5V ECL Coaxial Cable Driver

The MC10EL89 is a differential fanout gate specifically designed to drive coaxial cables. The device is especially useful in Digital Video Broadcasting applications; for this application, since the system is polarity free, each output can be used as an independent driver. The driver boasts a gain of approximately 40 and produces output swings twice as large as a standard ECL output. When driving a coaxial cable, proper termination is required at both ends of the line to minimize signal loss. The 1.6 V output swings allow for termination at both ends of the cable, while maintaining the required 800 mV swing at the receiving end of the cable. Because of the larger output swings, the device cannot be terminated into the standard –2.0 V. All of the DC parameters are tested with a 50 Ω to –3.0 V load. The driver accepts a standard differential ECL input and can run off of the Digital Video Broadcast standard –5.0 V supply.

Features

- 375 ps Propagation Delay
- 1.6 V Output Swings
- PECL Mode Operating Range: $V_{CC} = 4.2 \text{ V}$ to 5.7 V with $V_{EE} = 0 \text{ V}$
- NECL Mode Operating Range: V_{CC} = 0 V with V_{EE} = -4.2 V to -5.7 V
- Internal Input Pulldown Resistors
- Pb-Free Packages are Available

Figure 1. Logic Diagram and Pinout Assignment

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS*

SOIC-8 D SUFFIX CASE 751

TSSOP-8 DT SUFFIX CASE 948R

DFN8 MN SUFFIX CASE 506AA

A = Assembly Location

L = Wafer Lot
Y = Year
W = Work Week
M = Date Code
■ = Pb-Free Package

(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

Table 1. PIN DESCRIPTION

PIN	Function
D, D	ECL Data Inputs
Q0, Q0; Q1, Q1	ECL Data Outputs (1.6 V _{pp})
V _{CC}	Positive Supply
V _{EE}	Negative Supply
EP	(DFN8 only) Thermal exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative supply (GND) or leave unconnected, floating open.

Table 2. ATTRIBUTES

Characteris	Value	
Internal Input Pulldown Resistor		50 KΩ
Internal Input Pullup Resistor		N/A
ESD Protection	Human Body Model Machine Model	> 2 kV > 100 V
Moisture Sensitivity, Indefinite Time	Out of Drypack (Note 1)	Level 1
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count		31
Meets or exceeds JEDEC Spec El/		

^{1.} For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8	٧
V _{EE}	NECL Mode Power Supply	V _{CC} = 0 V		-8	٧
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{c} V_I \! \leq \! V_{CC} \\ V_I \! \geq \! V_{EE} \end{array}$	6 -6	V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SO-8 SO-8	190 130	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	SO-8	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	TSSOP-8 TSSOP-8	185 140	°C/W °C/W
θ _{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-8	41 to 44 ± 5%	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	DFN8 DFN8	129 84	°C/W °C/W
T _{sol}	Wave Solder Pb Pb-Free	<2 to 3 sec @ 248°C <2 to 3 sec @ 260°C		265 265	°C
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	(Note 2)	DFN8	35 to 40	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

^{2.} JEDEC standard multilayer board - 2S2P (2 signal, 2 power)

Table 4. 10EL SERIES PECL DC CHARACTERISTICS V_{CC} = 5.0 V; V_{EE} = 0.0 V (Note 3)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		23	28		23	28		23	28	mA
V _{OH}	Output HIGH Voltage (Note 4)	3.77	3.90	4.02	3.87	3.98	4.10	3.94	4.04	4.19	V
V _{OL}	Output LOW Voltage (Note 4)	2.10	2.28	2.42	2.00	2.30	2.44	1.95	2.33	2.49	V
V _{IH}	Input HIGH Voltage (Single-Ended)	3770		4110	3870		4190	3940		4280	mV
V _{IL}	Input LOW Voltage (Single-Ended)	3050		3500	3050		3520	3050		3555	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 5)	2.5		4.6	2.5		4.6	2.5		4.6	V
I _{IH}	Input HIGH Current		70	150		50	150		40	150	μΑ
I _{IL}	Input LOW Current	0.5	50		0.5	30		0.3	25		μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 3. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.25 V / -0.5 V.
- 4. Outputs are terminated through a 50 Ω resistor to V_{CC} 3.0 V.
- 5. V_{IHCMR} min varies 1:1 with V_{EE}. V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

Table 5. 10EL SERIES NECL DC CHARACTERISTICS $V_{CC} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 6)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		23	28		23	28		23	28	mA
V _{OH}	Output HIGH Voltage (Note 7)	-1.23	-1.10	-0.98	-1.13	-1.02	-0.90	-1.06	-0.96	-0.81	V
V _{OL}	Output LOW Voltage (Note 7)	-2.90	-2.72	-2.58	-3.00	-2.70	-2.56	-3.05	-2.67	-2.51	V
V _{IH}	Input HIGH Voltage (Single-Ended)	-123 0		-890	-1130		-810	-106 0		-720	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-195 0		-150 0	-195 0		-148 0	-195 0		-144 5	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 8)	-2.5		-0.4	-2.5		-0.4	-2.5		-0.4	V
I _{IH}	Input HIGH Current		70	150		50	150		20	150	μΑ
I _{IL}	Input LOW Current	0.5	50		0.5	30		0.3	25		μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 6. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.25 V / -0.5 V.
- 7. Outputs are terminated through a 50 Ω resistor to V_{CC} 3.0 V.
- 8. V_{IHCMR} min varies 1:1 with V_{EE}. V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

Table 6. AC CHARACTERISTICS $V_{CC} = 5.0 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ or $V_{CC} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 9)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency					1.5					Gb/s
t _{PLH} t _{PHL}	Propagation Delay to Output	200	340	480	260	350	440	310	400	490	ps
t _{SKEW}	Within-Device Skew		5	20		5	20		5	20	ps
t _{JITTER}	Random Clock Jitter (RMS)		5			5			5		ps
V_{PP}	Input Swing (Note 10)	150			150	400		150			mV
t _r t _f	Output Rise/Fall Times Q (20% – 80%)	205	330	455	205	330	455	205	330	455	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

 $^{10.}V_{PP(min)}^{-1}$ is the minimum input swing for which AC parameters are guaranteed. The device has a DC gain of ≈ 40 .

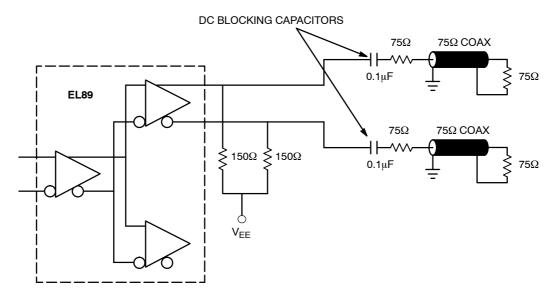


Figure 2. EL89 CATV Termination Configuration

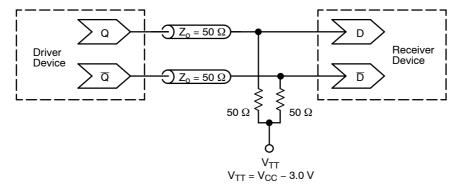


Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

^{9.} V_{EE} can vary +0.25 V / -0.5 V.

ORDERING INFORMATION

Device	Package	Shipping [†]			
MC10EL89D	SOIC-8	98 Units / Rail			
MC10EL89DG	SOIC-8 (Pb-Free)	98 Units / Rail			
MC10EL89DR2	SOIC-8	2500 / Tape & Reel			
MC10EL89DR2G SOIC-8 (Pb-Free)		2500 / Tape & Reel			
MC10EL89DT	TSSOP-8	100 Units / Rail			
MC10EL89DTG	TSSOP-8 (Pb-Free)	100 Units / Rail			
MC10EL89DTR2	TSSOP-8	2500 / Tape & Reel			
MC10EL89DTR2G	TSSOP-8 (Pb-Free)	2500 / Tape & Reel			
MC10EL89MNR4	DFN8	1000 / Tape & Reel			
MC10EL89MNR4G	DFN8 (Pb-Free)	1000 / Tape & Reel			

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D - ECL Clock Distribution Techniques

AN1406/D - Designing with PECL (ECL at +5.0 V)

AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit

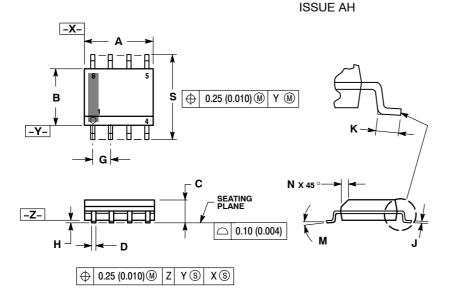
AN1504/D - Metastability and the ECLinPS Family

AN1568/D - Interfacing Between LVDS and ECL

AN1672/D - The ECL Translator Guide

AND8001/D - Odd Number Counters Design

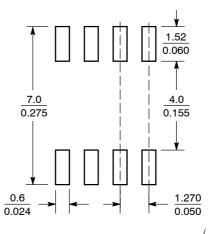
AND8002/D - Marking and Date Codes


AND8020/D - Termination of ECL Logic Devices

AND8066/D - Interfacing with ECLinPS

AND8090/D - AC Characteristics of ECL Devices

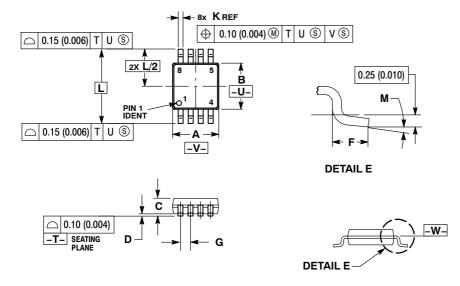
PACKAGE DIMENSIONS


SOIC-8 NB CASE 751-07

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.
- STANDARD IS 751-07.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	7 BSC	0.050 BSC		
Н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
М	0 °	8 °	0 °	8 °	
N	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	

SOLDERING FOOTPRINT*



 $\left(\frac{\text{mm}}{\text{inches}}\right)$ SCALE 6:1

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSSOP-8 **DT SUFFIX** PLASTIC TSSOP PACKAGE CASE 948R-02 **ISSUE A**

NOTES:

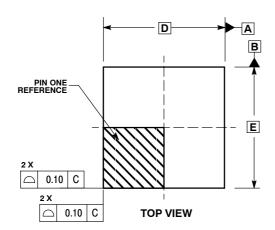
- NOTES:

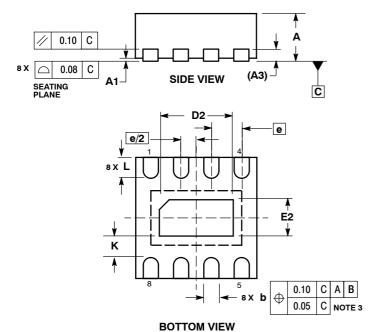
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.


 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.


 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE —W.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	2.90	3.10	0.114	0.122	
В	2.90	3.10	0.114	0.122	
С	0.80	1.10	0.031	0.043	
D	0.05	0.15	0.002	0.006	
F	0.40	0.70	0.016	0.028	
G	0.65	BSC	0.026	BSC	
K	0.25	0.40	0.010	0.016	
L	4.90	BSC	0.193 BSC		
M	0°	6 °	0°	6°	

PACKAGE DIMENSIONS

DFN8 CASE 506AA-01 ISSUE D

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994 .
- 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. DIMENSION b APPLIES TO PLATED
 TERMINAL AND IS MEASURED BETWEEN
- 0.25 AND 0.30 MM FROM TERMINAL. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS					
DIM	MIN	MAX				
Α	0.80	1.00				
A1	0.00	0.05				
А3	0.20	REF				
b	0.20	0.30				
D	2.00	BSC				
D2	1.10	1.30				
Е	2.00	BSC				
E2	0.70	0.90				
е	0.50	BSC				
K	0.20					
L	0.25	0.35				

ECLinPS is a trademark of Semiconductor Components INdustries, LLC (SCILLC).

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) . Solitude services are inject to make triangles without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative