |
|          | STC             | Not used. Set to "0"                                          | Set to "1" to reset UARTi              |  |  |
|          |                 |                                                               | by detecting the start condition       |  |  |
|          | SWC2            | Set to "1" for an "L" signal output from SCL forci            | bly                                    |  |  |
|          | SDHI            | Set to "1" to disable SDA output                              |                                        |  |  |
|          | SU1HIM          | Set to "0"                                                    |                                        |  |  |
| UiSMR3   | SSE             | Set to "0"                                                    |                                        |  |  |
|          | СКРН            | See Table 17.14                                               |                                        |  |  |
|          | DINC, NODC, ERR | Set to "0"                                                    |                                        |  |  |
|          | DL2 to DL0      | Set digital delay value                                       |                                        |  |  |
| UiSMR4   | STAREQ          | Set to "1" when generating a start condition                  | Not used. Set to "0"                   |  |  |
|          | RSTAREQ         | Set to "1" when generating a restart condition                | -                                      |  |  |
|          | STPREQ          | Set to "1" when generating a stop condition                   | -                                      |  |  |
|          | STSPSEL         | Set to "1" when using a condition generating function         | -                                      |  |  |
|          | ACKD            | Select ACK or NACK                                            |                                        |  |  |
|          | ACKC            | Set to "1" for ACK data output                                |                                        |  |  |
|          |                 |                                                               | Not used. Set to "0"                   |  |  |
|          | SCLHI           | Set to "1" to enable SCL output stop when                     |                                        |  |  |
|          |                 | detecting stop condition                                      |                                        |  |  |
|          | SWC9            | Not used. Set to "0"                                          | Set to "1" to fix an "L" signal output |  |  |
|          |                 |                                                               | from SCLi on the falling edge of the   |  |  |
|          |                 |                                                               | ninth bit of the transfer clock        |  |  |
| IFSR     | IFSR6, IFSR7    | Set to "1"                                                    |                                        |  |  |

i=0 to 4



#### Table 17.14 I<sup>2</sup>C Mode Functions

|                                                                                              |                                                                                                  | I <sup>2</sup> C Mode (SMD2 to SMD0=0102, IICM=1)                           |                                        |                                                              |                                                                                                                                |  |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
| Function                                                                                     | Clock Synchronous<br>Serial I/O Mode<br>(SMD2 to SMD0=0012,                                      | IICM2=0<br>(NACK/ACK inter                                                  | rupt)                                  | IICM2=1<br>(UART transmit / UART receive interrupt)          |                                                                                                                                |  |
|                                                                                              | IICM=0)                                                                                          | CKPH=0<br>(No clock delay)                                                  | CKPH=1<br>(Clock delay)                | CKPH=0<br>(No clock delay)                                   | CKPH=1<br>(Clock delay)                                                                                                        |  |
| Interrupt Numbers 39 to<br>41 Generated <sup>(1)</sup><br>(See Figure 17.20)                 | -                                                                                                | Start condition or                                                          | Start condition or stop condition dete |                                                              | 17.18)                                                                                                                         |  |
| Interrupt Number 17, 19,<br>33, 35 and 37<br>Generated <sup>(1)</sup><br>(See Figure 17.20)  | UARTi Transmission -<br>Transmission started or<br>completed (selected by<br>the UiIRS register) | No Acknowledgement<br>Detection (NACK) -<br>Rising edge of 9th bit of SCL i |                                        | UARTi<br>Transmission -<br>Rising edge of<br>9th bit of SCLi | UARTi Transmission -<br>Next falling edge after the<br>9th bit of SCLi                                                         |  |
| Interrupt Numbers 18, 20,<br>34, 36 and 38<br>Generated <sup>(1)</sup><br>(See Figure 17.20) | UARTi Reception -<br>Receiving at 8th bit<br>CKPOL=0(rising edge)<br>CKPOL=1(falling edge)       | Acknowledgemer<br>(ACK) -<br>Rising edge of 9tl                             |                                        | UARTi Reception<br>Falling edge of 9t                        |                                                                                                                                |  |
| Data Transfer Timing from<br>the UART Receive Shift<br>Register to the UiRB Register         | CKPOL=0(rising edge)<br>CKPOL=1(falling edge)                                                    | Rising edge of 9th                                                          | n bit of SCLi                          | Falling edge of<br>9th bit of SCLi                           | Falling edge and rising edge of 9th bit of SCLi                                                                                |  |
| UARTi Transmit Output<br>Delay                                                               | No delay                                                                                         | Delay                                                                       |                                        | 1                                                            |                                                                                                                                |  |
| P63, P67, P70, P92, P96<br>Pin Functions                                                     | TxDi output                                                                                      | SDAi input and output                                                       |                                        |                                                              |                                                                                                                                |  |
| P62, P66, P71, P91, P97<br>Pin Functions                                                     | RxDi input                                                                                       | SCLi input and output                                                       |                                        |                                                              |                                                                                                                                |  |
| P61, P65, P72, P90, P95<br>Pin Functions                                                     | Select CLKi input or<br>output                                                                   | <ul> <li>– (Not used in I<sup>2</sup>C mode)</li> </ul>                     |                                        |                                                              |                                                                                                                                |  |
| Noise Filter Width                                                                           | 15ns                                                                                             | 200ns                                                                       |                                        |                                                              |                                                                                                                                |  |
| Reading RxDi and SCLi<br>Pin Levels                                                          | Can be read if port direction bit is set to "0"                                                  | Can be read rega                                                            | rdless of the po                       | ort direction bit                                            |                                                                                                                                |  |
| Default Value of TxDi,<br>SDAi Output                                                        | CKPOL=0 (H)<br>CKPOL=1 (L)                                                                       | Values set in the                                                           | port register be                       | efore entering I <sup>2</sup> C n                            | node <sup>(2)</sup>                                                                                                            |  |
| SCLi Default and End<br>Value                                                                | -                                                                                                | н                                                                           | L                                      | н                                                            | L                                                                                                                              |  |
| DMA Generated<br>(See Figure 17.20)                                                          | UARTi reception                                                                                  | Acknowledgement<br>(ACK)                                                    | detection                              | UARTi Reception<br>Falling edge of 9t                        | ption -<br>of 9th bit of SCLi                                                                                                  |  |
| Store Received Data                                                                          | 1st to 8th bits of the received data are stored                                                  | 1s<br>in                                                                    |                                        | into bits 6 to 0 in                                          | the received data are stored<br>the UiRB register. 8th bit is<br>the UiRB register.                                            |  |
|                                                                                              | into bits 7 to 0 in the<br>UiRB register                                                         |                                                                             |                                        |                                                              | 1st to 8th bits are stored into<br>bits 7 to 0 in the UiRB<br>register <sup>(3)</sup>                                          |  |
| Reading Received Data                                                                        | The UiRB register status                                                                         | s is read                                                                   |                                        |                                                              | Bits 6 to 0 in the UiRB<br>registerts <sup>(4)</sup> are read as bit 7<br>to 1. Bit 8 in the UiRB<br>register is read as bit 0 |  |

i=0 to 4

NOTES:

1. Follow the procedures below to change what causes an interrupt to be generated.

- (a) Disable interrupt of corresponding interrupt number.
- (b) Change what causes an interrupt to be generated.
- (c) Set the IR bit of a corresponding interrupt number to "0" (no interrupt requested).
- (d) Set the ILVL2 to ILVL0 bits of a corresponding interrupt number.
- 2. Set default value of the SDAi output when the SMD2 to SMD0 bits in the UiMR register are set to "0002" (serial I/O disabled).
- 3. Second data transfer to the UiRB register (on the rising edge of the ninth bit of SCLi).
- 4. First data transfer to the UiRB register (on the falling edge of the ninth bit of SCLi).

|        | 1st 2nd 3rd 4th 5th 6th 7th 8th 9th                                                                                          |
|--------|------------------------------------------------------------------------------------------------------------------------------|
| SCLi   | bitbitbitbitbitbitbitbit                                                                                                     |
| SDAi   | 7 D7 $106$ D5 $104$ D3 $102$ D1 $100$ D8 (ACK or NACK)                                                                       |
|        |                                                                                                                              |
|        | ACK interrupt (DMA<br>request) or NACK interrupt                                                                             |
|        | ♦ b15 b9 b8 b7 b0<br>Data is transferred to the UiRB register □                                                              |
|        | Contents of the UiRB register                                                                                                |
| (2) Wh | en the IICM2 bit is set to "0" and the CKPH bit is set to "1" (clock delay)                                                  |
|        | 1st 2nd 3rd 4th 5th 6th 7th 8th 9th<br>bit bit bit bit bit bit bit bit                                                       |
| SCLi   |                                                                                                                              |
| SDAi   | $D_7 \ D_6 \ D_5 \ D_4 \ D_3 \ D_2 \ D_1 \ D_0 \ D_8 (ACK or NACK)$                                                          |
|        |                                                                                                                              |
|        | ACK interrupt (DMA<br>request) or NACK interrupt                                                                             |
|        | Data is transferred to the UiRB register                                                                                     |
|        | Contents of the UiRB register                                                                                                |
| SDAi   |                                                                                                                              |
|        | T b15 b9 b8 b7 b0<br>Data is transferred to the UiRB register T T D0 - D7 D6 D5 D4 D3 D2 D1<br>Contents of the UiRB register |
| (4) Wł | hen the IICM2 bit is set to "1" and the CKPH bit is set to "1"                                                               |
| SCLi   | 1st 2nd 3rd 4th 5th 6th 7th 8th 9th<br>bit bit bit bit bit bit bit bit bit bit                                               |
| SDAi   | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                      |
|        | Receive interrupt<br>(DMA request)                                                                                           |
|        | T  <br>Data is transferred to the UiRB register Data is transferred to the UiRB register                                     |
|        | b15 b9 b8 b7 b0 b15 b9 b8 b7 b0<br>++   00 - 07 06 05 04 03 02 01 - ++   08 07 06 05 04 03 02 01 00                          |
|        | Contents of the UiRB register Contents of the UiRB register                                                                  |
| i=0 t  | 04                                                                                                                           |
|        | o 4<br>I2 : Bit in the UiSMR2 register<br>H : Bit in the UiSMR3 regiser                                                      |

Figure 17.20 SCLi Timing

RENESAS

| Port | Function    | Setting      |               |              |
|------|-------------|--------------|---------------|--------------|
|      |             | PS0 Register | PSL0 Register | PD6 Register |
| P62  | SCL0 output | PS0_2=1      | PSL0_2=0      | -            |
|      | SCL0 input  | PS0_2=0      | -             | PD6_2=0      |
| P63  | SDA0 output | PS0_3=1      | -             | -            |
|      | SDA0 input  | PS0_3=0      | -             | PD6_3=0      |
| P66  | SCL1 output | PS0_6=1      | PSL0_6=0      | -            |
|      | SCL1 input  | PS0_6=0      | -             | PD6_6=0      |
| P67  | SDA1 output | PS0_7=1      | -             | -            |
|      | SDA1 input  | PS0_7=0      | -             | PD6_7=0      |

### Table 17.15 Pin Settings in I<sup>2</sup>C Mode (1)

#### Table 17.16 Pin Settings (2)

| Port               | Function    | Setting      |               |              |              |
|--------------------|-------------|--------------|---------------|--------------|--------------|
| FUIL               | Function    | PS1 Register | PSL1 Register | PSC Register | PD7 Register |
| P70 <sup>(1)</sup> | SDA2 output | PS1_0=1      | PSL1_0=0      | PSC_0=0      | -            |
| 1700               | SDA2 input  | PS1_0=0      | -             | -            | PD7_0=0      |
| P71 <sup>(1)</sup> | SCL2 output | PS1_1=1      | PSL1_1=1      | PSC_1=0      | -            |
|                    | SCL2 input  | PS1_1=0      | _             | -            | PD7_1=0      |

NOTES:

1. P70 and P71 are ports for the N-channel open drain output.

### Table 17.17 Pin Settings (3)

| Port | Function    |                             | Setting       |               |                             |  |
|------|-------------|-----------------------------|---------------|---------------|-----------------------------|--|
|      |             | PS3 Register <sup>(1)</sup> | PSL3 Register | PSC3 Register | PD9 Register <sup>(1)</sup> |  |
| P91  | SCL3 output | PS3_1=1                     | PSL3_1=0      | -             | -                           |  |
|      | SCL3 input  | PS3_1=0                     | -             | -             | PD9_1=0                     |  |
| P92  | SDA3 output | PS3_2=1                     | PSL3_2=0      | -             | -                           |  |
|      | SDA3 input  | PS3_2=0                     | -             | -             | PD9_2=0                     |  |
| P96  | SDA4 output | PS3_6=1                     | -             | PSC3_6=0      | -                           |  |
|      | SDA4 input  | PS3_6=0                     | -             | -             | PD9_6=0                     |  |
| P97  | SCL4 output | PS3_7=1                     | PSL3_7=0      | -             | -                           |  |
|      | SCL4 input  | PS3_7=0                     | -             | -             | PD9_7=0                     |  |

NOTES:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.



### 17.3.1 Detecting Start Condition and Stop Condition

The microcomputer detects either a start condition or stop condition. The start condition detect interrupt is generated when the SCLi (i=0 to 4) pin level is held high ("H") and the SDAi pin level changes "H" to low ("L"). The stop condition detect interrupt is generated when the SCLi pin level is held "H" and the SDAi pin level changes "L" to "H". The start condition detect interrupt shares interrupt control registers and vectors with the stop condition detect interrupt. The BBS bit in the UiSMR register determines which interrupt is requested.

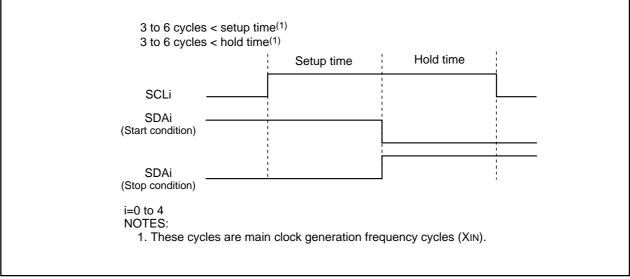



Figure 17.21 Start Condition or Stop Condition Detecting

# 17.3.2 Start Condition or Stop Condition Output

The start condition is generated when the STAREQ bit in the UiSMR4 register (i=0 to 4) is set to "1" (start). The restart condition is generated when the RSTAREQ bit in the UiSMR4 register is set to "1" (start). The stop condition is generated the STPREQ bit in the UiSMR4 is set to "1" (start).

The start condition is output when the STAREQ bit is set to "1" and the STSPSEL bit in the UiSMR4 register is set to "1" (start or stop condition generating circuit selected). The restart condition output is provided when the RSTAREQ bit and STSPSEL bit are set to "1". The stop condition output is provided when the STPREQ bit and the STSPSEL bit are set to "1".

When the start condition, stop condition or restart condition is output, do not generate an interrupt between the instruction to set the STAREQ bit, STPREQ bit or RSTAREQ bit to "1" and the instruction to set the STSPSEL bit to "1". When the start condition is output, set the STAREQ bit to "1" before the STSPSEL bit is set to "1".

Table 17.18 lists function of the STSPSEL bit. Figure 17.22 shows functions of the STSPSEL bit.



### Table 17.18 STSPSEL Bit Function

| Function                                                                       | STSPSEL = 0                                                                                | STSPSEL = 1                                                                                                                |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Start condition and stop condition output                                      | Program with ports determines how the start condition or stop condition output is provided | The STAREQ bit, RSTAREQ bit and<br>STPREQ bit determine how the start<br>condition or stop condition output is<br>provided |
| Timing to generate start<br>condition and stop condition<br>interrupt requests | The start condition and stop condition are detected                                        | Start condition and stop condition generation are completed                                                                |

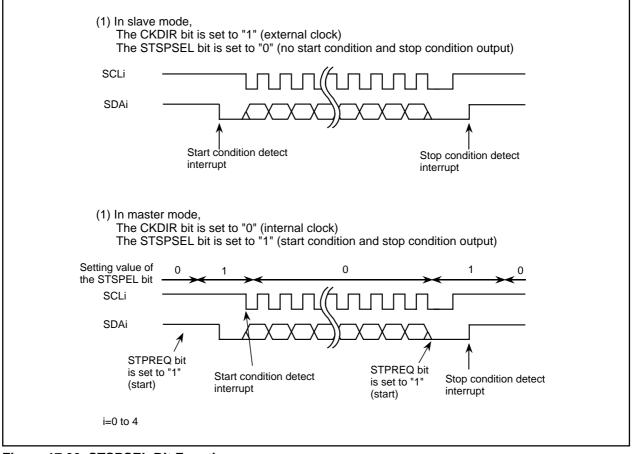



Figure 17.22 STSPSEL Bit Function

## 17.3.3 Arbitration

The ABC bit in the UiSMR register (i=0 to 4) determines an update timing for the ABT bit in the UiRB register. On the rising edge of the SCLi pin, the microcomputer determines whether a transmit data matches data input to the SDAi pin.

When the ABC bit is set to "0" (update per bit), the ABT bit is set to "1" (detected-arbitration is lost) as soon as a data discrepancy is detected. The ABT bit is set to "0" (not detected-arbitration is won) if not detected. When the ABC bit is set to "1" (update per byte), the ABT bit is set to "1" on the falling edge of the ninth bit of the transfer clock if any discrepancy is detected. When the ABT bit is updated per byte, set the ABT bit to "0" between an ACK detection in the first byte data and the next byte data to be transferred. When the ALS bit in the UiSMR2 register is set to "1" (SDA output stop enabled), the arbitration lost occurs. As soon as the ABT bit is set to "1", the SDAi pin is placed in a high-impedance state.

# 17.3.4 Transfer Clock

The transfer clock transmits and receives data as is shown in Figure 17.20.

The CSC bit in the UiSMR2 register (i=0 to 4) synchronizes an internally generated clock (internal SCLi) with the external clock applied to the SCLi pin. When the CSC bit is set to "1" (clock synchronous enabled) and the internal SCLi is held high ("H"), the internal SCLi become low ("L") if signal applied to the SCLi pin is on the falling edge. Value of the UiBRG register is reloaded to start counting for low level. A counter stops when the SCLi pin is held "L" and then the internal SCLi changes "L" to "H". Counting is resumed when the SCLi pin become "H". The transfer clock of UARTi is equivalent to the AND for signals from the internal SCLi and the SCLi pin.

The transfer clock is synchronized between a half cycle before the falling edge of first bit of the internal SCLi and the rising edge of the ninth bit. Select the internal clock as the transfer clock while the CSC bit is set to "1".

The SWC bit in the UiSMR2 register determines whether the SCLi pin is fixed to be an "L" signal output on the falling edge of the ninth cycle of the transfer clock or not.

When the SCLHI bit in the UiSMR4 register is set to "1" (enabled), a SCLi output stops when a stop condition is detected (high-impedance).

When the SWC2 bit in the UiSMR2 register is set to "1" (0 output), the SCLi pin focibly outputs an "L" signal while transmitting and receiving. The fixed "L" signal applied to the SCLi pin is cancelled by setting the SWC2 bit to "0" (transfer clock) and the transfer clock input to and output from the SCLi pin are provided.

When the CKPH bit in the UiSMR3 register is set to "1" and the SWC9 bit in the UiSMR4 register is set to "1" (SCL "L" hold enabled), the SCLi pin is fixed to be an "L" signal output on the next falling edge after the ninth bit of the clock. The fixed "L" signal applied to the SCLi pin is cancelled by setting the SWC9 bit to "0" (SCL "L" hold disabled).

# 17.3.5 SDA Output

Values output set in bits 7 to 0 (D7 to D0) in the UiTB register (i=0 to 4) are provided in descending order from D7. The ninth bit (D8) is ACK or NACK.

Set the default value of SDAi transmit output when the IICM bit is set to "1" (I<sup>2</sup>C mode) and the SMD2 to SMD0 bits in the UiMR register are set to "0002" (serial I/O disabled).

The DL2 to DL0 bits in the UiSMR3 register determine no delay in the SDAi output or a delay of 2 to 8 UiBRG register count source cycles.

When the SDHI bit in the UiSMR2 register is set to "1" (SDA output disabled), the SDAi pin is forcibly placed in a high-impedance state. Do not set the SDHI bit on the rising edge of the UARTi transfer clock. The ABT bit in the UiRB register may be set to "1" (detected).

### 17.3.6 SDA Input

When the IICM2 bit in the UiSMR2 register (i=0 to 4) is set to "0", the first eight bits of received data are stored into bits 7 to 0 (D7 to D0) in the UiRB register. The ninth bit (D8) is ACK or NACK.

When the IICM2 bit is set to "1", the first seven bits (D7 to D1) of received data are stored into bits 6 to 0 in the UiRB register. Store the eighth bit (D0) into bit 8 in the UiRB register.

If the IICM2 bit is set to "1" and the CKPH bit in the UiSMR3 register is set to "1", the same data as that of when setting the IICM2 bit to "0" can be read. To read the data, read the UiRB register after the rising edge of the ninth bit of the transfer clock.

# 17.3.7 ACK, NACK

When the STSPSEL bit in the UiSMR4 register (i=0 to 4) is set to "0" (serial I/O circuit selected) and the ACKC bit in the UiSMR4 register is set to "1" (ACK data output), the SDAi pin provides the value output set in the ACKD bit in the UiSMR4 register.

If the IICM2 bit is set to "0", the NACK interrupt request is generated when the SDAi pin is held high ("H") on the rising edge of the ninth bit of the transfer clock. The ACK interrupt request is generated when the SDAi pin is held low ("L") on the rising edge of the ninth bit of the transfer clock.

When ACK is selected to generate a DMA request, the DMA transfer is activated by an ACK detection.

### 17.3.8 Transmit and Receive Reset

When the STC bit in the UiSMR2 register (i=0 to 4) is set to "1" (UARTi initialization enabled) and a start condition is detected,

- the transmit shift register is reset and the content of the UiTB register is transferred to the transmit shift register. The first bit starts transmitting when the next clock is input. UARTi output value remains unchanged between when the clock is applied and when the first bit data output is provided. The value remains the same as when start condition was detected.
- the receive shift register is reset and the first bit start receiving when the next clock is applied.
- the SWC bit is set to "1" (SCL wait output enabled). The SCLi pin becomes "L" on the falling edge of the ninth bit of the transfer clock.

If UARTi transmission and reception are started with this function, the TI bit in the UiC1 register remains unchanged. Select the external clock as the transfer clock when using this function.



### 17.4 Special Mode 2

In special mode 2, serial communication between one or multiple masters and multiple slaves is available. The SSi input pin (i=0 to 4) controls the serial bus communication. Table 17.19 lists specifications of special mode 2. Table 17.20 lists register settings. Tables 17.21 to 17.23 list pin settings.

| Item                           | Specification                                                                                                                                                                                |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transfer Data Format           | Transfer data : 8 bits long                                                                                                                                                                  |
| Transfer Clock                 | • The CKDIR bit in the UiMR register (i=0 to 4) is set to "0" (internal clock selected):<br>$f_i/2(m+1)$ $f_j = f_1, f_8, f_{2n}^{(1)}$ m: setting value of the UiBRG register, 0016 to FF16 |
|                                | The CKDIR bit to "1" (external clock selected) : input from the CLKi pin                                                                                                                     |
| Transmit/Receive Control       | SSi input pin function                                                                                                                                                                       |
| Transmit Start Condition       | To start transmitting, the following requirements must be met <sup>(2)</sup> :                                                                                                               |
|                                | - Set the TE bit in the UiC1 register to "1" (transmit enable)                                                                                                                               |
|                                | - Set the TI bit in the UiC1 register to "0" (data in the UiTB register)                                                                                                                     |
| <b>Receive Start Condition</b> | To start receiving, the following requirement must be met <sup>(2)</sup> :                                                                                                                   |
|                                | - Set the RE bit in the UiC1 register to "1" (receive enable)                                                                                                                                |
|                                | - Set the TE bit in the UiC1 register to "1" (transmit enable)                                                                                                                               |
|                                | - Set the TI bit in the UiC1 register to "0" (data in the UiTB register)                                                                                                                     |
| Interrupt Request              | While transmitting, the following conditions can be selected:                                                                                                                                |
| Generation Timing              | - The UiIRS bit in the UiC1 register is set to "0" (no data in a transmit buffer) :                                                                                                          |
|                                | when data is transferred from the UiTB register to the UARTi transmit register (transmission started)                                                                                        |
|                                | <ul> <li>The UiIRS register is set to "1" (transmission completed):<br/>when data transmission from UARTi transfer register is completed</li> </ul>                                          |
|                                | While receiving                                                                                                                                                                              |
|                                | When data is transferred from the UARTi receive register to the UiRB register (reception completed)                                                                                          |
| Error Detection                | • Overrun error <sup>(3)</sup>                                                                                                                                                               |
|                                | This error occurs when the seventh bit of the next received data is read before reading the UiRB register                                                                                    |
|                                | Fault error                                                                                                                                                                                  |
|                                | In master mode, the fault error occurs an "L" signal is applied to the SSi pin                                                                                                               |
| Selectable Function            | CLK polarity                                                                                                                                                                                 |
|                                | Select from the rising edge or falling edge of the transfer clock when transferred data is output and input are provided                                                                     |
|                                | LSB first or MSB first                                                                                                                                                                       |
|                                | Data is transmitted or received in either bit 0 or in bit 7                                                                                                                                  |
|                                | Continuous receive mode                                                                                                                                                                      |
|                                | Reception is enabled simultaneously by reading the UiRB register                                                                                                                             |
|                                | Serial data logic inverse                                                                                                                                                                    |
|                                | This function inverses transmitted or received data logically                                                                                                                                |
|                                | TxD and RxD I/O polarity inverse                                                                                                                                                             |
|                                | TxD pin output and RxD pin input are inversed. All I/O data levels are also inversed                                                                                                         |
|                                | Clock phase                                                                                                                                                                                  |
|                                | Select from one of 4 combinations of transfer data polarity and phases                                                                                                                       |
|                                | SSi input pin function                                                                                                                                                                       |
|                                | Output pin is placed in a high-impedance state to avoid data conflict between master<br>and other masters or slaves                                                                          |

| Table 17.19 | Special | Mode 2 S | pecifications |
|-------------|---------|----------|---------------|
|             |         |          |               |

NOTES:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

2. To start transmission/reception when selecting the external clock, these conditions must be met after the CKPOL bit in the UiC0 register is set to "0" (data is transmitted on the falling edge of the transfer clock and data is received on the rising edge) and the CLKi pin is held high ("H"), or when the CKPOL bit is set to "1" (Data is transmitted on the rising edge of the transfer clock and data is received on the falling edge) and the CLKi pin is held high ("H").

3. If an overrun error occurs, the UiRB register is in an indeterminate state. The IR bit in the SiRIC register does not change to "1" (interrupt requested).

| Register | Bit             | Function                                                                       |  |  |
|----------|-----------------|--------------------------------------------------------------------------------|--|--|
| UiTB     | 7 to 0          | Set transmit data                                                              |  |  |
| UiRB     | 7 to 0          | Received data can be read                                                      |  |  |
|          | OER             | Overrun error flag                                                             |  |  |
| UiBRG    | 7 to 0          | Set bit rate                                                                   |  |  |
| UiMR     | SMD2 to SMD0    | Set to "0012"                                                                  |  |  |
|          | CKDIR           | Set to "0" in master mode or "1" in slave mode                                 |  |  |
|          | IOPOL           | Set to "0"                                                                     |  |  |
| UiC0     | CLK1, CLK0      | Select count source for the UiBRG register                                     |  |  |
|          | CRS             | Disabled because the CRD bit is set to "1"                                     |  |  |
|          | TXEPT           | Transfer register empty flag                                                   |  |  |
|          | CRD             | Set to "1"                                                                     |  |  |
|          | NCH             | Select the output format of the TxDi pin                                       |  |  |
|          | CKPOL           | Clock phase can be set by the combination of the CKPOL bit and the CKPH bit in |  |  |
|          |                 | the UiSMR3 register                                                            |  |  |
|          | UFORM           | Select either LSB first or MSB first                                           |  |  |
| UiC1     | TE              | Set to "1" to enable data transmission and reception                           |  |  |
|          | TI              | Transfer buffer empty flag                                                     |  |  |
|          | RE              | Set to "1" to enable data reception                                            |  |  |
|          | RI              | Reception complete flag                                                        |  |  |
|          | UilRS           | Select what causes the UARTi transmit interrupt to be generated                |  |  |
|          | UiRRM           | Set to "1" to enable continuous receive mode                                   |  |  |
|          | UiLCH, SCLKSTPB | Set to "0"                                                                     |  |  |
| UiSMR    | 7 to 0          | Set to "0016"                                                                  |  |  |
| UiSMR2   | 7 to 0          | Set to "0016"                                                                  |  |  |
| UiSMR3   | SSE             | Set to "1"                                                                     |  |  |
|          | СКРН            | Clock phase can be set by the combination of the CKPH bit and the CKPOL bit    |  |  |
|          |                 | in the UiC0 register                                                           |  |  |
|          | DINC            | Set to "0" in master mode or "1" in slave mode                                 |  |  |
|          | NODC            | Set to "0"                                                                     |  |  |
|          | ERR             | Fault error flag                                                               |  |  |
|          | 7 to 5          | Set to "0002"                                                                  |  |  |
| UiSMR4   | 7 to 0          | Set to "0016"                                                                  |  |  |

## Table 17.20 Register Settings in Special Mode 2

i=0 to 4



| Port | Function             | Setting      |               |              |  |
|------|----------------------|--------------|---------------|--------------|--|
|      |                      | PS0 Register | PSL0 Register | PD6 Register |  |
| P60  | SS0 input            | PS0_0=0      | _             | PD6_0=0      |  |
| P61  | CLK0 input (slave)   | PS0_1=0      | -             | PD6_1=0      |  |
|      | CLK0 output (master) | PS0_1=1      | _             | -            |  |
| P62  | RxD0 input (master)  | PS0_2=0      | -             | PD6_2=0      |  |
|      | STxD0 output (slave) | PS0_2=1      | PSL0_2=1      | -            |  |
| P63  | TxD0 output (master) | PS0_3=1      | -             | -            |  |
|      | SRxD0 input (slave)  | PS0_3=0      | -             | PD6_3=0      |  |
| P64  | SS1 input            | PS0_4=0      | -             | PD6_4=0      |  |
| P65  | CLK1 input (slave)   | PS0_5=0      | -             | PD6_5=0      |  |
|      | CLK1 output (master) | PS0_5=1      | -             | -            |  |
| P66  | RxD1 input (master)  | PS0_6=0      | -             | PD6_6=0      |  |
|      | STxD1 output (slave) | PS0_6=1      | PSL0_6=1      | -            |  |
| P67  | TxD1 output (master) | PS0_7=1      | -             | -            |  |
|      | SRxD1 input (slave)  | PS0_7=0      | -             | PD6_7=0      |  |

#### Table 17.21 Pin Settings in Special Mode 2 (1)

#### Table 17.22 Pin Settings (2)

| Port               | Function             | Setting      |               |              |              |
|--------------------|----------------------|--------------|---------------|--------------|--------------|
|                    |                      | PS1 Register | PSL1 Register | PSC Register | PD7 Register |
| P70 <sup>(1)</sup> | TxD2 output (master) | PS1_0=1      | PSL1_0=0      | PSC_0=0      | -            |
|                    | SRxD2 input (slave)  | PS1_0=0      | -             | -            | PD7_0=0      |
| P71 <sup>(1)</sup> | RxD2 input (master)  | PS1_1=0      | -             | -            | PD7_1=0      |
|                    | STxD2 output (slave) | PS1_1=1      | PSL1_1=1      | PSC_1=0      | -            |
| P72                | CLK2 input (slave)   | PS1_2=0      | -             | -            | PD7_2=0      |
|                    | CLK2 output (master) | PS1_2=1      | PSL1_2=0      | PSC_2=0      | -            |
| P73                | SS2 input            | PS1_3=0      | —             | _            | PD7_3=0      |

NOTES:

1. P70 and P71 are ports for the N-channel open drain output.

### Table 17.23 Pin Settings (3)

| Port | Function             | Setting                     |               |                             |
|------|----------------------|-----------------------------|---------------|-----------------------------|
|      |                      | PS3 Register <sup>(1)</sup> | PSL3 Register | PD9 Register <sup>(1)</sup> |
| P90  | CLK3 input (slave)   | PS3_0=0                     | -             | PD9_0=0                     |
|      | CLK3 output (master) | PS3_0=1                     | -             | -                           |
| P91  | RxD3 input (master)  | PS3_1=0                     | -             | PD9_1=0                     |
|      | STxD3 output (slave) | PS3_1=1                     | PSL3_1=1      | -                           |
| P92  | TxD3 output (master) | PS3_2=1                     | PSL3_2=0      | -                           |
|      | SRxD3 input (slave)  | PS3_2=0                     | -             | PD9_2=0                     |
| P93  | SS3 input            | PS3_3=0                     | PSL3_3=0      | PD9_3=0                     |
| P94  | SS4 input            | PS3_4=0                     | PSL3_4=0      | PD9_4=0                     |
| P95  | CLK4 input (slave)   | PS3_5=0                     | PSL3_5=0      | PD9_5=0                     |
|      | CLK4 output (master) | PS3_5=1                     | -             | -                           |
| P96  | TxD4 output (master) | PS3_6=1                     | -             | -                           |
|      | SRxD4 input (slave)  | PS3_6=0                     | PSL3_6=0      | PD9_6=0                     |
| P97  | RxD4 input (master)  | PS3_7=0                     | -             | PD9_7=0                     |
|      | STxD4 output (slave) | PS3_7=1                     | PSL3_7=1      | -                           |

NOTES:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.



# 17.4.1 **SSi** Input Pin Function (i=0 to 4)

When the SSE bit in the UiSMR3 register is set to "1" ( $\overline{SS}$  function enabled), the special mode 2 is selected, activating the pin function.

The DINC bit in the UiSMR3 register determines which microcomputer performs as master or slave. When multiple microcomputers perform as the masters (multi-master system), the  $\overline{SSi}$  pin setting determines which master microcomputer is active and when.

### 17.4.1.1 When Setting the DINC Bit to "1" (Slave Mode)

When a high-level ("H") signal is applied to the  $\overline{SSi}$  pin, the STxDi and SRxDi pins are placed in a highimpedance state and the transfer clock applied to the CLKi pin is ignored. When a low-level ("L") signal is applied to the  $\overline{SSi}$  input pin, the transfer clock input is valid and serial communication is enabled.

### 17.4.1.2 When Setting the DINC Bit to "0" (Master Mode)

When using the  $\overline{SSi}$  pin functin in master mode, set the UiRS bit in the UiC1 register to "1" (transmission completed).

When an "H" signal is applied to the SSi pin, serial communication is available due to transmission privilege. The master provides the transfer clock output. When an "L" signal is applied to the SSi pin, it indicates that another master is active. The TxDi and CLKi pins are placed in high-impedance states and the ERR bit in the UiSMR3 register is set to "1" (fault error) Use the transmit complete interrupt routine to verify the ERR bit state.

To resume the serial communication after the fault error occurs, set the ERR bit to "0" while applying the "H" signal to the  $\overline{SSi}$  pin. The TxDi and CLKi pins become ready for signal outputs.

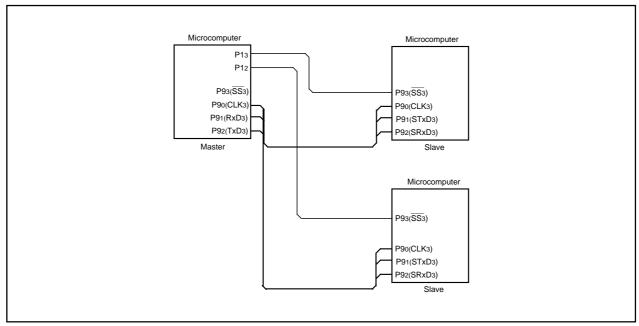



Figure 17.23 Serial Bus Communication Control with SS Pin

## 17.4.2 Clock Phase Setting Function

The CKPH bit in the UiSMR3 register (i=0 to 4) and the CKPOL bit in the UiC0 register select one of four combinations of transfer clock polarity and phases.

The transfer clock phase and polarity must be the same between the master and the slave involved in the transfer.

### 17.4.2.1 When setting the DINC Bit to "0" (Master (Internal Clock))

Figure 17.24 shows transmit and receive timing.

### 17.4.2.2 When Setting the DINC Bit to "1" (Slave (External Clock))

When the CKPH bit is set to "0" (no clock delay) and the  $\overline{SSi}$  input pin is held high ("H"), the STxDi pin is placed in a high-impedance state. When the  $\overline{SSi}$  input pin becomes low ("L"), conditions to start a serial transfer are met, but output is indeterminate. The serial transmission is synchronized with the transfer clock. Figure 17.25 shows the transmit and receive timing.

When the CKPH bit is set to "1" (clock delay) and the  $\overline{SSi}$  input pin is held high, the STxDi pin is placed in a high-impedance state. When the  $\overline{SSi}$  pin becomes low, the first data is output. The serial transmission is synchronized with the transfer clock. Figure 17.26 shows the transmit and receive timing.

| Signal Applied to                 | "H"                                                                                 |
|-----------------------------------|-------------------------------------------------------------------------------------|
| Signal Applied to the SS Pin      | "L"                                                                                 |
| Clock Output<br>(CKPOL=0, CKPH=0) |                                                                                     |
| Clock Output<br>(CKPOL=1, CKPH=0) |                                                                                     |
| Clock Output<br>(CKPOL=0, CKPH=1) |                                                                                     |
| Clock Output<br>(CKPOL=1, CKPH=1) |                                                                                     |
| Data Output Timing                | "H" <u>D0</u> <u>D1</u> <u>D2</u> <u>D3</u> <u>D4</u> <u>D5</u> <u>D6</u> <u>D7</u> |
| Data Input Timing                 | $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$  |
|                                   |                                                                                     |

Figure 17.24 Transmit and Receive Timing in Master Mode (Internal Clock)



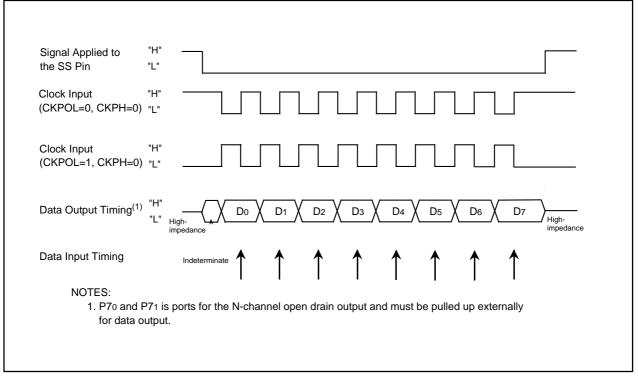



Figure 17.25 Transmit and Receive Timing in Slave Mode (External Clock) (CKPH=0)

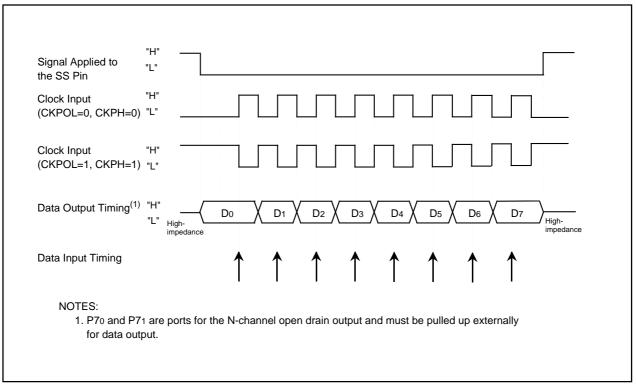



Figure 17.26 Transmit and Receive Timing in Slave Mode (External Clock) (CKPH=1)

# 17.5 Special Mode 3 (GCI Mode)

In GCI mode, the external clock is synchronized with the transfer clock used in the clock synchronous serial I/O mode.

Table 17.24 lists specifications of GCI mode. Table 17.25 lists registers settings. Tables 17.26 to 17.28 list pin settings.

| Item                           | Specification                                                                                              |
|--------------------------------|------------------------------------------------------------------------------------------------------------|
| Transfer Data Format           | Transfer data : 8 bits long                                                                                |
| Transfer Clock                 | The CKDIR bit in the UiMR register (i=0 to 4) is set to "1" (external clock selected):                     |
|                                | input from the CLKi pin                                                                                    |
| Clock Synchronization Function | Trigger signal input from the CTSi pin                                                                     |
| Transmit/Receive Start         | To start data transmission and reception, meet the following conditions and then apply a                   |
| Condition                      | trigger signal to the CTSi pin:                                                                            |
|                                | - Set the TE bit in the UiC1 register to "1" (transmit enable)                                             |
|                                | - Set the RE bit in the UiC1 register to "1" (receive enable)                                              |
|                                | - Set the TI bit in the UiC1 register to "0" (Data in the UiTB register)                                   |
| Interrupt Request              | <ul> <li>While transmitting, the following condition can be selected:</li> </ul>                           |
| Generation Timing              | - The UiIRS bit in the UiC1 register is set to "0" (UiTB register empty):                                  |
|                                | when data is transferred from the UiTB register to the UARTi transmit register (transmission started)      |
|                                | - The UiIRS bit is set to "1" (Transmit completed):                                                        |
|                                | when a data transmission from the UARTi transfer register is completed                                     |
|                                | • While receiving,                                                                                         |
|                                | when data is transferred from the UARTi receive register to the UiRB register (reception completed)        |
| Error Detection                | Overrun error <sup>(1)</sup>                                                                               |
| NOTES                          | This error occurs when the seventh bit of the next received data is read before reading the UiRB register. |

## Table17.24 GCI Mode Specifications

NOTES:

1. If an overrun error occurs, the UiRB register is indeterminate. The IR bit in the SiRIC register does not change to "1" (interrupt requested).



| Register    | Bit          | Function                                                        |
|-------------|--------------|-----------------------------------------------------------------|
| UiTB        | 7 to 0       | Set transmit data                                               |
| UiRB 7 to 0 |              | Received data                                                   |
|             | OER          | Overrun error flag                                              |
| UiBRG       | 7 to 0       | Set to "0016"                                                   |
| UiMR        | SMD2 to SMD0 | Set to "0012"                                                   |
|             | CKDIR        | Set to "1"                                                      |
|             | IOPOL        | Set to "0"                                                      |
| UiC0        | CLK1, CLK0   | Set to "002"                                                    |
|             | CRS          | Disabled because the CRD bit is set to "1"                      |
|             | TXEPT        | Transfer register empty flag                                    |
|             | CRD          | Set to "1"                                                      |
|             | NCH          | Select the output format of the TxDi pin                        |
|             | CKPOL        | Set to "0"                                                      |
|             | UFORM        | Set to "0"                                                      |
| UiC1        | TE           | Set to "1" to enable data transmission and reception            |
|             | ТІ           | Transfer buffer empty flag                                      |
|             | RE           | Set to "1" to enable data reception                             |
|             | RI           | Reception complete flag                                         |
|             | UiIRS        | Select what causes the UARTi transmit interrupt to be generated |
|             | UiRRM, UiLCH | Set to "0"                                                      |
|             | SCLKSTPB     | Set to "0"                                                      |
| UiSMR       | 6 to 0       | Set to "0000002"                                                |
|             | SCLKDIV      | See Table 17.29                                                 |
| UiSMR2      | 6 to 0       | Set to "0000002"                                                |
|             | SU1HIM       | See Table 17.29                                                 |
| UiSMR3      | 2 to 0       | Set to "0002"                                                   |
|             | NODC         | Set to "0"                                                      |
|             | 7 to 4       | Set to "00002"                                                  |
| UiSMR4      | 7 to 0       | Set to "0016"                                                   |

# Table 17.25 Register Settings in GCI Mode

i=0 to 4



| Port | Function                  | Setting      |               |              |  |
|------|---------------------------|--------------|---------------|--------------|--|
|      |                           | PS0 Register | PSL0 Register | PD6 Register |  |
| P60  | CTS0 input <sup>(1)</sup> | PS0_0=0      | -             | PD6_0=0      |  |
| P61  | CLK0 input                | PS0_1=0      | -             | PD6_1=0      |  |
| P62  | RxD0 input                | PS0_2=0      | _             | PD6_2=0      |  |
| P63  | TxD0 output               | PS0_3=1      | -             | -            |  |
| P64  | CTS1 input <sup>(1)</sup> | PS0_4=0      | -             | PD6_4=0      |  |
| P65  | CLK1 input                | PS0_5=0      | _             | PD6_5=0      |  |
| P66  | RxD1 input                | PS0_6=0      | -             | PD6_6=0      |  |
| P67  | TxD1 output               | PS0_7=1      | -             | -            |  |

#### Table 17.26 Pin Settings in GCI Mode (1)

NOTES:

1. CTS input is used as a trigger siganl input.

## Table 17.27 Pin Settings (2)

| Port               | Function                  | Setting      |               |              |              |  |
|--------------------|---------------------------|--------------|---------------|--------------|--------------|--|
|                    |                           | PS1 Register | PSL1 Register | PSC Register | PD7 Register |  |
| P70 <sup>(1)</sup> | TxD2 output               | PS1_0=1      | PSL1_0=0      | PSC_0=0      | -            |  |
| P71 <sup>(1)</sup> | RxD2 input                | PS1_1=0      | -             | -            | PD7_1=0      |  |
| P72                | CLK2 input                | PS1_2=0      | -             | -            | PD7_2=0      |  |
| P73                | CTS2 input <sup>(2)</sup> | PS1_3=0      | _             | -            | PD7_3=0      |  |

NOTES:

1. P70 and P71 are ports for the N-channel open drain output.

2.  $\overline{\text{CTS}}$  input is used as a trigger siganl input.

| Table 17.2 | B Pin Se | ettings (3) |
|------------|----------|-------------|
|------------|----------|-------------|

| Port | Function                  | Setting                     |               |                             |  |
|------|---------------------------|-----------------------------|---------------|-----------------------------|--|
|      |                           | PS3 Register <sup>(1)</sup> | PSL3 Register | PD9 Register <sup>(1)</sup> |  |
| P90  | CLK3 input                | PS3_0=0                     | -             | PD9_0=0                     |  |
| P91  | RxD3 input                | PS3_1=0                     | -             | PD9_1=0                     |  |
| P92  | TxD3 output               | PS3_2=1                     | PSL3_2=0      | -                           |  |
| P93  | CTS3 input <sup>(2)</sup> | PS3_3=0                     | PSL3_3=0      | PD9_3=0                     |  |
| P94  | CTS4 input <sup>(2)</sup> | PS3_4=0                     | PSL3_4=0      | PD9_4=0                     |  |
| P95  | CLK4 input                | PS3_5=0                     | PSL3_5=0      | PD9_5=0                     |  |
| P96  | TxD4 output               | PS3_6=1                     | -             | -                           |  |
| P97  | RxD4 input                | PS3_7=0                     | -             | PD9_7=0                     |  |

NOTES:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

2. CTS input is used for a trigger siganl input.



To generate the internal clock synchronized with the external clock, set the SU1HIM bit in the UiSMR2 register (i=0 to 4) and the SCLKDIV bit in the UiSMR register to values shown in Table 17.29. Then apply a trigger signal to the  $\overline{\text{CTSi}}$  pin. Either the same clock cycle as the external clock or external clock divided by two can be selected as the transfer clock. The SCLKSTPB bit in the UiC1 register controls the transfer clock. Set the SCLKSTPB bit accordingly, to start or stop the transfer clock during an external clock operation. Figure 17.27 shows an example of the clock-divided synchronous function.

| SCLKDIV Bit in | SU1HIM Bit in   | Clock-Divided Synchronous Function  | Example of Waveform |
|----------------|-----------------|-------------------------------------|---------------------|
| UiSMR Register | UiSMR2 Register |                                     |                     |
| 0              | 0               | Not synchronized                    | -                   |
| 0              | 1               | Same division as the external clock | A in Figure 17.27   |
| 1              | 0 or 1          | Same division as the external clock | B in Figure 17.27   |
|                |                 | divided by 2                        |                     |

Table 17.29 Clock-Divided Synchronous Function Select

i=0 to 4

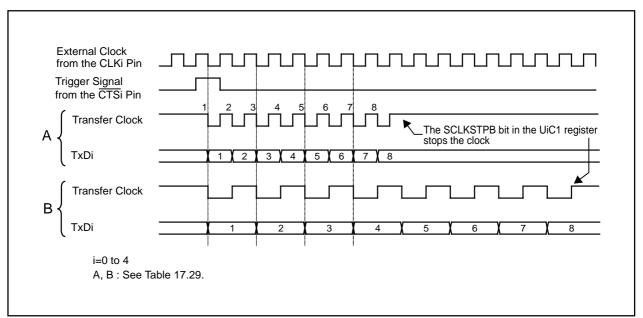



Figure 17.27 Clock-Divided Synchronous Function



# 17.6 Special Mode 4 (IE Mode)

In IE mode, devices connected with the IEBus can communicate in UART mode. Table 17.30 lists register settings. Tables 17.31 to 17.33 list pin settings.

| Register | Bit           | Function                                                        |
|----------|---------------|-----------------------------------------------------------------|
| UiTB     | 8 to 0        | Set transmit data                                               |
| UiRB     | 8 to 0        | Received data can be read                                       |
|          | OER, FER,     | Error flags                                                     |
|          | PER, SUM      |                                                                 |
| UiBRG    | 7 to 0        | Set bit rate                                                    |
| UiMR     | SMD2 to SMD0  | Set to "1102"                                                   |
|          | CKDIR         | Select the internal clock or external clock                     |
|          | STPS          | Set to "0"                                                      |
|          | PRY           | Disabled because the PRYE bit is set to "0"                     |
|          | PRYE          | Set to "0"                                                      |
|          | IOPOL         | Select TxD and RxD I/O polarity                                 |
| UiC0     | CLK1, CLK0    | Select count source for the UiBRG register                      |
|          | CRS           | Disabled because the CRD bit is set to "1"                      |
|          | TXEPT         | Transfer register empty flag                                    |
|          | CRD           | Set to "1"                                                      |
|          | NCH           | Select output format of the TxDi pin                            |
|          | CKPOL         | Set to "0"                                                      |
|          | UFORM         | Set to "0"                                                      |
| UiC1     | TE            | Set to "1" to enable data transmission                          |
|          | ТІ            | Transfer buffer empty flag                                      |
|          | RE            | Set to "1" te enable data reception                             |
|          | RI            | Reception complete flag                                         |
|          | UiIRS         | Select what causes the UARTi transmit interrupt to be generated |
|          | UiRRM, UiLCH, | Set to "0"                                                      |
|          | SCLKSTPB      |                                                                 |
| UiSMR    | 3 to 0        | Set to "00002"                                                  |
|          | ABSCS         | Select bus conflict detect sampling timing                      |
|          | ACSE          | Set to "1" to automatically clear the transmit enable bit       |
|          | SSS           | Select transmit start condition                                 |
|          | SCLKDIV       | Set to "0"                                                      |
| UiSMR2   | 7 to 0        | Set to "0016"                                                   |
| UiSMR3   | 7 to 0        | Set to "0016"                                                   |
| UiSMR4   | 7 to 0        | Set to "0016"                                                   |
| IFSR     | IFSR6, IFSR7  | Select how the bus conflict interrupt occurs                    |

| Table 17.30 | Register | Settings | in | IE Mode |
|-------------|----------|----------|----|---------|
|             |          |          |    |         |

i=0 to 4



| Port | Function    | Setting      |               |              |  |
|------|-------------|--------------|---------------|--------------|--|
|      |             | PS0 Register | PSL0 Register | PD6 Register |  |
| P61  | CLK0 input  | PS0_1=0      | -             | PD6_1=0      |  |
|      | CLK0 output | PS0_1=1      | -             | -            |  |
| P62  | RxD0 input  | PS0_2=0      | -             | PD6_2=0      |  |
| P63  | TxD0 output | PS0_3=1      | -             | -            |  |
| P65  | CLK1 input  | PS0_5=0      | -             | PD6_5=0      |  |
|      | CLK1 output | PS0_5=1      | -             | -            |  |
| P66  | RxD1 input  | PS0_6=0      | -             | PD6_6=0      |  |
| P67  | TxD1 output | PS0_7=1      | _             | _            |  |

#### Table 17.31 Pin Settings in IE Mode (1)

## Table 17.32 Pin Settings (2)

| Port               | Function    | Setting      |               |              |              |  |
|--------------------|-------------|--------------|---------------|--------------|--------------|--|
|                    |             | PS1 Register | PSL1 Register | PSC Register | PD7 Register |  |
| P70 <sup>(1)</sup> | TxD2 output | PS1_0=1      | PSL1_0=0      | PSC_0=0      | -            |  |
| P71 <sup>(1)</sup> | RxD2 input  | PS1_1=0      | -             | -            | PD7_1=0      |  |
| P72                | CLK2 input  | PS1_2=0      | -             | -            | PD7_2=0      |  |
|                    | CLK2 output | PS1_2=1      | PSL1_2=0      | PSC_2=0      | —            |  |

NOTES:

1. P70 and P71 are ports for the N-channel open drain output.

## Table 17.33 Pin Settings (3)

| Port | Function    | Setting                     |               |                             |  |
|------|-------------|-----------------------------|---------------|-----------------------------|--|
|      |             | PS3 Register <sup>(1)</sup> | PSL3 Register | PD9 Register <sup>(1)</sup> |  |
| P90  | CLK3 input  | PS3_0=0                     | -             | PD9_0=0                     |  |
|      | CLK3 output | PS3_0=1                     | -             | -                           |  |
| P91  | RxD3 input  | PS3_1=0                     | -             | PD9_1=0                     |  |
| P92  | TxD3 output | PS3_2=1                     | PSL3_2=0      | -                           |  |
| P95  | CLK4 input  | PS3_5=0                     | PSL3_5=0      | PD9_5=0                     |  |
|      | CLK4 output | PS3_5=1                     | -             | -                           |  |
| P96  | TxD4 output | PS3_6=1                     | -             | -                           |  |
| P97  | RxD4 input  | PS3_7=0                     | -             | PD9_7=0                     |  |

NOTES:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.



If the output signal level of the TxDi pin (i=0 to 4) differs from the input signal level of the RxDi pin, an interrupt request is generated.

UART0 and UART3 are assigned software interrupt number 40. UART1 and UART4 are assigned number 41. When using the bus conflict detect function of UART0 or UART3, of UART1 or UART4, set the IFSR6 bit and the IFSR7 bit in the IFSR register accordingly.

When the ABSCS bit in the UiSMR register is set to "0" (rising edge of the transfer clock), it is determined, on the rising edge of the transfer clock, if the output level of the TxD pin and the input level of the RxD pin match. When the ABSCS bit is set to "1" (timer Aj underflow), it is determined when the timer Aj (timer A3 in UART0, timer A4 in UART1, timer A0 in UART2, timer A3 in UART3, the timer A4 in UART4) counter overflows. Use the timer Aj in one-shot timer mode.

When the ACSE bit in the UiSMR register is set to "1" (automatic clear at bus conflict) and the IR bit in the BCNiIC register to "1" (discrepancy detected), the TE bit in the UiC1 register is set to "0" (transmit disable).

When the SSS bit in the UiSMR register is set to "1" (synchronized with RxDi), data is transmitted from the TxDi pin on the falling edge of the RxDi pin. Figure 17.28 shows bits associated with the bus conflict detect function.



|                              | when the ABSCS bit is set to "0"                                                                                                                 |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Transfer Clock               | ST     D0     D1     D2     D3     D4     D5     D6     D7     D8     SP                                                                         |
| TxDi                         |                                                                                                                                                  |
| RxDi                         | Trigger signal is applied to the TAjIN pin                                                                                                       |
| Timer Aj                     |                                                                                                                                                  |
|                              | When ABSCS is set to "1", bus conflict is detected when the timer Aj underflows (in the one-shot timer mode). An interrupt request is generated. |
|                              | Timer Aj: timer A3 in UART0 or UART3, timer A4 in UART1 or UART4, timer A0 in UART2                                                              |
| (2) The ACSE                 | Bit in the UiSMR Register (Transmit enable bit is automatically cleared)                                                                         |
| Transfer Clock               |                                                                                                                                                  |
| TxDi                         | ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP                                                                                                                 |
| RxDi                         |                                                                                                                                                  |
| IR bit in                    |                                                                                                                                                  |
| BCNilC register              |                                                                                                                                                  |
| TE bit in<br>UiC1 register   | /                                                                                                                                                |
| (0) The 000 h                |                                                                                                                                                  |
| When th                      | it in the UiSMR Register (Transmit start condition selected)<br>e SSS bit is set to "0", data is transmitted after one transfer clock cycle      |
| if data tr<br>Transfer Clock | ansmission is enabled.<br>ST D0 D1 D2 D3 D4 D5 D6 D7 D8 SP                                                                                       |
| TxDi                         |                                                                                                                                                  |
|                              |                                                                                                                                                  |
|                              | transmit enable conditons are met                                                                                                                |
|                              | e SSS bit is set to "1", data is transmitted on the falling edge of the RxDi pin <sup>(1)</sup>                                                  |
| CLKi                         | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                           |
| TxDi                         | (Note 2)                                                                                                                                         |
|                              |                                                                                                                                                  |
| RxDi                         |                                                                                                                                                  |

Figure 17.28 Bit Function Related Bus Conflict Detection

RENESAS

# 17.7 Special Mode 5 (SIM Mode)

In SIM mode, SIM interface devices can communicate in UART mode. Both direct and inverse formats are available and a low-level ("L") signal output can be provided from the TxDi pin (i=0 to 4) when a parity error is detected.

Table 17.34 lists specifications of SIM mode. Table 17.35 lists register settings. Tables 17.36 to 17.38 list pin settings.

| Item                     |                                                                                                                                |                         | Specification                                   |                                                 |  |  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------|-------------------------------------------------|--|--|--|
| Transfer Data Format     | Transfer data: 8-I                                                                                                             | bit UART mode           | One stop bit                                    |                                                 |  |  |  |
|                          | <ul> <li>In direct format</li> </ul>                                                                                           |                         | <ul> <li>In inverse format</li> </ul>           |                                                 |  |  |  |
|                          | Parity:                                                                                                                        | Even                    | Parity:                                         | Odd                                             |  |  |  |
|                          | Data logic:                                                                                                                    | Direct                  | Data logic:                                     | Inverse                                         |  |  |  |
|                          | Transfer format:                                                                                                               | LSB first               | Transfer format:                                | MSB first                                       |  |  |  |
| Transfer Clock           |                                                                                                                                | •                       | 0 to 4) is "0" (internal setting value of the U | clock selected):<br>iBRG register, 0016 to FF16 |  |  |  |
|                          | Do not set the CKE                                                                                                             | DIR bit to "1" (externa | I clock selected)                               |                                                 |  |  |  |
| Transmit/Receive Control | The CRD bit in the                                                                                                             | UiC0 register is set    | o "1" (CTS, RTS fund                            | tion disabled)                                  |  |  |  |
| Other Setting Items      | The UiIRS bit in the                                                                                                           | e UiC1 register is set  | to "1" (transmission of                         | completed)                                      |  |  |  |
| Transmit Start Condition | To start transmitting, the following requirements must be met:                                                                 |                         |                                                 |                                                 |  |  |  |
|                          | - Set the TE bit in t                                                                                                          | he UiC1 register to "   | 1" (transmit enable)                            |                                                 |  |  |  |
|                          | - Set the TI bit in th                                                                                                         | e UiC1 register to "0   | " (data in the UiTB re                          | gister)                                         |  |  |  |
| Receive Start Condition  | To start receiving, the following requirements must be met:                                                                    |                         |                                                 |                                                 |  |  |  |
|                          | - Set the RE bit in t                                                                                                          | he UiC1 register to "   | 1" (receive enable)                             |                                                 |  |  |  |
|                          | - Detect the start b                                                                                                           | it                      |                                                 |                                                 |  |  |  |
| Interrupt Request        | <ul> <li>While transmitting</li> </ul>                                                                                         | <b>]</b> ,              |                                                 |                                                 |  |  |  |
| Generation Timing        | -The UiIRS bit is set to "1" (transmission completed):<br>when data transmission from the UARTi transfer register is completed |                         |                                                 |                                                 |  |  |  |
|                          | • While receiving,                                                                                                             |                         |                                                 |                                                 |  |  |  |
|                          | when data is transfe                                                                                                           | erred from the UARTi re | eceive register to the Uil                      | RB register (reception completed)               |  |  |  |
| Error Detection          | • Overrun error <sup>(1)</sup>                                                                                                 |                         |                                                 |                                                 |  |  |  |
|                          | This error occurs when the eighth bit of the next data is received before reading the UiRB register                            |                         |                                                 |                                                 |  |  |  |
|                          | <ul> <li>Flaming error</li> </ul>                                                                                              |                         |                                                 |                                                 |  |  |  |
|                          | This error occur                                                                                                               | s when the number of    | of the stop bit set is n                        | ot detected                                     |  |  |  |
|                          | <ul> <li>Parity error</li> </ul>                                                                                               |                         |                                                 |                                                 |  |  |  |
|                          | This error occur the number set                                                                                                | s when the number of    | of "1" in parity bit and                        | character bits differs from                     |  |  |  |
|                          | <ul> <li>Error sum flag</li> </ul>                                                                                             |                         |                                                 |                                                 |  |  |  |
|                          | The SUM bit is                                                                                                                 | set to "1" when an ov   | verrun error, framing e                         | error or parity error occurs                    |  |  |  |

## Table 17.34 SIM Mode Specifications

NOTES:

1. If an overrun error occurs, the UiRB register is indeterminate. The IR bit in the SiRIC register does not change to "1" (interrupt requested).

2. The CNT3 to CNT0 bits in the TCSPR register select no division (n=0) or divide-by-2n (n=1 to 15).

| Register | Bit          | Function                                               |
|----------|--------------|--------------------------------------------------------|
| UiTB     | 7 to 0       | Set transmit data                                      |
| UiRB     | 7 to 0       | Received data can be read                              |
|          | OER, FER,    | Error flags                                            |
|          | PER, SUM     |                                                        |
| UiBRG    | 7 to 0       | Set bit rate                                           |
| UiMR     | SMD2 to SMD0 | Set to "1012"                                          |
|          | CKDIR        | Set to "0"                                             |
|          | STPS         | Set to "0"                                             |
|          | PRY          | Set to "1" for direct format or "0" for inverse format |
|          | PRYE         | Set to "1"                                             |
|          | IOPOL        | Set to "0"                                             |
| UiC0     | CLK1, CLK0   | Select count source for the UiBRG register             |
|          | CRS          | Disabled because the CRD bit is set to "1"             |
|          | TXEPT        | Transfer register empty flag                           |
|          | CRD          | Set to "1"                                             |
|          | NCH          | Set to "1"                                             |
|          | CKPOL        | Set to "0"                                             |
|          | UFORM        | Set to "0" for direct format or "1" for inverse format |
| UiC1     | TE           | Set to "1" to enable data transmission                 |
|          | ТІ           | Transfer buffer empty flag                             |
|          | RE           | Set to "1" to enable data reception                    |
|          | RI           | Reception complete flag                                |
|          | UilRS        | Set to "1"                                             |
|          | UiRRM        | Set to "0"                                             |
|          | UiLCH        | Set to "0" for direct format or "1" for inverse format |
|          | UiERE        | Set to "1"                                             |
| UiSMR    | 7 to 0       | Set to "0016"                                          |
| UiSMR2   | 7 to 0       | Set to "0016"                                          |
| UiSMR3   | 7 to 0       | Set to "0016"                                          |
| UiSMR4   | 7 to 0       | Set to "0016"                                          |

## Table 17.35 Register Settings in SIM Mode

i=0 to 4



| Port | Function    |              | Setting       |              |
|------|-------------|--------------|---------------|--------------|
|      |             | PS0 Register | PSL0 Register | PD6 Register |
| P62  | RxD0 input  | PS0_2=0      | -             | PD6_2=0      |
| P63  | TxD0 output | PS0_3=1      | -             | -            |
| P66  | RxD1 input  | PS0_6=0      | -             | PD6_6=0      |
| P67  | TxD1 output | PS0_7=1      | _             | _            |

#### Table 17.36 Pin Settings in SIM Mode (1)

## Table 17.37 Pin Settings (2)

| Port               | Function    |              | Setting       | g            |              |
|--------------------|-------------|--------------|---------------|--------------|--------------|
|                    |             | PS1 Register | PSL1 Register | PSC Register | PD7 Register |
| P70 <sup>(1)</sup> | TxD2 output | PS1_0=1      | PSL1_0=0      | PSC_0=0      | -            |
| P71 <sup>(1)</sup> | RxD2 input  | PS1_1=0      | _             | _            | PD7_1=0      |

NOTES:

1. P70 and P71 are ports for the N-channel open drain output.

## Table 17.38 Pin Settings (3)

| Port | Function    |                             | Setting       |                             |
|------|-------------|-----------------------------|---------------|-----------------------------|
|      |             | PS3 Register <sup>(1)</sup> | PSL3 Register | PD9 Register <sup>(1)</sup> |
| P91  | RxD3 input  | PS3_1=0                     | -             | PD9_1=0                     |
| P92  | TxD3 output | PS3_2=1                     | PSL3_2=0      | -                           |
| P96  | TxD4 output | PS3_6=1                     | -             | -                           |
| P97  | RxD4 input  | PS3_7=0                     | _             | PD9_7=0                     |

NOTES:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set to the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.

Figure 17.29 shows an example of a SIM interface operation. Figure 17.30 shows an example of a SIM interface connection. Connect the TxDi pin to the RxDi pin for a pull-up.



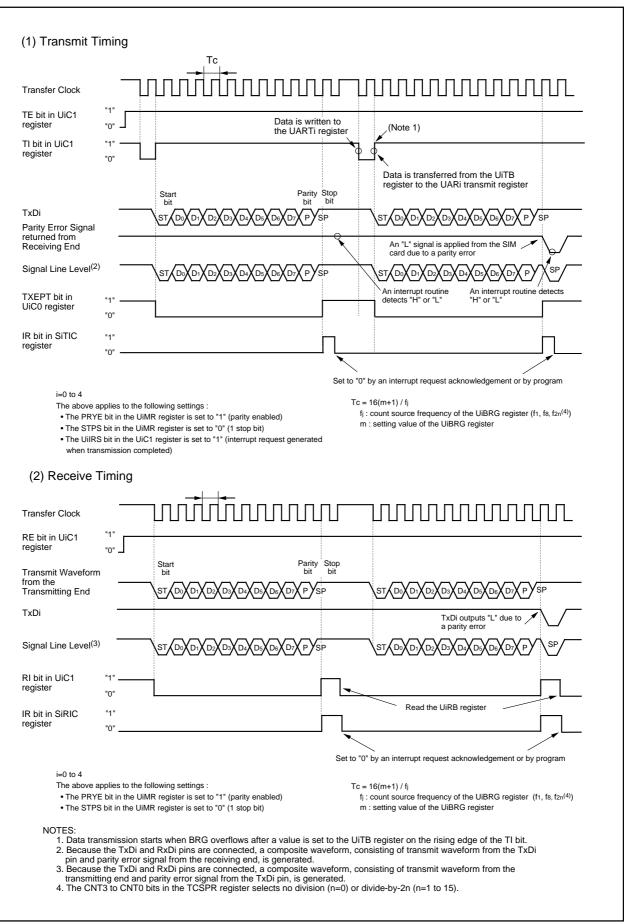



Figure 17.29 SIM Interface Operation

RENESAS



Figure 17.30 SIM Interface Connection

# 17.7.1 Parity Error Signal

## 17.7.1.1 Parity Error Signal Output Function

When the UiERE bit in the UiC1 register (i=0 to 4) is set to "1", the parity error signal output can be provided. The parity error signal output is provided when a parity error is detected upon receiving data. A low-level ("L") signal output is provided from the TxDi pin in the timing shown in Figure 17.31. When reading the UiRB register during a parity error output, the PER bit in the UiRB register is set to "0" and a high-level ("H") signal output is again provided simultaneously.

## 17.7.1.2 Parity Error Signal

To determine whether the parity error signal is output, the port that shares a pin with the RxDi pin is read by using an end-of-transmit interrupt routine.

| Transfer Clock           |                                                                                                                                                                                                                                                           |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RxDi                     | "H" ST ( D_0 ) D1 ) D2 ) D3 ) D4 ) D5 ) D6 ) D7 ) P ) SP<br>"L"                                                                                                                                                                                           |
| TxDi                     | "H" Hi-Z                                                                                                                                                                                                                                                  |
| Recieve<br>Complete Flag | "1"<br>"0"                                                                                                                                                                                                                                                |
| N                        | IOTES:       ST : Start bit         1. The above applies to direct format conditions.       P : Even parity         (The PRY bit is set to "1", the UFORM bit is set to "0",       SP : Stop bit         and the UiLCH bit is set to "0").       i=0 to 4 |

Figure 17.31 Parity Error Signal Output Timing (LSB First)



## 17.7.2 Format

## 17.7.2.1 Direct Format

Set the PRYE bit in the UiMR register (i=0 to 4) to "1" (parity enabled), the PRY bit to "1" (even parity), the UFORM bit in the UiC0 register to "0" (LSB first) and the UiLCH bit in the UiC1 register to "0" (not inversed). When data are transmitted, data set in the UiTB register are transmitted with the even-numbered parity, starting from D0. When data are received, received data are stored in the UiRB register, starting from D0. The even-numbered parity determines whether a parity error occurs.

## 17.7.2.2 Inverse Format

Set the PRYE bit to "1", the PRY bit to "0" (odd parity), the UFORM bit to "1" (MSB first) and the UiLCH bit to "1" (inversed). When data are transmitted, values set in the UiTB register are logically inversed and are transmitted with the odd-numbered parity, starting from D7. When data are received, received data are logically inversed to be stored in the UiRB register, starting from D7. The odd-numbered parity determines whether a parity error occurs.

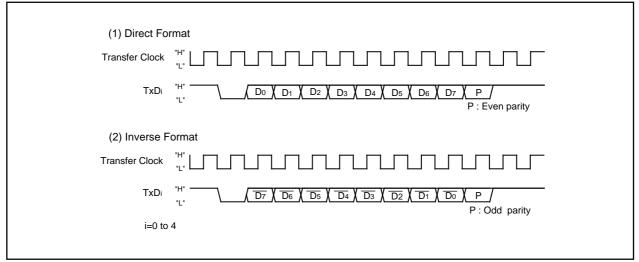



Figure 17.32 SIM Interface Format



# 18. A/D Converter

The A/D converter consists of one 10-bit successive approximation A/D converter with a capacitive coupling amplifier.

The result of an A/D conversion is stored into the A/D registers corresponding to selected pins. It is stored into the AD00 register only when DMAC operating mode is entered.

Table 18.1 lists specifications of the A/D converter. Figure 18.1 shows a block diagram of the A/D converter. Figures 18.2 to 18.6 show registers associated with the A/D converter.

NOTE

This section is described in the 144-pin package only as an example. The AN150 to AN157 pins are not included in the 100-pin package.



| Item                                | Specification                                                                                           |
|-------------------------------------|---------------------------------------------------------------------------------------------------------|
| A/D Conversion Method               | Successive approximation (with a capacitive coupling amplifier)                                         |
| Analog Input Voltage <sup>(1)</sup> | 0V to AVcc (Vcc1)                                                                                       |
| Operating Clock, ØAD <sup>(2)</sup> | fad, fad/2, fad/3, fad/4, fad/6, fad/8                                                                  |
| Resolution                          | Select from 8 bits or 10 bits                                                                           |
| Operating Mode                      | One-shot mode, repeat mode, single sweep mode, repeat sweep mode 0,                                     |
|                                     | repeat sweep mode 1, multi-port single sweep mode, multi-port repeat sweep                              |
|                                     | mode 0                                                                                                  |
| Analog Input Pins <sup>(3)</sup>    | 34 pins                                                                                                 |
|                                     | 8 pins each for AN (ANo to AN7), ANO (AN0o to AN07), AN2 (AN2o to AN27),                                |
|                                     | AN15 (AN150 to AN157)                                                                                   |
|                                     | 2 extended input pins (ANEX0 and ANEX1)                                                                 |
| A/D Conversion Start Condition      | Software trigger                                                                                        |
|                                     | The ADST bit in the AD0CON0 register is set to "1" (A/D conversion started) by                          |
|                                     | program                                                                                                 |
|                                     | • External trigger (re-trigger is enabled)                                                              |
|                                     | When a falling edge is applied to the $\overline{\text{ADTRG}}$ pin after the ADST bit is set to "1" by |
|                                     | program                                                                                                 |
|                                     | Hardware trigger (re-trigger is enabled)                                                                |
|                                     | The timer B2 interrupt request of the three-phase motor control timer functions                         |
|                                     | (after the ICTB2 counter completes counting) is generated after the ADST bit is                         |
|                                     | set to "1" by program                                                                                   |
| Conversion Rate Per Pin             | Without the sample and hold function                                                                    |
|                                     | 8-bit resolution : 49 ØAD cycles                                                                        |
|                                     | 10-bit resolution : 59 ØAD cycles                                                                       |
|                                     | With the sample and hold function                                                                       |
|                                     | 8-bit resolution : 28 ØAD cycles                                                                        |
|                                     | 10-bit resolution : 33 ØAD cycles                                                                       |

#### Table 18.1 A/D Converter Specifications

NOTES:

- 1. Analog input voltage is not affected by the sample and hold function status.
- 2. ØAD frequency must be under 16 MHz when Vcc1=5V.
  ØAD frequency must be under 10 MHz when Vcc1=3.3V.
  Without the sample and hold function, the ØAD frequency is 250 kHz or more.
  With the sample and hold function, the ØAD frequency is 1 MHz or more.
- 3. AVcc = VREF = Vcc1 ≥ Vcc2, A/D input voltage (for AN0 to AN7, AN150 to AN157, ANEX0 and ANEX1) ≤ Vcc1, A/D input voltage (for AN00 to AN07 and AN20 to AN27) ≤ Vcc2.



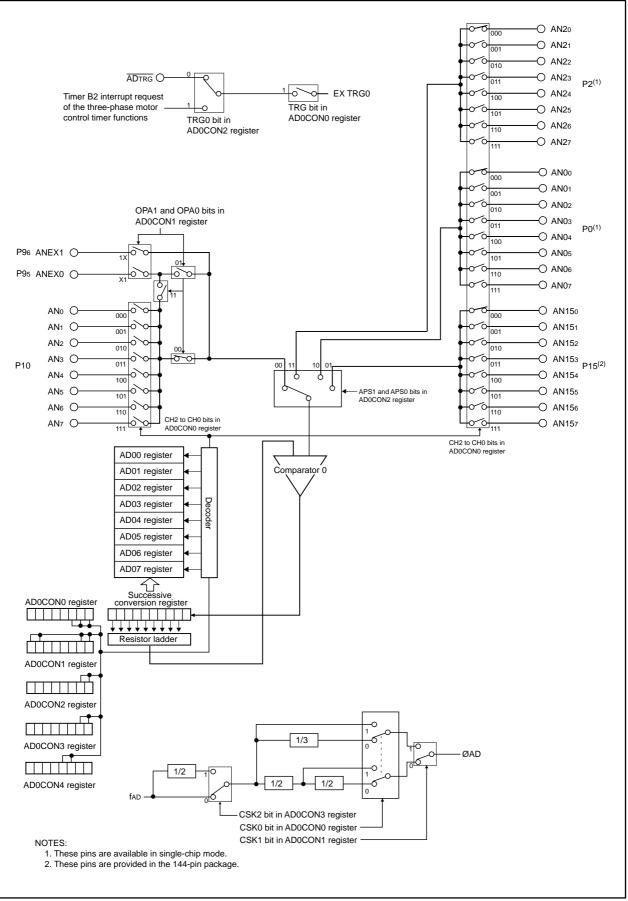



Figure 18.1 A/D Converter Block Diagram

RENESAS

| b6 b5 b4 b3 b2 b1 b0                                                                                                                                                                                                                                                          | Symbo<br>AD0CC                                                                                          |                                                                                                                                                              |                                                                                                                              | After Reset<br>0016                           |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------|
|                                                                                                                                                                                                                                                                               | Bit<br>Symbol                                                                                           | Bit Name                                                                                                                                                     |                                                                                                                              | Function                                      | R     |
|                                                                                                                                                                                                                                                                               | СН0                                                                                                     |                                                                                                                                                              | b2b1b0<br>0 0 0 : ANio<br>0 0 1 : ANi1                                                                                       |                                               | R     |
|                                                                                                                                                                                                                                                                               | CH1                                                                                                     | Analog Input Pin<br>Select Bit <sup>(2, 3, 8, 9)</sup>                                                                                                       | 0 1 0 : ANi2<br>0 1 1 : ANi3<br>1 0 0 : ANi4                                                                                 |                                               | R     |
|                                                                                                                                                                                                                                                                               | CH2                                                                                                     |                                                                                                                                                              | 1 0 1 : ANi5<br>1 1 0 : ANi6<br>1 1 1 : ANi7                                                                                 | (i=none, 0, 2, 15)                            | R     |
|                                                                                                                                                                                                                                                                               | MD0                                                                                                     | A/D Operating Mode                                                                                                                                           | b4b3<br>00:One-shot                                                                                                          |                                               | R     |
|                                                                                                                                                                                                                                                                               | MD1                                                                                                     |                                                                                                                                                              | <ul> <li><sup>1e</sup> 0 1 : Repeat mode</li> <li>1 0 : Single sweep mode</li> <li>1 1 : Repeat sweep mode 0 or 1</li> </ul> |                                               | R     |
|                                                                                                                                                                                                                                                                               | TRG                                                                                                     | Trigger Select Bit                                                                                                                                           | 0 : Software tri<br>1 : External trig                                                                                        | gger<br>gger, hardware trigger <sup>(4)</sup> | R     |
|                                                                                                                                                                                                                                                                               | ADST                                                                                                    | A/D Conversion<br>Start Flag                                                                                                                                 | 0 : A/D convers<br>1 : A/D convers                                                                                           | •                                             | R     |
|                                                                                                                                                                                                                                                                               | CKS0                                                                                                    | Frequency Select<br>Bit                                                                                                                                      | (Note 5)                                                                                                                     |                                               | R     |
| <ol> <li>When the AD0CON0 r<br/>indeterminate.</li> <li>Analog input pins mus</li> <li>The CH2 to CH0 bit se</li> <li>To set the TRG bit to "<br/>Then set the ADST bit</li> <li>ØAD frequency must b</li> <li>ØAD frequency must b</li> <li>Combination of the CK</li> </ol> | t be set aga<br>ettings are e<br>1", select th<br>to "1" after<br>e under 16<br>e under 10<br>(S0, CKS1 | ain after changing a<br>enabled in one-shot<br>he cause of trigger b<br>the TRG bit is set to<br>MHz when Vcc1=5<br>MHz when Vcc1=3,<br>and CKS2 bits select | n A/D operating m<br>mode and repeat<br>y setting the TRG<br>o "1".<br>V.<br>3V.                                             | node.<br>mode.<br>0 bit in the AD0CON2 reg    | giste |
|                                                                                                                                                                                                                                                                               | AD0CC                                                                                                   | DN0 Register AD                                                                                                                                              | 00CON1 Register                                                                                                              | ØAD                                           |       |
| AD0CON3 Register                                                                                                                                                                                                                                                              |                                                                                                         | 0                                                                                                                                                            | 0                                                                                                                            | fad divided by 4                              |       |
| AD0CON3 Register                                                                                                                                                                                                                                                              |                                                                                                         |                                                                                                                                                              | 1                                                                                                                            | fad divided by 3                              |       |
| AD0CON3 Register                                                                                                                                                                                                                                                              |                                                                                                         |                                                                                                                                                              | 0                                                                                                                            |                                               |       |
|                                                                                                                                                                                                                                                                               |                                                                                                         | 1                                                                                                                                                            | 0                                                                                                                            | fad divided by 2                              |       |
|                                                                                                                                                                                                                                                                               |                                                                                                         | 1                                                                                                                                                            |                                                                                                                              | · · · · · · · · · · · · · · · · · · ·         |       |

- 7. When the MSS bit is set to "1", the MD1 and MD0 bits cannot be set to "002" or "012".
- 8. AVcc=VREF=Vcc1≥Vcc2, AD input voltage (for ANo to AN7, AN150 to AN157, ANEX0, ANEX1) ≤ Vcc1, AD input voltage (for AN00 to AN07, AN20 to AM27) ≤ Vcc2.
- 9. Set the PSC\_7 bit in the PSC register to "1" to use the P10 pin as an analog input pin.

Figure 18.2 AD0CON0 Register



| b7 b6 b5 b4                                                                                                                                     | 4 b3 b2                                                                                                                                                                                   | b1 b0                                                                                                                                | Symb                                                                                                                                                                       |                                                                                                                                                                                                                                                                                         | After Reset                                                                                                                                                                                                                                                                          |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| ╷┤╷┤╷┤                                                                                                                                          | ┶╍┶┙                                                                                                                                                                                      | ᆛᆛ                                                                                                                                   | AD0C                                                                                                                                                                       | ON1 039716                                                                                                                                                                                                                                                                              | 0016                                                                                                                                                                                                                                                                                 |           |
|                                                                                                                                                 |                                                                                                                                                                                           |                                                                                                                                      | Bit<br>Symbol                                                                                                                                                              | Bit Name                                                                                                                                                                                                                                                                                | Function                                                                                                                                                                                                                                                                             | RV        |
|                                                                                                                                                 |                                                                                                                                                                                           |                                                                                                                                      |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                         | Single sweep mode and repeat sweep mode 0                                                                                                                                                                                                                                            |           |
|                                                                                                                                                 |                                                                                                                                                                                           |                                                                                                                                      |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                         | b1 b0<br>0 0 : ANio, ANi1<br>0 1 : ANio to ANi3<br>1 0 : ANio to ANi5<br>1 1 : ANio to ANi7                                                                                                                                                                                          | RV        |
|                                                                                                                                                 |                                                                                                                                                                                           |                                                                                                                                      | SCAN1                                                                                                                                                                      | A/D Sweep Pin<br>Select Bit <sup>(2, 10)</sup>                                                                                                                                                                                                                                          | Repeat sweep mode 1 <sup>(3)</sup><br><sup>b1b0</sup><br>0 0 : ANio<br>0 1 : ANio, ANi1<br>1 0 : ANio to ANi2<br>1 1 : ANio to ANi3 (i=none, 0, 2, 15)<br>Multi-port single sweep mode and<br>multi-port repeat sweep mode 0 <sup>(4)</sup><br><sup>b1b0</sup><br>1 1 : ANio to ANi7 | RV        |
|                                                                                                                                                 |                                                                                                                                                                                           |                                                                                                                                      | MD2                                                                                                                                                                        | A/D Operating<br>Mode Select Bit 1                                                                                                                                                                                                                                                      | 0 : Any mode other than repeat sweep mode 1<br>1 : Repeat sweep mode 1 <sup>(5)</sup>                                                                                                                                                                                                | RV        |
|                                                                                                                                                 |                                                                                                                                                                                           |                                                                                                                                      | BITS                                                                                                                                                                       | 8/10-Bit Mode<br>Select Bit                                                                                                                                                                                                                                                             | 0 : 8-bit mode<br>1 : 10-bit mode                                                                                                                                                                                                                                                    | RV        |
|                                                                                                                                                 |                                                                                                                                                                                           |                                                                                                                                      | CKS1                                                                                                                                                                       | Frequency Select<br>Bit                                                                                                                                                                                                                                                                 | (Note 6)                                                                                                                                                                                                                                                                             | RV        |
|                                                                                                                                                 |                                                                                                                                                                                           |                                                                                                                                      | VCUT                                                                                                                                                                       | VREF Connection<br>Bit                                                                                                                                                                                                                                                                  | 0 : No VREF connection <sup>(11)</sup><br>1 : VREF connection                                                                                                                                                                                                                        | RV        |
|                                                                                                                                                 |                                                                                                                                                                                           | OPA0                                                                                                                                 |                                                                                                                                                                            | External Op-Amp<br>Connection Mode                                                                                                                                                                                                                                                      | b7b6<br>0 0 : ANEX0 and ANEX1 are not used <sup>(8)</sup><br>0 1 : Signal into ANEX0 is A/D converted                                                                                                                                                                                | RV        |
|                                                                                                                                                 |                                                                                                                                                                                           |                                                                                                                                      | OPA1                                                                                                                                                                       | Bit <sup>(7, 9)</sup>                                                                                                                                                                                                                                                                   | 1 0 : Signal into ANEX1 is A/D converted<br>1 1 : External op-amp connection mode                                                                                                                                                                                                    | RV        |
| indete<br>2. The S<br>swee<br>3. This p<br>4. In mu<br>SCAN<br>5. When<br>MD2<br>6. Refer<br>7. In one<br>set th<br>8. To se<br>ANE2<br>9. When | erminate.<br>SCAN1 ar<br>p mode 1<br>pin is com<br>liti-port sin<br>N0 bits to<br>n the MSS<br>bit to "0".<br>to the no<br>e-shot mo<br>e OPA0 a<br>t the OPA<br>(0) and the<br>n the MSS | nd SCA<br>, mutli-<br>nmonly<br>ngle sw<br>any se<br>S bit in t<br>ote for t<br>bode and<br>and OP<br>A1 and<br>ne PSL<br>S bit is s | N0 bit sett<br>port single<br>used in the<br>reep mode<br>tting other<br>the ADOCC<br>he CKS0 b<br>repeat mo<br>A1 bits to '<br>OPA0 bits<br>3_6 bit to "<br>set to "1", s | ings are disabled in s<br>sweep mode and mi<br>e A/D conversion whe<br>or multi-port repeat s<br>than "112".<br>DN3 register is set to<br>bit in the AD0CON0 re<br>ode, the OPA1 and O<br>'012" or "102" in othe<br>to "002", set the PSL<br>0" (other than ANEX<br>set the OPA1 and OF | PA0 bits can be set to "012" or "102" only. D<br>r modes.<br>3_5 bit in PSL3 register to "0" (other than<br>1).                                                                                                                                                                      | e<br>o nc |
|                                                                                                                                                 | nput volta                                                                                                                                                                                | age (for                                                                                                                             | AN00 to A                                                                                                                                                                  | N07, AN20 to AM27) s<br>during the A/D conve                                                                                                                                                                                                                                            | ≤ Vcc2.                                                                                                                                                                                                                                                                              |           |

Figure 18.3 AD0CON1 Register

RENESAS

| b7 b6 b5 b4 b3 b2 b1 b0 | Symb<br>AD0C  |                                                 |                                                                                                                                                                      |    |
|-------------------------|---------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                         | Bit<br>Symbol | Bit Name                                        | Function                                                                                                                                                             | RV |
|                         | SMP           | A/D Conversion<br>Method Select Bit             | 0 : Without the sample and hold funtion<br>1 : With the sample and hold function                                                                                     | RV |
|                         | APS0          | Analog Input Port                               | b2b1<br>0 0 : AN0 to AN7, ANEX0, ANEX1<br>0 1 : AN150 to AN157                                                                                                       | RV |
|                         | APS1          | Select Bit <sup>(2, 3, 4)</sup>                 | 1 0 : AN00 to AN07<br>1 1 : AN20 to AN27                                                                                                                             | RV |
|                         | (b4 - b3)     | Nothing is assigned.<br>When read, its conten   | When write, set to "0".<br>t is indeterminate.                                                                                                                       | _  |
|                         | TRG0          | External Trigger<br>Request Cause<br>Select Bit | 0 : Selects ADTRG<br>1 : Selects a timer B2 interrupt request<br>of the three-phase motor control<br>timer functions (after the ICTB2<br>counter completes counting) | RV |
|                         | (b7 - b6)     | Reserved Bit                                    | Set to "0".<br>When read, its content is indeterminate.                                                                                                              | RV |

- APS1 and APS0 bits to "012".
   The APS1 and APS0 bits can be set to "012" in the 100-pin package only when the MSS bit in the
- 3. The APS1 and APS0 bits can be set to "012" in the 100-pin package only when the MSS bit in the AD0CON3 register is set to "1" (multi-port sweep mode enabled).
- 4. The APS1 and APS0 bits can be set to "102" or "112" in single-chip mode only.

Figure 18.4 AD0CON2 Register



| b7 b6 b5                                                               | b4 b3 b2 b1 b0                                                                                                                              | Symb<br>AD0C                                                                                |                                                                                                                            | After Reset<br>XXXX X0002                                                                                                                                                                                         |    |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                                        |                                                                                                                                             | Bit<br>Symbol                                                                               | Bit Name                                                                                                                   | Function                                                                                                                                                                                                          | RW |
|                                                                        |                                                                                                                                             | DUS                                                                                         | DMAC Operation<br>Select Bit <sup>(3)</sup>                                                                                | 0 : Disables DMAC operating mode<br>1 : Enables DMAC operating mode <sup>(4, 5)</sup>                                                                                                                             | RW |
|                                                                        |                                                                                                                                             | MSS                                                                                         | Multi-Port Sweep<br>Mode Select Bit                                                                                        | 0 : Disables multi-port sweep mode<br>1 : Enables multi-port sweep mode <sup>(3, 6)</sup>                                                                                                                         | RW |
|                                                                        |                                                                                                                                             | CKS2                                                                                        | Frequency Select Bit                                                                                                       | (Note 7)                                                                                                                                                                                                          | RW |
|                                                                        |                                                                                                                                             | MSF0                                                                                        | Multi-Port Sweep                                                                                                           | <sup>b4b3</sup><br>0 0 : ANo to AN7<br>0 1 : AN150 to AN157                                                                                                                                                       | RO |
|                                                                        |                                                                                                                                             | MSF1                                                                                        | Status Flag <sup>(8)</sup>                                                                                                 | 1 0 : AN00 to AN07<br>1 1 : AN20 to AN27                                                                                                                                                                          | RO |
|                                                                        |                                                                                                                                             | (b7 - b5)                                                                                   | Reserved Bit                                                                                                               | Set to "0".<br>When read, its content is indeterminate.                                                                                                                                                           | RW |
| indet<br>2. The A<br>A/D o<br>3. When<br>4. When<br>5. When<br>6. When | erminate.<br>AD0CON3 may b<br>converter stops o<br>in the MSS bit is s<br>in the DUS bit is s<br>in the DUS bit is s<br>in the MSS bit is s | e read und<br>perating.<br>set to "1", s<br>set to "1", t<br>set to "1", s<br>set to "1", s | correctly during the A/E<br>set the DUS bit to "1".<br>he AD00 register store<br>set the DMAC.<br>set the MD2 bit in the A | D conversion, the conversion result is<br>0 conversion. It must be read or written aff<br>s all A/D conversion results.<br>ND0CON1 register to "0" (other than repea<br>DN2 register to "012" (AN150 to AN157) an | t  |

- 7. Refer to the note for the CKS0 bit in the AD0CON0 register.
- 8. The MSF1 and MSF0 bit settings are enabled when the MSS bit is set to "1". Value in the bit is indeterminate when the MSS bit is set to "0".

Figure 18.5 AD0CON3 Register

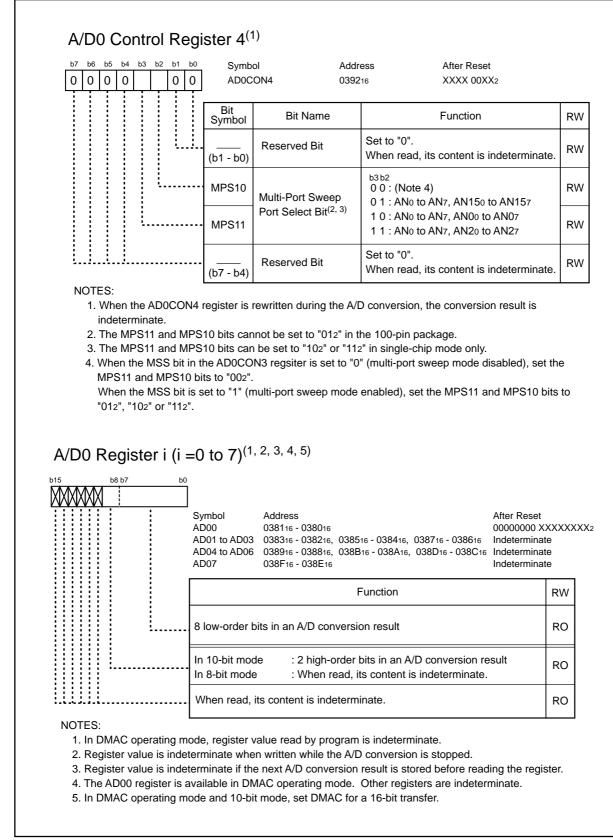



Figure 18.6 AD0CON4 Register and AD00 to AD07 Registers

# **18.1 Mode Description**

## 18.1.1 One-shot Mode

In one-shot mode, analog voltage applied to a selected pin is converted to a digital code once. Table 18.2 lists specifications of one-shot mode.

| Item                                | Specification                                                                          |  |  |  |
|-------------------------------------|----------------------------------------------------------------------------------------|--|--|--|
| Function                            | The CH2 to CH0 bits in the AD0CON0 register, the OPA1 and OPA0 bits in the             |  |  |  |
|                                     | AD0CON1 register and the APS1 and APS0 bits in the AD0CON2 register select a           |  |  |  |
|                                     | pin. Analog voltage applied to the pin is converted to a digital code once             |  |  |  |
| Start Condition                     | • When the TRG bit in the AD0CON0 register is set to "0" (software trigger),           |  |  |  |
|                                     | the ADST bit in the AD0CON0 register is set to "1" (A/D conversion starts) by          |  |  |  |
|                                     | program                                                                                |  |  |  |
|                                     | When the TRG bit is set to "1" (external trigger, hardware trigger):                   |  |  |  |
|                                     | - a falling edge is applied to the ADTRG pin after the ADST bit is set to "1" by       |  |  |  |
|                                     | program                                                                                |  |  |  |
|                                     | - The timer B2 interrupt request of three-phase motor control timer functions          |  |  |  |
|                                     | (after the ICTB2 register counter completes counting) is generated after the           |  |  |  |
|                                     | ADST bit is set to "1" by program                                                      |  |  |  |
| Stop Condition                      | • A/D conversion is completed (the ADST bit is set to "0" when the software trigger is |  |  |  |
|                                     | selected)                                                                              |  |  |  |
|                                     | • The ADST bit is set to "0" (A/D conversion stopped) by program                       |  |  |  |
| Interrupt Request Generation Timing | A/D conversion is completed                                                            |  |  |  |
| Analog Voltage Input Pins           | Select one pin from ANio to ANi7 (i=none, 0, 2, 15), ANEX0 or ANEX1                    |  |  |  |
| Reading of A/D Conversion Result    | When the DUS bit in the AD0CON3 register is set to "0" (DMAC operating                 |  |  |  |
|                                     | mode disabled), the microcomputer reads the AD0j register (j=0 to 7) corre-            |  |  |  |
|                                     | sponding to selected pin                                                               |  |  |  |
|                                     | • When the DUS bit is set to "1" (DMAC operating mode enabled), do not read the        |  |  |  |
|                                     | AD00 register. A/D conversion result is stored in the AD00 register after the A/D      |  |  |  |
|                                     | conversion is completed. DMAC transfers the conversion result to any memory            |  |  |  |
|                                     | space. Refer to <b>13. DMAC</b> for DMAC settings                                      |  |  |  |

Table 18.2 One-shot Mode Specifications



## 18.1.2 Repeat Mode

In repeat mode, analog voltage applied to a selected pin is repeatedly converted to a digital code. Table 18.3 lists specifications of repeat mode.

| Item                                | Specification                                                                       |  |  |
|-------------------------------------|-------------------------------------------------------------------------------------|--|--|
| Function                            | The CH2 to CH0 bits in the AD0CON0 register, the OPA1 and OPA0 bits in the          |  |  |
|                                     | AD0CON1 register and the APS1 and APS0 bits in the AD0CON2 register select a        |  |  |
|                                     | pin. Analog voltage applied to the pin is repeatedly converted to a digital code    |  |  |
| Start Condition                     | Same as one-shot mode                                                               |  |  |
| Stop Condition                      | The ADST bit in the AD0CON0 register is set to "0" (A/D conversion stopped) by      |  |  |
|                                     | program                                                                             |  |  |
| Interrupt Request Generation Timing | • When the DUS bit in the AD0CON3 register is set to "0" (DMAC operating            |  |  |
|                                     | mode disabled), no interrupt request is generated.                                  |  |  |
|                                     | • When DUS bit is set to "1" (DMAC operating mode enabled), an interrupt request    |  |  |
|                                     | is generated every time an A/D conversion is completed.                             |  |  |
| Analog Voltage Input Pins           | Select one pin from ANio to ANi7 (i=none, 0, 2, 15), ANEX0 or ANEX1                 |  |  |
| Reading of A/D Conversion Result    | • When the DUS bit is set to "0", the microcomputer reads the AD0j register (j=0 to |  |  |
|                                     | 7) corresponding to the selected pin.                                               |  |  |
|                                     | • When DUS bit is set to "1", do not read the AD00 register. A/D conversion result  |  |  |
|                                     | is stored in the AD00 register after the A/D conversion is completed. DMAC          |  |  |
|                                     | transfers the conversion result to any memory space.                                |  |  |
|                                     | Refer to 13. DMAC for DMAC settings                                                 |  |  |

#### Table 18.3 Repeat Mode Specifications



## 18.1.3 Single Sweep Mode

In single sweep mode, analog voltage that is applied to selected pins is converted one-by-one to a digital code. Table 18.4 lists specifications of single sweep mode.

| Item                                | Specification                                                                         |  |  |
|-------------------------------------|---------------------------------------------------------------------------------------|--|--|
| Function                            | The SCAN1 and SCAN0 bits in the AD0CON1 register and the APS1 and APS0                |  |  |
|                                     | bits in the AD0CON2 register select pins. Analog voltage applied to the pin is        |  |  |
|                                     | converted one-by-one to a digital code                                                |  |  |
| Start Condition                     | Same as one-shot mode                                                                 |  |  |
| Stop Condition                      | Same as one-shot mode                                                                 |  |  |
| Interrupt Request Generation Timing | When the DUS bit in the AD0CON3 register is set to "0" (DMAC operating                |  |  |
|                                     | mode disabled), an interrupt request is generated after a sweep is completed.         |  |  |
|                                     | • When DUS bit is set to "1" (DMAC operating mode enabled), an interrupt              |  |  |
|                                     | request is generated every time an A/D conversion is completed                        |  |  |
| Analog Voltage Input Pins           | Select from ANio and ANi1 (2 pins) (i=none, 0, 2, 15), ANio to ANi3 (4 pins), ANio to |  |  |
|                                     | ANi5 (6 pins) or ANio to ANi7 (8 pins)                                                |  |  |
| Reading of A/D Conversion Result    | • When the DUS bit is set to "0", the microcomputer reads the AD0j register corre-    |  |  |
|                                     | sponding to selected pins                                                             |  |  |
|                                     | • When DUS bit is set to "1", do not read the AD00 register. A/D conversion result    |  |  |
|                                     | is stored in the AD00 register after the A/D conversion is completed. DMAC            |  |  |
|                                     | transfers the conversion result to any memory space. Refer to 13. DMAC for            |  |  |
|                                     | DMAC settings                                                                         |  |  |

Table 18.4 Single Sweep Mode Specifications



# 18.1.4 Repeat Sweep Mode 0

In repeat sweep mode 0, analog voltage applied to selected pins is repeatedly converted to a digital code. Table 18.5 lists specifications of repeat sweep mode 0.

| ltem                                | Specification                                                                         |  |  |  |
|-------------------------------------|---------------------------------------------------------------------------------------|--|--|--|
| Function                            | The SCAN1 and SCAN0 bits in the AD0CON1 register and the APS1 and APS0                |  |  |  |
|                                     | bits in the AD0CON2 register select pins. Analog voltage applied to the pins is       |  |  |  |
|                                     | repeatedly converted to a digital code                                                |  |  |  |
| Start Condition                     | Same as one-shot mode                                                                 |  |  |  |
| Stop Condition                      | The ADST bit in the AD0CON0 register is set to "0" (A/D conversion stopped) by        |  |  |  |
|                                     | program                                                                               |  |  |  |
| Interrupt Request Generation Timing | • When the DUS bit in the AD0CON3 register is set to "0" (DMAC operating mode         |  |  |  |
|                                     | disabled), no interrupt request is generated                                          |  |  |  |
|                                     | When DUS bit is set to "1" (DMAC operating mode enabled), an interrupt request        |  |  |  |
|                                     | is generated every time an A/D conversion is completed                                |  |  |  |
| Analog Voltage Input Pins           | Select from ANio and ANi1 (2 pins) (i=none, 0, 2, 15), ANio to ANi3 (4 pins), ANio to |  |  |  |
|                                     | ANi5 (6 pins) or ANi0 to ANi7 (8 pins)                                                |  |  |  |
| Reading of A/D Conversion Result    | • When the DUS bit is set to "0", the microcomputer reads the AD0j register (j=0 to   |  |  |  |
|                                     | 7) corresponding to selected pins                                                     |  |  |  |
|                                     | • When the DUS bit is set to "1", do not read the AD00 register. A/D conversion       |  |  |  |
|                                     | result is stored in the AD00 register after the A/D conversion is completed.          |  |  |  |
|                                     | DMAC transfers the conversion result to any memory space. Refer to 13. DMAC           |  |  |  |
|                                     | for DMAC settings                                                                     |  |  |  |

| <b>Table 18.5</b> | Repeat Swee | p Mode 0 S | pecifications |
|-------------------|-------------|------------|---------------|
|-------------------|-------------|------------|---------------|



## 18.1.5 Repeat Sweep Mode 1

In repeat sweep mode 1, analog voltage selectively applied to eight pins is repeatedly converted to a digital code. Table 18.6 lists specifications of repeat sweep mode 1.

| Item                                | Specification                                                                                            |  |  |  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|
| Function                            | The SCAN1 and SCAN0 bits in the AD0CON1 register and the APS1 and APS0                                   |  |  |  |
|                                     | bits in the AD0CON2 register select 8 pins. Analog voltage selectively applied to                        |  |  |  |
|                                     | 8 pins is repeatedly converted to a digital code                                                         |  |  |  |
|                                     | e.g., When ANio is selected (i =none, 0, 2, 15), analog voltage is converted to a                        |  |  |  |
|                                     | digital code in the following order:                                                                     |  |  |  |
|                                     | ANio $\rightarrow$ ANi1 $\rightarrow$ ANio $\rightarrow$ ANi2 $\rightarrow$ ANio $\rightarrow$ ANi3 etc. |  |  |  |
| Start Condition                     | Same as one-shot mode (Any trigger generated during an A/D conversion is invalid)                        |  |  |  |
| Stop Condition                      | The ADST bit is set to "0" (A/D conversion stopped) by program                                           |  |  |  |
| Interrupt Request Generation Timing | • When the DUS bit in the AD0CON3 register is set to "0" (DMAC operating                                 |  |  |  |
|                                     | mode disabled), no interrupt request is generated                                                        |  |  |  |
|                                     | • When DUS bit is set to "1" (DMAC operating mode enabled), an interrupt request                         |  |  |  |
|                                     | is generated every time an A/D conversion is completed                                                   |  |  |  |
| Analog Voltage Input Pins           | ANio to ANi7 (8 pins)                                                                                    |  |  |  |
| Prioritized Pins                    | ANio (1 pin), ANio and ANi1 (2 pins), ANio to ANi2 (3 pins) or ANio to ANi3 (4 pins)                     |  |  |  |
| Reading of A/D Conversion Result    | • When the DUS bit is set to "0", the microcomputer reads the AD0j register (j=0 to                      |  |  |  |
|                                     | 7) corresponding to selected pins                                                                        |  |  |  |
|                                     | • When the DUS bit is set to "1", do not read the AD00 register. A/D conversion                          |  |  |  |
|                                     | result is stored in the AD00 register after the A/D conversion is completed.                             |  |  |  |
|                                     | DMAC transfers the conversion result to any memory space. Refer to 13. DMAC                              |  |  |  |
|                                     | for DMAC settings                                                                                        |  |  |  |

| Table 18.6 Re | peat Sweep | Mode 1 S | pecifications |
|---------------|------------|----------|---------------|
|---------------|------------|----------|---------------|



## 18.1.6 Multi-Port Single Sweep Mode

In multi-port single sweep mode, analog voltage applied to 16 selected pins is converted one-by-one to a digital code. Set the DUS bit in the AD0CON3 register to "1" (DMAC operating mode enabled). Table 18.7 lists specifications of multi-port single sweep mode.

| Item                                | Specification                                                                                                                             |  |  |  |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Function                            | The MPS11 and MPS10 bits in the AD0CON4 register select 16 pins. Analog                                                                   |  |  |  |
|                                     | voltage applied to 16 pins is converted one-by-one to a digital code in the following                                                     |  |  |  |
|                                     | order: AN₀ to AN7 → ANi₀ to ANi7 (i=0, 2, 15)                                                                                             |  |  |  |
|                                     | e.g., When the MPS11 and MPS10 bits are set to "102" (ANo to AN7, AN0o to                                                                 |  |  |  |
|                                     | AN07), analog voltage is converted to a digital code in the following order:                                                              |  |  |  |
|                                     | $AN_0 \rightarrow AN_1 \rightarrow AN_2 \rightarrow AN_3 \rightarrow AN_4 \rightarrow AN_5 \rightarrow AN_6 \rightarrow AN_7 \rightarrow$ |  |  |  |
|                                     | $AN00 \rightarrow AN01 \rightarrow \dots \rightarrow AN06 \rightarrow AN07$                                                               |  |  |  |
| Start Condition                     | Same as one-shot mode                                                                                                                     |  |  |  |
| Stop Condition                      | The ADST bit in the AD0CON0 register is set to "0" (A/D conversion stopped) b                                                             |  |  |  |
|                                     | program                                                                                                                                   |  |  |  |
| Interrupt Request Generation Timing | An interrupt request is generated every time A/D conversion is completed                                                                  |  |  |  |
|                                     | (Set the DUS bit to "1")                                                                                                                  |  |  |  |
| Analog Voltage Input Pins           | Select from AN₀ to AN7 → AN15₀ to AN157, AN₀ to AN7 → AN0₀ to AN07 or AN₀ to                                                              |  |  |  |
|                                     | AN7→AN20 to AN27                                                                                                                          |  |  |  |
| Reading of A/D Conversion Result    | Do not read the AD00 register. A/D conversion result is stored in the AD00 regis-                                                         |  |  |  |
|                                     | ter after the A/D conversion is completed. DMAC transfers the conversion result                                                           |  |  |  |
|                                     | to any memory space. Refer to <b>13. DMAC</b> for DMAC settings                                                                           |  |  |  |
|                                     | (Set the DUS bit to "1")                                                                                                                  |  |  |  |



## 18.1.7 Multi-Port Repeat Sweep Mode 0

In multi-port repeat sweep mode 0, analog voltage that is applied to 16 selected pins is repeatedly converted to a digital code. Set the DUS bit in the AD0CON3 register to "1" (DMAC operating mode enabled). Table 18.8 lists specifications of multi-port repeat sweep mode 0.

| Item                                | Specification                                                                                                                             |  |  |  |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Function                            | The MPS11 and MPS10 bits in the AD0CON4 register select 16 pins. Analog                                                                   |  |  |  |
|                                     | voltage applied to the 16 pins is repeatedly converted to a digital code in the fol-                                                      |  |  |  |
|                                     | lowing order: AN0 to AN7 $\rightarrow$ ANi0 to ANi7 (i=0, 2, 15)                                                                          |  |  |  |
|                                     | e.g., When the MPS11 and MPS10 bits are set to "102" (ANo to AN7, AN0o to AN07),                                                          |  |  |  |
|                                     | analog voltage is repeatedly converted to a digital code in the following order:                                                          |  |  |  |
|                                     | $AN_0 \rightarrow AN_1 \rightarrow AN_2 \rightarrow AN_3 \rightarrow AN_4 \rightarrow AN_5 \rightarrow AN_6 \rightarrow AN_7 \rightarrow$ |  |  |  |
|                                     | $AN00 \rightarrow AN01 \rightarrow \dots \rightarrow AN06 \rightarrow AN07$                                                               |  |  |  |
| Start Condition                     | Same as one-shot mode                                                                                                                     |  |  |  |
| Stop Condition                      | The ADST bit is set to "0" (A/D conversion stopped) by program                                                                            |  |  |  |
| Interrupt Request Generation Timing | An interrupt request is generated after each A/D conversion is completed                                                                  |  |  |  |
|                                     | (Set the DUS bit to "1")                                                                                                                  |  |  |  |
| Analog Voltage Input Pins           | Selectable from AN₀ to AN7 → AN15₀ to AN157, AN₀ to AN7 → AN0₀ to AN07 or                                                                 |  |  |  |
|                                     | AN₀ to AN7→AN2₀ to AN27                                                                                                                   |  |  |  |
| Reading of A/D Conversion Result    | ult Do not read the AD00 register. A/D conversion result is stored in the AD00 register.                                                  |  |  |  |
|                                     | ter after the A/D conversion is completed. DMAC transfers the conversion result                                                           |  |  |  |
|                                     | to any memory space. Refer to 13. DMAC for DMAC settings                                                                                  |  |  |  |
|                                     | (Set the DUS bit to "1")                                                                                                                  |  |  |  |

## Table 18.8 Multi-Port Repeat Sweep Mode 0 Specifications

## 18.2 Functions

## **18.2.1 Resolution Select Function**

The BITS bit in the AD0CON1 register determines the resolution. When the BITS bit is set to "1" (10-bit precision), the A/D conversion result is stored into bits 9 to 0 in the AD0j register (j = 0 to 7). When the BITS bit is set to "0" (8-bit precision), the A/D conversion result is stored into bits 7 to 0 in the AD0j register.

## 18.2.2 Sample and Hold Function

When the SMP bit in the AD0CON2 register is set to "1" (with the sample and hold function), A/D conversion rate per pin increases to 28 ØAD cycles for 8-bit resolution and 33 ØAD cycles for 10-bit resolution. The sample and hold function is available in all operating modes. Start the A/D conversion after selecting whether the sample and hold function is to be used or not.

# **18.2.3 Trigger Select Function**

The TRG bit in the AD0CON0 register and the TRG0 bit in the AD0CON2 register select the trigger to start the A/D conversion. Table 18.9 lists settings of the trigger select function.

| Bit and Setting  |                  | Trigger                                                                                                                  |  |
|------------------|------------------|--------------------------------------------------------------------------------------------------------------------------|--|
| AD0CON0 Register | AD0CON2 Register |                                                                                                                          |  |
| TRG = 0          | -                | Software trigger                                                                                                         |  |
|                  |                  | The A/D0 starts the A/D conversion when the ADST bit in the AD0CON0 register is set to "1"                               |  |
| $TRG = 1^{(1)}$  | TRG0 = 0         | External trigger <sup>(2)</sup>                                                                                          |  |
|                  |                  | Falling edge of a signal applied to ADTRG                                                                                |  |
|                  | TRG0 = 1         | Hardware trigger <sup>(2)</sup>                                                                                          |  |
|                  |                  | The timer B2 interrupt request of three-phase motor control timer functions (after the ICTB2 counter completes counting) |  |

| Table 18.9 | Trigger | Select | Function | Settings |
|------------|---------|--------|----------|----------|
|------------|---------|--------|----------|----------|

NOTES:

1. A/D0 starts the A/D conversion when the ADST bit is set to "1" (A/D conversion started) and a trigger is generated.

2. The A/D conversion is restarted if an external trigger or a hardware trigger is inserted during the A/D conversion. (The A/D conversion in process is aborted.)

# 18.2.4 DMAC Operating Mode

DMAC operating mode is available with all operating modes. When the A/D converter is in multi-port single sweep mode or multi-port repeat sweep mode 0, the DMAC operating mode must be used. When the DUS bit in the AD0CON3 register is set to "1" (DMAC operating mode enabled), all A/D conversion results are stored into the AD00 register. DMAC transfers data from the AD00 register to any memory space every time an A/D conversion is completed in each pin. 8-bit DMA transfer must be selected for 8-bit resolution and 16-bit DMA transfer for 10-bit resolution. Refer to **13. DMAC** for instructions.



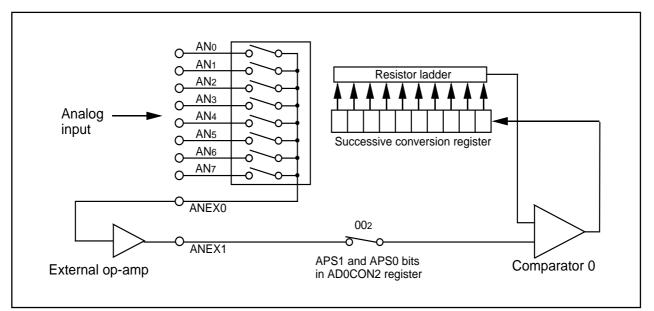
# 18.2.5 Extended Analog Input Pins

In one-shot mode and repeat mode, the ANEX0 and ANEX1 pins can be used as analog input pins. The OPA1 and OPA0 bits in the AD0CON1 register select which pins to use as analog input pins. An A/D conversion result for the ANEX0 pin is stored into the AD00 register. The result for the ANEX1 pin is stored into the AD01 register, but is stored into the AD00 register when the DUS bit in the AD0CON3 register is set to "1" (DMAC operating mode enabled).

Set the APS1 and APS0 bits in the AD0CON2 register to "002" (AN0 to AN7, ANEX0, ANEX1) and the MSS bit in the AD0CON3 register to "0" (multi-port sweep mode disabled).

# 18.2.6 External Operating Amplifier (Op-Amp) Connection Mode

In external op-amp connection mode, multiple analog voltage can be amplified by one external op-amp using extended analog input pins ANEX0 and ANEX1.


When the OPA1 and OPA0 bits in the AD0CON1 register are set to "112" (external op-amp connection), voltage applied to the AN0 to AN7 pins are output from ANEX0. Amplify this output signal by an external op-amp and apply it to ANEX1.

Analog voltage applied to ANEX1 is converted to a digital code and the A/D conversion result is stored into the corresponding AD0j register (j=0 to 7). A/D conversion rate varies depending on the response of the external op-amp. The ANEX0 pin cannot be connected to the ANEX1 pin directly.

Set the APS1 and APS0 bits in the AD0CON2 register to "002" (AN0 to AN7, ANEX0, ANEX1). Figure 18.7 shows an example of an external op-amp connection.

| AD0CON1 Register |          | ANEX0 Function               | ANEX1 Function                |  |
|------------------|----------|------------------------------|-------------------------------|--|
| OPA1 Bit         | OPA0 Bit |                              |                               |  |
| 0                | 0        | Not used Not used            |                               |  |
| 0                | 1        | P95 as an analog input       | Not used                      |  |
| 1                | 0        | Not used                     | P96 as an analog input        |  |
| 1                | 1        | Output to an external op-amp | Input from an external op-amp |  |

#### Table 18.10 Extended Analog Input Pin Settings





## 18.2.7 Power Consumption Reducing Function

When the A/D converter is not used, the VCUT bit in the AD0CON1 register isolates the resistor ladder of the A/D converter from the reference voltage input pin (VREF). Power consumption is reduced by shutting off any current flow into the resistor ladder from the VREF pin.

When using the A/D converter, set the VCUT bit to "1" (VREF connection) before setting the ADST bit in the AD0CON0 register to "1" (A/D conversion started). Do not set the ADST bit and VCUT bit to "1" simultaneously, nor set the VCUT bit to "0" (no VREF connection) during the A/D conversion. The VCUT bit does not affect the VREF performance of the D/A converter.

# 18.2.8 Output Impedance of Sensor Equivalent Circuit under A/D Conversion

For perfect A/D converter performance, complete internal capacitor (C) charging, shown in Figure 18.8, for the specified period (T) as sampling time. Output Impedance of the sensor equivalent circuit (R<sub>0</sub>) is determined by the following equations:

$$VC = VIN \{1 - e^{-\frac{1}{C(R0 + R)}t}\}$$

When t = T, 
$$VC = VIN - \frac{X}{Y}VIN = VIN (1 - \frac{X}{Y})$$

$$e^{-\frac{1}{C(R0+R)}T} = \frac{X}{Y}$$
$$-\frac{1}{C(R0+R)}T = \ln\frac{X}{Y}$$
$$R0 = -\frac{T}{C \cdot \ln\frac{X}{Y}} - R$$

where:

Vc = Voltage between pins

R = Internal resistance of the microcomputer

X = Precision (error) of the A/D converter

Y = Resolution of the A/D converter (1024 in 10-bit mode, and 256 in 8-bit mode)

Figure 18.8 shows analog input pin and external sensor equivalent circuit. The impedance (R<sub>0</sub>) can be obtained if the voltage between pins (Vc) changes from 0 to VIN-(0.1/1024) VIN in the time (T), when the difference between VIN and Vc becomes 0.1LSB.

(0.1/1024) means that A/D precision drop, due to insufficient capacitor charge, is held to 0.1LSB at time of A/D conversion in the 10-bit mode. Actual error, however, is the value of absolute precision added to 0.1LSB. When ØAD = 10 MHz, T = 0.3 µs in the A/D conversion mode with the sample and hold function. Output impedance (R0) for sufficiently charging capacitor (C) in the time (T) is determined by the following equation:

Using T = 0.3  $\mu s,\,R$  = 7.8 kΩ, C = 1.5 pF, X = 0.1, Y = 1024,

$$R0 = -\frac{0.3 \times 10^{-6}}{1.5 \times 10^{-12} \cdot \ln \frac{0.1}{1024}} -7.8 \times 10^{3} = 13.9 \times 10^{3}$$

Thus, the allowable output impedance of the sensor equivalent circuit, making the precision (error) 0.1LSB or less, is approximately 13.9 k $\Omega$  maximum.

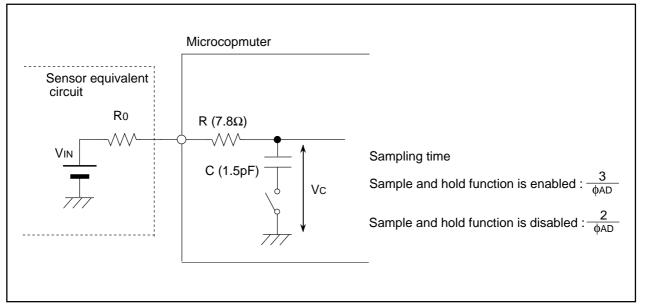



Figure 18.8 Analog Input Pin and External Sensor Equivalent Circuit



# 19. D/A Converter

The D/A converter consists of two separate 8-bit R-2R ladder D/A converters.

Digital code is converted to an analog voltage when a value is written to the corresponding DAi registers (i=0,1). The DAiE bit in the DACON register determines whether the D/A conversion result output is provided or not. Set the DAiE bit to "1" (output enabled) to disable a pull-up of a corresponding port. Output analog voltage (V) is calculated from value n (n=decimal) set in the DAi register.

$$V = \frac{V_{\text{REF x } n}}{256}$$
 (n = 0 to 255)

VREF : reference voltage (not related to VCUT bit setting in the AD0CON1 register)

Table 19.1 lists specifications of the D/A converter. Table 19.2 lists pin setting of the DA0 and DA1 pins. Figure 19.1 shows a block diagram of the D/A converter. Figure 19.2 shows the D/A control register. Figure 19.3 shows a D/A converter equivalent circuit.

When the D/A converter is not used, set the DAi register to "0016" and the DAiE bit to "0" (output disabled).

| ltem                  | Specification |  |  |
|-----------------------|---------------|--|--|
| D/A Conversion Method | R-2R          |  |  |
| Resolution            | 8 bits        |  |  |
| Analog Output Pin     | 2 channels    |  |  |

## Table 19.1 D/A Converter Specifications

## Table 19.2 Pin Settings

| Port | Function   | Bit and Setting             |                             |               |  |
|------|------------|-----------------------------|-----------------------------|---------------|--|
|      |            | PD9 Register <sup>(1)</sup> | PS3 Register <sup>(1)</sup> | PSL3 Register |  |
| P93  | DA0 output | PD9_3=0                     | PS3_3=0                     | PSL3_3=1      |  |
| P94  | DA1 output | PD9_4=0                     | PS3_4=0                     | PSL3_4=1      |  |

NOTES:

1. Set the PD9 and PS3 registers immediately after the PRC2 bit in the PRCR register is set to "1" (write enable). Do not generate an interrupt or a DMA transfer between the instruction to set the PRC2 bit to "1" and the instruction to set the PD9 and PS3 registers.



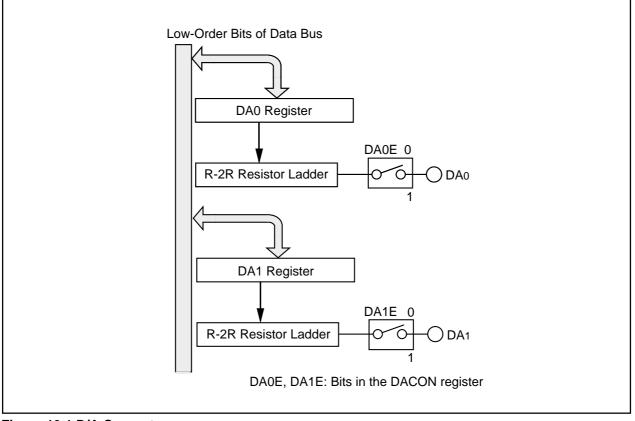



Figure 19.1 D/A Converter



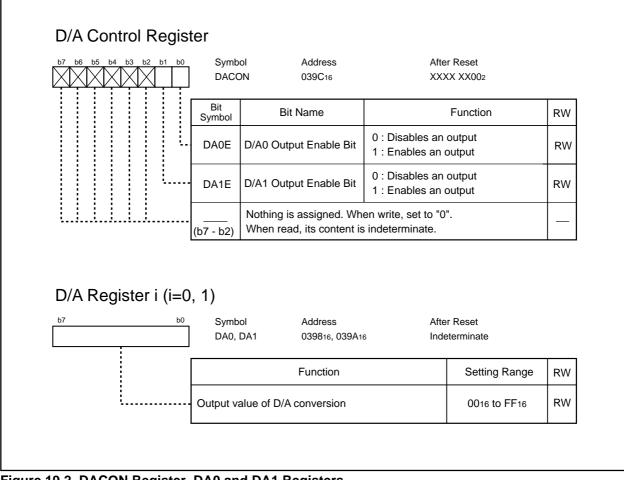



Figure 19.2 DACON Register, DA0 and DA1 Registers

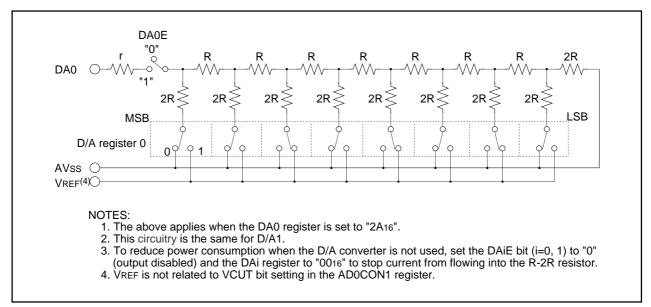



Figure 19.3 D/A Converter Equivalent Circuit

# 20. CRC Calculation

The CRC (Cyclic Redundancy Check) calculation detects an error in data blocks. A generator polynomial of CRC\_CCITT ( $X^{16} + X^{12} + X^{5} + 1$ ) generates CRC code.

The CRC code is a 16-bit code generated for a block of data of desired length. This block of data is in 8-bit units. The CRC code is set in the CRCD register every time one-byte data is transferred to the CRCIN register after a default value is written to the CRCD register. CRC code generation for one-byte data is completed in two cycles.

Figure 20.1 shows a block diagram of a CRC circuit. Figure 20.2 shows associated registers. Figure 20.3 shows an example of the CRC calculation.

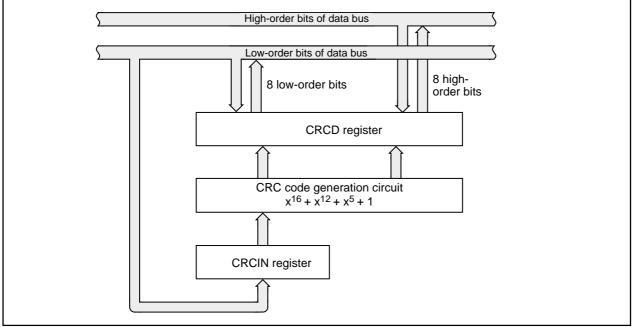
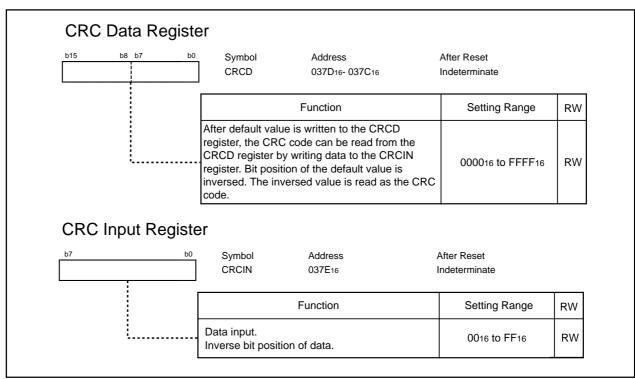




Figure 20.1 CRC Calculation Block Diagram





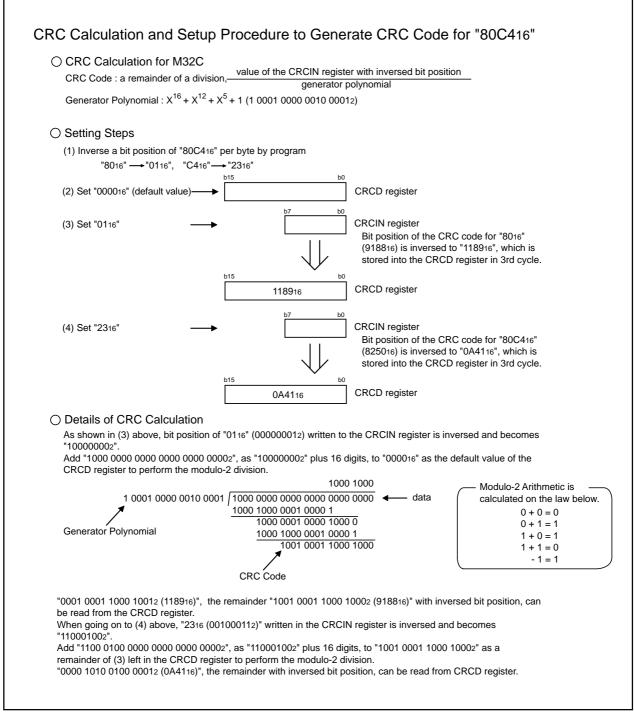



Figure 20.3 CRC Calculation



# 21. X/Y Conversion

The X/Y conversion rotates a 16 x 16 matrix data by 90 degrees and inverses high-order bits and low-order bits of a 16-bit data. Figure 21.1 shows the XYC register.

The 16-bit XiR register (i=0 to 15) and 16-bit YjR register (j=0 to 15) are allocated to the same address. The XiR register is a write-only register, while the YjR register is a read-only register. Access the XiR and YjR registers from an even address in 16-bit units. Performance cannot be guaranteed if the XiR and YiR registers are accessed in 8-bit units.

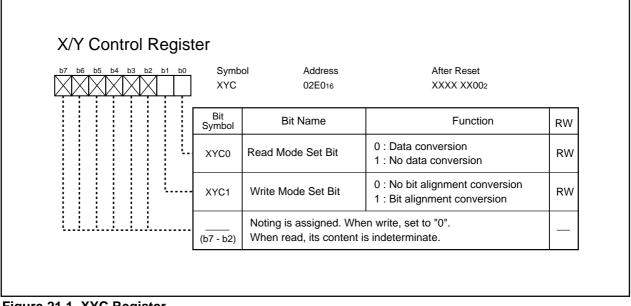



Figure 21.1 XYC Register



The XYC0 bit in the XYC register determines how to read the YjR register.

By reading the YjR register when the XYC0 bit is set to "0" (data conversion), bit j in the X0R to X15R registers can be read simultaneously.

For example, bit 0 in the X0R register can be read if reading bit 0 in the Y0R register, bit 0 in the X1R register if reading bit 1 in the Y0R register..., bit 0 in the X14R register if reading bit 14 in the Y0R register and bit 0 in the X15R register if reading bit 15 in the Y0R register.

Figure 21.2 shows the conversion table when the XYC0 bit is set to "0". Figure 21.3 shows an example of the X/Y conversion.

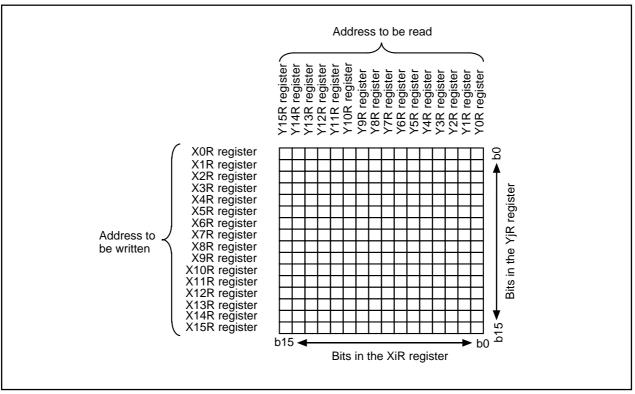



Figure 21.2 Conversion Table when Setting the XYC0 Bit to "0"

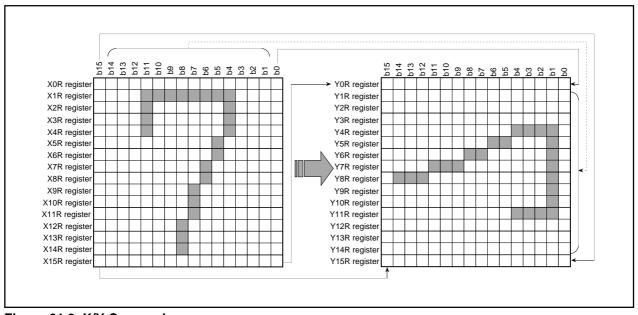



Figure 21.3 X/Y Conversion



By reading the YjR register when the XYC0 bit in the XYC register is set to "1" (no data conversion), the value written to the XiR register can be read directly. Figure 21.4 shows the conversion table when the XYC0 bit is set to "1."

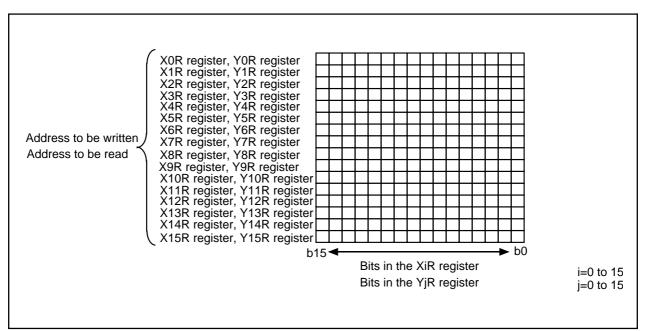



Figure 21.4 Conversion Table when Setting the XYC0 Bit to "1"

The XYC1 bit in the XYC register selects bit alignment of the value in the XiR register.

By writing to the XiR register while the XYC1 bit is set to "0" (no bit alignment conversion), bit alignment is written as is. By writing to the XiR register while the XYC1 bit is set to "1" (bit sequence replaced), bit alignment is written inversed.

Figure 21.5 shows the conversion table when the XYC1 bit is set to "1".

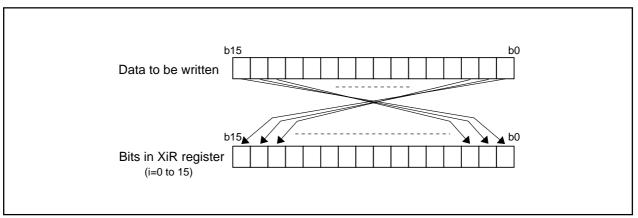



Figure 21.5 Conversion Table when Setting the XYC1 Bit to "1"

# 22. Intelligent I/O

The intelligent I/O is a multifunctional I/O port for time measurement, waveform generating, clock synchronous serial I/O, clock asynchronous serial I/O (UART), HDLC data processing and more.

The intelligent I/O has one 16-bit base timer for free-running operation, eight 16-bit registers for time measurement and waveform generating and two sets of two 8-bit shift registers for communications. Table 22.1 lists functions and channels of the intelligent I/O.

| Function                           | Description                          |                      |
|------------------------------------|--------------------------------------|----------------------|
| Time Measurement <sup>(1)</sup>    | 8 channels                           |                      |
| Digital Filter                     | 8 channels                           |                      |
| Trigger Input Prescaler            | 2 channels (channel 6 and channel 7) |                      |
| Trigger Input Gate                 | 2 channels (channel 6 and channel 7) |                      |
| Waveform Generating <sup>(1)</sup> | 8 channels                           |                      |
| Single-Phase Waveform Output Mode  | 8 channels                           |                      |
| Phase-Delayed Waveform Output Mode | 8 channels                           |                      |
| SR Waveform Output Mode            | 8 channels                           |                      |
| Communication                      | Communication unit 0                 | Communication unit 1 |
| Clock Synchronous Serial I/O Mode  | Available                            |                      |
| UART Mode                          | Not Available                        | Available            |
| HDLC Data Processing Mode          | Available                            |                      |

### Table 22.1 Intelligent I/O Functions and Channels

NOTES:

1. The time measurement function and the waveform generating function share a pin.

The time measurement function and waveform generating function can be selected for each channel. The communication function is available by a combining multiple channels.



Figures 22.1 shows a block diagram of the intelligent I/O. Figure 22.2 shows a block diagram of the intelligent I/O communication.




Figure 22.1 Intelligent I/O Block Diagram



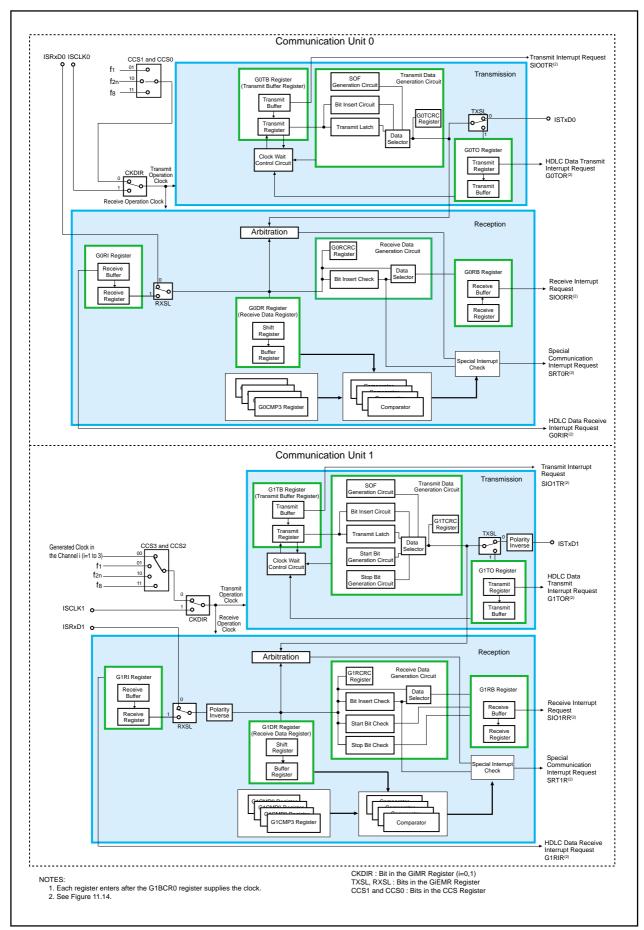
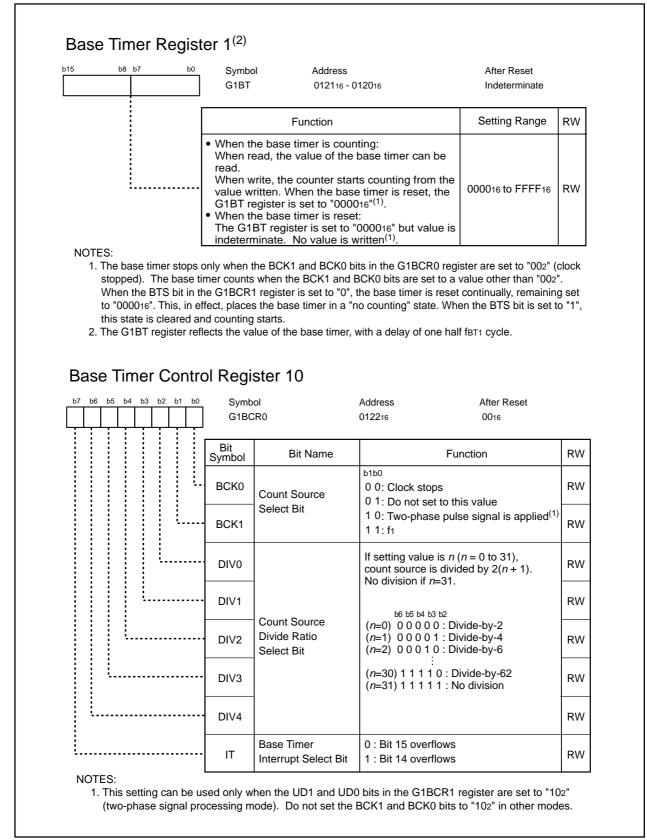




Figure 22.2 Intelligent I/O Communication Block Diagram

Figures 22.3 to 22.8 show registers associated with the intelligent I/O base timer, the time measurement function and waveform generating function. (For registers associated with the communication function, see Figures 22.19 to 22.28.)





| b7 b6 b5                                             | b4 b3 b2 b1 b0                                                                                            | Symb<br>G1B                                                             |                                                                                                                                  | AddressAfter Reset012316X000 000X2                                                                                                                                           |       |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                                                      |                                                                                                           | Bit<br>Symbol                                                           | Bit Name                                                                                                                         | Function                                                                                                                                                                     | RW    |
|                                                      |                                                                                                           |                                                                         |                                                                                                                                  | I. When write, set to "0".<br>ent is indeterminate.                                                                                                                          | _     |
|                                                      |                                                                                                           | RST1                                                                    | Base Timer Reset<br>Cause Select Bit 1                                                                                           | <ul> <li>0: The base timer is not reset by matching with the G1PO0 register</li> <li>1: The base timer is reset by matching with the G1PO0 register<sup>(1)</sup></li> </ul> | RW    |
|                                                      |                                                                                                           | RST2                                                                    | Base Timer Reset<br>Cause Select Bit 2                                                                                           | 0: The base timer is not reset by<br>applying "L" to the INT0 or INT1 pin<br>1: The base timer is reset by applying<br>"L" to the INT0 or INT1 pin <sup>(2)</sup>            | RW    |
|                                                      |                                                                                                           | (b3)                                                                    | Reserved Bit                                                                                                                     | Set to "0"                                                                                                                                                                   | RW    |
|                                                      |                                                                                                           | BTS                                                                     | Base Timer<br>Start Bit                                                                                                          | 0: Base timer is reset<br>1: Base timer starts counting                                                                                                                      | RW    |
|                                                      |                                                                                                           | UD0                                                                     | Counter Increment/                                                                                                               | 0 0 : Counter increment mode<br>0 1 : Counter increment/decrement mode                                                                                                       | RW    |
|                                                      |                                                                                                           | · UD1                                                                   | Decrement Control Bit                                                                                                            | <ul> <li>1 0 : Two-phase pulse signal processing<br/>mode<sup>(3)</sup></li> <li>1 1 : Do not set to this value</li> </ul>                                                   | RW    |
|                                                      |                                                                                                           | (b7)                                                                    |                                                                                                                                  | I. When write, set to "0".<br>ent is indeterminate.                                                                                                                          | _     |
| regis<br>valu<br>func<br>2. The<br>3. In tw<br>to "1 | ster. (See <b>Figure</b><br>e of the G1POj r<br>tion must be set<br>IPSA_0 bit in the<br>vo-phase pulse s | <b>22.7</b> for deegister (j=1<br>to a value<br>PSA regi<br>ignal proce | etails on the G1PO0 re<br>to 7) for the waveform<br>smaller than that of the<br>ster can select the INT<br>essing mode, the base |                                                                                                                                                                              | is se |

Figure 22.4 G1BCR1 Register



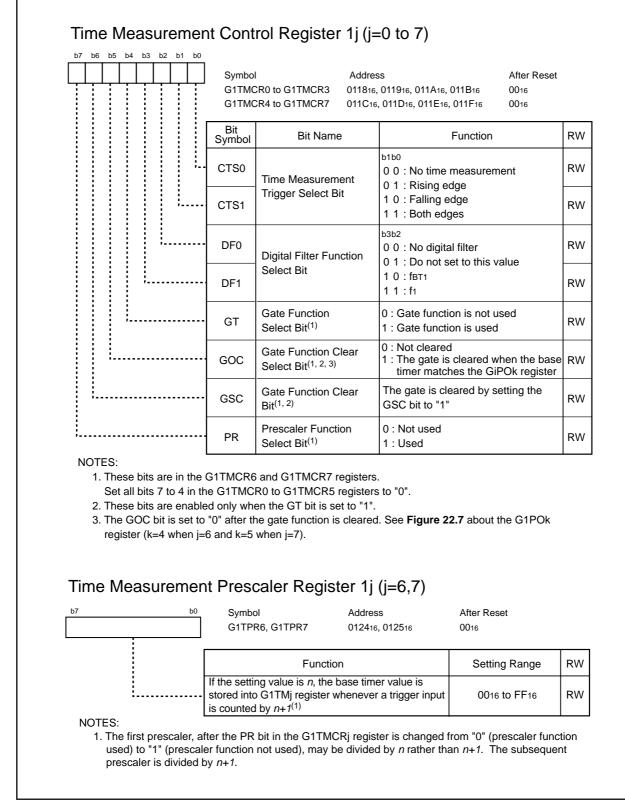
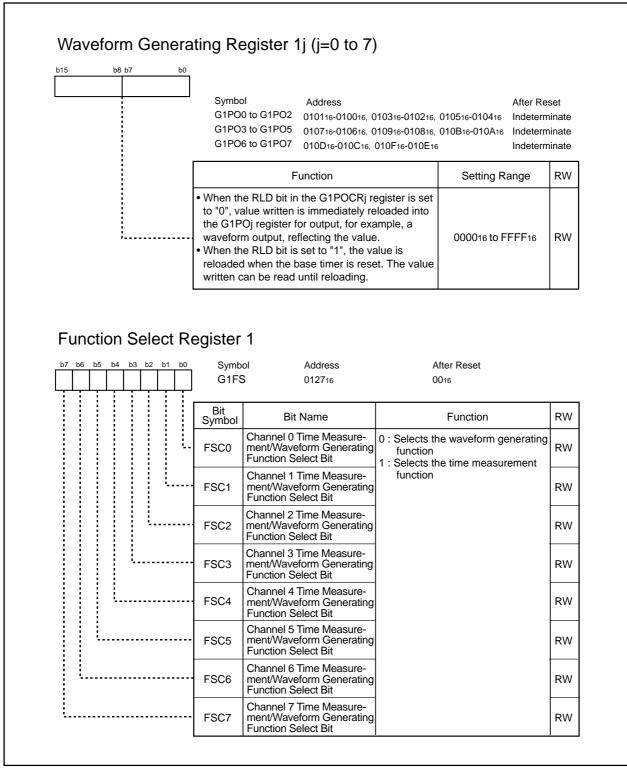




Figure 22.5 G1TMCR0 to G1TMCR7 Registers, G1TPR6 and G1TPR7 Registers



Time Measurement Register 1j (j=0 to 7) b8 b7 b0 b15 Symbol Address After Reset G1TM0 to G1TM2 010116 - 010016, 010316 - 010216, 010516 - 010416 Indeterminate G1TM3 to G1TM5 010716 - 010616, 010916 - 010816, 010B16 - 010A16 Indeterminate G1TM6, G1TM7 010D16 - 010C16, 010F16 - 010E16 Indeterminate RW Function Setting Range The base timer value is stored every RO measurement timing Waveform Generating Control Register 1j (j=0 to 7) Symbol Address After Reset 0000 X0002 G1POCR0 011016 0X00 X0002 G1POCR1 to G1POCR3 011116. 011216. 011316 G1POCR4 to G1POCR7 011416, 011516, 011616, 011716 0X00 X0002 Bit Function RW Bit Name Symbol 0 00: Single waveform output mode 0 01: SR waveform output mode<sup>(1)</sup> MOD0 RW 010: Phase-delayed waveform output mode **Operating Mode** 0 1 1: Do not set to this value MOD1 RW 100: Do not set to this value Select Bit 101: Do not set to this value 1 10: Do not set to this value<sup>(2)</sup> 111: Use communication function RW MOD<sub>2</sub> output<sup>(3)</sup> Nothing is assigned. When write, set to "0". ŝ When read, its content is indeterminate (b3) Output Initial Value 0: "L" output as default value IVL RW ..... Select Bit<sup>(6)</sup> 1: "H" output as default value 0: Reloads the G1POj register when G1POj Register Value value is written RLD RW . . . . . . . . . . . . . Reload Timing Select Bit 1: Reloads the G1POj register when the base timer is reset 0: Disables base timer reset when Base Timer Reset Enable bit 15 in the base timer overflows BTRE RW Bit<sup>(4)</sup> 1: Enables base timer reset when bit 9 in the base timer overflows<sup>(7)</sup> **Inverse Output Function** 0: Output is not inversed INV RW Select Bit<sup>(5)</sup> 1: Output is inversed NOTES: 1. This setting is enabled only for even channels. In SR waveform output mode, values written to the corresponding odd channel (next channel after an even channel) are ignored. Even channels provides waveform output. Odd channels provides no waveform output. 2. To receive data in UART mode, set the G1POCR2 register to "0000 01102". 3. This setting is enabled only for channels 0 and 1. To use the ISTxD1 pin, set the MOD2 to MOD0 bits in the G1POCR0 register to "1112". To use the ISCLK1 pin for an output, set the MOD2 to MOD0 bits in the G1POCR1 register to"1112". Do not set the MOD2 to MOD0 bits to "1112" except in channels 0 and 1 and for the communication function. 4. The BTRE bit is provided in the G1POCR0 register only. Set each bit 6 in the G1POCR1 to G1POCR7 registers to "0". 5. The inverse output function is the final step in waveform generating process. When the INV bit is set to "1", an "H" signal is provided a default output by setting the IVL bit to "0"; and an "L" signal is provided by setting it to "1". 6. To provide either "H" or "L" signal output set in the IVL bit, set the FSCj bit in the G1FS register to "0" (the time measurement function selected) and IFEi bit in the G1FE register to "1" (functions for channel j enabled). Then set the IVL bit to "0" or "1" 7. When the BTRE bit is set to "1", set the BCK1 and BCK0 bits in the G1BCR0 register to "112" (f1) and the UD1 and UD0 bits in the G1BCR1 register to "002" (counter increment mode).

#### Figure 22.6 G1TM0 to G1TM7 Registers and G1POCR0 to G1POCR7 Registers





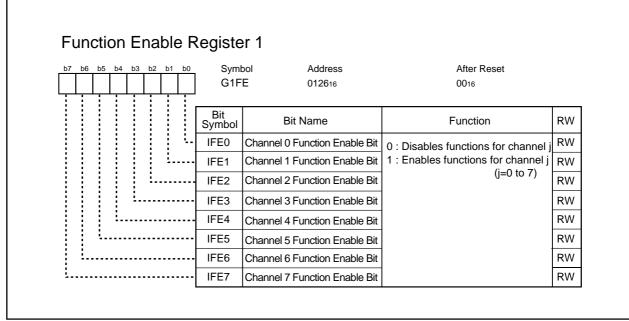



Figure 22.8 G1FE Register



### 22.1 Base Timer

The base timer is a free-running counter that counts an internally generated count source. Table 22.2 lists specifications of the base timer. Figures 22.3 and 22.4 show registers associated with the base timer. Figure 22.9 shows a block diagram of the base timer. Figure 22.10 shows an example of the base timer in counter increment mode. Figure 22.11 shows an example of the base timer in counter increment mode. Figure 22.12 shows an example of two-phase pulse signal processing mode.

| Item                               | Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Count Source (fBT1)                | f1 divided by $2(n+1)$ , two-phase pulse input divided by $2(n+1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                    | <ul> <li>n. determined by the DIV4 to DIV0 bits in the G1BCR0 register</li> <li>n=0 to 31; however no division when n=31</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Counting Operation                 | The base timer increments the counter value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                    | The base timer increments and decrements the counter value<br>Two-phase pulse signal processing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Counter Start Condition            | The BTS bit in the G1BCR1 register is set to "1" (base timer starts counting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Counter Stop Condition             | The BTS bit in the G1BCR1 register is set to "0" (base timer reset)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Base Timer Reset Condition         | The value of the base timer matches the value of the G1PO0 register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                    | • An low-level ("L") signal is applied to the INT0 or INT1 pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                    | Bit 15 or bit 9 in the base timer overflows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Value when the Base Timer is Reset | "000016"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Interrupt Request                  | The BT1R bit in the IIO4IR register is set to "1" (interrupt requested) when bit 9, bit 14 or bit 15 in the base timer overflows (See Figure 11.14.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Read from Base Timer               | The G1BT register indicates the counter value while the base timer is running                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Write to Base Timer                | • The G1BT register is indeterminate when the base timer is reset<br>When a value is written while the base timer is running, the timer counter<br>immediately starts counting from this value. No value can be written while<br>the base timer is reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Selectable Function                | <ul> <li>Counter increment/decrement mode<br/>The base timer starts counting when the BTS bit is set to "1". After<br/>incrementing to "FFFF16", the timer counter is then decremented back to<br/>"000016". If the RST1 bit in the G1BCR1 register is set to "1" (the base<br/>timer is reset by matching with the G1PO0 register), the timer counter<br/>decrements two counts after the base timer matches the G1PO0 register.<br/>The base timer increments the counter value again when the timer counte<br/>reaches "000016." (See Figure 22.11.)</li> <li>Two-phase pulse processing mode<br/>Two-phase pulse signals from P76 and P77 pins or P80 and P81 pins<br/>are counted as well. (See Figure 22.12.)<br/>The IPSA_0 bit in the IPSA register controls input pin selection.<br/>(Refer to 24. Programmable I/O Ports)</li> </ul> |  |
|                                    | P80<br>(P76)<br>P81<br>(P77)<br>The timer increments<br>counter on all edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |

| Table 22.2 | Rase Timer    | Specifications |
|------------|---------------|----------------|
|            | Dase I IIIIei | Specifications |



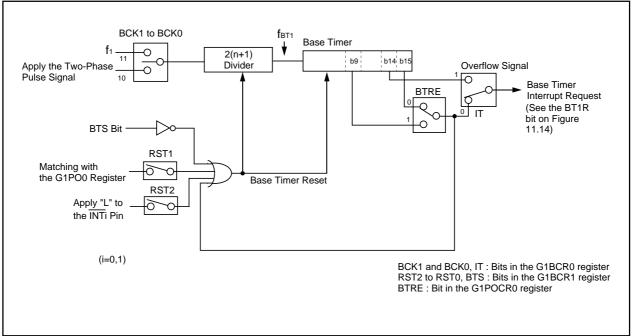



Figure 22.9 Base Timer Block Diagram

#### Table 22.3 Base Timer Associated Register Settings

(Also applies when using time measurement function, waveform generating function and communication function)

| Register | Bit          | Function                                   |
|----------|--------------|--------------------------------------------|
| G1BCR0   | BCK1, BCK0   | Select count source                        |
|          | DIV4 to DIV0 | Select divide ratio of count source        |
|          | IT           | Select the base timer interrupt            |
| G1BCR1   | RST2, RST1   | Select source for a base timer reset       |
|          | BTS          | Used to start the base timer independently |
|          | UD1, UD0     | Select how to count                        |
| G1POCR0  | BTRE         | Select source for a base timer reset       |
| G1BT     | -            | Read or write base timer value             |

Set the following registers to set the RST1 bit to "1" (base timer reset by matching the base timer with the G1PO0 register).

| G1POCR0 | MOD2 to MOD0 | Set to "0002" (single-phase waveform output mode) |
|---------|--------------|---------------------------------------------------|
| G1PO0   | -            | Set reset cycle                                   |
| G1FS    | FSC0         | Set to "0" (waveform generating function)         |
| G1FE    | IFE0         | Set to "1" (channel operation start)              |



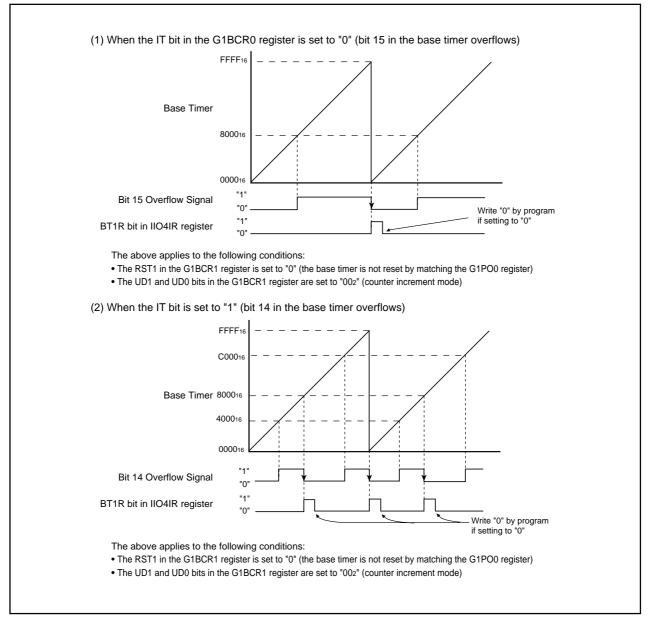
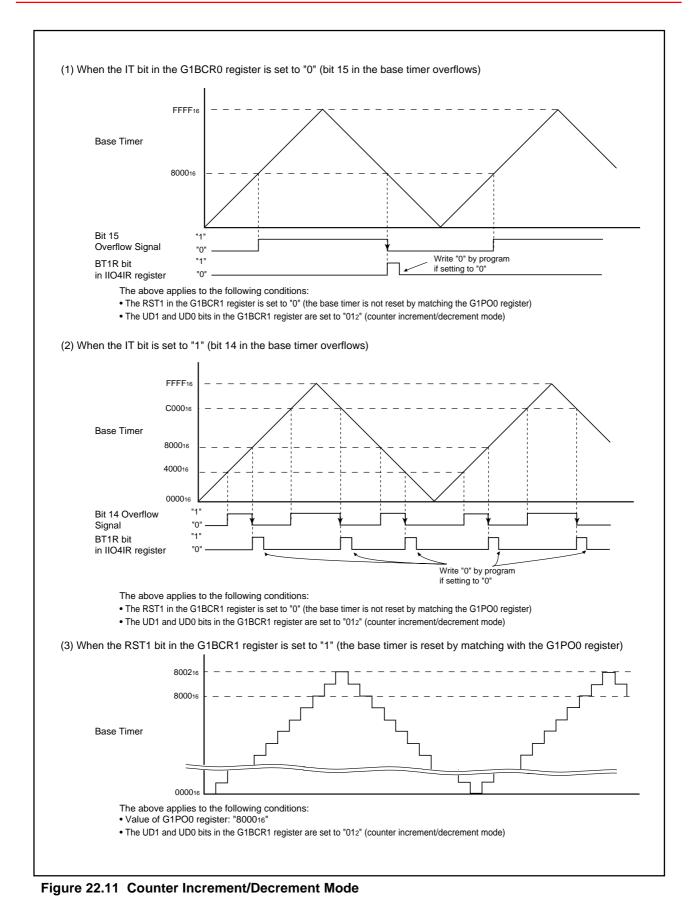




Figure 22.10 Counter Increment Mode





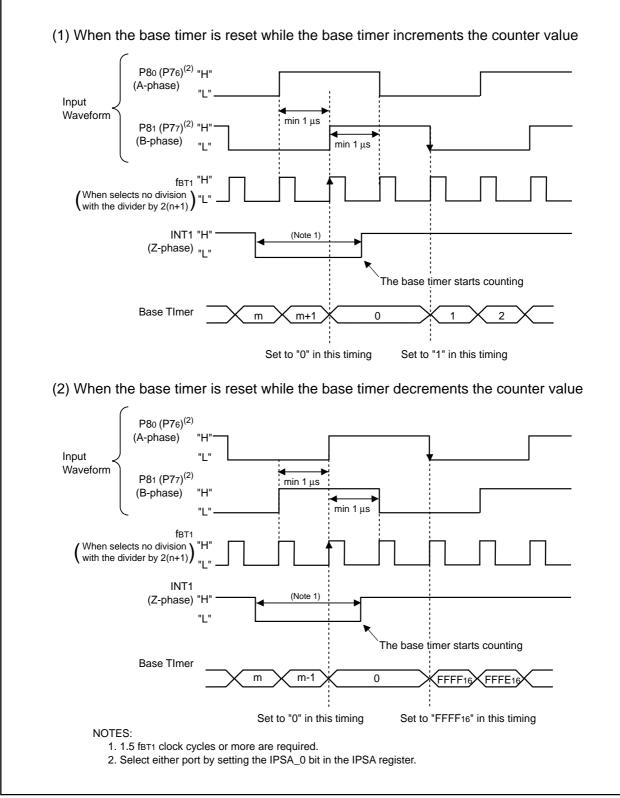



Figure 22.12 Base Timer Operation in Two-phase Pulse Signal Processing Mode

## 22.2 Time Measurement Function

When external trigger is applied, the value of the base timer is stored into the G1TMj register (j=0 to 7). Table 22.4 shows specifications of the time measurement function. Tables 22.5 and 22.6 list pin settings of the time measurement function. Figures 22.13 and 22.14 show operation examples of the time measurement function. Figure 22.15 shows an operation example of the prescaler function and gate function.

| Item                                | Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Measurement Channel                 | Channels 0 to 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Trigger Input Polarity              | Rising edge, falling edge and both edges of the INPC1j pin                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Measurement Start Condition         | The IFEj bit in the G1FE register is set to "1" (channel j function enabled)<br>when the FSCj bit (j=0 to 7) in the G1FS register is set to "1" (time<br>measurement function selected)                                                                                                                                                                                                                                                                                                            |  |
| Measurement Stop Condition          | The IFEj bit is set to "0" (channel j function disabled)                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Time Measurement Timing             | No prescaler: every time a trigger signal is applied                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                     | • Prescaler (for channel 6 and channel 7):<br>every <i>G1TPRk register (k=6,7) value +1</i> times a trigger signal is applied                                                                                                                                                                                                                                                                                                                                                                      |  |
| Interrupt Request Generating Timing | The TM1jR bit in the interrupt request register (See Figure 11.14) is set to "1" (interrupt requested) at time measurement timing                                                                                                                                                                                                                                                                                                                                                                  |  |
| INPC1j Pin Function                 | Trigger input pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Selectable Function                 | Digital filter function                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                     | The digital filter samples a trigger input signal level every f1 or fBT1 cycles and passes pulse signals, matching trigger input signal level, three times                                                                                                                                                                                                                                                                                                                                         |  |
|                                     | <ul> <li>Prescaler function (for channel 6 and channel 7)</li> <li>Time measurement is executed every <i>G1TPRk register value +1</i> times a trigger signal is applied</li> </ul>                                                                                                                                                                                                                                                                                                                 |  |
|                                     | <ul> <li>Gate function (for channel 6 and channel 7)</li> <li>After time measurement by the first trigger input, trigger input cannot be accepted. However, while the GOC bit in the G1TMCRk register is set to "1" (gate cleared by matching the base timer with the G1POp register (p=4 when k=6, p=5 when k=7), trigger input can be accepted again by matching the base timer value with the G1POp register setting or by setting the GSC bit in the G1TMCRk register is set to "1"</li> </ul> |  |

#### Table 22.4 Time Measurement Function Specifications



| Pin                        | Bit and Setting              |                                |              |  |  |
|----------------------------|------------------------------|--------------------------------|--------------|--|--|
|                            | PS1, PS2, PS5, PS8 Registers | PD7, PD8, PD11, PD14 Registers | IPS Register |  |  |
| P70/INPC16                 | PS1_0 = 0                    | PD7_0 = 0                      | IPS1 = 0     |  |  |
| P71/INPC17                 | PS1_1 = 0                    | PD7_1 = 0                      |              |  |  |
| P73/INPC10                 | PS1_3 = 0                    | PD7_3 = 0                      |              |  |  |
| P74/INPC11                 | PS1_4 = 0                    | PD7_4 = 0                      |              |  |  |
| P75/INPC12                 | PS1_5 = 0                    | PD7_5 = 0                      |              |  |  |
| P76/INPC13                 | PS1_6 = 0                    | PD7_6 = 0                      |              |  |  |
| P77/INPC14                 | PS1_7 = 0                    | PD7_7 = 0                      |              |  |  |
| P81/INPC15                 | PS2_1 = 0                    | PD8_1 = 0                      |              |  |  |
| P110/INPC10 <sup>(1)</sup> | PS5_0 = 0                    | PD11_0 = 0                     | IPS1 = 1     |  |  |
| P111/INPC11 <sup>(1)</sup> | PS5_1 = 0                    | PD11_1 = 0                     |              |  |  |
| P112/INPC12 <sup>(1)</sup> | PS5_2 = 0                    | PD11_2 = 0                     |              |  |  |
| P113/INPC13 <sup>(1)</sup> | PS5_3 = 0                    | PD11_3 = 0                     |              |  |  |
| P140/INPC14 <sup>(1)</sup> | PS8_0 = 0                    | PD14_0 = 0                     |              |  |  |
| P141/INPC15 <sup>(1)</sup> | PS8_1 = 0                    | PD14_1 = 0                     |              |  |  |
| P142/INPC16 <sup>(1)</sup> | PS8_2 = 0                    | PD14_2 = 0                     |              |  |  |
| P143/INPC17 <sup>(1)</sup> | PS8_3 = 0                    | PD14_3 = 0                     |              |  |  |

NOTES:

1. This port is provided in the 144-pin package only.

| Register | Bit          | Function                                |
|----------|--------------|-----------------------------------------|
| G1TMCRj  | CTS1, CTS0   | Select a time measurement trigger       |
|          | DF1, DF0     | Select the digital filter function      |
|          | GT, GOC, GSC | Select the gate function                |
|          | PR           | Select the prescaler function           |
| G1TPRk   | -            | Setting value of the prescaler          |
| G1FS     | FSCj         | Set to "1" (time measurement function)  |
| G1FE     | IFEj         | Set to "1" (channel j function enabled) |

j = 0 to 7 k = 6, 7

Bit configurations and functions vary with channels used.

Registers associated with the time measurement function must be set after setting registers associated with the base timer.

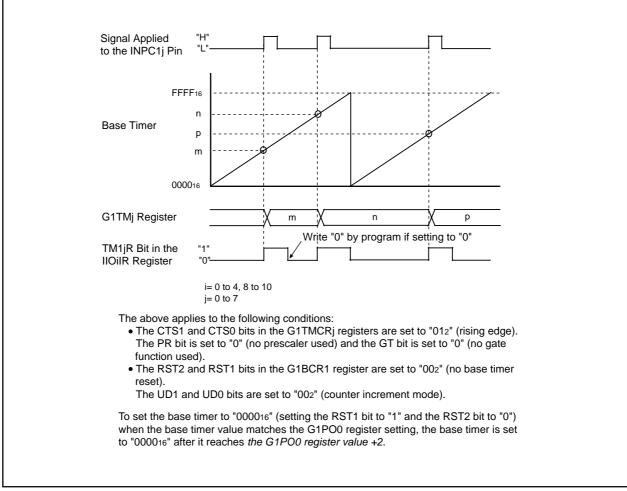



Figure 22.13 Time Measurement Function (1)



| fBT1                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IDTT                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Base timer                                                         | $\frac{1}{(Note 2)} = \frac{1}{(Note 2)} = \frac{1}$ |
| INPC1j pin                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TM1jR bit <sup>(1)</sup>                                           | *1"<br>*0° Write "0" by program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| G1TMj register                                                     | n n+5 n+8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2. Inpu<br>(2) When seled                                          | in the IIO0IR to IIO8IR, IIO10IR to IIO11R registers. See Figure 11.14 about the TM1jR bit.<br>It pulse applied to the INPC1j pin requires 1.5 fBT1 clock cycles or more.<br>Cting both edges as a time measurement trigger<br>I and CTS0 bits are set to "112")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| fBT1                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Base timer                                                         | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| INPC1j pin                                                         | "H"<br>"L"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TM1jR bit <sup>(1)</sup>                                           | "0" Write "0" by pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| G1TMj register                                                     | n n+2 n+5 n+6 n+8 n+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                    | in the IIO0IR to IIO4IR, IIO08IR to IIO10R registers. See Figure 11.14 about the TM1jR bit.<br>nterrupt is generated if the microcomputer receives a trigger signal when the TM1jR bit is set to "1".<br>vever, the value of the G1TMj register changes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| How<br>(3) Trigger sign                                            | nal when using the digital filter<br>and DF0 bits in the G1TMCRj register are set to "102" or "112")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| How<br>(3) Trigger sign                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| How<br>(3) Trigger sig<br>(The DF1 a                               | and DF0 bits in the G1TMCRj register are set to "102" or "112")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| How<br>(3) Trigger sign<br>(The DF1 a<br>f1 or fBT1 <sup>(1)</sup> | and DF0 bits in the G1TMCRj register are set to "102" or "112")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Figure 22.14 Time Measurement Function (2)

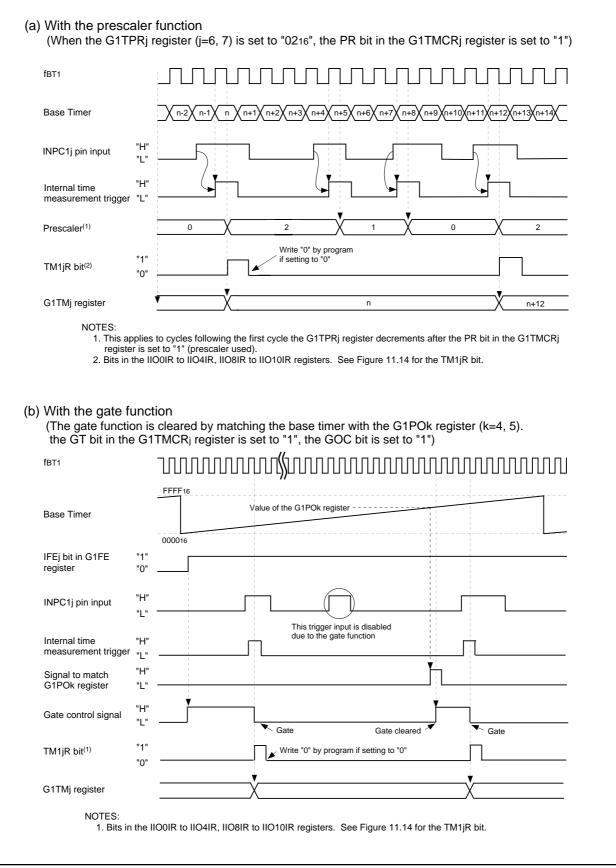



Figure 22.15 Prescaler Function and Gate Function

## 22.3 Waveform Generating Function

Waveforms are generated when the value of the base timer matches that of the G1POj register (j=0 to 7). The waveform generating function has the following three modes :

- Single-phase waveform output mode
- Phase-delayed waveform output mode
- Set/Reset waveform output (SR waveform output) mode

Table 22.7 lists pin settings of the waveform generating function. Table 22.8 lists registers associated with the waveform generating function.

| Pin                        | Bit and Setting                   |                      |                     |              |  |  |  |
|----------------------------|-----------------------------------|----------------------|---------------------|--------------|--|--|--|
|                            | PS1, PS2, PS5 to PS8<br>Registers | PSL1, PSL2 Registers | PSC, PSC2 Registers | PSD1 Registe |  |  |  |
| P70/OUTC16                 | PS1_0 = 1                         | PSL1_0 = 0           | PSC_0 = 1           | PSD1_0=1     |  |  |  |
| P71/OUTC17                 | PS1_1 = 1                         | PSL1_1 = 0           | PSC_1 = 1           | PSD1_1=1     |  |  |  |
| P73/OUTC10                 | PS1_3 = 1                         | PSL1_3 = 0           | PSC_3 = 1           | -            |  |  |  |
| P74/OUTC11                 | PS1_4 = 1                         | PSL1_4 = 0           | PSC_4 = 1           | -            |  |  |  |
| P75/OUTC12                 | PS1_5 = 1                         | PSL1_5 = 1           | -                   | -            |  |  |  |
| P76/OUTC13                 | PS1_6 = 1                         | PSL1_6 = 0           | PSC_6 = 0           | PSD1_6=1     |  |  |  |
| P77/OUTC14                 | PS1_7 = 1                         | PSL1_7 = 1           | -                   | -            |  |  |  |
| P81/OUTC15                 | PS2_1 = 1                         | PSL2_1 = 1           | PSC2_1=1            | -            |  |  |  |
| P110/OUTC10 <sup>(1)</sup> | PS5_0 = 1                         | -                    | -                   | -            |  |  |  |
| P111/OUTC11 <sup>(1)</sup> | PS5_1 = 1                         |                      |                     |              |  |  |  |
| P112/OUTC12 <sup>(1)</sup> | PS5_2 = 1                         |                      |                     |              |  |  |  |
| P113/OUTC13 <sup>(1)</sup> | PS5_3 = 1                         |                      |                     |              |  |  |  |
| P140/OUTC14 <sup>(1)</sup> | PS8_0 = 1                         |                      |                     |              |  |  |  |
| P141/OUTC15 <sup>(1)</sup> | PS8_1 = 1                         |                      |                     |              |  |  |  |
| P142/OUTC16 <sup>(1)</sup> | PS8_2 = 1                         |                      |                     |              |  |  |  |
| P143/OUTC17 <sup>(1)</sup> | PS8_3 = 1                         |                      |                     |              |  |  |  |

| Table 22.7 | Pin Settings for | Waveform | Generating | Function |
|------------|------------------|----------|------------|----------|
|------------|------------------|----------|------------|----------|

NOTES:

1. This port is provided in the 144-pin package only.

#### Table 22.8 Waveform Generating Function Associated Register Settings

| Register | Bit          | Function                                                  |
|----------|--------------|-----------------------------------------------------------|
| G1POCRj  | MOD2 to MOD0 | Select waveform output mode                               |
|          | IVL          | Select default output value                               |
|          | RLD          | Select a timing to reload the value of the G1POj register |
|          | INV          | Select if output level is inversed                        |
| G1POj    | -            | Select when output waveform is inversed                   |
| G1FS     | FSCj         | Set to "0" (waveform generating function)                 |
| G1FE     | IFEj         | Set to "1" (enables a function on channel j)              |

j = 0 to 7

Bit configurations and functions vary with channels used.

Registers associated with the waveform generating measurement function must be set after setting registers associated with the base timer.

## 22.3.1 Single-Phase Waveform Output Mode

Output signal level of the OUTC1j pin becomes high ("H") when the value of the base timer matches that of the G1POj register (j=0 to 7). The "H" signal swithches to a low-level ("L") signal when the base timer reaches "000016". If the IVL bit in the G1POCRj register is set to "1" ("H" output as default value), an "H" signal output is provided when waveform output starts. If the INV bit is set to "1" (output inversed), the level of the waveform output is inversed. See Figure 22.16 for details on single-phase waveform output mode.

| ltem                                           | Specification                                                                |
|------------------------------------------------|------------------------------------------------------------------------------|
| Output Waveform <sup>(2)</sup>                 | • Free-running operation                                                     |
|                                                | (the RST2 and RST1 bits in the G1BCR1 register are set to "002")             |
|                                                | Cycle : <u>65536</u><br>fBT1                                                 |
|                                                | "L" width :                                                                  |
|                                                | "H" width : <u>65536-m</u><br>fBT1                                           |
|                                                | m : setting value of the G1POj register (j=0 to 7), 000016 to FFF16          |
|                                                | • The base timer is cleared to "000016" by matching the base timer with the  |
|                                                | G1PO0 register (the RST1 bit is set to "1" and the RST2 bit is set to "0")   |
|                                                | Cycle : <u>n+2</u><br>fBT1                                                   |
|                                                | "L" width : <u> </u>                                                         |
|                                                | "H" width : <u>n+2-m</u><br>fвт1                                             |
|                                                | m : setting value of the G1POj register (j=1 to 7), 000016 to FFF16          |
|                                                | n : setting value of the G1PO0 register, 000116 to FFFD16                    |
|                                                | If $m \ge n+2$ , the output level is fixed to "L"                            |
| Waveform Output Start Condition <sup>(1)</sup> | The IFEj bit in the G1FE register is set to "1" (channel j function enabled) |
| Waveform Output Stop Condition                 | The IFEj bit is set to "0" (channel j function disabled)                     |
| Interrupt Request                              | The PO1jR bit in the interrupt request register is set to "1" (interrupt     |
|                                                | requested) when the value of the base timer matches that of the G1POj        |
|                                                | register. (See Figure 11.14)                                                 |
| OUTC1j Pin                                     | Pulse signal output pin                                                      |
| Selectable Function                            | Default value set function: Set starting waveform output level               |
|                                                | Inversed output function:                                                    |
|                                                | Waveform output signal is inversed and provided from the OUTC1j pin          |

| Table 22.9 | Single-Phase | Waveform | Output | Mode | Specifications |
|------------|--------------|----------|--------|------|----------------|
|------------|--------------|----------|--------|------|----------------|

NOTES:

1. Set the FSCj bit in the G1FS register to "0" (waveform generating function selected).

2. When the INV bit in the G1POCRj register is set to "1" (output inversed), the "L" width and "H" width are inversed.

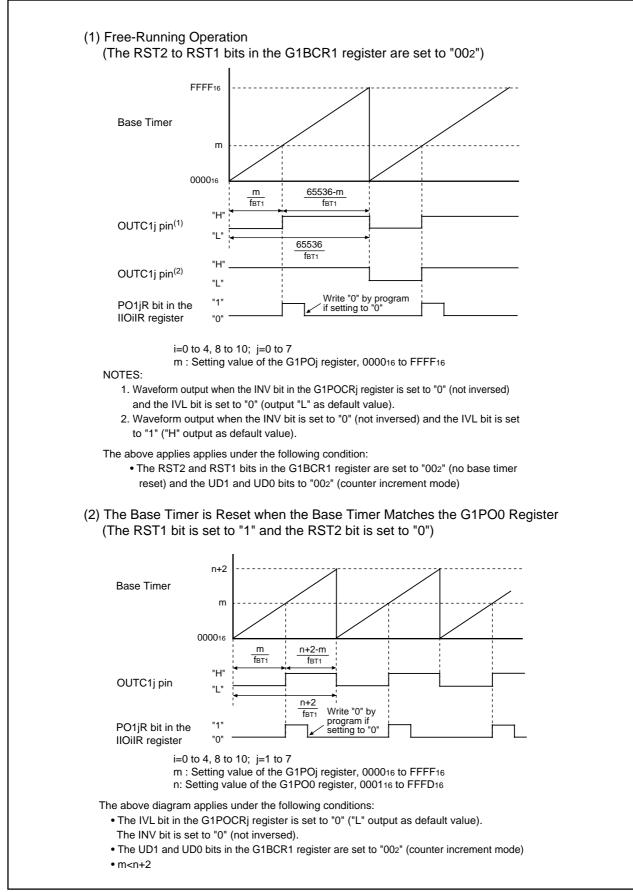



Figure 22.16 Single-Phase Waveform Output Mode

## 22.3.2 Phase-Delayed Waveform Output Mode

Output signal level of the OUTC1j pin is inversed every time the value of the base timer matches that of the G1POj register (j=0 to 7). Table 22.10 lists specifications of phase-delayed waveform output mode. Figure 22.17 lists an example of phase-delayed waveform output mode operation.

| Item                                           | Specification                                                                                      |
|------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Output Waveform                                | Free-running operation                                                                             |
|                                                | (the RST2 and RST1 bits in the G1BCR1 register are set to "002")                                   |
|                                                | Cycle : <u>65536 x 2</u><br>fBT1                                                                   |
|                                                | "H" and "L" widths : <u>65536</u><br>fBT1                                                          |
|                                                | Setting value of the G1POj (j=0 to 7) register is 000016 to FFFF16                                 |
|                                                | • The base timer is cleared to "000016" by matching the base timer with the                        |
|                                                | G1PO0 register (the RST1 bit is set to "1" and the RST2 bit is set to "0")                         |
|                                                | Cycle : $\frac{2(n+2)}{f_{BT1}}$                                                                   |
|                                                | "H" and "L" widths : <u>n+2</u><br>fbT1                                                            |
|                                                | n : setting value of the G1PO0 register, 000116 to FFFD16                                          |
|                                                | Setting value of the G1POj (j=1 to 7) register is 000016 to FFFF16                                 |
|                                                | If G1POj register $\ge$ n+2, the output level is not inversed                                      |
| Waveform Output Start Condition <sup>(1)</sup> | The IFEj bit (j=0 to 7) in the G1FE register is set to "1" (channel j function enabled)            |
| Waveform Output Stop Condition                 | The IFEj bit is set to "0" (channel j function disabled)                                           |
| Interrupt Request                              | The PO1jR bit in the interrupt request register is set to "1" (interrupt                           |
|                                                | requested) when the value of the base timer matches that of the G1POj register. (See Figure 11.14) |
| OUTC1j Pin                                     | Pulse signal output pin                                                                            |
| Selectable Function                            | Default value set function: Set starting waveform output level                                     |
|                                                | Inversed output function                                                                           |
|                                                | Waveform output level is inversed to output a waveform from the OUTC1j pin                         |

| Table 22.10 | Phase-Delay | ved Waveform | <b>Output Mode S</b> | <b>Specifications</b> |
|-------------|-------------|--------------|----------------------|-----------------------|
|             | T Habb Bola |              | output mouo t        | poontoationo          |

NOTES:

1. Set the FSCj bit in the G1FS register to "0" (waveform generating function selected).






Figure 22.17 Phase-delayed Waveform Output Mode

# 22.3.3 Set/Reset Waveform Output (SR Waveform Output) Mode

Output signal level of the OUTC1j pin becomes high ("H") when the value of the base timer matches that of the G1POj register (j=0, 2, 4, 6). The "H" signal switches to a low-level ("L") signal when the value of the base timer matches that of the G1POk register (k=j+1) or when the base timer is set to "000016". If the IVL bit in the G1POCRj register is set to "1" ("H" output as default value), an "H" signal output is provided when waveform output starts. If the INV bit is set to "1" (output inversed), the level of the output waveform is inversed. Table 22.11 lists specifications of SR waveform output mode. Figure 22.18 shows an example of a SR waveform output mode operation.

| Item                           | Specification                                                                                                                                                         |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Output Waveform <sup>(2)</sup> | Free-running operation                                                                                                                                                |
|                                | (the RST2 and RST1 bits in the G1BCR1 register are set to "002")                                                                                                      |
|                                | (1) m < n                                                                                                                                                             |
|                                | "H" width : <u>n-m</u><br>fвт1                                                                                                                                        |
|                                | "L" width : $\frac{m^{(3)}}{fBT1}$ + $\frac{65536 - n^{(4)}}{fBT1}$                                                                                                   |
|                                | (2) m ≥ n                                                                                                                                                             |
|                                | "H" width : <u>65536 - m</u><br>f <sub>BT1</sub>                                                                                                                      |
|                                | "L" width : <u>m</u><br>fBT1                                                                                                                                          |
|                                | m : setting value of the G1POj register (j=0, 2, 4, 6)                                                                                                                |
|                                | n : setting value of the G1POk register (k=j+1)                                                                                                                       |
|                                | • The base timer is cleared to "000016" by matching the base timer with the G1PO0 register <sup>(1)</sup> (the RST1 bit is set to "1" and the RST2 bit is set to "0") |
|                                | (1) m < n < p+2                                                                                                                                                       |
|                                | "H" width : <u>n-m</u>                                                                                                                                                |
|                                | "L" width : $\frac{m^{(3)}}{fBT_1}$ + $\frac{p+2-n^{(4)}}{fBT_1}$                                                                                                     |
|                                | (2) m < p+2 ≤ n                                                                                                                                                       |
|                                | "H" width : <u>p + 2 - m</u><br>fBT1                                                                                                                                  |
|                                | "L" width : <u>m</u><br>fBT1                                                                                                                                          |
|                                | (3) If $m \ge p+2$ , the output level is fixed to "L"                                                                                                                 |
|                                | m : setting value of the G1POj register (j=2, 4, 6), 000016 to FFFF16                                                                                                 |
|                                | n : setting value of the G1POk register (k=j+1), 000016 to FFFF16                                                                                                     |
|                                | p : setting value of the G1PO0 register, 000116 to FFFD16                                                                                                             |

| Table 22.11 | SR Waveform | <b>Output Mode</b> | Specifications |
|-------------|-------------|--------------------|----------------|
|             | ••••••••••  |                    |                |

NOTES:

- 1. When the G1PO0 register resets the base timer, the channel 0 and 1 SR waveform generating functions are not available.
- 2. When the INV bit in the G1POCRj register is set to "1" (output inversed), the "L" width and "H" width are inversed.
- 3. Waveform from base timer reset until when output level becomes "H".
- 4. Waveform from when output level becomes "L" until base timer reset.

| Item                                           | Specification                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Waveform Output Start Condition <sup>(5)</sup> | The IFEq bit (q=0 to 7) in the G1FE register is set to "1" (channel q function enabled)                                                                                                                                                                                                                                                 |
| Waveform Output Stop Condition                 | The IFEq bit is set to "0" (channel q function disabled)                                                                                                                                                                                                                                                                                |
| Interrupt Request                              | The PO1jR bit in the interrupt request register is set to "1" (interrupt requested) when the value of the base timer matches that of the G1POj register.<br>The PO1kR bit in the interrupt request register is set to "1" (interrupt requested) when the value of the base timer matches that of the G1POk register. (See Figure 11.14) |
| OUTC1j Pin                                     | Pulse signal output pin                                                                                                                                                                                                                                                                                                                 |
| Selectable Function                            | <ul> <li>Default value set function: Set starting waveform output level</li> <li>Inversed output function</li> <li>Waveform output level is inversed to provide a waveform from the OUTC1j pin</li> </ul>                                                                                                                               |

## Table 22.11 SR Waveform Output Mode Specifications (Continued)

NOTES:

5. Set the FSCj bit in the G1FS register to "0" (waveform generating function selected).



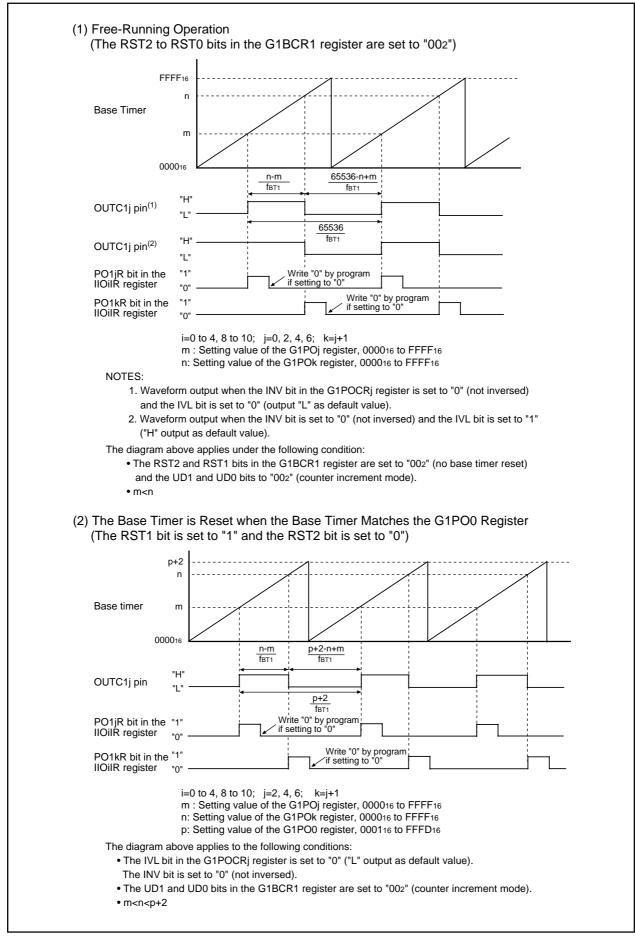



Figure 22.18 SR Waveform Output Mode

# 22.4 Communication Unit 0 and 1 Communication Function

In the intelligent I/O communication unit 1, 8-bit clock synchronous serial I/O, 8-bit clock asynchronous serial I/O (UART) or HDLC data processing is available. In the communication unit 0, 8-bit clock synchronous serial I/O or HDLC data processing is available.

Figures 22.19 to 22.28 show registers associated with the communication function.

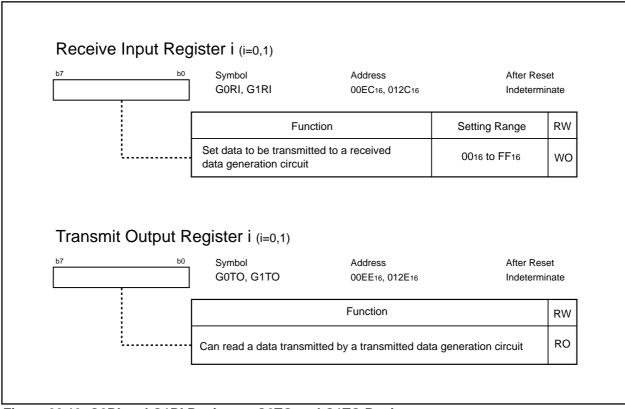



Figure 22.19 GORI and G1RI Registers, G0TO and G1TO Registers



| <br>b5 b4 b3 b2 | b1 b0 | Symb              |                                                | After Reset                                                                                                                                                                  |       |
|-----------------|-------|-------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                 |       | GOCE              | R, G1CR 00EF16, 07                             | 12F16 0000 X0112                                                                                                                                                             |       |
|                 |       | Bit<br>Symbol     | Bit Name                                       | Function                                                                                                                                                                     | RW    |
|                 |       | ΤI                | Transmit Buffer<br>Empty Flag                  | 0 : Data in the GiTB register<br>1 : No data in the GiTB register                                                                                                            | RO    |
|                 |       | TXEPT             | Transmit Register<br>Empty Flag                | <ul><li>0 : Data in the transmit register<br/>(during transmission)</li><li>1 : No data in the transmit register<br/>(transmit completed)</li></ul>                          | RO    |
|                 |       | RI                | Receive Complete<br>Flag                       | 0 : No data in the GiRB register<br>1 : Data in the GiRB register                                                                                                            | RO    |
|                 |       | (b3)              | Nothing is assigned.<br>When read, its conte   | When write, set to "0".<br>nts is indeterminate.                                                                                                                             | _     |
|                 |       | TE                | Transmit Enable Bit                            | 0 : Transmit disable<br>1 : Transmit enable                                                                                                                                  | RW    |
|                 |       | RE                | Receive Enable Bit                             | 0 : Receive disable<br>1 : Receive enable                                                                                                                                    | RW    |
| <br>            |       | IPOL              | ISRxD Input Polarity<br>Switch Bit             | 0 : No inverse<br>1 : Inverse <sup>(1)</sup>                                                                                                                                 | RW    |
| <br>            |       | OPOL              | ISTxD Output Polarity<br>Switch Bit            | 0 : No inverse<br>1 : Inverse <sup>(1)</sup>                                                                                                                                 | RW    |
| Receive         |       | er Reg            | <b>ister i</b> (i=0, 1)<br>ol Address          | After Reset<br>E816, 012916-012816 X000 XXXX XXXX                                                                                                                            | XXXX2 |
|                 |       | Bit<br>Symbol     | Bit Name                                       | Function                                                                                                                                                                     | RW    |
|                 | ļ     | (b7 - b0)         |                                                | Received data                                                                                                                                                                | RW    |
|                 |       | ,                 |                                                |                                                                                                                                                                              |       |
|                 |       | (b11 - b8)        | Nothing is assigned.<br>When read, its contend |                                                                                                                                                                              |       |
| <br>            |       |                   |                                                |                                                                                                                                                                              |       |
| <br>            |       | (b11 - b8)        | When read, its conte                           | ent is indeterminate.<br>0 : No overrun error<br>1 : Overrun error found<br>0 : No framing error                                                                             | RC    |
|                 |       | (b11 - b8)<br>OER | When read, its contr<br>Overrun Error Flag     | ent is indeterminate.<br>0 : No overrun error<br>1 : Overrun error found<br>0 : No framing error<br>1 : Framing error found<br>0 : No parity error<br>1 : Parity error found |       |

NOTES:

1. Nothing is assigned in the FER and PER bits in the GORB register.

When read, its content is indeterminate.

Figure 22.20 G0CR and G1CR Registers, G0RB and G1RB Registers

| b7 b6 b5 b4 b3 | b2 b1 b0 | Symb<br>G0MI  |                                        | After Reset<br>0016                                                                      |    |
|----------------|----------|---------------|----------------------------------------|------------------------------------------------------------------------------------------|----|
|                |          | Bit<br>Symbol | Bit Name                               | Function                                                                                 | RW |
|                |          | GMD0          | Communication Mode                     | <sup>b1 b0</sup><br>0 1: Clock synchronous serial I/O                                    | RW |
|                |          | GMD1          | Select Bit                             | mode<br>1 1: HDLC data processing mode <sup>(1)</sup>                                    | RW |
|                |          | CKDIR         | Internal/External Clock<br>Select Bit  | 0 : Internal clock<br>1 : External clock                                                 | RW |
|                |          | (b5 - b3)     | Reserved Bit                           | Set to "0"                                                                               | RW |
|                |          | UFORM         | Transfer Format<br>Select Bit          | 0 : LSB first<br>1 : MSB first                                                           | RW |
|                |          | IRS           | Transmit Interrupt<br>Cause Select Bit | 0 : No data in the G0TB register<br>(TI=1)<br>1 : Transmission is completed<br>(TXEPT=1) | RW |

1. Do not set to any bit combinations except the above.

# SI/O Communication Mode Register 1

| b7 b6 b5 b4 b3 b2 b1 b0               | Symbo<br>G1MF |                                        | After Reset<br>0016                                                                      |    |
|---------------------------------------|---------------|----------------------------------------|------------------------------------------------------------------------------------------|----|
|                                       | Bit<br>Symbol | Bit Name                               | Function                                                                                 | RW |
|                                       | GMD0          | Communication Mode<br>Select Bit       | b1 b0<br>0 0 : UART mode<br>0 1 : Clock synchronous serial I/O                           | RW |
| · · · · · · · · · · · · · · · · · · · | GMD1          |                                        | mode<br>1 0: Special communication mode <sup>(1)</sup><br>1 1: HDLC data processing mode | RV |
|                                       | CKDIR         | Internal/External Clock<br>Select Bit  | 0 : Internal clock<br>1 : External clock                                                 | RV |
|                                       | STPS          | Stop Bit Length<br>Select Bit          | 0 : 1 stop bit<br>1 : 2 stop bits                                                        | RV |
|                                       | PRY           | Parity Odd/Even<br>Select Bit          | 0 : Odd parity<br>1 : Even parity                                                        | RV |
|                                       | PRYE          | Parity Enable<br>Select Bit            | 0 : Parity disabled<br>1 : Parity enabled                                                | RV |
| L                                     | UFORM         | Transfer Format<br>Select Bit          | 0 : LSB first<br>1 : MSB first                                                           | RV |
|                                       | IRS           | Transmit Interrupt<br>Cause Select Bit | 0 : No data in the G1TB register<br>(TI=1)<br>1 : Transmission is completed<br>(TXEPT=1) | RV |

1. In M32C/85, do not set the GMD1 and GMD0 bits to "102" except when using in motor vehicles.

Figure 22.22 GOMR and G1MR Registers

| b7 b6 b5 b | b4 b3 b2 b1 b0 | Symb<br>G0EM  |                                            | After Reset<br>0016                                                                          |    |
|------------|----------------|---------------|--------------------------------------------|----------------------------------------------------------------------------------------------|----|
|            |                | Bit<br>Symbol | Bit Name                                   | Function                                                                                     | RW |
|            |                | (b0)          | Reserved Bit                               | Set to "0"                                                                                   | RW |
|            |                | CRCV          | CRC Default Value<br>Select Bit            | 0 : Set to "000016"<br>1 : Set to "FFFF16"                                                   | RW |
|            |                | ACRC          | CRC Reset Select Bit                       | 0 : Not reset<br>1 : Reset <sup>(2)</sup>                                                    | RW |
|            |                | BSINT         | Bit Stuffing Error<br>Interrupt Select Bit | 0 : Not used<br>1 : Used                                                                     | RW |
|            |                | RXSL          | Receive Source<br>Switch Bit               | 0 : ISRxD0 pin<br>1 : G0RI register                                                          | RW |
|            |                | TXSL          | Transmit Source<br>Switch Bit              | 0 : ISTxD0 pin<br>1 : G0TO register                                                          | RW |
|            |                | CRC0          | CRC Generation                             | b7b6<br>0 0 : X <sup>8</sup> +X <sup>4</sup> +X+1                                            | RW |
|            |                | CRC1          | Polynomial Select Bit                      | 0 1 : Do not set to this value<br>1 0 : $X^{16}+X^{15}+X^2+1$<br>1 1 : $X^{16}+X^{12}+X^5+1$ |    |

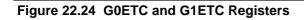
NOTES:

- 1. The G0EMR register is used in HDLC data processing mode. It must be in a reset state or set to "0016" in clock synchronous serial I/O mode.
- 2. CRC is reset when data in the G0CMP3 register matches received data.

# SI/O Expansion Mode Register 1<sup>(1)</sup>

| b7 | b6 | b5 | b4 | b | 3 | b2 | b1 | b0 | Symb<br>G1EN  |                                            | After Reset<br>0016                                                                                                              |    |
|----|----|----|----|---|---|----|----|----|---------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----|
|    |    |    |    |   |   | Ì  |    |    | Bit<br>Symbol | Bit Name                                   | Function                                                                                                                         | RW |
|    |    |    |    |   |   |    |    |    | SMODE         | Synchronous Mode<br>Select Bit             | 0 : Re-synchronous mode not used<br>1 : Re-synchronous mode                                                                      | RW |
|    |    |    |    |   |   |    |    |    | CRCV          | CRC Default Value<br>Select Bit            | 0 : "000016" is set<br>1 : "FFFF16" is set                                                                                       | RW |
|    |    |    |    |   |   |    |    |    | ACRC          | CRC Reset Select Bit                       | 0 : Not reset<br>1 : Reset <sup>(2)</sup>                                                                                        | RW |
|    |    |    |    |   |   |    |    |    | BSINT         | Bit Stuffing Error<br>Interrupt Select Bit | 0 : Not used<br>1 : Used                                                                                                         | RW |
|    |    |    |    |   |   |    |    |    | RXSL          | Receive Source<br>Switch Bit               | 0 : ISRxD1 pin<br>1 : G1RI register                                                                                              | RW |
|    |    |    |    |   |   |    |    |    | - TXSL        | Transmit Source<br>Switch Bit              | 0 : ISTxD1 pin<br>1 : G1TO register                                                                                              | RW |
|    |    |    |    |   |   |    |    |    | - CRC0        | CRC Generation                             | b7 b6<br>0 0: $X^{8}+X^{4}+X+1$<br>0 1: Do not set to this value<br>1 0: $X^{16}+X^{15}+X^{2}+1$<br>1 1: $X^{16}+X^{12}+X^{5}+1$ | RW |
|    |    |    |    |   |   |    |    |    | - CRC1        | Polynomial Select bit                      |                                                                                                                                  | RW |

NOTES:

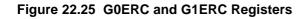

1. The G1EMR register is used in special communication mode or HDLC data processing mode. It

must be in a reset state or be set to "0016" in clock synchronous serial I/O mode or UART mode. 2. CRC is reset when data in the G1CMP3 register matches received data.

2. CIC is reset when data in the GTCMF5 register matches receive

#### Figure 22.23 G0EMR and G1EMR Registers

|                     | 0000             | Symb<br>G0E1                                                               |                                                                                                                                                                                                         | After Reset<br>0000 0XXX2                                                                                                                                                                                                                   |                      |
|---------------------|------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                     |                  | Bit<br>Symbol                                                              | Bit Name                                                                                                                                                                                                | Function                                                                                                                                                                                                                                    | RV                   |
|                     |                  | (b3 - b0)                                                                  | Reserved Bit                                                                                                                                                                                            | Set to "0"                                                                                                                                                                                                                                  | -                    |
|                     |                  | TCRCE                                                                      | Transmit CRC<br>Enable Bit                                                                                                                                                                              | 0 : Not used<br>1 : Used                                                                                                                                                                                                                    | RV                   |
|                     |                  | (b5)                                                                       | Reserved Bit                                                                                                                                                                                            | Set to "0"                                                                                                                                                                                                                                  | RV                   |
|                     |                  | TBSF0                                                                      | Transmit Bit Stuffing "1"<br>Insert Select Bit                                                                                                                                                          | 0 : "1" is not inserted<br>1 : "1" is inserted                                                                                                                                                                                              | RW                   |
|                     |                  | TBSF1                                                                      | Transmit Bit Stuffing "0"<br>Insert Select Bit                                                                                                                                                          | 0 : "0" is not inserted<br>1 : "0" is inserted                                                                                                                                                                                              | RW                   |
| "0016"<br>SI/O Expa | ' in clock synch | nronous se                                                                 | erial I/O mode.<br>Control Register                                                                                                                                                                     | ode. It must be in a reset state or so<br>• 1 <sup>(1)</sup><br>After Reset<br>0000 0XXX2                                                                                                                                                   |                      |
| "0016"<br>SI/O Expa | ' in clock synch | nronous se<br>r <b>ansmit</b><br>Symb                                      | rial I/O mode.<br>Control Register                                                                                                                                                                      | - 1 <sup>(1)</sup><br>After Reset                                                                                                                                                                                                           |                      |
| "0016"<br>SI/O Expa | ' in clock synch | ronous se<br>ansmit<br>Symb<br>G1E1<br>Bit                                 | erial I/O mode.                                                                                                                                                                                         | - 1 <sup>(1)</sup><br>After Reset<br>0000 0XXX2                                                                                                                                                                                             | RV                   |
| "0016"<br>SI/O Expa | ' in clock synch | anronous se<br>ansmit<br>Symb<br>G1ET<br>Bit<br>Symbol                     | erial I/O mode.<br>Control Register<br>ol Address<br>FC 013F16<br>Bit Name                                                                                                                              | - 1 <sup>(1)</sup><br>After Reset<br>0000 0XXX2<br>Function<br>When read,                                                                                                                                                                   | RW<br>RC<br>RW       |
| "0016"<br>SI/O Expa | ' in clock synch | anronous se<br>ansmit<br>Symb<br>G1ET<br>Bit<br>Symbol<br>(b2 - b0)        | erial I/O mode.<br>Control Register<br>Ol Address<br>FC 013F16<br>Bit Name<br>Reserved Bit<br>SOF Transmit                                                                                              | After Reset<br>0000 0XXX2<br>Function<br>When read,<br>its content is indeterminate<br>0 : No request to transmit SOF                                                                                                                       | RV<br>RC<br>RV       |
| "0016"<br>SI/O Expa | ' in clock synch | anronous se<br>ansmit<br>Symb<br>G1ET<br>Bit<br>Symbol<br>(b2 - b0)<br>SOF | rial I/O mode.<br>Control Register<br>Address<br>C 013F16<br>Bit Name<br>Reserved Bit<br>SOF Transmit<br>Request Bit<br>Transmit CRC                                                                    | - 1 <sup>(1)</sup><br>After Reset<br>0000 0XXX2<br>Function<br>When read,<br>its content is indeterminate<br>0 : No request to transmit SOF<br>1 : Request to transmit SOF<br>0 : Not used                                                  | RV<br>RC<br>RV<br>RV |
| "0016"<br>SI/O Expa | ' in clock synch | ansmit<br>Symb<br>G1E1<br>(b2 - b0)<br>SOF<br>TCRCE                        | arrial I/O mode.         Control Register         ol       Address         TC       013F16         Bit Name         Reserved Bit         SOF Transmit<br>Request Bit         Transmit CRC<br>Enable Bit | After Reset<br>0000 0XXX2<br>Function<br>When read,<br>its content is indeterminate<br>0 : No request to transmit SOF<br>1 : Request to transmit SOF<br>1 : Request to transmit SOF<br>1 : Used<br>0 : Not used<br>1 : Used<br>0 : Not used | RV                   |



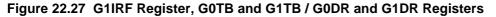

| b7 b6 b5 | b4 b3 b2 | b1 b0 | Symb<br>G0EF  |                                                  | Address After Reset<br>00FD16, 013D16 0016                                                                                                                                                           |    |
|----------|----------|-------|---------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|          |          |       | Bit<br>Symbol | Bit Name                                         | Function                                                                                                                                                                                             | RV |
|          |          |       | CMP0E         | Data Compare<br>Function 0<br>Select Bit         | <ul> <li>0 : The GiDR register (receive data register) is<br/>not compared with the GiCMP0 register</li> <li>1 : The GiDR register is compared with the<br/>GiCMP0 register</li> </ul>               | RV |
|          |          |       | CMP1E         | Data Compare<br>Function 1<br>Select Bit         | <ul> <li>0 : The GiDR register (receive data register) is<br/>not compared with the GiCMP1 register</li> <li>1 : The GiDR register is compared with the<br/>GiCMP1 register</li> </ul>               | RW |
|          |          |       | CMP2E         | Data Compare<br>Function 2<br>Select Bit         | 0 : The GiDR register (receive data register) is<br>not compared with the GiCMP2 register<br>1 : The GiDR register is compared with the<br>GiCMP2 register                                           | RW |
|          |          |       | CMP3E         | Data Compare<br>Function 3<br>Select Bit         | <ul> <li>0 : The GiDR register (receive data register) is<br/>not compared with the GiCMP3 register</li> <li>1 : The GiDR register is compared with the<br/>GiCMP3 register<sup>(2)</sup></li> </ul> | RW |
|          |          |       | RCRCE         | Receive CRC<br>Enable Bit                        | 0 : Not used<br>1 : Used                                                                                                                                                                             | RV |
|          |          |       | RSHTE         | Receive Shift<br>Operation<br>Enable Bit         | 0 : Receive shift operation disabled<br>1 : Receive shift operation enabled                                                                                                                          | RV |
|          |          |       | RBSF0         | Receive Bit<br>Stuffing "1" Delete<br>Select Bit | 0 : "1" is not deleted<br>1 : "1" is deleted                                                                                                                                                         | RW |
|          |          |       | RBSF1         | Receive Bit<br>Stuffing "0" Delete<br>Select Bit | 0 : "0" is not deleted<br>1 : "0" is deleted                                                                                                                                                         | RV |

It must be set to "0010 00002" in clock synchronous serial I/O mode.

It must be in a reset state or be set to "0016" in UART mode.

2. When the ACRC bit in the GiEMR register is set to "1" (CRC reset function used), set the CMP3E bit to "1".






| Symb<br>G0IR  |                                            | Address After Reset<br>00FE16 0016                                                                                                                                      |    |
|---------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Bit<br>Symbol | Bit Name                                   | Function                                                                                                                                                                | RV |
| <br>(b1 - b0) | Reserved Bit                               | Set to "0"                                                                                                                                                              | RV |
| <br>BSERR     | Bit Stuffing Error<br>Detect Flag          | 0 : Not detected<br>1 : Detected                                                                                                                                        | RW |
| <br>(b3)      | Reserved Bit                               | Set to "0"                                                                                                                                                              | RV |
| <br>IRF0      | Interrupt Cause<br>Determination<br>Flag 0 | <ul> <li>0 : The G0DR register (receive data register)<br/>does not match the G0CMP0 register</li> <li>1 : The G0DR register matches the G0CMP0<br/>register</li> </ul> | RW |
| <br>IRF1      | Interrupt Cause<br>Determination<br>Flag 1 | <ul> <li>0 : The G0DR register (receive data register)<br/>does not match the G0CMP1 register</li> <li>1 : The G0DR register matches the G0CMP1<br/>register</li> </ul> | RV |
| <br>IRF2      | Interrupt Cause<br>Determination<br>Flag 2 | <ul> <li>0 : The G0DR register (receive data register)<br/>does not match the G0CMP2 register</li> <li>1 : The G0DR register matches the G0CMP2<br/>register</li> </ul> | RW |
| <br>IRF3      | Interrupt Cause<br>Determination<br>Flag 3 | <ul> <li>0 : The G0DR register (receive data register)<br/>does not match the G0CMP3 register</li> <li>1 : The G0DR register matches the G0CMP3<br/>register</li> </ul> | RV |

Figure 22.26 G0IRF Register



| b7 b6 b5 b4 b3 | 3 b2 b1 b0    | Symb          | ol Addre                                                               | After Reset                                                                                                                                                                                     |         |
|----------------|---------------|---------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                | 00            | G1IR          | F 013E                                                                 | 0016                                                                                                                                                                                            |         |
|                |               | Bit<br>Symbol | Bit Name                                                               | Function                                                                                                                                                                                        | RV      |
|                |               | (b1 - b0)     | Reserved Bit                                                           | Set to "0"                                                                                                                                                                                      | RV      |
|                |               | BSERR         | Bit Stuffing Error<br>Detect Flag                                      | 0 : Not detected<br>1 : Detected                                                                                                                                                                | RV      |
|                |               | ABT           | Arbitration Lost<br>Detect Flag                                        | 0 : Not detected<br>1 : Detected                                                                                                                                                                | RV      |
|                |               | IRF0          | Interrupt Cause<br>Determination<br>Flag 0                             | 0 : The G1DR register (receive data register)<br>does not match the G1CMP0 register<br>1 : The G1DR register (receive data register)<br>matches the G1CMP0 register                             | RV      |
|                |               | IRF1          | Interrupt Cause<br>Determination<br>Flag 1                             | <ul> <li>0 : The G1DR register (receive data register)<br/>does not match the G1CMP1 register</li> <li>1 : The G1DR register (receive data register)<br/>matches the G1CMP1 register</li> </ul> | RV      |
|                |               | IRF2          | Interrupt Cause<br>Determination<br>Flag 2                             | <ul> <li>0 : The G1DR register (receive data register)<br/>does not match the G1CMP2 register</li> <li>1 : The G1DR register (receive data register)<br/>matches the G1CMP2 register</li> </ul> | RV      |
|                |               | IRF3          | Interrupt Cause<br>Determination<br>Flag 3                             | <ul> <li>0 : The G1DR register (receive data register)<br/>does not match the G1CMP3 register</li> <li>1 : The G1DR register (receive data register)<br/>matches the G1CMP3 register</li> </ul> | RV      |
| 2. The SRT     | 1R bit in the | IO4IR regi    | ster is also set to "<br><b>Data) Regi</b><br>ol Addre<br>3, G0DR 00EA | After Reset                                                                                                                                                                                     | to "1". |
|                |               | G1TI          | B, G1DR 012A                                                           | 16 Indeterminate                                                                                                                                                                                |         |
|                |               |               |                                                                        | Function                                                                                                                                                                                        | RW      |
|                |               | Set data      | to be transmitted.                                                     | ode, the receive data register is read by                                                                                                                                                       |         |



| b7 b0                                                                                                                    | Symbol<br>G0CMP0 to G0CMP3<br>G1CMP0 to G1CMP3                                                                                                                                  | Address<br>00F016, 00F116, 00F216<br>013016, 013116, 013216                                                                                                   |                                                          |           |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------|
|                                                                                                                          | Functio                                                                                                                                                                         | n                                                                                                                                                             | Setting Range                                            | R۱        |
|                                                                                                                          | Data to be compared                                                                                                                                                             |                                                                                                                                                               | 0016 to FF16                                             | R\        |
|                                                                                                                          | ister to use the GiCMP0 reg<br>ister to use the GiCMP1 reg                                                                                                                      |                                                                                                                                                               |                                                          |           |
| -                                                                                                                        | -                                                                                                                                                                               | A data a a                                                                                                                                                    |                                                          |           |
| b7 b0                                                                                                                    | Symbol<br>G0MSK0, G0MSK1                                                                                                                                                        | Address<br>00F416, 00F516                                                                                                                                     | After Rese<br>Indetermin                                 |           |
| J                                                                                                                        | G1MSK0, G1MSK1                                                                                                                                                                  | 013416, 013516                                                                                                                                                | Indetermin                                               | ate       |
|                                                                                                                          | Functio                                                                                                                                                                         | n                                                                                                                                                             | Setting Range                                            | RV        |
|                                                                                                                          | Masked data for received Set incomparable bit to "1"                                                                                                                            |                                                                                                                                                               | 0016 to FF16                                             | R۱        |
|                                                                                                                          |                                                                                                                                                                                 | Function                                                                                                                                                      |                                                          | R         |
|                                                                                                                          | Result of the transmit CRC                                                                                                                                                      | Function                                                                                                                                                      |                                                          | RV        |
| The CRCV bit in the                                                                                                      | is reset by setting the TE bi<br>GiEMR register selects a de<br>ation is performed with each                                                                                    | calculation <sup>(1, 2)</sup><br>t in the GiCR register to<br>fault value.                                                                                    | ·                                                        | d).       |
| 1. The calculated result<br>The CRCV bit in the<br>2. Transmit CRC calcul                                                | is reset by setting the TE bi<br>GiEMR register selects a de<br>ation is performed with each<br>s set to "1" (used).                                                            | calculation <sup>(1, 2)</sup><br>t in the GiCR register to<br>fault value.                                                                                    | ·                                                        | d).       |
| <ol> <li>The calculated result<br/>The CRCV bit in the</li> <li>Transmit CRC calcul<br/>the GiETC register is</li> </ol> | is reset by setting the TE bi<br>GiEMR register selects a de<br>ation is performed with each<br>s set to "1" (used).                                                            | calculation <sup>(1, 2)</sup><br>t in the GiCR register to<br>fault value.                                                                                    | I while the TCRCE bit<br>After Rese                      | d).<br>in |
| 1. The calculated result<br>The CRCV bit in the<br>2. Transmit CRC calcul<br>the GiETC register is                       | is reset by setting the TE bi<br>GiEMR register selects a de<br>ation is performed with each<br>s set to "1" (used).<br>e Register i (i=0,1)<br>Symbol                          | C calculation <sup>(1, 2)</sup><br>t in the GiCR register to<br>fault value.<br>h bit of data transmitted<br>Address                                          | I while the TCRCE bit<br>After Rese                      | d).<br>in |
| 1. The calculated result<br>The CRCV bit in the<br>2. Transmit CRC calcul<br>the GiETC register is                       | is reset by setting the TE bi<br>GiEMR register selects a de<br>ation is performed with each<br>s set to "1" (used).<br>e Register i (i=0,1)<br>Symbol                          | C calculation <sup>(1, 2)</sup><br>t in the GiCR register to<br>a fault value.<br>b bit of data transmitted<br>Address<br>00F916-00F816, 013916-0<br>Function | I while the TCRCE bit<br>After Rese                      | d).<br>in |
| 1. The calculated result<br>The CRCV bit in the<br>2. Transmit CRC calcul<br>the GiETC register is<br>Receive CRC Cod    | is reset by setting the TE bi<br>GiEMR register selects a de<br>ation is performed with each<br>s set to "1" (used).<br><b>e Register i</b> (i=0,1)<br>Symbol<br>GORCRC, G1RCRC | C calculation <sup>(1, 2)</sup><br>t in the GiCR register to<br>fault value.<br>h bit of data transmitted<br>Address<br>00F916-00F816, 013916-0<br>Function   | I while the TCRCE bit<br>After Rese<br>113816 Indetermin | t<br>ate  |

Figure 22.28 G0CMP0 to G0CMP3 Registers and G1CMP0 to G1CMP3 Registers G0MSK0 and G0MSK1 Registers, G1MSK0 and G1MSK1 Registers G0TCRC and G1TCRC Registers, G0RCRC and G1RCRC Registers

RENESAS

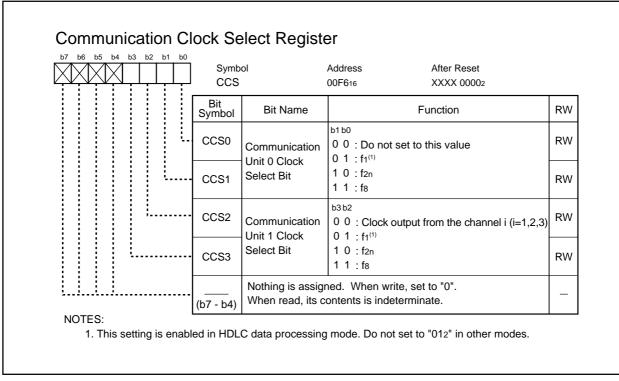



Figure 22.29 CCS Register



## 22.4.1 Clock Synchronous Serial I/O Mode (Communication Units 0 and 1)

In clock synchronous serial I/O mode, data is transmitted and received with the transfer clock. f8 or f2n can be selected as the communication unit 0 transfer clock. f8, f2n or the clock generated by channels 0 and 3 can be selected as the communication unit 1 transfer clock.

Table 22.12 lists specifications of clock synchronous serial I/O mode for the communication units 0 and 1. Tables 22.13 and 22.14 list clock settings. Table 22.15 lists register settings. Tables 22.16 to 22.19 list pin settings. Figure 22.29 shows an example of transmit and receive operation.

| Table 22.12 Clock Sv | /nchronous Serial I/O Mode S | pecifications (Com                      | nunication Units 0 and 1) |
|----------------------|------------------------------|-----------------------------------------|---------------------------|
|                      |                              | p = = = = = = ( = = = = = = = = = = = = |                           |

| ltem                          | Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transfer Data Format          | Transfer data : 8 bits long                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Transfer Clock <sup>(1)</sup> | See Tables 22.13 and 22.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Transmit Start Condition      | Set registers associated with the waveform generating function, the GiMR register and GiERC register. Then, set as is written below after waiting at least one transfer clock cycle.<br>• Set the TE bit in the GiCR register to "1" (transmit enable)<br>• Set the TI bit in the GiCR register to "0" (data in the GiTB register)                                                                                                                                                                                                                                                                                                                                                        |
| Receive Start Condition       | Set registers associated with the waveform generating function, the GiMR register and GiERC register. Then, set as is written below after waiting at least one transfer clock cycle.<br>• Set the RE bit in the GiCR register to "1" (receive enable)<br>• Set the TE bit to "1" (transmit enable)<br>• Set the TI bit to "0" (data in the GiTB register)                                                                                                                                                                                                                                                                                                                                 |
| Interrupt Request             | <ul> <li>While transmitting, one of the following conditions can be selected to set the SIOiTR bit to "1" (interrupt requested) (see Figure 11.14) : <ul> <li>The IRS bit in the GiMR register is set to "0" (no data in the GiTB register) and data is transferred to the transmit register from the GiTB register</li> <li>The IRS bit is set to "1" (transmission completed) and data transfer from the transmit register is completed</li> </ul> </li> <li>While receiving, the following condition can be selected to set SIOiRR bit is set to "1" (data reception is completed): <ul> <li>Data is transferred from the receive register to the GiRB register</li> </ul> </li> </ul> |
| Error Detection               | Overrun error <sup>(2)</sup><br>This error occurs, when the next data reception is started and the 8th bit of the next<br>data is received before reading the GiRB register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Selectable Function           | <ul> <li>LSB first or MSB first<br/>Select either bit 0 or bit 7 to transmit or receive data</li> <li>ISTxDi and ISRxDi I/O polarity inverse<br/>ISTxDi pin output level and ISRxDi pin input level are inversed</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

NOTES:

- 1. In clock synchronous serial I/O mode, set the RSHTE bit in the GiERC register (i=0, 1) to "1" (receive shift operation enabled).
- 2. When an overrun error occurs, the GiRB register is indeterminate.

When the OPOL bit in the GiCR register is set to "0" (ISTxD output polarity not inversed), the ISTxDi pin puts in a high-level ("H") signal output after selecting operating mode until transfer starts. When the OPOL bit is set to "1" (ISTxD output polarity inversed), the ISTxDi pin puts in a low-level ("L") signal output.

| Transfer Clock     | G0MR Register | CCS Register |          |  |
|--------------------|---------------|--------------|----------|--|
|                    | CKDIR Bit     | CCS0 Bit     | CCS1 Bit |  |
| f8                 | 0             | 1            | 1        |  |
| f2n <sup>(1)</sup> | 0             | 0            | 1        |  |
| Input from ISCLK0  | 1             | -            | -        |  |

NOTES:

1. The CNT3 to CNT0 bits in the TCSPR register select no division (*n*=0) or divide-by-2*n* (*n*=1 to 15).

| Table 22.14 | Clock Settings (Communication I | Unit 1) |
|-------------|---------------------------------|---------|
|-------------|---------------------------------|---------|

| Transfer Clock <sup>(3)</sup> | G1MR Register | CCS Re   | egister  |
|-------------------------------|---------------|----------|----------|
|                               | CKDIR Bit     | CCS2 Bit | CCS3 Bit |
| <u>fBT1(1)</u>                | 0             | 0        | 0        |
| 2( <i>n</i> +2)               |               |          |          |
| f8                            | 0             | 1        | 1        |
| f2n <sup>(2)</sup>            | 0             | 0        | 1        |
| Input from ISCLK1             | 1             | -        | -        |

n. Setting value of the G1PO0 register, 000116 to FFFD16

NOTES:

- 1. The transfer clock is generated in phase-delayed waveform output mode of the channel 3 waveform generating function.
- 2. The CNT3 to CNT0 bits in the TCSPR register select no division (*n*=0) or divide-by-2*n* (*n*=1 to 15).
- 3. The transfer clock must be fBT1 divided by six or more.

| CCS         CCS1, CCS0         Setting not required when using only<br>communication unit 1         Communication unit 0           CCS3, CSS2         Select transfer clock         Setting not required when using only<br>communication unit 1         Select transfer clock           G1BCR0 <sup>(2)</sup> BCK1, BCK0         Set to '112" (f1)         communication unit 0           DIV4 to DIV0         Select divide ratio of count source         T         set to '0001 00102"           G1BCR0 <sup>(2)</sup> 7 to 0         Set to '0000 01112"         G1POCR0 <sup>(2)</sup> 7 to 0         Set to '0000 01112"           G1POCR0 <sup>(2)</sup> 7 to 0         Set to '0000 01112"         G1POCR3 <sup>(2)</sup> MOD2 to MOD0         Set to '0000 01112"           G1POCR3 <sup>(2)</sup> MOD2 to MOD0         Set to '0102" <sup>(1)</sup> IVL         Select whether ISCLKi puts in an<br>inversed signal or not <sup>(1)</sup> G1PO0 <sup>(2)</sup> 15 to 0         Set to '1010 <sup>2</sup> (1)         Erassfer clock<br>frequency           G1PO3 <sup>(2)</sup> 15 to 0         Set to '110"         Select set to a value smaller than the G1PO0<br>register <sup>(1)</sup> G1FE <sup>(2)</sup> FSC3,FSC1,FSC0         Set to '11"         FSC3,FSC1,FSC0           G1FF <sup>(2)</sup> IFE3,IFE1,IFE0         Set to '11"           GIRR         GMD1, GMD0         Set to '1010           GIRC         To <t< th=""><th>Register</th><th>Bit</th><th colspan="4">Function</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Register               | Bit          | Function                                  |                                      |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------|-------------------------------------------|--------------------------------------|--|--|--|
| communication unit 1         communication unit 1           CCS3, CS2         Select transfer clock         Setting not required when using only communication unit 0           G1BCR0 <sup>[2]</sup> BCK1, BCK0         Set to "112" (f1)         communication unit 0           DIV4 to DIV0         Select divide ratio of count source         int         set to "0"           G1BCR1 <sup>[2]</sup> 7 to 0         Set to "0000 01112"         G1POCR3 <sup>[2]</sup> MOD2 to MOD0         Set to "0000 01112"           G1POCR3 <sup>[2]</sup> MOD2 to MOD0         Set to "0102"(1)         IVL         Select default output value of ISCLK <sup>[1]</sup> RLD         Set to "0"         NV         Select default output value of ISCLK <sup>[1]</sup> RLD         Set to "0"         inversed signal or not <sup>[1]</sup> inversed signal or not <sup>[1]</sup> G1PO0 <sup>[2]</sup> 15 to 0         Set to a value smaller than the G1PO0 register <sup>(1)</sup> inversed signal or not <sup>[1]</sup> G1FS <sup>[2]</sup> FSC3,FSC1,FSC0         Set to "1"         register <sup>(1)</sup> G1FEC         T F5, SFSC1,FSC0         Set to "1"           GIRR         GMD1, GMD0         Set to "1"           GIRR         GMD1, GMD0         Set to "1"           GIR         CKDR         Select the internal clock or external clock           STPS <t< td=""><td></td><td></td><td colspan="4">Communication Unit 1 Communication Unit 0</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |              | Communication Unit 1 Communication Unit 0 |                                      |  |  |  |
| CCS3, CSS2         Select transfer clock         Setting not required when using only<br>communication unit 0           G1BCR0 <sup>(2)</sup> DIV4 to DIV0         Select divide ratio of count source<br>IT         Set to "0"           G1BCR1 <sup>(2)</sup> 7 to 0         Set to "0000 10102"         G1DCCR0 <sup>(2)</sup> G1POCR0 <sup>(2)</sup> 7 to 0         Set to "0000 01112"         G1POCR0 <sup>(2)</sup> G1POCR1 <sup>(2)</sup> 7 to 0         Set to "0000 01112"         G1POCR0 <sup>(2)</sup> MDD2 to MOD0         Set to "0102" <sup>(1)</sup> IVL         Select whether ISCLKi puts in an<br>inversed signal or not <sup>(1)</sup> G1PO0 <sup>(2)</sup> 15 to 0         Set to "0"         Inversed signal or not <sup>(1)</sup> G1PO3 <sup>(2)</sup> 15 to 0         Set to "1"(1)         Et avalue smaller than the G1PO0<br>register <sup>(1)</sup> G1FO3 <sup>(2)</sup> 15 to 0         Set to "1"(1)         Set to "1"(1)           G1FE <sup>(2)</sup> IFS3, IFE1, IFE0         Set to "1"(1)         Select the internal clock or external clock           G1FE         VFORM         Select the internal clock or external clock         STPS           GIRR         GMD1, GMD0         Set to "10"         UFORM           Gelect the internal clock or external clock         STPS         Select to "1"           GIR         T1         Trasmit buffer empty flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CCS                    | CCS1, CCS0   | Setting not required when using only      | Select transfer clock                |  |  |  |
| G1BCR0 <sup>[2]</sup> BCK1, BCK0         Set to "112" (f1)         communication unit 0           DIV4 to DIV0         Select divide ratio of count source<br>IT         Select divide ratio of count source<br>IT         communication unit 0           G1BCR1 <sup>(2)</sup> 7 to 0         Set to "0000 01112"         communication unit 0           G1POCR0 <sup>(2)</sup> 7 to 0         Set to "0000 01112"         communication unit 0           G1POCR3 <sup>(2)</sup> MOD2 to MOD0         Set to "0102"(1)         rul         Select default output value of ISCLKI(1)           RLD         Set to "0102"(1)         IVL         Select default output value of ISCLKI(1)         Rul           G1PO0 <sup>(2)</sup> 15 to 0         Set to a value smaller than the G1PO0 register(1)         frequency           G1FS <sup>(2)</sup> FSC3,FSC1,FSC0         Set to "1"(1)         frequency           G1FE <sup>(2)</sup> IFE3,IFE1,IFE0         Set to "1010         frequency           GiRR         GMD1, GMD0         Set to "012"         frequency           GiRR         GMD1, GMD0         Set to "1010         frequency           GiRR         FSC3,FSC1,FSC0         Set to "1010         Select the internal clock or external clock           STPS         Select the internal clock or external clock         STPS         Select to"1"           GIRR <td></td> <td></td> <td>communication unit 1</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |              | communication unit 1                      |                                      |  |  |  |
| DIV4 to DIV0         Select divide ratio of count source<br>IT           G1BCR1 <sup>(2)</sup> 7 to 0         Set to "000 00102"           G1POCR0 <sup>(2)</sup> 7 to 0         Set to "0000 01112"           G1POCR3 <sup>(2)</sup> 7 to 0         Set to "0000 01112"           G1POCR3 <sup>(2)</sup> 7 to 0         Set to "0000 01112"           G1POCR3 <sup>(2)</sup> MOD2 to MOD0         Set to "0102" <sup>(1)</sup> IVL         Select default output value of ISCLKi <sup>(1)</sup> RLD         Set to "0"           INV         Select whether ISCLKi puts in an<br>inversed signal or not <sup>(1)</sup> G1PO0 <sup>(2)</sup> 15 to 0           Set bit rate<br>fBT1         = transfer clock<br>frequency           G1PO3 <sup>(2)</sup> 15 to 0           Set to "0"(1)           G1FE <sup>(2)</sup> FSC3,FSC1,FSC0           G1FE <sup>(2)</sup> IFE3,IFE1,IFE0           GIRC         7 to 0           GMD1, GMD0         Set to "012"           CKDIR         Select the internal clock or external clock           STPS         Set to "0"           UFORM         Select tow the transmit interrupt is generated           GICR         T1         Transmit pregister empty flag           R1         Receive complete flag           R1         Recei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        | CCS3, CSS2   | Select transfer clock                     | Setting not required when using only |  |  |  |
| IT         Set to "0"           G1BCR1 <sup>(2)</sup> 7 to 0         Set to "0000 00102"           G1POCR0 <sup>(2)</sup> 7 to 0         Set to "0000 01112"           G1POCR1 <sup>(2)</sup> 7 to 0         Set to "0000 01112"           G1POCR3 <sup>(2)</sup> MOD2 to MOD0         Set to "0102" <sup>(1)</sup> IVL         Select default output value of ISCLKi <sup>(1)</sup> RLD         Set to "0"           INV         Select whether ISCLKi puts in an inversed signal or not <sup>(1)</sup> G1PO0 <sup>(2)</sup> 15 to 0         Set to avalue smaller than the G1PO0 register <sup>(1)</sup> G1FS <sup>(2)</sup> FSC3,FSC1,FSC0         Set to "0"(1)           G1FE <sup>(2)</sup> IFE3,IFE1,IFE0         Set to "010 00002"           GiRR         GMD1, GMD0         Set to "012"           CKDIR         Select the internal clock or external clock           STPS         Set to "012"           UFORM         Select either LSB first or MSB first           IRS         Select on the transmit interrupt is generated           GIR         T1         Transmit pegister empty flag           RI         Receive complete flag           TE<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G1BCR0 <sup>(2)</sup>  |              | Set to "112" (f1)                         | communication unit 0                 |  |  |  |
| G1BCR1 <sup>(2)</sup> 7 to 0         Set to "0001 00102"           G1POCR0 <sup>(2)</sup> 7 to 0         Set to "0000 01112"           G1POCR1 <sup>(2)</sup> 7 to 0         Set to "0000 01112"           G1POCR3 <sup>(2)</sup> MOD2 to MOD0         Set to "0102"(1)           IVL         Select default output value of ISCLK( <sup>(1)</sup> )           RLD         Set to "0"           INV         Select whether ISCLKi puts in an inversed signal or not <sup>(1)</sup> G1PO0 <sup>(2)</sup> 15 to 0           Set bit rate         fB11           fB17         = transfer clock frequency           G1FS <sup>(2)</sup> FSC3,FSC1,FSC0           G1FS <sup>(2)</sup> FSC3,FSC1,FSC0           GitRC         7 to 0           Set to "0"(1)           GIRR         GMD1, GMD0           GitRC         7 to 0           Set to "012"           CKDIR         Select the internal clock or external clock           STPS         Set to "012"           CKDIR         Select ow the transmit interrupt is generated           GIRR         TI           Transmit buffer empty flag           RI         Receive complete flag           TZEPT         Transmit register empty flag           RI         Receive complete flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | DIV4 to DIV0 | Select divide ratio of count source       |                                      |  |  |  |
| G1POCR0 <sup>(2)</sup> 7 to 0         Set to "0000 01112"           G1POCR1 <sup>(2)</sup> 7 to 0         Set to "0000 01112"           G1POCR3 <sup>(2)</sup> MOD2 to MOD0         Set to "0102"(1)           IVL         Select default output value of ISCLKi <sup>(1)</sup> RLD         Set to "0"           INV         Select whether ISCLKi puts in an inversed signal or not <sup>(1)</sup> G1P00 <sup>(2)</sup> 15 to 0         Set to a value smaller than the G1PO0 register <sup>(1)</sup> G1F03 <sup>(2)</sup> 15 to 0         Set to "0"(1)           G1F2(2)         FSC3,FSC1,FSC0         Set to "010 00002"           G1FE <sup>(2)</sup> IFE3,IFE1,IFE0         Set to "010 00002"           GiBR         GMD1, GMD0         Set to "012"           CKDIR         Select the internal clock or external clock           STPS         Set to "0"           UFORM         Select the rammit interrupt is generated           GIR         TI         Transmit buffer empty flag           RL         Receive complete flag         TE           RI         Receive complete flag         TE           GIPOL         Select ISTxDi output polarity (usually set to "0")           OPOL         Select ISTxDi input polarity (usually set to "0")           OPOL         Select ISTxDi output po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | IT           | Set to "0"                                |                                      |  |  |  |
| G1POCR1 <sup>(2)</sup> 7 to 0         Set to "0000 01112"           G1POCR3 <sup>(2)</sup> MOD2 to MOD0         Set to "0102"(1)           IVL         Select default output value of ISCLKi <sup>(1)</sup><br>RLD         Set to "0"           G1PO0 <sup>(2)</sup> 15 to 0         Select whether ISCLKi puts in an<br>inversed signal or not <sup>(1)</sup> G1PO0 <sup>(2)</sup> 15 to 0         Set bit rate<br>fBT1<br>2 x (setting value + 2)         = transfer clock<br>frequency           G1PO3 <sup>(2)</sup> 15 to 0         Set to a value smaller than the G1PO0<br>register <sup>(1)</sup> = transfer clock<br>frequency           G1FE <sup>(2)</sup> FSC3,FSC1,FSC0         Set to "1"(1)         = transfer clock<br>frequency           G1FE <sup>(2)</sup> FSC3,FSC1,FSC0         Set to "1"(1)         = transfer clock           GiFRC         7 to 0         Set to "0"10000002"         = transfer clock           GiFR         GMD1, GMD0         Set to "010 00002"         = transfer clock           GiFR         GMD1, GMD0         Set to "0"10"         = transfer clock           GiFR         GMD1, GMD0         Set to "010"         = transfer clock           GiFR         GMD1, GMD0         Set to "1"(1)         = transfer clock           GiFR         GMD1, GMD0         Set to "1"(1)         = transfer clock           GiFR         Tto         Select t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | 7 to 0       | Set to "0001 00102"                       |                                      |  |  |  |
| G1POCR3 <sup>(2)</sup> MOD2 to MOD0       Set to "0102"(1)         IVL       Select default output value of ISCLKi <sup>(1)</sup> RLD       Set to "0"         INV       Select whether ISCLKi puts in an inversed signal or not <sup>(1)</sup> G1P00 <sup>(2)</sup> 15 to 0       Set bit rate fBT1/(2 x (setting value + 2)) = transfer clock frequency         G1P03 <sup>(2)</sup> 15 to 0       Set to a value smaller than the G1P00 register <sup>(1)</sup> G1FS <sup>(2)</sup> FSC3,FSC1,FSC0       Set to "0"(1)         G1FE <sup>(2)</sup> IFE3,IFE1,IFE0       Set to "0"(1)         GiFRC       7 to 0       Set to "0"(1)         GiRR       GMD1, GMD0       Set to "0102"         GiMR       GMD1, GMD0       Set to "0102"         UFORM       Select the internal clock or external clock         STPS       Set to "0"         UFORM       Select or "0"         UFORM       Select or "0"         UFORM       Select or bother transmit interrupt is generated         GiCR       T1       Transmit buffer empty flag         TXEPT       Transmit buffer empty flag         TXEPT       Transmit register empty flag         TE       Set to "1" to enable reception         IPOL       Select ISRxDi input polarity (usually set to "0")         OP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | 7 to 0       |                                           |                                      |  |  |  |
| IVLSelect default output value of ISCLKi <sup>(1)</sup><br>RLDRLDSet to "0"INVSelect whether ISCLKi puts in an<br>inversed signal or not <sup>(1)</sup> G1P00 <sup>(2)</sup> 15 to 0Set bit rate<br>fBT1<br>2 x (setting value + 2)G1P03 <sup>(2)</sup> 15 to 0Set to a value smaller than the G1P00<br>register <sup>(1)</sup> G1FS <sup>(2)</sup> FSC3,FSC1,FSC0Set to "0"(1)G1FE <sup>(2)</sup> IFE3,IFE1,IFE0Set to "0010 00002"GiRRGMD1, GMD0Set to "012"<br>CKDIRGKRGMD1, GMD0Set to "01"<br>UFORMGiRRT1Transmit buffer empty flag<br>RIRSelect how the transmission and reception<br>RERESet to "1" to enable transmission and reception<br>IPOLRESet to "1" to enable transmission and receptionRESet to Strade in the caption of the caption of the caption of the captionGiTB-Write data to be transmittedGiRB-Received data and error flag are stored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G1POCR1 <sup>(2)</sup> | 7 to 0       |                                           |                                      |  |  |  |
| RLDSet to "0"INVSelect whether ISCLKi puts in an<br>inversed signal or not(1)G1P00 <sup>(2)</sup> 15 to 0Set bit rate<br>ftaT1<br>2 x (setting value + 2)G1P03 <sup>(2)</sup> 15 to 0Set to a value smaller than the G1P00<br>register(1)G1FS <sup>(2)</sup> FSC3,FSC1,FSC0Set to "0"(1)G1FE <sup>(2)</sup> IFE3,IFE1,IFE0Set to "0010 00002"GiRRGMD1, GMD0Set to "012"GMRGMD1, GMD0Set to "012"CKDIRSelect the internal clock or external clock<br>STPSSet to "0"UFORMUFORMSelect either LSB first or MSB firstIRSSelect how the transmit interrupt is generatedGiRRT1Transmit buffer empty flagRESet to "1" to enable transmission and receptionRESet to "1" to enable transmission and receptionRESet to "1" to enable transmission and receptionRESet to Strip List Strip L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | G1POCR3 <sup>(2)</sup> | MOD2 to MOD0 |                                           |                                      |  |  |  |
| INVSelect whether ISCLKi puts in an<br>inversed signal or not(1)G1P00 <sup>(2)</sup> 15 to 0Set bit rate<br>fBT1<br>2 x (setting value + 2)= transfer clock<br>frequencyG1P03 <sup>(2)</sup> 15 to 0Set to a value smaller than the G1P00<br>register <sup>(1)</sup> =G1FS <sup>(2)</sup> FSC3,FSC1,FSC0Set to "0"(1)G1FE <sup>(2)</sup> IFE3,IFE1,IFE0Set to "0"10G1FE <sup>(2)</sup> IFE3,IFE1,IFE0Set to "0"10GiRC7 to 0Set to "012"GKDRGMD1, GMD0Set to "012"CKDIRSelect the internal clock or external clockSTPSSet to "0"UFORMSelect ow the transmit interrupt is generatedGiCRTITransmit buffer empty flagTXEPTTransmit register empty flagRIReceive complete flagTESet to "1" to enable receptionIPOLSelect ISRxDi input polarity (usually set to "0")OPOLSelect ISRxDi input polarity (usually set to "0")GITB-Write data to be transmittedGiRB-Received data and error flag are stored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | IVL          |                                           |                                      |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | RLD          | Set to "0"                                |                                      |  |  |  |
| $ \begin{array}{c c} G1PO0^{(2)} \\ G1PO3^{(2)} \\ G1PO3^{(2)} \\ G1FS^{(2)} \\ G1FS^{(2)} \\ G1FS^{(2)} \\ G1FS^{(2)} \\ GMD1, GMD0 \\ GIFE^{(2)} \\ GMD1, GMD0 \\ Set to "0"^{(1)} \\ GIFE^{(2)} \\ GMD1, GMD0 \\ Set to "010 00002" \\ GMR \\ \hline \\ GMD1, GMD0 \\ Set to "012" \\ \hline \\ CKDIR \\ Select the internal clock or external clock \\ STPS \\ Set to "0" \\ \hline \\ UFORM \\ Select either LSB first or MSB first \\ IRS \\ Select how the transmit interrupt is generated \\ \hline \\ IRS \\ Select how the transmit interrupt is generated \\ \hline \\ IRS \\ FTE \\ IRS \\ Select 1SRXDi input polarity (usually set to "0") \\ \hline \\ OPOL \\ Select ISRXDi input polarity (usually set to "0") \\ \hline \\ GiTB \\ \hline \\ GiRB \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | INV          | Select whether ISCLKi puts in an          |                                      |  |  |  |
| $ \frac{\text{fBT1}}{2 \text{ x (setting value + 2)}} = \text{transfer clock} \\ \frac{1}{2 \text{ x (setting value + 2)}} \\ \text{frequency} \\ \text{frequency} \\ \text{G1PO3}^{(2)} \\ 15 \text{ to 0} \\ \text{set to a value smaller than the G1PO0} \\ \text{register}^{(1)} \\ \text{G1FS}^{(2)} \\ \text{FSC3,FSC1,FSC0} \\ \text{Set to "0"(1)} \\ \text{G1FE}^{(2)} \\ \text{IFE3,IFE1,IFE0} \\ \text{Set to "1"(1)} \\ \text{GiERC} \\ 7 \text{ to 0} \\ \text{Set to "0010 00002"} \\ \text{GiMR} \\ \frac{\text{GMD1, GMD0} \\ \text{Set to "012"} \\ \text{CKDIR} \\ \text{Select the internal clock or external clock} \\ \text{STPS} \\ \text{Set to "0"} \\ \text{UFORM} \\ \text{Select either LSB first or MSB first} \\ \text{IRS} \\ \text{Select how the transmit interrupt is generated} \\ \text{GiCR} \\ \frac{\text{TI} \\ \text{TXEPT} \\ \text{Transmit buffer empty flag} \\ \text{TXEPT} \\ \text{Transmit register empty flag} \\ \text{RI} \\ \text{Receive complete flag} \\ \text{TE} \\ \text{Set to "1" to enable transmission and reception} \\ \text{IPOL} \\ \text{Select ISRxDi input polarity (usually set to "0")} \\ \text{OPOL} \\ \text{Select ISTxDi output polarity (usually set to "0")} \\ \text{GiTB} \\ - \\ \text{Received data and error flag are stored} \\ \text{Final external clock and error flag are stored} \\ \text{Final external clock and error flag are stored} \\ \text{Final external clock and error flag are stored} \\ \text{Final external clock and error flag are stored} \\ \text{Final external clock and error flag are stored} \\ \text{Final external clock and error flag are stored} \\ \text{Final external clock and error flag are stored} \\ \text{Final external clock and error flag are stored} \\ \text{Final external clock and error flag are stored} \\ \text{Final external clock and error flag are stored} \\ \text{Final external clock and error flag are stored} \\ \text{Final external clock and error flag are stored} \\ Final external clock and error flag error fl$ |                        |              | inversed signal or not <sup>(1)</sup>     |                                      |  |  |  |
| G1PO3 <sup>(2)</sup> 15 to 0Set to a value smaller than the G1PO0<br>register <sup>(1)</sup> G1FS <sup>(2)</sup> FSC3,FSC1,FSC0Set to "0"(1)G1FE <sup>(2)</sup> IFE3,IFE1,IFE0Set to "1"(1)GiERC7 to 0Set to "0010 00002"GiMRGMD1, GMD0Set to "012"CKDIRSelect the internal clock or external clockSTPSSet to "0"UFORMSelect either LSB first or MSB firstIRSSelect how the transmit interrupt is generatedGiCRTITransmit buffer empty flagRIReceive complete flagTESet to "1" to enable transmission and receptionRESet to "1" to enable transmission and receptionIPOLSelect ISRxDi input polarity (usually set to "0")OPOLSelect ISTxDi output polarity (usually set to "0")GiTB-Write data to be transmittedGiRB-Received data and error flag are stored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | G1PO0 <sup>(2)</sup>   | 15 to 0      |                                           |                                      |  |  |  |
| G1PO3 <sup>(2)</sup> 15 to 0Set to a value smaller than the G1PO0<br>register <sup>(1)</sup> G1FS <sup>(2)</sup> FSC3,FSC1,FSC0Set to "0"(1)G1FE <sup>(2)</sup> IFE3,IFE1,IFE0Set to "0"10GiERC7 to 0Set to "0010 00002"GiMRGMD1, GMD0Set to "012"CKDIRSelect the internal clock or external clockSTPSSet to "0"UFORMSelect either LSB first or MSB firstIRSSelect how the transmit interrupt is generatedGiCRTITransmit buffer empty flagTXEPTTransmit register empty flagTESet to "1" to enable transmission and receptionRESet to "1" to enable receptionIPOLSelect ISRxDi input polarity (usually set to "0")OPOLSelect ISTxDi output polarity (usually set to "0")GiTB-Write data to be transmittedGiRB-Received data and error flag are stored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |              |                                           |                                      |  |  |  |
| G1FS(2)FSC3,FSC1,FSC0Set to "0"(1)G1FE(2)IFE3,IFE1,IFE0Set to "1"(1)GiERC7 to 0Set to "0010 00002"GiMRGMD1, GMD0Set to "012"CKDIRSelect the internal clock or external clockSTPSSet to "0"UFORMSelect either LSB first or MSB firstIRSSelect how the transmit interrupt is generatedGiCRT1Transmit buffer empty flagTXEPTTransmit register empty flagRIReceive complete flagTESet to "1" to enable receptionIPOLSelect ISRxDi input polarity (usually set to "0")OPOLSelect ISTxDi output polarity (usually set to "0")GiTB-Write data to be transmittedGiRB-Received data and error flag are stored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |              | incquolicy                                |                                      |  |  |  |
| G1FS(2)FSC3,FSC1,FSC0Set to "0"(1)G1FE(2)IFE3,IFE1,IFE0Set to "1"(1)GiERC7 to 0Set to "0010 00002"GiMRGMD1, GMD0Set to "012"CKDIRSelect the internal clock or external clockSTPSSet to "0"UFORMSelect either LSB first or MSB firstIRSSelect how the transmit interrupt is generatedGiCRTITransmit buffer empty flagTLReceive complete flagTESet to "1" to enable transmission and receptionRESelect ISRxDi input polarity (usually set to "0")OPOLSelect ISTxDi output polarity (usually set to "0")GiTB-Write data to be transmitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G1PO3 <sup>(2)</sup>   | 15 to 0      |                                           |                                      |  |  |  |
| G1FE(2)IFE3,IFE1,IFE0Set to "1"(1)GiERC7 to 0Set to "0010 00002"GiMRGMD1, GMD0Set to "012"CKDIRSelect the internal clock or external clockSTPSSet to "0"UFORMSelect either LSB first or MSB firstIRSSelect how the transmit interrupt is generatedGiCRTITransmit buffer empty flagTESet to "1" to enable transmission and receptionRESet to "1" to enable receptionIPOLSelect ISRxDi input polarity (usually set to "0")OFOLSelect ISTxDi output polarity (usually set to "0")GiTB-Write data to be transmittedGiRB-Received data and error flag are stored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |              | register <sup>(1)</sup>                   |                                      |  |  |  |
| GiERC7 to 0Set to "0010 00002"GiMRGMD1, GMD0Set to "012"CKDIRSelect the internal clock or external clockSTPSSet to "0"UFORMSelect either LSB first or MSB firstIRSSelect how the transmit interrupt is generatedGiCRTITransmit buffer empty flagTXEPTTransmit register empty flagRIReceive complete flagTESet to "1" to enable transmission and receptionIPOLSelect ISRxDi input polarity (usually set to "0")OPOLSelect ISTxDi output polarity (usually set to "0")GiTB-GiRB-Received data and error flag are stored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |              |                                           |                                      |  |  |  |
| GiMRGMD1, GMD0Set to "012"CKDIRSelect the internal clock or external clockSTPSSet to "0"UFORMSelect either LSB first or MSB firstIRSSelect how the transmit interrupt is generatedGiCRTITransmit buffer empty flagTXEPTTransmit register empty flagRIReceive complete flagTESet to "1" to enable transmission and receptionIPOLSelect ISRxDi input polarity (usually set to "0")OPOLSelect ISTxDi output polarity (usually set to "0")GiTB-Write data to be transmittedGiRB-Received data and error flag are stored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |              |                                           |                                      |  |  |  |
| CKDIRSelect the internal clock or external clockSTPSSet to "0"UFORMSelect either LSB first or MSB firstIRSSelect how the transmit interrupt is generatedGiCRTITransmit buffer empty flagTXEPTTransmit register empty flagRIReceive complete flagTESet to "1" to enable transmission and receptionRESet to "1" to enable receptionIPOLSelect ISRxDi input polarity (usually set to "0")OPOLSelect ISTxDi output polarity (usually set to "0")GiTB-Write data to be transmittedGiRB-Received data and error flag are stored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |              |                                           |                                      |  |  |  |
| STPSSet to "0"UFORMSelect either LSB first or MSB firstIRSSelect how the transmit interrupt is generatedGiCRTITransmit buffer empty flagTXEPTTransmit register empty flagRIReceive complete flagTESet to "1" to enable transmission and receptionRESelect ISRxDi input polarity (usually set to "0")OPOLSelect ISTxDi output polarity (usually set to "0")GiTB-Write data to be transmittedGiRB-Received data and error flag are stored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GiMR                   |              |                                           |                                      |  |  |  |
| UFORMSelect either LSB first or MSB firstIRSSelect how the transmit interrupt is generatedGiCRTITransmit buffer empty flagTXEPTTransmit register empty flagRIReceive complete flagTESet to "1" to enable transmission and receptionRESet to "1" to enable receptionIPOLSelect ISRxDi input polarity (usually set to "0")OPOLSelect ISTxDi output polarity (usually set to "0")GiTB-Write data to be transmittedGiRB-Received data and error flag are stored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |              |                                           | ck                                   |  |  |  |
| IRS         Select how the transmit interrupt is generated           GiCR         TI         Transmit buffer empty flag           TXEPT         Transmit register empty flag           RI         Receive complete flag           TE         Set to "1" to enable transmission and reception           RE         Set to "1" to enable reception           IPOL         Select ISRxDi input polarity (usually set to "0")           OPOL         Select ISTxDi output polarity (usually set to "0")           GiTB         -           GiRB         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |              |                                           |                                      |  |  |  |
| GiCR       TI       Transmit buffer empty flag         TXEPT       Transmit register empty flag         RI       Receive complete flag         TE       Set to "1" to enable transmission and reception         RE       Set to "1" to enable reception         IPOL       Select ISRxDi input polarity (usually set to "0")         OPOL       Select ISTxDi output polarity (usually set to "0")         GiTB       -         GiRB       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |              |                                           |                                      |  |  |  |
| TXEPT       Transmit register empty flag         RI       Receive complete flag         TE       Set to "1" to enable transmission and reception         RE       Set to "1" to enable reception         IPOL       Select ISRxDi input polarity (usually set to "0")         OPOL       Select ISTxDi output polarity (usually set to "0")         GiTB       -         GiRB       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | IRS          |                                           | erated                               |  |  |  |
| RI         Receive complete flag           TE         Set to "1" to enable transmission and reception           RE         Set to "1" to enable reception           IPOL         Select ISRxDi input polarity (usually set to "0")           OPOL         Select ISTxDi output polarity (usually set to "0")           GiTB         -           Write data to be transmitted           GiRB         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GiCR                   |              |                                           |                                      |  |  |  |
| TE       Set to "1" to enable transmission and reception         RE       Set to "1" to enable reception         IPOL       Select ISRxDi input polarity (usually set to "0")         OPOL       Select ISTxDi output polarity (usually set to "0")         GiTB       -         GiRB       -         Received data and error flag are stored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |              |                                           |                                      |  |  |  |
| RE         Set to "1" to enable reception           IPOL         Select ISRxDi input polarity (usually set to "0")           OPOL         Select ISTxDi output polarity (usually set to "0")           GiTB         -         Write data to be transmitted           GiRB         -         Received data and error flag are stored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |              |                                           |                                      |  |  |  |
| IPOL         Select ISRxDi input polarity (usually set to "0")           OPOL         Select ISTxDi output polarity (usually set to "0")           GiTB         -         Write data to be transmitted           GiRB         -         Received data and error flag are stored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |              |                                           | eception                             |  |  |  |
| OPOL         Select ISTxDi output polarity (usually set to "0")           GiTB         -         Write data to be transmitted           GiRB         -         Received data and error flag are stored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |              |                                           |                                      |  |  |  |
| GiTB     -     Write data to be transmitted       GiRB     -     Received data and error flag are stored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |              |                                           |                                      |  |  |  |
| GiRB – Received data and error flag are stored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | OPOL         |                                           |                                      |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                      | _            | Write data to be transmitted              |                                      |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GiRB                   | _            | Received data and error flag are stored   |                                      |  |  |  |

i = 0 to 1

NOTES:

1. The CKDIR bit in the GiMR register is set to "0" (internal clock).

2. These registers must be set, when f8 or f2n is selected as transfer clock source notwithstanding.

## Table 22.16 Pin Settings in Clock Synchronous Serial I/O Mode (Communication Units 0 and 1)(1)

| Port |               |                 | Setting          |                 |                  |                 |                 |              |
|------|---------------|-----------------|------------------|-----------------|------------------|-----------------|-----------------|--------------|
| Name | Function      | PS1<br>Register | PSL1<br>Register | PSC<br>Register | PSD1<br>Register | PD7<br>Register | IPS<br>Register | Register (1) |
| P73  | ISTxD1 Output | PS1_3=1         | PSL1_3=0         | PSC_3=1         | -                | -               | -               | G1POCR0      |
| P74  | ISCLK1 Input  | PS1_4=0         | -                | -               | -                | PD7_4=0         | IPS1=0          | -            |
|      | ISCLK1 Output | PS1_4=1         | PSL1_4=0         | PSC_4=1         | -                | -               | -               | G1POCR1      |
| P75  | ISRxD1 Input  | PS1_5=0         | -                | -               | -                | PD7_5=0         | IPS1=0          | -            |
| p76  | ISTxD0 Output | PS1_6=1         | PSL1_6=0         | PSC_6=0         | PSD1_6=0         | -               | -               | -            |
| p77  | ISCLK0 Input  | PS1_7=0         | -                | -               | -                | PD7_7=0         | IPS0=0          | -            |
|      | ISCLK0 Output | PS1_7=1         | PSL1_7=0         | -               | -                | -               | -               | -            |

NOTES:

1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output of the communication function used).

#### Table 22.17 Pin Settings (2)

| Port | Function     | Setting      |              |              |  |
|------|--------------|--------------|--------------|--------------|--|
| Name |              | PS2 Register | PD8 Register | IPS Register |  |
| P80  | ISRxD0 input | $PS2_0 = 0$  | $PD8_0 = 0$  | IPS0 = 0     |  |

### Table 22.18 Pin Settings (3)

| Port | Function      |              | Setting       |              |         |
|------|---------------|--------------|---------------|--------------|---------|
| Name |               | PS5 Register | PD11 Register | IPS Register |         |
| P110 | ISTxD1 output | PS5_0 = 1    | -             | -            | G1POCR0 |
| P111 | ISCLK1 input  | PS5_1 = 0    | $PD11_1 = 0$  | IPS1 = 1     | -       |
|      | ISCLK1 output | PS5_1 = 1    | -             | -            | G1POCR1 |
| P112 | ISRxD1 input  | PS5_2 = 0    | PD11_2 = 0    | IPS1 = 1     | -       |

NOTES:

## Table 22.19 Pin Settings (4)

| Port | Function      |              | Setting       |              |
|------|---------------|--------------|---------------|--------------|
| Name |               | PS9 Register | PD15 Register | IPS Register |
| P150 | ISTxD0 output | PS9_0 = 1    | -             | -            |
| P151 | ISCLK0 input  | PS9_1 = 0    | PD15_2 = 0    | IPS0 = 1     |
|      | ISCLK0 output | PS9_1 = 1    | -             | -            |
| P152 | ISRxD0 input  | -            | PD15_2 = 0    | IPS0 = 1     |

<sup>1.</sup> Set the MOD2 to MOD0 bits in the corresponding register to "1112" (communication function output used).

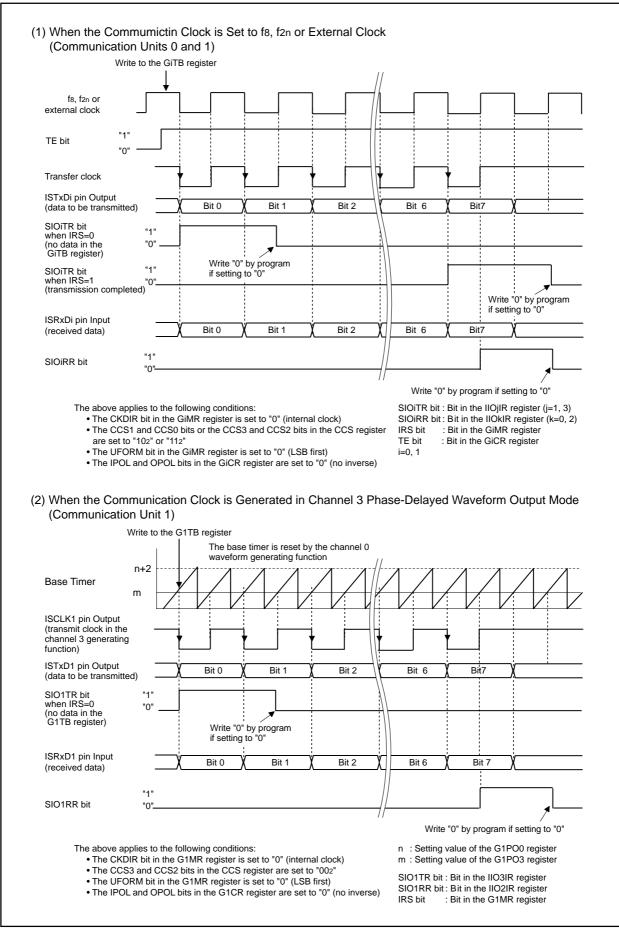



Figure 22.30 Transmit and Receive Operation



## 22.4.2 Clock Asynchronous Serial I/O (UART) Mode (Communication Unit 1)

In clock asynchronous serial I/O (UART) mode, data is transmitted at a desired bit rate and in a desired transfer data format. Table 22.20 lists specifications of UART mode in the communication unit 1. Table 22.21 lists clock settings. Table 22.22 lists register settings. Tables 22.23 and 22.24 list pin settings. Figure 22.30 shows an example of transmit operation. Figure 22.31 shows an example of receive operation.

| ltem                          |                                                  | Specification                                               |
|-------------------------------|--------------------------------------------------|-------------------------------------------------------------|
| Transfer Data Format          | Character Bit (transfer data) :                  | 8 bits long                                                 |
|                               | • Start bit :                                    | 1 bit long                                                  |
|                               | • Parity bit:                                    | selected from odd, even, or none                            |
|                               | Stop bit :                                       | selected length from 1 bit or 2 bits                        |
| Transfer Clock <sup>(1)</sup> | See Table 22.21                                  |                                                             |
| Transmit Start Condition      | Set registers associated with the                | waveform generating function, the G1MR register and         |
|                               | G1ERC register. Then, set as wri                 | tten below after at least one transfer clock cycle.         |
|                               | • Set the TE bit in the G1CR reg                 | gister to "1" (transmit enable)                             |
|                               | • Set the TI bit in the G1CR reg                 | ister to "0" (data written to the G1TB register)            |
| Receive Start Condition       | Set registers associated with the                | waveform generating function, the G1MR register and         |
|                               | G1ERC register. Then, set as wri                 | tten below after at least one transfer clock cycle.         |
|                               | • Set the RE bit in the G1CR re                  | gister to "1" (receive enable)                              |
|                               | Detect the start bit                             |                                                             |
| Interrupt Request             | • While transmitting, one of the                 | ne following conditions can be selected to set the          |
|                               | SIO1TR bit to "1" (interrupt rea                 | quested) (See Figure 11.14.) :                              |
|                               | - The IRS bit in the G1MR reg                    | ister is set to "0" (no data in the G1TB register) and data |
|                               | is transferred to the transmit                   | register from the G1TB register.                            |
|                               | <ul> <li>The IRS bit is set to "1" (t</li> </ul> | ransmission completed) and data transfer from the           |
|                               | transmit register is complet                     | ed                                                          |
|                               | • While receiving, the following                 | condition can be selected to set the SIO1RR bit is set      |
|                               | to "1":                                          |                                                             |
|                               | Data is transferred from the r                   | eceive register to the G1RB register (data reception        |
|                               | is completed)                                    |                                                             |
| Error Detection               | • Overrun error <sup>(2)</sup>                   |                                                             |
|                               | This error occurs, when the ne                   | xt data reception is started and the final stop bit of the  |
|                               | next data is received before re                  | eading the G1RB register                                    |
|                               | Parity error                                     |                                                             |
|                               | While parity is enabled, this e                  | rror occurs when the number of "1" in parity and char-      |
|                               | acter bits does not match the                    | number of "1" set                                           |
|                               | Framing error                                    |                                                             |
|                               | This error occurs when the nu                    | umber of the stop bits set is not detected                  |
| Selectable Function           | Stop bit length                                  |                                                             |
|                               | The length of the stop bit is s                  | elected from 1 bit or 2 bits                                |
|                               | LSB first or MSB first                           |                                                             |
|                               | Select either bit 0 or bit 7 to the              | ansmit or receive data                                      |

| Table 22.20 UART Mode Specifications | s (Communication Unit 1) |
|--------------------------------------|--------------------------|
|--------------------------------------|--------------------------|

NOTES:

1. The transfer clock must be fBT1 divided by six or more.

2. When an overrun error occurs, the G1RB register is indeterminate.

## Table 22.21 Clock Settings (Communication Unit 1)

| Transfer Clock <sup>(3)</sup> | G1MR Register | CCS Re   | egister  |
|-------------------------------|---------------|----------|----------|
|                               | CKDIR Bit     | CCS2 Bit | CCS3 Bit |
|                               | 0             | 0        | 0        |
| 2( <i>n</i> +2)               | -             | -        | -        |
|                               |               |          |          |

*n*: Value of the G1PO0 register 000116 to FFFD16 NOTES:

- 1. Transmit clock is generated in phase-delayed waveform output mode of the channel 3 waveform generating function.
- 2. Received clock is generated when phase-delayed waveform mode of the channel 2 waveform generating function and the channel 2 time measurement function is simultaneously performed.
- 3. The transfer clock must be fBT1 divided by six or more.

### Table 22.22 Register Settings in UART Mode (Communication Unit 1)

| Register | Bit          | Function                                                                      |
|----------|--------------|-------------------------------------------------------------------------------|
| G1BCR0   | BCK1, BCK0   | Set to "112" (f1)                                                             |
|          | DIV4 to DIV0 | Select divide ratio of count source                                           |
|          | IT           | Set to "0"                                                                    |
| G1BCR1   | 7 to 0       | Set to "0001 00102"                                                           |
| G1POCR0  | 7 to 0       | Set to "0000 01112"                                                           |
| G1POCR2  | 7 to 0       | Set to "0000 01102"                                                           |
| G1POCR3  | 7 to 0       | Set to "0000 00102"                                                           |
| G1TMCR2  | 7 to 0       | Set to "0000 00102"                                                           |
| G1PO0    | 15 to 0      | Set bit rate                                                                  |
|          |              | fBT1                                                                          |
|          |              | $\overline{2 \text{ x (setting value + 2)}}$ = transfer clock frequency       |
| G1PO3    | 15 to 0      | Set to a value smaller than the G1PO0 register                                |
| G1FS     | FSC3 to FSC0 | Set to "01002"                                                                |
| G1FE     | IFE3 to IFE0 | Set to "11012"                                                                |
| G1MR     | GMD1, GMD0   | Set to "002"                                                                  |
|          | CKDIR        | Set to "0"                                                                    |
|          | STPS         | Select length of stop bit                                                     |
|          | PRY, PRYE    | Select either parity enabled or disabled and either odd parity or even parity |
|          | UFORM        | Select either the LSB first or MSB first                                      |
|          | IRS          | Select how the receive interrupt is generated                                 |
| G1CR     | TI           | Transmit buffer empty flag                                                    |
|          | TXEPT        | Transmit register empty flag                                                  |
|          | RI           | Receive complete flag                                                         |
|          | TE           | Set to "1" to enable transmission and reception                               |
|          | RE           | Set to "1" to enable reception                                                |
|          | IPOL         | Set to "1"                                                                    |
|          | OPOL         | Set to "1"                                                                    |
| G1TB     | 7 to 0       | Write data to be transmitted                                                  |
| G1RB     | 15 to 0      | Received data and error flag are stored                                       |
| CCS      | CCS3, CCS2   | Set to "002"                                                                  |
|          |              |                                                                               |

### Table 22.23 Pin Settings in UART Mode

| Port  | Function      |              | Setting       |              |              | Register <sup>(1)</sup> |         |
|-------|---------------|--------------|---------------|--------------|--------------|-------------------------|---------|
| Name  |               | PS1 Register | PSL1 Register | PSC Register | PD7 Register | IPS Register            |         |
| P73   | ISTxD1 output | PS1_3 = 1    | PSL1_3 = 0    | PSC_3 = 1    | -            | -                       | G1POCR0 |
| P75   | ISRxD1 input  | PS1_5 = 0    | -             | -            | PD7_5 = 0    | IPS1 = 0                | -       |
| NOTES | •             |              |               |              |              |                         |         |

NOTES:

<sup>1.</sup> Set the MOD2 to MOD0 bits in the corresponding register to "1112" (communication function output used).

#### Table 22.24 Pin Settings (Continued)

| Port | Function      | Setting      |               |              | Register <sup>(1)</sup> |
|------|---------------|--------------|---------------|--------------|-------------------------|
| Name |               | PS5 Register | PD11 Register | IPS Register |                         |
| P110 | ISTxD1 output | PS5_0 = 1    | -             | -            | G1POCR0                 |
| P112 | ISRxD1 input  | PS5_2 = 0    | PD11_2 = 0    | IPS1 = 1     | -                       |

NOTES:

1. Set the MOD2 to MOD0 bits in the corresponding register to "1112" (output of the communication function used).

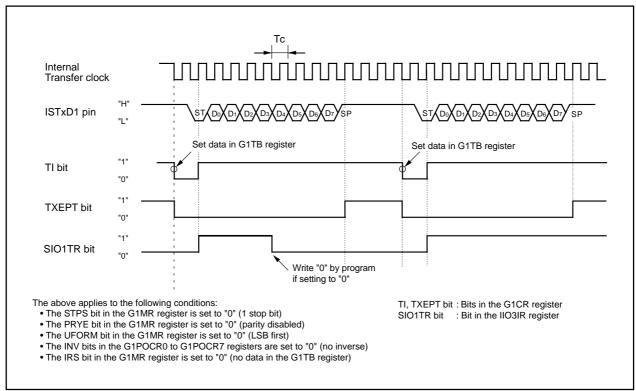



Figure 22.31 Transmit Operation

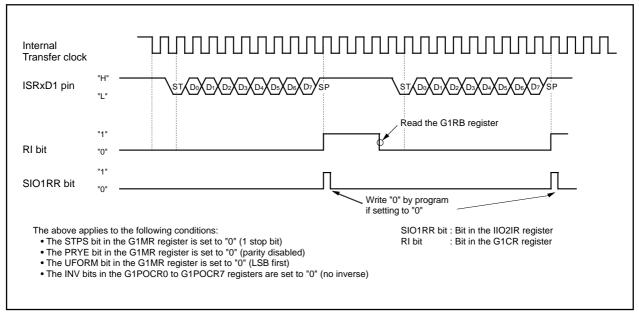



Figure 22.32 Receive Operation

RENESAS

## 22.4.3 HDLC Data Processing Mode (Communication Units 0 and 1)

In HDLC data processing mode, bit stuffing, flag detection, abort detection and CRC calculation are available for HDLC control. f1, f8 or f2n can become the communication unit 0 transfer clock. f1, f8, f2n or clock, generated in the channel 0 or 1, can become the communication unit 1 transfer clock. No pins are used. To convert data, data to be transmitted is written to the GiTB register (i=0,1) and the data conversion result is restored after data conversion. If any data are in the GiTO register after data conversion, the conversion is terminated. If no data is in the GiTO register, bit stuffing processing is executed regardless of there being no data in the transmit output buffer. A CRC value is calculated every time one bit is converted. If no data is in the GiRI register, received data conversion is terminated.

Table 22.25 list specifications of the HDLC data processing mode. Tables 22.26 and 22.27 list clock settings. Table 22.28 lists register settings.

| Item                  | Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input Data Format     | 8-bit data fixed, bit alignment is optional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Output Data Format    | 8-bit data fixed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Transfer Clock        | See Tables 22.26 and 22.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| I/O Method            | During transmit data processing,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       | value set in the GiTB register is converted in HDLC data processing mode and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       | transferred to the GiTO register.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       | During received data processing,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       | value set in the GiRI register is converted in HDLC data processing mode and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       | transferred to the GiRB register. The value in the GiRI register is also transferred to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       | the GiTB register (received data register).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Bit Stuffing          | During transmit data processing, "0" following five continuous "1" is inserted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                       | During received data processing, "0" following five continuous "1" is deleted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Flag Detection        | Write the flag data "7E16" to the GiCMPj register (j=0 to 3) to use the special commu-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                       | nication interrupt (the SRTiR bit in the IIO4IR register)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Abort Detection       | Write the masked data "0116" to the GiMSKj register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CRC                   | The CRC1 and CRC0 bits are set to "112" $(X^{16}+X^{12}+X^5+1)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       | The CRCV bit is set to "1" (set to "FFFF16").                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                       | During transmit data processing,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       | CRC calculation result is stored into the GiTCRC register. The TCRCE bit in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                       | GiETC register is set to "1" (transmit CRC used).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       | The CRC calculation result is reset when the TE bit in the GiCR register is set to "0"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                       | (transmit disabled).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       | During received data processing,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       | CRC calculation result is stored into the GiRCRC register. The RCRCE bit in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                       | GiERC register is set to "1" (receive CRC used).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       | The CRC calculation result is reset by comparing the flag data "7E16" and matching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                       | the result with the value in the GiCMP3 register. The ACRC bit in the GiEMR regis-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                       | ter is set to "1" (CRC reset).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Data Processing Start | The following conditions are required to start transmit data processing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Condition             | • The TE bit in the GiCR register is set to "1" (transmit enable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       | Data is written to the GiTB register  The following and division and the start manine data are as in a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second start of the start manine data are as a second star |
|                       | The following conditions are required to start receive data processing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       | <ul> <li>The RE bit in the GiCR register is set to "1" (receive enable)</li> <li>Data is written to the GiPI register.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| L                     | Data is written to the GiRI register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

 Table 22.25
 HDLC Processing Mode Specifications (Communication Units 0 and 1)

RENESAS

### Table 22.25 HDLC Processing Mode Specifications (Continued)

| Item                             | Specification                                                                                                                                                       |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Interrupt Request <sup>(1)</sup> | During transmit data processing,                                                                                                                                    |
|                                  | • One of the following conditions can be selected to set the GiTOR bit in the                                                                                       |
|                                  | interrupt request register to "1" (interrupt request) (see Figure 11.14).                                                                                           |
|                                  | – When the IRS bit in the GiMR register is set to "0" (no data in the GiTB                                                                                          |
|                                  | register) and data is transferred from the GiTB register to the transmit regis-<br>ter (transmit start).                                                            |
|                                  | <ul> <li>When the IRS bit is set to "1" (transmission completed) and data transfer from<br/>the transmit register to the GiTO register is completed.</li> </ul>     |
|                                  | When data, which is already converted to HDLC data, is transferred from the                                                                                         |
|                                  | receive register of the GiTO register to the transmit buffer, the GiTOR bit is set to "1"                                                                           |
|                                  | During received data processing,                                                                                                                                    |
|                                  | <ul> <li>When data is transferred from the GiRI register to the GiRB register (reception<br/>completed), the GiRIR bit is set to "1" (See Figure 11.14).</li> </ul> |
|                                  | <ul> <li>When received data is transferred from the receive buffer of the GiRI register to<br/>the receive register, the GiRIR bit is set to "1".</li> </ul>        |
|                                  | • When the GiTB register is compared to the GiCMPj register (j=0 to 3), the SRTiR bit is set to "1".                                                                |

NOTES:

1. See **Figure 11.14** for details on the GiTOR bit, GiRIR bit and SRTiR bit.

### Table 22.26 Clock Settings (Communication Unit 0)

| Transfer Clock <sup>(1)</sup> | CCS Register |          |  |
|-------------------------------|--------------|----------|--|
|                               | CCS0 Bit     | CCS1 Bit |  |
| f1                            | 1            | 0        |  |
| f8                            | 1            | 1        |  |
| f2n <sup>(2)</sup>            | 0            | 1        |  |

NOTES:

- 1. The transfer clock for reception is generated when the RSHTE bit in the G0ERC register is set to "1" (receive shift operation enabled).
- 2. The CNT3 to CNT0 bits in the TCSPR register select no division (*n*=0) or divide-by-2*n* (*n*=1 to 15).

| Table 22.27 | <b>Clock Settings</b> | (Communication | Unit 1) |
|-------------|-----------------------|----------------|---------|
|-------------|-----------------------|----------------|---------|

| Transfer Clock <sup>(1)</sup>       | CCS Regi | ster     |
|-------------------------------------|----------|----------|
|                                     | CCS2 Bit | CCS3 Bit |
| <u>fBT1</u> (2)<br>2x( <i>n</i> +2) | 0        | 0        |
| f1                                  | 1        | 0        |
| f8                                  | 1        | 1        |
| f2n <sup>(3)</sup>                  | 0        | 1        |

*n*: Setting value of the G1PO0 register, 000116 to FFFD16 NOTES:

- 1. The transfer clock for reception is generated when the RSHTE bit in the G1ERC register is set to "1" (receive shift operation enabled).
- 2. The transfer clock is generated in single-phase waveform output mode of the channel 1.
- 3. The CNT3 to CNT0 bits in the TCSPR register select no division (*n*=0) or divide-by-2*n* (*n*=1 to 15).

| Register               | Bit          | Function                                                                                   |
|------------------------|--------------|--------------------------------------------------------------------------------------------|
| G1BCR0                 | BCK1, BCK0   | Select count source                                                                        |
|                        | DIV4 to DIV0 | Select divide ratio of count source                                                        |
|                        | IT           | Select the base timer interrupt                                                            |
| G1BCR1 <sup>(1)</sup>  | 7 to 0       | Set to "0001 00102"                                                                        |
| G1POCR0 <sup>(1)</sup> | 7 to 0       | Set to "0000 00002"                                                                        |
| G1POCR1 <sup>(1)</sup> | 7 to 0       | Set to "0000 00002"                                                                        |
| G1PO0 <sup>(1)</sup>   | 15 to 0      | Set bit rate                                                                               |
| G1PO1 <sup>(1)</sup>   | 15 to 0      | Set the timing of the rising edge of the transfer clock.                                   |
|                        |              | Timing of the falling edge ("H" width of the transfer clock) is fixed.                     |
|                        |              | Setting value of the G1PO1 register ≤ Setting value of the G1PO0 register                  |
| G1FS <sup>(1)</sup>    | FSC1, FSC0   | Set to "002"                                                                               |
| G1FE <sup>(1)</sup>    | IFE1, IFE0   | Set to "112"                                                                               |
| GiMR                   | GMD1, GMD0   | Set to "112"                                                                               |
|                        | CKDIR        | Set to "0"                                                                                 |
|                        | UFORM        | Set to "0"                                                                                 |
|                        | IRS          | Select how the transmit interrupt is generated                                             |
| GiEMR                  | 7 to 0       | Set to "1111 01102"                                                                        |
| GiCR                   | TI           | Transmit buffer empty flag                                                                 |
|                        | TXEPT        | Transmit register empty flag                                                               |
|                        | RI           | Receive complete flag                                                                      |
|                        | TE           | Transmit enable bit                                                                        |
|                        | RE           | Receive enable bit                                                                         |
| GIETC SOF              |              | Set to "0"                                                                                 |
|                        | TCRCE        | Select whether transmit CRC is used or not                                                 |
|                        | ABTE         | Set to "0"                                                                                 |
|                        | TBSF1, TBSF0 | Transmit bit stuffing                                                                      |
| GiERC                  |              | Select whether received data is compared or not                                            |
|                        | CMP3E        | Set to "1"                                                                                 |
|                        | RCRCE        | Select whether receive CRC is used or not                                                  |
|                        | RSHTE        | Set to "1" to use it in the receiver                                                       |
|                        | RBSF1, RBSF0 | Receive bit stuffing                                                                       |
| GilRF                  | BSERR, ABT   | Set to "0"                                                                                 |
|                        | IRF3 to IRF0 | Select how an interrupt is generated                                                       |
| GiCMP0,                | 7 to 0       | Write "FE16" to abort processing                                                           |
| GiCMP1                 |              |                                                                                            |
| GiCMP2                 | 7 to 0       | Data to be compared                                                                        |
| GiCMP3                 | 7 to 0       | Write "7E16"                                                                               |
| GiMSK0,                | 7 to 0       | Write "0116" to abort processing                                                           |
| GiMSK1                 |              |                                                                                            |
| GiTCRC                 | 15 to 0      | Transmit CRC calculation result can be read                                                |
| GiRCRC                 | 15 to 0      | Receive CRC calculation result can be read                                                 |
| GiTO                   | 7 to 0       | Data, which is output from a transmit data generation circuit, can be read                 |
| GiRI                   | 7 to 0       | Set data input to a receive data generation circuit                                        |
| GiRB                   | 7 to 0       | Received data is stored                                                                    |
|                        | 7 to 0       | For transmission: write data to be transmitted                                             |
| GiTB                   | 1.00         |                                                                                            |
| GiTB                   |              | For reception · received data for comparison is stored                                     |
| GiTB<br>CCS            | CCS1, CCS0   | For reception : received data for comparison is stored<br>Select the HDLC processing clock |

## Table 22.28 Register Settings in HDLC Processing Mode (Communication Units 0 and 1)

i=0, 1 NOTES:

1. These register settings are required when the CCS3 and CCS2 bit in the CCS register are set to "002" (clock output from channel j (j=1,2,3)).

# 23. CAN Module

The CAN (Controller Area Network) module included in the M32C/84 group (M32C/84, M32C/84T) is a Full CAN module, compatible with CAN Specification 2.0 Part B. One channel, CAN0, can be used. Table 23.1 lists specifications of the CAN module.

| Item                          | Specification                                                             |
|-------------------------------|---------------------------------------------------------------------------|
| Protocol                      | CAN Specification 2.0 Part B                                              |
| Message Slots                 | 16 slots                                                                  |
| Polarity                      | Dominant: "L"                                                             |
|                               | Recessive: "H"                                                            |
| Acceptance Filter             | Global mask: 1 (for message slots 0 to 13)                                |
|                               | Local mask: 2 (for message slots 14 and 15 respectively)                  |
| Baud Rate                     | Baud rate = $\frac{1}{\text{Tq clock cycle x Tq per bit}}$ Max. 1 Mbps    |
|                               | Tq clock cycle = <u>BRP + 1</u><br>CAN clock                              |
|                               | Tq per bit = SS + PTS +PBS1+PBS2                                          |
|                               | Tq: Time quantum                                                          |
|                               | BRP: Setting value of the C0BRP register, 1-255                           |
|                               | SS: Synchronization Segment; 1 Tq                                         |
|                               | PTS: Propagation Time Segment; 1 to 8 Tq                                  |
|                               | PBS1: Phase Buffer Segment 1; 2 to 8 Tq                                   |
|                               | PBS2: Phase Buffer Segment 2; 2 to 8 Tq                                   |
| Remote Frame Automatic        | Message slot that receives the remote frame transmits the data frame      |
| Answering Function            | automatically                                                             |
| Time Stamp Function           | Time stamp function with a 16-bit counter. Count source can be selected   |
|                               | from the CAN bus bit clock divided by 1, 2, 3 or 4                        |
|                               | CAN bus bit clock = $\frac{1}{CAN \text{ bit time}}$                      |
| BasicCAN Mode                 | BasicCAN function can be used with the CAN0 message slots 14 and 15       |
| Transmit Abort Function       | Transmit request is aborted                                               |
| Loopback Function             | Frame transmitted by the CAN module is received by the same CAN module    |
| Forcible Error Active         | The CAN module is forced into an error active state by resetting an error |
| Transition Function           | counter                                                                   |
| Single-Shot Transmit Function | The CAN module does not transmit data again even if arbitration lost or   |
|                               | transmission error causes a transmission failure                          |
| Self-Test Function            | The CAN module communicates internally and diagnoses its CAN module       |
|                               | state                                                                     |

| Table 23.1 | CAN Module | Specifications |
|------------|------------|----------------|
|------------|------------|----------------|

NOTES:

1. Use an oscillator with maximum 1.58% oscillator tolerance.



Figure 23.1 shows a block diagram of the CAN module. Figure 23.2 shows CAN0 message slot (the message slot) j (j = 0 to 15) and CAN0 message slot buffer. Table 23.2 lists pin settings of the CAN module. The message slot cannot be accessed directly from the CPU. Allocate the message slot j to be used to the message slot buffer 0 or 1. The message slot j is accessed via the message slot buffer address. The C0SBS register selects the message slot j to be allocated. Figure 23.2 shows the 16-byte message slot buffer and message slot.

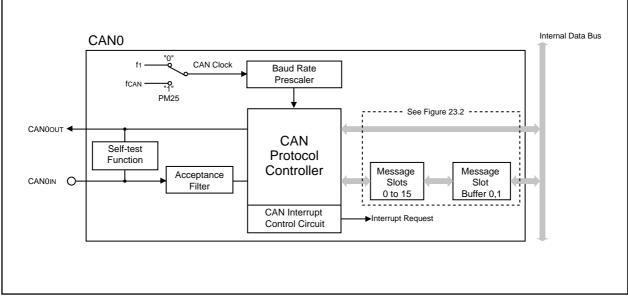



Figure 23.1 CAN Module Block Diagram



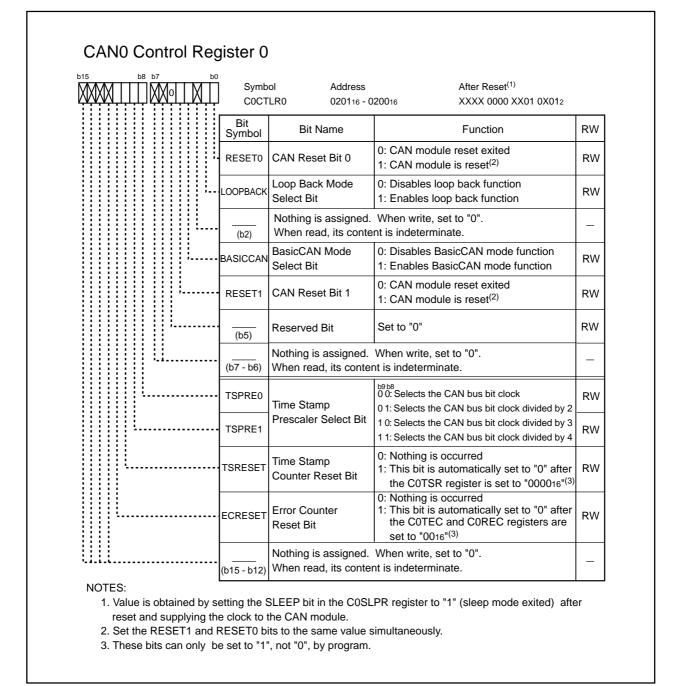


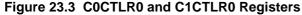
Figure 23.2 CAN0 Message Slot and CAN0 Message Slot Buffer



## Table 23.2 Pin Settings

| Port | Function | Bit and Setting |                       |                          |                        |                       |  |  |
|------|----------|-----------------|-----------------------|--------------------------|------------------------|-----------------------|--|--|
|      |          | IPS Register    | PS1, PS2<br>Registers | PSL1, PSL2,<br>Registers | PSC, PSC2<br>Registers | PD7, PD8<br>Regsiters |  |  |
| P76  | CAN0out  | -               | PS1_6=1               | PSL1_6=0                 | PSC_6=1                | -                     |  |  |
| P77  | CAN0IN   | IPS3=0          | PS1_7=0               | -                        | -                      | PD7_7=0               |  |  |
| P82  | CAN0out  | -               | PS2_2=1               | PSL2_2=1                 | PSC2_2=0               | -                     |  |  |
| P83  | CAN0IN   | IPS3=0          | -                     | -                        | -                      | PD8_3=0               |  |  |





## 23.1 CAN-Associated Registers

Figures 23.3 to 23.18, and Figures 23.20 to 23.33 show registers associated with CAN. To access the CAN-associated registers, set the CM21 bit in the CM2 register to "0" (main clock or PLL clock as CPU clock) and the MCD4 to MCD0 bits in the MCD register to "100102" (no division mode). Or, set the PM24 bit in the PM2 register to "1" (main clock direct mode) and the PM25 bit in the PM2 register to "1" (CAN clock). Two wait states are added into the bus cycle.

Refer to 7. Processor Mode and 9. Clock Generation Circuit.

## 23.1.1 CAN0 Control Register 0 (C0CTLR0 Register)







## 23.1.1.1 RESET1 and RESET0 Bits

When both RESET1 and RESET0 bits are set to "1" (CAN module reset), the CAN module is immediately reset regardless of ongoing CAN communication.

After the RESET1 and RESET0 bits are set to "1" and the CAN module reset is completed, the C0TSR register is set to "000016". The C0TEC and C0REC registers are set to "0016" and the STATE\_ERRPAS and STATE\_BUSOFF bits in the C0STR register are set to "0" as well.

When both RESET1 and RESET0 bit settings are changed "1" to "0", the C0TSR register starts counting. CAN communication is available after 11 continuous recessive bits are detected. NOTES:

- 1. Set the same value in both RESET1 and RESET0 bits simultaneously.
- 2. Confirm that the STATE\_RESET bit in the C0STR register is set to "1" (CAN module reset completed) after setting the RESET1 and RESET0 bits to "1".
- 3. The CANOUT pin puts out a high-level ("H") signal as soon as the RESET1 and RESET0 bits are set to "1". CAN bus error may occur when the RESET1 and RESET0 bits are set to "1" while the CAN frame is transmitting.
- 4. For CAN communication, set the PS1, PS2, PSL1, PSL2, PSC, PSC2, IPS, PD7 and PD8 registers when the STATE\_RESET bit is set to "1" (CAN module reset completed).

### 23.1.1.2 LOOPBACK Bit

When the LOOPBACK bit is set to "1" (loopback function enabled) and the receive message slot has a matched ID and frame format with a transmitted frame, the transmitted frame is stored to the receive message slot.

NOTES:

- 1. No ACK for the transmitted frame is returned.
- 2. Change the LOOPBACK bit setting only when the STATE\_RESET bit is set to "1" (CAN module reset completed).

### 23.1.1.3 BASICCAN Bit

When the BASICCAN bit is set to "1", the message slots 14 and 15 enter BasicCAN mode.

In BasicCAN mode, the message slots 14 and 15 are used as dual-structured buffers. The message slots 14 and 15 alternately store a received frame having matched ID detected by acceptance filtering. ID in the message slot 14 and the COLMAR0 to COLMAR4 registers are used for acceptance filtering when the message slot 14 is active (the next received frame is to be stored in the message slot 14). ID in the message slot 15 and the COLMBR0 to COLMBR4 registers are used when the message slot 15 and the COLMBR0 to COLMBR4 registers are used when the message slot 15 and the COLMBR0 to COLMBR4 registers are used when the message slot 15 and the COLMBR0 to COLMBR4 registers are used when the message slot 15 and the COLMBR0 to COLMBR4 registers are used when the message slot 15 and the COLMBR0 to COLMBR4 registers are used when the message slot 15 and the COLMBR0 to COLMBR4 registers are used when the message slot 15 and the COLMBR0 to COLMBR4 registers are used when the message slot 15 and the COLMBR0 to COLMBR4 registers are used when the message slot 15 and the COLMBR0 to COLMBR4 registers are used when the message slot 15 and the COLMBR0 to COLMBR4 registers are used when the message slot 15 and the COLMBR0 to COLMBR4 registers are used when the message slot 15 and the COLMBR0 to COLMBR4 registers are used when the message slot 15 and the COLMBR0 to COLMBR4 registers are used when the message slot 15 and the COLMBR0 to COLMBR4 registers are used when the message slot 15 and the COLMBR0 to COLMBR4 registers are used when the message slot 15 and the COLMBR0 to COLMBR4 registers are used when the message slot 15 and the COLMBR0 to COLMBR4 registers are used when the message slot 15 and the COLMBR0 to COLMBR4 registers are used when the message slot 15 and the COLMBR0 to COLMBR4 registers are used when the message slot 15 and the COLMBR4 registers are used when the message slot 15 and the COLMBR4 registers are used to cold to co

Use the following procedure to enter BasicCAN mode.

- (1) Set the BASICCAN bit to "1".
- (2) Set the same value into IDs in the message slots 14 and 15.
- (3) Set the same value in the C0LMAR0 to C0LMAR4 registers and C0LMBR0 to C0LMBR4 registers.
- (4) Set the IDE14 and IDE15 bits in the C0IDR register to select a frame format (standard or extended) for the message slots 14 and 15. (Set to the same format.)
- (5) Set the C0MCTL14 and C0MCTL15 registers in the message slots 14 and 15 to receive data frame.

NOTES:

- 1. Change the BASICCAN bit setting only when the STATE\_RESET bit is set to "1" (CAN module reset completed).
- 2. The message slot 14 is the first slot to become active after the RESET1 and RESET0 bits are set to "0".
- 3. The message slots 0 to 13 are not affected by entering BasicCAN mode.

### 23.1.1.4 TSPRE1 and TSPRE0 Bits

The TSPRE1 and TSPRE0 bits determine which count source is used for the time stamp counter. NOTES:

1. Change the TSPRE1 and TSPRE0 bit settings only when the STATE\_RESET bit is set to "1" (CAN module reset completed).

### 23.1.1.5 TSRESET Bit

When the TSRESET bit is set to "1", the COTSR register is set to "000016". The TSRESET bit is automatically set to "0" after the COTSR register is set to "000016".

### 23.1.1.6 ECRESET Bit

When the ECRESET bit is set to "1", the COTEC and COREC registers are set to "0016". The CAN module forcibly goes into an error active state.

The ECRESET bit is automatically set to "0" after the CAN module enters an error active state. NOTES:

- 1. In an error active state, the CAN module is ready to communicate when 11 continuous recessive bits are detected on the CAN bus.
- 2. The CAN0OUT pin provides an "H" signal output as soon as the ECRESET bit is set to "1". The CAN bus error may occur when setting the ECRESET bit to "1" during CAN frame transmission.



## 23.1.2 CAN0 Control Register 1 (C0CTLR1 Register)

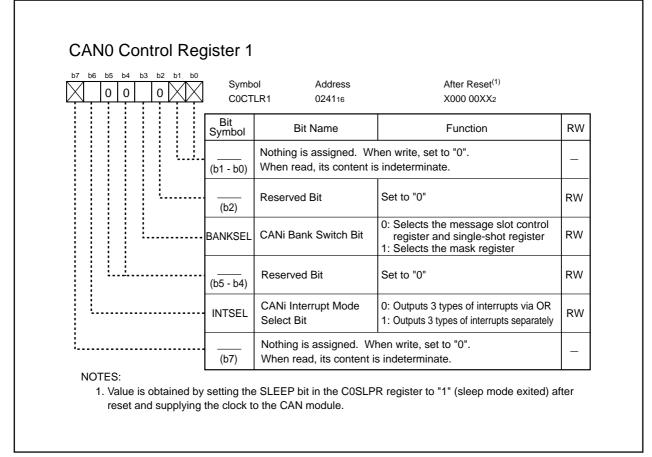


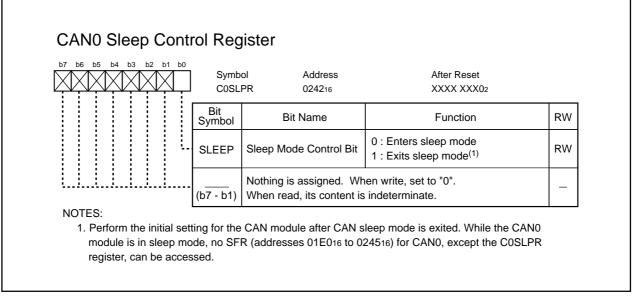

Figure 23.4 C0CTLR1 Register

### 23.1.2.1 BANKSEL Bit

The BANKSEL bit in the C0CTLR1 register selects the registers allocated to addresses 022016 to 023F16.

The COSSCTLR register, COSSSTR register and the COMCTL0 to COMCTL15 registers can be accessed by setting the BANKSEL bit to "0". The COGMR0 to COGMR4 registers, COLMAR0 to COLMAR4 registers and COLMBR0 to COLMBR4 registers can be accessed by setting the BANKSEL bit to "1".

## 23.1.2.2 INTSEL Bit


The INTSEL bit determines whether the three types of interrupt outputs (CAN0 transmit interrupt, CAN0 receive interrupt and CAN0 error interrupt) are provided via OR or is done separately.

## Refer to 23.4 CAN Interrupts for details.

NOTES:

1. Change the INTSEL bit setting when the STATE\_RESET bit is set to "1" (CAN module reset completed).

## 23.1.3 CAN0 Sleep Control Register (C0SLPR Register)



### Figure 23.5 COSLPR Register

### 23.1.3.1 SLEEP Bit

When the SLEEP bit is set to "0", the clock supplied to the CAN module stops running and the CAN module enters sleep mode.

When the SLEEP bit is set to "1", the clock supplied to the CAN module starts running and the CAN module exits sleep mode.

NOTES:

1. Enter sleep mode after the STATE\_RESET bit in the CiSTR register is set to "1" (CAN module reset completed).



## 23.1.4 CAN0 Status Register (C0STR Register)

|                                       | Symbol<br>C0STR | Address<br>020316 - 020216                           | After Reset <sup>(1)</sup><br>X000 0X01 0000 00002                             |    |
|---------------------------------------|-----------------|------------------------------------------------------|--------------------------------------------------------------------------------|----|
|                                       | Bit<br>Symbol   | Bit Name                                             | Function                                                                       | RW |
|                                       | MBOX0           |                                                      | <sup>b3 b2 b1 b0</sup><br>0 0 0 0 : Message slot 0<br>0 0 0 1 : Message slot 1 | RC |
|                                       | MBOX1           | Active Slot                                          | 0 0 1 0 : Message slot 2<br>0 0 1 1 : Message slot 3                           | RC |
| · · · · · · · · · · · · · · · · · · · | MBOX2           | Determination Bit                                    | 1 1 0 1 : Message slot 13                                                      | RC |
|                                       | МВОХ3           |                                                      | 1 1 1 0 : Message slot 14<br>1 1 1 1 : Message slot 15                         | RC |
|                                       | TRMSUCC         | Transmit Complete<br>State Flag                      | 0: Transmission is not completed<br>1: Transmission is completed               | RC |
| —                                     | RECSUCC         | Receive Complete<br>State Flag                       | 0: Reception is not completed<br>1: Reception is completed                     | RC |
|                                       | TRMSTATE        | Transmit State Flag                                  | 0: Not transmitting<br>1: During transmission                                  | RC |
|                                       | RECSTATE        | Receive State Flag                                   | 0: Not receiving<br>1: During reception                                        | RC |
| s                                     | TATE_RESET      | CAN Reset State Flag                                 | 0: CAN module is operating<br>1: CAN module reset is completed                 | RC |
| st                                    | TATE_LOOPBACK   | Loop Back State Flag                                 | 0: Mode except Loop back mode<br>1: Loop back mode                             | RC |
|                                       | (b10)           | Nothing is assigned. Wh<br>When read, its content is |                                                                                | _  |
|                                       | TATE_BASICCAN   | BasicCAN State Flag                                  | 0: Mode except BasicCAN mode<br>1: BasicCAN mode                               | RC |
| sт                                    | TATE_BUSERROR   | CAN Bus Error State Flag                             | 0: No error occurs<br>1: Error occurs                                          | RC |
| S1                                    | TATE_ERRPAS     | Error Passive State Flag                             | 0: No error passive state<br>1: Error passive state                            | RC |
| s                                     | TATE_BUSOFF     | Bus-Off State Flag                                   | 0: No bus-off state<br>1: Bus-off state                                        | RC |
|                                       | (b15)           | Nothing is assigned. Wh<br>When read, its content is |                                                                                |    |

Figure 23.6 COSTR Register

## 23.1.4.1 MBOX3 to MBOX0 Bits

The MBOX3 to MBOX0 bits store relevant slot numbers when the CAN module has completed transmitting data or storing received data.

### 23.1.4.2 TRMSUCC Bit

The TRMSUCC bit is set to "1" when the CAN module has transmitted data successfully. The TRMSUCC bit is set to "0" when the CAN module has received data successfully.

## 23.1.4.3 RECSUCC Bit

The RECSUCC bit is set to "1" when the CAN module has received data successfully. (Whether received message has been stored in the message slot or not is irrelevant.) If the received message is transmitted in loopback mode, the TRMSUCC bit is set to "1" and the RECSUCC bit is set to "0". The RECSUCC bit is set to "0" when the CAN module has transmitted data successfully.

### 23.1.4.4 TRMSTATE Bit

The TRMSTATE bit is set to "1" when the CAN module is performing as a transmit node. The TRMSTATE bit is set to "0" when the CAN module is in a bus-idle state or starts performing as a receive node.

## 23.1.4.5 RECSTATE Bit

The RECSTATE bit is set to "1" when the CAN module is performing as a receive node. The RECSTATE bit is set to "0" when the CAN module is in a bus-idle state or starts performing as a transmit node.

### 23.1.4.6 STATE\_RESET Bit

After both RESET1 and RESET0 bits are set to "1" (CAN module reset), the STATE\_RESET bit is set to "1" as soon as the CAN module is reset.

The STATE\_RESET bit is set to "0" when the RESET1 and RESET0 bits are set to "0".

## 23.1.4.7 STATE\_LOOPBACK Bit

The STATE\_LOOPBACK bit is set to "1" when the CAN module is in loopback mode.

The STATE\_LOOPBACK bit is set to "1" when the LOOPBACK bit in the COCTLR0 register is set to "1" (loop back function enabled).

The STATE\_LOOPBACK bit is set to "0" when the LOOPBACK bit is set to "0" (loop back function disabled).

## 23.1.4.8 STATE\_BASICCAN Bit

The STATE\_BASICCAN bit is set to "1" when the CAN module is in BasicCAN mode.

Refer to 23.1.1.3 BASICCAN bit for BasicCAN mode.

The STATE\_BASICCAN bit is set to "0" when the BASICCAN bit is set to "0" (BasicCAN mode function disabled).

The STATE\_BASICCAN bit is set to "1" when the BASICCAN bit is set to "1" (BasicCAN mode function enabled), the REMACTIVE bits in the COMCTL14 and COMCTL15 registers in the message slots 14 and 15 are set to "0" (data frame received).

### 23.1.4.9 STATE\_BUSERROR Bit

The STATE\_BUSERROR bit is set to "1" when an CAN communication error is detected.

The STATE\_BUSERROR bit is set to "0" when the CAN module has transmitted or received data successfully. Whether a received message has been stored into the message slot or not is irrelevant.

NOTES:

1. When the STATE\_BUSERROR bit is set to "1", the STATE\_BUSERROR bit remains unchanged even if both RESET1 and RESET0 bits are set to "1" (CAN module reset).

## 23.1.4.10 STATE\_ERRPAS Bit

The STATE\_ERRPAS bit is set to "1" when the value of the C0TEC or C0REC register exceeds 127 and the CAN module is placed in an error-passive state.

The STATE\_ERRPAS bit is set to "0" when the CAN module in an error-passive state is placed in another error state.

The STATE\_ERRPAS bit is set to "0" when both RESET1 and RESET0 bits are set to "1" (CAN module is reset).

### 23.1.4.11 STATE\_BUSOFF Bit

The STATE\_BUSOFF bit is set to "1" when the value of the COTEC register exceeds 255 and the CAN module is placed in a bus-off state.

The STATE\_BUSOFF bit is set to "0" when the CAN module in a bus-off state is placed in an erroractive state.

The STATE\_BUSOFF bit is set to "0" when both RESET1 and RESET0 bits are set to "1" (CAN module reset).



## 23.1.5 CAN0 Extended ID Register (C0IDR Register)

|                                       | Symb<br>C0IDF |                                 | After Reset <sup>(2)</sup><br>000016 |    |
|---------------------------------------|---------------|---------------------------------|--------------------------------------|----|
|                                       | Bit<br>Symbol | Bit Name                        | Function                             | RW |
|                                       | IDE15         | Extended ID15 (Message Slot 15) | Standard or extended                 | RW |
|                                       | IDE14         |                                 | format is set by the                 | RW |
|                                       | IDE13         | Extended ID13 (Message Slot 13) | corresponding message slot           | RW |
|                                       | IDE12         | Extended ID12 (Message Slot 12) | 0: Standard format                   | RW |
|                                       | IDE11         | Extended ID11 (Message Slot 11) | 1: Extended format                   | RW |
|                                       | IDE10         | Extended ID10 (Message Slot 10) |                                      | RW |
|                                       | IDE9          | Extended ID9 (Message Slot 9)   |                                      | RW |
|                                       | IDE8          | Extended ID8 (Message Slot 8)   |                                      | RW |
|                                       | IDE7          | Extended ID7 (Message Slot 7)   |                                      | RW |
| · · · · · · · · · · · · · · · · · · · | IDE6          | Extended ID6 (Message Slot 6)   |                                      | RW |
| · · · · · · · · · · · · · · · · · · · | IDE5          | Extended ID5 (Message Slot 5)   |                                      | RW |
| ; ; ; ; ; ; ·                         | IDE4          | Extended ID4 (Message Slot 4)   |                                      | RW |
|                                       | IDE3          | Extended ID3 (Message Slot 3)   |                                      | RW |
|                                       | IDE2          | Extended ID2 (Message Slot 2)   |                                      | RW |
|                                       | IDE1          | Extended ID1 (Message Slot 1)   |                                      | RW |
| ·                                     | IDE0          | Extended ID0 (Message Slot 0)   |                                      | RW |

2. Value is obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) after reset and supplying the clock to the CAN module.

## Figure 23.7 COIDR Register

Bits in the COIDR register determine the frame format in the message slot corresponding to each bit. The standard format is selected when the bit is set to "0".

The extended format is selected when the bit is to set "1".



## 23.1.6 CAN0 Configuration Register (C0CONR Register)

|   | Symb<br>C0CC  |                                                      | After Reset <sup>(1)</sup><br>16 0000 0000 0000 XXXX2                |    |
|---|---------------|------------------------------------------------------|----------------------------------------------------------------------|----|
|   | Bit<br>Symbol | Bit Name                                             | Function                                                             | RW |
|   | (b3 - b0)     | Nothing is assigned. Wh<br>When read, its content is |                                                                      | -  |
|   | <br>SAM       | Sampling Number                                      | 0: Sampled once<br>1: Sampled three times                            | RW |
|   | <br>PTS0      |                                                      | <sup>b7 b6 b5</sup><br>0 0 0:1Tq<br>0 0 1:2Tg                        | RW |
|   | <br>PTS1      | Propagation Time<br>Segment                          | 0 1 0:3Tq<br>0 1 1:4Tq<br>1 0 0:5Tq                                  | RW |
|   | <br>PTS2      |                                                      | 1 0 1:6Tq<br>1 1 0:7Tq<br>1 1 1:8Tq                                  | RW |
|   | <br>PBS10     |                                                      | <sup>b10b9 b8</sup><br>0 0 0: Do not set to this value<br>0 0 1: 2Tq | RW |
|   | <br>PBS11     | Phase Buffer<br>Segment 1                            | 0 1 0:3Tq<br>0 1 1:4Tq<br>1 0 0:5Tq                                  | RW |
| · | <br>PBS12     | 1 0 1:6Tq<br>1 1 0 0:7Tq<br>1 1 0:7Tq<br>1 1 1:8Tq   | 1 0 1:6Tq<br>1 1 0:7Tq                                               | RW |
|   | <br>PBS20     |                                                      | b13b12b11<br>0 0 0: Do not set to this value<br>0 0 1: 2Tg           | RW |
|   | <br>PBS21     | Phase Buffer<br>Segment 2                            | 0 1 0:3Tq<br>0 1 1:4Tq<br>1 0 0:5Tq                                  | RW |
|   | <br>PBS22     |                                                      | 1 0 1:6Tq<br>1 1 0:7Tq<br>1 1 1:8Tq                                  | RW |
|   | <br>SJW0      | reSynchronization                                    | b15 b14<br>0 0: 1Tq<br>0 1: 2Ta                                      | RW |
|   | <br>SJW1      | Jump Width                                           | 0 1:2Tq<br>1 0:3Tq<br>1 1:4Tq                                        | RW |

Figure 23.8 C0CONR Register

reset and supplying the clock to the CAN module.



### 23.1.6.1 SAM Bit

The SAM bit determines the number of sample points to be taken per bit.

When the SAM bit is set to "0", only one sample is taken per bit at the end of the Phase Buffer Segment 1 (PBS1) to determine the value of the bit.

When the SAM bit is set to "1", three samples per bit are taken; one time quantum and two time quanta before the end of PBS1, and at the end of PBS1. The sample result value which is detected more than twice becomes the value of the bit sampled.

#### 23.1.6.2 PTS2 to PTS0 Bits

The PTS2 to PTS0 bits determine PTS width.

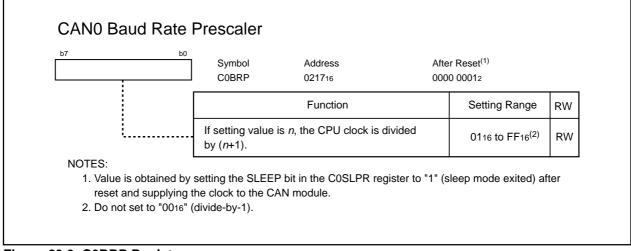
### 23.1.6.3 PBS12 to PBS10 Bits

The PBS12 to PBS10 bits determine PBS1 width. Set the PBS12 to 10 bits to "0012" or more.

#### 23.1.6.4 PBS22 to PBS20 Bits

The PBS22 to PBS20 bits determine PBS2 width. Set the PBS22 to PBS20 bits to "0012" or more.

#### 23.1.6.5 SJW1 and SJW0 Bits


The SJW1 and SJW0 bits determine SJW width. Set the SJW1 and SJW0 bits to values less than or equal to the PBS22 to PBS20 bits and the PBS12 to PBS10 bits.

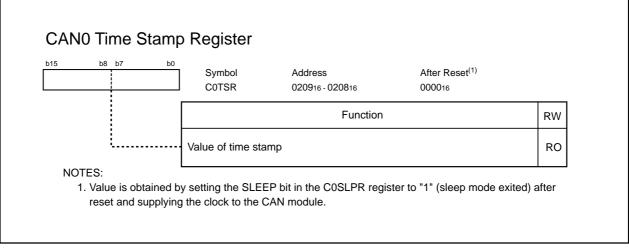
| Baud Rate | BRP | Tq Clock Cycles (ns) | Tq Per Bit | PTS+PBS1 | PBS2 | Sample Point |
|-----------|-----|----------------------|------------|----------|------|--------------|
| 1Mbps     | 1   | 66.7                 | 15         | 12       | 2    | 87%          |
|           | 1   | 66.7                 | 15         | 11       | 3    | 80%          |
|           | 1   | 66.7                 | 15         | 10       | 4    | 73%          |
|           | 2   | 100                  | 10         | 7        | 2    | 80%          |
|           | 2   | 100                  | 10         | 6        | 3    | 70%          |
|           | 2   | 100                  | 10         | 5        | 4    | 60%          |
| 500Kbps   | 2   | 100                  | 20         | 16       | 3    | 85%          |
|           | 2   | 100                  | 20         | 15       | 4    | 80%          |
|           | 2   | 100                  | 20         | 14       | 5    | 75%          |
|           | 3   | 133.3                | 15         | 12       | 2    | 87%          |
|           | 3   | 133.3                | 15         | 11       | 3    | 80%          |
|           | 3   | 133.3                | 15         | 10       | 4    | 73%          |
|           | 4   | 166.7                | 12         | 9        | 2    | 83%          |
|           | 4   | 166.7                | 12         | 8        | 3    | 75%          |
|           | 4   | 166.7                | 12         | 7        | 4    | 67%          |
|           | 5   | 200                  | 10         | 7        | 2    | 80%          |
|           | 5   | 200                  | 10         | 6        | 3    | 70%          |
|           | 5   | 200                  | 10         | 5        | 4    | 60%          |

Table 23.3 Bit Timing when CPU Clock = 30 MHz



## 23.1.7 CANO Baud Rate Prescaler (COBRP Register)




### Figure 23.9 COBRP Register

The C0BRP register determines the Tq clock cycle of the CAN bit time. The baud rate is obtained from Tq clock cycle x Tq per bit.

Tq clock cycle = (BRP+1) / CAN clockBaud rate =1Tq clock cycle x Tq per bitTq clock cycle x Tq per bitTq per bit =SS + PTS + PBS1 + PBS2Tq: Time quantumBRP: Setting value of the COBPR register; 1-255SS: Synchronization Segment; 1 TqPTS: Propagation Time Segment; 1 to 8 TqPBS1: Phase Buffer Segment 1; 2 to 8 TqPBS2: Phase Buffer Segment 2; 2 to 8 Tq



## 23.1.8 CAN0 Time Stamp Register (C0TSR Register)

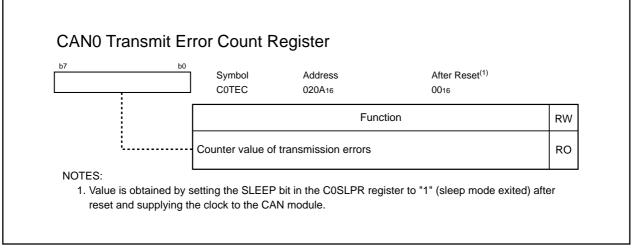


### Figure 23.10 C0TSR Register

The COTSR register is a 16-bit counter. The TSPRE1 and TSPRE0 bits in the COCTLR0 register select the CAN bus bit clock divided by 1, 2, 3 or 4 as the count source for the COTSR register. When data transmission or reception is completed, the value of the COTSR register is automatically stored into the message slot.

In loopback mode, when either data frame receive message slot or remote frame receive message slot is available to store the message, the value of the COTSR register is also stored into the message slot when data reception is completed. The value of the COTSR register is not stored when data transmission is completed.

The C0TSR register starts a counter increment when the RESET1 and RESET0 bits in the C0CTLR0 register are set to "0".

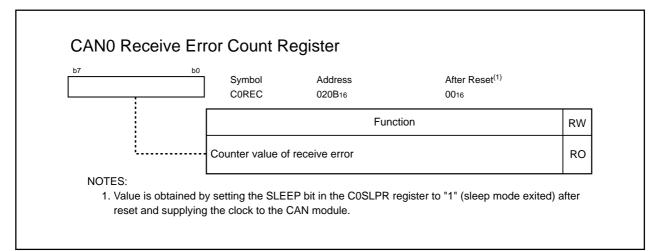

The C0TSR register is set to "000016":

- at the next count timing after the C0TSR register is set to "FFFF16";
- when the RESET1 and RESET0 bits are set to "1" (CAN module reset) by program; or
- when the TSRESET bit is set to "1" (C0TSR register reset) by program.

CAN bus bit clock =  $\frac{1}{CAN \text{ bit time}}$ 



## 23.1.9 CAN0 Transmit Error Count Register (C0TEC Register)




### Figure 23.11 COTEC Register

In an error active or an error passive state, the counting value of a transmission error is stored into the C0TEC register. The counter is decremented when the CAN module has transmitted data successfully or is incremented when an transmit error occurs.

In a bus-off state, an indeterminate value is stored into the COTEC register. The COTEC register is set to "0016" when the CAN module is placed in an error active state again.

## 23.1.10 CAN0 Receive Error Count Register (COREC Register)



### Figure 23.12 COREC Register

In an error active or an error passive state, a counting value of the reception error is stored into the COREC register. The counter is decremented when the CAN module has received data successfully or it is incremented when a receive error occurs.

The COREC register is set to 127 when the COREC register is 128 (error passive state) or more and the CAN module has received successfully.

In a bus-off state, an indeterminate value is stored into the COREC register. The COREC register is set to "0016" when the CAN module is placed in an error active state again.

RENESAS

## 23.1.11 CAN0 Slot Interrupt Status Register (C0SISTR Register)

|  |                                       |   | Symb<br>C0SIS |                                                 | After Reset <sup>(1)</sup><br>C16 000016                                                                     |    |
|--|---------------------------------------|---|---------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----|
|  |                                       |   | Bit<br>Symbol | Bit Name                                        | Function                                                                                                     | RW |
|  |                                       |   | SIS15         | Message Slot 15 Interrupt<br>Request Status Bit | a corresponding message slot is<br>requested or not.<br>0: Requests no interrupt<br>1: Requests an interrupt | RW |
|  |                                       |   | SIS14         | Message Slot 14 Interrupt<br>Request Status Bit |                                                                                                              | RW |
|  |                                       | ļ | SIS13         | Message Slot 13 Interrupt<br>Request Status Bit |                                                                                                              | RW |
|  |                                       |   | SIS12         | Message Slot 12 Interrupt<br>Request Status Bit |                                                                                                              | RW |
|  |                                       |   | SIS11         | Message Slot 11 Interrupt<br>Request Status Bit |                                                                                                              | RW |
|  | ·                                     |   | SIS10         | Message Slot 10 Interrupt<br>Request Status Bit |                                                                                                              | RW |
|  | · · · · · · · · · · · · · · · · · · · |   | SIS9          | Message Slot 9 Interrupt<br>Request Status Bit  |                                                                                                              | RW |
|  |                                       |   | SIS8          | Message Slot 8 Interrupt<br>Request Status Bit  |                                                                                                              | RW |
|  |                                       |   |               | Message Slot 7 Interrupt<br>Request Status Bit  |                                                                                                              | RW |
|  |                                       |   |               | Message Slot 6 Interrupt<br>Request Status Bit  |                                                                                                              | RW |
|  |                                       |   |               | Message Slot 5 Interrupt<br>Request Status Bit  |                                                                                                              | RW |
|  |                                       |   |               | Message Slot 4 Interrupt<br>Request Status Bit  |                                                                                                              | RW |
|  |                                       |   | SIS3          | Message Slot 3 Interrupt<br>Request Status Bit  |                                                                                                              | RW |
|  |                                       |   | SIS2          | Message Slot 2 Interrupt<br>Request Status Bit  |                                                                                                              | RW |
|  |                                       |   | SIS1          | Message Slot 1 Interrupt<br>Request Status Bit  |                                                                                                              | R٧ |
|  |                                       |   | SIS0          | Message Slot 0 Interrupt<br>Request Status Bit  |                                                                                                              | RW |

1. Value is obtained by setting the SLEEP bit in the C0SLPR register to "1" (sleep mode exited) after reset and supplying the clock to the CAN module.

2. Set to "0" by program. If it is set to "1", the value before setting to "1" remains.

Figure 23.13 COSISTR Register

When using the CAN interrupt, the COSISTR register indicates which message slot is requesting an interrupt. The SISj bits (j=0 to 15) are not automatically set to "0" (no interrupt requested) when an interrupt is acknowledged. Set the SISj bits to "0" by program.

Use the MOV instruction, instead of the bit clear instruction, to set the SISj bits to "0". The SISj bits, which are not being changed to "0", must be set to "1".

For example: To set the SIS0 bit to "0"

Assembly language: mov.w #07FFFh, C0SISTR

C language: c0sistr = 0x7FFF;

Refer to 23.4 CAN Interrupt for details.

## 23.1.11.1 Message Slot for Transmission

The SISj bit is set to "1" (interrupt requested) when the COTSR register is stored into the message slot j after data transmission is completed.

## 23.1.11.2 Message Slot for Reception

The SISj bit is set to "1" (interrupt requested) when the received message is stored in the message slot j after data reception is completed.

## NOTES:

- 1.If the automatic answering function is enabled in the remote frame receive message slot, the SISj bit is set to "1" after the remote frame is received and the data frame is transmitted.
- 2.In the remote frame transmit message slot, the SISj bit is set to "1" after the remote frame is transmitted and the data frame is received.
- 3. The SISj bit is set to "1" if the SISj bit is set to "1" by an interrupt request and "0" by program simultaneously.



### 23.1.12 CAN0 Slot Interrupt Mask Register (C0SIMKR Register)

|                                       | b0   | Symb<br>C0SII                        |                                       | After Reset <sup>(2)</sup><br>000016                                                                           |    |
|---------------------------------------|------|--------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------|----|
|                                       |      | Bit<br>Symbol                        | Bit Name                              | Function                                                                                                       | RW |
|                                       |      | SIM15                                |                                       | ontrols whether the interrupt<br>quest of the corresponding                                                    | RW |
|                                       |      | SIM14                                | Slot 14 Interrupt me                  | request of the corresponding<br>message slot is enabled or masked.<br>0: Masks (disables) an interrupt request | RV |
|                                       | ,    | SIM13                                |                                       | Enables an interrupt request                                                                                   | RV |
|                                       |      | SIM12                                | Slot 12 Interrupt<br>Request Mask Bit |                                                                                                                | RV |
|                                       |      | SIM11                                | Slot 11 Interrupt<br>Request Mask Bit |                                                                                                                | RV |
| · · · · · · · · · · · · · · · · · · · |      | SIM10                                | Slot 10 Interrupt<br>Request Mask Bit |                                                                                                                | RV |
|                                       | SIM9 | Slot 9 Interrupt<br>Request Mask Bit |                                       | R٧                                                                                                             |    |
| · · · · · · · · · · · · · · · · · · · |      | SIM8                                 | Slot 8 Interrupt<br>Request Mask Bit  |                                                                                                                | RV |
| · · · · · · · · · · · · · · · · · · · |      | SIM7                                 | Slot 7 Interrupt<br>Request Mask Bit  |                                                                                                                | RV |
| ·····                                 |      | SIM6                                 | Slot 6 Interrupt<br>Request Mask Bit  |                                                                                                                | RV |
|                                       |      | SIM5                                 | Slot 5 Interrupt<br>Request Mask Bit  |                                                                                                                | RV |
|                                       |      | SIM4                                 | Slot 4 Interrupt<br>Request Mask Bit  |                                                                                                                | RV |
|                                       |      | SIM3                                 | Slot 3 Interrupt<br>Request Mask Bit  |                                                                                                                | RV |
|                                       |      | SIM2                                 | Slot 2 Interrupt<br>Request Mask Bit  |                                                                                                                | RV |
|                                       |      | SIM1                                 | Slot 1 Interrupt<br>Request Mask Bit  |                                                                                                                | RV |
|                                       |      | SIM0                                 | Slot 0 Interrupt<br>Request Mask Bit  |                                                                                                                | RV |

 Change the COSIMKR register setting while the COMCTLj (j=0to 15) register, corresponding to the bit to be changed, is set to "0016".

2. Value is obtained by setting the SLEEP bit in the C0SLPR register to "1" (sleep mode exited) after reset and supplying the clock to the CAN module.

Figure 23.14 C0SIMKR Register

The COSIMKR register determines whether an interrupt request, generated by a data transmission or reception in the corresponding message slot is enabled or disabled. When the SIMj bit (j=0 to 15) is set to "1" (no interrupt requested), an interrupt request generated by a data transmission or reception in the corresponding message slot is enabled. Refer to **23.4 CAN Interrupt** for details.

### 23.1.13 CAN0 Error Interrupt Mask Register (C0EIMKR Register)

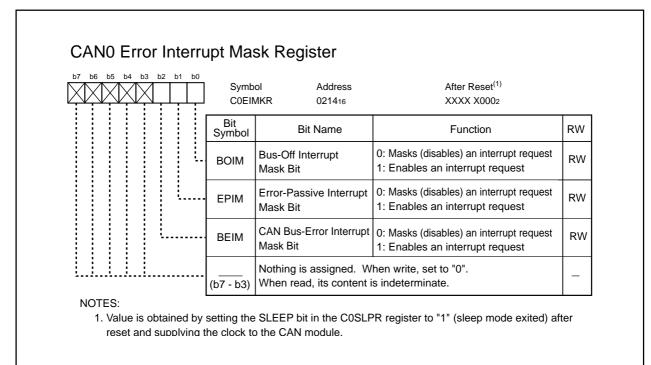


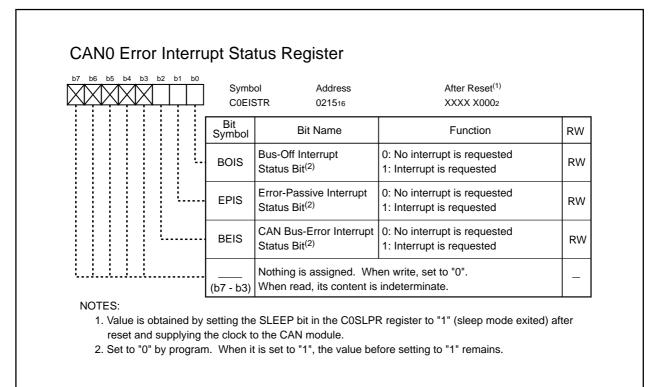

Figure 23.15 C0EIMKR Register

Refer to 23.4 CAN Interrupt for details.

#### 23.1.13.1 BOIM Bit

The BOIM bit determines whether an interrupt request is enabled or disabled when the CAN module is placed in a bus-off state. When the BOIM bit is set to "1", the bus-off interrupt request is enabled.

#### 23.1.13.2 EPIM Bit


The EPIM bit determines whether an interrupt request is enabled or disabled when the CAN module is placed in an error passive state. When the EPIM bit is set to "1", the error passive interrupt request is enabled.

#### 23.1.13.3 BEIM Bit

The BEIM bit determines whether an interrupt request is enabled or disabled when a CAN bus error occurs. When the BEIM bit is set to "1", the CAN bus error interrupt request is enabled.



### 23.1.14 CAN0 Error Interrupt Status Register (C0EISTR Register)



#### Figure 23.16 C0EISTR Register

When using the CAN interrupt, the C0EISTR register indicates the source of the generated error interrupt. The BOIS, EPIS and BEIS bits are not automatically set to "0" (no interrupt requested) even if an interrupt is acknowledged. Set these bits to "0" by program.

Use the MOV instruction, instead of the bit clear instruction, to set each bit in the C0EISTR register to "0". Bits not being changed to "0" must be set to "1".

For example: To set the BOIS bit to "0"

Assembly language:mov.b#006h, C0EISTRC language:c0eistr = 0x06;

Refer to 23.4 CAN Interrupt for details.

#### 23.1.14.1 BOIS Bit

The BOIS bit is set to "1" when the CAN module is placed in a bus-off state.

#### 23.1.14.2 EPIS Bit

The EPIS bit is set to "1" when the CAN module is placed in an error passive state.

#### 23.1.14.3 BEIS Bit

The BEIS bit is set to "1" when a CAN bus error is detected.



| 23.1.15 CAN0 Error Factor | Register (C0EFR Register) |
|---------------------------|---------------------------|
|---------------------------|---------------------------|

| b7 b6 b5 t | b4 b3 b2 b1 b0 | Symb<br>C0EF  |                                          | After Reset <sup>(1)</sup><br>0016                                                              |    |
|------------|----------------|---------------|------------------------------------------|-------------------------------------------------------------------------------------------------|----|
|            |                | Bit<br>Symbol | Bit Name                                 | Function                                                                                        | RW |
|            |                | ACKE          | ACK Error Detect Bit <sup>(2)</sup>      | 0: Detects no ACK error<br>1: Detects an ACK error                                              | RW |
|            |                | CRCE          | CRC Error Detect Bit <sup>(2)</sup>      | 0: Detects no CRC error<br>1: Detects a CRC error                                               | RW |
|            |                | FORME         | FORM Error Detect Bit <sup>(2)</sup>     | 0: Detects no form error<br>1: Detects a form error                                             | RW |
|            |                | STFE          | Stuff Error Detect Bit <sup>(2)</sup>    | 0: Detects no stuff error<br>1: Detects a stuff error                                           | RW |
|            |                | BITE0         | Bit Error Detect Bit 0 <sup>(2)</sup>    | 0: Detects no bit error while transmitting "H"<br>1: Detects a bit error while transmitting "H" | RW |
| L          |                | BITE1         | Bit Error Detect Bit 1 <sup>(2)</sup>    | 0: Detects no bit error while transmitting "L"<br>1: Detects a bit error while transmitting "L" | RW |
|            |                | RCVE          | Receive Error Detect Bit <sup>(2)</sup>  | 0: Detects no error while receiving data<br>1: Detects an error while receiving data            | R٧ |
|            |                | TRE           | Transmit Error Detect Bit <sup>(2)</sup> | 0: Detects no error while transmitting data<br>1: Detects an error while transmitting data      | RW |

#### Figure 23.17 C0EFR Register

For example: To set the ACKE bit to "0"

The COEFR register indicates the cause of error when a communication error is detected. Set the following bits to "0" by program because they are not changed "1" to "0" automatically.

Use the MOV instruction, instead of the bit clear instruction, to set each bit in the C0EFR register to "0". Bits not being changed to "0" must be set to "1".

| Assembly language: mov.b#0FEh, C0EFR<br>C language: c0efr = 0xFE;                                                        |
|--------------------------------------------------------------------------------------------------------------------------|
| <b>23.1.15.1 ACKE Bit</b><br>The ACKE bit is set to "1" when an ACK error is detected.                                   |
| 23.1.15.2 CRCE Bit<br>The CRC bit is set to "1" when a CRC error is detected.                                            |
| 23.1.15.3 FORME Bit<br>The FORME bit is set to "1" when a form error is detected.                                        |
| 23.1.15.4 STFE Bit<br>The STFE bit is set to "1" when a stuff error is detected.                                         |
| <b>23.1.15.5 BITE0 Bit</b><br>The BITE0 bit is set to "1" when a bit error is detected while transmitting recessive "H". |
| <b>23.1.15.6 BITE1 Bit</b><br>The BITE1 bit is set to "1" when a bit error is detected while transmitting dominant "L".  |
| <b>23.1.15.7 RCVE Bit</b><br>The RCVE bit is set to "1" when an error is detected while receiving data.                  |
| 23.1.15.8 TRE Bit                                                                                                        |

The TRE bit is set to "1" when an error is detected while transmitting data.

### 23.1.16 CAN0 Mode Register (C0MDR Register)

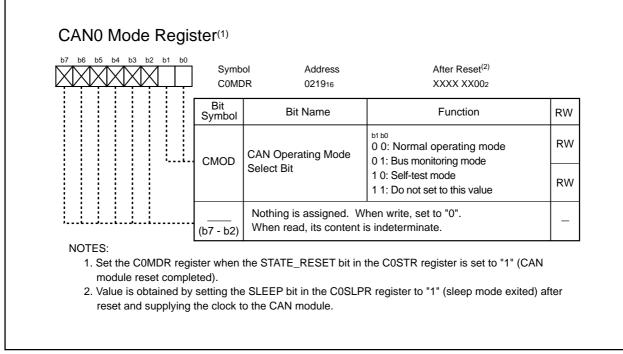



Figure 23.18 COMDR Register

#### 23.1.16.1 CMOD Bit

The CMOD bit selects a CAN operating mode.

- Normal operating mode: The CAN module transmits and receives data successfully.
- Bus monitoring mode<sup>(1)</sup>: The CAN module receives data. Output signal from the CAN00UT pin is fixed as a high-level ("H") signal in bus monitoring mode. The CAN mod ule transmits neither ACK nor error frame.
- Self-test mode: The CAN module connects the CAN00UT pin to the CAN0IN pin internally.

The CAN module can communicate without additional device in loop back mode. Output signal from the CAN00UT pin is fixed as an "H" signal in self-test mode while transmitting data. Figure 23.19 shows an image diagram in self-test mode.

NOTES:

1. Do not generate a transmit request in bus monitoring mode.

The CAN module assumes the ACK bit is set to dominant "L" regardless of the ACK bit setting. Therefore, when the CRC delimiter is received successfully, the CAN module determines the data is received with no error regardless of the ACK bit setting.



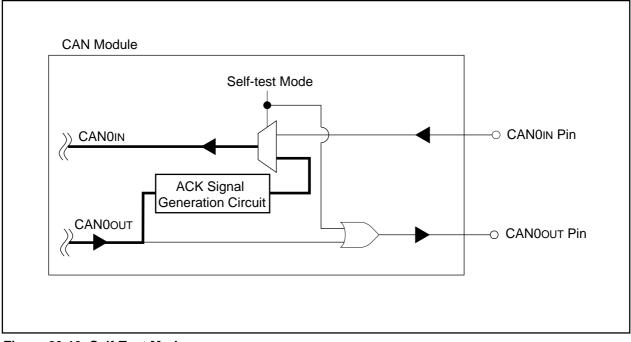



Figure 23.19 Self-Test Mode



### 23.1.17 CAN0 Single-Shot Control Register (C0SSCTLR Register)

|                                       | Symb<br>C0SS  | ol Address<br>CTLR 022116 - 022016         | After Reset <sup>(3)</sup><br>000016                    |    |
|---------------------------------------|---------------|--------------------------------------------|---------------------------------------------------------|----|
|                                       | Bit<br>Symbol | Bit Name                                   | Function                                                | RW |
| · · · · · · · · · · · · · · · · · · · | SSC15         | Message Slot 15 Single-Shot<br>Control Bit | 0: Single-shot mode not used<br>1: Use single-shot mode | RW |
|                                       | SSC14         | Message Slot 14 Single-Shot<br>Control Bit | -                                                       | RW |
| · · · · · · · · · · · · · · · · · · · | SSC13         | Message Slot 13 Single-Shot<br>Control Bit |                                                         | RW |
|                                       | SSC12         | Message Slot 12 Single-Shot<br>Control Bit |                                                         | RV |
|                                       | SSC11         | Message Slot 11 Single-Shot<br>Control Bit |                                                         | RV |
| · · · · · · · · · · · · · · · · · · · | SSC10         | Message Slot 10 Single-Shot<br>Control Bit |                                                         | RW |
|                                       | SSC9          | Message Slot 9 Single-Shot<br>Control Bit  |                                                         | RV |
|                                       | SSC8          | Message Slot 8 Single-Shot<br>Control Bit  |                                                         | RV |
|                                       | SSC7          | Message Slot 7 Single-Shot<br>Control Bit  |                                                         | RV |
|                                       | SSC6          | Message Slot 6 Single-Shot<br>Control Bit  |                                                         | RV |
|                                       | SSC5          | Message Slot 5 Single-Shot<br>Control Bit  |                                                         | RV |
|                                       | SSC4          | Message Slot 4 Single-Shot<br>Control Bit  |                                                         | RW |
|                                       | SSC3          | Message Slot 3 Single-Shot<br>Control Bit  |                                                         | RV |
|                                       | SSC2          | Message Slot 2 Single-Shot<br>Control Bit  |                                                         | RV |
|                                       | SSC1          | Message Slot 1 Single-Shot<br>Control Bit  |                                                         | RV |
|                                       | SSC0          | Message Slot 0 Single-Shot<br>Control Bit  |                                                         | RV |

to "0" (message slot control register and single-shot register selected).

3. Value is obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) after reset, supplying the clock to the CAN module, and setting the BANKSEL bit to "0".

#### Figure 23.20 COSSCTLR Register

According to the CAN Specification 2.0B0, if the arbitration lost or transmission error causes a transmit failure, the microcomputer continues transmitting data until the transmission is completed. The COSSCTLR register determines whether or not, and from which slot, data is re-transmitted.

In single-shot mode, if the arbitration lost or transmission error causes a transmission failure, data is not transmitted again. When the SSCj bit (j=0 to 15) is set to "1", the corresponding message slot j is in single-shot mode.

### 23.1.18 CAN0 Single-Shot Status Register (C0SSSTR Register)

|                                       | Symb<br>C0SS  |                                           | After Reset <sup>(2)</sup><br>000016                            |    |
|---------------------------------------|---------------|-------------------------------------------|-----------------------------------------------------------------|----|
|                                       | Bit<br>Symbol | Bit Name                                  | Function                                                        | RW |
| · · · · · · · · · · · · · · · · · · · | SSS15         | Message Slot 15 Single-Shot<br>Status Bit | 0: No arbitration is lost, or no transmit error occurs          | RW |
|                                       | SSS14         | Message Slot 14 Single-Shot<br>Status Bit | 1: Arbitration is lost, or transmit<br>error occurs<br>(Note 3) | RW |
|                                       | SSS13         | Message Slot 13 Single-Shot<br>Status Bit |                                                                 | RW |
|                                       | SSS12         | Message Slot 12 Single-Shot<br>Status Bit |                                                                 | RW |
|                                       | SSS11         | Message Slot 11 Single-Shot<br>Status Bit |                                                                 | RW |
|                                       | SSS10         | Message Slot 10 Single-Shot<br>Status Bit | -                                                               | RW |
| · · · · · · · · · · · · · · · · · · · | SSS9          | Message Slot 9 Single-Shot<br>Status Bit  |                                                                 | RW |
| · · · · · · · · · · · · · · · · · · · | SSS8          | Message Slot 8 Single-Shot<br>Status Bit  |                                                                 | RW |
|                                       | SSS7          | Message Slot 7 Single-Shot<br>Status Bit  |                                                                 | RW |
|                                       | SSS6          | Message Slot 6 Single-Shot<br>Status Bit  |                                                                 | RW |
|                                       | SSS5          | Message Slot 5 Single-Shot<br>Status Bit  |                                                                 | RW |
|                                       | SSS4          | Message Slot 4 Single-Shot<br>Status Bit  | -                                                               | RW |
|                                       | SSS3          | Message Slot 3 Single-Shot<br>Status Bit  |                                                                 | RW |
|                                       | SSS2          | Message Slot 2 Single-Shot<br>Status Bit  | -                                                               |    |
|                                       | SSS1          | Message Slot 1 Single-Shot<br>Status Bit  |                                                                 | RW |
|                                       | SSS0          | Message Slot 0 Single-Shot<br>Status Bit  |                                                                 | RW |

1. The C0SSSTR register can be accessed only when the BANKSEL bit in the C0CTLR1 is set to "0" (message slot control register and single-shot register selected).

2. Value is obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) after reset and supplying the clock to the CAN module.

3. Set to "0" by program. When it is set it to "1", the value before setting to "1" remains.



If the arbitration lost or transmission error causes a transmission failure, the bit corresponding to message slot j (j=0 to 15) is set to "1". The SSSj bit is set to "0" by program because it is not set to "0" automatically.

Use the MOV instruction, instead of the bit clear instruction, to set the SSSj bit to "0". Bits not being changed to "0" must be set to "1".

For example: To set the SSS0 bit to "0"

Assembly language: mov.w #07FFFh, C0SSSTR C language: cOssstr = 0x7FFF;

## 23.1.19 CAN0 Global Mask Register, CAN0 Local Mask Register A and CAN0 Local Mask Register B (COGMRk, COLMARk and COLMBRk Registers) (k=0 to 4)

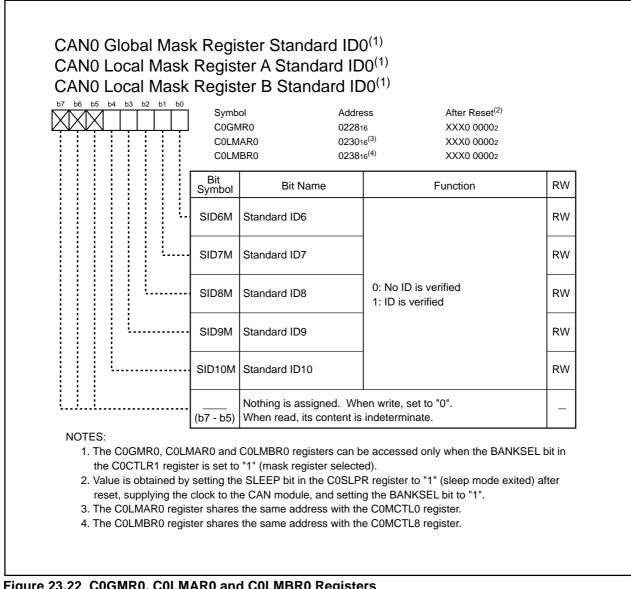



Figure 23.22 COGMR0, COLMAR0 and COLMBR0 Registers



#### CAN0 Global Mask Register Standard ID1<sup>(1)</sup> CAN0 Local Mask Register A Standard ID1<sup>(1)</sup> CAN0 Local Mask Register B Standard ID1<sup>(1)</sup> b7 b6 b5 b4 b3 b2 b1 b0 Symbol After Reset<sup>(2)</sup> Address C0GMR1 022916 XX00 00002 C0LMAR1 023116<sup>(3)</sup> XX00 00002 C0LMBR1 023916<sup>(4)</sup> XX00 00002 Bit Bit Name Function RW Symbol i, SID0M Standard ID0 RW £.... SID1M Standard ID1 RW SID2M Standard ID2 RW 0: No ID is verified 1: ID is verified SID3M Standard ID3 RW SID4M Standard ID4 RW SID5M Standard ID5 RW Nothing is assigned. When write, set to "0". ί., . . . When read, its content is indeterminate. (b7 - b6) NOTES: 1. The C0GMR0, C0LMAR0 and C0LMBR0 registers can be accessed only when the BANKSEL bit in the C0CTLR1 register is set to "1" (mask register selected). 2. Value is obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) after reset, supplying the clock to the CAN module, and setting the BANKSEL bit to "0". 3. The C0LMAR1 register shares the same address with the C0MCTL1 register. 4. The C0LMBR1 register shares the same address with the C0MCTL9 register.

Figure 23.23 C0GMR1, C0LMAR1 and C0LMBR1 Registers



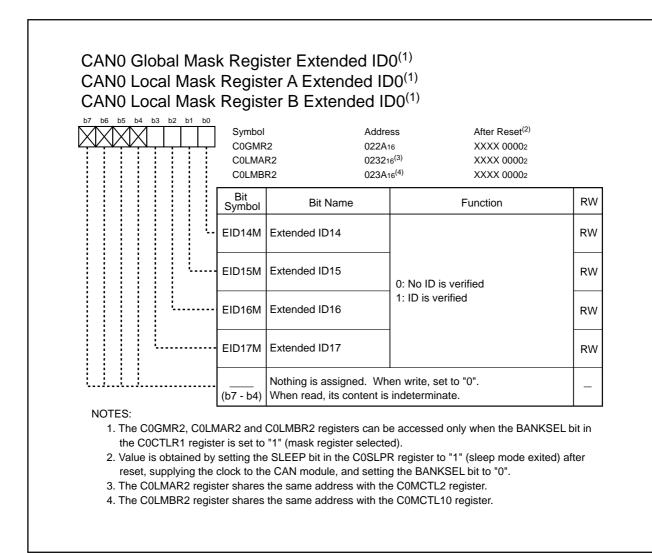
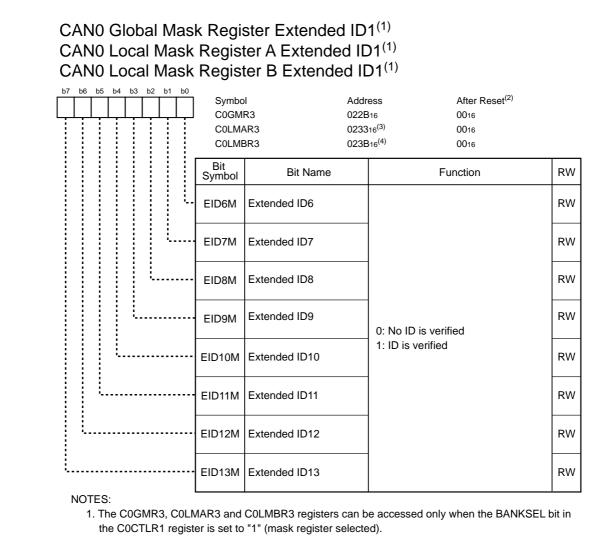
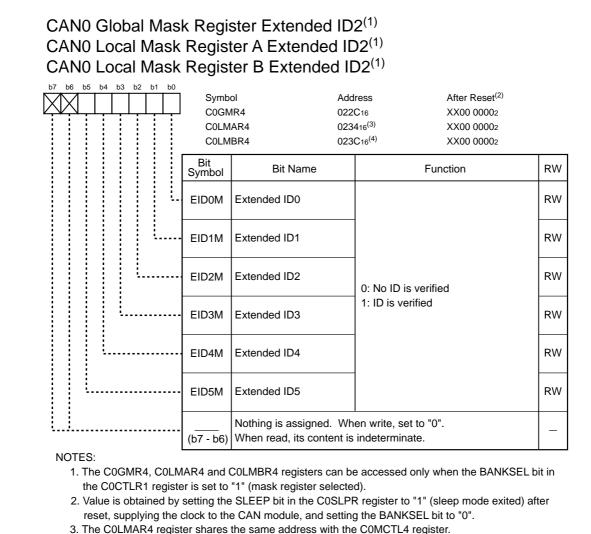




Figure 23.24 C0GMR2, C0LMAR2 and C0LMBR2 Registers






 Value is obtained by setting the SLEEP bit in the COSLPR register to "1" (sleep mode exited) after reset, supplying the clock to the CAN module, and setting the BANKSEL bit to "0".

3. The C0LMAR3 register shares the same address with the C0MCTL3 register.

4. The C0LMBR3 register shares the same address with the C0MCTL11 register..

Figure 23.25 C0GMR3, C0LMAR3 and C0LMBR3 Registers





4. The C0LMBR4 register shares the same address with the C0MCTL12 register.

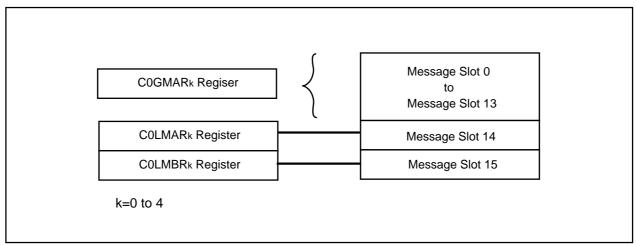
Figure 23.26 C0GMR4, C0LMAR4 and C0LMBR4 Registers



The C0GMRk, C0LMARk and C0LMBRk registers are used for acceptance filtering.

The users can select and receive user-desired messages.

The C0GMRk register determines whether IDs in the message slots 0 to 13 are verified. The C0LMARk register determines whether ID in the message slot 14 is verified. The C0LMBRk register determines whether ID in the message slot 15 is verified.


- When bits in these registers are set to "0", each standard ID0 and standard ID1 bits (ID bit) and extended ID0 to extended ID2 bits in the CAN0 message slots j (j=0 to 15) corresponding to the bits in the above registers, is masked while acceptance filtering. (The corresponding bits are assumed to have matching IDs.)
- When bits in these registers are set to "1", corresponding ID bits are compared with received IDs while acceptance filtering. If the received ID matches the ID in the message slot j, the received data having the matched ID is stored into that message slot.

NOTES:

- 1. Change the COGMRk register setting only when the message slots 0 to 13 have no receive request.
- 2. Change the C0LMARk register setting only when the message slot 14 has no receive request.
- 3. Change the C0LMBRk register setting only when the message slot 15 has no receive request.
- 4. More than two message slots are able to store a receive message ID, the ID is stored into the message slot, having the smallest slot number.

Figure 23.27 shows each mask register and corresponding message slot. Figure 23.28 shows the acceptance filtering.







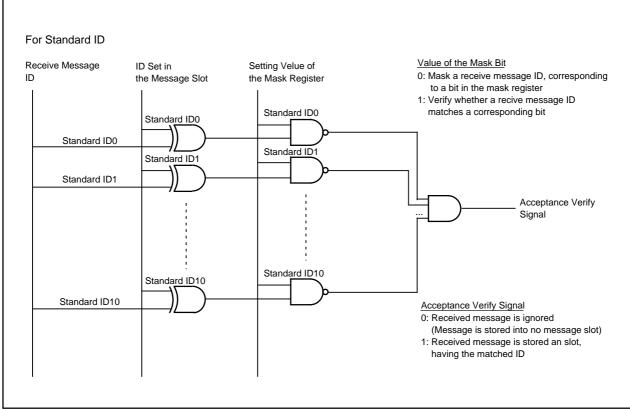



Figure 23.28 Acceptance Filtering



### 23.1.20 CAN0 Message Slot j Control Register (C0MCTLj Register) (j=0 to 15)

| b7 b6 b5 b4 | b3 b2 b1 b0 | COMCTL<br>COMCTL                                          | 0 to COMCTL3<br>4 to COMCTL7<br>8 to COMCTL11<br>12 to COMCTL15 | Address         After Reset           023016 <sup>(3)</sup> , 023116 <sup>(3)</sup> , 023216 <sup>(3)</sup> , 023316 <sup>(3)</sup> 0016           023416 <sup>(3)</sup> , 023516, 023616, 023716         0016           023816 <sup>(4)</sup> , 023916 <sup>(4)</sup> , 023A16 <sup>(4)</sup> , 023B16 <sup>(4)</sup> 0016           023C16 <sup>(4)</sup> , 023D16, 023E16, 023F16         0016 | (2) |
|-------------|-------------|-----------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|             |             | Bit<br>Symbol                                             | Bit Name                                                        | Function                                                                                                                                                                                                                                                                                                                                                                                          | R٧  |
|             |             | NEWDATA                                                   | Receive Complete<br>Flag<br>Transmit Complete<br>Flag           | When transmittingWhen receiving0: Not transmitted <sup>(4)</sup> 0: Not received <sup>(5)</sup> 1: Transmit complete1: Receive complete                                                                                                                                                                                                                                                           | RW  |
|             |             | When receive,<br>INVALDATA<br>When transmit,<br>TRMACTIVE | Receiving Flag<br>Transmitting Flag                             | When transmitting     When receiving       0: Except transmitting     0: Except storing       1: Transmitting     received data       1: Stores received data                                                                                                                                                                                                                                     | RC  |
|             |             | MSGLOST                                                   | Overwrite Flag <sup>(5)</sup>                                   | 0: No overrun error occurs<br>1: Overrun error occurs                                                                                                                                                                                                                                                                                                                                             | RW  |
|             |             | REMACTIVE                                                 | Remote Frame<br>Transmit/Receive<br>Status Flag                 | In modes other than BasicCan mode<br>0: Data frame<br>1: Remote frame<br>In BasicCan mode<br>0: Receives the data frame (status)<br>1: Receives the remote frame (status)                                                                                                                                                                                                                         | RC  |
|             |             | RSPLOCK                                                   | Automatic<br>Answering<br>Disable Mode<br>Select Bit            | <ul><li>0: Enables automatic answering of the remote frame</li><li>1: Disables automatic answering of the remote frame</li></ul>                                                                                                                                                                                                                                                                  | RW  |
|             |             | REMOTE                                                    | Remote Frame<br>Set Bit                                         | 0: Transmits/receives the data frame<br>1: Transmits/receives the remote frame                                                                                                                                                                                                                                                                                                                    | RW  |
|             |             | RECREQ                                                    | Receive<br>Request Bit                                          | 0: No request to receive the frame<br>1: Request to receive the frame                                                                                                                                                                                                                                                                                                                             | RW  |
| ļ           |             | TRMREQ                                                    | Transmit<br>Request Bit                                         | 0: No request to transmit the frame<br>1: Request to transmit the frame                                                                                                                                                                                                                                                                                                                           | RW  |

2. Value is obtained by setting the SLEEP bit in the C0SLPR register to "1" (sleep mode exited) after reset and supplying the clock to the CAN module.

- 3. The COMCTL0 to COMCTL4 registers each share addresses with the COLMAR0 to COLMAR4 registers.
- 4. The C0MCTL8 to C0MCTL12 registers each share addresses with the C0LMBR0 to C0LMBR4 registers.
- 5. Set to "0" by program. If it is set to "1", the value before setting to "1" remains.

Figure 23.29 COMCTL0 to COMCTL15 Registers



|        |        |        |              | ,         | -          |           |          |                                     |
|--------|--------|--------|--------------|-----------|------------|-----------|----------|-------------------------------------|
|        |        | Set    | ttings for t | he C0MCTL | j Register |           |          |                                     |
| TRMREQ | RECREQ | REMOTE | RSPLOCK      | REMACTIVE | MSGLOST    | TRMACTIVE | SENTDATA | Transmit/Receive Mode               |
|        |        |        |              |           |            | INVALDATA | NEWDATA  |                                     |
| 0      | 0      | 0      | 0            | 0         | 0          | 0         | 0        | No frame is transmitted or received |
| 0      | 1      | 0      | 0            | 0         | 0          | 0         | 0        | Data frame is received              |
| 0      | 1      | 1      | 1            | 0         | 0          | 0         | 0        | Remote frame is received            |
|        |        |        | or           |           |            |           |          | (The data frame is transmitted      |
|        |        |        | 0            |           |            |           |          | after receiving the remote frame.)  |
| 1      | 0      | 0      | 0            | 0         | 0          | 0         | 0        | Data frame is transmitted           |
| 1      | 0      | 1      | 0            | 0         | 0          | 0         | 0        | Remote frame is transmitted         |
|        |        |        |              |           |            |           |          | (The data frame is received after   |
|        |        |        |              |           |            |           |          | transmitting the remote frame)      |
|        |        |        |              |           |            |           |          | i alloring the remote hallor)       |

#### Table 23.4 C0MCTLj register(j= 0 to 15) Settings and Transmit/Receive Mode

#### 23.1.20.1 SENTDATA/NEWDATA Bit

The SENTDATA/NEWDATA bit indicates that the CAN module has transmitted or received the CAN message. Set the SENTDATA/NEWDATA bit to "0 " (not transmitted or not received) by program before data transmission and reception is started. The SENTDATA/NEWDATA bit is not set to "0" automatically. When the TRMACTIVE/INVALDATA bit is set to "1" (during transmission or storing received data), the SENTDATA/NEWDATA bit cannot be set to "0".

SENTDATA : The SENTDATA bit is set to "1" (transmit complete) when data transmission is completed in the transmit message slot.

NEWDATA : The NEWDATA bit is set to "1" (receive complete) when the message to be stored into the message slot j (j=0 to 15) is received in the receive message slot successfully.

NOTES:

- 1. To read a received data from the message slot j, set the NEWDATA bit to "0" before reading. If the NEWDATA bit is set to "1" immediately after reading, this indicates that new received data has been stored into the message slot while reading and the read data contains an indeterminate value. In this case, discard the data with indeterminate value and then read the message slot again after the NEWDATA bit is set to "0".
- 2. When the remote frame is transmitted or received, the SENTDATA/NEWDATA bit remains unchanged after the remote frame transmission or reception is completed. The SENTDATA/ NEWDATA bit is set to "1" when a subsequent data frame transmission or reception is completed.

#### 23.1.20.2 TRMACTIVE/INVALDATA Bit

The TRMACTIVE/INVALDATA bit indicates that the CAN protocl controller is transmitting or receiving a message and accessing the message slot j. The TRMACTIVE/INVALDATA bit is set to "1" when the CAN module is accessing the message slot and to "0 " when not accessing the message slot.

- TRMACTIVE : The TRMACTIVE bit is set to "1" (except transmitting) when a data transmission is started in the message slot. If the CAN module loses in bus arbitration, the TRMACTIVE bit is set to "0" (stops transmitting) when a CAN bus error occurs or when a data transmission is completed.
- INVALDATA : The INVALDATA bit is set to "1" (storing received data) when receiving a received message into the message slot j, after a message reception is completed. Then the INVALDATA bit is set to "0" after a message storage is completed. Data, if read from the message slot j while this bit is set to "1", is indeterminate.

#### 23.1.20.3 MSGLOST Bit

The MSGLOST bit is valid only when the message slot is set for reception. The MSGLOST bit is set to "1" (overrun error occurred) when the message slot j is overwritten by a new received message while the NEWDATA bit set to "1" (already received).

The MSGLOST bit is not automatically set to "0". Set to "0" (no overrun error occurred) by program.

#### 23.1.20.4 REMACTIVE Bit

The COMCTL0 to COMCTL15 registers all have the same function when the STATE\_BASICCAN bit is set to "0" (other than BasicCAN mode).

The REMACTIVE bit is set to "1" (remote frame) when the message slot j is set to transmit or receive the remote frame. The REMACTIVE bit is set to "0" (data frame) after the remote frame has been transmitted or received.

The functions of the COMCTL14 and COMCTL15 registers change when the STATE\_BASICCAN bit is set to "1" (BasicCAN mode). When the REMACTIVE bit is set to "0", this indicates that a message stored into the message slot is the data frame. When the REMACTIVE bit is set to "1", this indicates a message stored into the message slot is the remote frame.

#### 23.1.20.5 RSPLOCK Bit

The RSPLOCK bit is valid only when remote frame reception shown in Table 23.4 is selected. The RSPLOCK bit determines whether the received remote frame is processed or not.

When the RSPLOCK bit is set to "0" (automatic answering of the remote frame enabled), the slot automatically changes to a transmit slot after the remote frame is received and the message stored into the message slot is automatically transmitted as the data frame.

When the RSPLOCK bit is set to "1" (automatic answering of the remote frame disabled), message is not automatically transmitted upon receiving the remote frame.

Set the RSPLOCK bit to "0" to select any transmit/receive mode other than the remote frame reception.

#### 23.1.20.6 REMOTE Bit

The REMOTE bit selects transmit/receive mode shown in Table 23.4. Set the REMOTE bit to "0" to transmit or receive data frame. Set to "1" to transmit or receive remote frame.

The followings occur during remote frame transmission or reception.

• Transmitting the remote frame

A message stored into the message slot j (j=0 to 15) is transmitted as the remote frame. After transmission, the slot automatically becomes ready to receive data frame.

If the data frame is received before the remote frame is transmitted, the data frame is stored into the message slot j. The remote frame is not transmitted.

• Receiving the remote frame

The message slot receives the remote frame. The RSPLOCK bit determines whether or not to process the received remote frame.



#### 23.1.20.7 RECREQ Bit

The RECREQ bit selects transmit/receive mode shown in Table 23.4. Set the RECREQ bit to "1" (receive requested) when data frame or remote frame is received. Set the RECREQ bit to "0" (no receive requested) when data frame or remote frame is transmitted.

When a data frame is automatically transmitted after a remote frame is received, the RECREQ bit remains set to "1". Set the RECREQ bit to "0" to transmit a remote frame. After a remote frame is transmitted, a data frame is automatically received while the RECREQ bit remains set to "0".

When setting the TRMREQ bit to "1" (transmit requested), do not set the RECREQ bit to "1" (receive requested).

#### 23.1.20.8 TRMREQ Bit

The TRMREQ bit selects transmit/receive mode shown in Table 23.4. Set the TRMREQ bit to "1" (transmit requested) when data frame or remote frame is transmitted.

Set the TRMREQ bit to "0" (no request to transmit the frame) when data frame or remote frame is received.

When the data frame is automatically received after the remote frame is transmitted, the TRMREQ bit remains set to "1". Set the TRMREQ bit to "0" to receive the remote frame. After the remote frame is received, data frame is automatically transmitted while the TRMREQ bit remains set to "0".

If the RECREQ bit is set to "1" (request to receive the frame), do not set the TRMREQ bit to "1" (request to transmit the frame).

#### NOTES:

- 1. If some message slots are requested to transmit the data frame or remote frame, the message slot, having the smallest slot number starts transmitting.
- 2. In single-shot mode, the COMCTLj register is set to "0016" when data transmission is failed, due to the arbitration lost or transmission error.



### 23.1.21 CAN0 Slot Buffer Select Register (C0SBS Register)

| b7 b6 b5 | b4 b3 b2 b1 b0 | Symb<br>C0SE  |                                      | After Reset <sup>(2)</sup><br>0016                                                  |    |
|----------|----------------|---------------|--------------------------------------|-------------------------------------------------------------------------------------|----|
|          |                | Bit<br>Symbol | Bit Name                             | Function                                                                            | RW |
|          |                | SBS00         |                                      | b3 b2 b1 b0<br>0 0 0 0 : Message slot 0<br>0 0 0 1 : Message slot 1                 | RW |
|          |                | SBS01         | CAN0 Message                         | 0 0 1 0 : Message slot 2<br>0 0 1 1 : Message slot 3                                | RW |
|          |                | SBS02         | - Slot Buffer 0<br>Number Select Bit | (Note 1)<br>1 1 0 0 : Message slot 12                                               | RW |
|          |                | SBS03         | -                                    | 1 1 0 1 : Message slot 13<br>1 1 1 0 : Message slot 14<br>1 1 1 1 : Message slot 15 | RW |
|          |                | SBS10         |                                      | b3 b2 b1 b0<br>0 0 0 0 : Message slot 0<br>0 0 0 1 : Message slot 1                 | RW |
|          |                | SBS11         | CAN0 Message                         | 0 0 1 0 : Message slot 1<br>0 0 1 0 : Message slot 2<br>0 0 1 1 : Message slot 3    | RW |
|          |                | SBS12         | - Slot Buffer 1<br>Number Select Bit | (Note 1)<br>1 1 0 0 : Message slot 12                                               | RW |
|          |                | SBS13         | -                                    | 1 1 0 1 : Message slot 13<br>1 1 1 0 : Message slot 14<br>1 1 1 1 : Message slot 15 | RW |

#### Figure 23.30 COSBS Register

#### 23.1.21.1 SBS03 to SBS00 Bits

If the SBS03 to SBS00 bits select a number j (j=0 to 15), the message slot j is allocated to the CAN0 message slot buffer 0. The message slot j can be accessed via addresses 01E016 to 01EF16.

#### 23.1.21.2 SBS13 to SBS10 Bits

If the SBS13 to SBS10 bits select a number j, the message slot j is allocated to the CAN0 message slot buffer 1. The message slot j can be accessed via addresses 01F016 to 01FF16.



### 23.1.22 CAN0 Message Slot Buffer j (j=0,1)

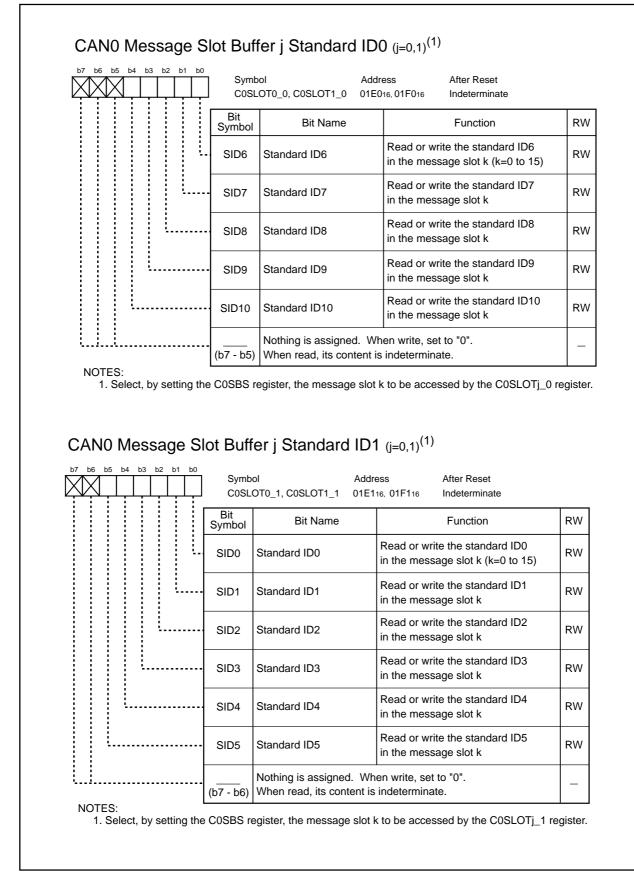
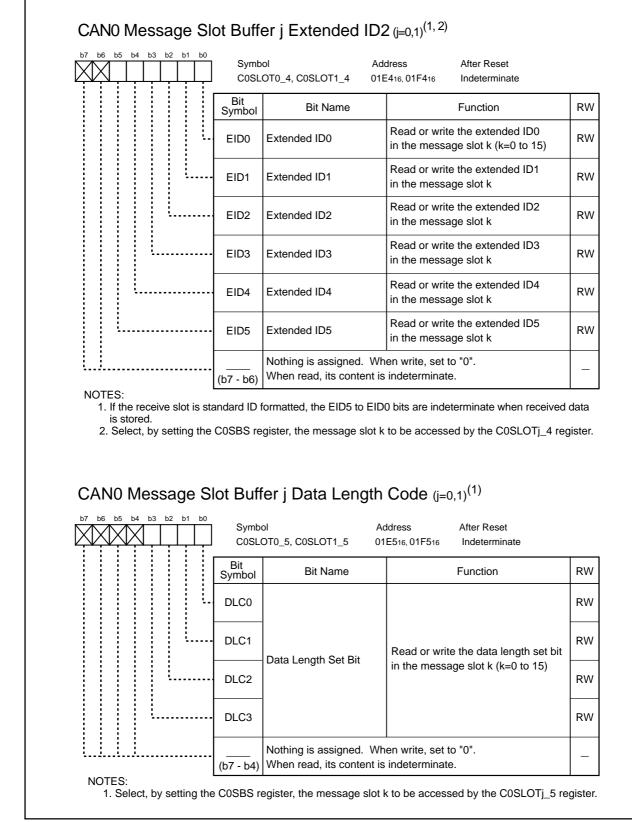
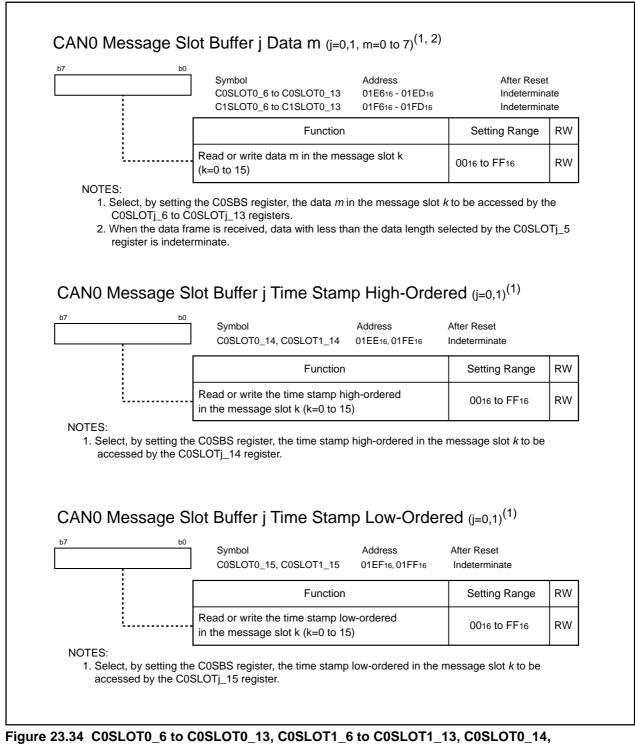




Figure 23.31 C0SLOT0\_0, C0SLOT1\_0, C0SLOT0\_1 and C0SLOT1\_1 Register

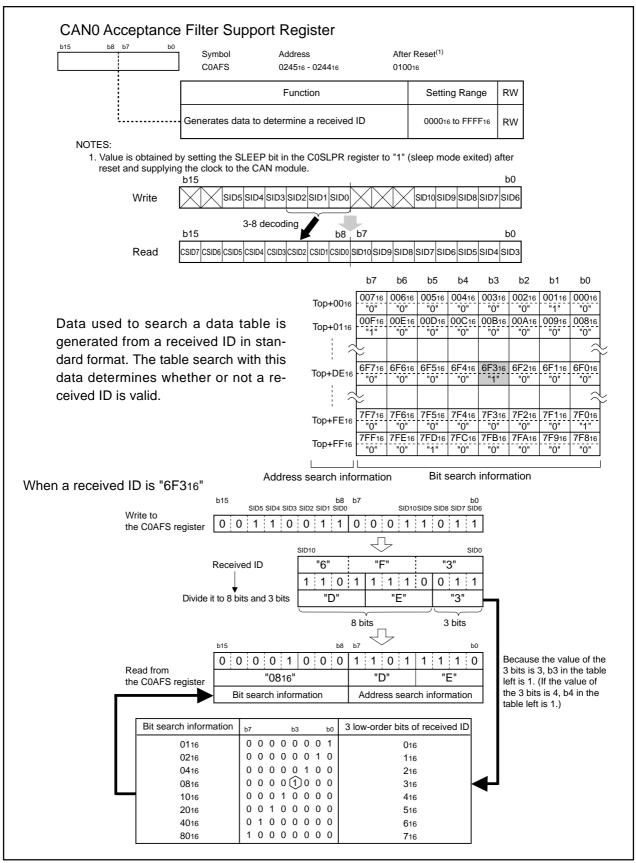

Γ

|  | b4 b3 b2 | b1 b0 | Symb<br>C0SL                                                                      |                                                                                                                                      | Address<br>1E216, 01F216                                                                                                                                                                                                             | After Reset<br>Indeterminate                                                                                                                                                                                                                                                                                                                                                                                     |                       |
|--|----------|-------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|  |          |       | Bit<br>Symbol                                                                     | Bit Name                                                                                                                             |                                                                                                                                                                                                                                      | Function                                                                                                                                                                                                                                                                                                                                                                                                         | R                     |
|  |          |       | EID14                                                                             | Extended ID14                                                                                                                        |                                                                                                                                                                                                                                      | ite the extended ID14<br>sage slot k (k=0 to 15)                                                                                                                                                                                                                                                                                                                                                                 | R                     |
|  |          |       | EID15                                                                             | Extended ID15                                                                                                                        | Read or wr<br>in the mess                                                                                                                                                                                                            | ite the extended ID15<br>sage slot k                                                                                                                                                                                                                                                                                                                                                                             | R                     |
|  |          |       | EID16                                                                             | Extended ID16                                                                                                                        | Read or wr<br>in the mess                                                                                                                                                                                                            | ite the extended ID16<br>sage slot k                                                                                                                                                                                                                                                                                                                                                                             | R                     |
|  |          |       | EID17                                                                             | Extended ID17                                                                                                                        | Read or wr<br>in the mess                                                                                                                                                                                                            | ite the extended ID17<br>sage slot k                                                                                                                                                                                                                                                                                                                                                                             | R                     |
|  |          |       | (b7 - b4)                                                                         | Nothing is assigned.<br>When read, its conter                                                                                        |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                  | -                     |
|  | Messag   | 0     | ot Buff                                                                           | fer j Extended                                                                                                                       |                                                                                                                                                                                                                                      | ssed by the COSLOTj_2                                                                                                                                                                                                                                                                                                                                                                                            | regis                 |
|  | Messag   | ge Sl | ot Buff                                                                           | fer j Extended                                                                                                                       | <b>ID1</b> (j=0,1) <sup>(1</sup><br>Address                                                                                                                                                                                          | l, 2)<br>After Reset                                                                                                                                                                                                                                                                                                                                                                                             | regis                 |
|  | Messag   | ge Sl | Ot Buff<br>Symb<br>COSL<br>Bit<br>Symbol                                          | er j Extended<br>ol<br>oT0_3, C0SLOT1_3<br>Bit Name                                                                                  | ID1 (j=0,1) <sup>(1</sup><br>Address<br>01E316,01F316                                                                                                                                                                                | I, 2)<br>After Reset<br>Indeterminate<br>Function                                                                                                                                                                                                                                                                                                                                                                | R                     |
|  | Messag   | ge Sl | Ot Buff<br>Symb<br>COSL<br>Bit                                                    | er j Extended<br>ol<br>oto_3, cosLot1_3                                                                                              | ID1 (j=0,1) <sup>(1</sup><br>Address<br>01E316, 01F316<br>Read or wr                                                                                                                                                                 | I, 2)<br>After Reset<br>Indeterminate                                                                                                                                                                                                                                                                                                                                                                            | R                     |
|  | Messag   | ge Sl | Ot Buff<br>Symb<br>COSL<br>Bit<br>Symbol                                          | er j Extended<br>ol<br>oT0_3, C0SLOT1_3<br>Bit Name                                                                                  | ID1 (j=0,1) <sup>(1</sup><br>Address<br>01E316,01F316<br>Read or wr<br>in the mess                                                                                                                                                   | After Reset<br>Indeterminate<br>Function<br>Fite the extended ID6<br>sage slot k (k=0 to 15)<br>Fite the extended ID7                                                                                                                                                                                                                                                                                            | R                     |
|  | Messag   | ge Sl | Ot Buff<br>Symb<br>COSL<br>Bit<br>Symbol<br>EID6                                  | er j Extended<br>ol<br>OT0_3, C0SLOT1_3<br>Bit Name<br>Extended ID6                                                                  | ID1 (j=0,1) <sup>(1</sup><br>Address<br>01E316,01F316<br>Read or wr<br>in the mess<br>Read or wr<br>in the mess                                                                                                                      | After Reset<br>Indeterminate<br>Function<br>Function<br>Function<br>Fite the extended ID6<br>sage slot k (k=0 to 15)<br>Fite the extended ID7<br>sage slot k<br>Fite the extended ID8                                                                                                                                                                                                                            | R                     |
|  | Messag   | ge Sl | ot Buff<br>Symb<br>COSL<br>Symbol<br>EID6<br>EID7                                 | er j Extended<br>ol<br>OT0_3, COSLOT1_3<br>Bit Name<br>Extended ID6<br>Extended ID7                                                  | ID1 (j=0,1) <sup>(1</sup><br>Address<br>01E316,01F316<br>Read or wr<br>in the mess<br>Read or wr<br>in the mess<br>Read or wr<br>in the mess                                                                                         | After Reset<br>Indeterminate<br>Function<br>ite the extended ID6<br>sage slot k (k=0 to 15)<br>ite the extended ID7<br>sage slot k<br>ite the extended ID8<br>sage slot k<br>ite the extended ID8                                                                                                                                                                                                                | R<br>R<br>R           |
|  | Messag   | ge Sl | ot Buff<br>Symb<br>COSL<br>Bit<br>Symbol<br>EID6<br>EID7<br>EID8                  | er j Extended<br>ol<br>OT0_3, COSLOT1_3<br>Bit Name<br>Extended ID6<br>Extended ID7<br>Extended ID8                                  | ID1 (j=0,1) <sup>(1</sup><br>Address<br>01E316,01F316<br>Read or wr<br>in the mess<br>Read or wr<br>in the mess<br>Read or wr<br>in the mess<br>Read or wr<br>in the mess                                                            | After Reset<br>Indeterminate<br>Function<br>Function<br>Tite the extended ID6<br>sage slot k (k=0 to 15)<br>Tite the extended ID7<br>sage slot k<br>Tite the extended ID8<br>sage slot k<br>Tite the extended ID8<br>sage slot k<br>Tite the extended ID9<br>sage slot k                                                                                                                                         | R<br>R<br>R<br>R<br>R |
|  | Messag   | ge Sl | ot Buff<br>Symb<br>COSL<br>Bit<br>Symbol<br>EID6<br>EID7<br>EID8<br>EID9          | er j Extended<br>ol<br>OT0_3, COSLOT1_3<br>Bit Name<br>Extended ID6<br>Extended ID7<br>Extended ID8<br>Extended ID9                  | ID1 (j=0,1) <sup>(1</sup><br>Address<br>01E316, 01F316<br>Read or wr<br>in the mess<br>Read or wr<br>in the mess<br>Read or wr<br>in the mess<br>Read or wr<br>in the mess<br>Read or wr<br>in the mess                              | After Reset<br>Indeterminate<br>Function<br>Function<br>Function<br>Fite the extended ID6<br>sage slot k (k=0 to 15)<br>Fite the extended ID7<br>sage slot k<br>Fite the extended ID8<br>sage slot k<br>Fite the extended ID9<br>sage slot k<br>Fite the extended ID10<br>sage slot k<br>Fite the extended ID10<br>sage slot k                                                                                   | R<br>R<br>R<br>R<br>R |
|  | Messag   | ge Sl | ot Buff<br>Symb<br>COSL<br>Bit<br>Symbol<br>EID6<br>EID7<br>EID8<br>EID9<br>EID10 | er j Extended<br>ol<br>OT0_3, COSLOT1_3<br>Bit Name<br>Extended ID6<br>Extended ID7<br>Extended ID8<br>Extended ID9<br>Extended ID10 | ID1 (j=0,1) <sup>(1</sup><br>Address<br>01E316, 01F316<br>Read or wr<br>in the mess<br>Read or wr<br>in the mess | After Reset<br>Indeterminate<br>Function<br>Function<br>Function<br>Fite the extended ID6<br>sage slot k (k=0 to 15)<br>Fite the extended ID7<br>sage slot k<br>Fite the extended ID8<br>sage slot k<br>Fite the extended ID9<br>sage slot k<br>Fite the extended ID10<br>sage slot k<br>Fite the extended ID10<br>sage slot k<br>Fite the extended ID11<br>sage slot k<br>Fite the extended ID11<br>sage slot k | R<br>R<br>R<br>R      |

Figure 23.32 C0SLOT0\_2, C0SLOT1\_2, C0SLOT0\_3 and C0SLOT1\_3 Registers



#### Figure 23.33 C0SLOT0\_4, C0SLOT1\_4, C0SLOT0\_5 and C0SLOT1\_5 Registers




C0SLOT1\_14, C0SLOT0\_15 and C0SLOT1\_15 Registers

The message slot, selected by setting the C0SBS register, is read by reading the message slot buffer. A message can be written in the message slot selected by the C0SBS register if the message is written to the message slot buffer.

Write to the message slot k (k=0 to 15) while the corresponing COMCTLk register is set to "0016".

### 23.1.23 CAN0 Acceptance Filter Support Register (C0AFS Register)



#### Figure 23.35 C0AFS Register

The C0AFS register enables prompt performance of the table search to determine the varidity of a received ID. This function is for standard-formatted ID only.

### 23.2 CAN Clock

The CAN clock is the operating clock for the CAN module. f1 or fCAN can be selected as the CAN clock. fCAN has the same frequency as the main clock. The PM25 bit in the PM2 register determines the CAN clock. Refer to **9. Clock Generation Circuit** for details.

### 23.2.1 Main Clock Direct Mode

fCAN becomes the CAN clock in main clock direct mode. The CAN module must enter main clock direct mode while the PM25 bit is set to "1" (main clock). Set the PM25 bit in CAN sleep mode. Set the PM24 bit in the PM2 register to "1" (main clock) before accessing CAN-associated registers in main clock direct mode. Do not enter wait mode or stop mode when the PM24 bit is set to "1". Table 23.5 lists CAN clock settings. Figure 23.36 shows a flow chart of accessing procedure for CAN-associated registers.

#### Table 23.5 CAN Clock Settings

| CAN   | Clock Source                           | CM0<br>Register | CM1<br>Register | CM2<br>Register | PM2 R    | egister  | MCD<br>Register      |
|-------|----------------------------------------|-----------------|-----------------|-----------------|----------|----------|----------------------|
| Clock | Clock Source                           | CM07 Bit        | CM17 Bit        | CM21 Bit        | PM24 Bit | PM25 Bit | MCD4 to<br>MCD0 bits |
| fcan  | Main Clock<br>(Main Clock Direct Mode) | 0               | 1               | 0               | 1        | 1        |                      |
|       | Main Clock                             | 0               | 0               | 0               | 0        | 0        | 100102               |
| f1    | PLL Clock                              | 0               | 1               | 0               | 0        | 0        | 100102               |

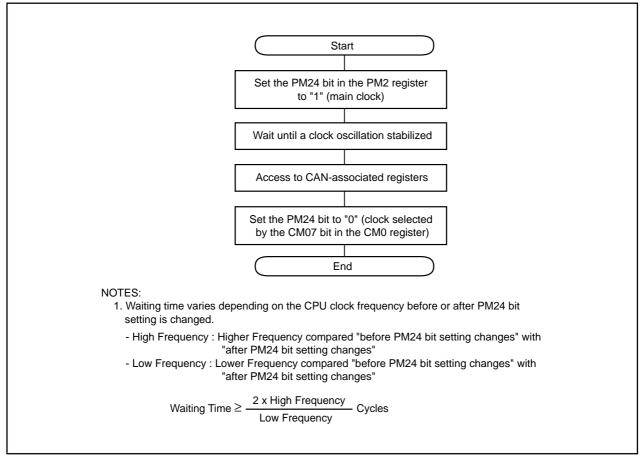



Figure 23.36 Accessing Procedure for CAN-Associated Registers

### 23.3 Timing with CAN-Associated Registers

### 23.3.1 CAN Module Reset Timing

Figure 23.37 shows an operation example of when the CAN module is reset.

- (1) The CAN module can be reset when the STATE\_RESET bit in the COSTR register is set to "1" (CAN module reset completed) after the RESET1 and RESET0 bits in the COCTLR0 register are set to "1" (CAN module reset).
- (2) Set necessary CAN-associated registers.
- (3) CAN communication can be established after the STATE\_RESET bit is set to "0" (resetting) after the RESET1 and RESET0 bits are set to "0" (CAN module reset exited).

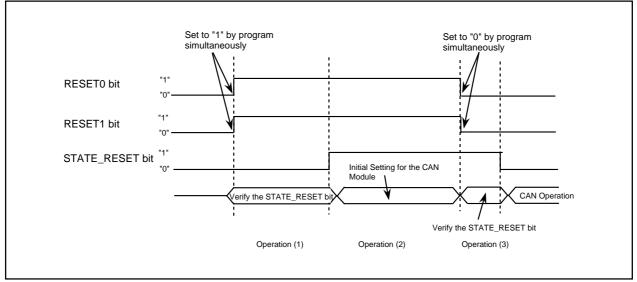
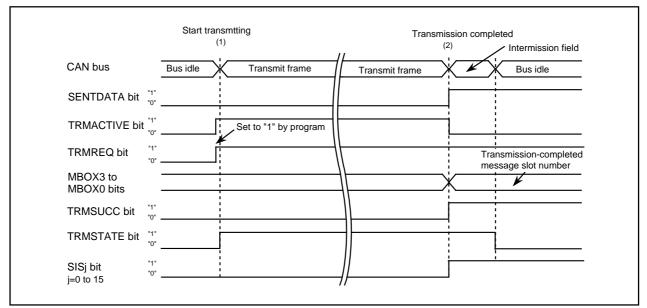




Figure 23.37 Example of CAN Module Reset Operation

### 23.3.2 CAN Transmit Timing

Figure 23.38 shows an operation example of when the CAN transmits a frame.

- (1) When the TRMREQ bit in the COMCTLj register (j=0 to 15) is set to "1" (request to transmit the data frame) while the CAN bus is in an idle state, the TRMACTIVE bit in the COMCTLj register is set to "1" (during transmission) and the TRMSTATE bit in the COSTR register is set to "1" (during transmission). The CAN starts transmitting the frame.
- (2) After a CAN frame transmission is completed, the SENTDATA bit in the COMCTLj register is set to "1" (already transmitted), the TRMSUCC bit in the COSTR register to "1" (transmission completed) and the SISj bit in the COSISTR register to "1" (interrupt requested). The MBOX3 to MBOX0 bits in the COSTR register store transmitted message slot numbers.





### 23.3.3 CAN Receive Timing

Figure 23.39 shows an operation example of when the CAN receives a frame.

- (1) When the RECREQ bit in the COMCTLj register (j= 0 to 15) is set to "1" (receive requested), the CAN is ready to receive the frame at anytime.
- (2) When the CAN starts receiving the frame, the RECSTATE bit in the COSTR register is set to "1" (during reception).
- (3) After the CAN frame reception is completed, the INVALDATA bit in the COMCTLj register is set to "1" (storing received data), the NEWDATA bit in the COMCTLj register is set to "1" (receive complete) and the RECSUCC bit in the COSTR register is set to "1" (reception completed).
- (4) After data is written to the message slot, the INVALDATA bit is set to "0" (storing receiving data) and the SISj bit in the COSISTR register is set to "1" (interrupt requested). The MBOX3 to MBOX0 bits in the COSTR register store received message slot numbers.

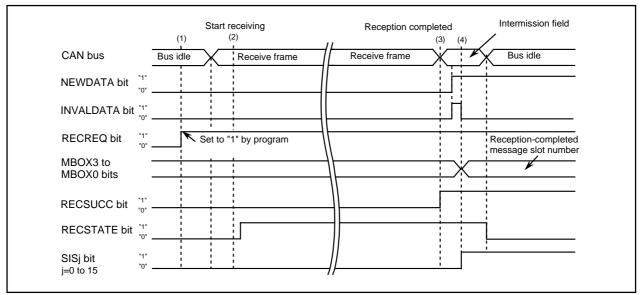



Figure 23.39 Example of CAN Data Frame Receive Operation



### 23.3.4 CAN Bus Error Timing

Figure 23.40 shows an operation example of when a CAN bus error occurs.

- (1) When a CAN bus error is detected, the STATE\_BUSERROR bit in the C0STR register is set to
  - "1", (error occurred) and the BEIS bit in the C0EISTR register is set to "1" (interrupt requested). The CAN starts transmitting the error frame.

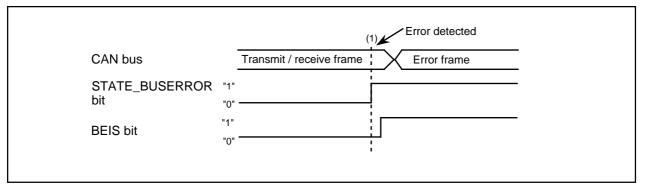



Figure 23.40 Operation Timing when CAN Bus Error Occurs

### 23.4 CAN Interrupts

The CAN0 wake-up interrupt and CAN0j interrupts (j=0 to 2) are provided as the CAN interrupt.

### 23.4.1 CAN0 Wake-Up Interrupt

If P77 (CAN0IN) is used as a CAN0 input port, the CAN0 wake-up interrupt is available by using event counter mode of the timer A3 (TA3IN) that shares a pin with CAN0IN.

If P83 (CAN0IN) is used as a CAN input port, the CAN0 wake-up interrupts are available by using INT1 that shares a pin with CAN0IN.

### 23.4.2 CAN0j Interrupts

Figure 23.41 shows a block diagram of the CAN0j interrupts. The followings cause the CAN-associated interrupt request to be generated.

- The CAN0 slot k (k=0 to 15) completes a transmission
- The CAN0 slot k completes a reception
- The CAN0 module detects a bus error
- The CAN0 module moves into an error-passive state
- The CAN0 module moves into a bus-off state

The INTSEL bit in the COCTLR1 register determines how an interrupt request is generated. When the INTSEL bit is set to "0", one of the above CAN0 interrupt request source causes the CAN0j interrupts to be generated by the OR circuit. When the INTSEL bit is set to "1", CAN0 transmission completed, CAN0 reception completed and CAN0 errors (CAN0 bus error detection, CAN0 module into error-passive state and CAN0 module into bus-off state) cause the CAN0j interrupt corresponding to each source to be generated.

#### 23.4.2.1 When the INTSEL Bit is Set to "0"

If the CAN-associated interrupt is generated by one of the interrupt request source listed in **23.4.2 CAN0j Interrupts**, the corresponding bit in the C0SISTR register is set to "1" (interrupt requested) when the CAN0 slot k completes a transmission or a reception. The corresponding bit in the C0EISTR register is set to "1" (interrupt requested) when the CAN0 module detects a bus error, moves into an error-passive state, or moves into a bus-off state.

The CAN0 interrupt request signal is set to "1" when the corresponding bit in the COSISTR or COEISTR is set to "1" and the corresponding bit in the COSIMKR or COEIMKR is set to "1"

When the CAN0 interrupt request signal changes "0" to "1", all CAN0jR bits (j=0 to 2) in the IIO9IR to IIO11IR registers are set to "1" (interrupt requested).

If at least one of the CAN0jE bits in the IIO9IE to IIO11IE registers is set to "1" (interrupt enabled), the IR bits in the corresponding CAN0IC to CAN2IC registers are set to "1" (interrupt requested). The CAN0 interrupt request signal remains set to "1" if another interrupt request source causes a corresponding bit in the COSISTR or COEISTR to be set to "1" and the corresponding bit in the COSIMKR or COEIMKR to be set to "1" after the CAN0 interrupt request signal changes "0" to "1". The CAN0jR and IR bits also remain unchanged.

Bits in the COSISTR or COEISTR register and CAN0jR bits (j=0 to 2) in the IIO9IR to IIO11IR registers are not set to "0" automatically, interrupt acknowledgment notwithstanding. Set these bits to "0" by program.

The CAN0 interrupts are acknowledged when the CAN0jR bit in the IIO9IR to IIO11IR register and the corresponding bit in the COSISTR or COEISTR register are set to "0". If these bits remain set to "1", all CAN-associated interrupt request source become invalid.

#### 23.4.2.2 When the INTSEL Bit is Set to "1"

If the CAN-associated interrupt is generated by one of the interrupt request source listed in **23.3.2 CAN0j Interrupts**, the corresponding bit in the C0SISTR register is set to "1" (interrupt requested) when the CAN0 slot k completes a transmission or a reception. The corresponding bit in the C0EISTR register is set to "1" (interrupt requested) when the CAN0 module detects a bus error, goes into an error-passive state, or goes into a bus-off state.

The CAN0 receive interrupt request signal is set to "1" if the corresponding bit in the COSIMKR register is set to "1" (interrupt request enabled) and the corresponding bit in the COSISTR register is set to "1" when the CAN0 module completes a reception.

The CAN0 transmit interrupt request signal is set to "1" if the corresponding bit in the C0SIMKR register is set to "1" and the corresponding bit in the C0SISTR register is set to "1" when the CAN0 module completes a transmission.

The CAN0 error interrupt request signal is set to "1" if corresponding bits in the C0EIMKR register are set to "1" and the corresponding bit in the C0EISTR register is set to "1" when the CAN0 module detects a bus error, goes into an error-passive state, or goes into a bus-off state.

When the CAN0 receive interrupt request signal changes "0" to "1", the CAN00R bit in the IIO9IR register is set to "1" (interrupt requested). If the CAN00E in the IIO9IE register is set to "1" (interrupt enabled), the IR bit in the CAN0IC register is set to "1" (interrupt requested).

When the CAN0 transmit interrupt request signal changes "0" to "1", the CAN01R bit in the IIO10IR register is set to "1" (interrupt requested). If the CAN01E in the IIO10IE register is set to "1" (interrupt enabled), the IR bit in the CAN1IC register is set to "1" (interrupt requested).

When the CAN0 error interrupt request signal changes "0" to "1", the CAN02R bit in the IIO11IR register is set to "1" (interrupt requested). If the CAN02E in the IIO11IE register is set to "1" (interrupt enabled), the IR bit in the CAN2IC register is set to "1" (interrupt requested).

The CAN0 error interrupt request signal remains set to "1" if another interrupt request causes the corresponding bit in the C0EIMKR register is set to "1" and the corresponding bit in the C0EISTR to be set to "1" after the CAN0 error interrupt request signal changes "0" to "1". The CAN02R and IR bits also remain unchanged.

Bits in the COSISTR or COEISTR register and CAN0jR bits (j=0 to 2) in the IIO9IR to IIO11IR registers are not set to "0" automatically, interrupt acknowledgment notwithstanding. Set these bits to "0" by program.

The CAN0 receive interrupt and CAN0 transmit interrupt are acknowledged when the CAN00R bit in the IIO9IR register and the CAN01R bit in the IIO10IR register are set to "0". Corresponding bits in the COSISTR register can be set to either "0" or "1".

The CAN0 error interrupt is acknowledged when the CAN02R bit in the IIO11IR register and corresponding bits in the C0EISTR register are set to "0".

If these bits remain set to "1", all CAN-associated interrupt request source become invalid.



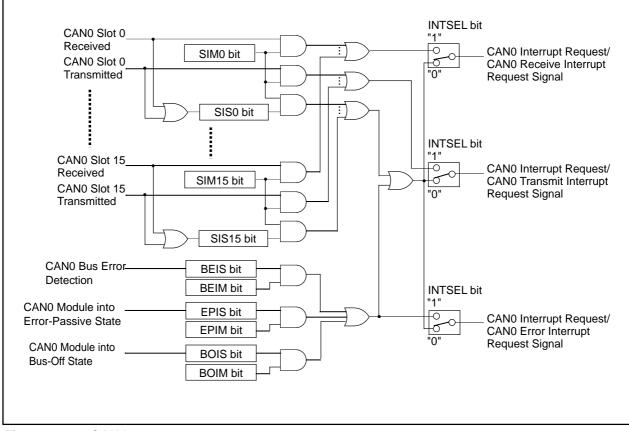



Figure 23.41 CAN Interrupts



# 24. Programmable I/O Ports

87 programmable I/O ports from P0 to P10 (excluding P85) are available in the 100-pin package and 123 programmable I/O ports from P0 to P15 (excluding P85) are in the 144-pin package. The direction registers determine each port status, input or output. The pull-up control registers determine whether the ports, divided into groups of four ports, are pulled up or not. P85 is an input port and no pull-up for this port is allowed. The P8\_5 bit in the P8 register indicates an  $\overline{\text{NMI}}$  input level since P85 shares pins with  $\overline{\text{NMI}}$ . Figures 24.1 to 24.4 show programmable I/O port configurations.

Each pin functions as the programmable I/O port, an I/O pin for internal peripheral functions or the bus control pin.

To use the pins as input or output pins for internal peripheral functions, refer to the explanations for each fuction. Refer to **8. Bus** when used as the bus control pin.

The registers associated with the programmable I/O ports are as follows.

#### 24.1 Port Pi Direction Register (PDi Register, i=0 to 15)

Figure 24.5 shows the PDi register.

The PDi register selects input or output status of a programmable I/O port. Each bit in the PDi register corresponds to a port.

In memory expansion and microprocessor mode, the PDi register cannot control pins being used as bus control pins (A0 to A22,  $\overline{A23}$ , D0 to D15,  $\overline{CS0}$  to  $\overline{CS3}$ ,  $\overline{WRL}/\overline{WR}$ ,  $\overline{WRH}/\overline{BHE}$ ,  $\overline{RD}$ , BCLK/ALE/CLKOUT,  $\overline{HLDA}/ALE$ ,  $\overline{HOLD}$ , ALE and  $\overline{RDY}$ ). No bit controlling P85 is provided in the direction registers.

### 24.2 Port Pi Register (Pi Register, i=0 to 15)

Figure 24.6 shows the Pi register.

The Pi register writes and reads data to communicate with external devices. The Pi register consists of a port latch to hold output data and a circuit to read pin states. Each bit in the Pi register corresponds to a port. In memory expansion and microprocessor mode, the Pi register cannot control pins being used as bus control pins (A0 to A22, A23, D0 to D15, CS0 to CS3, WRL/WR, WRH/BHE, RD, BCLK/ALE/CLKOUT, HLDA/ALE, HOLD, ALE and RDY).

### 24.3 Function Select Register Aj (PSj Register) (j=0 to 3, 5, 8, 9)

Figures 24.7 to 24.10 show the PSj registers.

The PSj register selects either I/O port or peripheral function output if an I/O port shares pins with a peripheral function output (excluding DA0 and DA1.)

When multiple peripheral function outputs are assigned to a pin, set the PSL0 to PSL3, PSC, PSC2, PSC3 and PSD1 registers to select which function is used.

Tables 24.3 to 24.10 list peripheral function output control settings for each pin.

### 24.4 Function Select Register B0 to B3 (PSL0 to PSL3 Registers)

Figures 24.11 and 24.12 show the PSL0 to PSL3 registers.

When multiple peripheral function outputs are assigned to a pin, the PSL0 to PSL3 registers select which peripheral function output is used.

Refer to **24.10** Analog Input and Other Peripheral Function Input for the PSL3\_6 to PSL3\_3 bits in the PSL3 register.



### 24.5 Function Select Register C (PSC, PSC2, PSC3 Registers)

Figures 24.13 and 24.14 show the PSC, PSC2 and PSC3 registers.

When multiple peripheral function outputs are assigned to a pin, the PSC register, the PSC2 register and the PSC3 register select which peripheral function output is used.

Refer to 24.10 Analog Input and Other Peripheral Function Input for the PSC\_7 bit in the PSC register.

### 24.6 Function Select Register D (PSD1 Register)

Figure 24.14 shows the PSD1 register.

When multiple peripheral function outputs are assigned to a pin, the PSD1 register selects which peripheral function output is used.

### 24.7 Pull-up Control Register 0 to 4 (PUR0 to PUR4 Registers)

Figures 24.15 and 24.16 show the PUR0 to PUR4 registers.

The PUR0 to PUR4 registers select whether the ports, divided into groups of four ports, are pulled up or not. Ports with bits in the PUR0 to PUR4 registers set to "1" (pull-up) and the direction registers set to "0" (input mode) are pulled up.

Set bits in the PUR0 and PUR1 registers in P0 to P5, running as bus, to "0" (no pull-up) in memory expansion mode and microprocessor mode. P0, P1 and P40 to P43 can be pulled up when they are used as input ports in memory expansion mode and microprocessor mode.

### 24.8 Port Control Register (PCR Register)

Figure 24.17 shows the PCR register.

The PCR register selects either CMOS output or N-channel open drain output as the P1 output format. If the PCR0 bit is set to "1", N-channel open drain output is selected because the P-channel in the CMOS port is turned off. This is, however, not a perfect open drain. Therefore, the absolute maximum rating of the input voltage is between -0.3V and VCC2 + 0.3V.

If P1 is used as the data bus in memory expansion mode and microprocessor mode, set the PCR0 bit to "0". If P1 is used as a port in memory expansion mode and microprocessor mode, the PCR0 bit determines the output format.

### 24.9 Input Function Select Register (IPS and IPSA Registers)

Figures 24.17 and 24.18 show the IPS and IPSA registers.

The IPS3, IPS1 and IPS0 bits in the IPS register and the IPSA\_0 bit in the IPSA register select which pin is assigned for the intelligent I/O or CAN input functions.

Refer to 24.10 Analog Input and Other Peripheral Function Input for the IPS2 bit.

### 24.10 Analog Input and Other Peripheral Function Input

The PSL3\_6 to PSL3\_3 bits in the PSL3 register, the PSC\_7 bit in the PSC register and the IPS2 bit in the IPS register each separate analog I/O ports from other peripheral functions. Setting the corresponding bit to "1" (analog I/O) to use the analog I/O port (DA0, DA1, ANEX0, ANEX1, AN4 to AN7 or AN150 to AN157) prevents an intermediate potential from being impressed to other peripheral functions. The impressed intermediate potential may cause increase in power consumption.

Set the corresponding bit to "0" (except analog I/O) when analog I/O is not used. All peripheral function inputs except the analog I/O port are available when the corresponding bit is set to "0". These inputs are indeterminate when the bit is set to "1". When the PSC\_7 bit is set to "1", key input interrupt request remains unchanged regardless of  $\overline{\text{Klo}}$  to  $\overline{\text{Klo}}$  pin input level change.

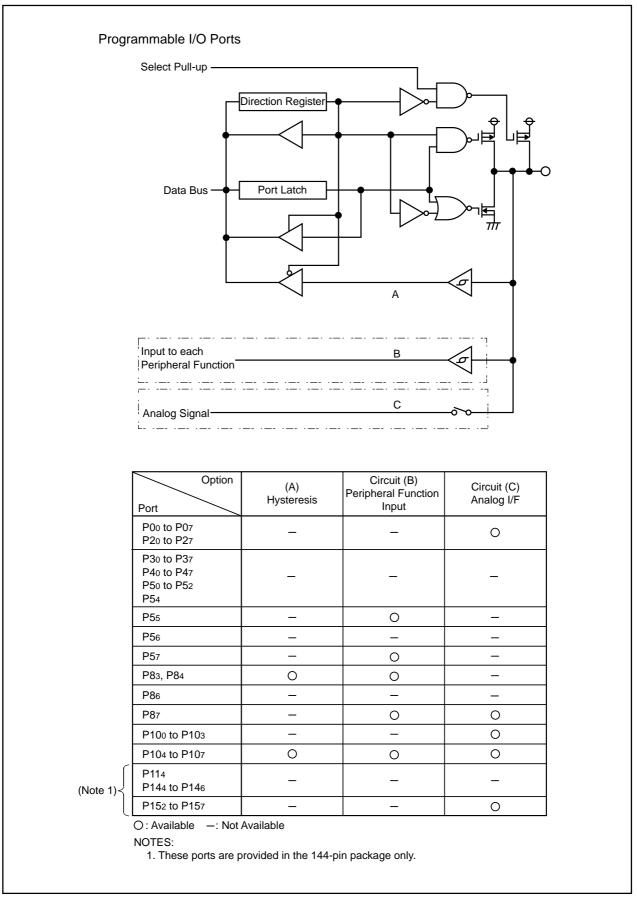
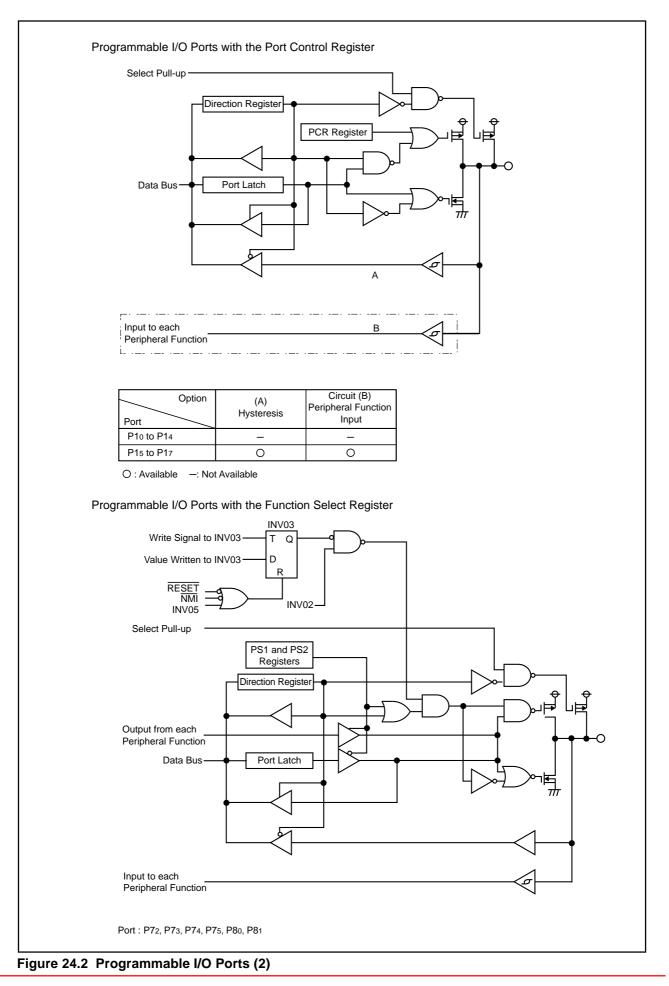
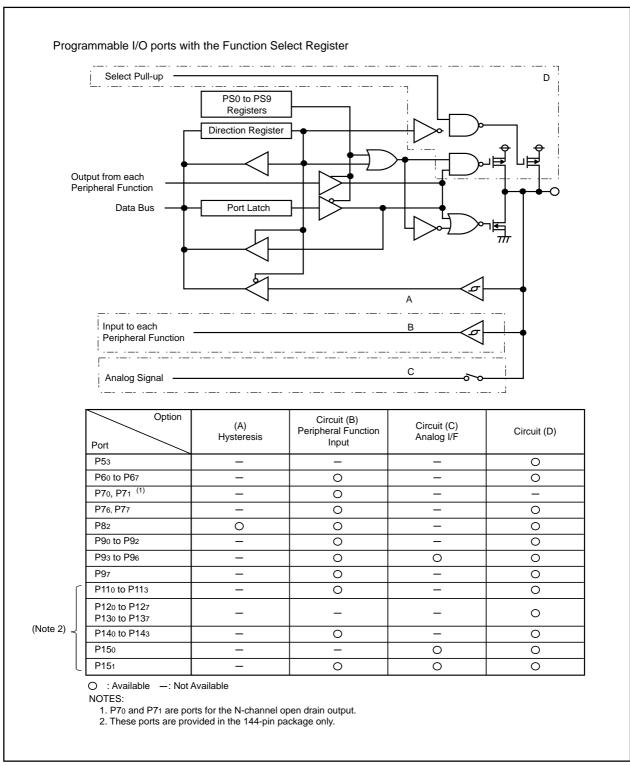
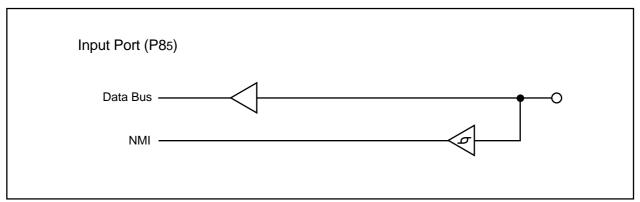
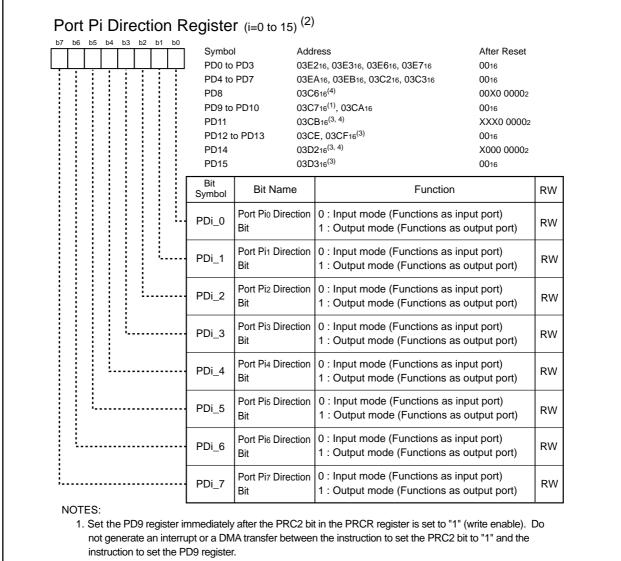






Figure 24.1 Programmable I/O Ports (1)














- 2. In memory expansion mode and microprocessor mode, the PDi register cannot control pins being used as bus control pins (Ao to A22, Ā23, Do to D15, CS0 to CS3, WRL/WR, WRH/BHE, BCLK/ALE/CLKOUT, RD, HLDA/ALE, HOLD, ALE and RDY).
- M32C/84T cannot be used in memory expansion mode and microprocessor mode.
- 3. Set the PD11 to PD15 registers to "FF16" in the 100-pin package.
- 4. Nothing is assigned in the PD8\_5 bit in the PD8 register, the PD11\_7 to PD11\_5 bits in the PD11 register (144-pin package only) and the P14\_7 bit in the PD14 register (144-pin package only). If write, set these bits to "0". When read, their contents are indeterminate.

Figure 24.5 PD0 to PD15 Registers



Г

| b7 b6 b5 b4 b3                                                                                          | 3 b2 b1 b0                                                                                                                              | Symbol<br>P0 to P<br>P6 to P<br>P11 to F                                                             | 5 03E016, 03E116, 03E4<br>10 03C016, 03C116 <sup>(3)</sup> , 03C                                                                                            | After Res<br>16, 03E516, 03E816, 03E916 Indetermi<br>C416 <sup>(4)</sup> , 03C516, 03C816 Indetermi<br>CD16, 03D016 <sup>(5)</sup> , 03D116 Indetermi | nate<br>nate |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                                                                                                         |                                                                                                                                         | Bit<br>Symbol                                                                                        | Bit Name                                                                                                                                                    | Function                                                                                                                                              | RW           |
|                                                                                                         |                                                                                                                                         | Pi_0                                                                                                 | Port Pio Bit                                                                                                                                                |                                                                                                                                                       | RV           |
|                                                                                                         |                                                                                                                                         | Pi_1                                                                                                 | Port Pi1 Bit                                                                                                                                                |                                                                                                                                                       | RV           |
|                                                                                                         |                                                                                                                                         | Pi_2                                                                                                 | Port Pi2 Bit                                                                                                                                                | Pin levels can be read by reading bits corresponding to programmable                                                                                  | RV           |
|                                                                                                         |                                                                                                                                         | Pi_3                                                                                                 | Port Pi3 Bit                                                                                                                                                | ports in input mode.<br>Pin levels can be controlled by<br>writing to bits corresponding to                                                           | RV           |
|                                                                                                         |                                                                                                                                         | Pi_4                                                                                                 | Port Pi4 Bit                                                                                                                                                | programmable ports in output mode.                                                                                                                    | RV           |
|                                                                                                         |                                                                                                                                         | Pi_5                                                                                                 | Port Pis Bit                                                                                                                                                | 1: "H" level                                                                                                                                          | RV           |
|                                                                                                         |                                                                                                                                         | Pi_6                                                                                                 | Port Pie Bit                                                                                                                                                |                                                                                                                                                       | RV           |
|                                                                                                         |                                                                                                                                         | Pi_7                                                                                                 | Port Piz Bit                                                                                                                                                |                                                                                                                                                       | RV           |
| as bus co<br>BCLK/AL<br>M32C/84<br>2. The P11<br>3. P70 and 1<br>when P7<br>4. The P8_5<br>5. Nothing i | ontrol pins (Ad<br>E/CLKOUT, H<br>IT cannot be<br>to P15 registe<br>P71 are ports<br>0 and P71 put<br>5 bit is for rea<br>s assigned in | to A22, A<br>ILDA/ALE<br>used in m<br>ers are pr<br>for the N<br>t in "H" sig<br>d only.<br>the P11_ | 123, D0 to D15, CS0 to CS3<br>, HOLD, ALE and RDY).<br>nemory expansion mode a<br>rovided in the 144-pin pac<br>-channel open drain outpug<br>gnal outputs. | ut. The pins go into high-impedance st<br>1 register and the P14_7 bit in the P14                                                                     |              |

Figure 24.6 P0 to P15 Registers



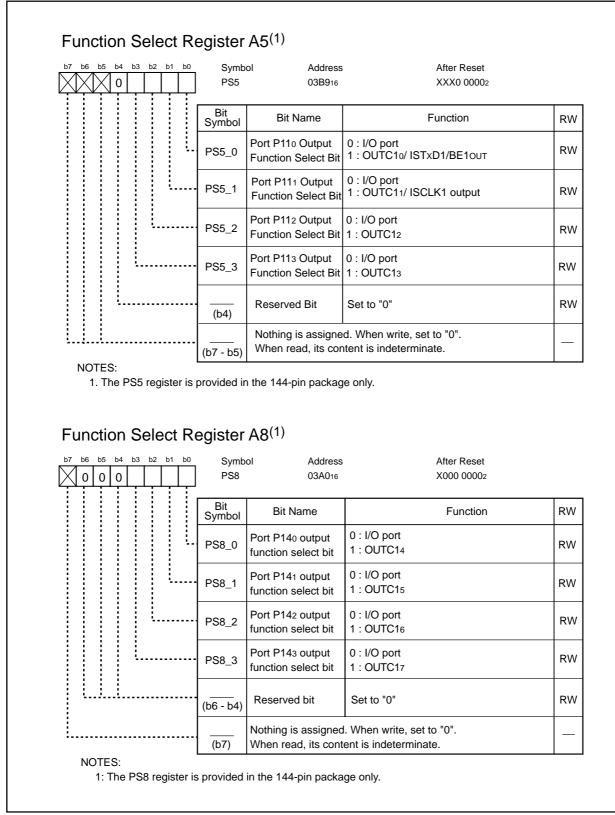
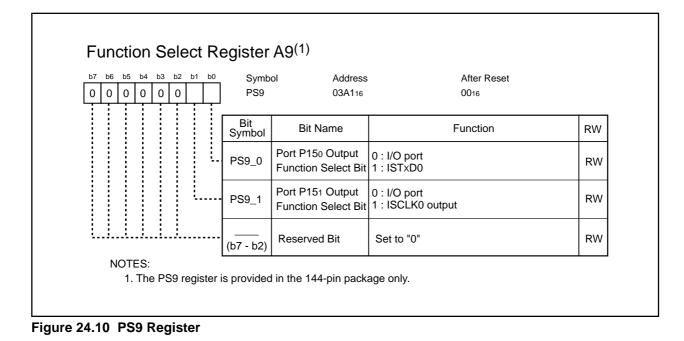

| 07 b6 b5 b4 b3 b2 | b1 b0 | Symb<br>PS0                                                                  | ool Addres<br>03B01e                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                             |                                        |
|-------------------|-------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                   |       | Bit<br>Symbol                                                                | Bit Name                                                                                                                                                                                                                                                          | Function                                                                                                                                                                                                                                                                                                                                                    | RV                                     |
|                   |       | PS0_0                                                                        | Port P60 Output<br>Function Select Bit                                                                                                                                                                                                                            | 0 : I/O port<br>1 : RTS0                                                                                                                                                                                                                                                                                                                                    | RV                                     |
|                   |       | PS0_1                                                                        | Port P61 Output<br>Function Select Bit                                                                                                                                                                                                                            | 0 : I/O port<br>1 : CLK0 output                                                                                                                                                                                                                                                                                                                             | RV                                     |
|                   |       | PS0_2                                                                        | Port P62 Output<br>Function Select Bit                                                                                                                                                                                                                            | 0 : I/O port<br>1 : Selected by the PSL0_2 bit                                                                                                                                                                                                                                                                                                              | RV                                     |
|                   |       | PS0_3                                                                        | Port P63 Output<br>Function Select Bit                                                                                                                                                                                                                            | 0 : I/O port<br>1 : TxD0/SDA0 output                                                                                                                                                                                                                                                                                                                        | RV                                     |
|                   |       | PS0_4                                                                        | Port P64 Output<br>Function Select Bit                                                                                                                                                                                                                            | 0 : I/O port<br>1 : Selected by the PSL0_4 bit                                                                                                                                                                                                                                                                                                              | RV                                     |
|                   |       | PS0_5                                                                        | Port P65 Output<br>Function Select Bit                                                                                                                                                                                                                            | 0 : I/O port<br>1 : CLK1 output                                                                                                                                                                                                                                                                                                                             | RV                                     |
|                   |       | PS0_6                                                                        | Port P66 Output<br>Function Select Bit                                                                                                                                                                                                                            | 0 : I/O port<br>1 : Selected by the PSL0_6 bit                                                                                                                                                                                                                                                                                                              | RV                                     |
|                   |       | PS0_7                                                                        | Port P67 Output                                                                                                                                                                                                                                                   | 0 : I/O port                                                                                                                                                                                                                                                                                                                                                | RV                                     |
| Function Sele     |       |                                                                              | 1                                                                                                                                                                                                                                                                 | 1 : TxD1/SDA1 output                                                                                                                                                                                                                                                                                                                                        |                                        |
| Function Sele     |       |                                                                              | A1                                                                                                                                                                                                                                                                | s After Reset                                                                                                                                                                                                                                                                                                                                               |                                        |
|                   |       | egister                                                                      | A1                                                                                                                                                                                                                                                                | s After Reset                                                                                                                                                                                                                                                                                                                                               | RV                                     |
|                   |       | egister<br>Symb<br>PS1<br>Bit                                                | A1<br>Addres<br>03B116<br>Bit Name<br>Port P70 Output                                                                                                                                                                                                             | s After Reset                                                                                                                                                                                                                                                                                                                                               |                                        |
|                   |       | e <b>gister</b><br>Symb<br>PS1<br>Bit<br>Symbol                              | A1<br>Addres<br>03B116<br>Bit Name<br>Port P70 Output                                                                                                                                                                                                             | After Reset<br>0016<br>Function                                                                                                                                                                                                                                                                                                                             | RV                                     |
|                   |       | egister<br>Symb<br>PS1<br>Bit<br>Symbol<br>PS1_0                             | Addres<br>03B116<br>Bit Name<br>Port P70 Output<br>Function Select Bit<br>Port P71 Output                                                                                                                                                                         | After Reset<br>0016<br>Function<br>0 : I/O port<br>1 : Selected by the PSL1_0 bit<br>0 : I/O port                                                                                                                                                                                                                                                           | RV                                     |
|                   |       | egister<br>Symb<br>PS1<br>Bit<br>Symbol<br>PS1_0<br>PS1_1                    | Addres<br>03B11e<br>Bit Name<br>Port P70 Output<br>Function Select Bit<br>Port P71 Output<br>Function Select Bit<br>Port P72 Output                                                                                                                               | After Reset<br>0016<br>Function<br>0 : I/O port<br>1 : Selected by the PSL1_0 bit<br>0 : I/O port<br>1 : Selected by the PSL1_1 bit<br>0 : I/O port                                                                                                                                                                                                         | RV<br>RV                               |
|                   |       | egister<br>Symb<br>PS1<br>Bit<br>Symbol<br>PS1_0<br>PS1_1<br>PS1_2           | Addres<br>03B116<br>Bit Name<br>Bit Name<br>Port P70 Output<br>Function Select Bit<br>Port P71 Output<br>Function Select Bit<br>Port P72 Output<br>Function Select Bit<br>Port P73 Output                                                                         | After Reset<br>0016<br>Function<br>0 : I/O port<br>1 : Selected by the PSL1_0 bit<br>0 : I/O port<br>1 : Selected by the PSL1_1 bit<br>0 : I/O port<br>1 : Selected by the PSL1_2 bit<br>0 : I/O port                                                                                                                                                       | RV<br>RV<br>RV<br>RV                   |
|                   |       | egister<br>Symb<br>PS1<br>Bit<br>Symbol<br>PS1_0<br>PS1_1<br>PS1_2<br>PS1_3  | Address<br>03B116<br>Bit Name<br>Port P70 Output<br>Function Select Bit<br>Port P71 Output<br>Function Select Bit<br>Port P72 Output<br>Function Select Bit<br>Port P73 Output<br>Function Select Bit<br>Port P74 Output                                          | After Reset<br>0016<br>Function<br>0 : I/O port<br>1 : Selected by the PSL1_0 bit<br>0 : I/O port<br>1 : Selected by the PSL1_1 bit<br>0 : I/O port<br>1 : Selected by the PSL1_2 bit<br>0 : I/O port<br>1 : Selected by the PSL1_2 bit<br>0 : I/O port<br>1 : Selected by the PSL1_3 bit<br>0 : I/O port                                                   | RV<br>RV<br>RV<br>RV<br>RV<br>RV<br>RV |
|                   |       | egister<br>Symb<br>PS1<br>PS1_0<br>PS1_0<br>PS1_1<br>PS1_2<br>PS1_3<br>PS1_4 | Addres<br>03B116<br>Bit Name<br>Port P70 Output<br>Function Select Bit<br>Port P71 Output<br>Function Select Bit<br>Port P72 Output<br>Function Select Bit<br>Port P73 Output<br>Function Select Bit<br>Port P74 Output<br>Function Select Bit<br>Port P75 Output | After Reset<br>0016<br>Function<br>0 : I/O port<br>1 : Selected by the PSL1_0 bit<br>0 : I/O port<br>1 : Selected by the PSL1_1 bit<br>0 : I/O port<br>1 : Selected by the PSL1_2 bit<br>0 : I/O port<br>1 : Selected by the PSL1_3 bit<br>0 : I/O port<br>1 : Selected by the PSL1_4 bit<br>0 : I/O port<br>1 : Selected by the PSL1_4 bit<br>0 : I/O port | RV<br>RV<br>RV<br>RV<br>RV             |

Figure 24.7 PS0 Register and PS1 Register


| b7 b6 b5 b4<br>0 0 0 0 | b3 b2 b1 b0 | Symb<br>PS2                                                               | ol Address<br>03B416                                                                                                                                                                                                                            | After Reset<br>00X0 00002                                                                                                                                                                                                                                                                                                                |                  |
|------------------------|-------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|                        |             | Bit<br>Symbol                                                             | Bit Name                                                                                                                                                                                                                                        | Function                                                                                                                                                                                                                                                                                                                                 | R                |
|                        |             | PS2_0                                                                     | Port P80 Output<br>Function Select Bit                                                                                                                                                                                                          | 0 : I/O port<br>1 : Selected by the PSL2_0 bit                                                                                                                                                                                                                                                                                           | R                |
|                        |             | PS2_1                                                                     | Port P81 Output<br>Function Select Bit                                                                                                                                                                                                          | 0 : I/O port<br>1 : Selected by the PSL2_1 bit                                                                                                                                                                                                                                                                                           | R                |
|                        |             | PS2_2                                                                     | Port P82 Output<br>Function Select Bit                                                                                                                                                                                                          | 0 : I/O port<br>1 : Selected by the PSL2_2 bit                                                                                                                                                                                                                                                                                           | R                |
|                        |             | (b4 - b3)                                                                 | Reserved Bit                                                                                                                                                                                                                                    | Set to "0"                                                                                                                                                                                                                                                                                                                               | R                |
|                        |             | (b5)                                                                      |                                                                                                                                                                                                                                                 | . When write, set to "0".<br>ent is indeterminate.                                                                                                                                                                                                                                                                                       | -                |
|                        |             | (b7 - b6)                                                                 | Reserved Bit                                                                                                                                                                                                                                    | Set to "0"                                                                                                                                                                                                                                                                                                                               | R                |
|                        |             | Symb<br>PS3                                                               |                                                                                                                                                                                                                                                 | After Reset<br>0016                                                                                                                                                                                                                                                                                                                      |                  |
|                        |             | Symb<br>PS3<br>Bit                                                        | ool Address                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                          | R                |
|                        |             | Symb<br>PS3                                                               | ool Address<br>03B516                                                                                                                                                                                                                           | 0016                                                                                                                                                                                                                                                                                                                                     |                  |
|                        | b3 b2 b1 b0 | Symb<br>PS3<br>Bit<br>Symbol                                              | Address<br>03B516<br>Bit Name<br>Port P90 Output                                                                                                                                                                                                | 0016<br>Function<br>0 : I/O port                                                                                                                                                                                                                                                                                                         | R                |
|                        | b3 b2 b1 b0 | Symb<br>PS3<br>Bit<br>Symbol<br>PS3_0                                     | Address<br>03B516<br>Bit Name<br>Port P90 Output<br>Function Select Bit<br>Port P91 Output                                                                                                                                                      | 0016<br>Function<br>0 : I/O port<br>1 : CLK3 output<br>0 : I/O port<br>1 : Selected by the PSL3_1 bit<br>0 : I/O port                                                                                                                                                                                                                    | R<br>R<br>R      |
|                        | b3 b2 b1 b0 | Symb<br>PS3<br>Bit<br>Symbol<br>PS3_0<br>PS3_1                            | Address<br>03B516<br>Bit Name<br>Port P90 Output<br>Function Select Bit<br>Port P91 Output<br>Function Select Bit<br>Port P92 Output                                                                                                            | 0016<br>Function<br>0 : I/O port<br>1 : CLK3 output<br>0 : I/O port<br>1 : Selected by the PSL3_1 bit<br>0 : I/O port<br>1 : Selected by the PSL3_2 bit<br>0 : I/O port                                                                                                                                                                  | R                |
|                        | b3 b2 b1 b0 | Symb<br>PS3<br>Bit<br>Symbol<br>PS3_0<br>PS3_1<br>PS3_2                   | Address<br>03B516<br>Bit Name<br>Port P90 Output<br>Function Select Bit<br>Port P91 Output<br>Function Select Bit<br>Port P92 Output<br>Function Select Bit<br>Port P93 Output                                                                  | 0016       Function       0 : I/O port       1 : CLK3 output       0 : I/O port       1 : Selected by the PSL3_1 bit       0 : I/O port       1 : Selected by the PSL3_2 bit       0 : I/O port       1 : RTS3       0 : I/O port                                                                                                        | R                |
|                        | b3 b2 b1 b0 | Symb<br>PS3<br>Bit<br>Symbol<br>PS3_0<br>PS3_1<br>PS3_2<br>PS3_3          | Address<br>03B516<br>Bit Name<br>Port P90 Output<br>Function Select Bit<br>Port P91 Output<br>Function Select Bit<br>Port P92 Output<br>Function Select Bit<br>Port P93 Output<br>Function Select Bit<br>Port P94 Output                        | 0016         Function         0 : I/O port         1 : CLK3 output         0 : I/O port         1 : Selected by the PSL3_1 bit         0 : I/O port         1 : Selected by the PSL3_2 bit         0 : I/O port         1 : RTS3         0 : I/O port         1 : RTS4         0 : I/O port                                              | R<br>R<br>R      |
|                        | b3 b2 b1 b0 | Symb<br>PS3<br>Bit<br>Symbol<br>PS3_0<br>PS3_1<br>PS3_2<br>PS3_3<br>PS3_4 | Address<br>03B516<br>Bit Name<br>Port P90 Output<br>Function Select Bit<br>Port P91 Output<br>Function Select Bit<br>Port P92 Output<br>Function Select Bit<br>Port P93 Output<br>Function Select Bit<br>Port P94 Output<br>Function Select Bit | 0016         Function         0 : I/O port         1 : CLK3 output         0 : I/O port         1 : Selected by the PSL3_1 bit         0 : I/O port         1 : Selected by the PSL3_2 bit         0 : I/O port         1 : RTS3         0 : I/O port         1 : RTS4         0 : I/O port         1 : CLK4 output         0 : I/O port | R<br>R<br>R<br>R |

instruction to set the PS3 register.

Figure 24.8 PS2 Register and PS3 Register









| b7         b6         b5         b4         b3         b2         b1           0         0         0         0         0         0         0 | b0Symb0PSL0                                                 |                                                                                                                                                                                                                                                                                                                                                                                  | After Reset<br>0016                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|                                                                                                                                              | Bit<br>Symbol                                               | Bit Name                                                                                                                                                                                                                                                                                                                                                                         | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R                |
|                                                                                                                                              | (b1 - b0)                                                   | Reserved Bit                                                                                                                                                                                                                                                                                                                                                                     | Set to "0"                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R                |
|                                                                                                                                              | PSL0_2                                                      | Port P62 Output Peripheral<br>Function Select Bit                                                                                                                                                                                                                                                                                                                                | 0 : SCL0 output<br>1 : STxD0                                                                                                                                                                                                                                                                                                                                                                                                                                     | R                |
|                                                                                                                                              |                                                             | Reserved Bit                                                                                                                                                                                                                                                                                                                                                                     | Set to "0"                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R                |
|                                                                                                                                              | PSL0_4                                                      | Port P64 Output Peripheral<br>Function Select Bit                                                                                                                                                                                                                                                                                                                                | 0 : RTS1<br>1 : Do not set to this value                                                                                                                                                                                                                                                                                                                                                                                                                         | R                |
|                                                                                                                                              |                                                             | Reserved Bit                                                                                                                                                                                                                                                                                                                                                                     | Set to "0"                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R                |
|                                                                                                                                              | PSL0_6                                                      | Port P66 Output Peripheral<br>Function Select Bit                                                                                                                                                                                                                                                                                                                                | 0 : SCL1 output<br>1 : STxD1                                                                                                                                                                                                                                                                                                                                                                                                                                     | R                |
|                                                                                                                                              |                                                             | Reserved Bit                                                                                                                                                                                                                                                                                                                                                                     | Set to "0"                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R                |
|                                                                                                                                              | (b7)<br>Register                                            | ool Address                                                                                                                                                                                                                                                                                                                                                                      | After Reset<br>0016                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
|                                                                                                                                              | Register                                                    | ool Address                                                                                                                                                                                                                                                                                                                                                                      | After Reset                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R                |
|                                                                                                                                              | Register                                                    | ool Address<br>03B316                                                                                                                                                                                                                                                                                                                                                            | After Reset<br>0016<br>Function                                                                                                                                                                                                                                                                                                                                                                                                                                  | R'               |
|                                                                                                                                              | Register                                                    | Address<br>03B316<br>Bit Name<br>Port P70 Output Peripheral<br>Function Select Bit                                                                                                                                                                                                                                                                                               | After Reset<br>0016<br>Function<br>0 : Selected by the PSC_0 bit                                                                                                                                                                                                                                                                                                                                                                                                 | -                |
|                                                                                                                                              | Register                                                    | Address<br>03B316<br>Bit Name<br>Port P70 Output Peripheral<br>Function Select Bit<br>Port P71 Output Peripheral                                                                                                                                                                                                                                                                 | After Reset<br>0016<br>Function<br>0 : Selected by the PSC_0 bit<br>1 : TA0out output <sup>(1)</sup><br>0 : Selected by the PSC_1 bit<br>1 : STxD2 <sup>(1)</sup>                                                                                                                                                                                                                                                                                                | R                |
|                                                                                                                                              | Register                                                    | Address<br>03B316<br>Bit Name<br>Port P70 Output Peripheral<br>Function Select Bit<br>Port P71 Output Peripheral<br>Function Select Bit<br>Port P72 Output Peripheral                                                                                                                                                                                                            | After Reset<br>0016<br>Function<br>0 : Selected by the PSC_0 bit<br>1 : TA0ouT output <sup>(1)</sup><br>0 : Selected by the PSC_1 bit<br>1 : STxD2 <sup>(1)</sup><br>0 : Selected by the PSC_2 bit<br>1 : TA1ouT output <sup>(1)</sup>                                                                                                                                                                                                                           | R                |
|                                                                                                                                              | Register PSL1 Bit Symbol PSL1_0 PSL1_1 PSL1_2               | Address<br>03B316       Bit Name       Port P70 Output Peripheral<br>Function Select Bit       Port P71 Output Peripheral<br>Function Select Bit       Port P72 Output Peripheral<br>Function Select Bit       Port P72 Output Peripheral<br>Function Select Bit       Port P73 Output Peripheral                                                                                | After Reset $00_{16}$ Function         0 : Selected by the PSC_0 bit         1 : TA0out output <sup>(1)</sup> 0 : Selected by the PSC_1 bit         1 : STxD2 <sup>(1)</sup> 0 : Selected by the PSC_2 bit         1 : TA1out output <sup>(1)</sup> 0 : Selected by the PSC_2 bit         1 : TA1out output <sup>(1)</sup> 0 : Selected by the PSC_3 bit                                                                                                         | R                |
|                                                                                                                                              | Register PSL1 Bit Symbol PSL1_0 PSL1_1 PSL1_2 PSL1_3        | Address<br>03B316       Bit Name       Port P70 Output Peripheral<br>Function Select Bit       Port P71 Output Peripheral<br>Function Select Bit       Port P72 Output Peripheral<br>Function Select Bit       Port P73 Output Peripheral<br>Function Select Bit       Port P73 Output Peripheral<br>Function Select Bit       Port P74 Output Peripheral                        | After Reset $00_{16}$ Function         0 : Selected by the PSC_0 bit         1 : TA0out output <sup>(1)</sup> 0 : Selected by the PSC_1 bit         1 : STxD2 <sup>(1)</sup> 0 : Selected by the PSC_2 bit         1 : TA1out output <sup>(1)</sup> 0 : Selected by the PSC_2 bit         1 : TA1out output <sup>(1)</sup> 0 : Selected by the PSC_3 bit         1 : $\overline{V}^{(1)}$ 0 : Selected by the PSC_4 bit                                          | R<br>R<br>R      |
|                                                                                                                                              | Register PSL1 Bit Symbol PSL1_0 PSL1_1 PSL1_2 PSL1_3 PSL1_4 | Address<br>03B316       Bit Name       Port P70 Output Peripheral<br>Function Select Bit       Port P71 Output Peripheral<br>Function Select Bit       Port P72 Output Peripheral<br>Function Select Bit       Port P73 Output Peripheral<br>Function Select Bit       Port P74 Output Peripheral<br>Function Select Bit       Port P75 Output Peripheral<br>Function Select Bit | After Reset $0016$ Function         0 : Selected by the PSC_0 bit         1 : TA0ouT output <sup>(1)</sup> 0 : Selected by the PSC_1 bit         1 : STxD2 <sup>(1)</sup> 0 : Selected by the PSC_2 bit         1 : TA1ouT output <sup>(1)</sup> 0 : Selected by the PSC_2 bit         1 : $\overline{V}^{(1)}$ 0 : Selected by the PSC_3 bit         1 : $\overline{V}^{(1)}$ 0 : Selected by the PSC_4 bit         1 : $W^{(1)}$ 0 : $\overline{W}$ 1 : OUTC12 | R<br>R<br>R<br>R |

Figure 24.11 PSL0 Register and PSL1 Register

| b3 b2 b | 1 b0      | Symbo<br>PSL2                                                                      | ol Address<br>03B616                                                                                                                                                                                                                                              | After Reset<br>00X0 00002                                                                                                                                                                                                          |                      |
|---------|-----------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|         |           | Bit<br>Symbol                                                                      | Bit Name                                                                                                                                                                                                                                                          | Function                                                                                                                                                                                                                           | R                    |
|         |           | PSL2_0                                                                             | Port P80 Output Peripheral<br>Function Select Bit                                                                                                                                                                                                                 | 0 : TA4out output<br>1 : U                                                                                                                                                                                                         | R                    |
|         |           | PSL2_1                                                                             | Port P81 Output Peripheral<br>Function Select Bit                                                                                                                                                                                                                 | 0 : U<br>1 : Selected by the PSC2_1 bit                                                                                                                                                                                            | R                    |
|         |           | PSL2_2                                                                             | Port P82 Output Peripheral<br>Function Select Bit                                                                                                                                                                                                                 | 0 : Do not set to this value<br>1 : Selected by the PSC2_2 bit                                                                                                                                                                     | R                    |
| <br>    |           | (b4 - b3)                                                                          | Reserved Bit                                                                                                                                                                                                                                                      | Set to "0"                                                                                                                                                                                                                         | R                    |
| <br>    |           | (b5)                                                                               | Nothing is assigned. Whe When read, its content is                                                                                                                                                                                                                |                                                                                                                                                                                                                                    | _                    |
| <br>    |           | (b7 - b6)                                                                          | Reserved Bit                                                                                                                                                                                                                                                      | Set to "0"                                                                                                                                                                                                                         | R                    |
|         |           | egister<br>Symbo<br>PSL3<br>Bit                                                    | ol Address<br>03B716                                                                                                                                                                                                                                              | After Reset<br>0016                                                                                                                                                                                                                |                      |
|         | 1 b0<br>О | egister<br>Symbo<br>PSL3                                                           | ol Address                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                    | R                    |
|         | 1 b0      | egister<br>Symbo<br>PSL3<br>Bit                                                    | ol Address<br>03B716                                                                                                                                                                                                                                              | 0016                                                                                                                                                                                                                               |                      |
|         | 1 b0<br>О | egister<br>Symbo<br>PSL3<br>Bit<br>Symbol<br>(b0)                                  | ol Address<br>03B716<br>Bit Name                                                                                                                                                                                                                                  | 0016<br>Function                                                                                                                                                                                                                   | R                    |
|         | 1 b0<br>О | egister<br>Symbo<br>PSL3<br>Bit<br>Symbol<br>(b0)                                  | ol Address<br>03B716<br>Bit Name<br>Reserved Bit<br>Port P91 Output Peripheral                                                                                                                                                                                    | 0016<br>Function<br>Set to "0"<br>0 : SCL3 output                                                                                                                                                                                  | R)<br>R)<br>R)<br>R) |
|         | 1 b0<br>О | egister<br>Symbo<br>PSL3<br>Bit<br>Symbol<br>(b0)<br>PSL3_1                        | Address<br>03B716<br>Bit Name<br>Reserved Bit<br>Port P91 Output Peripheral<br>Function Select Bit<br>Port P92 Output Peripheral                                                                                                                                  | 0016<br>Function<br>Set to "0"<br>0 : SCL3 output<br>1 : STxD3<br>0 : TxD3/SDA3 output                                                                                                                                             | R\<br>R\             |
|         | 1 b0<br>О | egister<br>Symbol<br>Bit<br>Symbol<br>(b0)<br>PSL3_1<br>PSL3_2                     | Address<br>03B716<br>Bit Name<br>Reserved Bit<br>Port P91 Output Peripheral<br>Function Select Bit<br>Port P92 Output Peripheral<br>Function Select Bit                                                                                                           | 0016<br>Function<br>Set to "0"<br>0 : SCL3 output<br>1 : STxD3<br>0 : TxD3/SDA3 output<br>1 : Do not set to this value<br>0 : Except DA0                                                                                           | R\<br>R\<br>R\       |
|         | 1 b0<br>О | egister<br>Symbol<br>PSL3<br>Bit<br>Symbol<br>(b0)<br>PSL3_1<br>PSL3_2<br>PSL3_3   | Address<br>03B716<br>Bit Name<br>Reserved Bit<br>Port P91 Output Peripheral<br>Function Select Bit<br>Port P92 Output Peripheral<br>Function Select Bit<br>Port P93 Output Peripheral<br>Function Select Bit                                                      | 0016<br>Function<br>Set to "0"<br>0 : SCL3 output<br>1 : STxD3<br>0 : TxD3/SDA3 output<br>1 : Do not set to this value<br>0 : Except DA0<br>1 : DA0 <sup>(1)</sup><br>0 : Except DA1                                               |                      |
|         | 1 b0<br>О | egister<br>Symbol<br>Bit<br>Symbol<br>(b0)<br>PSL3_1<br>PSL3_2<br>PSL3_3<br>PSL3_4 | Address<br>03B716<br>Bit Name<br>Reserved Bit<br>Port P91 Output Peripheral<br>Function Select Bit<br>Port P92 Output Peripheral<br>Function Select Bit<br>Port P93 Output Peripheral<br>Function Select Bit<br>Port P94 Output Peripheral<br>Function Select Bit | 0016<br>Function<br>Set to "0"<br>0 : SCL3 output<br>1 : STxD3<br>0 : TxD3/SDA3 output<br>1 : Do not set to this value<br>0 : Except DA0<br>1 : DA0 <sup>(1)</sup><br>0 : Except DA1<br>1 : DA1 <sup>(1)</sup><br>0 : Except ANEX0 |                      |

Figure 24.12 PSL2 Register and PSL3 Register

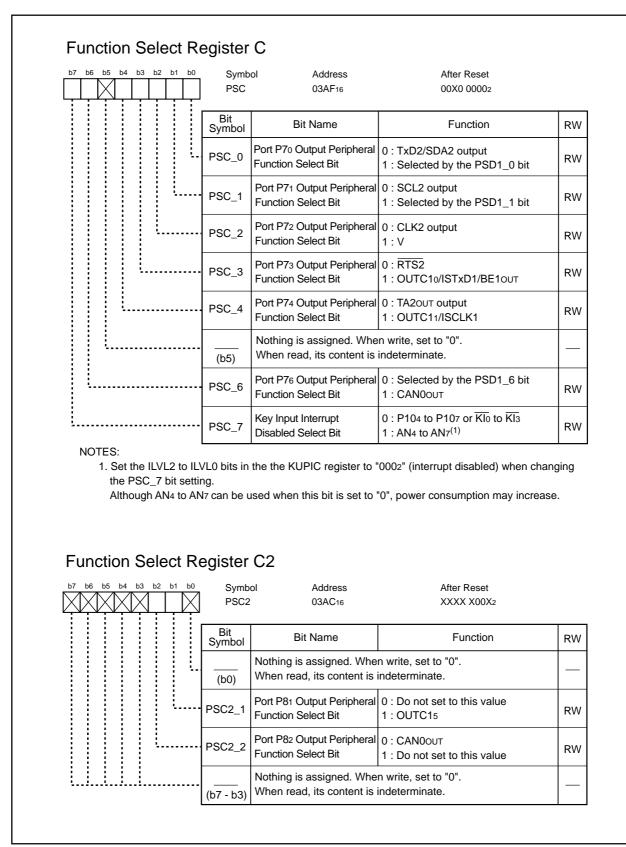



Figure 24.13 PSC Register and PSC2 Register



| b7 b6 b5 b4 b3 b2 b1 b0 | Symb<br>PSC3                                      |                                                                                                                                                                         | After Reset<br>X0XX XXXX2                                                                                                                |                      |
|-------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                         | Bit<br>Symbol                                     | Bit Name                                                                                                                                                                | Function                                                                                                                                 | RV                   |
|                         | <br>(b5 - b0)                                     | Nothing is assigned. Whe When read, its content is                                                                                                                      | -                                                                                                                                        |                      |
|                         | PSC3_6                                            | Port P96 Output Peripheral<br>Function Select Bit                                                                                                                       | 0 : TxD4/SDA4 output<br>1 : Do not set to this value                                                                                     | RV                   |
|                         | (b7)                                              | Nothing is assigned. Whe<br>When read, its content is                                                                                                                   |                                                                                                                                          |                      |
| Function Select F       | •                                                 | ol Address                                                                                                                                                              | After Reset<br>X0XX XX002                                                                                                                |                      |
|                         | Symb<br>PSD1                                      | ol Address<br>03A716                                                                                                                                                    | X0XX XX002                                                                                                                               |                      |
|                         | Symb<br>PSD1                                      | ol Address<br>03A716<br>Bit Name<br>Port P70 Output Peripheral                                                                                                          | X0XX XX002<br>Function<br>0 : Do not set to this value                                                                                   |                      |
|                         | Symb<br>PSD1<br>Bit<br>Symbol                     | ol Address<br>03A716<br>Bit Name                                                                                                                                        | X0XX XX002<br>Function                                                                                                                   | RV                   |
|                         | Symb<br>PSD1<br>Bit<br>Symbol<br>• PSD1_0         | ol Address<br>03A716<br>Bit Name<br>Port P70 Output Peripheral<br>Function Select Bit<br>Port P71 Output Peripheral                                                     | X0XX XX002<br>Function<br>0 : Do not set to this value<br>1 : OUTC16<br>0 : Do not set to this value<br>1 : OUTC17<br>write, set to "0". | R\                   |
|                         | Symb<br>PSD1<br>Bit<br>Symbol<br>PSD1_0<br>PSD1_1 | ol Address<br>03A716<br>Bit Name<br>Port P70 Output Peripheral<br>Function Select Bit<br>Port P71 Output Peripheral<br>Function Select Bit<br>Nothing is assigned. Wher | X0XX XX002<br>Function<br>0 : Do not set to this value<br>1 : OUTC16<br>0 : Do not set to this value<br>1 : OUTC17<br>write, set to "0". | RV<br>RV<br>RV<br>RV |

Figure 24.14 PSC3 Register and PSD1 Register



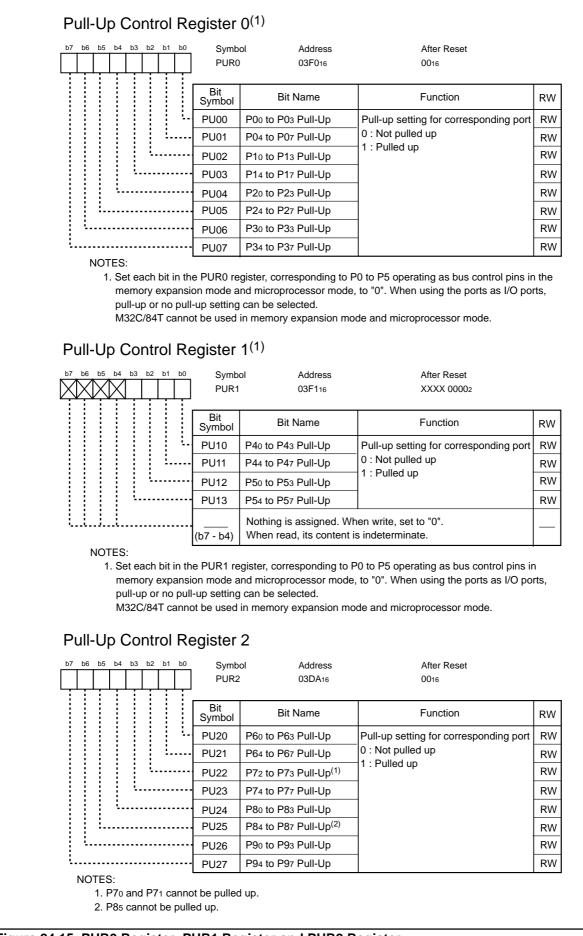
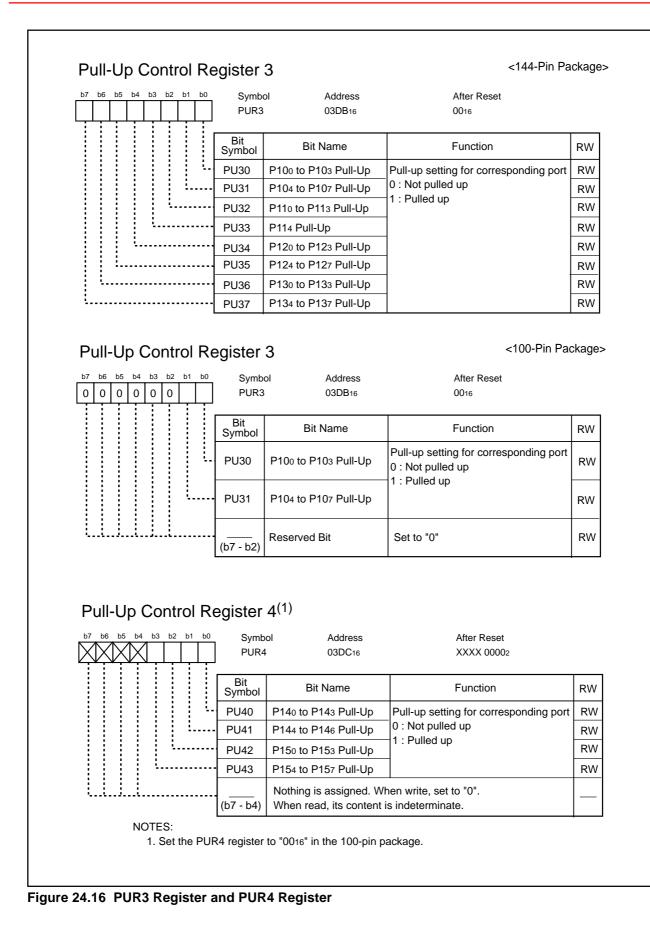
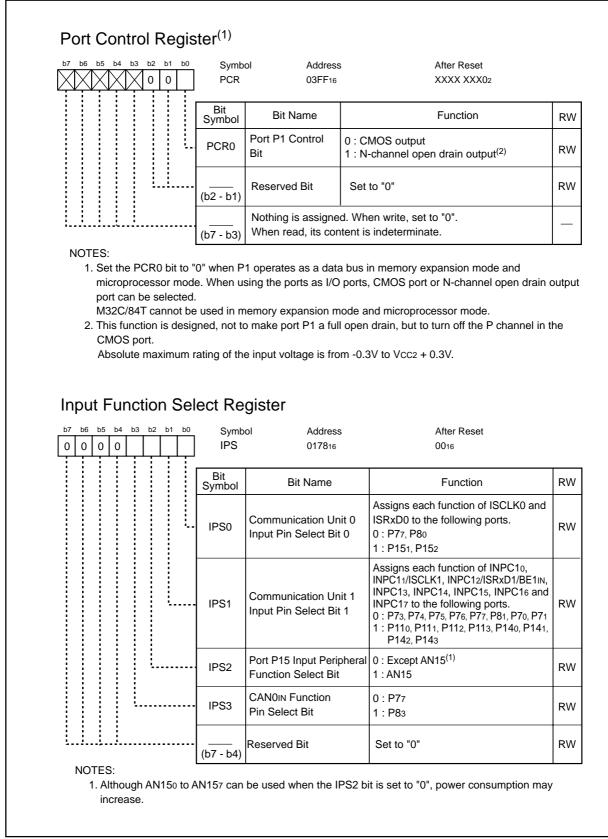





Figure 24.15 PUR0 Register, PUR1 Register and PUR2 Register











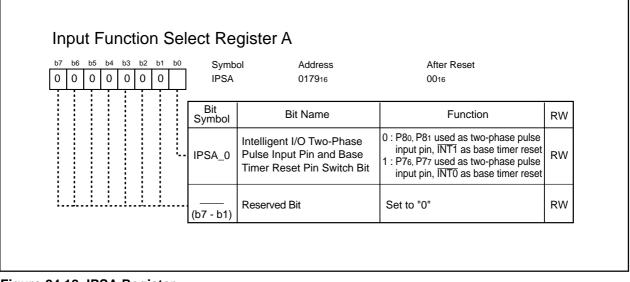



Figure 24.18 IPSA Register



| Pin Name                               | Setting                                                                  |
|----------------------------------------|--------------------------------------------------------------------------|
| P0 to P15                              | Enter input mode and connect each pin to Vss via a resistor (pull-down); |
| (excluding P85) <sup>(1,2,3,4,6)</sup> | or enter output mode and leave the pins open                             |
| Xout <sup>(5)</sup>                    | Leave pin open                                                           |
| NMI(P85)                               | Connect pin to Vcc1 via a resistor (pull-up)                             |
| AVcc                                   | Connect pin to VCC1                                                      |
| AVSS, VREF, BYTE                       | Connect pins to Vss                                                      |

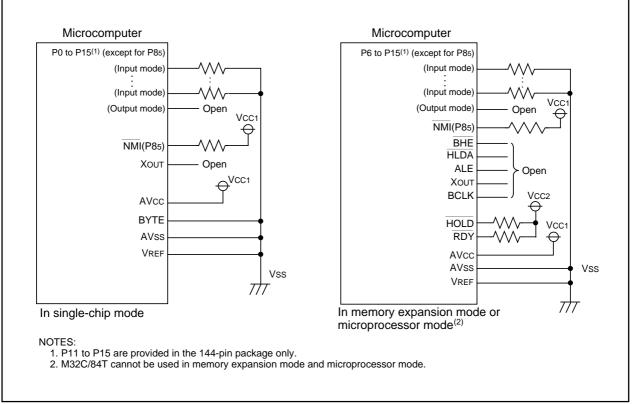
NOTES:

- 1. P11 to P15 are provided in the 144-pin package only.
- 2. If the port enters output mode and is left open, it is in input mode before output mode is entered by program after reset. While the port is in input mode, voltage level on the pins is indeterminate and power consumption may increase.

Direction register settings may be changed by noise or failure caused by noise. Configure direction register settings regulary to increase the reliability of the program.

- 3. Use the shortest possible wiring to connect the microcomputer pins to unassigned pins (within 2 cm).
- 4. P70 and P71 must put in low-level ("L") signal outputs if they are in output mode. They are N-channel open-drain outputs.
- 5. When the external clock is applied to the XIN pin, set the pin as written above.
- 6. In the 100-pin package, set "FF16" in the following addresses, in addition to the above settings: Addresses 0003CB16, 0003CE16, 0003CF16, 0003D216, 0003D316

Table 24.2 Unassigned Pin Setting in Memory Expansion Mode and Microprocessor Mode


| Pin Name                               | Setting                                                                  |
|----------------------------------------|--------------------------------------------------------------------------|
| P6 to P15                              | Enter input mode and connect each pin to Vss via a resistor (pull-down); |
| (excluding P85) <sup>(1,2,3,4,6)</sup> | or enter output mode and leave the pins open                             |
| BHE, ALE, HLDA,                        | Leave pin open                                                           |
| XOUT <sup>(5)</sup> , BCLK             |                                                                          |
| NMI(P85)                               | Connect pin to VCC1 via a resistor (pull-up)                             |
| RDY, HOLD                              | Connect pins to VCC2 via a resistor (pull-up)                            |
| AVcc                                   | Connect pin to VCC1                                                      |
| AVSS, VREF                             | Connect pins to Vss                                                      |

NOTES:

- 1. P11 to P15 are provided in the 144-pin package only.
- 2. If the port enters output mode and is left open, it is in input mode before output mode is entered by program after reset. While the port is in input mode, voltage level on the pins is indeterminate and power consumption may increase.

Direction register settings may be changed by noise or failure caused by noise. Configure direction register settings regulary to increase the reliability of the program.

- 3. Use the shortest possible wiring to connect the microcomputer pins to unassigned pins (within 2 cm).
- 4. P70 and P71 must put in low-level ("L") signal outputs if they are in output mode. They are N-channel open-drain outputs.
- 5. When the external clock is applied to the XIN pin, set the pin as written above.
- 6. In the 100-pin package, set "FF16" in the following addresses, in addition to the above settings: Addresses 0003CB16, 0003CE16, 0003CF16, 0003D216, 0003D316







### Table 24.3 Port P6 Peripheral Function Output Control

|       | PS0 Register                                                | PSL0 Register                       |
|-------|-------------------------------------------------------------|-------------------------------------|
| Bit 0 | 0: P60/CTS0/SS0<br>1: RTS0                                  | Set to "0"                          |
| Bit 1 | 0: P61/CLK0(input)<br>1: CLK0(output)                       | Set to "0"                          |
| Bit 2 | 0: P62/RxD0/SCL0(input)<br>1: Selected by the PSL0 register | 0: SCL0(output)<br>1: STxD0         |
| Bit 3 | 0: P63/SRxD0/SDA0 (input)<br>1: TxD0/SDA0 (output)          | Set to "0"                          |
| Bit 4 | 0: P64/CTS1/SS1<br>1: Selected by the PSL0 register         | 0: RTS1<br>1: Do not set this value |
| Bit 5 | 0: P65/CLK1(input)<br>1: CLK1(output)                       | Set to "0"                          |
| Bit 6 | 0: P66/RxD1/SCL1(input)<br>1: Selected by the PSL0 register | 0: SCL1(output)<br>1: STxD1         |
| Bit 7 | 0: P67/SRxD1/SDA1 (input)<br>1: TxD1/SDA1 (output)          | Set to "0"                          |

#### Table 24.4 Port P7 Peripheral Function Output Control

|       | PS1 Register                                                             | PSL1 Register                   | PSC Register <sup>(1)</sup>                    | PSD1 Register               |
|-------|--------------------------------------------------------------------------|---------------------------------|------------------------------------------------|-----------------------------|
| Bit 0 | 0: P70/TA0OUT(input)/SRxD2<br>INPC16/SDA2 (input)                        | 0: Selected by the PSC register | 0: TxD2/SDA2(output)                           | 0: Do not set to this value |
|       | 1: Selected by the PSL1 register                                         | 1: TA0o∪⊤(output)               | 1: Selected by the PSD1 register               | 1: OUTC16                   |
| Bit 1 | 0: P71/TB5IN/TA0IN/RxD2/<br>INPC17/SCL2 (input)                          | 0: Selected by the PSC register | 0: SCL2(output)                                | 0: Do not set to this value |
|       | 1: Selected by the PSL1 register                                         | 1: STxD2                        | 1: Selected by the PSD1 register               | 1: OUTC17                   |
| Bit 2 | 0: P72/TA1out(input)/<br>CLK2(input)                                     | 0: Selected by the PSC register | 0: CLK2(output)                                | Set to "0"                  |
|       | 1: Selected by the PSL1 register                                         | 1: TA1out(output)               | 1: V                                           |                             |
| Bit 3 | 0: P73/TA1IN/CTS2/SS2/<br>INPC10                                         | 0: Selected by the PSC register | 0: RTS2                                        | Set to "0"                  |
|       | 1: Selected by the PSL1 register                                         | 1: V                            | 1: OUTC10/ISTxD1/BE10UT                        |                             |
| Bit 4 | 0: P74/INPC11/ISCLK1(input)/<br>TA20UT(input)                            | 0: Selected by the PSC register | 0: TA2out(output)                              | Set to "0"                  |
|       | 1: Selected by the PSL1 register                                         | 1: W                            | 1: OUTC11/ISCLK1(output)                       |                             |
| Bit 5 | 0: P75/TA2IN/INPC12/<br>ISRxD1/BE1IN<br>1: Selected by the PSL1 register | 0: ₩<br>1: 0UTC12               | Set to "0"                                     | Set to "0"                  |
|       |                                                                          |                                 | 0. Coloriad by the DCD1 register               |                             |
| Bit 6 | 0: P76/INPC13/TA3OUT(input)<br>1: Selected by the PSL1 register          |                                 | 0: Selected by the PSD1 register<br>1: CAN00UT | 1: OUTC13                   |
| Bit 7 | ISCLK0(input)/INPC14                                                     | 0: ISCLK0(output)               | 0: P104 to P107 or KI0 to KI3                  | Set to "0"                  |
|       | 1: Selected by the PSL1 register                                         | 1: OUTC14                       | 1: AN4 to AN7<br>(No relation to P77)          |                             |

NOTES:

1. When setting the PSL1\_i bit (i=0 to 4, 6) to "1", set the corresponding PSC\_i bit to "0".

# Table 24.5 Port P8 Peripheral Function Output Control

|            | PS2 Register                     | PSL2 Register                    | PSC2 Register               |
|------------|----------------------------------|----------------------------------|-----------------------------|
| Bit 0      | 0: P80/ISRxD0/TA4out(input)      | 0: TA40UT(output)                | Set to "0"                  |
|            | 1: Selected by the PSL2 register | 1: U                             |                             |
| Bit 1      | 0: P81/TA4IN/INPC15              | 0: U                             | 0: Do not set to this value |
|            | 1: Selected by the PSL2 register | 1: Selected by the PSC2 register | 1: OUTC15                   |
| Bit 2      | 0: P82/INT0                      | 0: Do not set to this value      | 0: CAN0out                  |
|            | 1: Selected by the PSL2 register | 1: Selected by the PSC2 register | 1: Do not set to this value |
| Bit 3 to 7 | Set to "000002"                  |                                  |                             |

### Table 24.6 Port P9 Peripheral Function Output Control

|       | PS3 Register                                                       | PSL3 Register                                       | PSC3 Register                               |
|-------|--------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------|
| Bit 0 | 0: P9o/TB0IN/CLK3(input)<br>1: CLK3(output)                        | Set to "0"                                          | Set to "0"                                  |
| Bit 1 | 0: P91/TB1IN/RxD3/SCL3(input)<br>1: Selected by the PSL3 register  | 0: SCL3(output)<br>1: STxD3                         | Set to "0"                                  |
| Bit 2 | 0: P92/TB2IN/SRxD3/SDA3(input)<br>1: Selected by the PSL3 register | 0: TxD3/SDA3(output)<br>1: Do not set to this value | Set to "0"                                  |
| Bit 3 | 0: P93/TB3IN/CTS3/SS3/DA0(output)<br>1: RTS3                       | 0: Except DA0<br>1: DA0                             | Set to "0"                                  |
| Bit 4 | 0: P94/TB4IN/CTS4/SS4/DA1(output)<br>1: RTS4                       | 0: Except DA1<br>1: DA1                             | Set to "0"                                  |
| Bit 5 | 0: P95/ANEX0/CLK4(input)<br>1: CLK4(output)                        | 0: Except ANEX0<br>1: ANEX0                         | Set to "0"                                  |
| Bit 6 | 0: P96/SRxD4/ANEX1/SDA4(input)<br>1: Selected by the PSC3 register | 0: Except ANEX1<br>1: ANEX1                         | 0: TxD4/SDA4<br>1: Do not set to this value |
| Bit 7 | 0: P97/RxD4/ADTRG/SCL4(input)<br>1: Selected by the PSL3 register  | 0: SCL4(output)<br>1: STxD4                         | Set to "0"                                  |

# Table 24.7 Port P10 Peripheral Function Input Control

|   |       | PSC Register                  |   |
|---|-------|-------------------------------|---|
| F | Bit 7 | 0: P104 to P107 or KI0 to KI3 | 1 |
|   |       | 1: AN4 to AN7                 |   |



### Table 24.8 Port P11 Peripheral Function Output Control

|            | PS5 Register                 |
|------------|------------------------------|
| Bit 0      | 0: P110/INPC10               |
|            | 1: OUTC10/ISTxD1/BE1OUT      |
| Bit 1      | 0: P111/INPC11/ISCLK1(input) |
|            | 1: OUTC11/ISCLK1(output)     |
| Bit 2      | 0: P112/INPC12/ISRxD1/BE1IN  |
|            | 1: OUTC12                    |
| Bit 3      | 0: P113/INPC13               |
|            | 1: OUTC13                    |
| Bit 4 to 7 | Set to "00002"               |

### Table 24.9 Port P14 Peripheral Function Output Control

|            | PS8 Register   |
|------------|----------------|
| Bit 0      | 0: P140/INPC14 |
|            | 1: OUTC14      |
| Bit 1      | 0: P141/INPC15 |
|            | 1: OUTC15      |
| Bit 2      | 0: P142/INPC16 |
|            | 1: OUTC16      |
| Bit 3      | 0: P143/INPC17 |
|            | 1: OUTC17      |
| Bit 4 to 7 | Set to "00002" |

### Table 24.10 Port P15 Peripheral Function Output Control

|            | PS9 Register                |
|------------|-----------------------------|
| Bit 0      | 0: P150/AN150               |
|            | 1: ISTxD0                   |
| Bit 1      | 0: P151/AN151/ISCLK0(input) |
|            | 1: ISCLK0(output)           |
| Bit 2 to 7 | Set to "0000002"            |



# 25. Flash Memory Version

Aside from the built-in flash memory, the flash memory version microcomputer has the same functions as the masked ROM version.

In the flash memory version, rewrite operation to the flash memory can be performed in three modes: CPU rewrite mode, standard serial I/O mode and parallel I/O mode.

Table 25.1 lists specifications of the flash memory version. See **Tables 1.1 and 1.2** for the items not listed in Table 25.1.

| Item                             |               | Specification                                                         |  |  |  |
|----------------------------------|---------------|-----------------------------------------------------------------------|--|--|--|
| Flash Memory Operating Mode      |               | 3 modes (CPU rewrite, standard serial I/O, parallel I/O)              |  |  |  |
| Erase Block                      | User ROM Area | See Figure 25.1                                                       |  |  |  |
| Boot ROM Area                    |               | 1 block (4 Kbytes) <sup>(1)</sup>                                     |  |  |  |
| Program Method                   |               | Per word (16 bytes), per byte (8 bits) <sup>(2)</sup>                 |  |  |  |
| Erase Method                     |               | All block erase, erase per block                                      |  |  |  |
| Program and Erase Control Method |               | Software commands control programming and erasing on the flash memory |  |  |  |
| Protect Method                   |               | The lock bit protects each block in the flash memory                  |  |  |  |
| Number of Commands               |               | 8 commands                                                            |  |  |  |
| Program and Erase Endurance      |               | 100 times <sup>(3)</sup>                                              |  |  |  |
| Data Retention                   |               | 10 years                                                              |  |  |  |
| ROM Code Protection              |               | Standard serial I/O mode and parallel I/O mode supported              |  |  |  |
|                                  |               |                                                                       |  |  |  |

# Table 25.1 Flash Memory Version Specifications

NOTES:

- 1. The rewrite control program for standard serial I/O mode is stored in the boot ROM area before shipment. This space can be rewritten in parallel I/O mode only.
- 2. Programming per byte is available in parallel I/O mode only.
- 3. Program and erase endurance refers to the number of times a block erase can be performed. Every block erase performed after writing data of one word or more counts as one program and erase operation.

| Flash Memory<br>Rewrite Mode       | CPU Rewrite Mode                                                                                                                                                                | Standard Serial I/O Mode                                                                                                                                                                                    | Parallel I/O Mode                                                                      |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Function                           | Software command execution<br>by CPU rewrites the user ROM<br>area.<br>EW mode 0:<br>Rewritable in areas other<br>than flash memory<br>EW mode 1:<br>Rewritable in flash memory | A dedicated serial<br>programmer rewrites the user<br>ROM area.<br>Standard serial I/O mode 1:<br>Clock synchronous serial I/O<br>Standard serial I/O mode 2:<br>UART<br>Standard serial I/O mode 3:<br>CAN | A dedicated parallel<br>programmer rewrites the<br>boot ROM area and user<br>ROM area. |
| Space which<br>can be<br>rewritten | User ROM area                                                                                                                                                                   | User ROM area                                                                                                                                                                                               | User ROM area<br>Boot ROM area                                                         |
| Operating<br>mode                  | Single-chip mode<br>Memory expansion mode<br>(EW mode 0)<br>Boot mode (EW mode 0)                                                                                               | Boot mode                                                                                                                                                                                                   | Parallel I/O mode                                                                      |
| Programmer                         | None                                                                                                                                                                            | Serial programmer                                                                                                                                                                                           | Parallel programmer                                                                    |

Table 25.2 Flash Memory Rewrite Mode Overview



# 25.1 Memory Map

The flash memory includes the user ROM area and the boot ROM area. The user ROM area has space to store the microcomputer operating programs in single-chip mode or memory expansion mode, and a separate 4-kbyte space as the block A. Figure 25.1 shows a block diagram of the flash memory.

The user ROM area is divided into several blocks, each of which can be protected (locked) from program or erase. The user ROM area can be rewritten in CPU rewrite mode, standard serial I/O mode and parallel I/O mode.

The boot ROM area is located at the same addresses as the user ROM area. It can only be rewritten in parallel I/O mode. A program in the boot ROM area is executed after a hardware reset occurs while a high-level ("H") signal is applied to the CNVss and P50 pins and a low-level ("L") signal is applied to the P55 pin. A program in the user ROM area is executed after a hardware reset occurs while an "L" signal is applied to the CNVss pin. Consequently, the boot ROM area cannot be read.

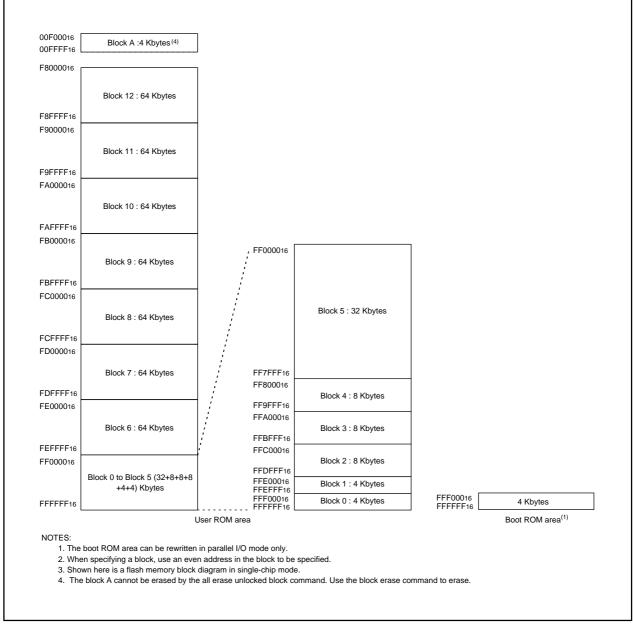



Figure 25.1 Flash Memory Block Diagram



# 25.1.1 Boot Mode

The microcomputer enters boot mode when a hardware reset is performed while a high-level ("H") signal is applied to the CNVss and P50 pins and a low-level ("L") signal is applied to the P55 pin. A program in the boot ROM area is executed.

In boot mode, the FMR05 bit in the FMR0 register selects access to either the boot ROM area or the user ROM area.

In the factory setting, the rewrite control program for standard serial I/O mode is stored into the boot ROM area.

The boot ROM area can be rewritten in parallel I/O mode only. If any rewrite control program using erasewrite mode 0 (EW mode 0) is written in the boot ROM area, the flash memory can be rewritten according to the system implemented.

# 25.2 Functions to Prevent the Flash Memory from Rewriting

The flash memory has the ROM code protect function for parallel I/O mode and the ID code verify function for standard I/O mode to prevent the flash memory from reading or rewriting.

# 25.2.1 ROM Code Protect Function

The ROM code protect function prevents the flash memory from reading and rewriting in parallel I/O mode.

Figure 25.2 shows the ROMCP register. The ROMCP register is located in the user ROM area.

The ROM code protect function is enabled when the ROMCP1 bit is set to "002", "012" or "102".

# 25.2.2 ID Code Verify Function

Use the ID code verify function in standard serial I/O mode. The ID code sent from the serial programmer is compared with the ID code written in the flash memory for a match. If the ID codes do not match, commands sent from the serial programmer are not accepted. However, if the four bytes of the reset vector are "FFFFFFF16", ID codes are not compared, allowing all commands to be accepted.

The ID codes are 7-byte data stored consecutively, starting with the first byte, into addresses 0FFFDF16, 0FFFFE316, 0FFFFEB16, 0FFFFEF16, 0FFFFF316, 0FFFFF716 and 0FFFFFB16. The flash memory must have a program with the ID codes set in these addresses.



|               | CP FFFFF16                                               | FF16 <sup>(4)</sup>                                                                                                                                                                                 |    |
|---------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Bit<br>Symbol | Bit Name                                                 | Function                                                                                                                                                                                            | RW |
| (b5 - b0)     | Reserved Bit                                             | Set to "1"                                                                                                                                                                                          | RW |
| ····ROMCP1    | ROM Code Protect<br>Level 1 Set Bit <sup>(1, 2, 3)</sup> | <ul> <li>b7 b6</li> <li>0 0 : ROM code protection active</li> <li>0 1 : ROM code protection active</li> <li>1 0 : ROM code protection active</li> <li>1 1 : ROM code protection inactive</li> </ul> | RW |

- 3. To make the ROM code protection inactive, erase a block including the ROMCP address in standard serial I/O mode or CPU rewrite mode.
- 4. The ROMCP address is set to "FF16" when a block, including the ROMCP address, is erased.
- 5. When a value of the ROMCP address is "0016" or "FF16", the ROM code protect function is disabled.

Figure 25.2 ROMCP Address

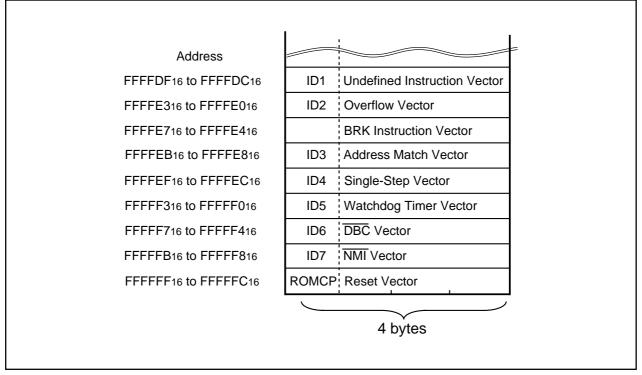



Figure 25.3 Address for ID Code Stored



# 25.3 CPU Rewrite Mode

In CPU rewrite mode, the user ROM area can be rewritten when the CPU executes software commands. The user ROM area can be rewritten with the microcomputer mounted on a board without using a parallel or serial programmer.

In CPU rewrite mode, only the user ROM area shown in Figure 25.1 can be rewritten. The boot ROM area cannot be rewritten. The program and block erase commands are executed only for each block in the user ROM area.

Erase-write (EW) mode 0 and erase-write mode 1 are provided as CPU rewrite mode. Table 25.3 lists differences between EW mode 0 and EW mode 1.

| Item                                                    | EW mode 0                                                                                                                                                                                                    | EW mode 1                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Operating Mode                                          | <ul><li>Single-chip mode</li><li>Memory expansion mode</li><li>Boot mode</li></ul>                                                                                                                           | Single-chip mode                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Space where the rewrite control program can be placed   | <ul><li>User ROM area</li><li>Boot ROM area</li></ul>                                                                                                                                                        | User ROM area                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Space where the rewrite control program can be executed | The rewrite control program must be transferred to any space other than the flash memory (e.g.,RAM) before being executed                                                                                    | The rewrite control program can be executed in the user ROM area                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Space which can be rewritten                            | User ROM area                                                                                                                                                                                                | User ROM area<br>However, this excludes blocks with the rewrite<br>control program                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Software Command Restriction                            | None                                                                                                                                                                                                         | <ul> <li>Program and block erase commands cannot be executed in a block having the rewrite control program.</li> <li>Erase all unlocked block command cannot be executed when the lock bit in a block having the rewrite control program is set to "1"(unlocked) or when the FMR02 bit in the FMR0 register is set to "1"(lock bit disabled).</li> <li>Read status register command cannot be used.</li> </ul> |  |  |  |
| Mode after Programming or<br>Erasing                    | Read status register mode                                                                                                                                                                                    | Read array mode                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| CPU State during Auto Program and Erase Operation       | Operating                                                                                                                                                                                                    | In a hold state (I/O ports maintains the state before the command was executed) <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                 |  |  |  |
| Flash Memory State Detection                            | <ul> <li>Read the FMR00, FMR06 and FMR07<br/>bits in the FMR0 register by program</li> <li>Execute the read status register<br/>command to read the SR7, SR5 and SR4<br/>bits in the SRD register</li> </ul> | Read the FMR00, FMR06 and FMR07 bits in the FMR0 register by program                                                                                                                                                                                                                                                                                                                                           |  |  |  |

### Table 25.3 EW Mode 0 and EW Mode 1

NOTES:

1. Do not generate an interrupt (except MI interrupt) or a DMA transfer.

# 25.3.1 EW Mode 0

The microcomputer enters CPU rewrite mode by setting the FMR01 bit in the FMR0 register to "1" (CPU rewrite mode enabled) and is ready to accept commands. EW mode 0 is selected by setting the FMR11 bit in the FMR1 register to "0". To set the FMR01 bit to "1", set to "1" after first writing "0".

The software commands control programming and erasing. The FMR0 register or the SRD register indicates whether a program or erase operation is completed as expected or not.

# 25.3.2 EW Mode 1

EW mode 1 is selected by setting the FMR11 bit to "1" after the FMR01 bit is set to "1". (Both bits must be set to "0" first before setting to "1".)

The FMR0 register indicates whether or not a program or erase operation has been completed as expected. The SRD register cannot be read in EW mode 1.

# 25.3.3 Flash Memory Control Register (FMR0 Register and FMR1 Register)

| 1 1 1 1                                                                                                                                                                                       | b3 b2 b1 b0                                                                                                                                                                                                                  | Symb                                                                                                                                                             | ol Addre                                                                                                                                                                                                                                                                                 | ess After Reset                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|                                                                                                                                                                                               | ╷┥╷┥                                                                                                                                                                                                                         | FMRC                                                                                                                                                             | 0 00571                                                                                                                                                                                                                                                                                  | 6 0000 00012                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |
|                                                                                                                                                                                               |                                                                                                                                                                                                                              | Bit<br>Symbol                                                                                                                                                    | Bit Name                                                                                                                                                                                                                                                                                 | Function                                                                                                                                                                                                                                                                                                                                                                                                                                               | RW                                             |
|                                                                                                                                                                                               |                                                                                                                                                                                                                              | FMR00                                                                                                                                                            | RY/BY Status Flag                                                                                                                                                                                                                                                                        | 0 : BUSY (programming or erasing) <sup>(6)</sup><br>1 : READY                                                                                                                                                                                                                                                                                                                                                                                          | R                                              |
|                                                                                                                                                                                               |                                                                                                                                                                                                                              | FMR01                                                                                                                                                            | CPU Rewrite Mode<br>Select Bit <sup>(1, 7)</sup>                                                                                                                                                                                                                                         | 0 : Disables CPU rewrite mode<br>1 : Enables CPU rewrite mode                                                                                                                                                                                                                                                                                                                                                                                          | R٧                                             |
|                                                                                                                                                                                               |                                                                                                                                                                                                                              | FMR02                                                                                                                                                            | Lock Bit Disable<br>Select Bit <sup>(2)</sup>                                                                                                                                                                                                                                            | 0 : Enables the lock bit<br>1 : Disables the lock bit                                                                                                                                                                                                                                                                                                                                                                                                  | RV                                             |
|                                                                                                                                                                                               |                                                                                                                                                                                                                              | FMSTP                                                                                                                                                            | Flash Memory Stop<br>Bit <sup>(3, 5)</sup>                                                                                                                                                                                                                                               | 0 : Starts the flash memory<br>1 : Stops the flash memory<br>(Enters low power consumption state<br>and flash memory is reset)                                                                                                                                                                                                                                                                                                                         | RV                                             |
|                                                                                                                                                                                               |                                                                                                                                                                                                                              | (b4)                                                                                                                                                             | Reserved Bit                                                                                                                                                                                                                                                                             | Set to "0"                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                              |
| · · · · ·                                                                                                                                                                                     |                                                                                                                                                                                                                              | FMR05                                                                                                                                                            | User ROM Area Select<br>Bit <sup>(3)</sup> (Available in boot<br>mode only)                                                                                                                                                                                                              | 0 : Boot ROM area is accessed<br>1 : User ROM area is accessed                                                                                                                                                                                                                                                                                                                                                                                         | RV                                             |
|                                                                                                                                                                                               |                                                                                                                                                                                                                              | FMR06                                                                                                                                                            | Program Status Flag <sup>(4)</sup>                                                                                                                                                                                                                                                       | 0 : Successfully completed<br>1 : Terminated by error                                                                                                                                                                                                                                                                                                                                                                                                  | RC                                             |
|                                                                                                                                                                                               |                                                                                                                                                                                                                              | FMR07                                                                                                                                                            | Erase Status Flag <sup>(4)</sup>                                                                                                                                                                                                                                                         | 0 : Successfully completed<br>1 : Terminated by error                                                                                                                                                                                                                                                                                                                                                                                                  | RC                                             |
| memory<br>2. Set the l<br>"1". Do<br>to "1".<br>3. Set the l<br>4. The FMI<br>5. FMSTP<br>The FMS<br>low-pow<br>6. Write an<br>included<br>7. To chan<br>first to "0"<br>"0" and s<br>To char | in EW mode (<br>FMR02 bit to "<br>not generate a<br>FMSTP and FI<br>R07 and FMR(<br>bit setting is e<br>STP bit can be<br>er consumptio<br>d read operati<br><b>ge a FMR01 b</b><br>setting it to "1"<br><b>ge a FMR01 l</b> | ).<br>1" in 8-bit<br>in interrup<br>MR05 bits<br>06 bits is s<br>nabled wh<br>e set to "1"<br>n state no<br>ons by the<br>ons by the<br>bit setting<br>Do not ge | unit immediately after sett<br>t or a DMA transfer betwee<br>by program in a space of<br>tet to "0" by executing the<br>en the FMR01 bit is set to<br>when the FMR01 bit is set<br>r is reset.<br>e lock bit program comman<br>from "0" to "1", set the F<br>nerate an interrupt or a DI | program in a space other than the flash<br>sing it first to "0" while the FMR01 bit is<br>en setting the FMR02 bit to "0" and set<br>ther than the flash memory.<br>clear status command.<br>o "1" (CPU rewrite mode enabled).<br>et to "0", but the flash memory does not<br>and and read lock bit status command and<br>FMR01 bit to "1" immediately after settin<br>MA transfer between setting the FMR0<br>ead array mode to write to addresses 00 | set 1<br>ting<br>: ent<br>re<br>ng it<br>1 bit |
|                                                                                                                                                                                               |                                                                                                                                                                                                                              |                                                                                                                                                                  | setting from "1" to "0";                                                                                                                                                                                                                                                                 | 0057h                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |








Figure 25.5 FMR1 Register

#### 25.3.3.1 FMR00 Bit

The FMR00 bit indicates the flash memory operating state. It is set to "0" while the program, block erase, erase all unlocked block, lock bit program, or read lock bit status command is being executed; otherwise, it is set to "1".

#### 25.3.3.2 FMR01 Bit

The microcomputer can accept commands when the FMR01 bit is set to "1" (CPU rewrite mode). Set the FMR05 bit to "1" (user ROM area access) as well if in boot mode.

#### 25.3.3.3 FMR02 Bit

The lock bit is invalid by setting the FMR02 bit to "1" (lock bit disabled). (Refer to **25.3.6 Data Protect Function**.) The lock bit is valid by setting the FMR02 bit to "0" (lock bit enabled).

The FMR02 bit does not change the lock bit status but disables the lock bit function. If the block erase or erase all unlocked block command is executed when the FMR02 bit is set to "1", the lock bit status changes "0" (locked) to "1" (unlocked) after command execution is completed.



#### 25.3.3.4 FMSTP Bit

The FMSTP bit resets the flash memory control circuits and minimizes power consumption in the flash memory. Access to the flash memory is disabled when the FMSTP bit is set to "1". Set the FMSTP bit by program in a space other than the flash memory.

Set the FMSTP bit to "1" if one of the followings occurs:

- A flash memory access error occurs while erasing or programming in EW mode 0 (FMR00 bit does not switch back to "1" (ready)).
- Low-power consumption mode or on-chip low-power consumption mode is entered.

Use the following the procedure to change the FMSTP bit setting.

- (1) Set the FMSTP bit to "1"
- (2) Set tps (the wait time to stabilize flash memory circuit)
- (3) Set the FMSTP bit to "0"
- (4) Set tps (the wait time to stabilize flash memory circuit)

Figure 25.8 shows a flow chart illustrating how to start and stop the flash memory before and after entering low power mode. Follow the procedure on this flow chart.

When entering stop or wait mode, the flash memory is automatically turned off. When exiting stop or wait mode, the flash memory is turned back on. The FMR0 register does not need to be set.

#### 25.3.3.5 FMR05 Bit

The FMR05 bit selects the boot ROM or user ROM area in boot mode. Set to "0" to access (read) the boot ROM area or to "1" (user ROM access) to access (read, write or erase) the user ROM area.

#### 25.3.3.6 FMR06 Bit

The FMR06 bit is a read-only bit indicating an auto program operation state. The FMR06 bit is set to "1" when a program error occurs; otherwise, it is set to "0". Refer to **25.3.8 Full Status Check**.

#### 25.3.3.7 FMR07 Bit

The FM07 bit is a read-only bit indicating the auto erase operation state. The FMR07 bit is set to "1" when an erase error occurs; otherwise, it is set to "0". For details, refer to **25.3.8 Full Status Check**.

Figure 25.6 shows how to enter and exit EW mode 0. Figure 25.7 shows how to enter and exit EW mode 1.

#### 25.3.3.8 FMR11 Bit

EW mode 0 is entered by setting the FMR11 bit to "0" (EW mode 0). EW mode 1 is entered by setting the FMR11 bit to "1" (EW mode 1).

#### 25.3.3.9 FMR16 Bit

The FMR16 bit is a read-only bit indicating the execution result of the read lock bit status command. When the block, where the read lock bit status command is executed, is locked, the FMR16 bit is set to "0". When the block, where the read lock bit status command is executed, is unlocked, the FMR16 bit is set to "1".



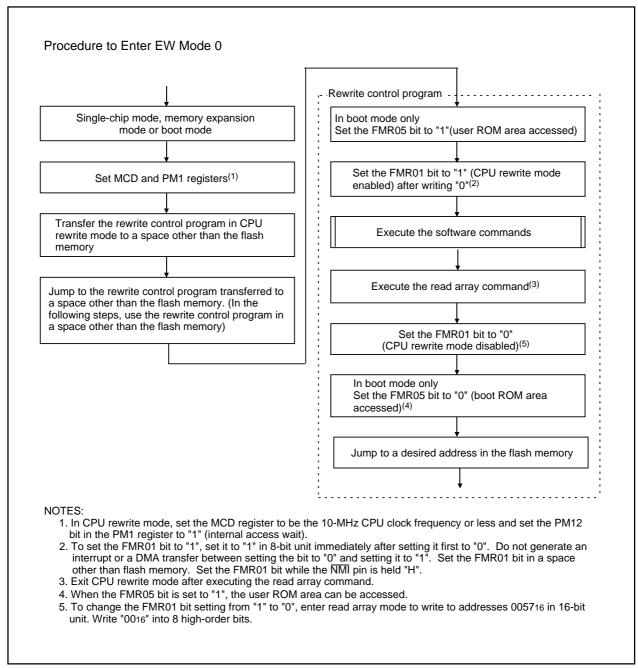



Figure 25.6 How to Enter and Exit EW Mode 0



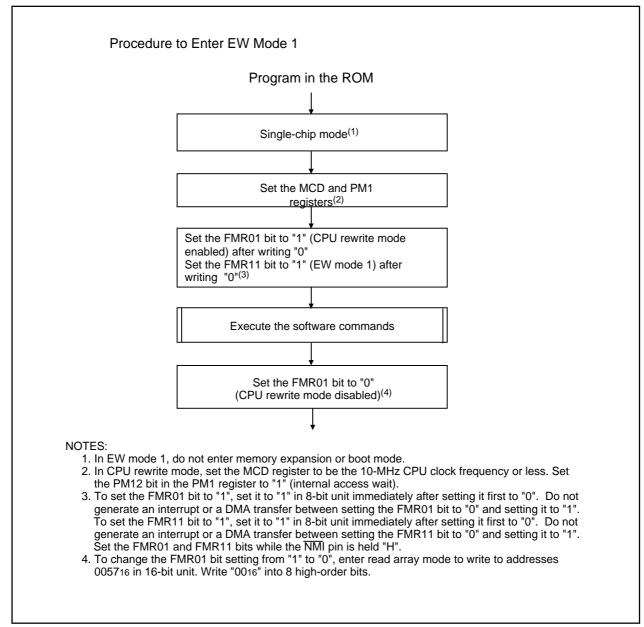



Figure 25.7 How to Enter and Exit EW Mode 1



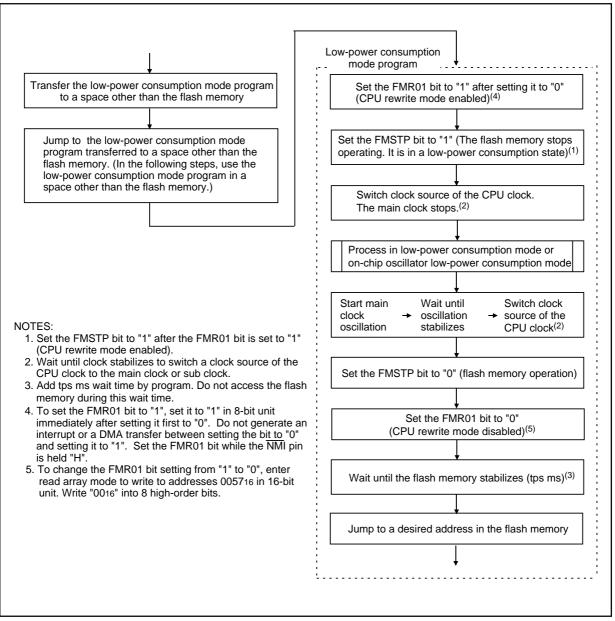



Figure 25.8 Handling Before and After Low Power Consumption Mode



# 25.3.4 Precautions in CPU Rewrite Mode

# 25.3.4.1 Operating Speed

Set the MCD4 to MCD0 bits in the MCD register to CPU clock frequency of 10 MHz or less before entering CPU rewrite mode (EW mode 0 or EW mode 1). Also, set the PM12 bit in the PM1 register to "1" (wait state).

# 25.3.4.2 Prohibited Instructions

The following instructions cannot be used in EW mode 0 because the CPU tries to read data in the flash memory: the UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction.

# 25.3.4.3 Interrupts (EW Mode 0)

- To use interrupts having vectors in a relocatable vector table, the vectors must be relocated to the RAM area.
- The NMI and watchdog timer interrupts are available since the FMR0 and FMR1 registers are forcibly reset when either interrupt occurs. Allocate the forward addresses for each interrupt routine to the fixed vector table. Flash memory rewrite operation is aborted when the NMI or watchdog timer interrupt occurs. Execute the rewrite program again after exiting the interrupt routine.
- The address match interrupt is not available since the CPU tries to read data in the flash memory.

# 25.3.4.4 Interrupts (EW Mode 1)

- Do not acknowledge any interrupts with vectors in the relocatable vector table or address match interrupt during the auto program or auto erase period.
- Do not use the watchdog timer interrupt.
- The NMI interrupt is available since the FMR0 and FMR1 registers are forcibly reset when either interrupt occurs. Allocate the forward address for the interrupt routine to the fixed vector table. Flash memory rewrite operation is aborted when the NMI interrupt occurs. Execute the rewrite program again after exiting the interrupt routine.

# 25.3.4.5 How to Access

To set the FMR01, FMR02 in the FMR0 register or FMR11 bit in the FMR1 register to "1", set to "1" in 8-bit units immediately after setting to "0". Do not generate an interrupt or a DMA transfer between the instruction to set the bit to "0" and the instruction to set the bit to "1". Set the bit while a high-level ("H") signal is applied to the  $\overline{\rm NMI}$  pin.

To change the FMR01 bit from "1" to "0", enter read array mode first, and write into address 005716 in 16-bit units. Eight high-order bits must be set to "0016".

# 25.3.4.6 Rewriting in the User ROM Area (EW Mode 0)

If the supply voltage drops while rewriting the block where the rewrite control program is stored, the flash memory cannot be rewritten because the rewrite control program is not rewritten as expected. If this error occurs, rewrite the user ROM area while in standard serial I/O mode or parallel I/O mode.

# 25.3.4.7 Rewriting in the User ROM Area (EW Mode 1)

Do not rewrite the block where the rewrite control program is stored.

# 25.3.4.8 DMA Transfer

In EW mode 1, do not generate a DMA transfer while the FMR00 bit in the FMR0 register is set to "0" (busy-programming or erasing).

#### 25.2.4.9 Writing Command and Data

Write commands and data to even addresses in the user ROM area.

#### 25.3.4.10 Wait Mode

When entering wait mode, set the FMR01 bit in the FMR0 register to "0" (CPU rewrite mode disabled) before executing the WAIT instruction.

### 25.3.4.11 Stop Mode

When entering stop mode, the following settings are required:

- Set the FMR01 bit to "0" (CPU rewrite mode disabled). Disable a DMA transfer before setting the CM10 bit to "1" (stop mode).
- Execute the instruction to set the CM10 bit to "1" (stop mode) and then the JMP.B instruction.

e.g.,

BSET 0, CM1 ; Stop mode JMP.B L1

L1:

Program after exiting stop mode

### 25.3.4.12 Low-Power Consumption Mode and On-Chip Oscillator Low-Power Consumption Mode

If the CM05 bit is set to "1" (main clock stopped), do not execute the following commands:

- Program
- Block erase
- Erase all unlocked blocks
- Lock bit program
- Read lock bit status



# 25.3.5 Software Commands

Read or write 16-bit commands and data from or to even addresses in the user ROM area, in 16-bit units. When writing a command code, 8 high-order bits (D15 to D8) are ignored.

|                                         | First Bus Cycle |         |                     | Second Bus Cycle |         |                     |  |
|-----------------------------------------|-----------------|---------|---------------------|------------------|---------|---------------------|--|
| Command                                 | Mode            | Address | Data<br>(D15 to D0) | Mode             | Address | Data<br>(D15 to D0) |  |
| Read Array                              | Write           | Х       | xxFF16              |                  |         |                     |  |
| Read Status Register                    | Write           | Х       | <b>xx70</b> 16      | Read             | Х       | SRD                 |  |
| Clear Status Register                   | Write           | Х       | <b>xx50</b> 16      |                  |         |                     |  |
| Program                                 | Write           | WA      | xx4016              | Write            | WA      | WD                  |  |
| Block Erase                             | Write           | Х       | xx2016              | Write            | BA      | xxD016              |  |
| Erase All Unlocked Block <sup>(1)</sup> | Write           | Х       | xxA716              | Write            | Х       | xxD016              |  |
| Lock Bit Program                        | Write           | BA      | <b>xx77</b> 16      | Write            | BA      | xxD016              |  |
| Read Lock Bit Status                    | Write           | Х       | <b>xx71</b> 16      | Write            | BA      | xxD016              |  |

NOTES:

1. Blocks 0 to 12 can be erased by the erase all unlocked block command.

Block A cannot be erased. The block erase command must be used to erase the block A.

SRD: Data in the SRD register (D7 to D0)

- WA: Address to be written (The address specified in the the first bus cycle is the same even address as the address specified in the second bus cycle.)
- WD: 16-bit write data

BA: Highest-order block address (must be an even address)

X: Any even address in the user ROM space

xx: 8 high-order bits of command code (ignored)

#### 25.3.5.1 Read Array Command

The read array command reads the flash memory.

Read array mode is entered by writing command code "xxFF16" in the first bus cycle. Content of a specified address can be read in 16-bit units after the next bus cycle.

The microcomputer remains in read array mode until another command is written. Therefore, contents from multiple addresses can be read consecutively.

# 25.3.5.2 Read Status Register Command

The read status register command reads the SRD register (refer to **25.3.7 Status Register** for detail). By writing command code "xx7016" in the first bus cycle, the SRD register can be read in the second bus cycle. Read an even address in the user ROM area.

Do not execute this command in EW mode 1.

# 25.3.5.3 Clear Status Register Command

The clear status register command clears the SRD register. By writing "xx5016" in the first bus cycle, the FMR07 and FMR06 bits in the FMR0 register are set to "002" and the SR5 and SR4 bits in the SRD register are set to "002".

#### 25.3.5.4 Program Command

The program command writes 1-word, or 2-byte, data to the flash memory.

Auto program operation (data program and verify) will start by writing command code "xx4016" in the first bus cycle and data to the write address in the second bus cycle. The address value specified in the first bus cycle must be the same even address as the write address specified in the second bus cycle.

The FMR00 bit in the FMR0 register indicates whether or not an auto program operation has been completed. The FMR00 bit is set to "0" (busy) during auto program and to "1" (ready) when the auto program operation is completed.

After the completion of auto program operation, the FMR06 bit in the FMR0 register indicates whether or not the auto program operation has been completed as expected. (Refer to **25.3.8 Full Status Check**.)

An address that is already written cannot be altered or rewritten.

Figure 25.9 shows a flow chart of the program command programming.

The lock bit can protect each block from being programmed inadvertently. (Refer to **25.3.6 Data Protect Function**.)

In EW mode 1, do not execute this command on the block where the rewrite control program is allocated. In EW mode 0, the microcomputer enters read status register mode as soon as an auto program operation starts. The SRD register can be read. The SR7 bit in the SRD register is set to "0" at the same time an auto program operation starts. It is set to "1" when an auto program operation is completed. The microcomputer remains in read status register mode until the read array command is written. After completion of an auto program operation, the SRD register indicates whether or not the auto program operation has been completed as expected.

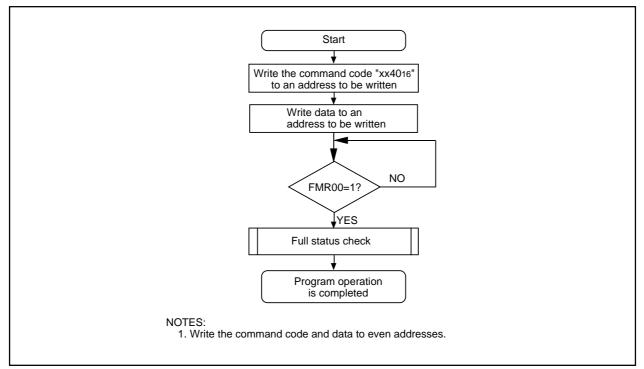



Figure 25.9 Program Command



### 25.3.5.5 Block Erase Command

The block erase command erases each block.

Auto erase operation (erase and verify) will start in the specified block by writing command code "xx2016" in the first bus cycle and "xxD016" to the highest-order even address of a block in the second bus cycle.

The FMR00 bit in the FMR0 register indicates whether or not an auto erase operation has been completed. The FMR00 bit is set to "0" (busy) during auto erase and to "1" (ready) when the auto erase operation is completed.

After the completion of an auto erase operation, the FMR07 bit in the FMR0 register indicates whether or not the auto erase operation has been completed as expected. (Refer to **25.3.8 Full Status Check**.)

Figure 25.10 shows a flow chart of the block erase command programming.

The lock bit can protect each block from being programmed inadvertently. (Refer to **25.3.6 Data Protect Function**.)

In EW mode 1, do not execute this command on the block where the rewrite control program is allocated. In EW mode 0, the microcomputer enters read status register mode as soon as an auto erase operation starts. The SRD register can be read. The SR7 bit in the SRD register is set to "0" at the same time an auto erase operation starts. It is set to "1" when an auto erase operation is completed. The microcomputer remains in read status register mode until the read array command or read lock bit status command is written.

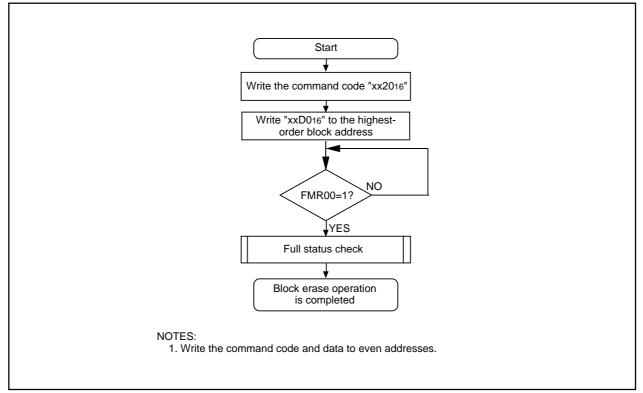



Figure 25.10 Block Erase Command



#### 25.3.5.6 Erase All Unlocked Block Command

The erase all unlocked block command erases all blocks except the block A.

By writing command code "xxA716" in the first bus cycle and "xxD016" in the second bus cycle, auto erase (erase and verify) operation will run continuously in all blocks except the block A.

The FMR00 bit in the FMR0 register indicates whether or not an auto erase operation has been completed.

After the completion of an auto erase operation, the FMR07 bit in the FMR0 register indicates whether or not the auto erase operation has been completed as expected.

The lock bit can protect each block from being programmed inadvertently. (Refer to **25.3.6 Data Protect Function**.)

In EW mode 1, do not execute this command when the lock bit for any block storing the rewrite control program is set to "1" (unlocked) or when the FMR02 bit in the FMR0 register is set to "1" (lock bit disabled).

In EW mode 0, the microcomputer enters read status register mode as soon as an auto erase operation starts. The SRD register can be read. The SR7 bit in the SRD register is set to "0" (busy) at the same time an auto erase operation starts. It is set to "1" (ready) when an auto erase operation is completed. The microcomputer remains in read status register mode until the read array command or read lock bit status command is written.

Only blocks 0 to 12 can be erased by the erase all unlocked block command. The block A cannot be erased. Use the block erase command to erase the block A.



#### 25.3.5.7 Lock Bit Program Command

The lock bit program command sets the lock bit for a specified block to "0" (locked).

By writing command code "xx7716" in the first bus cycle and "xxD016" to the highest-order even address of a block in the second bus cycle, the lock bit for the specified block is set to "0". The address value specified in the first bus cycle must be the same highest-order even address of a block specified in the second bus cycle.

Figure 25.11 shows a flow chart of the lock bit program command programming. Execute read lock bit status command to read lock bit state (lock bit data).

The FMR00 bit in the FMR0 register indicates whether a lock bit program operation is completed. Refer to **25.3.6 Data Protect Function** for details on lock bit functions and how to set it to "1" (un-

locked).

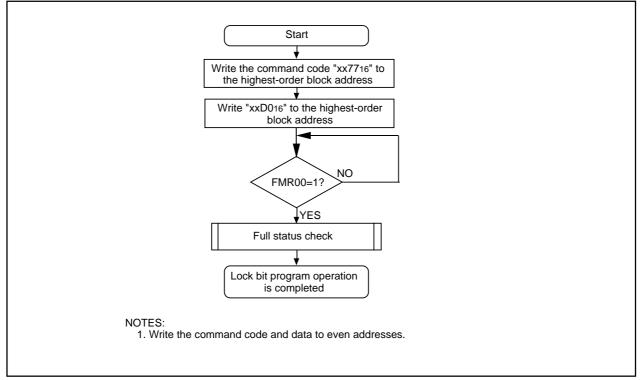



Figure 25.11 Lock Bit Program Command



#### 25.3.5.8 Read Lock Bit Status Command

The read lock bit status command reads the lock bit state (the lock bit data) of a specified block. By writing command code "xx7116" in the first bus cycle and "xxD016" to the highest-order even address of a block in the second bus cycle, the FMR16 bit in the FMR1 register stores information on whether or not the lock bit of a specified block is locked. Read the FMR16 bit after the FMR00 bit in the FMR0 register is set to "1" (ready).

Figure 25.12 shows a flow chart of the read lock bit status command programming.

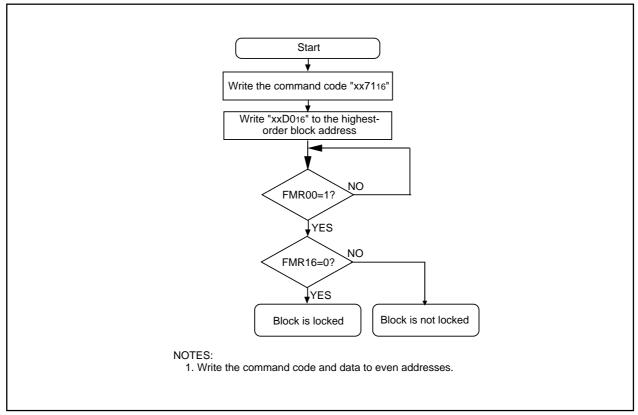



Figure 25.12 Read Lock Bit Status Command



## 25.3.6 Data Protect Function

Each block in the flash memory has a nonvolatile lock bit. The lock bit is enabled by setting the FMR02 bit to "0" (lock bit enabled). The lock bit individually protects (locks) each block against program and erase. This prevents data from being inadvertently written to or erased from the flash memory.

- When the lock bit status is set to "0", the block is locked (block is protected against program and erase).
- When the lock bit status is set to "1", the block is not locked (block can be programmed or erased).

The lock bit status is set to "0" (locked) by executing the lock bit program command and to "1" (unlocked) by erasing the block. The lock bit status cannot be set to "1" by any commands.

The lock bit status can be read by the read lock bit status command.

The lock bit function is disabled by setting the FMR02 bit to "1". All blocks are unlocked. However, individual lock bit status remains unchanged. The lock bit function is enabled by setting the FMR02 bit to "0". Lock bit status is retained.

If the block erase or erase all unlocked block command is executed while the FMR02 bit is set to "1", the target block or all blocks are erased regardless of lock bit status. The lock bit status of each block are set to "1" after an erase operation is completed.

Refer to 25.3.5 Software Commands for details on each command.

### 25.3.7 Status Register (SRD Register)

The SRD register indicates the flash memory operating state and whether or not an erase or program operation is completed as expected. The FMR00, FMR06 and FMR07 bits in the FMR0 register indicate SRD register states.

Table 25.5 shows the SRD register.

In EW mode 0, the SRD register can be read when the followings occur.

- Any even address in the user ROM area is read after writing the read status register command
- Any even address in the user ROM area is read from when the program, block erase, erase all unlocked block, or lock bit program command is executed until when the read array command is executed.

### 25.3.7.1 Sequencer Status (SR7 and FMR00 Bits )

The sequencer status indicates the flash memory operating state. It is set to "0" while the program, block erase, erase all unlocked block, lock bit program, or read lock bit status command is being executed; otherwise, it is set to "1".

### 25.3.7.2 Erase Status (SR5 and FMR07 Bits)

Refer to 25.3.8 Full Status Check.

### 25.3.7.3 Program Status (SR4 and FMR06 Bits)

Refer to 25.3.8 Full Status Check.



| Bits in<br>SRD | Bits in<br>FMR0      | Status           | Defir                  | Value |                |
|----------------|----------------------|------------------|------------------------|-------|----------------|
| register       | Register             | Name             | "0"                    | "1"   | after<br>Reset |
| SR7 (D7)       | FMR00                | Sequencer status | BUSY                   | READY | 1              |
| SR6 (D6)       |                      | Reserved bit     | -                      | -     | -              |
| SR5 (D5)       | FMR07 <sup>(1)</sup> | Erase status     | Successfully completed | Error | 0              |
| SR4 (D4)       | FMR06 <sup>(1)</sup> | Program status   | Successfully completed | Error | 0              |
| SR3 (D3)       |                      | Reserved bit     | -                      | -     | -              |
| SR2 (D2)       |                      | Reserved bit     | -                      | -     | -              |
| SR1 (D1)       |                      | Reserved bit     | -                      | -     | -              |
| SR0 (D0)       |                      | Reserved bit     | -                      | -     | _              |

#### Table 25.5 Status Register

D0 to D7: These data buses are read when the read status register command is executed. NOTES:

1. The FMR07 (SR5) and FMR06 (SR4) bits are set to "0" by executing the clear status register command. When the FMR07 (SR5) or FMR06 (SR4) bit is set to "1", the program, block erase, erase all unlocked block and lock bit program commands are not accepted.



## 25.3.8 Full Status Check

If an error occurs when a program or erase operation is completed, the FMR07 and FMR06 bits in the FMR0 register are set to "1", indicating a specific error. Therefore, execution results can be confirmed by verifying these bits (full status check).

Table 25.6 lists errors and FMR0 register state. Figure 25.13 shows a flow chart of the full status check and handling procedure for each error.

| FMR0 Register<br>(SRD Register) |             |                |                                                                                                        |
|---------------------------------|-------------|----------------|--------------------------------------------------------------------------------------------------------|
| S                               | state       | Error          | Error Occurrence Conditions                                                                            |
| FMR07                           | FMR07 FMR06 |                |                                                                                                        |
| (SR5)                           | (SR4)       |                |                                                                                                        |
| 1                               | 1           | Command        | An incorrect command is written                                                                        |
|                                 |             | sequence error | • A value other than "xxD016" or "xxFF16" is written in the second                                     |
|                                 |             |                | bus cycle of the lock bit program, block erase or erase all un-<br>locked block command <sup>(1)</sup> |
| 1                               | 0           | Erase error    | • The block erase command is executed on a locked block <sup>(2)</sup>                                 |
|                                 |             |                | • The block erase or erase all unlocked block command is ex-                                           |
|                                 |             |                | ecuted on an unlock block, but the erase operation is not com-                                         |
|                                 |             |                | pleted as expected                                                                                     |
| 0                               | 1           | Program error  | <ul> <li>The program command is executed on locked blocks<sup>(2)</sup></li> </ul>                     |
|                                 |             |                | • The program command is executed on an unlocked block, but the                                        |
|                                 |             |                | program operation is not completed as expected                                                         |
|                                 |             |                | • The lock bit program command is executed but the program op-                                         |
|                                 |             |                | eration is not completed as expected                                                                   |

NOTES:

1. The flash memory enters read array mode when command code "xxFF16" is written in the second bus cycle of these commands. The command code written in the first bus cycle becomes invalid.

2. When the FMR02 bit is set to "1" (lock bit disabled), no error occurs even under the conditions above.



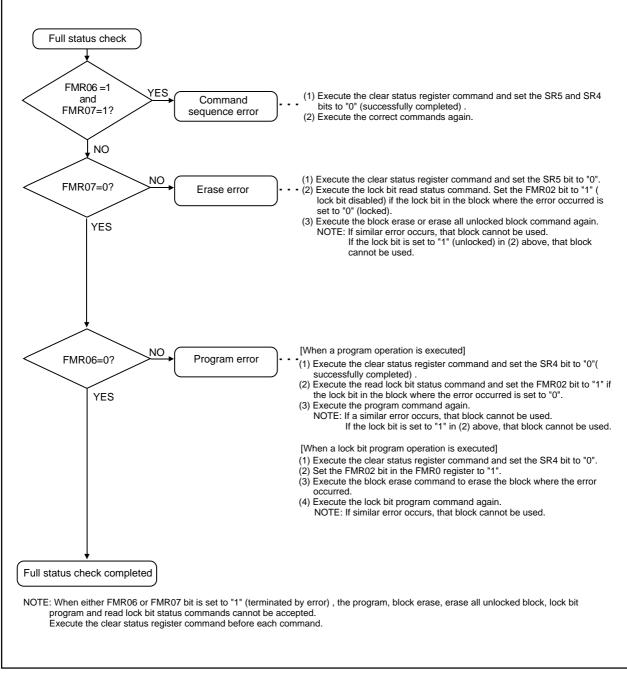



Figure 25.13 Full Status Check and Handling Procedure for Each Error



### 25.4 Standard Serial I/O Mode

In standard serial I/O mode, the serial programmer supporting the M32C/85 group (M32C/85, M32C/85T) can be used to rewrite the flash memory user ROM area, while the microcomputer is mounted on a board. For more information about the serial programmer, contact your serial programmer manufacturer. Refer to the user's manual included with your serial programmer for instructions.

Table 25.7 lists pin descriptions (flash memory standard serial I/O mode). Figures 25.14 to 25.16 show pin connections in serial I/O mode.

# 25.4.1 ID Code Verify Function

The ID code verify function determines whether or not the ID codes sent from the serial programmer matches those written in the flash memory. (Refer to **25.2 Functions to Prevent Flash Memory from Rewriting**.)



#### Table 25.7 Pin Description (Flash Memory Standard Serial I/O Mode)

| Symbol           | Function       | I/O          | Supply  | Description                                                                |
|------------------|----------------|--------------|---------|----------------------------------------------------------------------------|
| Cymbol           |                | Туре         | Voltage | Docomption                                                                 |
| Vcc              | Power supply   | I            | -       | Apply the guaranteed program/erase supply voltage to the VCC1 pin.         |
| Vss              | input          |              |         | Apply 0 V to the Vss pin                                                   |
| CNVss            | CNVss          | I            | VCC1    | Connect this pin to VCC1                                                   |
| RESET            | Reset input    | I            | VCC1    | Reset input pin. Apply 20 or more clock cycles to the XIN pin while "L" $$ |
|                  |                |              |         | is applied to the RESET pin                                                |
| XIN              | Clock input    | I            | VCC1    | Connect a ceramic resonator or crystal oscillator between XIN              |
|                  |                |              |         | and Xout                                                                   |
| Xout             | Clock output   | 0            | VCC1    | To use the external clock, input the clock from XIN and leave XOUT         |
|                  |                |              |         | open                                                                       |
| BYTE             | BYTE input     | I            | VCC1    | Connect this pin to Vss or Vcc1                                            |
| AVcc             | Analog power   | I            | -       | Connect AVcc to Vcc1                                                       |
| AVss             | supply input   |              |         | Connect AVss to Vss                                                        |
| Vref             | Reference      | I            | _       | Reference voltage input pin for the A/D converter                          |
|                  | voltage input  |              |         |                                                                            |
| P00 to P07       | Input port P0  | I            | VCC2    | Apply "H" or "L" to this pin, or leave open                                |
| P10 to P17       | Input port P1  | I            | VCC2    | Apply "H" or "L" to this pin, or leave open                                |
| P20 to P27       | Input port P2  | I            | VCC2    | Apply "H" or "L" to this pin, or leave open                                |
| P30 to P37       | Input port P3  | I            | VCC2    | Apply "H" or "L" to this pin, or leave open                                |
| P40 to P47       | Input port P4  | I            | VCC2    | Apply "H" or "L" to this pin, or leave open                                |
| P50              | CE input       | I            | VCC2    | Apply "H" to this pin                                                      |
| P55              | EPM input      | - <u>-</u> - | Vcc2    | Apply "L" to this pin                                                      |
| P51 to P54       | Input port P5  | - <u>-</u> - | Vcc2    | Apply "H" or "L" to this pin, or leave open                                |
| P56, P57         |                |              |         |                                                                            |
| P60 to P63       | Input port P6  | I            | VCC1    | Apply "H" or "L" to this pin, or leave open                                |
| <br>P64          | BUSY output    | Ō            | Vcc1    | Standard serial I/O mode 1: BUSY signal output pin                         |
|                  |                |              |         | Standard serial I/O mode 2: Program running verify monitor                 |
|                  |                |              |         | Standard serial I/O mode 3: Leave open                                     |
| P65              | SCLK input     | - ī -        | Vcc1    | Standard serial I/O mode 1: Serial clock input pin                         |
|                  |                |              |         | Standard serial I/O mode 2, 3: Apply "L" to this pin                       |
| <br>P66          | RxD            | - <u>-</u> - | Vcc1    | Standard serial I/O mode 1, 2: Serial data input pin                       |
|                  | Data input     |              |         | Standard serial I/O mode 3: Apply "H" to this pin                          |
| P67              | TxD            | Ō            | VCC1    | Standard serial I/O mode 1, 2: Serial data output pin                      |
|                  | Data output    |              |         | Standard serial I/O mode 3: Leave open                                     |
| P70 to P75       | Input port P7  | I            | VCC1    | Apply "H" or "L" to this pin, or leave open                                |
| P76              | CAN output     | Ō            | Vcc1    | Standard serial I/O mode 1, 2: Apply "H" or "L" to this pin, or leave open |
|                  |                |              |         | Standard serial I/O mode 3: CAN output pin                                 |
| P77              | CAN input      | - <u>-</u> - | VCC1    | Standard serial I/O mode 1, 2: Apply "H" or "L" to this pin, or leave open |
|                  |                |              |         | Standard serial I/O mode 3: CAN input pin                                  |
| P80 to P84       | Input port P8  | Ι            | VCC1    | Apply "H" or "L" to this pin, or leave open                                |
| P86, P87         |                |              |         |                                                                            |
| - <u></u><br>P85 | NMI input      | - <u>-</u> - | Vcc1    | Connect this pin to Vcc1                                                   |
| P90 to P97       | Input port P9  | I            | VCC1    | Apply "H" or "L" to this pin, or leave open                                |
| P100 to P107     | Input port P10 | I            | VCC1    | Apply "H" or "L" to this pin, or leave open                                |
| P110 to P114     | Input port P11 | I            | VCC2    | Apply "H" or "L" to this pin, or leave open <sup>(1)</sup>                 |
| P120 to P127     | Input port P12 | I            | VCC2    | Apply "H" or "L" to this pin, or leave open <sup>(1)</sup>                 |
| P130 to P137     | Input port P13 | I            | VCC2    | Apply "H" or "L" to this pin, or leave open <sup>(1)</sup>                 |
| P140 to P146     | Input port P14 | I            | VCC1    | Apply "H" or "L" to this pin, or leave open <sup>(1)</sup>                 |
| P150 to P157     | Input port P15 | I            | VCC1    | Apply "H" or "L" to this pin, or leave open <sup>(1)</sup>                 |

#### NOTES:

1. These pins are provided in the 144-pin package only.

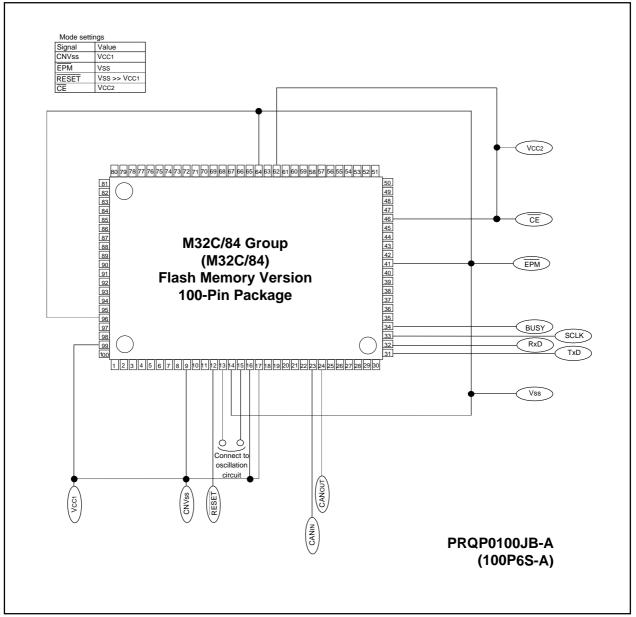



Figure 25.14 Pin Connections in Standard Serial I/O Mode (1)



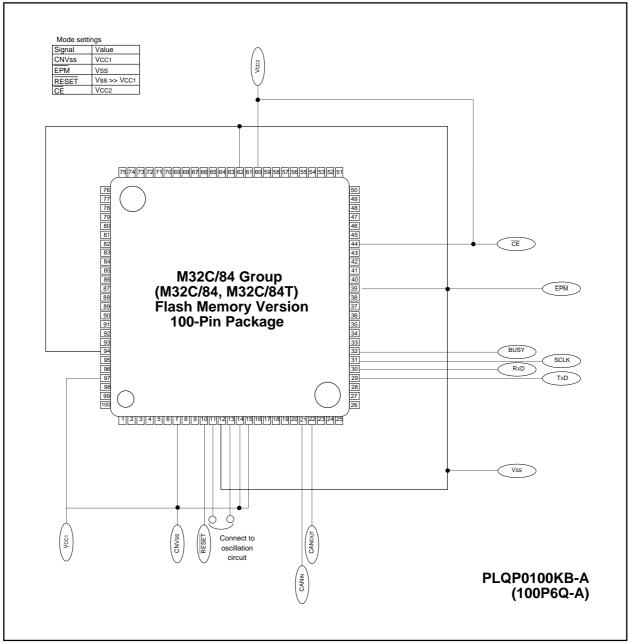



Figure 25.15 Pin Connections in Standard Serial I/O Mode (2)



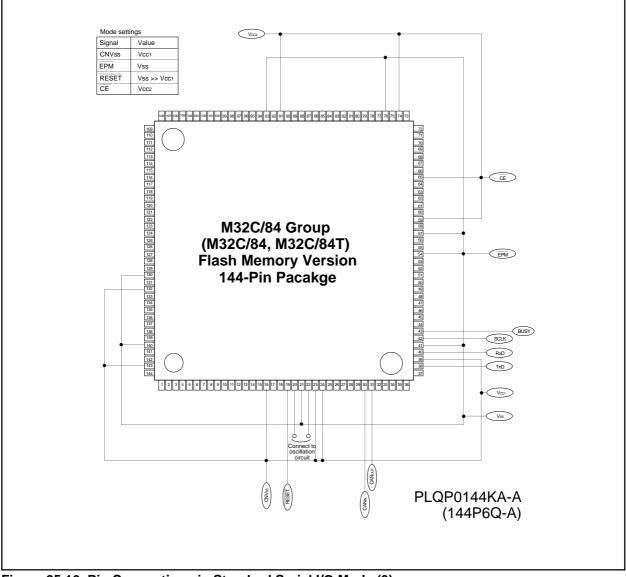



Figure 25.16 Pin Connections in Standard Serial I/O Mode (3)



# 25.4.2 Circuit Application in Standard Serial I/O Mode

Figure 25.17 shows an example of a circuit application in standard serial I/O mode 1. Figure 25.18 shows an example of a circuit application serial I/O mode 2. Figure 25.19 shows an example of a circuit application serial I/O mode 3. Refer to the user's manual of your serial programmer to handle pins controlled by the serial programmer.

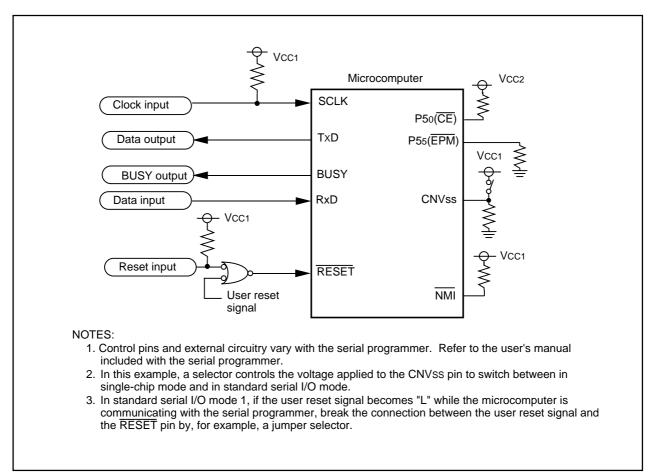



Figure 25.17 Circuit Application in Standard Serial I/O Mode 1



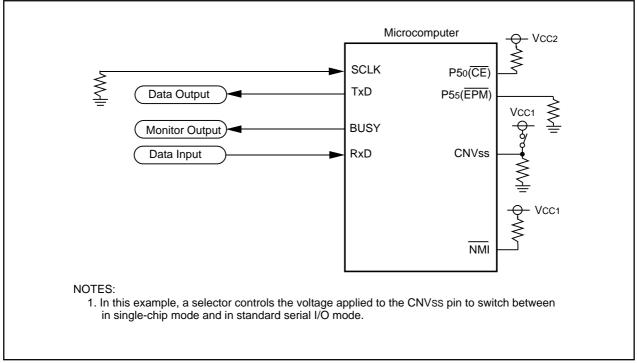



Figure 25.18 Circuit Application in Standard Serial I/O Mode 2

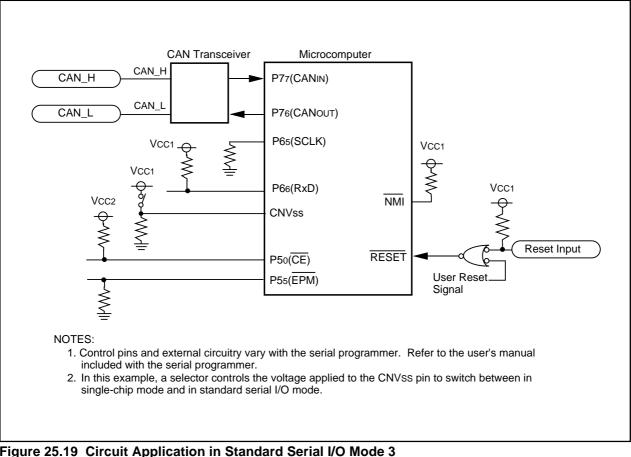



Figure 25.19 Circuit Application in Standard Serial I/O Mode 3

## 25.5 Parallel I/O Mode

In parallel I/O mode, the user ROM area and the boot ROM area can be rewritten by a parallel programmer supporting the M32C/85 Group (M32C/85, M32C/85T). Contact your parallel programmer manufacturer for more information on the parallel programmer. Refer to the user's manual included with your parallel programmer for instructions.

# 25.5.1 Boot ROM Area

An erase block operation in the boot ROM area is applied to only one 4-Kbyte block. The rewrite control program in standard serial I/O mode is written in the boot ROM area before shipment. Do not rewrite the boot ROM area if using the serial programmer.

In parallel I/O mode, the boot ROM area is located in addresses FFF00016 to FFFFF16. Rewrite this address range only if rewriting the boot ROM area. (Do not access addresses other than addresses FFF00016 to FFFFF16.)

### 25.5.2 ROM Code Protect Function

The ROM code protect function prevents the flash memory from being read and rewritten in parallel I/O mode. (Refer to **25.2 Functions to Prevent Flash Memory from Rewriting**.)



# 26. Electrical Characteristics

# 26.1 Electrical Characteristics (M32C/84)

| Symbol     |                                                                                                                                        |                                                                                                              | Condition  | Value                                  | Unit |
|------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------|----------------------------------------|------|
| Vcc1, Vcc2 | Supply Voltage                                                                                                                         |                                                                                                              | Vcc1=AVcc  | -0.3 to 6.0                            | V    |
| Vcc2       | Supply Voltage                                                                                                                         |                                                                                                              | -          | -0.3 to Vcc1                           | V    |
| AVcc       | Analog Supply V                                                                                                                        | oltage                                                                                                       | Vcc1=AVcc  | -0.3 to 6.0                            | V    |
| Vı         | Input Voltage RESET, CNVss, BYTE, P60-P67, P72-P77,<br>P80-P87, P90-P97, P100-P107, P140-P146,<br>P150-P157 <sup>(1)</sup> , VREF, XIN |                                                                                                              |            | -0.3 to Vcc1+0.3                       | V    |
|            |                                                                                                                                        | P00-P07, P10-P17, P20-P27, P30-P37, P40-<br>P47, P50-P57, P110-P114, P120-P127, P130-<br>P137 <sup>(1)</sup> |            | -0.3 to Vcc2+0.3                       | _    |
|            |                                                                                                                                        | P70, P71                                                                                                     |            | -0.3 to 6.0                            | 1    |
| Vo         | Output Voltage                                                                                                                         | Р60-Р67, Р72-Р77, Р80-Р84, Р86, Р87, Р90-<br>Р97, Р100-Р107, Р140-Р146, Р150-Р157 <sup>(1)</sup> ,<br>Хоит   |            | -0.3 to Vcc1+0.3                       | V    |
|            |                                                                                                                                        | P00-P07, P10-P17, P20-P27, P30-P37, P40-<br>P47, P50-P57, P110-P114, P120-P127, P130-<br>P137 <sup>(1)</sup> |            | -0.3 to Vcc2+0.3                       |      |
|            |                                                                                                                                        | P70, P71                                                                                                     |            | -0.3 to 6.0                            |      |
| Pd         | Power Dissipation                                                                                                                      | n                                                                                                            | Topr=25° C | 500                                    | mW   |
| Topr       | Operating<br>Ambient                                                                                                                   |                                                                                                              |            | -20 to 85/<br>-40 to 85 <sup>(2)</sup> | ° C  |
|            | Temperature                                                                                                                            | during flash memory program and erase operation                                                              |            | 0 to 60                                |      |
| Tstg       | Storage Tempera                                                                                                                        | ature                                                                                                        |            | -65 to 150                             | °C   |

#### Table 26.1 Absolute Maximum Ratings

NOTES:

1. P11 to P15 are provided in the 144-pin package only.

2. Contact Renesas Technology Sales Co., Ltd, if temperature range of -40 to 85° C is required.



| Table 26.2 Recommended Operating Conditions                               |  |
|---------------------------------------------------------------------------|--|
| (Vcc1= Vcc2=3.0V to 5.5V at Topr=– 20 to 85°C unless otherwise specified) |  |

| Symbol                | Parameter                                              |                                                                                                                                                                                             |         | Unit |          |      |  |
|-----------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|----------|------|--|
| Symbol                | Parameter                                              |                                                                                                                                                                                             |         | Тур. | Max.     | Unit |  |
| VCC1, VCC2            | Supply Voltage (V                                      | /cc1≥ Vcc2)                                                                                                                                                                                 | 3.0     | 5.0  | 5.5      | V    |  |
| AVcc                  | Analog Supply Vo                                       | Analog Supply Voltage                                                                                                                                                                       |         |      |          | V    |  |
| Vss                   | Supply Voltage                                         |                                                                                                                                                                                             |         | 0    |          | V    |  |
| AVss                  | Analog Supply Vo                                       | Itage                                                                                                                                                                                       |         | 0    |          | V    |  |
| Viн                   | Input High ("H")<br>Voltage                            | P20-P27, P30-P37, P40-P47, P50-P57, P110-P114, P120-<br>P127, P130-P137 <sup>(4)</sup>                                                                                                      | 0.8Vcc2 |      | Vcc2     | V    |  |
|                       |                                                        | P60-P67, P72-P77, P80-P87 <sup>(3)</sup> , P90-P97, P100-P107, P140-<br>P146, P150-P157 <sup>(4)</sup> , XIN, RESET, CNVss, BYTE                                                            | 0.8Vcc1 |      | Vcc1     |      |  |
|                       |                                                        | P70, P71                                                                                                                                                                                    | 0.8Vcc1 |      | 6.0      |      |  |
|                       |                                                        | P00-P07, P10-P17 (in single-chip mode)                                                                                                                                                      | 0.8Vcc2 |      | Vcc2     |      |  |
|                       |                                                        | P00-P07, P10-P17<br>(in memory expansion mode and microprocesor mode)                                                                                                                       | 0.5Vcc2 |      | VCC2     |      |  |
| Vil                   | Input Low ("L")<br>Voltage                             | P20-P27, P30-P37, P40-P47, P50-P57, P110-P114, P120-<br>P127, P130-P137 <sup>(4)</sup>                                                                                                      | 0       |      | 0.2Vcc2  | V    |  |
|                       |                                                        | P60-P67, P70-P77, P80-P87 <sup>(3)</sup> , P90-P97, P100-P107, P140-<br>P146, P150-P157 <sup>(4)</sup> , XIN, RESET, CNVss, BYTE                                                            | 0       |      | 0.2Vcc1  |      |  |
|                       |                                                        | P00-P07, P10-P17 (in single-chip mode)                                                                                                                                                      | 0       |      | 0.2Vcc2  |      |  |
|                       |                                                        | P00-P07, P10-P17<br>(in memory expansion mode and microprocesor mode)                                                                                                                       | 0       |      | 0.16Vcc2 |      |  |
| IOH(peak)             | Peak Output<br>High ("H")<br>Current <sup>(2)</sup>    | P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60-<br>P67, P72-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110-<br>P114, P120-P127, P130-P137, P140-P146, P150-P157 <sup>(4)</sup> |         |      | -10.0    | mA   |  |
| IOH(avg)              | Average Output<br>High ("H")<br>Current <sup>(1)</sup> | P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60-<br>P67, P72-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110-<br>P114, P120-P127, P130-P137, P140-P146, P150-P157 <sup>(4)</sup> |         |      | -5.0     | mA   |  |
| I <sub>OL(peak)</sub> | Peak Output Low<br>("L") Current <sup>(2)</sup>        | P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60-<br>P67, P70-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110-<br>P114, P120-P127, P130-P137, P140-P146, P150-P157 <sup>(4)</sup> |         |      | 10.0     | mA   |  |
|                       | Average Output<br>Low ("L")<br>Current <sup>(1)</sup>  | P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60-<br>P67, P70-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110-<br>P114, P120-P127, P130-P137, P140-P146, P150-P157 <sup>(4)</sup> |         |      | 5.0      | mA   |  |

NOTES:

1. Typical values when average output current is 100ms.

 Total IOL(peak) for P0, P1, P2, P86, P87, P9, P10, P11, P14 and P15 must be 80mA or less. Total IOL(peak) for P3, P4, P5, P6, P7, P80 to P84, P12 and P13 must be 80mA or less. Total IOH(peak) for P0, P1, P2, and P11 must be -40mA or less. Total IOH(peak) for P86, P87, P9, P10, P14 and P15 must be -40mA or less. Total IOH(peak) for P3, P4, P5, P12 and P13 must be -40mA or less. Total IOH(peak) for P3, P4, P5, P12 and P13 must be -40mA or less. Total IOH(peak) for P6, P7, and P80 to P84 must be -40mA or less.

3. VIH and VIL reference for P87 applies when P87 is used as a programmable input port. It does not apply when P87 is used as XcIN.

4. P11 to P15 are provided in the 144-pin package only.

# Table 26.2 Recommended Operating Conditions (Continued) (Vcc1=Vcc2=3.0V to 5.5V at Topr=-20 to 85°C unless otherwise specified)

| Symbol   | Parameter                                         |                  |     | Standard |      |      |  |
|----------|---------------------------------------------------|------------------|-----|----------|------|------|--|
| Symbol   | Farameter                                         | Falanelei        |     |          | Max. | Unit |  |
| f(вськ)  | CPU Clock Frequency                               | Vcc1=4.2 to 5.5V | 0   |          | 32   | MHz  |  |
|          |                                                   | Vcc1=3.0 to 5.5V | 0   |          | 24   | MHz  |  |
| f(XIN)   | Main Clock Input Frequency                        | Vcc1=4.2 to 5.5V | 0   |          | 24   | MHz  |  |
|          |                                                   | Vcc1=3.0 to 5.5V | 0   |          |      | MHz  |  |
| f(Xcin)  | Sub Clock Frequency                               | 1                |     | 32.768   | 50   | kHz  |  |
| f(Ring)  | On-chip Oscillator Frequency (Vcc1=Vcc2=5.0V, Top | or=25° C)        | 0.5 | 1        | 2    | MHz  |  |
| f(PLL)   | PLL Clock Frequency                               | Vcc1=4.2 to 5.5V | 10  |          | 32   | MHz  |  |
|          |                                                   | Vcc1=3.0 to 5.5V | 10  |          | 24   | MHz  |  |
| tsu(pll) | Wait Time to Stabilize PLL Frequency Synthesizer  | Vcc1=5.0V        |     |          | 5    | ms   |  |
|          |                                                   | Vcc1=3.3V        |     |          | 10   | ms   |  |



#### Table 26.3 Electrical Characteristics

(Vcc1=Vcc2=4.2 to 5.5V, Vss=0V at Topr= -20 to 85°C, f(BCLK)=32MHz unless otherwise specified)

| Symbol                   |                     | Parameter                                            |                                                                                                                                    | C.      | ndition   | St       | andarc | 1    | Unit |
|--------------------------|---------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|----------|--------|------|------|
| Symbol                   |                     | Parameter                                            |                                                                                                                                    | 0       | nation    | Min.     | Тур.   | Max. |      |
| Vон                      | Output High ("H")   | P00-P07, P10-P17,                                    | P20-P27, P30-P37, P40-P47,                                                                                                         | loн=-5m | ۱A        | Vcc2-2.0 |        | Vcc2 | V    |
|                          | Voltage             |                                                      | 14, P120-P127, P130-P137                                                                                                           |         |           |          |        |      |      |
|                          |                     | P60-P67, P72-P77,                                    | P80-P84, P86, P87, P90-                                                                                                            | loн=-5m | ۱A        | Vcc1-2.0 |        | Vcc1 |      |
|                          |                     | P97, P100-P107, F                                    | P140-P146, P150-P157 <sup>(1)</sup>                                                                                                |         |           |          |        |      |      |
|                          |                     | P00-P07, P10-P17,                                    | P20-P27, P30-P37, P40-P47,                                                                                                         | Іон=-20 | 0μΑ       | Vcc2-0.3 |        | Vcc2 | V    |
|                          |                     | P50-P57, P110-P1                                     | 14, P120-P127, P130-P137                                                                                                           |         |           |          |        |      |      |
|                          |                     | P60-P67, P72-P77,                                    | P80-P84, P86, P87, P90-                                                                                                            | Іон=-20 | 0μΑ       | Vcc1-0.3 |        | Vcc1 | 1    |
|                          |                     | P97, P100-P107,P                                     | 140-P146, P150-P157 <sup>(1)</sup>                                                                                                 |         |           |          |        |      |      |
|                          |                     | Хоит                                                 |                                                                                                                                    | loн=-1m | ۱A        | 3.0      |        | Vcc1 | V    |
|                          |                     | Хсоит                                                | High Power                                                                                                                         | No load | l applied |          | 2.5    |      | V    |
|                          |                     |                                                      | Low Power                                                                                                                          | No load | l applied |          | 1.6    |      |      |
| Vol                      | Output Low ("L")    | P00-P07, P10-P17,                                    | P20-P27, P30-P37, P40-P47,                                                                                                         | lo∟=5m  | A         |          |        | 2.0  | V    |
|                          | Voltage             | P50-P57, P60-P67,                                    | P70-P77, P80-P84, P86,                                                                                                             |         |           |          |        |      |      |
|                          |                     |                                                      | 0-P107, P110-P114, P120-                                                                                                           |         |           |          |        |      |      |
|                          |                     |                                                      | P140-P146, P150-P157 <sup>(1)</sup>                                                                                                |         |           |          |        |      |      |
|                          |                     |                                                      | P20-P27, P30-P37, P40-P47,                                                                                                         | IoL=200 | μA        |          |        | 0.45 | V    |
|                          |                     |                                                      | P70-P77, P80-P84, P86,                                                                                                             |         | •         |          |        |      |      |
|                          |                     |                                                      | 0-P107, P110-P114, P120-                                                                                                           |         |           |          |        |      |      |
|                          |                     | P127, P130-P137, P140-P146, P150-P157 <sup>(1)</sup> |                                                                                                                                    |         |           |          |        |      |      |
|                          |                     | Xout                                                 |                                                                                                                                    | lo∟=1m  | A         |          |        | 2.0  | V    |
|                          |                     | Хсоит                                                | High Power                                                                                                                         | No load | l applied |          | 0      |      | V    |
|                          |                     |                                                      | Low Power                                                                                                                          | No load | l applied |          | 0      |      |      |
| Vt+-Vt-                  | Hysteresis          |                                                      | IN-TA4IN, TB0IN-TB5IN,                                                                                                             |         |           | 0.2      |        | 1.0  | V    |
| V I <del>+ -</del> V I - |                     |                                                      | $\overline{CTS0}$ , $\overline{CTS0}$ , $\overline{CTS4}$ , $CLK0$ - $CLK4$ ,                                                      |         |           | 0.2      |        | 1.0  | ľ    |
|                          |                     |                                                      | $\overline{\text{NM}}$ , $\overline{\text{KI0}}$ - $\overline{\text{KI3}}$ , $\overline{\text{RxD0}}$ - $\overline{\text{RxD4}}$ , |         |           |          |        |      |      |
|                          |                     | SCL0-SCL4, SDA                                       |                                                                                                                                    |         |           |          |        |      |      |
|                          |                     | RESET                                                | 0-3074                                                                                                                             |         |           | 0.2      |        | 1.8  | V    |
| Ін                       | Input High ("H")    |                                                      | P20-P27, P30-P37, P40-P47,                                                                                                         | 1/1-51/ |           | 0.2      |        | 5.0  | μA   |
| пп                       | Current             |                                                      | P70-P77, P80-P87, P90-P97,                                                                                                         |         |           |          |        | 5.0  | μΛ   |
|                          |                     |                                                      | P114, P120-P127, P130-                                                                                                             |         |           |          |        |      |      |
|                          |                     |                                                      | P150-P157 <sup>(1)</sup> , XIN, RESET,                                                                                             |         |           |          |        |      |      |
|                          |                     | CNVss, BYTE                                          | F I J J F I J h ', AIN, I L J L I,                                                                                                 |         |           |          |        |      |      |
| lil                      | Input Low ("L")     |                                                      | P20-P27, P30-P37, P40-P47,                                                                                                         |         |           |          |        | -5.0 | μA   |
| IIL                      | Current             |                                                      | P70-P77, P80-P87, P90-P97,                                                                                                         |         |           |          |        | -5.0 | μΛ   |
|                          |                     |                                                      | P114, P120-P127, P130-                                                                                                             |         |           |          |        |      |      |
|                          |                     |                                                      | P150-P157 <sup>(1)</sup> , XIN, RESET,                                                                                             |         |           |          |        |      |      |
|                          |                     | CNVss, BYTE                                          | F 150-F 157 7, AIN, RESET,                                                                                                         |         |           |          |        |      |      |
| Rpullup                  | Pull-up Resistance  |                                                      | P20-P27, P30-P37, P40-P47,                                                                                                         | Vi=0V   | Flash     | 30       | 50     | 167  | kΩ   |
|                          |                     |                                                      | P72-P77, P80-P84, P86,                                                                                                             |         | Memory    | _        | -      | -    |      |
|                          |                     |                                                      | 0-P107, P110-P114, P120-                                                                                                           |         | Masked    | 20       | 40     | 167  | 1    |
|                          |                     |                                                      | P140-P146, P150-P157 <sup>(1)</sup>                                                                                                |         | ROM       |          |        |      |      |
| Rfxin                    | Feedback Resistance | Xin                                                  |                                                                                                                                    | -       | I         |          | 1.5    |      | MΩ   |
| Rfxcin                   | Feedback Resistance | Xcin                                                 |                                                                                                                                    |         |           |          | 10     |      | MΩ   |
| Vram                     | RAM Standby Voltage | In stop mode                                         |                                                                                                                                    |         |           | 2.0      |        |      | V    |

NOTES:

1. P11 to P15 are provided in the 144-pin package only.

#### Table 26.3 Electrical Characteristics (Continued)

#### 1001-1002-01

#### (Vcc1=Vcc2=4.2 to 5.5V, Vss=0V at Topr= -20 to 85°C, f(BCLK)=32MHz unless otherwise specified)

| Symbol                  | Parameter            | Measurement Condition          |                                                                                            | Standard      |     |      | Unit |      |
|-------------------------|----------------------|--------------------------------|--------------------------------------------------------------------------------------------|---------------|-----|------|------|------|
| Symbol                  | Falameter            |                                | Measurement Condition                                                                      |               |     | Тур. | Max. | Unit |
| Icc Power Supply Curren | Power Supply Current | mode, output pins              | f(BCLK)=32 MHz, Square wave,<br>No division                                                |               |     | 28   | 45   | mA   |
|                         |                      | In low-power consumption mode, | Flash<br>Memory                                                                            |               | 430 |      | μA   |      |
|                         |                      |                                | Program running on ROM                                                                     | Masked<br>ROM |     | 25   |      |      |
|                         |                      |                                | f(BCLK)=32 kHz,<br>In low-power consumption mode,<br>Program running on RAM <sup>(1)</sup> |               |     | 25   |      | μA   |
|                         |                      |                                | f(BCLK)=32 kHz, In wait mode, Topr=25° C                                                   |               |     | 10   |      | μA   |
|                         |                      |                                | While clock stops, Topr=25° C                                                              |               |     | 0.8  | 5    | μA   |
|                         |                      |                                | While clock stops, Topr=85° C                                                              |               |     |      | 50   | μA   |

NOTES:

1. Value is obtained when setting the FMSTP bit in the FMR0 register to "1" (flash memory stopped).



# Table 26.4 A/D Conversion Characteristics (Vcc1=Vcc2=AVcc=VREF=4.2 to 5.5V, Vss= AVss = 0V at Topr=-20 to 85°C, f(BCLK) = 32MHz unless otherwise specified)

| Symbol        | Parameter                                | Measurement Condition |                                            | S     | Unit |      |      |
|---------------|------------------------------------------|-----------------------|--------------------------------------------|-------|------|------|------|
| Gymbol        | i arameter                               |                       |                                            | Min.  | Тур. | Max. |      |
| -             | Resolution                               | VREF=VCC1             |                                            |       |      | 10   | Bits |
| INL           |                                          |                       | ANo to AN7, AN00 to<br>AN07, AN20 to AN27, |       |      | ±3   | LSB  |
|               | Integral Nonlinearity Error              | VREF=VCC1=VCC2=5V     | AN150 to AN157,<br>ANEX0, ANEX1            |       |      |      | LSB  |
|               |                                          |                       | External op-amp connection mode            |       |      | ±7   | LSB  |
|               |                                          |                       |                                            |       |      | ±1   | LSB  |
| DNL           | Differential Nonlinearity Error          |                       |                                            |       |      | ±1   | LSB  |
| -             | Offset Error                             |                       |                                            |       |      | ±3   | LSB  |
| -             | Gain Error                               |                       |                                            |       |      | ±3   | LSB  |
| RLADDER       | Resistor Ladder                          | VREF=VCC1             |                                            | 8     |      | 40   | kΩ   |
| <b>t</b> CONV | 10-bit Conversion Time <sup>(1, 2)</sup> |                       |                                            | 2.06  |      |      | μs   |
| <b>t</b> CONV | 8-bit Conversion Time <sup>(1, 2)</sup>  |                       |                                            | 1.75  |      |      | μs   |
| <b>t</b> SAMP | Sampling Time <sup>(1)</sup>             |                       |                                            | 0.188 |      |      | μs   |
| Vref          | Reference Voltage                        |                       |                                            | 2     |      | Vcc1 | V    |
| Via           | Analog Input Voltage                     |                       |                                            | 0     |      | Vref | V    |

NOTES:

1. Divide  $f(X_{IN})$ , if exceeding 16 MHz, to keep  $\phi$ AD frequency at 16 MHz or less.

2. With using the sample and hold function.

# Table 26.5 D/A Conversion Characteristics (Vcc1=Vcc2=VREF=4.2 to 5.5V, Vss=AVss=0V at Topr=-20 to 85°C, f(BCLK) = 32MHz unless otherwise specified)

| Symbol | Parameter                            | Measurement Condition |      | Unit |                     |      |
|--------|--------------------------------------|-----------------------|------|------|---------------------|------|
| Cymbol |                                      |                       | Min. | Тур. | 8<br>1.0<br>3<br>20 |      |
| -      | Resolution                           |                       |      |      | 8                   | Bits |
| -      | Absolute Accuracy                    |                       |      |      | 1.0                 | %    |
| ts∪    | Setup Time                           |                       |      |      | 3                   | μs   |
| Ro     | Output Resistance                    |                       | 4    | 10   | 20                  | kΩ   |
| Ivref  | Reference Power Supply Input Current | (Note 1)              |      |      | 1.5                 | mA   |

NOTES:

1. Measurement when using one D/A converter. The DAi register (i=0, 1) of the D/A converter, not being used, is set to "0016". The resistor ladder in the A/D converter is excluded.

IVREF flows even if the VCUT bit in the AD0CON1 register is set to "0" (no VREF connection).

# Table 26.6 Flash Memory Version Electrical Characteristics (Vcc1=4.5 to 5.5V, 3.0 to 3.6V atTopr=0 to 60°C unless otherwise specified)

| Symbol | Parameter                                    |                | Standard |      | ł                                        | Unit   |
|--------|----------------------------------------------|----------------|----------|------|------------------------------------------|--------|
| Symbol | Farameter                                    |                | Min.     | Тур. | . Max.<br>200<br>200<br>4<br>4<br>4<br>4 |        |
| -      | Program and Erase Endurance <sup>(2)</sup>   |                | 100      |      |                                          | cycles |
| -      | Word Program Time (Vcc1=5.0V, Topr=          | 25° C)         |          | 25   | 200                                      | μs     |
| -      | Lock Bit Program Time                        |                |          | 25   | 200                                      | μs     |
| -      | Block Erase Time                             | 4-Kbyte Block  |          | 0.3  | 4                                        | s      |
|        | (Vcc1=5.0V, Topr=25° C)                      | 8-Kbyte Block  |          | 0.3  | 4                                        | S      |
|        |                                              | 32-Kbyte Block |          | 0.5  | 4                                        | S      |
|        |                                              | 64-Kbyte Block |          | 0.8  | 4                                        | s      |
| -      | All-Unlocked-Block Erase Time <sup>(1)</sup> |                |          |      | 4 x <i>n</i>                             | s      |
| tps    | Wait Time to Stabilize Flash Memory Ci       | rcuit          |          |      | 15                                       | μs     |
| -      | Data Hold Time (Topr=-40 to 85 ° C)          |                | 10       |      |                                          | years  |

NOTES:

1. *n* denotes the number of block to be erased.

2. Number of program-erase cycles per block.

If Program and Erase Endurance is *n* cycle (*n*=100), each block can be erased and programmed *n* cycles. For example, if a 4-Kbyte block A is erased after programming a word data 2,048 times, each to a different address, this counts as one program and erase endurance. Data can not be programmed to the same address more than once without erasing the block. (rewrite prohibited).

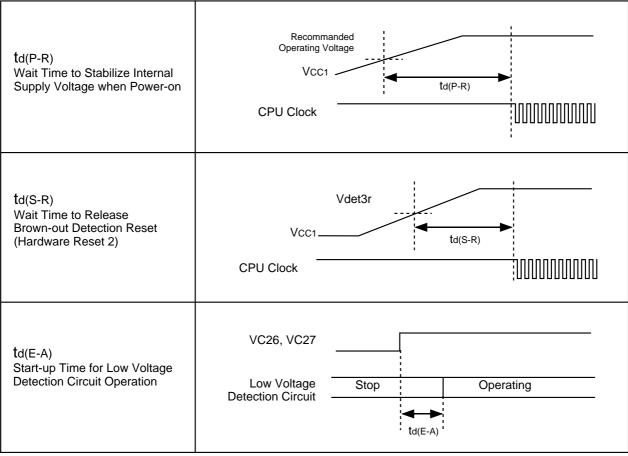


# Table 26.7 Voltage Detection Circuit Electrical Characteristics (Vcc1=Vcc2=3.0 to 5.5V, Vss=0V at Topr=25°C unless otherwise specified)

| Symbol | Parameter                                        | Measurement Condition | 5    | Standa | rd   | Unit |
|--------|--------------------------------------------------|-----------------------|------|--------|------|------|
| Cymbol |                                                  |                       | Min. | Тур.   | Max. |      |
| Vdet4  | Low Voltage Detection Voltage <sup>(1)</sup>     |                       |      | 3.8    |      | V    |
| Vdet3  | Reset Space Detection Voltage <sup>(1)</sup>     | Vcc1=3.0 to 5.5V      |      | 3.0    |      | V    |
| Vdet3s | Low Voltage Reset Hold Voltage                   | VCC1=3.0 10 5.5V      | 2.0  |        |      | V    |
| Vdet3r | Low Voltage Reset Release Voltage <sup>(2)</sup> | _                     |      | 3.1    |      | V    |

NOTES:

1. Vdet4 >Vdet3


2. Vdet3r >Vdet3 is not guaranteed.

#### Table 26.8 Power Supply Timing

| Symbol  | Parameter                                                       | Measurement Condition | Standard |                  |      | Unit |
|---------|-----------------------------------------------------------------|-----------------------|----------|------------------|------|------|
| Cymbol  |                                                                 |                       | Min.     | Тур.             | Max. | Onic |
| td(P-R) | Wait Time to Stabilize Internal Supply Voltage when<br>Power-on | Vcc1=3.0 to 5.5V      |          |                  | 2    | ms   |
| td(S-R) | Wait Time to Release Brown-out. Detection Reset                 | Vcc1=Vdet3r to 5.5V   |          | 6 <sup>(1)</sup> | 20   | ms   |
| td(E-A) | Start-up Time for Low Voltage Detection Circuit<br>Operation    | Vcc1=3.0 to 5.5V      |          |                  | 20   | μs   |

NOTES:

1. Vcc1=5V





#### **Timing Requirements**

VCC1=VCC2=5V

### (Vcc1=Vcc2=4.2 to 5.5V, Vss=0V at Topr=-20 to 85°C unless otherwise specified)

| <b>Table 26.9</b> | External | Clock Input |
|-------------------|----------|-------------|
|-------------------|----------|-------------|

| Symbol | Parameter                             | Standard |      | Unit |
|--------|---------------------------------------|----------|------|------|
| Symbol | raiameter                             | Min.     | Max. |      |
| tc     | External Clock Input Cycle Time       | 31.25    |      | ns   |
| tw(H)  | External Clock Input High ("H") Width | 13.75    |      | ns   |
| tw(L)  | External Clock Input Low ("L") Width  | 13.75    |      | ns   |
| tr     | External Clock Rise Time              |          | 5    | ns   |
| tf     | External Clock Fall Time              |          | 5    | ns   |

#### Table 26.10 Memory Expansion Mode and Microprocessor Mode

| Symbol         | Parameter                                                                             | Star | Unit     |      |
|----------------|---------------------------------------------------------------------------------------|------|----------|------|
| Symbol         | Falantelei                                                                            | Min. | Max.     | Unit |
| tac1(RD-DB)    | Data Input Access Time (RD standard)                                                  |      | (Note 1) | ns   |
| tac1(AD-DB)    | Data Input Access Time (AD standard, CS standard)                                     |      | (Note 1) | ns   |
| tac2(RD-DB)    | Data Input Access Time (RD standard, when accessing a space with the multiplexrd bus) |      | (Note 1) | ns   |
| tac2(AD-DB)    | Data Input Access Time (AD standard, when accessing a space with the multiplexed bus) |      | (Note 1) | ns   |
| tsu(db-bclk)   | Data Input Setup Time                                                                 | 26   |          | ns   |
| tsu(RDY-BCLK)  | RDY Input Setup Time                                                                  | 26   |          | ns   |
| tsu(HOLD-BCLK) | HOLD Input Setup Time                                                                 | 30   |          | ns   |
| th(RD-DB)      | Data Input Hold Time                                                                  | 0    |          | ns   |
| th(BCLK-RDY)   | RDY Input Hold Time                                                                   | 0    |          | ns   |
| th(BCLK-HOLD)  | HOLD Input Hold Time                                                                  | 0    |          | ns   |
| td(BCLK-HLDA)  | HLDA Output Delay Time                                                                |      | 25       | ns   |

NOTES:

 Values can be obtained from the following equations, according to BCLK frequency and external bus cycles. Insert a wait state or lower the operation frequency, f(BCLK), if the calculated value is negative.

| $tac1(RD - DB) = \frac{10^9 X m}{f(BCLK) X 2} - 35$                  | [ns] (if external bus cycle is a\u00e6 + b\u00e6, m=(bx2)+1)      |
|----------------------------------------------------------------------|-------------------------------------------------------------------|
| $tac1(AD - DB) = \frac{10^9 \text{ X n}}{f(BCLK)} - 35$              | [ns] (if external bus cycle is a\u00e6 + b\u00e6, n=a+b)          |
| $tac2(RD - DB) = \frac{10^9 \text{ X m}}{f(BCLK) \text{ X } 2} - 35$ | [ns] (if external bus cycle is aφ + bφ, m=(bx2)-1)                |
| $tac2(AD - DB) = \frac{10^9 \text{ X p}}{f(BCLK) \text{ X } 2} - 35$ | [ns] (if external bus cycle is $a\phi + b\phi$ , p={(a+b-1)x2}+1) |

#### **Timing Requirements**

(Vcc1=Vcc2=4.2 to 5.5V, Vss=0V at Topr=-20 to 85°C unless otherwise specified)

| Symbol  | Parameter                    | Star      | dard | Unit |
|---------|------------------------------|-----------|------|------|
|         |                              | Min. Max. |      |      |
| tc(ta)  | TAin Input Cycle Time        | 100       |      | ns   |
| tw(tah) | TAiı∧ Input High ("H") Width | 40        |      | ns   |
| tw(TAL) | TAin Input Low ("L") Width   | 40        |      | ns   |

#### Table 26.11 Timer A Input (Count Source Input in Event Counter Mode)

#### Table 26.12 Timer A Input (Gate Input in Timer Mode)

| Symbol  | Deventer                    | Standard |           | 1.1  |
|---------|-----------------------------|----------|-----------|------|
|         | Parameter                   | Min.     | Min. Max. | Unit |
| tc(ta)  | TAin Input Cycle Time       | 400      |           | ns   |
| tw(tah) | TAin Input High ("H") Width | 200      |           | ns   |
| tw(tal) | TAin Input Low ("L") Width  | 200      |           | ns   |

#### Table 26.13 Timer A Input (External Trigger Input in One-Shot Timer Mode)

| Symbol  | Parameter                    | Stan      | Unit |    |
|---------|------------------------------|-----------|------|----|
| Symbol  | Falameter                    | Min. Max. |      |    |
| tc(ta)  | TAin Input Cycle Time        | 200       |      | ns |
| tw(tah) | TAiıN Input High ("H") Width | 100       |      | ns |
| tw(tal) | TAin Input Low ("L") Width   | 100       |      | ns |

#### Table 26.14 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

| Symbol  | Parameter                    | Standard |      | Unit |
|---------|------------------------------|----------|------|------|
|         | Falameter                    | Min.     | Max. |      |
| tw(tah) | TAiı∧ Input High ("H") Width | 100      |      | ns   |
| tw(TAL) | TAin Input Low ("L") Width   | 100      |      | ns   |

#### Table 26.15 Timer A Input (Counter Increment/Decrement Input in Event Counter Mode)

| Symbol      | Parameter                     | Standard |      | Unit |
|-------------|-------------------------------|----------|------|------|
|             | Falameter                     | Min.     | Max. |      |
| tC(UP)      | TAiout Input Cycle Time       | 2000     |      | ns   |
| tw(UPH)     | TAiouт Input High ("H") Width | 1000     |      | ns   |
| tw(UPL)     | TAiout Input Low ("L") Width  | 1000     |      | ns   |
| tsu(UP-TIN) | TAiout Input Setup Time       | 400      |      | ns   |
| th(TIN-UP)  | TAiout Input Hold Time        | 400      |      | ns   |

#### **Timing Requirements**

#### (VCC1 = VCC2 = 4.2 to 5.5V, VSS = 0V at Topr = -20 to 85°C unless otherwise specified)

| Symbol          | Parameter                                           |     | Standard |        |  |
|-----------------|-----------------------------------------------------|-----|----------|--------|--|
|                 |                                                     |     | Max.     | - Unit |  |
| tc(tb)          | TBin Input Cycle Time (counted on one edge)         | 100 |          | ns     |  |
| <b>tw</b> (твн) | TBin Input High ("H") Width (counted on one edge)   | 40  |          | ns     |  |
| tw(TBL)         | TBin Input Low ("L") Width (counted on one edge)    | 40  |          | ns     |  |
| tc(tb)          | TBin Input Cycle Time (counted on both edges)       | 200 |          | ns     |  |
| <b>tw</b> (твн) | TBin Input High ("H") Width (counted on both edges) | 80  |          | ns     |  |
| tw(TBL)         | TBin Input Low ("L") Width (counted on both edges)  | 80  |          | ns     |  |

#### Table 26.17 Timer B Input (Pulse Period Measurement Mode)

| Symbol  | Parameter                    |     | Standard |      |  |
|---------|------------------------------|-----|----------|------|--|
|         |                              |     | Max.     | Unit |  |
| tc(tb)  | TBin Input Cycle Time        | 400 |          | ns   |  |
| tw(твн) | TBiiN Input High ("H") Width | 200 |          | ns   |  |
| tw(tbl) | TBin Input Low ("L") Width   | 200 |          | ns   |  |

#### Table 26.18 Timer B Input (Pulse Width Measurement Mode)

| Symbol  | Parameter                    |     | Standard |      |  |
|---------|------------------------------|-----|----------|------|--|
|         |                              |     | Max.     | Unit |  |
| tc(tb)  | TBin Input Cycle Time        | 400 |          | ns   |  |
| tw(твн) | TBiiN Input High ("H") Width | 200 |          | ns   |  |
| tw(tbl) | TBin Input Low ("L") Width   | 200 |          | ns   |  |

#### Table 26.19 A/D Trigger Input

| Symbol  | Parameter                                     |      | Standard |      |  |
|---------|-----------------------------------------------|------|----------|------|--|
|         | Falanielei                                    | Min. | Max      | Unit |  |
| tC(AD)  | ADTRG Input Cycle Time (required for trigger) | 1000 |          | ns   |  |
| tw(ADL) | ADTRG Input Low ("L") Width                   | 125  |          | ns   |  |

#### Table 26.20 Serial I/O

| Symbol   | Parameter                   |      | Standard |      |  |
|----------|-----------------------------|------|----------|------|--|
| Symbol   | Falameter                   | Min. | Max.     | Unit |  |
| tc(ск)   | CLKi Input Cycle Time       | 200  |          | ns   |  |
| tw(скн)  | CLKi Input High ("H") Width | 100  |          | ns   |  |
| tw(CKL)  | CLKi Input Low ("L") Width  | 100  |          | ns   |  |
| td(C-Q)  | TxDi Output Delay Time      |      | 80       | ns   |  |
| th(C-Q)  | TxDi Hold Time              | 0    |          | ns   |  |
| tsu(D-C) | RxDi Input Setup Time       | 30   |          | ns   |  |
| th(C-Q)  | RxDi Input Hold Time        | 90   |          | ns   |  |

#### Table 26.21 External Interrupt INTi Input

| Symbol  | Parameter                   |     | Standard |      |  |
|---------|-----------------------------|-----|----------|------|--|
|         |                             |     | Max.     | Unit |  |
| tw(INH) | INTi Input High ("H") Width | 250 |          | ns   |  |
| tw(INL) | INTi Input Low ("L") Width  | 250 |          | ns   |  |

#### Switching Characteristics

VCC1=VCC2=5V

# (VCC1 = VCC2 = 4.2 to 5.5V, VSS = 0V at Topr = -20 to 85°C unless otherwise specified) Table 26.22 Memory Expansion Mode and Microprocessor Mode

#### (when accessing external memory space)

| Symbol      | Parameter                                                        | Measurement<br>Condition | Stan     | Unit |    |
|-------------|------------------------------------------------------------------|--------------------------|----------|------|----|
| -           |                                                                  | Condition                | Min.     | Max. |    |
| td(BCLK-AD) | Address Output Delay Time                                        |                          |          | 18   | ns |
| th(BCLK-AD) | Address Output Hold Time (BCLK standard)                         |                          | -3       |      | ns |
| th(RD-AD)   | Address Output Hold Time (RD standard) <sup>(3)</sup>            |                          | 0        |      | ns |
| th(wr-ad)   | Address Output Hold Time (WR standard)(3)                        |                          | (Note 1) |      | ns |
| td(BCLK-CS) | Chip-Select Signal Output Delay Time                             |                          |          | 18   | ns |
| th(BCLK-CS) | Chip-Select Signal Output Hold Time (BCLK standard)              |                          | -3       |      | ns |
| th(RD-CS)   | Chip-Select Signal Output Hold Time (RD standard) <sup>(3)</sup> | See Figure 26.2          | 0        |      | ns |
| th(wR-CS)   | Chip-Select Signal Output Hold Time (WR standard) <sup>(3)</sup> |                          | (Note 1) |      | ns |
| td(BCLK-RD) | RD Signal Output Delay Time                                      |                          |          | 18   | ns |
| th(BCLK-RD) | RD Signal Output Hold Time                                       |                          | -5       |      | ns |
| td(BCLK-WR) | WR Signal Output Delay Time                                      |                          |          | 18   | ns |
| th(BCLK-WR) | WR Signal Output Hold Time                                       |                          | -5       |      | ns |
| td(db-wr)   | Data Output Delay Time (WR standard)                             |                          | (Note 2) |      | ns |
| th(wr-db)   | Data Output Hold Time (WR standard) <sup>(3)</sup>               |                          | (Note 1) |      | ns |
| tw(WR)      | WR Output Width                                                  |                          |          |      | ns |

#### NOTES:

1. Values can be obtained from the following equations, according to BCLK frequency.

$$th(WR - DB) = \frac{10^9}{f(BCLK) X 2} - 10 \quad [ns]$$
$$th(WR - AD) = \frac{10^9}{f(BCLK) X 2} - 10 \quad [ns]$$
$$th(WR - CS) = \frac{10^9}{f(BCLK) X 2} - 10 \quad [ns]$$

2. Values can be obtained from the following equations, according to BCLK frequency and external bus cycles.

 $t_{W}(WR) = \frac{10^9 X n}{f_{(BCLK)} X 2} - 15 \quad [ns] \quad (if external bus cycle is a\phi + b\phi, n=(bx2)-1)$  $t_{d}(DB - WR) = \frac{10^9 X m}{f_{(BCLK)}} - 20 \quad [ns] \quad (if external bus cycle is a\phi + b\phi, m= b)$ 

3. tc ns is added when recovery cycle is inserted.

#### Switching Characteristics

#### (Vcc = 4.2 to 5.5V, Vss = 0V at Topr = -20 to 85°C unless otherwise specified)

# Table 26.23 Memory Expansion Mode and Microprocessor Mode (when accessing an external memory space with the multiplexed bus)

| Symbol       | Parameter                                                        | Measurement     | Stan     | Unit      |    |
|--------------|------------------------------------------------------------------|-----------------|----------|-----------|----|
|              |                                                                  | Condition       | Min.     | Min. Max. |    |
| td(BCLK-AD)  | Address Output Delay Time                                        |                 |          | 18        | ns |
| th(BCLK-AD)  | Address Output Hold Time (BCLK standard)                         | -               | -3       |           | ns |
| th(RD-AD)    | Address Output Hold Time (RD standard) <sup>(5)</sup>            | -               | (Note 1) |           | ns |
| th(WR-AD)    | Address Output Hold Time (WR standard) <sup>(5)</sup>            | -               | (Note 1) |           | ns |
| td(BCLK-CS)  | Chip-Select Signal Output Delay Time                             | -               |          | 18        | ns |
| th(BCLK-CS)  | Chip-Select Signal Output Hold Time (BCLK standard)              | -               | -3       |           | ns |
| th(RD-CS)    | Chip-Select Signal Output Hold Time (RD standard) <sup>(5)</sup> | -               | (Note 1) |           | ns |
| th(wR-CS)    | Chip-Select Signal Output Hold Time (WR standard) <sup>(5)</sup> | -               | (Note 1) |           | ns |
| td(BCLK-RD)  | RD Signal Output Delay Time                                      | See Figure 26.2 |          | 18        | ns |
| th(BCLK-RD)  | RD Signal Output Hold Time                                       | -               | -5       |           | ns |
| td(BCLK-WR)  | WR Signal Output Delay Time                                      | -               |          | 18        | ns |
| th(BCLK-WR)  | WR Signal Output Hold Time                                       |                 | -5       |           | ns |
| td(DB-WR)    | Data Output Delay Time (WR standard)                             | -               | (Note 2) |           | ns |
| th(wr-db)    | Data Output Hold Time (WR standard) <sup>(5)</sup>               | -               | (Note 1) |           | ns |
| td(BCLK-ALE) | ALE Signal Output Delay Time (BCLK standard)                     | -               |          | 18        | ns |
| th(BCLK-ALE) | ALE Signal Output Hold Time (BCLK standard)                      | -               | -2       |           | ns |
| td(AD-ALE)   | ALE Signal Output Delay Time (address standard)                  | 1               | (Note 3) |           | ns |
| th(ALE-AD)   | ALE Signal Output Hold Time (address standard)                   | 1               | (Note 4) |           | ns |
| tdz(RD-AD)   | Address Output Float Start Time                                  |                 |          | 8         | ns |

#### NOTES:

1. Values can be obtained from the following equations, according to BCLK frequency.

| th(RD – AD) =  | 10 <sup>9</sup> | - – 10 | [nc] |
|----------------|-----------------|--------|------|
| (((C - AD)) =  | f(BCLK) X 2     | - 10   | [ns] |
| th(WR - AD) =  | 10 <sup>9</sup> | - – 10 | [no] |
| u(w(X - AD)) = | f(BCLK) X 2     | - 10   | [ns] |
|                | 10 <sup>9</sup> | - – 10 | [20] |
| th(RD - CS) =  | f(BCLK) X 2     | - 10   | [ns] |
| th(WR - CS) =  | 10 <sup>9</sup> | - – 10 | []   |
| m(WR = CS) =   | f(BCLK) X 2     | - 10   | [ns] |
|                | 10 <sup>9</sup> | - 10   | r 1  |
| th(WR - DB) =  | f(BCLK) X 2     | - – 10 | [ns] |
|                |                 |        |      |

2. Values can be obtained from the following equations, according to BCLK frequency and external bus cycle.

$$t_{d(DB - WR)} = \frac{10^9 X m}{f_{(BCLK)} X 2} - 25$$
 [ns] (if external bus cycle is  $a\phi + b\phi$ , m= (bx2)-1)

3. Values can be obtained from the following equations, according to BCLK frequency and external bus cycle.

$$td(AD - ALE) = \frac{10^{9}X n}{f(BCLK) X 2} - 20$$
 [ns] (if external bus cycle is  $a\phi + b\phi$ , n= a)

4. Values can be obtained from the following equations, according to BCLK frequency and external bus cycle.

th(ALE – AD) = 
$$\frac{10^9 \text{ X n}}{f(\text{BCLK}) \text{ X 2}} - 10$$
 [ns] (if external bus cycle is a $\phi$  + b $\phi$ , n= a)

5. tc ns is added when recovery cycle is inserted.

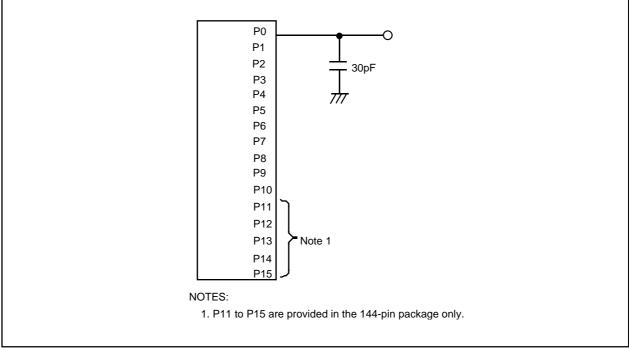



Figure 26.2 P0 to P15 Measurement Circuit

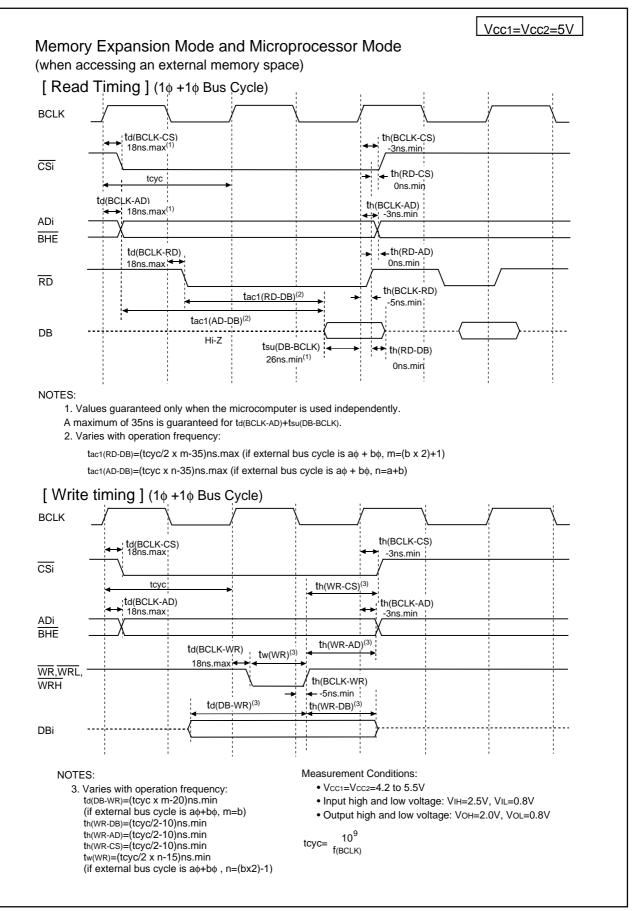
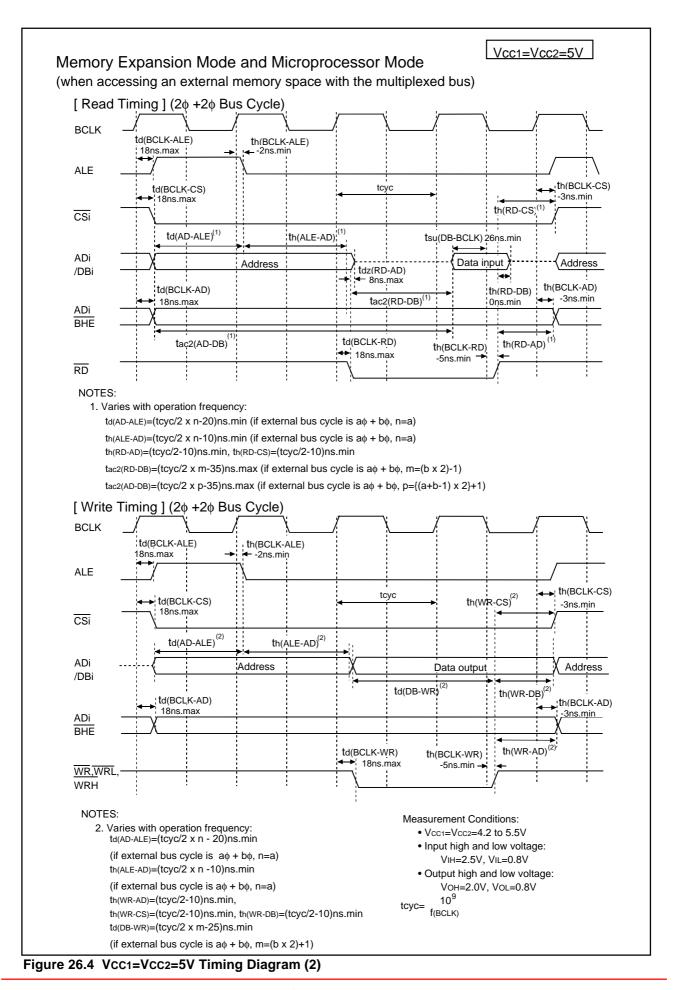




Figure 26.3 Vcc1=Vcc2=5V Timing Diagram (1)



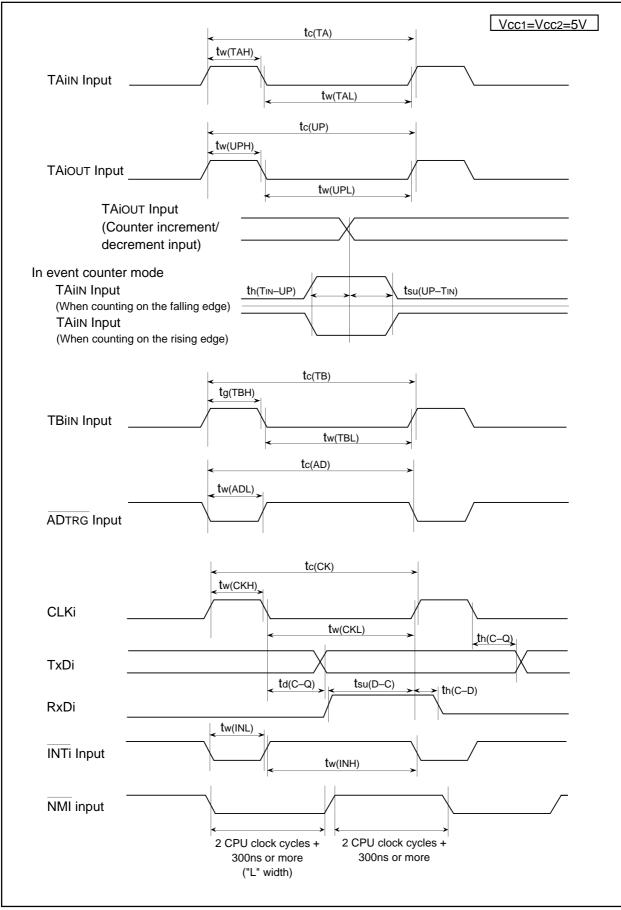



Figure 26.5 Vcc1=Vcc2=5V Timing Diagram (3)

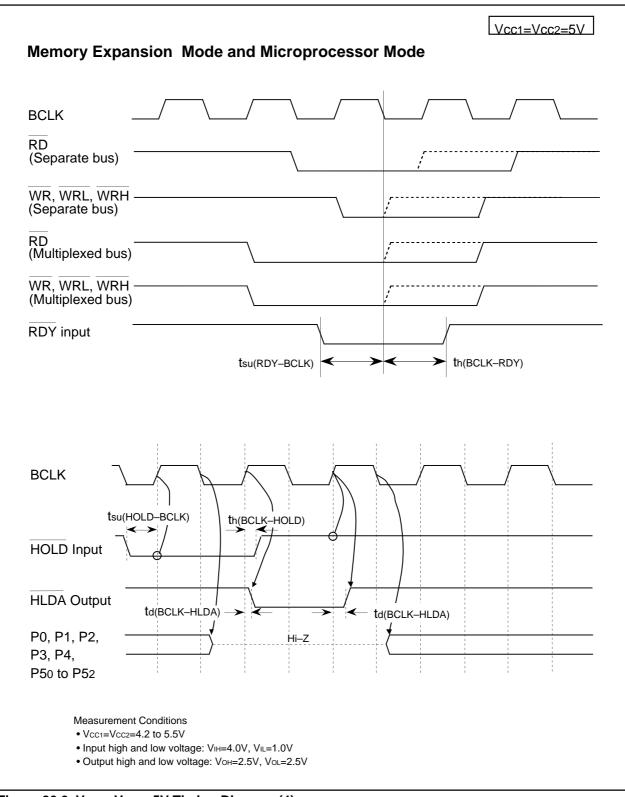



Figure 26.6 VCC1=VCC2=5V Timing Diagram (4)

#### VCC1=VCC2=3.3V

# Table 26.24 Electrical Characteristics (VCC1=VCC2=3.0 to 3.6V, VSS=0V at Topr = -20 to 85°C, f(BCLK)=24MHz unless otherwise specified)

| Symbol           | Parameter           |                                                       | Co                              | ndition | Standard      |          |             | Unit |          |
|------------------|---------------------|-------------------------------------------------------|---------------------------------|---------|---------------|----------|-------------|------|----------|
| Symbol           |                     | Parameter                                             |                                 |         | Condition     |          | Min. Typ.   |      | Onit     |
| Vон              | Output High ("H")   | P00-P07, P10-P17, P20-P27, P30-P37, P40-P47,          |                                 | Іон=-1r | nA            | Vcc2-0.6 |             | Vcc2 | V        |
|                  | Voltage             | P50-P57, P110-P114, P12                               |                                 | -       |               |          |             |      |          |
|                  |                     | P60-P67, P72-P77, P80-P                               |                                 |         |               | Vcc1-0.6 |             | Vcc1 | V        |
|                  |                     | P97, P100-P107, P140-P1                               | 46, P150-P157 <sup>(1)</sup>    |         |               |          |             |      |          |
|                  |                     | Хоит                                                  | 1                               | Іон=-0. |               | 2.7      |             | Vcc1 | V        |
|                  |                     | Хсоит                                                 | High Power                      |         | d applied     |          | 2.5         |      | V        |
|                  |                     |                                                       | Low Power                       | No load | d applied     |          | 1.6         |      | V        |
| Vol              | Output Low ("L")    | P00-P07, P10-P17, P20-P2                              | 27, P30-P37, P40-               | lo∟=1m  | A             |          |             | 0.5  | V        |
|                  | Voltage             | P47, P50-P57, P60-P67, P                              | P70-P77, P80-P84,               |         |               |          |             |      |          |
|                  |                     | P86, P87, P90-P97, P100-                              | P107, P110-P114,                |         |               |          |             |      |          |
|                  |                     | P120-P127, P130-P137, P                               | P140-P146, P150-                |         |               |          |             |      |          |
|                  |                     | P157 <sup>(1)</sup>                                   |                                 |         |               |          |             |      |          |
|                  |                     | Хоит                                                  |                                 | lo∟=0.1 | mA            |          |             | 0.5  | V        |
|                  |                     | Хсоит                                                 | High Power                      | No load | d applied     |          | 0           |      | V        |
|                  |                     |                                                       | Low Power                       | No load | d applied     |          | 0           |      | V        |
| Vt+ <b>-</b> Vt- | Hysteresis          | HOLD, RDY, TA0IN-TA4I                                 | N, ТВ0іN-ТВ5іN,                 |         |               | 0.2      |             | 1.0  | V        |
|                  |                     | INTO-INT5, ADTRG, CTSC                                | -CTS4, CLK0-                    |         |               |          |             |      |          |
|                  |                     | CLK4, TA0out-TA4out, N                                | MI, KIO-KI3, RxDO-              | D0-     |               |          |             |      |          |
|                  |                     | RxD4, SCL0-SCL4, SDA0-SDA4                            |                                 |         |               |          |             |      |          |
|                  |                     | RESET                                                 |                                 |         |               | 0.2      |             | 1.8  | V        |
| Ін               | Input High ("H")    | P00-P07, P10-P17, P20-P2                              | 27, P30-P37, P40-               | VI=3V   |               |          |             | 4.0  | μA       |
|                  | Current             | P47, P50-P57, P60-P67, P70-P77, P80-P87,              |                                 |         |               |          |             |      |          |
|                  |                     | P90-P97, P100-P107, P11                               |                                 | ,<br>,  |               |          |             |      |          |
|                  |                     | P130-P137, P140-P146, P150-P157 <sup>(1)</sup> , XIN, |                                 |         |               |          |             |      |          |
|                  |                     | RESET, CNVss, BYTE                                    |                                 |         |               |          |             |      |          |
| lı∟              | Input Low ("L")     | P00-P07, P10-P17, P20-P2                              |                                 | VI=0V   |               |          |             | -4.0 | μA       |
|                  | Current             | P47, P50-P57, P60-P67, P                              |                                 |         |               |          |             |      |          |
|                  |                     | P90-P97, P100-P107, P11                               |                                 |         |               |          |             |      |          |
|                  |                     | P130-P137, P140-P146, P                               | 2150-Р157 <sup>(1)</sup> , Хім, |         |               |          |             |      |          |
| _                |                     | RESET, CNVss, BYTE                                    |                                 |         | 1             |          |             |      |          |
| Rpullup          | Pull-up Resistance  | P00-P07, P10-P17, P20-P2                              |                                 |         |               | 66       | 120         | 500  | kΩ       |
|                  |                     | P50-P57, P60-P67, P72-P7                              |                                 |         | Memory        | 10       |             |      |          |
|                  |                     | P87, P90-P97, P100-P107,                              |                                 |         | Masked<br>ROM | 40       | 70          | 500  | kΩ       |
| Rfxin            | Feedback Resistance | P127, P130-P137, P140-P<br>XIN                        | 146, P150-P157 <sup>11</sup>    |         |               |          | 2.0         |      | MO       |
| RIXIN            |                     |                                                       |                                 |         |               |          | 3.0<br>20.0 |      | MΩ<br>MΩ |
| VRAM             | RAM Standby Voltage |                                                       |                                 |         |               | 2.0      | 20.0        |      | V        |
|                  | Power Supply        |                                                       | f(BCLK)=24 MHz, S               | duare w | ave. No       | 2.0      | 22          | 35   | mA       |
|                  | Current             | In single-chip mode,                                  | division                        | -1      |               |          |             |      |          |
|                  |                     | output pins are left open                             | f(BCLK)=32 kHz, In              | wait mo | ode,          |          | 10          |      | μA       |
|                  |                     | and other pins are connected to Vss.                  | Topr=25° C                      |         |               |          |             |      |          |
|                  |                     |                                                       | While clock stops, To           | opr=25° | С             |          | 0.8         | 5    | μA       |
|                  |                     |                                                       | While clock stops, To           | opr=85° | С             |          |             | 50   | μA       |

1. P11 to P15 are provided in the 144-pin package only.



#### VCC1=VCC2=3.3V

# Table 26.25 A/D Conversion Characteristics (VCC1=VCC2=AVCC=VREF= 3.0 to 3.6V, VSS=AVSS=0V at Topr = -20 to 85°C, f(BCLK) = 24MHz unless otherwise specified)

| Symbol        | Parameter                               |                | Measurement Condition | Standard |      |         | Unit |
|---------------|-----------------------------------------|----------------|-----------------------|----------|------|---------|------|
| Cymbol        |                                         |                |                       | Min.     | Тур. | Max.    |      |
| -             | Resolution                              | Resolution     |                       |          |      | 10      | Bits |
| INL           | Integral Nonlinearity Error             | No S&H (8-bit) | VCC1=VCC2=VREF=3.3V   |          |      | ±2      | LSB  |
| DNL           | Differential Nonlinearity Error         | No S&H (8-bit) |                       |          |      | ±1      | LSB  |
| -             | Offset Error                            | No S&H (8-bit) |                       |          |      | ±2      | LSB  |
| -             | Gain Error                              | No S&H (8-bit) |                       |          |      | ±2      | LSB  |
| RLADDER       | Resistor Ladder                         |                | VREF=VCC1             | 8        |      | 40      | kΩ   |
| <b>t</b> CONV | 8-bit Conversion Time <sup>(1, 2)</sup> |                |                       | 6.1      |      |         | μs   |
| Vref          | Reference Voltage                       |                |                       | 3        |      | Vcc1    | V    |
| Via           | Analog Input Voltage                    |                |                       | 0        |      | Vref    | V    |
|               | S&H: Sa                                 |                |                       |          |      | ple and | Hold |

NOTES:

1. Divide  $f(X_{IN})$ , if exceeding 10 MHz, to keep  $\phi$ AD frequency at 10 MHz or less.

2. S&H not available.

# Table 26.26 D/A Conversion Characteristics (VCC1=VCC2=VREF=3.0 to 3.6V, VSS=AVSS=0V at Topr = -20 to 85°C, f(BCLK) = 24MHz unless otherwise specified)

| Symbol | Parameter                            | Measurement Condition | Standard |      |      | Unit |
|--------|--------------------------------------|-----------------------|----------|------|------|------|
|        |                                      |                       | Min.     | Тур. | Max. | Onic |
| -      | Resolution                           |                       |          |      | 8    | Bits |
| -      | Absolute Accuracy                    |                       |          |      | 1.0  | %    |
| tsu    | Setup Time                           |                       |          |      | 3    | μs   |
| Ro     | Output Resistance                    |                       | 4        | 10   | 20   | kΩ   |
| Ivref  | Reference Power Supply Input Current | (Note 1)              |          |      | 1.0  | mA   |

NOTES:

1. Measurement results when using one D/A converter. The DAi register (i=0, 1) of the D/A converter, not being used, is set to "0016". The resistor ladder in the A/D converter is excluded.

IVREF flows even if the VCUT bit in the AD0CON1 register is set to "0" (no VREF connection).



#### **Timing Requirements**

VCC1=VCC2=3.3V

### (VCC1=VCC2= 3.0 to 3.6V, VSS = 0V at Topr = -20 to 85°C unless otherwise specified)

#### Table 26.27 External Clock Input

| Symbol | Parameter                             | Stan | Unit |      |
|--------|---------------------------------------|------|------|------|
|        |                                       | Min. | Max. | Unit |
| tc     | External Clock Input Cycle Time       | 41   |      | ns   |
| tw(H)  | External Clock Input High ("H") Width | 18   |      | ns   |
| tw(L)  | External Clock Input Low ("L") Width  | 18   |      | ns   |
| tr     | External Clock Rise Time              |      | 5    | ns   |
| tf     | External Clock Fall Time              |      | 5    | ns   |

#### Table 26.28 Memory Expansion Mode and Microprocessor Mode

| Symbol         | Parameter                                                                             | Standard |          | Unit |
|----------------|---------------------------------------------------------------------------------------|----------|----------|------|
|                | Parameter                                                                             |          | Max.     |      |
| tac1(RD-DB)    | Data Input Access Time (RD standard)                                                  |          | (Note 1) | ns   |
| tac1(AD-DB)    | Data Input Access Time (AD standard, CS standard)                                     |          | (Note 1) | ns   |
| tac2(RD-DB)    | Data Input Access Time (RD standard, when accessing a space with the multiplexed bus) |          | (Note 1) | ns   |
| tac2(AD-DB)    | Data Input Access Time (AD standard, when accessing a space with the multiplexed bus) |          | (Note 1) | ns   |
| tsu(db-bclk)   | Data Input Setup Time                                                                 | 30       |          | ns   |
| tsu(RDY-BCLK)  | RDY Input Setup Time                                                                  | 40       |          | ns   |
| tsu(HOLD-BCLK) | HOLD Input Setup Time                                                                 | 60       |          | ns   |
| th(RD-DB)      | Data Input Hold Time                                                                  | 0        |          | ns   |
| th(BCLK-RDY)   | RDY Input Hold Time                                                                   | 0        |          | ns   |
| th(BCLK-HOLD)  | HOLD Input Hold Time                                                                  | 0        |          | ns   |
| td(BCLK-HLDA)  | HLDA Output Delay Time                                                                |          | 25       | ns   |

NOTES:

1. Values can be obtained from the following equations, according to BCLK frequency and external bus cycles. Insert a wait state or lower the operation frequency, f(BCLK), if the calculated value is negative.

| $tac1(RD - DB) = \frac{10^9 \text{ X m}}{f(BCLK) \text{ X } 2} - 35$ | [ns] (if external bus cycle is a\u00e6 + b\u00e6, m=(bx2)+1) |
|----------------------------------------------------------------------|--------------------------------------------------------------|
| $tac1(AD - DB) = \frac{10^9 \text{ X n}}{f(BCLK)} - 35$              | [ns] (if external bus cycle is a\u00e9 + b\u00e9, n=a+b)     |
| $tac2(RD - DB) = \frac{10^9 \text{ X m}}{f(BCLK) \text{ X } 2} - 35$ | [ns] (if external bus cycle is aϕ + bϕ, m=(bx2)-1)           |
| $tac2(AD - DB) = \frac{10^9 X p}{f(BCLK) X 2} - 35$                  | [ns] (if external bus cycle is a	o + b	o, p={(a+b-1)x2}+1)   |



VCC1=VCC2=3.3V

## (VCC1=VCC2= 3.0 to 3.6V, VSS= 0V at Topr = -20 to 85°C unless otherwise specified)

| Table 26.29 | Timer A Input (Coun | t Source Input in Event | Counter Mode) |
|-------------|---------------------|-------------------------|---------------|
|-------------|---------------------|-------------------------|---------------|

| Symbol  | Parameter                   | Stan | Unit |    |
|---------|-----------------------------|------|------|----|
|         |                             | Min. | Max. |    |
| tC(TA)  | TAin Input Cycle Time       | 100  |      | ns |
| tw(tah) | TAin Input High ("H") Width | 40   |      | ns |
| tw(TAL) | TAin Input Low ("L") Width  | 40   |      | ns |

### Table 26.30 Timer A Input (Gate Input in Timer Mode)

| Symbol  | Parameter                    | Stan | Linit |      |
|---------|------------------------------|------|-------|------|
|         |                              | Min. | Max.  | Unit |
| tc(ta)  | TAin Input Cycle Time        | 400  |       | ns   |
| tw(tah) | TAiı∧ Input High ("H") Width | 200  |       | ns   |
| tw(tal) | TAin Input Low ("L") Width   | 200  |       | ns   |

### Table 26.31 Timer A Input (External Trigger Input in One-Shot Timer Mode)

| Symbol  | Parameter                    | Star | Unit |    |
|---------|------------------------------|------|------|----|
|         |                              | Min. | Max. |    |
| tc(ta)  | TAin Input Cycle Time        | 200  |      | ns |
| tw(tah) | TAiıN Input High ("H") Width | 100  |      | ns |
| tw(TAL) | TAin Input Low ("L") Width   | 100  |      | ns |

#### Table 26.32 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

| Symbol  | Parameter                    | Stan | Unit |    |
|---------|------------------------------|------|------|----|
|         | Falameter                    | Min. | Max. |    |
| tw(tah) | TAiıN Input High ("H") Width | 100  |      | ns |
| tw(TAL) | TAin Input Low ("L") Width   | 100  |      | ns |

### Table 26.33 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

| Symbol      | Parameter                     | Stan | Unit |    |
|-------------|-------------------------------|------|------|----|
|             |                               | Min. | Max. |    |
| tC(UP)      | TAiout Input Cycle Time       | 2000 |      | ns |
| tw(UPH)     | TAiout Input High ("H") Width | 1000 |      | ns |
| tw(UPL)     | TAiout Input Low ("L") Width  | 1000 |      | ns |
| tsu(UP-TIN) | TAiout Input Setup Time       | 400  |      | ns |
| th(TIN-UP)  | TAiout Input Hold Time        | 400  |      | ns |

VCC1=VCC2=3.3V

## **Timing Requirements**

## (VCC1=VCC2= 3.0 to 3.6V, VSS = 0V at Topr = -20 to 85°C unless otherwise specified)

| Symbol          | Parameter                                           | Standard |      | Unit |
|-----------------|-----------------------------------------------------|----------|------|------|
|                 | Falameter                                           | Min.     | Max. |      |
| tC(TB)          | TBin Input Cycle Time (counted on one edge)         | 100      |      | ns   |
| <b>tw</b> (твн) | TBin Input High ("H") Width (counted on one edge)   | 40       |      | ns   |
| tw(TBL)         | TBin Input Low ("L") Width (counted on one edge)    | 40       |      | ns   |
| tC(TB)          | TBin Input Cycle Time (counted on both edges)       | 200      |      | ns   |
| <b>tw</b> (твн) | TBin Input High ("H") Width (counted on both edges) | 80       |      | ns   |
| tw(TBL)         | TBin Input Low ("L") Width (counted on both edges)  | 80       |      | ns   |

#### Table 26.35 Timer B Input (Pulse Period Measurement Mode)

| Symbol  | Parameter                   | Stan | Unit |      |
|---------|-----------------------------|------|------|------|
|         |                             | Min. | Max. | Unit |
| tc(tb)  | TBin Input Cycle Time       | 400  |      | ns   |
| tw(TBH) | TBiiN Input High ("H") Wdth | 200  |      | ns   |
| tw(TBL) | TBin Input Low ("L") Width  | 200  |      | ns   |

#### Table 26.36 Timer B Input (Pulse Width Measurement Mode)

| Symbol  | Parameter                    | Stan | Unit |    |
|---------|------------------------------|------|------|----|
|         | Falameter                    | Min. | Max. |    |
| tc(tb)  | TBin Input Cycle Time        | 400  |      | ns |
| tw(твн) | TBiiN Input High ("H") Width | 200  |      | ns |
| tw(TBL) | TBin Input Low ("L") Width   | 200  |      | ns |

#### Table 26.37 A/D Trigger Input

| Symbol  | Parameter                                     | Star | Unit |    |
|---------|-----------------------------------------------|------|------|----|
|         | Falameter                                     | Min. | Max. |    |
| tC(AD)  | ADTRG Input Cycle Time (required for trigger) | 1000 |      | ns |
| tw(ADL) | ADTRG Input Low ("L") Width                   | 125  |      | ns |

## Table 26.38 Serial I/O

| Symbol   | Parameter                   | Standard |      | Unit |
|----------|-----------------------------|----------|------|------|
|          | Falanteler                  | Min.     | Max. |      |
| tc(ск)   | CLKi Input Cycle Time       | 200      |      | ns   |
| tw(CKH)  | CLKi Input High ("H") Width | 100      |      | ns   |
| tw(CKL)  | CLKi Input Low ("L") Width  | 100      |      | ns   |
| td(C-Q)  | TxDi Output Delay Time      |          | 80   | ns   |
| th(C-Q)  | TxDi Hold Time              | 0        |      | ns   |
| tsu(D-C) | RxDi Input Setup Time       | 30       |      | ns   |
| th(C-Q)  | RxDi Input Hold Time        | 90       |      | ns   |

## Table 26.39 External Interrupt INTi Input

| Symbol  | Parameter                   |      | Standard |      |  |
|---------|-----------------------------|------|----------|------|--|
|         | Falameter                   | Min. | Max.     | Unit |  |
| tw(INH) | INTi Input High ("H") Width | 250  |          | ns   |  |
| tw(INL) | INTi Input Low ("L") Width  | 250  |          | ns   |  |



### VCC1=VCC2=3.3V

#### **Switching Characteristics**

## (VCC1=VCC2=3.0 to 3.6V, VSS = 0V at Topr = -20 to 85°C unless otherwise specified)

# Table 26.40 Memory Expansion Mode and Microprocessor Mode (when accessing external memory space)

| Symbol      | Parameter                                                        | Measurement     | Standard                                                                                                                                                                                                                                                            |      | Unit |
|-------------|------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|
| - ,         |                                                                  | Condition       | Min.           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           (Note 1)           -3           0           (Note 2) | Max. |      |
| td(BCLK-AD) | Address Output Delay Time                                        |                 |                                                                                                                                                                                                                                                                     | 18   | ns   |
| th(BCLK-AD) | Address Output Hold Time (BCLK standard)                         |                 | 0                                                                                                                                                                                                                                                                   |      | ns   |
| th(RD-AD)   | Address Output Hold Time (RD standard) <sup>(3)</sup>            |                 | 0                                                                                                                                                                                                                                                                   |      | ns   |
| th(WR-AD)   | Address Output Hold Time (WR standard) <sup>(3)</sup>            |                 | (Note 1)                                                                                                                                                                                                                                                            |      | ns   |
| td(BCLK-CS) | Chip-Select Signal Output Delay Time                             | _               |                                                                                                                                                                                                                                                                     | 18   | ns   |
| th(BCLK-CS) | Chip-Select Signal Output Hold Time (BCLK standard)              |                 | 0                                                                                                                                                                                                                                                                   |      | ns   |
| th(RD-CS)   | Chip-Select Signal Output Hold Time (RD standard) <sup>(3)</sup> | See Figure 26.2 | 0                                                                                                                                                                                                                                                                   |      | ns   |
| th(wR-CS)   | Chip-Select Signal Output Hold Time (WR standard) <sup>(3)</sup> |                 | (Note 1)                                                                                                                                                                                                                                                            |      | ns   |
| td(BCLK-RD) | RD Signal Output Delay Time                                      |                 |                                                                                                                                                                                                                                                                     | 18   | ns   |
| th(BCLK-RD) | RD Signal Output Hold Time                                       | _               | -3                                                                                                                                                                                                                                                                  |      | ns   |
| td(BCLK-WR) | WR Signal Output Delay Time                                      | _               |                                                                                                                                                                                                                                                                     | 18   | ns   |
| th(BCLK-WR) | WR Signal Output Hold Time                                       | 1               | 0                                                                                                                                                                                                                                                                   |      | ns   |
| td(DB-WR)   | Data Output Delay Time (WR standard)                             |                 | (Note 2)                                                                                                                                                                                                                                                            |      | ns   |
| th(wr-db)   | Data Output Hold Time (WR standard) <sup>(3)</sup>               |                 | (Note 1)                                                                                                                                                                                                                                                            |      | ns   |
| tw(wr)      | WR Output Width                                                  |                 | (Note 2)                                                                                                                                                                                                                                                            |      | ns   |

NOTES:

1. Values can be obtained from the following equations, according to BCLK frequency.

$$th(WR - DB) = \frac{10^9}{f(BCLK) X 2} - 20 \text{ [ns]}$$
$$th(WR - AD) = \frac{10^9}{f(BCLK) X 2} - 10 \text{ [ns]}$$
$$th(WR - CS) = \frac{10^9}{f(BCLK) X 2} - 10 \text{ [ns]}$$

2. Values can be obtained from the following equations, according to BCLK frequency and external bus cycles.

$$t_{W}(WR) = \frac{10^9 \text{ x n}}{f(BCLK) \text{ X } 2} - 15 \quad [ns] \quad (\text{if external bus cycle is } a\phi + b\phi, n=(b \text{ x } 2)-1)$$
$$t_{d}(DB - WR) = \frac{10^9 \text{ x m}}{f(BCLK)} - 20 \quad [ns] \quad (\text{if external bus cycle is } a\phi + b\phi, m=b)$$

3. tc ns is added when recovery cycle is inserted.

VCC1=VCC2=3.3V

#### **Switching Characteristics**

#### (VCC1 = VCC2 = 3.0 to 3.6V, VSS = 0V at Topr = -20 to $85^{\circ}C$ unless otherwise specified)

| Symbol       | Parameter                                                        | Measurement<br>Condition | Standard |      | Unit |
|--------------|------------------------------------------------------------------|--------------------------|----------|------|------|
|              |                                                                  | Condition                | Min.     | Max. | 1    |
| td(BCLK-AD)  | Address Output Delay Time                                        |                          |          | 18   | ns   |
| th(BCLK-AD)  | Address Output Hold Time (BCLK standard)                         |                          | 0        |      | ns   |
| th(RD-AD)    | Address Output Hold Time (RD standard) <sup>(5)</sup>            |                          | (Note 1) |      | ns   |
| th(WR-AD)    | Address Output Hold Time (WR standard) <sup>(5)</sup>            |                          | (Note 1) |      | ns   |
| td(BCLK-CS)  | Chip-Select Signal Output Delay Time                             |                          |          | 18   | ns   |
| th(BCLK-CS)  | Chip-Select Signal Output Hold Time (BCLK standard)              |                          | 0        |      | ns   |
| th(RD-CS)    | Chip-Select Signal Output Hold Time (RD standard) <sup>(5)</sup> | -                        | (Note 1) |      | ns   |
| th(wR-CS)    | Chip-Select Signal Output Hold Time (WR standard) <sup>(5)</sup> |                          | (Note 1) |      | ns   |
| td(BCLK-RD)  | RD Signal Output Delay Time                                      | See Figure 26.2          |          | 18   | ns   |
| th(BCLK-RD)  | RD Signal Output Hold Time                                       |                          | -3       |      | ns   |
| td(BCLK-WR)  | WR Signal Output Delay Time                                      |                          |          | 18   | ns   |
| th(BCLK-WR)  | WR Signal Output Hold Time                                       |                          | 0        |      | ns   |
| td(DB-WR)    | Data Output delay Time (WR standard)                             |                          | (Note 2) |      | ns   |
| th(wr-db)    | Data Output Hold Time (WR standard) <sup>(5)</sup>               |                          | (Note 1) |      | ns   |
| td(BCLK-ALE) | ALE Signal Output Delay Time (BCLK standard)                     |                          |          | 18   | ns   |
| th(BCLK-ALE) | ALE Signal Output Hold Time (BCLK standard)                      |                          | -2       |      | ns   |
| td(AD-ALE)   | ALE Signal Output Delay Time (address standard)                  |                          | (Note 3) |      | ns   |
| th(ALE-AD)   | ALE Signal Output Hold Time (address standard)                   |                          | (Note 4) |      | ns   |
| tdz(RD-AD)   | Address Output Float Start Time                                  |                          |          | 8    | ns   |

# Table 26.41 Memory Expansion Mode and Microprocessor Mode (when accessing an external memory space with the multiplexed bus)

NOTES:

1. Values can be obtained by the following equations, according to BLCK frequency.

$$th(RD - AD) = \frac{10^9}{f(BCLK) X 2} - 10 \text{ [ns]}$$

$$th(WR - AD) = \frac{10^9}{f(BCLK) X 2} - 10 \text{ [ns]}$$

$$th(RD - CS) = \frac{10^9}{f(BCLK) X 2} - 10 \text{ [ns]}$$

$$th(WR - CS) = \frac{10^9}{f(BCLK) X 2} - 10 \text{ [ns]}$$

$$th(WR - DB) = \frac{10^9}{f(BCLK) X 2} - 20 \text{ [ns]}$$

2. Values can be obtained by the following equations, according to BLCK frequency and external bus cycles.

$$td(DB - WR) = \frac{10^9 X m}{f(BCLK) X 2} - 25$$
 [ns] (if external bus cycle is  $a\phi + b\phi$ , m=(b+2)-1)

3. Values can be obtained by the following equations, according to BLCK frequency and external bus cycles.

td(AD – ALE) = 
$$\frac{10^9 x n}{f(BCLK) X 2}$$
 – 20 [ns] (if external bus cycle is a + b + b, n=a)

4. Values can be obtained by the following equations, according to BLCK frequency and external bus cycles.

th(ALE – AD) = 
$$\frac{10^9 x n}{f(BCLK) X 2}$$
 – 10 [ns] (if external bus cycle is a $\phi$  + b $\phi$ , n=a)

5. tc ns is added when recovery cycle is inserted.

.

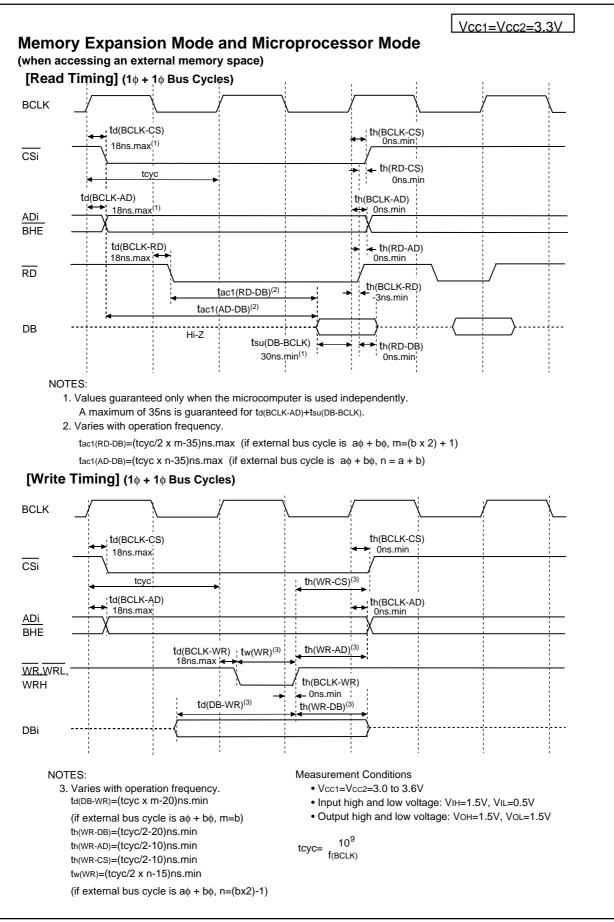



Figure 26.7 Vcc1=Vcc2=3.3V Timing Diagram (1)

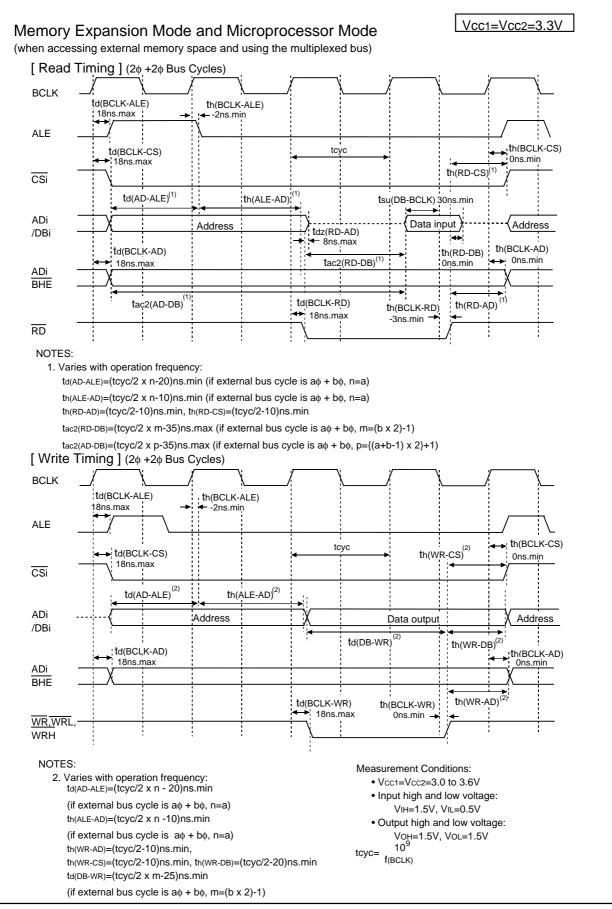



Figure 26.8 Vcc1=Vcc2=3.3V Timing Diagram (2)

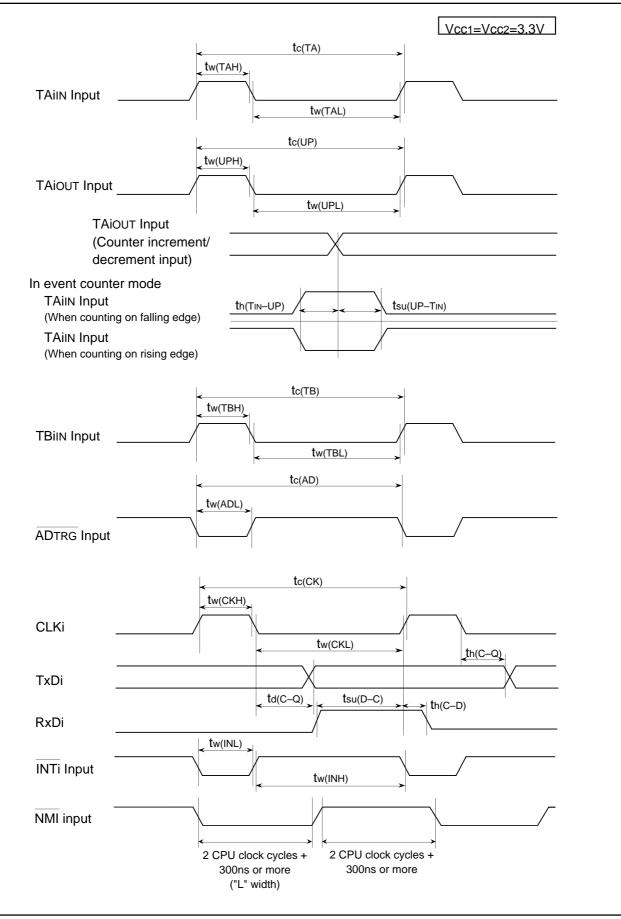



Figure 26.9 Vcc1=Vcc2=3.3V Timing Diagram (3)

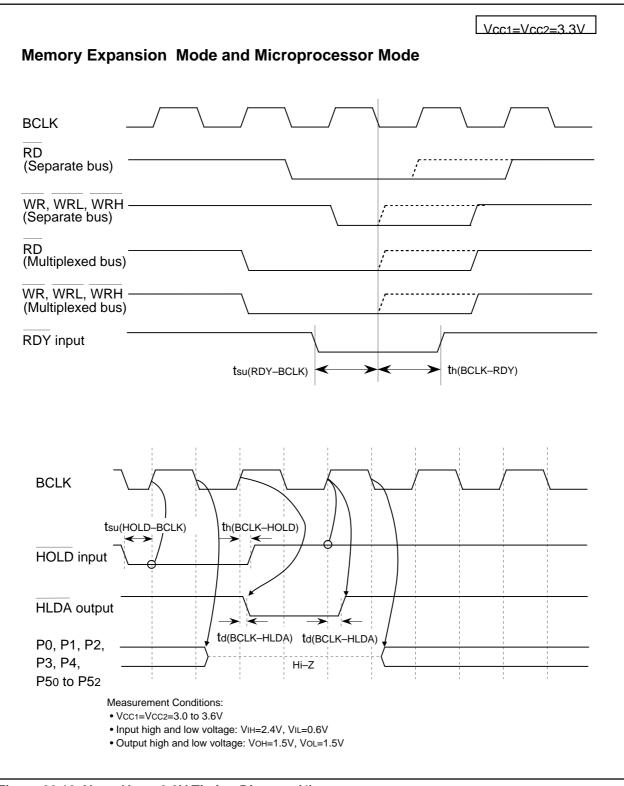



Figure 26.10 Vcc1=Vcc2=3.3V Timing Diagram (4)

# 26.2 Electrical Characteristics (M32C/84T)

| Symbol     |                        | Parameter                                                                                                                | Condition      | Value            | Unit |
|------------|------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------|------------------|------|
| VCC1, VCC2 | Supply Voltage         |                                                                                                                          | Vcc1=Vcc2=AVcc | -0.3 to 6.0      | V    |
| AVcc       | Analog Supply          | /oltage                                                                                                                  | Vcc1=Vcc2=AVcc | -0.3 to 6.0      | V    |
| Vı         | Input Voltage          | RESET, CNVss, BYTE, P60-P67, P72-P77,<br>P80-P87, P90-P97, P100-P107, P140-P146,<br>P150-P157 <sup>(1)</sup> , VREF, XIN |                | -0.3 to Vcc1+0.3 | V    |
|            |                        | P00-P07, P10-P17, P20-P27, P30-P37, P40-<br>P47, P50-P57, P110-P114, P120-P127, P130-<br>P137 <sup>(1)</sup>             |                | -0.3 to Vcc2+0.3 |      |
|            |                        | P70, P71                                                                                                                 |                | -0.3 to 6.0      |      |
| Vo         | Output Voltage         | P60-P67, P72-P77, P80-P84, P86, P87, P90-<br>P97, P100-P107, P140-P146, P150-P157 <sup>(1)</sup> ,<br>Xout               |                | -0.3 to Vcc1+0.3 | V    |
|            |                        | P00-P07, P10-P17, P20-P27, P30-P37, P40-<br>P47, P50-P57, P110-P114, P120-P127, P130-<br>P137 <sup>(1)</sup>             |                | -0.3 to Vcc2+0.3 | -    |
|            |                        | P70, P71                                                                                                                 |                | -0.3 to 6.0      |      |
| Pd         | Power Dissipation      | on                                                                                                                       | Topr=25° C     | 500              | mW   |
|            | Operating              | during CPU operation                                                                                                     | T version      | -40 to 85        |      |
| Topr       | Ambient<br>Temperature | during flash memory program and erase operation                                                                          |                | 0 to 60          | °C   |
| Tstg       | Storage Temper         | rature                                                                                                                   |                | -65 to 150       | °C   |

Table 26.42 Absolute Maximum Ratings

NOTES:

1. P11 to P15 are provided in the 144-pin package only.



## Table 26.43 Recommended Operating Conditions (Vcc1=Vcc2=4.2 to 5.5V, Vss=0V at Topr = -40 to 85°C (T version) unless otherwise specified)

| Cumhal     | Deventer                                               |                                                                                                                                                                                             |         | Unit |         |      |
|------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|---------|------|
| Symbol     |                                                        | Parameter                                                                                                                                                                                   |         | Тур. | Max.    | Unit |
| VCC1, VCC2 | Supply Voltage (V                                      | cc1≥ Vcc2)                                                                                                                                                                                  | 4.2     | 5.0  | 5.5     | V    |
| AVcc       | Analog Supply Vo                                       | Itage                                                                                                                                                                                       |         | Vcc1 |         | V    |
| Vss        | Supply Voltage                                         |                                                                                                                                                                                             |         | 0    |         | V    |
| AVss       | Analog Supply Vo                                       | Itage                                                                                                                                                                                       |         | 0    |         | V    |
| I I I      | Input High ("H")<br>Voltage                            | P20-P27, P30-P37, P40-P47, P50-P57, P110-P114, P120-<br>P127, P130-P137 <sup>(4)</sup>                                                                                                      | 0.8Vcc2 |      | Vcc2    | V    |
|            |                                                        | P60-P67, P72-P77, P80-P87 <sup>(3)</sup> , P90-P97, P100-P107, P140-<br>P146, P150-P157 <sup>(4)</sup> , XIN, RESET, CNVss, BYTE                                                            | 0.8Vcc1 |      | Vcc1    |      |
|            |                                                        | P70, P71                                                                                                                                                                                    | 0.8Vcc1 |      | 6.0     | 1    |
|            |                                                        | P00-P07, P10-P17                                                                                                                                                                            | 0.8Vcc2 |      | Vcc2    |      |
| VIL        | Input Low ("L")<br>Voltage                             | P20-P27, P30-P37, P40-P47, P50-P57, P110-P114, P120-<br>P127, P130-P137 <sup>(4)</sup>                                                                                                      | 0       |      | 0.2Vcc2 | V    |
|            |                                                        | P60-P67, P70-P77, P80-P87 <sup>(3)</sup> , P90-P97, P100-P107, P140-<br>P146, P150-P157 <sup>(4)</sup> , XIN, RESET, CNVss, BYTE                                                            | 0       |      | 0.2Vcc1 |      |
|            |                                                        | P00-P07, P10-P17                                                                                                                                                                            | 0       |      | 0.2Vcc2 | 1    |
| IOH(peak)  | Peak Output<br>High ("H")<br>Current <sup>(2)</sup>    | P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60-<br>P67, P72-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110-<br>P114, P120-P127, P130-P137, P140-P146, P150-P157 <sup>(4)</sup> |         |      | -10.0   | mA   |
| IOH(avg)   | Average Output<br>High ("H")<br>Current <sup>(1)</sup> | P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60-<br>P67, P72-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110-<br>P114, P120-P127, P130-P137, P140-P146, P150-P157 <sup>(4)</sup> |         |      | -5.0    | mA   |
| IOL(peak)  | Peak Output Low<br>("L") Current <sup>(2)</sup>        | P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60-<br>P67, P70-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110-<br>P114, P120-P127, P130-P137, P140-P146, P150-P157 <sup>(4)</sup> |         |      | 10.0    | mA   |
| OL(avg)    | Average Output<br>Low ("L")<br>Current <sup>(1)</sup>  | P00-P07, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60-<br>P67, P70-P77, P80-P84, P86, P87, P90-P97, P100-P107, P110-<br>P114, P120-P127, P130-P137, P140-P146, P150-P157 <sup>(4)</sup> |         |      | 5.0     | mA   |

NOTES:

1. Typical values when average output current is 100ms.

 Total IoL(peak) for P0, P1, P2, P86, P87, P9, P10, P11, P14 and P15 must be 80mA or less. Total IoL(peak) for P3, P4, P5, P6, P7, P80 to P84, P12 and P13 must be 80mA or less. Total IoH(peak) for P0, P1, P2, and P11 must be -40mA or less. Total IoH(peak) for P86, P87, P9, P10, P14 and P15 must be -40mA or less. Total IoH(peak) for P3, P4, P5, P12 and P13 must be -40mA or less.

Total IOH(peak) for P6, P7, and P80 to P84 must be -40mA or less.

3. VIH and VIL reference for P87 applies when P87 is used as a programmable input port. It does not apply when P87 is used as XcIN.

4. P11 to P15 are provided in the 144-pin package only.



# Table 26.43 Recommended Operating Conditions (Continued)

## (Vcc1=Vcc2=4.2 to 5.5V, Vss=0V at Topr = -40 to 85°C (T version) unless otherwise specified)

| Symbol   | Parameter                                         |                     |      | Unit |      |     |
|----------|---------------------------------------------------|---------------------|------|------|------|-----|
| Symbol   | r alameter                                        |                     | Min. | Тур. | Max. |     |
| f(вськ)  | CPU Input Frequency                               | Vcc1=4.2 to 5.5V    | 0    |      | 32   | MHz |
| f(Xin)   | Main Clock Input Frequency                        | Vcc1=4.2 to 5.5V    | 0    |      | 32   | MHz |
| f(Xcin)  | Sub Clock Frequency                               | Sub Clock Frequency |      |      | 50   | kHz |
| f(Ring)  | On-chip Oscillator Frequency (Vcc1=Vcc2=5.0V, Top | or=25° C)           | 0.5  | 1    | 2    | MHz |
| f(PLL)   | PLL Clock Frequency                               | Vcc1=4.2 to 5.5V    | 10   |      | 32   | MHz |
| tsu(pll) | Wait Time to Stabilize PLL Frequency Synthesizer  | Vcc1=5.0V           |      |      | 5    | ms  |



### Table 26.44 Electrical Characteristics

VCC1=VCC2=5V

# (Vcc1=Vcc2=4.2 to 5.5V, Vss=0V at Topr = -40 to 85°C (T version), f(BCLK)=32MHz unless otherwise specified)

| Symbol  |                                                      | Parameter                                         |                                   |         | ndition   | St       | andarc |       | Unit |
|---------|------------------------------------------------------|---------------------------------------------------|-----------------------------------|---------|-----------|----------|--------|-------|------|
| Symbol  |                                                      | Tarameter                                         |                                   |         |           | Min.     | Тур.   | Max.  |      |
| Vон     | Output High ("H")<br>Voltage                         | P00-P07, P10-P17, P20-I<br>P50-P57, P110-P114, P1 |                                   | Іон=-5r | nA        | Vcc2-2.0 |        | Vcc2  | V    |
|         |                                                      | P60-P67, P72-P77, P80-I                           | P84, P86, P87, P90-               | Іон=-5r | nA        | Vcc1-2.0 |        | Vcc1  | 1    |
|         |                                                      | P97, P100-P107, P140-P                            | •                                 |         |           |          |        |       |      |
|         |                                                      | P00-P07, P10-P17, P20-I                           |                                   | Іон=-20 | 00μΑ      | Vcc2-0.3 |        | Vcc2  | V    |
|         |                                                      | P50-P57, P110-P114, P1                            |                                   |         |           |          |        |       |      |
|         |                                                      | P60-P67, P72-P77, P80-I                           |                                   | Іон=-20 | 00μΑ      | Vcc1-0.3 |        | Vcc1  |      |
|         |                                                      | P97, P100-P107,P140-P                             | 146, P150-P157 <sup>(1)</sup>     |         |           |          |        |       |      |
|         |                                                      | Хоит                                              |                                   | Іон=-1r | nA        | 3.0      |        |       | V    |
|         |                                                      | Хсоит                                             | High Power                        | No load | d applied |          | 2.5    |       | V    |
|         |                                                      |                                                   | Low Power                         | No load | d applied |          | 1.6    |       | 1    |
| Vol     | Output Low ("L")                                     | P00-P07, P10-P17, P20-I                           | P27, P30-P37, P40-P47,            | lo∟=5m  | A         |          |        | 2.0   | V    |
|         | Voltage                                              | P50-P57, P60-P67, P70-I                           | P77, P80-P84, P86,                |         |           |          |        |       |      |
|         |                                                      | P87, P90-P97, P100-P10                            | )7, P110-P114, P120-              |         |           |          |        |       |      |
|         |                                                      | P127, P130-P137, P140-                            | P146, P150-P157 <sup>(1)</sup>    |         |           |          |        |       |      |
|         |                                                      | P00-P07, P10-P17, P20-I                           | P27, P30-P37, P40-P47,            | IoL=200 | ΟμΑ       |          |        | 0.45  | V    |
|         |                                                      | P50-P57, P60-P67, P70-I                           | P77, P80-P84, P86,                |         |           |          |        |       |      |
|         |                                                      | P87, P90-P97, P100-P10                            | 7, P110-P114, P120-               |         |           |          |        |       |      |
|         |                                                      | P127, P130-P137, P140-                            |                                   |         |           |          |        |       |      |
|         |                                                      | Хоит                                              |                                   | lo∟=1m  | A         |          |        | 2.0   | V    |
|         |                                                      | Хсоит                                             | High Power                        | No load | d applied |          | 0      |       | V    |
|         |                                                      |                                                   | Low Power                         | No load | d applied |          | 0      |       |      |
| Vt+-Vt- | Hysteresis                                           | HOLD, RDY, TA0IN-TA4                              | 4in, TB0in-TB5in,                 |         |           | 0.2      |        | 1.0   | V    |
|         |                                                      | INTO-INT5, ADTRG, CTS                             |                                   |         |           |          |        |       |      |
|         |                                                      | TA0out-TA4out, NMI, R                             |                                   |         |           |          |        |       |      |
|         |                                                      | SCL0-SCL4, SDA0-SD                                |                                   |         |           |          |        |       |      |
|         |                                                      | RESET                                             |                                   |         |           | 0.2      |        | 1.8   | V    |
| Ін      | Input High ("H")                                     | P00-P07, P10-P17, P20-I                           | P27, P30-P37, P40-P47,            | VI=5V   |           |          |        | 5.0   | μA   |
|         | Current                                              | P50-P57, P60-P67, P70-I                           |                                   |         |           |          |        |       |      |
|         |                                                      | P100-P107, P110-P114,                             | P120-P127, P130-                  |         |           |          |        |       |      |
|         |                                                      | P137, P140-P146, P150-                            |                                   |         |           |          |        |       |      |
|         |                                                      | CNVss, BYTE                                       |                                   |         |           |          |        |       |      |
| lı∟     | Input Low ("L")                                      | P00-P07, P10-P17, P20-I                           | P27, P30-P37, P40-P47,            | Vi=0V   |           |          |        | -5.0  | μA   |
|         | Current                                              | P50-P57, P60-P67, P70-I                           | P77, P80-P87, P90-P97,            |         |           |          |        |       |      |
|         |                                                      | P100-P107, P110-P114,                             | P120-P127, P130-                  |         |           |          |        |       |      |
|         |                                                      | P137, P140-P146, P150-                            | P157 <sup>(1)</sup> , XIN, RESET, |         |           |          |        |       |      |
|         |                                                      | CNVss, BYTE                                       |                                   |         |           |          |        |       |      |
| Rpullup | Pull-up Resistance                                   | P00-P07, P10-P17, P20-I                           | P27, P30-P37, P40-P47,            | Vi=0V   | Flash     | 30       | 50     | 0 167 | kΩ   |
|         |                                                      | P50-P57, P60-P67, P72-I                           | P77, P80-P84, P86,                |         | Memory    |          |        |       |      |
|         |                                                      | P87, P90-P97, P100-P10                            | 7, P110-P114, P120-               |         |           |          |        |       |      |
|         | P127, P130-P137, P140-P146, P150-P157 <sup>(1)</sup> |                                                   |                                   |         |           |          |        |       |      |
| Rfxin   | Feedback Resistance                                  | Xin                                               |                                   | I       | 1         |          | 1.5    |       | MΩ   |
| Rfxcin  | Feedback Resistance                                  | Xcin                                              |                                   |         |           |          | 10     |       | MΩ   |
| Vram    | RAM Standby Voltage                                  | In stop mode                                      |                                   |         |           | 2.0      |        |       | V    |

NOTES:

1. P11 to P15 are provided in the 144-pin package only.

### Table 26.44 Electrical Characteristics (Continued)

# (VCC1=VCC2=4.2 to 5.5V, Vss=0V at Topr = -40 to 85°C (T version),

## f(BCLK)=32MHz unless otherwise specified)

| Symbol | Parameter                                                                                                    | Moosura | Measurement Condition                                                                      |      | Standard |      |      |
|--------|--------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------|------|----------|------|------|
| Symbol | Falameter                                                                                                    | Measure |                                                                                            | Min. | Тур.     | Max. | Unit |
| lcc    | cc Power Supply Current In single-chip mode, output f(BCLK)=32 M<br>pins are left open and other No division |         | f(BCLK)=32 MHz, Square wave,<br>No division                                                |      | 28       | 50   | mA   |
|        |                                                                                                              | ļ       | f(BCLK)=32 kHz,<br>In low-power consumption mode,<br>Program running on ROM                |      | 430      |      | μA   |
|        |                                                                                                              |         | f(BCLK)=32 kHz,<br>In low-power consumption mode,<br>Program running on RAM <sup>(1)</sup> |      | 25       |      | μA   |
|        |                                                                                                              |         | f(BCLK)=32 kHz, In wait mode,<br>Topr=25° C                                                |      | 10       |      | μA   |
|        |                                                                                                              |         | While clock stops, Topr=25° C                                                              |      | 0.8      | 5    | μA   |
|        |                                                                                                              |         | While clock stops, Topr=85° C                                                              |      |          | 50   | μΑ   |

NOTES:

1. Value is obtained when setting the FMSTP bit in the FMR0 register to "1" (flash memory stopped).

# Table 26.45 A/D Conversion Characteristics (Vcc1=Vcc2=4.2 to 5.5V, Vss=0V at Topr= -40 to 85°C (T version), f(BCLK)=32MHz unless otherwise specified)

| Symbol        | Parameter                                | Moosuron          | Measurement Condition                      |       | Standard |      |      |
|---------------|------------------------------------------|-------------------|--------------------------------------------|-------|----------|------|------|
| Symbol        | Faranielei                               | ivieasureit       |                                            | Min.  | Тур.     | Max. | Unit |
| -             | Resolution                               | VREF=VCC1         |                                            |       |          | 10   | Bits |
|               |                                          |                   | ANo to AN7, AN0o to<br>AN07, AN2o to AN27, |       |          | ±3   | LSB  |
| INL           | Integral Nonlinearity Error              | VREF=VCC1=VCC2=5V | AN150 to AN157,<br>ANEX0, ANEX1            |       |          |      | LSB  |
|               |                                          |                   | External op-amp                            |       |          | ±7   | LSB  |
|               |                                          |                   | connection mode                            |       |          |      | LSB  |
| DNL           | Differential Nonlinearity Error          |                   |                                            |       |          | ±1   | LSB  |
| -             | Offset Error                             |                   |                                            |       |          | ±3   | LSB  |
| -             | Gain Error                               |                   |                                            |       |          | ±3   | LSB  |
| RLADDER       | Resistor Ladder                          | VREF=VCC1         |                                            | 8     |          | 40   | kΩ   |
| tCONV         | 10-bit Conversion Time <sup>(1, 2)</sup> |                   |                                            | 2.06  |          |      | μs   |
| tCONV         | 8-bit Conversion Time <sup>(1, 2)</sup>  |                   |                                            | 1.75  |          |      | μs   |
| <b>t</b> SAMP | Sampling Time <sup>(1)</sup>             |                   |                                            | 0.188 |          |      | μs   |
| Vref          | Reference Voltage                        |                   |                                            | 2     |          | Vcc1 | V    |
| VIA           | Analog Input Voltage                     |                   |                                            | 0     |          | Vref | V    |

NOTES:

1. Divide  $f(X_{IN})$ , if exceeding 16 MHz, to keep  $\phi$ AD frequency at 16 MHz or less.

2. With using the sample and hold function.

# Table 26.46 D/A Conversion Characteristics (Vcc1=Vcc2=4.2 to 5.5V, Vss=0V at Topr= -40 to 85°C (T version), f(BCLK)=32MHz unless otherwise specified)

| Symbol | Parameter                            | Measurement Condition | 9    | Unit |      |      |
|--------|--------------------------------------|-----------------------|------|------|------|------|
|        |                                      |                       | Min. | Тур. | Max. |      |
| -      | Resolution                           |                       |      |      | 8    | Bits |
| -      | Absolute Accuracy                    |                       |      |      | 1.0  | %    |
| ts∪    | Setup Time                           |                       |      |      | 3    | μs   |
| Ro     | Output Resistance                    |                       | 4    | 10   | 20   | kΩ   |
| Ivref  | Reference Power Supply Input Current | (Note 1)              |      |      | 1.5  | mA   |

NOTES:

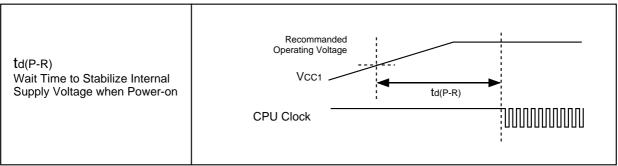
1. Measurement when using one D/A converter. The DAi register (i=0, 1) of the D/A converter, not being used, is set to "0016". The resistor ladder in the A/D converter is excluded.

IVREF flows even if the VCUT bit in the AD0CON1 register is set to "0" (no VREF connection).

# Table 26.47Flash Memory Version Electrical Characteristics(Vcc1=4.5 to 5.5V, 3.0 to 3.6V at Topr= 0 to 60°C unless otherwise specified)

| Sumbol                                                                                                                                                                                                                                                                                                                          | Parameter                                    |                |      | Standard |              |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------|------|----------|--------------|--------|
| Symbol     Parameter       -     Program and Erase Endurance <sup>(2)</sup> -     Word Program Time (Vcc1=5.0V, Topr=25° C)       -     Lock Bit Program Time       -     Block Erase Time<br>(Vcc1=5.0V, Topr=25° C)       -     8-Kbyte Block       -     8-Kbyte Block       -     32-Kbyte Block       -     64-Kbyte Block | Min.                                         | Тур.           | Max. | - Unit   |              |        |
| -                                                                                                                                                                                                                                                                                                                               | Program and Erase Endurance <sup>(2)</sup>   |                | 100  |          |              | cycles |
| -                                                                                                                                                                                                                                                                                                                               | Word Program Time (Vcc1=5.0V, Topr=          | 25° C)         |      | 25       | 200          | μs     |
| -                                                                                                                                                                                                                                                                                                                               | Lock Bit Program Time                        |                |      | 25       | 200          | μs     |
| -                                                                                                                                                                                                                                                                                                                               |                                              | 4-Kbyte Block  |      | 0.3      | 4            | S      |
|                                                                                                                                                                                                                                                                                                                                 |                                              | 8-Kbyte Block  |      | 0.3      | 4            | S      |
|                                                                                                                                                                                                                                                                                                                                 |                                              | 32-Kbyte Block |      | 0.5      | 4            | S      |
|                                                                                                                                                                                                                                                                                                                                 |                                              | 64-Kbyte Block |      | 0.8      | 4            | S      |
| -                                                                                                                                                                                                                                                                                                                               | All-Unlocked-Block Erase Time <sup>(1)</sup> |                |      |          | 4 x <i>n</i> | S      |
| tPS                                                                                                                                                                                                                                                                                                                             | Wait Time to Stabilize Flash Memory Circuit  |                |      |          | 15           | μs     |
| -                                                                                                                                                                                                                                                                                                                               | Data Hold Time (Topr=-40 to 85 ° C)          |                | 10   |          |              | years  |

NOTES:


1. *n* denotes the number of block to be erased.

2. Number of program-erase cycles per block.

If Program and Erase Endurance is *n* cycle (*n*=100), each block can be erased and programmed *n* cycles. For example, if a 4-Kbyte block A is erased after programming a word data 2,048 times, each to a different address, this counts as one program and erase endurance. Data can not be programmed to the same address more than once without erasing the block. (rewrite prohibited).

## Table 26.48 Power Supply Timing

| Symbol Parameter | Measurement Condition                                        | 5                | Standard              |     |   |    |
|------------------|--------------------------------------------------------------|------------------|-----------------------|-----|---|----|
| Cymbol           |                                                              |                  | dition Min. Typ. Max. | 01m |   |    |
| td(P-R)          | Wait Time to Stabilize Internal Supply Voltage when Power-on | Vcc1=3.0 to 5.5V |                       |     | 2 | ms |



### Figure 26.11 Power Supply Timing Diagram

VCC1=VCC2=5V

## (Vcc1=Vcc2=4.2 to 5.5V, Vss=0V at Topr= -40 to 85°C (T version) unless otherwise specified)

| Table 26.49 External Clock Input |
|----------------------------------|
|----------------------------------|

| Symbol Parameter | Parameter                             | Stan  | Unit |    |
|------------------|---------------------------------------|-------|------|----|
|                  | Falalletei                            | Min.  | Max. |    |
| tc               | External Clock Input Cycle Time       | 31.25 |      | ns |
| tw(H)            | External Clock Input High ("H") Width | 13.75 |      | ns |
| tw(L)            | External Clock Input Low ("L") Width  | 13.75 |      | ns |
| tr               | External Clock Rise Time              |       | 5    | ns |
| tf               | External Clock Fall Time              |       | 5    | ns |



VCC1=VCC2=5V

## (Vcc1=Vcc2=4.2 to 5.5V, Vss=0V at Topr= -40 to 85°C (T version) unless otherwise specified)

### Table 26.50 Timer A Input (Count Source Input in Event Counter Mode)

| Symbol  | Parameter                   | Stan | Unit |    |
|---------|-----------------------------|------|------|----|
|         |                             | Min. | Max. |    |
| tc(ta)  | TAin Input Cycle Time       | 100  |      | ns |
| tw(tah) | TAin Input High ("H") Width | 40   |      | ns |
| tw(TAL) | TAin Input Low ("L") Width  | 40   |      | ns |

### Table 26.51 Timer A Input (Gate Input in Timer Mode)

| Symbol  | Deremeter                    | Stan | 1.1.4.14 |      |
|---------|------------------------------|------|----------|------|
|         | Parameter                    | Min. | Max.     | Unit |
| tc(ta)  | TAin Input Cycle Time        | 400  |          | ns   |
| tw(tah) | TAiıN Input High ("H") Width | 200  |          | ns   |
| tw(TAL) | TAiın Input Low ("L") Width  | 200  |          | ns   |

## Table 26.52 Timer A Input (External Trigger Input in One-Shot Timer Mode)

| Symbol  | Parameter                    | Stan | Unit |    |
|---------|------------------------------|------|------|----|
|         | Falameter                    | Min. | Max. |    |
| tc(ta)  | TAin Input Cycle Time        | 200  |      | ns |
| tw(tah) | TAiıN Input High ("H") Width | 100  |      | ns |
| tw(TAL) | TAin Input Low ("L") Width   | 100  |      | ns |

### Table 26.53 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

| Symbol  | Parameter                    | Stan | Unit |    |
|---------|------------------------------|------|------|----|
|         | Falameter                    | Min. | Max. |    |
| tw(tah) | TAiıN Input High ("H") Width | 100  |      | ns |
| tw(TAL) | TAiıN Input Low ("L") Width  | 100  |      | ns |

#### Table 26.54 Timer A Input (Counter Increment/Decrement Input in Event Counter Mode)

| Symbol      | Symbol Parameter              | Stan | Unit |    |
|-------------|-------------------------------|------|------|----|
| Symbol      |                               | Min. | Max. |    |
| tC(UP)      | TAiout Input Cycle Time       | 2000 |      | ns |
| tw(UPH)     | TAiout Input High ("H") Width | 1000 |      | ns |
| tw(UPL)     | TAiout Input Low ("L") Width  | 1000 |      | ns |
| tsu(UP-TIN) | TAiout Input Setup Time       | 400  |      | ns |
| th(TIN-UP)  | TAiout Input Hold Time        | 400  |      | ns |

VCC1=VCC2=5V

## (Vcc1=Vcc2=4.2 to 5.5V, Vss=0V at Topr= -40 to 85°C (T version) unless otherwise specified)

#### Table 26.55 Timer B Input (Count Source Input in Event Counter Mode)

| Symbol  | Parameter                                           | Star | - Unit |    |
|---------|-----------------------------------------------------|------|--------|----|
| Symbol  | Falameter                                           | Min. | Max.   |    |
| tc(tb)  | TBin Input Cycle Time (counted on one edge)         | 100  |        | ns |
| tw(твн) | TBin Input High ("H") Width (counted on one edge)   | 40   |        | ns |
| tw(tbl) | TBin Input Low ("L") Width (counted on one edge)    | 40   |        | ns |
| tc(tb)  | TBin Input Cycle Time (counted on both edges)       | 200  |        | ns |
| tw(твн) | TBin Input High ("H") Width (counted on both edges) | 80   |        | ns |
| tw(TBL) | TBin Input Low ("L") Width (counted on both edges)  | 80   |        | ns |

## Table 26.56 Timer B Input (Pulse Period Measurement Mode)

| Symbol  | Parameter                   | Stan | Unit |    |
|---------|-----------------------------|------|------|----|
|         | Falanteler                  | Min. | Max. |    |
| tc(tb)  | TBin Input Cycle Time       | 400  |      | ns |
| tw(твн) | TBi⊪ Input High ("H") Width | 200  |      | ns |
| tw(TBL) | TBin Input Low ("L") Width  | 200  |      | ns |

#### Table 26.57 Timer B Input (Pulse Width Measurement Mode)

| Symbol  | Parameter                    | Stan | Unit |    |
|---------|------------------------------|------|------|----|
|         | Falameter                    | Min. | Max. |    |
| tc(tb)  | TBin Input Cycle Time        | 400  |      | ns |
| tw(твн) | TBiiN Input High ("H") Width | 200  |      | ns |
| tw(TBL) | TBin Input Low ("L") Width   | 200  |      | ns |

### Table 26.58 A/D Trigger Input

| Symbol  | Parameter                                     | Stan | Unit |    |
|---------|-----------------------------------------------|------|------|----|
|         | Falameter                                     | Min. | Max  |    |
| tC(AD)  | ADTRG Input Cycle Time (required for trigger) | 1000 |      | ns |
| tw(ADL) | ADTRG Input Low ("L") Pulse Width             | 125  |      | ns |

## Table 26.59 Serial I/O

| Symbol   | Parameter                   | Star | Unit |    |
|----------|-----------------------------|------|------|----|
| Symbol   |                             | Min. | Max. |    |
| tc(ck)   | CLKi Input Cycle Time       | 200  |      | ns |
| tw(скн)  | CLKi Input High ("H") Width | 100  |      | ns |
| tw(CKL)  | CLKi Input Low ("L") Width  | 100  |      | ns |
| td(C-Q)  | TxDi Output Delay Time      |      | 80   | ns |
| th(C-Q)  | TxDi Hold Time              | 0    |      | ns |
| tsu(D-C) | RxDi Input Setup Time       | 30   |      | ns |
| th(C-Q)  | RxDi Input Hold Time        | 90   |      | ns |

### Table 26.60 External Interrupt INTi Input

| Symbol  | Parameter                      | Stan | Unit |      |
|---------|--------------------------------|------|------|------|
|         | Falanteler                     |      |      | Max. |
| tw(INH) | INTi Input High ("H") Width    |      |      | ns   |
| tw(INL) | INTi Input Low ("L") Width 250 |      |      | ns   |



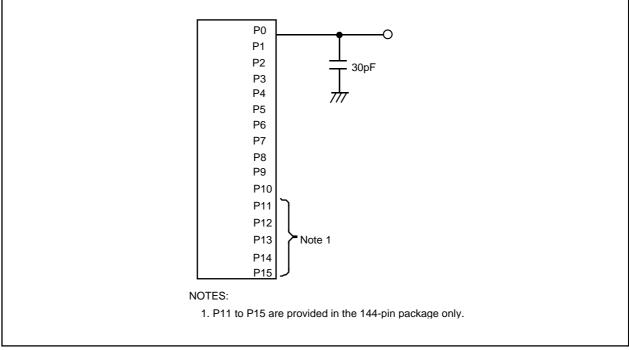



Figure 26.12 P0 to P15 Measurement Circuit

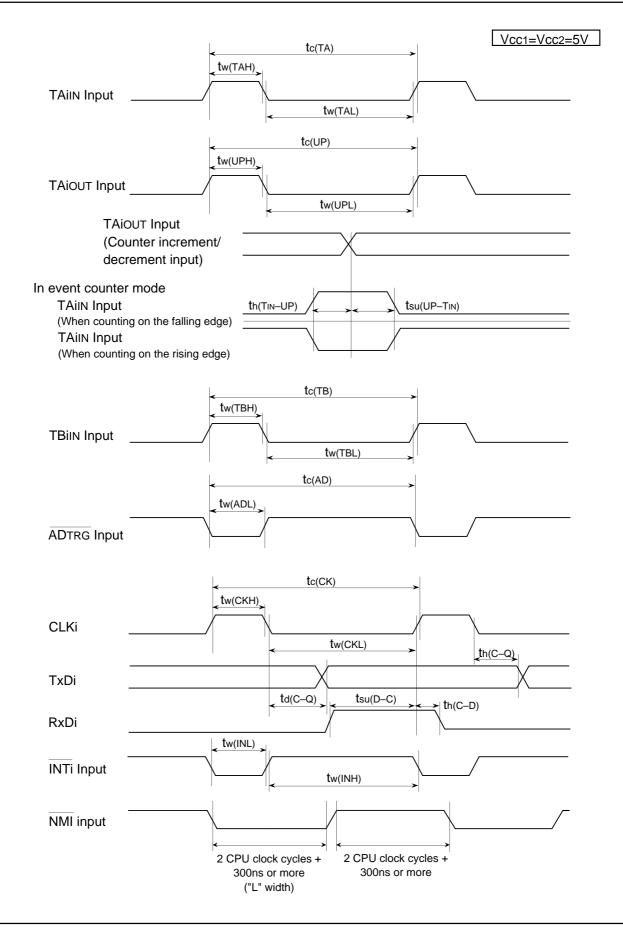



Figure 26.13 Vcc1=Vcc2=5V Timing Diagram



# 27. Precautions

# 27.1 Restrictions to Use M32C/84T (High-Reliability Version)

The M32C/84T microcomputer (high-reliability version) has the following usage restrictions:

- The supply voltage of M32C/84T must be VCC1=VCC2.
- M32C/84T must be used in single-chip mode only. M32C/84T cannot be used in memory expansion mode and microprocessor mode.
- Bus control pins (A0 to A22, A23, D0 to D15, CS0 to CS3, WRL/WR, WRH/BHE, RD, BCLK/ALE, HLDA/ALE, HOLD, ALE, RDY) and BCLK pins in M32C/84T cannot be used.
- The voltage detection circuit in M32C/84T cannot be used. Low voltage detection interrupt and brownout detection reset cannot also be used.
- The DS register, VCR1 register, VCR2 register, D4INT register and EWCR0 to EWCR3 registers in M32C/84T cannot be used.



# 27.2 Reset

Voltage applied to the VCC1 pin must meet the SVCC standard.

## Table 27.1 Power Supply Increasing Slope

| Symbol | Parameter                            |      | Standard |      |      |
|--------|--------------------------------------|------|----------|------|------|
|        |                                      | Min. | Тур.     | Max. | Unit |
| SVcc   | Power Supply Increasing Slope (Vcc1) | 0.05 |          |      | V/ms |

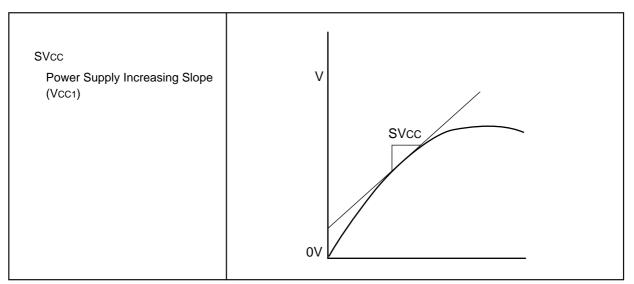



Figure 27.1 SVcc Timing



# 27.3 Bus

# 27.3.1 HOLD Signal

When entering microprocessor mode or memory expansion mode from single-chip mode and using HOLD input, set the PM01 and PM00 bits to "112" (microprocessor mode) or to "012" (memory expansion mode) after setting the PD4\_7 to PD4\_0 bits in the PD4 register and the PD5\_2 to PD5\_0 bits in the PD5 register to "0" (input mode).

P40 to P47 (A16 to A22, A23, CS0 to CS3, MA8 to MA12) and P50 to P52 (RD/WR/BHE, RD/WRL/WRH) are not placed in high-impedance states even when a low-level ("L") signal is applied to the HOLD pin, if the PM01 and PM00 bits are set to "112" (microprocessor mode) or to "012" (memory expansion mode) after setting the PD4\_7 to PD4\_0 bits in the PD4 register and the PD5\_2 to PD5\_0 bits in the PD5 register to "1" (output mode) in single-chip mode.

# 27.3.2 External Bus

The internal ROM cannot be read when a high-level ("H") signal is applied to the CNVss pin and the hardware reset (hardware reset 1 or brown-out detection reset) occurs.



# 27.4 SFR

## 27.4.1 100-Pin Package

Set address spaces 03CB16, 03CE16, 03CF16, 03D216, 03D316 to "FF16" after reset when using the 100pin package. 03DC16 must be set to "0016" after reset.

# 27.4.2 Register Settings

Table 27.2 lists registers containing bits which can only be written to. Set these registers with immediate values. When establishing the next value by altering the present value, write the present value to the RAM as well as to the register. Transfer the next value to the register after making changes in the RAM.

| Register       | Address        | Register                    | Address        |
|----------------|----------------|-----------------------------|----------------|
| WDTS Register  | 000E16         | U3BRG Register              | 032916         |
| G0RI Register  | 00EC16         | U3TB Register               | 032B16, 032A16 |
| G1RI Register  | 012C16         | U2BRG Register              | 033916         |
| U1BRG Register | 02E916         | U2TB Register               | 033B16, 033A16 |
| U1TB Register  | 02EB16, 02EA16 | UDF Register                | 034416         |
| U4BRG Register | 02F916         | TA0 Register <sup>(1)</sup> | 034716, 034616 |
| U4TB Register  | 02FB16, 02FA16 | TA1 Register <sup>(1)</sup> | 034916, 034816 |
| TA11 Register  | 030316, 030216 | TA2 Register <sup>(1)</sup> | 034B16, 034A16 |
| TA21 Register  | 030516, 030416 | TA3 Register <sup>(1)</sup> | 034D16, 034C16 |
| TA41 Register  | 030716, 030616 | TA4 Register <sup>(1)</sup> | 034F16, 034E16 |
| DTT Register   | 030C16         | U0BRG Register              | 036916         |
| ICTB2 Register | 030D16         | U0TB Register               | 036B16, 36A16  |

Table 27.2 Registers with Write-only Bits

#### NOTES :

1. In one-shot timer mode and pulse width modulation mode only.



# 27.5 Clock Generation Circuit

## 27.5.1 CPU Clock

- When the CPU operating frequency is 24 MHz or more, use the following procedure for better EMC (Electromagnetic Compatibility) performance.
  - 1) Oscillator connected between the XIN and XOUT pins, or external clock applied to the XIN pin, has less than 24 MHz frequency.
  - 2) Use the PLL frequency synthesizer to multiply the main clock.
- In M32C/84T, the main clock frequency must be 24 MHz or less.

# 27.5.2 Sub Clock

Set the CM03 bit to "0" (XCIN-XCOUT drive capacity "LOW") when selecting the sub clock (XCIN-XCOUT) as the CPU clock, or timer A or timer B count source (fC32).

## 27.5.2.1 Sub Clock Oscillation

When oscillating the sub clock, set the CM04 bit in the CM0 register to "1" (XCIN-XCOUT oscillation function) after setting the CM07 bit in the CM0 register to "0" (clock other than sub clock) and the CM03 bit to "1" (XCIN-XCOUT drive capacity "HIGH"). Set the CM03 bit to "0" after sub clock oscillation stabilizes.

Set the sub clock as the CPU clock, or timer A or timer B count source (fC32) after the above settings are completed.

## 27.5.2.2 Using Stop Mode

When the microcomputer enters stop mode, the CM03 bit is automatically set to "1" (XCIN-XCOUT drive capacity "HIGH"). Use the following procedure to select the main clock as the CPU clock when entering stop mode.

- 1) Set the CM17 bit in the CM1 register to "0" (main clock).
- 2) Set the CM21 bit in the CM2 register to "0" (clock selected by the CM17 bit).
- 3) Set the CM07 bit in the CM0 register to "0" (clock selected by the CM21 bit divided by the MCD register setting).

After exiting stop mode, wait for the sub clock oscillation to stabilize. Then set the CM03 bit to "0" and the CM07 bit to "1" (sub clock).

### 27.5.2.3 Oscillation Parameter Matching

If the sub slock oscillation parameters have only been evaluated with the drive capacity "HIGH", the parameters should be reevaluated for drive capacity "LOW".

Contact your oscillator manufacturer for details on matching parameters.



# 27.5.3 PLL Frequency Synthesizer

Stabilize supply voltage to meet the power supply standard when using the PLL frequency synthesizer.

 Table 27.3 Power Supply Ripple

| Symbol       | Parameter                                      |           | Standard |      |      | Unit |
|--------------|------------------------------------------------|-----------|----------|------|------|------|
| Cymbol       | i didineter                                    |           |          | Тур. | Max. | Onit |
| f(ripple)    | Power Supply Ripple Tolerable Frequency (Vcc1) | Vcc1=5V   |          |      | 10   | kHz  |
|              |                                                | Vcc1=3.3V |          |      | 100  | Hz   |
| VP-P(ripple) | Power Supply Ripple Voltage Fluctuation Range  | Vcc1=5V   |          |      | 0.5  | V    |
|              |                                                | Vcc1=3.3V |          |      | 0.2  | V    |
| Vcc(  v/ t ) | Power Supply Ripple Voltage Fluctuation Rate   | Vcc1=5V   |          |      | 1    | V/ms |
|              | rower Supply hipple vollage Fluctuation Rate   | Vcc1=3.3V |          |      | 0.1  | V/ms |

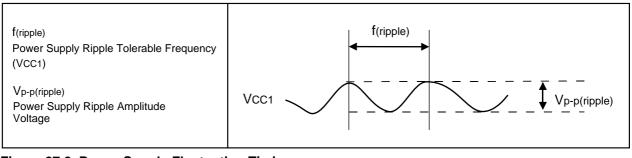



Figure 27.2 Power Supply Fluctuation Timing

# 27.5.4 External Clock

Do not stop an external clock running if the main clock is selected as the CPU clock while the external clock is applied to the XIN pin.

Do not set the CM05 bit in the CM0 register to "1" (main clock stopped) while the external clock input is used for the CPU clock.

# 27.5.5 Clock Divide Ratio

Set the PM12 bit in the PM1 register to "0" (no wait state) when changing the MCD4 to MCD0 bit settings in the MCD register.

# 27.5.6 Power Consumption Control

Stabilize the main clock, sub clock or PLL clock to switch the CPU clock source to each clock.

## 27.5.6.1 Wait Mode

When entering wait mode while the CM02 bit in the CM0 register is set to "1" (peripheral function stop in wait mode), set the MCD4 to MCD0 bits in the MCD register to maintain 10-MHz CPU clock frequency or less.

When entering wait mode, the instruction queue reads ahead to instructions following the WAIT instruction, and the program stops. Write at least 4 NOP instructions after the WAIT instruction.



## 27.5.6.2 Stop Mode

- Use the following procedure to select the main clock as the CPU clock when entering stop mode.
- 1) Set the CM17 bit in the CM1 register to "0" (main clock).
- 2) Set the CM21 bit in the CM2 register to "0" (clock selected by the CM17 bit).
- 3) Set the CM07 bit in the CM0 register to "0" (clock selected by the CM21 bit divided by the MCD register setting).

If the PLL clock is selected as the CPU clock source, set the CM17 bit to "0" (main clock) and the PLC07 bit in the PLC0 register to "0" (PLL off) before entering stop mode.

- The microcomputer cannot enter stop mode if a low-level signal ("L") is applied to the NMI pin. Apply a high-level ("H") signal instead.
- If stop mode is exited by any reset, apply an "L" signal to the RESET pin until a main clock oscillation is stabilized enough.
- If using the NMI interrupt to exit stop mode, use the following procedure to set the CM10 bit in the CM1 register (all clocks stopped).
  - 1) Exit stop mode with using the  $\overline{\text{NMI}}$  interrupt.
  - 2) Generate a dummy interrupt.
  - 3) Set the CM10 bit to "1".

| e.g., | int  | #63 | ; dummy interrupt    |
|-------|------|-----|----------------------|
|       | bset | cm1 | ; all clocks stopped |

/\* dummy interrupt handling \*/ dummy reit

• When entering stop mode, the instruction queue reads ahead to instructions following the instruction setting the CM10 bit in the CM1 register to "1" (all clocks stopped), and the program stops. When the microcomputer exits stop mode, the instruction lined in the instruction queue is executed before the interrupt routine for recovery is done.

Write the JMP.B instruction, as follows, after the instruction setting the CM10 bit in the CM1 register to "1" (all clocks stopped).

| e.g.,  | bset 0, prcr<br>bset 0, cm1<br>jmp.b LABEL_001 | ; protection removed<br>; all clocks stopped<br>; JMP.B instruction executed (no instuction between JMP.B<br>; and LABEL.) |
|--------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| LABEL_ | 001:                                           |                                                                                                                            |
|        | nop                                            | ; NOP (1)                                                                                                                  |
|        | nop                                            | ; NOP (2)                                                                                                                  |
|        | nop                                            | ; NOP (3)                                                                                                                  |
|        | nop                                            | ; NOP (4)                                                                                                                  |
|        | mov.b #0, prcr                                 | ; Protection set                                                                                                           |
|        | •                                              |                                                                                                                            |
|        | •                                              |                                                                                                                            |
|        | •                                              |                                                                                                                            |
|        |                                                |                                                                                                                            |

## 27.5.6.3 Suggestions for Reducing Power Consumption

The followings are suggestions for reducing power consumption when programming or designing systems.

**Ports:** I/O ports maintains the same state despite the microcomputer entering wait mode or stop mode. Current flows through active output ports. Feedthrough current flows through input ports in a high-impedance state. Set unassigned ports as input ports and stabilize electrical potential before entering wait mode or stop mode.

**A/D Converter:** If the A/D conversion is not performed, set the VCUT bit in the AD0CON1 register to "0" (no VREF connection). Set the VCUT bit to "1" (VREF connection) and wait at least 1 $\mu$ s before starting the A/D conversion.

**D/A Converter:** Set the DAi bit (i=0, 1) in the DACON register to "0" (output disabled) and set the DAi register to "0016" when the D/A conversion is not performed.

**Peripheral Function Stop:** Set the CM02 bit in the CM0 register while in wait mode to stop unnecessary peripheral functions. However, this does not reduce power consumption because the peripheral function clock (fc32) generating from the sub clock does not stop. When in low-speed mode and low-power consumption mode, do not enter wait mode when the CM02 bit is set to "1" (peripheral clock stops in wait mode).



# 27.6 Protection

The PRC2 bit setting in the PRCR register is changed to "0" (write disable) when an instruction is written to any address after the PRC2 bit is set to "1" (write enable). Write instruction immediately after setting the PRC2 bit to "1" to change registers protected by the PRC2 bit. Do not generate an interrupt or a DMA transfer between the instruction to set the PRC2 bit to "1" and the following instruction.



# 27.7 Interrupts

# 27.7.1 ISP Setting

After reset, the ISP is set to "00000016". The program runs out of control if an interrupt is acknowledged before the ISP is set. Therefore, the ISP must be set before an interrupt request is generated. Set the ISP to an even address, which allows interrupt sequences to be executed at a higher speed.

To use  $\overline{\text{NMI}}$  interrupt, set the ISP at the beginning of the program. The  $\overline{\text{NMI}}$  interrupt can be acknowledged after the first instruction has been executed after reset.

# 27.7.2 NMI Interrupt

- $\overline{\text{NMI}}$  interrupt cannot be denied. Connect the  $\overline{\text{NMI}}$  pin to Vcc via a resistor (pull-up) when not in use.
- The P8\_5 bit in the P8 register indicates the NMI pin value. Read the P8\_5 bit only to determine the pin level after a NMI interrupt occurs.
- "H" and "L" signals applied to the NMI pin must be over 2 CPU clock cycles + 300 ns wide.
- NMI interrupt request may not be acknowledged if this and other interrupt requests are generated simultaneously.

# 27.7.3 INT Interrupt

• Edge Sensitive

"H" and "L" signals applied to the INT0 to INT5 pins must be at least 250 ns wide, regardless of the CPU clock.

• Level Sensitive

"H" and "L" signals applied to the INT0 to INT5 pins must be at least 1 CPU clock cycle + 200 ns wide. For example, "H" and "L" must be at least 234ns wide if XIN=30MHz with no division.

• The IR bit may change to "1" (interrupt requested) when switching the polarity of the INT0 to INT5 pins. Set the IR bit to "0" (no interrupt requested) after selecting the polarity. Figure 27.3 shows an example of the switching procedure for the INT interrupt.

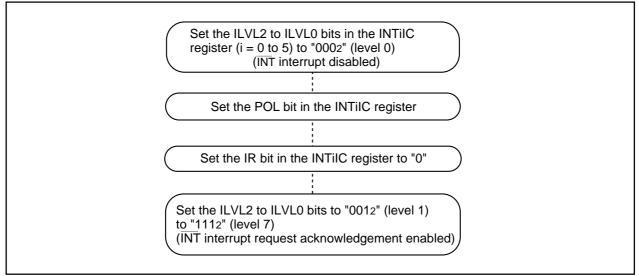



Figure 27.3 Switching Procedure for INT Interrupt

# 27.7.4 Watchdog Timer Interrupt

Reset the watchdog timer after a watchdog timer interrupt occurs.

# 27.7.5 Changing Interrupt Control Register

To change the interrupt control register while the interrupt request is denied, follow the instructions below.

## Changing IR bit

The IR bit setting may not change to "0" (no interrupt requested) depending on the instructions written. If this is a problem, use the following instruction to change the register: MOV

## **Changing Bits Except IR Bit**

When an interrupt request is generated while executing an instruction, the IR bit may not be set to "1" (interrupt requested) and the interrupt may be ignored. If this is a problem, use the following instructions to change the register: AND, OR, BCLR, BSET

# 27.7.6 Changing IIOiIR Register (i = 0 to 4, 8 to 11)

Use the following instructions to set bits 1 to 7 in the IIOiIR register to "0" (no interrupt requested): AND, BCLR

# 27.7.7 Changing RLVL Register

The DMAII bit is indeterminate after reset. When using the DMAII bit to generate an interrupt, set the interrupt control register after setting the DMAII bit to "0" (interrupt priority level 7 available for interrupts).



# 27.8 DMAC

- Set DMAC-associated registers while the MDi1 and MDi0 bits (i=0 to 3) in the channel to be used are set to "002" (DMA disabled). Set the MDi1 and MDi0 bits to "012" (single transfer) or "112" (repeat transfer) at the end of setup procedure to start DMA requests.
- Do not set the DRQ bit in the DMiSL register to "0" (no request).

If a DMA request is generated but the receiving channel is not ready to receive<sup>(1)</sup>, the DMA transfer does not occur and the DRQ bit is set to "0".

NOTES:

- 1. The MDi1 and MDi0 bits are set to "002" or the DCTi register is set to "000016" (transferred 0 times).
- To start a DMA transfer by a software trigger, set the DSR bit and DRQ bit in the DMiSL register to "1" simultaneously.

e.g.,

OR.B #0A0h,DMiSL ; Set the DSR and DRQ bits to "1" simultaneously

- Do not generate a channel i DMA request when setting the MDi1 and MDi0 bits in the DMDj register (j=0,1) corresponding to channel i to "012" (single transfer) or "112" (repeat transfer), if the DCTi register of channel i is set to "1".
- Select the peripheral function which causes the DMA request after setting the DMA-associated registers. If none of the conditions above (setting INT interrupt as DMA request source) apply, do not write "1" to the DCTi register.
- Enable DMA<sup>(2)</sup> after setting the DMiSL register (i=0 to 3) and waiting six BCLK cycles or more by program.

NOTES:

2. DMA is enabled when the values set in the MDi1 to MDi0 bits in the DMDj register are changed from "002" (DMA disabled) to "012" (single transfer) or "112" (repeat transfer).



# 27.9 Timer

# 27.9.1 Timers A and B

The timers stop after reset. Set the TAiS(i=0 to 4) bit or TBjS(j=0 to 5) bit in the TABSR register or TBSR register to "1" (starts counting) after setting operating mode, count source and counter.

The following registers and bits must be set while the TAiS bit or TBjS bit is set to "0" (stops counting).

- TAiMR, TBjMR register
- TAi, TBj register
- UDF register
- TAZIE, TA0TGL, TA0TGH bits in the ONSF register
- TRGSR register

# 27.9.2 Timer A

The TA10UT, TA20UT and TA40UT pins are placed in high-impedance states when a low-level ("L") signal is applied to the  $\overline{\text{NMI}}$  pin while the INV03 and INV02 bits in the INVC0 register are set to "112" (forced cutoff of the three-phase output by an "L" signal applied to the  $\overline{\text{NMI}}$  pin).

## 27.9.2.1 Timer A (Timer Mode)

- The TAiS bit (i=0 to 4) in the TABSR register is set to "0" (stops counting) after reset. Set the TAiS bit to "1" (starts counting) after selecting an operating mode and setting the TAi register.
- The TAi register indicates the counter value during counting at any given time. However, the counter is "FFFF16" when reloading. The setting value can be read after setting the TAi register while the counter stops and before the counter starts counting.

### 27.9.2.2 Timer A (Event Counter Mode)

- The TAiS (i=0 to 4) bit in the TABSR register is set to "0" (stops counting) after reset. Set the TAiS bit to "1" (starts counting) after selecting an operating mode and setting the TAi register.
- The TAi register indicates the counter values during counting at any given time. However, the counter will be "FFFF16" during underflow and "000016" during overflow, when reloading. The setting value can be read after setting the TAi register while the counter stops and before the counter starts counting.



## 27.9.2.3 Timer A (One-shot Timer Mode)

- The TAiS (i=0 to 4) bit in the TABSR register is set to "0" (stops counting) after reset. Set the TAiS bit to "1" (starts counting) after selecting an operating mode and setting the TAi register.
- The followings occur when the TABSR register is set to "0" (stops counting) while counting:
- The counter stops counting and the microcomputer reloads contents of the reload register.
- The TAIOUT pin becomes low ("L").
- The IR bit in the TAiIC register is set to "1" (interrupt requested) after one CPU clock cycle.
- The output of the one-shot timer is synchronized with an internal count source. When set to an external trigger, there is a delay of one count source cycle maximum, from trigger input to the TAIIN pin to the one-shot timer output.
- The IR bit is set to "1" when the following procedures are performed to set timer mode:
  - selecting one-shot timer mode after reset.
  - switching from timer mode to one-shot timer mode.
  - switching from event counter mode to one-shot timer mode.

Therefore, set the IR bit to "0" to generate a timer Ai interrupt (IR bit) after performing these procedures.

- When a trigger is generated while counting, the reload register reloads and continues counting after the counter has decremented once following a re-trigger. To generate a trigger while counting, wait at least 1 count source cycle after the previous trigger has been generated and generate a re-trigger.
- If an external trigger input is selected to start counting in timer A one-shot timer mode, do not provide another external trigger input again for 300 ns before the timer A counter value reaches "000016". One-shot timer may stop counting.

### 27.9.2.4 Timer A (Pulse Width Modulation Mode)

- The TAiS(i=0 to 4) bit in the TABSR register is set to "0" (stops counting) after reset. Set the TAiS bit to "1" (starts counting) after selecting an operating mode and setting the TAi register.
- The IR bit is set to "1" when the following procedures are performed to set timer mode:
  - Selecting PWM mode after reset
  - Switching from timer mode to PWM mode
  - Switching from event counter mode to PWM mode

Therefore, set the IR bit to "0" by program to generate a timer Ai interrupt (IR bit) after performing these procedures.

- The followings occur when the TAiS bit is set to "0" (stops counting) while PWM pulse is output:
- The counter stops counting
- Output level changes to low ("L") and the IR bit changes to "1" when the TAiout pin is held high ("H")
- The IR bit and the output level remain unchanged when TAiOUT pin is held "L"



# 27.9.3 Timer B

## 27.9.3.1 Timer B (Timer Mode, Event Counter Mode)

- The TBiS (i=0 to 5) bit is set to "0" (stops counting) after reset. Set the TBiS bit to "1" (starts counting) after selecting an operating mode and setting TBi register.
   The TB2S to TB0S bits are bits 7 to 5 in the TABSR register. The TB5S to TB3S bits are bits 7 to 5 in the TABSR register.
- The TBi register indicates the counter value during counting at any given time. However, the counter is "FFFF16" when reloading. The setting value can be read after setting the TBi register while the counter stops and before the counter starts counting.

## 27.9.3.2 Timer B (Pulse Period/Pulse Width Measurement Mode)

- The IR bit in the TBiIC (i=0 to 5) register is set to "1" (interrupt requested) when the valid edge of a pulse to be measured is input and when the timer Bi counter overflows. The MR3 bit in the TBiMR register determines the interrupt source within an interrupt routine.
- Use another timer to count how often the timer counter overflows when an interrupt source cannot be determined by the MR3 bit, such as when a pulse to be measured is input at the same time the timer counter overflows.
- To set the MR3 bit in the TBiMR register to "0" (no overflow), set the TBiMR register after the MR3 bit is set to "1" (overflow) and one or more cycles of the count source are counted, while the TBiS bits in the TABSR and TBSR registers are set to "1" (starts counting).
- The IR bit in the TBiIC register is used to detect overflow only. Use the MR3 bit only to determine interrupt source within an interrupt routine.
- Indeterminate values are transferred to the reload register during the first valid edge input after counting is started. Timer Bi interrupt request is not generated at this time.
- The counter value is indeterminate when counting is started. Therefore, the MR3 bit setting may change to "1" (overflow) and causes timer Bi interrupt requests to be generated until a valid edge is input after counting is started.
- The IR bit may be set to "1" (interrupt requested) if the MR1 and MR0 bits in the TBiMR register are set to a different value after a count begins. If the MR1 and MR0 bits are rewritten, but to the same value as before, the IR bit remains unchanged.
- Pulse width measurement measures pulse width continuously. Use program to determine whether measurement results are high (""H") or low ("L").



# 27.10 Serial I/O

# 27.10.1 Clock Synchronous Serial I/O Mode

The  $\overline{\text{RTS}2}$  and CLK2 pins are placed in high-impedance states when a low-level ("L") signal is applied to the  $\overline{\text{NMI}}$  pin while the INV03 to INV02 bits in the INVC0 register are set to "112" (forced cutoff of the three-phase output by an "L" signal applied to the  $\overline{\text{NMI}}$  pin).

## 27.10.1.1 Transmission /Reception

When the RTS function is used while an external clock is selected, the output level of the RTSi pin is held "L" indicating that the microcomputer is ready for reception. The transmitting microcomputer is notified that reception is possible. The output level of the RTSi pin becomes high ("H") when reception begins. Therefore, connecting the RTSi pin to the CTSi pin of the transmitting microcomputer synchronizes transmission and reception. The RTS function is disabled if an internal clock is selected.

### 27.10.1.2 Transmission

When an external clock is selected while the CKPOL bit in the UiC0 (i=0 to 4) register is set to "0" (data is transmitted on the falling edge of the transfer clock and received on the rising edge) and the external clock is held "H", or when the CKPOL bit is set to "1" (data is transmitted on the rising edge of the transfer clock and received on the falling edge) and the external clock is held "L", meet the following conditions:

- Set the TE bit in the UiC1 register to "1" (receive enabled)
- Set the TI bit in the UiC1 register to "0" (data in the UiTB register)
- Apply "L" signal to the CTSi pin if the CTS function is selected

## 27.10.1.3 Reception

Activating the transmitter in clock synchronous serial I/O mode generates the shift clock. Therefore, set for transmission even if the microcomputer is used for reception only. Dummy data is output from the TxDi pin while receiving.

If an internal clock is selected, the shift clock is generated when the TE bit in the UiC1 registers is set to "1" (receive enabled) and dummy data is set in the UiTB register. If an external clock is selected, the shift clock is generated when the external clock is input into CLKi pin while the TE bit is set to "1" (receive enabled) and dummy data is set in the UiTB register.

When receiving data consecutively while the RE bit in the UiC1 register is set to "1" (data in the UiRB register) and the next data is received by the UARTi reception register, an overrun error occurs and the OER bit in the UiRB register is set to "1" (overrun error). In this case, the UiRB register is indeterminate. When overrun error occurs, program both reception and transmission registers to retransmit earlier data. The IR bit in the SiRIC does not change when an overrun error occurs.

When receiving data consecutively, feed dummy data to the low-order byte in the UiTB register every time a reception is made.

When an external clock is selected while the CKPOL bit in the UiC0 register is set to "0" (data is transmitted on the falling edge of the transfer clock and received on the rising edge) and the external clock is held "H" or when the CKPOL bit is set to "1" (data is transmitted on the rising edge of the transfer clock and received on the falling edge) and the external clock is held "L", meet the following conditions:

- Set the RE bit in the UiC1 register to "1" (receive enabled)
- Set the TE bit in the UiC1 register to "1" (transmit enabled)
- Set the TI bit in the UiC1 register to "0" (data in the UiTB register)

#### 27.10.2 UART Mode

Set the UiERE bit (i=0 to 4) in the UiC1 register after setting the UiMR register.

### 27.10.3 Special Mode 1 (I<sup>2</sup>C Mode)

To generate the start condition, stop condition or restart condition, set the STSPSEL bit in the UiSMR4 register to "0" first. Then, change each condition generating bit (the STAREQ bit, STPREQ bit or RSTAREQ bit) setting from "0" to "1" after going through a half cycle of the transfer clock.



#### 27.11 A/D Converter

- Set the AD0CON0 (bit 6 excluded), AD0CON1, AD0CON2, AD0CON3, and AD0CON4 registers while the A/D conversion is stopped (before a trigger is generated).
- Wait a minimum of 1µs before starting the A/D conversion when changing the VCUT bit setting in the AD0CON1 register from "0" (VREF no connection) to "1" (VREF connection).
   Change the VCUT bit setting from "1" to "0" after the A/D conversion is completed.
- Insert capacitors between the AVCC pin, VREF pin, analog input pin ANij (i=none, 0, 2, 15; j=0 to 7) and AVss pin to prevent latch-ups and malfunctions due to noise, and to minimize conversion errors. The same applies to the VCC and VSs pins. Figure 27.4 shows the use of capacitors to reduce noise.

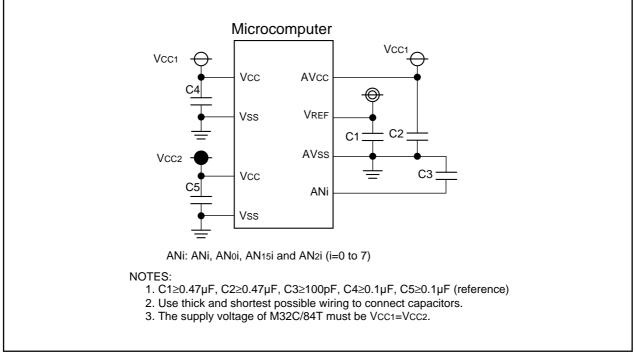



Figure 27.4 Use of Capacitors to Reduce Noise

- Set the bit in the port direction register, which corresponds to the pin being used as the analog input, to "0" (input mode). Set the bit in the port direction register, which corresponds to the ADTRG pin, to "0" (input mode) if the TRG bit in the AD0CON0 register is set to "1" (external trigger).
- When generating a key input interrupt, do not use the AN4 to AN7 pins as analog input pins (key input interrupt request is generated when the A/D input voltage becomes "L").
- The frequency of φAD must be 16MHz or less. When the sample and hold function is not activated, φAD frequency must be 250 kHz or more. If the sample and hold function is activated, φAD frequency must be 1MHz or more.
- Set the CH2 to CH0 bits in the AD0CON0 register or the SCAN1 and SCAN0 bits in the AD0CON1 register to re-select analog input pins when changing A/D conversion mode.

• AVCC = VREF = VCC1  $\ge$  VCC2,

A/D input voltage (for AN0 to AN7, AN150 to AN157, ANEX0, and ANEX1)  $\leq$  VCC1, A/D input voltage (for AN00 to AN07, and AN20 to AN27)  $\leq$  VCC2.

• Wrong values are stored in the AD0i register (i=0 to 7) if the CPU reads the AD0i register while the AD0i register stores results from a completed A/D conversion. This occurs when the CPU clock is set to a divided main clock or a sub clock.

In one-shot mode or single sweep mode, read the corresponding AD0i register after verifying that the A/D conversion has been completed. The IR bit in the AD0IC register determines the completion of the A/D conversion.

In repeat mode, repeat sweep mode 0, repeat sweep mode 1, multi-port single sweep mode, and multiport repeat sweep mode 0, use an undivided main clock as the CPU clock.

- Conversion results of the A/D converter are indeterminate if the ADST bit in the AD0CON0 register is set to "0" (stop A/D conversion) and the conversion is forcibly terminated by program during the A/D conversion. The AD0i register not performing the A/D conversion may also be indeterminate.
   If the ADST bit is changed to "0" by program, during the A/D conversion, do not use any values obtained from the AD0i registers.
- External triggers cannot be used in DMAC operating mode. Do not read the AD00 register by program.
- Do not perform the A/D conversion in wait mode.
- Set the MCD4 to MCD0 bits in the MCD register to "100102" (no division) if using the sample and hold function.
- Do not acknowledge any interrupt requests, even if generated, before setting the ADST bit, if the A/D conversion is terminated by setting the ADST bit in the AD0CON0 register to "0" (A/D conversion stopped) while the microcomputer is A/D converting in single sweep mode.



#### 27.12 Intelligent I/O

#### 27.12.1 Register Setting

Operations, controlled by the values written to the G1BT, G1BCR1, G1TMCR0 to G1TMCR7, G1TPR6, G1TPR7, G1TM0 to G1TM7, G1POCR0 to G1POCR7, G1PO0 to G1PO7, G1FS and G1FE registers, are affected by the count source (fBT1) set in the BCK1 and BCK0 bits in the G1BCR0 register. Set the BCK1 and BCK0 bits before setting the G1BT, G1BCR1, G1TMCR0 to G1TMCR7, G1TPR6, G1TPR7, G1TM0 to G1TM7, G1POCR0 to G1POCR7, G1PO0 to G1PO7, G1FS and G1FE registers.

Operations, controlled by the values written to the GORI and G1RI, GOTO and G1TO, GOCR and G1CR, GORB and G1RB, G0MR and G1MR, G0EMR and G1EMR, G0ETC and G1ETC, G0ERC and G1ERC, G0IRF, G1IRF, G0TB and G1TB, G0CMP0 to G0CMP3, G1CMP0 to G1CMP3, G0MSK0 and G0MSK1, G1MSK0 and G1MSK1, G0TCRC and G1TCRC, G0RCRC and G1RCRC registers are affected by the transfer clock.

Set trasfer clock before setting the G0RI and G1RI, G0TO and G1TO, G0CR and G1CR, G0RB and G1RB, G0MR and G1MR, G0EMR and G1EMR, G0ETC and G1ECT, G0ERC and G1ERC, G0IRF and G1IRF, G0TB and G1TB, G0CMP0 to G0CMP3, G1CMP0 to G1CMP3, G0MSK0 and G0MSK1, G1MSK0 and G1MSK1, G0TCRC and G1TCRC, G0RCRC and G1RCRC registers.



#### 27.13 Programmable I/O Ports

Because ports P72 to P75, P80, and P81 have three-phase PWM output forced cutoff function, they are
affected by the three-phase motor control timer function and the NMI pin when these ports are set for
output functions (port output, timer output, three-phase PWM output, serial I/O output, intelligent I/O
output).

Table 27.4 shows the INVC0 register setting, the  $\overline{NMI}$  pin input level and the state of output ports.

| Setting Value of IN                               | IVC0 Register                                     | Input Level             | States of P72 to P75, P80, and P81                                          |
|---------------------------------------------------|---------------------------------------------------|-------------------------|-----------------------------------------------------------------------------|
| INV02 bit                                         | INV03 bit to NMI Pin                              |                         | Pins (when setting an output pin)                                           |
| 0 (not using three-phase motor control function)  | -                                                 | -                       | Output functions selected by the PS1,<br>PSL1, PSC, PS2, and PSL2 registers |
| 1 (using three-phase motor control timer function | 0 (three-phase PWM output disabled)               | -                       | High-impedance state                                                        |
|                                                   | 1 (three-phase PWM output enabled) <sup>(1)</sup> | н                       | Output functions selected by the PS1, PSL1, PSC, PS2, and PSL2 registers    |
|                                                   |                                                   | L (forcibly terminated) | High-impedance state                                                        |

NOTES :

- 1. The INV03 bit is set to "0" after a low-level ("L") signal is applied to the NMI pin.
- The availability of pull-up resistors is indeterminate until internal power voltage stabilizes, if the RESET pin is held "L".
- The input threshold voltage varies between programmable I/O ports and peripheral functions. Therefore, if the lelvel of the voltage applied to a pin shared by both programmable I/O ports and peripheral functions is not within the recommended operating condition, VIH and VIL (neither "H" nor "L"), the level may vary depending on the programmable ports and peripheral functions.



#### 27.14 Flash Memory Version

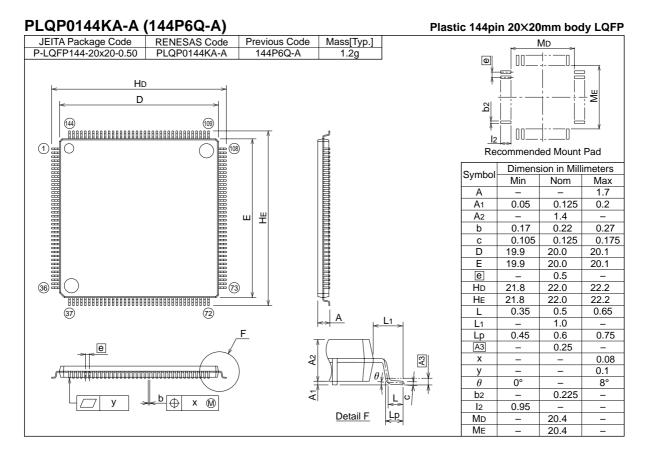
#### 27.14.1 Differences Between Flash Memory Version and Masked ROM Version

Due to differences in internal ROM and layout pattern, flash memory version and masked ROM version have varying electrical characteristics such as attributes, performance margins, noise endurance capacity, and noise radiation. When switching to masked ROM version, administer system evaluation tests equal to those held on the flash memory version.

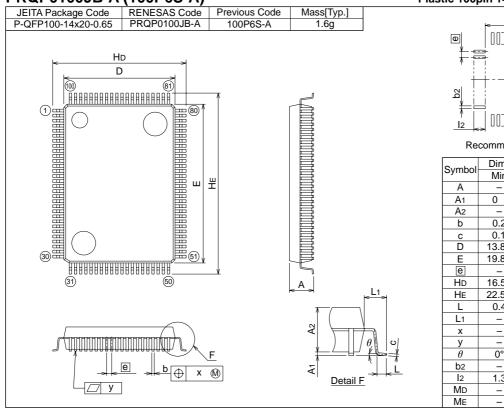
#### 27.14.2 Boot Mode

I/O pins may not be placed in high-impedance states until internal voltage stabilizes, when power is turned on in boot mode. Follow the procedure below to turn on power in boot mode.

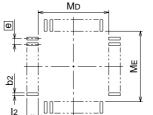
- 1) Apply an "L" signal to the  $\overline{\text{RESET}}$  and the CNVss pin
- 2) Wait a minimum of 2ms after VCC1 reaches 2.7V or above (until internal voltage stabilizes)
- 3) Apply an "H" signal to the CNVss pin
- 4) Apply an "H" signal to the RESET pin (reset exited)




#### 27.15 Noise


Connect a bypass capacitor (0.1µF or more) between VCC and VSS by shortest path, using thick wires.

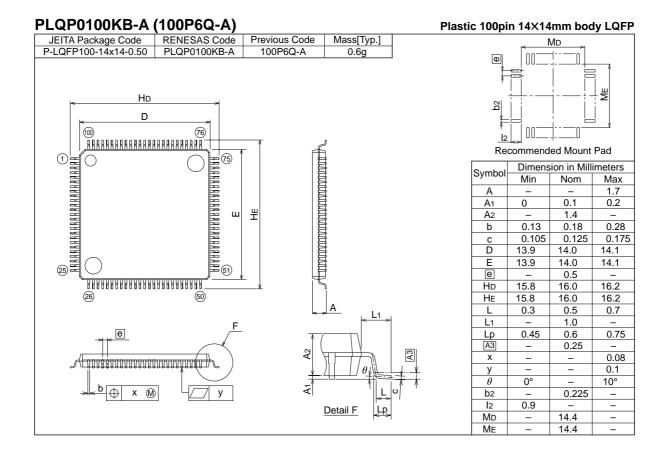



# Package Dimensions



#### PRQP0100JB-A (100P6S-A)




#### Plastic 100pin 14×20mm body QFP



#### Recommended Mount Pad

| Symbol   | Dimension in Millimeters |      |      |  |
|----------|--------------------------|------|------|--|
| Symbol   | Min                      | Nom  | Max  |  |
| Α        | -                        | —    | 3.05 |  |
| A1       | 0                        | 0.1  | 0.2  |  |
| A2       | -                        | 2.8  | -    |  |
| b        | 0.25                     | 0.3  | 0.4  |  |
| С        | 0.13                     | 0.15 | 0.2  |  |
| D        | 13.8                     | 14.0 | 14.2 |  |
| E        | 19.8                     | 20.0 | 20.2 |  |
| е        | -                        | 0.65 | -    |  |
| HD       | 16.5                     | 16.8 | 17.1 |  |
| HE       | 22.5                     | 22.8 | 23.1 |  |
| L        | 0.4                      | 0.6  | 0.8  |  |
| L1       | _                        | 1.4  | _    |  |
| х        | -                        | -    | 0.13 |  |
| у        | -                        | -    | 0.1  |  |
| $\theta$ | 0°                       | -    | 10°  |  |
| b2       | -                        | 0.35 | -    |  |
| 12       | 1.3                      | _    | _    |  |
| Md       | _                        | 14.6 | -    |  |
| ME       | -                        | 20.6 | -    |  |







# **Register Index**

| A |   |
|---|---|
|   | • |

AD00 to AD07 253 AD0CON0 249 AD0CON1 250 AD0CON2 251 AD0CON3 252 AD0CON4 253 AIER 126

#### С

C0AFS 364 C0BPR 335 C0CONR 333 C0CTLR0 324 C0CTLR1 327 C0EFR 343 COEIMKR 341 **COEISTR** 342 C0GMR0 348 C0GMR1 349 C0GMR2 350 C0GMR3 351 C0GMR4 352 C0IDR 332 COLMARO 348 C0LMAR1 349 C0LMAR2 350 C0LMAR3 351 C0LMAR4 352 COLMBRO 348 C0LMBR1 349 C0LMBR2 350 C0LMBR3 351 C0LMBR4 352 COMCTL0 to COMCTL15 355 C0MDR 344 COREC 337 COSBS 359 COSIMKR 340 COSISTR 338 COSLOT0\_0 360 C0SLOT0\_1 360 COSLOT0\_2 361

COSLOT0 3 361 COSLOT0 4 362 COSLOTO 5 362 C0SLOT0\_6 to C0SLOT0\_13 363 C0SLOT0\_14 363 C0SLOT0\_15 363 C0SLOT1\_0 360 C0SLOT1 1 360 C0SLOT1 2 361 C0SLOT1\_3 361 C0SLOT1 4 362 C0SLOT1\_5 362 C0SLOT1\_6 to C0SLOT1\_13 363 C0SLOT1 14 363 C0SLOT1\_15 363 COSLPR 328 COSSCTLR 346 COSSSTR 347 COSTR 329 COTEC 337 C0TSR 336 C1CTLR0 324 CCS 309 CM0 83, 133 CM1 84 CM2 86 CPSRF 87 CRCD 268 **CRCIN 268** D D4INT 51 DA0, DA1 267 DACON 267 DCT0 to DCT3 140 DM0SL to DM3SL 137

D4INT 51 DA0, DA1 267 DACON 267 DCT0 to DCT3 140 DM0SL to DM3SL 137 DMA0 to DMA3 141 DMD0, DMD1 139 DRA0 to DRA3 141 DRC0 to DRC3 140 DS 60 DSA0 to DSA3 141 DTT 187



#### Ε

EWCR0 to EWCR3 66

#### F

FMR0 401 FMR1 402

#### G

G0CMP0 to G0CMP3 308 G0CR, G1CR 301 G0DR, G1DR 307 G0EMR 303 G0ERC, G1ERC 305 G0ETC 304 G0IRF 306 G0MR 302 G0MSK0, G0MSK1 308 G0RB, G1RB 301 GORCRC, G1RCRC 308 G0RI, G1RI 300 G0TB, G1TB 307 G0TCRC, G1TCRC 308 G0TO, G1TO 300 G1BCR0 276 G1BCR1 277 G1BT 276 G1CMP0 to G1CMP3 308 G1EMR 303 G1ETC 304 G1FE 281 G1FS 280 G1IRF 307 G1MR 302 G1MSK0, G1MSK1 308 G1PO0 to G1PO7 280 G1POCR0 to G1POCR7 279 G1TM0 to G1TM7 279 G1TMCR0 to G1TMCR7 278 G1TPR6, G1TPR7 278

#### L

REJ09B0036-0101

ICTB2 188 IDB0, IDB1 187 IFSR 124, 202 IIO0IE to IIO5IE, IIO8IE to IIO11IE 130 IIO0IR to IIO5IR, IIO8IR to IIO11IR 129

RENESAS Rev. 1.01 Jul. 07, 2005 Page 494 of 495

Interrupt Control 115, 116 INVC0 185 INVC1 186 IPS 389 IPSA 390 Μ MCD 85 0 ONSF 159 Ρ P0 to P15 378 PCR 389 PD0 to PD15 377 PLC0 88 PLC1 88 PM0 57 PM1 58 PM2 89 PRCR 106 PS0 379 PS1 379 PS2 380 PS3 380 PS5 381 381 PS8 PS9 382 PSC 385 PSC2 385 PSC3 386 PSD1 386 PSL0 383 PSL1 383 PSL2 384 PSL3 384 PUR0 387 PUR1 387 PUR2 387 PUR3 388 PUR4 388 PWCR0 78 PWCR1 79

#### R

RLVL **117**, **147** RMAD0 to RMAD7 **126** ROMCP **399** 

#### Т

TAO to TA4 TAOMR to TA4MR **158**, **163**, **166**, **169**, TA1, TA2, TA4, TA11, TA21, TA41 TA1MR, TA2MR, TA4MR TABSR **158**, **174**, TB0 to TB5 TB0MR to TB5MR **174**, **176**, **178**, TB2 **189** TB2MR **190** TB2SC **188** TBSR **175** TCSPR **87**, TRGSR **160**,

#### U

U0BRG to U4BRG U0C0 to U4C0 U0C1 to U4C1 U0MR to U4MR U0RB to U4RB U0SMR to U4SMR U0SMR2 to U4SMR2 U0SMR3 to U4SMR3 U0SMR4 to U4SMR4 U0TB to U4TB UDF **159** 

#### V

VCR1 **50** VCR2 **50** 

#### W

WDC **49**, **132** WDTS **132** 

#### Х

X0R to X15R 270 XYC 270

#### Υ

Y0R to Y15R 270



| Rev. | Date     |           | Description                                                                            |
|------|----------|-----------|----------------------------------------------------------------------------------------|
|      |          | Page      | Summary                                                                                |
| 0.41 | Mar., 03 |           | New Document                                                                           |
| 0.50 | Jun., 04 | All pages | Words standardized: On-chip oscillator, A/D converter and D/A converter                |
|      |          |           | Interrupts                                                                             |
|      |          | 128       | • Figure 10.15 IIO0IE to IIO5IE, IIO8IE to IIO11IE Registers Note 2 added              |
|      |          |           | Watchdog Timer                                                                         |
|      |          | 129       | <ul> <li>Figure 11.1 Watchdog Timer Block Diagram modified</li> </ul>                  |
|      |          |           | Three-Phase Motor Control Timer Functions                                              |
|      |          | 186       | • Figure 15.5 ICTB Register, TA1, TA2, TA4, TA11, TA21 and TA41 Registers and          |
|      |          |           | TB2SC Register Note 7 for TA1, TA2, TA4, TA11, TA21 and TA41 registers deleted         |
|      |          |           | Flash Memory Version                                                                   |
|      |          | 387       | • Figure 24.4 FMR0 Register Notes 1 and 7 revised                                      |
|      |          | 388       | Figure 24.5 FMR1 Register Notes 1 revised                                              |
|      |          | 390       | • Figure 24.6 How to Enter and Exit EW0 Mode Note 2 revised; note 5 added              |
|      |          | 391       | • Figure 24.7 How to Enter and Exit EW1 Mode Note 3 revised; note 4 added              |
|      |          | 392       | Figure 24.8 Handling Before and After Low Power Consumption Mode                       |
|      |          |           | Notes 4 and 5 added                                                                    |
|      |          | 393       | • 24.3.4.5 How to Access Description modified                                          |
|      |          |           | Electrical Characteristics                                                             |
|      |          | 413       | • Table 25.2 Recommended Operating Conditions f(ripple), Vp-p(ripple), VCC,            |
|      |          |           | SVcc and note 1 deleted                                                                |
|      |          | 415       | • Table 25.3 Electrical Characteristics RPULLUP value for the masked ROM version added |
|      |          | 416       | • Table 25.4 A/D Conversion Characteristics tSMP value modified; note 1 added          |
|      |          | 418       | • Table 25.7 Low Voltage Detect Circuit Electrical Characteristics added               |
|      |          |           | Table 25.8 Power Supply Timing added                                                   |
|      |          |           | • Figure 25.1 Power Supply Timing Diagram added                                        |
|      |          | 425       | • Figure 25.3 Vcc1=Vcc2=5V Timing Diagram (1) tac1(AD-DB) arithmetic expres-           |
|      |          |           | sion modified                                                                          |
|      |          | 429       | • Table 25.24 Electrical Characteristics RPULLUP value for the masked ROM              |
|      |          |           | version added                                                                          |
|      |          | 430       | Table 25.25 A/D Conversion Characteristics tCONV value modified                        |
|      |          | 436       | • Figure 25.7 VCc1=Vcc2=5V Timing Diagram (1) tac1(AD-DB) arithmetic expres-           |
|      |          |           | sion modified                                                                          |
|      |          |           | Precautions                                                                            |
|      |          | -         | <ul> <li>Section of Three-Phase Control Timer Functions delected</li> </ul>            |
| 1.00 | Apr., 05 | -         | M32C/84T (High-reliability version) added                                              |
|      |          |           | Description for the reserved bits on register diagrams modified                        |
|      |          |           | Overview                                                                               |
|      |          | 1         | • 1.1 Applications Automobiles added                                                   |

| <b>REVISION HISTORY</b> |  |
|-------------------------|--|
|                         |  |

| Rev. Date |  |            | Description                                                                                                   |
|-----------|--|------------|---------------------------------------------------------------------------------------------------------------|
|           |  | Page       | Summary                                                                                                       |
|           |  | 2, 3       | • Tables 1.1 and 1.2 M32C/84 Group (M32C/84, M32C/84T) Performance M32C/                                      |
|           |  |            | 84T added; supply voltage on Power Consumption row modified; note 3 and 4                                     |
|           |  |            | added                                                                                                         |
|           |  | 4          | • 1.3 Block Diagram Description deleted                                                                       |
|           |  |            | <ul> <li>Figure 1.1 M32C/84 Group (M32C/84, M32C/84T) Block Diagram; Note 3<br/>added</li> </ul>              |
|           |  | 5          | • 1.4 Product Information Description modified; ROM/RAM Capacity deleted                                      |
|           |  |            | • Table 1.3 M32C/84 Group (M32C/84, M32C/84T) Information updated; M32C/<br>84T added                         |
|           |  | 6          | • Figure 1.2 Product Numbering System Classification modified                                                 |
|           |  | 7, 12      | • Figures 1.3 and 1.5 Pin Assignment for 144-Pin Package/ for 100-Pin Package                                 |
|           |  |            | Note 3/Note 5 added                                                                                           |
|           |  | 8-10,13,14 | • Tables 1.4 and 1.5 Pin Characteristics for 144-Pin Package/ for 100-Pin                                     |
|           |  |            | Package Notes 2 and 3 added                                                                                   |
|           |  | 15         | • Tables 1.6 Pin Characteristics for 100-Pin and 144-Pin Package Notes 2 and                                  |
|           |  |            | 3 added                                                                                                       |
|           |  |            | Memory                                                                                                        |
|           |  | 22         | • Figure 3.1 Memory Map Type number table modified; note 2 modified; notes 4                                  |
|           |  |            | and 5 added                                                                                                   |
|           |  |            | SFR                                                                                                           |
|           |  | 23         | <ul> <li>The DS, VCR2, VCR1 and D4INT registers Note 2 added</li> </ul>                                       |
|           |  | 24         | The EWCR0 to EWCR3 registers Note 1 added                                                                     |
|           |  |            | The RMR0 register Value after reset added                                                                     |
|           |  | 26         | The RLVL register Value after reset modified                                                                  |
|           |  | 29         | The G1RB register Value after reset modified                                                                  |
|           |  | 35         | The IDB1 and IDB0 registers Value after reset modified                                                        |
|           |  | 37         | The DM3SL to DM0SL registers Value after reset modified                                                       |
|           |  | 38         | The A/D0 register Symbol name modified                                                                        |
|           |  | 41         | The PSC register Value after reset modified                                                                   |
|           |  |            | Reset                                                                                                         |
|           |  | -          | Hardware Reset 2 changed to Voltage Down Detection Reset                                                      |
|           |  | 10         | • Chapter structure modified                                                                                  |
|           |  | 43         | • 5. Reset Hardware Reset 1 and Voltage Down Detection Reset added to description                             |
|           |  |            | • 5.1 Hardware Reset Section deleted                                                                          |
|           |  | 4.4        | Figure 5.1 Reset Circuit Note 1 modified     Figure 5.2 Reset Sequence Figure modified Notes 1.2, and 2 added |
|           |  | 44         | • Figure 5.2 Reset Sequence Figure modified; Notes 1, 2, and 3 added                                          |
|           |  | 45         | • Table 5.1 Pin State while RESET Pin is Held "L" Note 3 added to P56                                         |
|           |  |            | • 5.2 Voltage Down Detection Reset td(P-R) changed to td(S-R); Note 1 added                                   |
|           |  |            |                                                                                                               |

| Rev. | Date |       | Description                                                                  |
|------|------|-------|------------------------------------------------------------------------------|
|      |      | Page  | Summary                                                                      |
|      |      |       | Voltage Detection Circuit                                                    |
|      |      | -     | New Chapter                                                                  |
|      |      | 48    | • 6. Voltage Detection Circuit Note added; Description modified              |
|      |      |       | Figure 6.1 Reset Circuit Block Diagram modified                              |
|      |      | 49    | • Figure 6.2 WDC Register and VCR1 Register Note 3 added to the WDC regis-   |
|      |      |       | ter; note 1 deleted from and note 2 added to the VCR1 register               |
|      |      | 50    | • Figure 6.3 VCR2 Register Note 2 deleted; notes 5 and 6 added               |
|      |      | 51    | • Figure 6.4 D4INT Register Note 6 added                                     |
|      |      | 52    | • 6.1 Voltage Down Detection Interrupt Description modified                  |
|      |      | 52    | • Table 6.1 Conditions to Generate the Voltage Down Detect interrupt Request |
|      |      |       | D42 bit setting modified                                                     |
|      |      | 52    | Table 6.2 Sampling Periods Table modified                                    |
|      |      | 53    | • Figure 6.5 Voltage Down Detection interrupt Generating Circuit Compo-      |
|      |      |       | nent name modified                                                           |
|      |      | 54    | • 6.2 Cold Start-up / Warm Start-up Determine Function Newly added           |
|      |      |       | Processor Mode                                                               |
|      |      | 55    | Chapter structuer modified                                                   |
|      |      | 57    | Figure 7.1 PM0 Register Notes 2 and 8 added                                  |
|      |      | 58    | • Figure 7.2 PM1 Register Note 3 added                                       |
|      |      | 59    | • Figure 7.3 Memory Map in Each Processor Mode Figure partially modified;    |
|      |      |       | Note 3 added                                                                 |
|      |      |       | Bus                                                                          |
|      |      | 60    | • 8. Bus Note added                                                          |
|      |      |       | • Figure 8.1 DS Register Note 1 modified                                     |
|      |      | 66    | • Figure 8.3 EWCR0 to EWCR3 Registers Note 3 added                           |
|      |      | 67    | • Table 8.5 Software Wait State and Bus Cycle Value of the EWCRi04 to        |
|      |      |       | EWCRi00 bits revised                                                         |
|      |      | 77-80 | • 8.3 Page Mode Control Function Added                                       |
|      |      |       | Clock Generation Circuit                                                     |
|      |      | 82    | • Figure 9.1 Clock Generation Circuit Block diagram modified; fCAN added     |
|      |      | 84    | • Figure 9.3 CM1 Register Note mark position changed                         |
|      |      | 86    | • Figure 9.5 CM2 Register Note 2 added to TCSPR, COSRF and TCSPR regis-      |
|      |      |       | ters                                                                         |
|      |      | 87    | • Figure 9.6 TCSPR and CPSRF Registers Note 2 added to the TCSPR register    |
|      |      | 89    | • Figure 9.8 PM2 Register The PM24 and PM25 bits newly available             |
|      |      | 92    | • Table 9.2 Bit Settings for On-Chip Oscillator Start Condition Newly added  |
|      |      | 95    | • Table 9.4 CPU Clock Source and Bit Settings Main clock (main clock direct  |
|      |      |       | mode), the PM24 bit in the PM2 register and note 1 added                     |
|      |      | 96    | • 9.3.4 fCAN Newly added                                                     |

| Rev. | Date |      | Description                                                                     |
|------|------|------|---------------------------------------------------------------------------------|
|      |      | Page | Summary                                                                         |
|      |      | 96   | • Table 9.6 CLKOUT Pin in Memory Expansion Mode and Microprocessor              |
|      |      |      | Mode Note 4 added                                                               |
|      |      | 98   | • 9.5.2 Wait Mode Chapter structure modified                                    |
|      |      | 99   | • Table 9.7 Pin States in Wait Mode Note 1 added                                |
|      |      | 101  | • 9.5.3 Stop Mode Interrupt usable to exit stop mode added; note 1 added        |
|      |      |      | • Table 9.9 Pin Status in Stop Mode Note 1 added                                |
|      |      | 103  | • Figure 9.13 Status Transition in Wait Mode and Stop Mode Figure partially     |
|      |      |      | modified; Note 2 deleted; Note numbers changed accordingly                      |
|      |      | 104  | • Figure 9.14 Status Transition Note 5 modified                                 |
|      |      |      | Interrupts                                                                      |
|      |      | 107  | • Figure 11.1 Interrupts Note 3 added                                           |
|      |      | 109  | • Figure 11.1 Interrupts Note 3 added                                           |
|      |      | 111  | • 11.3.1.4 Low Voltage Detection Interrupt Note 1 added                         |
|      |      | 116  | • Figure 11.4 Interrupt Control Register (2) Note mark position changed         |
|      |      | 117  | • Figure 11.5 RLVL Register Value after reset changed; note 4 deleted           |
|      |      | 119  | • 11.6.4 Interrupt Response Time Description modified                           |
|      |      | 120  | • Figure 11.5 Interrupts without Interrupt Priority Levels and IPL Note1 added  |
|      |      | 121  | • 11.6.6 Saving a Register Description modified; note1 added                    |
|      |      | 122  | • Figure 11.8 Interrupt Priority Note 1 added                                   |
|      |      | 123  | • Figure 11.9 Interrupt Priority Level Select Circuit Note 1 added              |
|      |      |      | Watchdog Timer                                                                  |
|      |      | 131  | • Figure 12.1 Watchdog Timer Block Diagram Block diagram modified               |
|      |      | 132  | • Figure 12.2 WDC Register and WDTS Register Note 3 added to the WDC            |
|      |      |      | register                                                                        |
|      |      |      | DMAC                                                                            |
|      |      | 137  | • Figure 13.2 DM0SL to DM3SL Registers Value after reset changed                |
|      |      | 138  | • Table 13.2 DMiSL Register (i=0 to 3) Function Note 3 modified                 |
|      |      |      | DMACII                                                                          |
|      |      | 147  | • Figure 14.1 RLVL Register Value after reset changed; note 4 deleted           |
|      |      | 153  | • 14.8 Execution Time Description modified                                      |
|      |      |      | • Figure 14.5 Transfer Cycle The number of cycles changed                       |
|      |      |      | Timer                                                                           |
|      |      | 154  | • Figure 15.1 Timer A Configuration Figure modified                             |
|      |      | 155  | • Figure 15.2 Timer B Configuration Figure modified                             |
|      |      | 160  | • Figure 15.7 TRGSR Register and TCSPR Register Added note 2 to the             |
|      |      |      | TCSPR register                                                                  |
|      |      | 175  | • Table 15.8 Settings for the TBIIN Pins (i=0 to 5) PS3 bit in the P94 register |
|      |      |      | modified                                                                        |
|      |      |      |                                                                                 |

|         |         | Description                                                                                 |  |
|---------|---------|---------------------------------------------------------------------------------------------|--|
| <u></u> | Page    | Summary                                                                                     |  |
|         |         | Three-Phase Motor Control Timer Functions                                                   |  |
|         | 183     | Table 16.2 Pin Settings PSC register of P75 modified                                        |  |
|         | 185     | • Figure 16.2 INVC0 Register Function of INV07 bit modified                                 |  |
|         | 187     | • Figure 16.4 IDB0 and IDB1 Regisers Value after reset modified                             |  |
|         | 191     | • Figure 16.8 Triangular Wave Modulation Operation Figure                                   |  |
|         | 192     | • Figure 16.9 Sawtooth Wave Modulation Operation Figure partially modified                  |  |
|         |         | Serial I/O                                                                                  |  |
|         | 194     | • Figure 17.1 UARTi Block Diagram Figure partially modified                                 |  |
|         | 195     | • Figure 17.2 U0TB to U4TB Registers and U0RB to U4RB Registers Note 3                      |  |
|         |         | for the U0RB to U4RB registers modified                                                     |  |
|         | 197     | • Figure 17.4 U0C0 to U4C0 Registers Note 3 added                                           |  |
|         |         | • Figure 17.5 U0C1 to U4C1 Registers and U0SMR to U4SMR Registers Note                      |  |
|         |         | 2 for the U0C1 to U4C1 registers added                                                      |  |
|         | 199     | • Figure 17.6 U0SMR2 to U4SMR2 Registers Reference table in Note 1                          |  |
|         |         | changed                                                                                     |  |
|         | 210     | • Table 17.7 Registers to be Used and Settings in UART UiLCH bit function                   |  |
|         |         | modified                                                                                    |  |
|         | 212     | • Figure 17.14 Transmit Operation Figure modified                                           |  |
|         | 213     | • Figure 17.15 Receive Operation Figure modified                                            |  |
|         |         | • 17.2.1 Transfer Speed Added                                                               |  |
|         | 221     | • Table 17.15 to 17.17 Pin Settings in I <sup>2</sup> C Mode Input settings added to tables |  |
|         |         | • Table 17.17 Pin Settings in I <sup>2</sup> C Mode PSC register added                      |  |
|         | 232     | • Table17.24 GCI Mode Specifications Transmit/receive start condition modified              |  |
|         |         | A/D Converter                                                                               |  |
|         | 247     | • Table 18.1 A/D Converter Specifications Note 2 modified; note 3 added                     |  |
|         | 248     | • Figure 18.1 A/D Converter Block Diagram Figure partially modified                         |  |
|         | 249     | • Figure 18.2 AD0CON0 Register Note 5 modified; notes 8 and 9 added                         |  |
|         | 250     | • Figure 18.3 AD0CON1 Register Notes 10 and 11 added                                        |  |
|         | 254-257 | • Tables 18.2 to 18.8 Each mode specification Note 1 added                                  |  |
|         | 263     | • 18.2.8 Output Impedance of Sensor Equivalent Circuit under A/D Conversion                 |  |
|         |         | Added                                                                                       |  |
|         | 264     | • Figure 18.8 Analog Input Pin and External Sensor Equivalent Circuit Value                 |  |
|         |         | for the condenser changed                                                                   |  |
|         |         | Intelligent I/O                                                                             |  |
|         | 277     | • Figure 22.4 G1BCR1 Register RST2 bit function changed; Note 2 modified                    |  |
|         | 279     | • Figure 22.6 G1TM0 to G1TM7 Registers and G1POCR0 to G1POCR7 Registers                     |  |
|         |         | Notes 6 and 7 added to the G1POCR0 to G1POCR7 registers                                     |  |
|         | 282     | • Table 22.2 Base Timer Specifications Base timer reset condition changed                   |  |
|         | 283     | • Figure 22.9 Base Timer Block Diagram Block diagram modified                               |  |

| Rev. | Date |      | Description                                                                                                                                                                                                                                                                                                                                |
|------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |      | Page | Summary                                                                                                                                                                                                                                                                                                                                    |
|      |      | 287  | • Table 22.4 Time Measurement Function Specifications Description for the                                                                                                                                                                                                                                                                  |
|      |      |      | gate function modified                                                                                                                                                                                                                                                                                                                     |
|      |      | 290  | • Figure 22.14 Time Measurement Function (2) Figure modified                                                                                                                                                                                                                                                                               |
|      |      | 291  | • Figure 22.15 Prescaler Function and Gate Function Letters modified                                                                                                                                                                                                                                                                       |
|      |      | 293  | • Table 22.9 Single-Phase Waveform Output Mode Specifications Setting value of the G1PO0 register changed                                                                                                                                                                                                                                  |
|      |      | 294  | • Figure 22.16 Single-Phase Waveform Output Mode Setting value of registers added; condition added                                                                                                                                                                                                                                         |
|      |      | 295  | • Table 22.10 Phase-Delayed Waveform Output Mode Specifications Setting value of the G1PO0 register changed                                                                                                                                                                                                                                |
|      |      | 296  | • Figure 22.17 Phase-Delayed Waveform Output Mode Setting value of regis-<br>ters added; condition added                                                                                                                                                                                                                                   |
|      |      | 297  | • Table 22.11 SR Waveform Output Mode Specifications Setting value of the G1PO0 register changed                                                                                                                                                                                                                                           |
|      |      | 299  | • Figure 22.18 SR Waveform Output Mode Setting value of registers added; condition added                                                                                                                                                                                                                                                   |
|      |      | 301  | • Figure 22.20 G0CR to G1CR Registers, G0RB to G1RB Registers B14 in the G0RB to G1RBregisters changed to PER bit                                                                                                                                                                                                                          |
|      |      | 311  | • Table 22.14 Clock Settings (Communication Unit 1) G1PO0 register setting value changed                                                                                                                                                                                                                                                   |
|      |      | 311  | • Table 22.15 Registers to be Used and Settings OPOL bit in the GiCR register modified                                                                                                                                                                                                                                                     |
|      |      | 312  | <ul> <li>Table 22.16 Pin Settings in Clock Synchronous Serial I/O Mode (Communication Unit 0 and 1)(1) Registers to be used for P76 and P77 deleted</li> <li>Table 22.17 Pin Settings (2) Register column deleted</li> <li>Table 22.19 Pin Setttings (3) Registers to be used for P150 and 151 deleted; Register column deteled</li> </ul> |
|      |      | 315  | • Table 22.20 UART Mode Specifications ISTxD1 and ISRxD1 Polarity Inverse function deleted                                                                                                                                                                                                                                                 |
|      |      | 316  | <ul> <li>Table 22.21 Clock Settings Input from ISCLK1 deleted; note 4 deleted</li> <li>Table 22.22 Registers to be Used and Settings UFORM bit function modified; CSS3 to CSS2 bit functions modified</li> </ul>                                                                                                                           |
|      |      | 317  | <ul> <li>Figure 22.31 Transmit Operation Figure modified</li> <li>Figure 22.32 Receive Operation Figure modified</li> </ul>                                                                                                                                                                                                                |
|      |      | 318  | <ul> <li>• 22.4.3 HDLC Data Processing Mode Description modified</li> <li>• Table 22.25 HDLC Processing Mode Specifications Transmit Start Condition and Receive Start Condition brought together to Data Processing Start Condition</li> </ul>                                                                                            |
|      |      | 320  | • Table 22.28 Registers to be Used and Settings G1PO1 register function modified                                                                                                                                                                                                                                                           |

| Page       Summary         CAN       334       • 23.1.6.5 SJW1 and SJW0 Bits Explanation added         365       • 23.2 CAN Clock Section added         Programmable I/O Ports       9         374       • Figure 24.1 Programmable I/O Ports (1) P150 to P157 of added         375       • Figure 24.2 Programmable I/O Ports (2) Figure in Prowith the Function Select Register modified         376       • Figure 24.3 Programmable I/O Ports (3) P15 deleted; P         377       • Figure 24.5 PD0 to PD15 Registers Note 1 modified         378       • Figure 24.6 P0 to P15 Registers Note 1 modified         380       • Figure 24.15 PUR0 Register, PUR1 Register and PUI each added to the PUR0 Register and PUR1 Register         389       • Figure 24.17 PCR Register and IPS Register Note 1 added         391       • Table 24.2 Unassigned Pin Setting in Memory Expansi processor Mode Table modified; note 3 added         933       • Table 24.3 Port P6 Peripheral Function Output Control B |                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 334       • 23.1.6.5 SJW1 and SJW0 Bits Explanation added         365       • 23.2 CAN Clock Section added         Programmable I/O Ports       • Figure 24.1 Programmable I/O Ports (1) P150 to P157 of added         374       • Figure 24.2 Programmable I/O Ports (2) Figure in Prowith the Function Select Register modified         376       • Figure 24.3 Programmable I/O Ports (3) P15 deleted; P         377       • Figure 24.5 PD0 to PD15 Registers Note 1 modified         378       • Figure 24.6 P0 to P15 Registers Note 1 modified         380       • Figure 24.8 PS2 Register and PS3 Register Description         387       • Figure 24.17 PCR Register and PUR1 Register         389       • Figure 24.2 Unassigned Pin Setting in Memory Expansi processor Mode Table modified; note 3 added                                                                                                                                                                                               |                          |
| 365       • 23.2 CAN Clock Section added         Programmable I/O Ports         374       • Figure 24.1 Programmable I/O Ports (1) P150 to P157 of added         375       • Figure 24.2 Programmable I/O Ports (2) Figure in Prowith the Function Select Register modified         376       • Figure 24.3 Programmable I/O Ports (3) P15 deleted; P         377       • Figure 24.5 PD0 to PD15 Registers Note 1 modified         378       • Figure 24.6 P0 to P15 Registers Note 1 modified         380       • Figure 24.8 PS2 Register and PS3 Register Description         387       • Figure 24.17 PCR Register and PUR1 Register         389       • Figure 24.17 PCR Register and IPS Register Note 1 added         391       • Table 24.2 Unassigned Pin Handling Figure modified                                                                                                                                                                                                                       |                          |
| Programmable I/O Ports374• Figure 24.1 Programmable I/O Ports (1) P150 to P157 of<br>added375• Figure 24.2 Programmable I/O Ports (2) Figure in Pro-<br>with the Function Select Register modified376• Figure 24.3 Programmable I/O Ports (3) P15 deleted; P377• Figure 24.5 PD0 to PD15 Registers Note 1 modified378• Figure 24.6 P0 to P15 Registers Note 1 modified380• Figure 24.8 PS2 Register and PS3 Register Description387• Figure 24.15 PUR0 Register, PUR1 Register and PUI<br>each added to the PUR0 Register and PUR1 Register389• Figure 24.17 PCR Register and IPS Register Note 1 added391• Table 24.2 Unassigned Pin Setting in Memory Expansi<br>processor Mode Table modified; note 3 added                                                                                                                                                                                                                                                                                                     |                          |
| <ul> <li>Figure 24.1 Programmable I/O Ports (1) P150 to P157 of added</li> <li>Figure 24.2 Programmable I/O Ports (2) Figure in Prowith the Function Select Register modified</li> <li>Figure 24.3 Programmable I/O Ports (3) P15 deleted; P</li> <li>Figure 24.5 PD0 to PD15 Registers Note 1 modified</li> <li>Figure 24.6 P0 to P15 Registers Note 1 modified</li> <li>Figure 24.8 PS2 Register and PS3 Register Description</li> <li>Figure 24.15 PUR0 Register, PUR1 Register and PUR1 Register</li> <li>Figure 24.17 PCR Register and IPS Register Note 1 added</li> <li>Table 24.2 Unassigned Pin Setting in Memory Expansi processor Mode Table modified; note 3 added</li> <li>Figure 24.19 Unassigned Pin Handling Figure modified</li> </ul>                                                                                                                                                                                                                                                            |                          |
| added375• Figure 24.2 Programmable I/O Ports (2) Figure in Prowith the Function Select Register modified376• Figure 24.3 Programmable I/O Ports (3) P15 deleted; P377• Figure 24.5 PD0 to PD15 Registers Note 1 modified378• Figure 24.6 P0 to P15 Registers Note 1 modified380• Figure 24.8 PS2 Register and PS3 Register Description387• Figure 24.15 PUR0 Register, PUR1 Register389• Figure 24.17 PCR Register and IPS Register Note 1 added391• Table 24.2 Unassigned Pin Setting in Memory Expansi<br>processor Mode Table modified; note 3 added• Figure 24.19 Unassigned Pin Handling Figure modified                                                                                                                                                                                                                                                                                                                                                                                                      |                          |
| <ul> <li>Figure 24.2 Programmable I/O Ports (2) Figure in Prowith the Function Select Register modified</li> <li>Figure 24.3 Programmable I/O Ports (3) P15 deleted; P</li> <li>Figure 24.5 PD0 to PD15 Registers Note 1 modified</li> <li>Figure 24.6 P0 to P15 Registers Note 1 modified</li> <li>Figure 24.8 PS2 Register and PS3 Register Description</li> <li>Figure 24.15 PUR0 Register, PUR1 Register and PUR</li> <li>each added to the PUR0 Register and PUR1 Register</li> <li>Figure 24.2 Unassigned Pin Setting in Memory Expansi</li> <li>processor Mode Table modified; note 3 added</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                      | deleted; P152 to P157    |
| <ul> <li>with the Function Select Register modified</li> <li>Figure 24.3 Programmable I/O Ports (3) P15 deleted; P</li> <li>Figure 24.5 PD0 to PD15 Registers Note 1 modified</li> <li>Figure 24.6 P0 to P15 Registers Note 1 modified</li> <li>Figure 24.8 PS2 Register and PS3 Register Description</li> <li>Figure 24.15 PUR0 Register, PUR1 Register and PUI each added to the PUR0 Register and PUR1 Register</li> <li>Figure 24.17 PCR Register and IPS Register Note 1 added</li> <li>Table 24.2 Unassigned Pin Setting in Memory Expansi processor Mode Table modified; note 3 added</li> <li>Figure 24.19 Unassigned Pin Handling Figure modified</li> </ul>                                                                                                                                                                                                                                                                                                                                              | grommoble I/O Dorto      |
| <ul> <li>Figure 24.5 PD0 to PD15 Registers Note 1 modified</li> <li>Figure 24.6 P0 to P15 Registers Note 1 modified</li> <li>Figure 24.8 PS2 Register and PS3 Register Description</li> <li>Figure 24.15 PUR0 Register, PUR1 Register and PUR</li> <li>each added to the PUR0 Register and PUR1 Register</li> <li>Figure 24.17 PCR Register and IPS Register Note 1 added</li> <li>Table 24.2 Unassigned Pin Setting in Memory Expansi</li> <li>processor Mode Table modified; note 3 added</li> <li>Figure 24.19 Unassigned Pin Handling Figure modified</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                               | graninable i/O Ports     |
| <ul> <li>Figure 24.6 P0 to P15 Registers Note 1 modified</li> <li>Figure 24.8 PS2 Register and PS3 Register Description</li> <li>Figure 24.15 PUR0 Register, PUR1 Register and PUR</li> <li>each added to the PUR0 Register and PUR1 Register</li> <li>Figure 24.17 PCR Register and IPS Register Note 1 adde</li> <li>Table 24.2 Unassigned Pin Setting in Memory Expansi</li> <li>processor Mode Table modified; note 3 added</li> <li>Figure 24.19 Unassigned Pin Handling Figure modified</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 150 added                |
| <ul> <li>Figure 24.8 PS2 Register and PS3 Register Description</li> <li>Figure 24.15 PUR0 Register, PUR1 Register and PUR</li> <li>each added to the PUR0 Register and PUR1 Register</li> <li>Figure 24.17 PCR Register and IPS Register Note 1 adde</li> <li>Table 24.2 Unassigned Pin Setting in Memory Expansi</li> <li>processor Mode Table modified; note 3 added</li> <li>Figure 24.19 Unassigned Pin Handling Figure modified</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |
| <ul> <li>Figure 24.15 PUR0 Register, PUR1 Register and PUR<br/>each added to the PUR0 Register and PUR1 Register</li> <li>Figure 24.17 PCR Register and IPS Register Note 1 adde</li> <li>Table 24.2 Unassigned Pin Setting in Memory Expansi<br/>processor Mode Table modified; note 3 added</li> <li>Figure 24.19 Unassigned Pin Handling Figure modified</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |
| <ul> <li>each added to the PUR0 Register and PUR1 Register</li> <li>Figure 24.17 PCR Register and IPS Register Note 1 adde</li> <li>Table 24.2 Unassigned Pin Setting in Memory Expansi<br/>processor Mode Table modified; note 3 added</li> <li>Figure 24.19 Unassigned Pin Handling Figure modified</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n added to Note 1        |
| <ul> <li>Figure 24.17 PCR Register and IPS Register Note 1 addered</li> <li>Table 24.2 Unassigned Pin Setting in Memory Expansi</li> <li>processor Mode Table modified; note 3 added</li> <li>Figure 24.19 Unassigned Pin Handling Figure modified</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R2 Register Note 1       |
| <ul> <li>391</li> <li>• Table 24.2 Unassigned Pin Setting in Memory Expansi<br/>processor Mode Table modified; note 3 added</li> <li>• Figure 24.19 Unassigned Pin Handling Figure modified</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |
| processor Mode Table modified; note 3 added<br>• Figure 24.19 Unassigned Pin Handling Figure modified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ed to the PCR register   |
| • Figure 24.19 Unassigned Pin Handling Figure modified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | on Mode and Micro-       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |
| 393 • Table 24.3 Port P6 Perinheral Function Output Control B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ł                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bits 3, 6 and 7 modified |
| Table 24.4 Port P7 Peripheral Function Output Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bits 0 and 1 modified    |
| 394         • Table 24.6 Port P9 Peripheral Function Output Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bits 2 and 6 modified    |
| Flash Memory Version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |
| 396 • Table 25.1 Flash Memory Version Specifications Desc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cription modified        |
| 398 • 25.2.1 ROM Code Protect Function Sentence partially of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | deteled                  |
| 399 • Figure 25.2 ROMCP Address Bits 4 and 5 deleted; Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e 2 to 4 modified        |
| 420 • Table 25.7 Pin Description (Flash Memory Standard S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Serial I/O Mode) De-     |
| scription of the P76 and P77 pins revised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
| 421-423 • Figures 25.14 to 25.16 Pin Connections in Standard Ser<br>modified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rial I/O Mode Figures    |
| 424, 425 • Figure 25.17 to 25.19 Circuit Application in Standard Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rial I/O Mode Figures    |
| modified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                        |
| Electrical Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |
| 428 • Table 26.2 Recommended Operating Conditions f(rip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ple), Vp-p(ripple), VCC, |
| SVcc and note 1 added; standard max. and min. value of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |
| 430-431 • Table 26.3 Electrical Characteristics Standard value in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . ,                      |
| tion mode added; min. value of VOH changed; standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                        |
| version) in low power consumption mode added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |
| 433 • Table 26.6 Flash Memory Version Electrical Characteri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | stics Notes modified     |

| Rev. | Date     |           | Description                                                                      |
|------|----------|-----------|----------------------------------------------------------------------------------|
|      |          | Page      | Summary                                                                          |
|      |          | 435       | • Table 26.10 Memory Expansion Mode and Microprocessor Mode Values of            |
|      |          |           | tsu(DB-BCLK), tsu(RDY-BCLK), tsu(HOLD-BCLK) modified                             |
|      |          | 438       | • Table 26.22 Memory Expansion Mode and Microprocessor Mode Formula              |
|      |          |           | of th(WR-DB) on note 1 modified; note 3 added                                    |
|      |          | 439       | • Table 26.23 Memory Expansion Mode and Microprocessor Mode Formula              |
|      |          |           | of th(WR-DB) on note 1 modified; note 5 added                                    |
|      |          | 441       | • Figure 26.3 Vcc1=Vcc2=5V (1) Value of tsu(DB-BCLK) modified; formula of        |
|      |          |           | th(WR-DB) on note 3 modified                                                     |
|      |          | 442       | • Figure 26.4 Vcc1=Vcc2=5V (2) Value of tsu(DB-BCLK) modified                    |
|      |          | 443       | • Figure 26.5 Vcc1=Vcc2=5V (3) NMI input added                                   |
|      |          | 445       | • Table 26.24 Electrical Characteristics Min. value of VOH modified              |
|      |          | 450       | • Table 26.40 Memory Expansion Mode and Microprocessor Mode Note 3 added         |
|      |          | 451       | • Table 26.41 Memory Expansion Mode and Microprocessor Mode Note 5 added         |
|      |          | 452       | • Figure 26.7 Vcc1=Vcc2=3.3V (1) Formula of th(WR-DB) on note 3 modified         |
|      |          | 454       | • Figure 26.9 Vcc1=Vcc2=3.3V (3) NMI input added                                 |
|      |          | 456       | • 26.2 Electrical Characteristics (M32C/84T) Newly added                         |
|      |          |           | Precautions                                                                      |
|      |          | -         | Section of Processor Mode delected                                               |
|      |          | 468       | • 27.1 Restrictions to Use M32C/84T (High-Reliability Version) Newly added       |
|      |          | 469       | • 27.2 Reset Added                                                               |
|      |          | 470       | • 27.3.3 Page Mode Control Added                                                 |
|      |          | 472       | • 27.5 Clock Generation Circuit Section structure modified; description modified |
|      |          | 473       | Table 27.3 Power Supply Ripple added                                             |
|      |          |           | Figure 27.2 Power Supply Fluctuation Timing added                                |
|      |          | 477       | • 27.7 DMAC Description modified                                                 |
|      |          | 480       | • 27.9 Timer Ordering changed; description for Timer A modified                  |
|      |          | 483       | • 27.10 Serial I/O Ordering changed                                              |
|      |          | 485       | • 27.11 A/D Converter Description modified                                       |
|      |          |           | • Figure 27.4 Use of Capacitors to Reduce Noise Note 3 added                     |
| 1.01 | Jul., 05 | All pages | Package code changed: 144P6Q-A to PLQP0144KA-A, 100P6Q-A to                      |
|      |          |           | PLQP0100KB-A, 100P6S-A to PRQP0100JB-A                                           |
|      |          | All pages | "Low Voltage Detection Reset" changed to "Brown-out Detection Reset"             |
|      |          |           | Special Function Register (SFR)                                                  |
|      |          | 37        | The TCSPR register Value after reset modified                                    |
|      |          |           | Reset                                                                            |
|      |          | 44        | • Figure 5.2 Reset Sequence Figure modified; BCLK cycle value for Mask ROM       |
|      |          |           | version added                                                                    |
|      |          |           | Voltage Detection Circuit                                                        |
|      |          | 51        | • Figure 6.4 D4INT Register Note 6 added                                         |

| Rev. | Date | Description |                                                                                             |
|------|------|-------------|---------------------------------------------------------------------------------------------|
|      |      | Page        | Summary                                                                                     |
|      |      |             | Processor Mode                                                                              |
|      |      | 58          | • Figure 7.2 PM1 Register PM13 bit function changed                                         |
|      |      |             | Bus                                                                                         |
|      |      | 62          | • Table 8.2 Processor Mode and Port Function Note 3 modified                                |
|      |      |             | Clock Generation Circuit                                                                    |
|      |      | 87          | • Figure 9.6 TCSPR Register Value after reset modified                                      |
|      |      | 104         | • Figure 9.14 Status Transition Note 4 repleaced to note 5                                  |
|      |      | 105         | • 9.6 System Clock Protection Function Description modified                                 |
|      |      |             | Interrupt                                                                                   |
|      |      | 113         | • Table 11.2 Relocatable Vector Table Fault Error deleted; Note 4 deleted                   |
|      |      | 124         | • Figure 11.10 IFSR Register IFSR6 and IFSR7 bit functions changed                          |
|      |      |             | Watchdog Timer                                                                              |
|      |      | 131         | Chapter description modified                                                                |
|      |      |             | Timer                                                                                       |
|      |      | 162         | • Table 15.3 Timer Mode Specifications Write to Timer specification changed                 |
|      |      | 164         | • Table 15.4 Event Counter Mode Specifications Write to Timer specification                 |
|      |      |             | changed                                                                                     |
|      |      | 165         | • Table 15.5 Event Counter Mode Specifications Write to Timer specification                 |
|      |      |             | changed                                                                                     |
|      |      | 170         | • Table 15.7 Pulse Width Modulation Mode Specifications Write to Timer                      |
|      |      |             | specification changed                                                                       |
|      |      | 171         | • Figure 15.13 TA0MR to TA4MR Registers Value after reset modified                          |
|      |      | 176         | • Table 15.9 Timer Mode Specifications Write to Timer specification changed                 |
|      |      | 177         | • Table 15.10 Event Counter Mode Specifications Write to Timer specification                |
|      |      |             | changed                                                                                     |
|      |      | 178         | • Figure 15.21 TB0MR to TB5MR Registers TCK1 bit name modified                              |
|      |      | 180         | • Figure 15.22 TB0MR to TB5MR Registers Notes 1 and 2 modified                              |
|      |      |             | Serial I/O                                                                                  |
|      |      | 194         | • Figure 17.1 UARTi Block Diagram Diagram modified                                          |
|      |      | 196         | • Figure 17.3 U0MR to U4MR Registers Value after reset modified                             |
|      |      | 197         | • Figure 17.4 U0C0 to U4C0 Registers Note 1 modified                                        |
|      |      | 198         | • Figure 17.5 U0C1 to U4C1 Registers Note 2 modified                                        |
|      |      | 202         | • Figure 17.9 IFSR Register IFSR6 and IFSR7 bit functions changed                           |
|      |      | 213         | • Table 17.13 Register Settings in I <sup>2</sup> C Mode SWC and ALS bit functions modified |
|      |      | 225         | • 17.3.6 SDA Input The IICM bit in the description modified to the IICM2 bit                |
|      |      | 226         | • Table 17.19 Special Mode 2 Specifications Transmit/Receive Control speci-                 |
|      |      |             | fication changed; Transmit Start Condision specification changed; Error Detec-              |
|      |      |             | tion specification changed                                                                  |
|      |      |             |                                                                                             |


| Rev. | Date |      | Description                                                                                   |
|------|------|------|-----------------------------------------------------------------------------------------------|
|      |      | Page | Summary                                                                                       |
|      |      | 227  | • Table 17.20 Register Settings in Special Mode 2 The IFSR6 register and its                  |
|      |      |      | function deleted                                                                              |
|      |      | 229  | • 17.4.1.2 When Setting the DINC Bit to "0" (Master Mode) Description Modified                |
|      |      | 243  | • Figure 17.29 SIM Interface Operation Diagram modified                                       |
|      |      |      | Intelligent I/O                                                                               |
|      |      | 274  | • Figure 22.1 Intelligent I/O Block Diagram BE10UT added                                      |
|      |      | 275  | • Figure 22.2 Intelligent I/O Communication Block Diagram Diagram modified                    |
|      |      | 287  | • Figure 22.13 Timer Measurement Function (1) The second condition modified                   |
|      |      | 292  | Table 22.8 Waveform Generating Function Associated Register Settings                          |
|      |      |      | Note modified                                                                                 |
|      |      | 304  | • Figure 22.24 G1ETC Register Bits 2 to 0 function changed                                    |
|      |      | 307  | Figure 22.27 G1IRF Register Note 2 modified                                                   |
|      |      |      | CAN Module                                                                                    |
|      |      | 324  | • Figure 23.3 C0CTLR0 and C1CTLR0 Registers Note 3 added                                      |
|      |      | 334  | • 23.1.6.5 SJW1 and SJW0 Bits Description modified                                            |
|      |      | 342  | • 23.1.16.1 CMOD Bit Note 1 modified                                                          |
|      |      | 353  | Subsection description modified                                                               |
|      |      | 366  | • Figure 23.40 Operation Timing when CAN Bus Error Occurs Diagram modified                    |
|      |      |      | Flash Memory Version                                                                          |
|      |      | 403  | • 25.3.3.4 FMSTP Bit Description modified                                                     |
|      |      | 420  | • Table 25.7 Pin Description P66 and P67 functions modified                                   |
|      |      |      | Electrical Characteristics                                                                    |
|      |      | 427  | • Table 26.2 Electrical Characteristics Parameter f(BCLK) and its values added                |
|      |      | 435  | • Table 26.10 Memory Expansion Mode and Microprocessor Mode <i>tac1(RD-DB)</i>                |
|      |      |      | expression on Note 1 modified; <i>tac2(RD-DB)</i> expression on Note 1 added                  |
|      |      | 441  | • Figure 26.3 Vcc1=Vcc2=5V Timing Diagram (1) <i>tw(ER)</i> expression on Note 3              |
|      |      |      | modified; <i>tcyc</i> expression added                                                        |
|      |      | 442  | • Figure 26.4 VCc1=Vcc2=5V Timing Diagram (2) <i>tac2(AD-DB)</i> expression on                |
|      |      |      | Note 1 modified; <i>th(ALE-AD)</i> expressions on Notes 1 and 2 modified; <i>tcyc</i> expres- |
|      |      |      | sion added                                                                                    |
|      |      | 447  | • Table 26.28 Memory Expansion Mode and Microprocessor Mode tac1(RD-                          |
|      |      |      | DB) expression on Note 1 modified; tac2(RD-DB) expression on Note 1 added                     |
|      |      | 452  | • Figure 26.7 Vcc1=Vcc2=3.3V Timing Diagram (1) <i>tw(ER)</i> expression on Note 3            |
|      |      |      | modified; <i>tcyc</i> expression added                                                        |
|      |      | 453  | • Figure 26.8 Vcc1=Vcc2=3.3V Timing Diagram (2) tac2(RD-DB) expression on                     |
|      |      |      | Note 1 modified; <i>th(ALE-AD)</i> expressions on Notes 1 and 2 modified; <i>th(WR-CS)</i>    |
|      |      |      | expression on Note 2 modified; <i>tcyc</i> expression added                                   |
|      |      | 458  | • Table 26.43 Electrical Characteristics Parameter f(BCLK) and its values added               |
|      |      |      |                                                                                               |

| Rev. | Date |      | Description                                                                                              |
|------|------|------|----------------------------------------------------------------------------------------------------------|
|      |      | Page | Summary                                                                                                  |
|      |      | 462  | • Table 26.47 Flash Memory Version Electrical Characteristics Mesurement                                 |
|      |      |      | condition changed                                                                                        |
|      |      |      | Precautions                                                                                              |
|      |      | 482  | <ul> <li>27.9.3.2 Timer B (Pulse Period/Pulse Width Measurement Mode) Descripion<br/>modified</li> </ul> |
|      |      |      |                                                                                                          |
|      |      |      |                                                                                                          |
|      |      |      |                                                                                                          |
|      |      |      |                                                                                                          |
|      |      |      |                                                                                                          |
|      |      |      |                                                                                                          |
|      |      |      |                                                                                                          |
|      |      |      |                                                                                                          |
|      |      |      |                                                                                                          |
|      |      |      |                                                                                                          |
|      |      |      |                                                                                                          |
|      |      |      |                                                                                                          |
|      |      |      |                                                                                                          |
|      |      |      |                                                                                                          |
|      |      |      |                                                                                                          |
|      |      |      |                                                                                                          |
|      |      |      |                                                                                                          |
|      |      |      |                                                                                                          |
|      |      |      |                                                                                                          |
|      |      |      |                                                                                                          |

RENESAS 16/32-BIT SINGLE-CHIP MICROCOMPUTER HARDWARE MANUAL M32C/84 Group (M32C/84, M32C/84T) Publication Data : Rev.0.20 Jan. 2003 Rev.1.01 Jul. 07, 2005 Published by : Sales Strategic Planning Div. Renesas Technology Corp.

© 2005. Renesas Technology Corp., All rights reserved. Printed in Japan.

## M32C/84 Group (M32C/84, M32C/84T) Hardware Manual





Renesas Technology Corp. 2-6-2, Ote-machi, Chiyoda-ku, Tokyo, 100-0004, Japan