74ALVT16260

12-bit to 24-bit multiplexed D-type latches; 3-state

Rev. 03 - 20 March 2006
Product data sheet

1. General description

The 74ALVT16260 is a 12 -bit to 24 -bit multiplexed D-type latch used in applications where two separate data paths must be multiplexed onto, or demultiplexed from, a single data path. Typical applications include multiplexing or demultiplexing of address and data information in microprocessor or bus-interface applications. This device is also useful in memory-interleaving applications.

Three 12-bit I/O ports (A1 to A12, 1B1 to 1B12 and 2B1 to 2B12) are available for address or data transfer. The output enable inputs ($\overline{\mathrm{OE} 1 \mathrm{~B}}, \overline{\mathrm{OE} 2 \mathrm{~B}}$, and $\overline{\mathrm{OEA}})$ control the bus transceiver functions. $\overline{\mathrm{OE} 1 \mathrm{~B}}$ and $\overline{\mathrm{OE} 2 \mathrm{~B}}$ also allow bank control in the A to B direction.

Address or data information can be stored using the internal storage latches. The latch enable inputs (LE1B, LE2B, LEA1B and LEA2B) are used to control data storage. When the latch enable input is HIGH, the latch is transparent. When the latch enable input goes LOW, the data present at the inputs is latched and remains latched until the latch enable input is returned HIGH.

To ensure the high-impedance state during power-up or power-down, all output enable inputs should be tied to V_{CC} through a pull-up resistor. The minimum value of the resistor is determined by the current sinking capability of the driver.

The 74ALVT16260 is available in a SSOP56 and a TSSOP56 package.

2. Features

[^0]
3. Quick reference data

Table 1. Quick reference data
$G N D=0 \mathrm{~V} ; T_{a m b}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\mathrm{Cc}}=2.5 \mathrm{~V}$						
Icc	quiescent supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \text { outputs disabled } \end{aligned}$	[1] -	40	-	$\mu \mathrm{A}$
$t_{\text {PLH }}$	LOW-to-HIGH propagation delay An to $x B n ; x B n$ to $A n$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	2.8	-	ns
$t_{\text {PHL }}$	HIGH-to-LOW propagation delay An to $x B n ; x B n$ to $A n$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	2.7	-	ns
C_{i}	input capacitance (control pins)	$\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}		4	-	pF
$\mathrm{Cio}_{\text {io }}$	input/output capacitance (I/O pins)	$\mathrm{V}_{1 / \mathrm{O}}=0 \mathrm{~V}$ or 5.0 V		9	-	pF
$\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}$						
I_{CC}	quiescent supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \text { outputs disabled } \end{aligned}$	[1] -	60	-	$\mu \mathrm{A}$
$t_{\text {PLH }}$	LOW-to-HIGH propagation delay An to $x B n ; x B n$ to $A n$	$C_{L}=50 \mathrm{pF}$	-	2.2	-	ns
$\mathrm{t}_{\text {PHL }}$	HIGH-to-LOW propagation delay An to $x B n ; x B n$ to $A n$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	2.0	-	ns
Ci	input capacitance (control pins)	$\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}		4	-	pF
C_{io}	input/output capacitance (I/O pins)	$\mathrm{V}_{1 / \mathrm{O}}=0 \mathrm{~V}$ or 5.0 V		9		pF

[1] I_{CC} is measured with outputs pulled up to V_{CC} or pulled down to ground.

4. Ordering information

Table 2. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74ALVT16260DL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SSOP56	plastic shrink small outline package; 56 leads; body width 7.5 mm	SOT371-1
74ALVT16260DGG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TSSOP56	plastic thin shrink small outline package; 56 leads; body width 6.1 mm	SOT364-1

5. Functional diagram

Fig 1. Logic diagram

6. Pinning information

6.1 Pinning

Fig 2. Pin configuration

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
$\overline{O E A}$	1	output A enable input (active LOW)
LE1B	2	latch 1 B to A enable input
2B3	3	2 data input/output B3
GND	4	ground $(0 \mathrm{~V})$
2B2	5	2 data input/output B2
$2 B 1$	6	2 data input/output B1
VCC $^{2 B}$	7	supply voltage
A1	8	data input/output A1

Table 3. Pin description ...continued

Symbol	Pin	Description
A2	9	data input/output A2
A3	10	data input/output A3
GND	11	ground (0 V)
A4	12	data input/output A4
A5	13	data input/output A5
A6	14	data input/output A6
A7	15	data input/output A7
A8	16	data input/output A8
A9	17	data input/output A9
GND	18	ground (0 V)
A10	19	data input/output A10
A11	20	data input/output A11
A12	21	data input/output A12
$\mathrm{V}_{\text {CC }}$	22	supply voltage
1B1	23	1 data input/output B1
1B2	24	1 data input/output B2
GND	25	ground (0 V)
1B3	26	1 data input/output B3
LE2B	27	latch 2B to A enable input
SEL	28	select B1 or B2 input
OE1B	29	output 1B enable input (active LOW)
LEA1B	30	latch A to 1B enable input
1B4	31	data input/output B4
GND	32	ground (0 V)
1B5	33	1 data input/output B5
1B6	34	1 data input/output B6
$V_{C C}$	35	supply voltage
1B7	36	1 data input/output B7
1B8	37	1 data input/output B8
1B9	38	1 data input/output B9
GND	39	ground (0 V)
$1 \mathrm{B10}$	40	1 data input/output B10
1 B 11	41	1 data input/output B11
1 B 12	42	1 data input/output B12
2B12	43	2 data input/output B12
2B11	44	2 data input/output B11
2B10	45	2 data input/output B10
GND	46	ground (0 V)
2B9	47	2 data input/output B9
2B8	48	2 data input/output B8
2B7	49	2 data input/output B7

74ALVT16260_3

Table 3. Pin description ...continued

Symbol	Pin	Description
V CC	50	supply voltage
2B6	51	2 data input/output B6
2B5	52	2 data input/output B5
GND	53	ground $(0 \mathrm{~V})$
2B4	54	2 data input/output B4
LEA2B	55	latch A to 2 B enable input
$\overline{\text { OE2B }}$	56	output 2B enable input (active LOW)

7. Functional description

7.1 Function table

Table 4. Function table of input B to output $A ; \overline{O E 1 B}=H$ and $\overline{O E 2 B}=H \underline{[1]}$

Control				Input		Output An
OEA	SEL	LE1B	LE2B	1Bn	2Bn	
L	H	H	X	H	X	H
				L	X	L
		L	X	X	X	An
	L	X	H	X	H	H
				X	L	L
		X	L	X	X	An
H	X	X	X	X	X	Z

[1] $\mathrm{H}=$ HIGH voltage level;
L = LOW voltage level;
X = don't care;
Z = high-impedance OFF-state;
An $=$ HIGH or LOW voltage level one setup time prior to the HIGH-to-LOW LExB transition.

Table 5. Function table of input A to output $B ; \overline{\mathrm{OEA}}=\mathrm{H} \underline{[1]}$

Control				$\begin{array}{\|l\|} \hline \text { Input } \\ \hline \text { An } \\ \hline \end{array}$	Output	
OE1B	OE2B	LEA1B	LEA2B		1Bn	2Bn
L	L	H	H	H	H	H
		H	H	L	L	L
		H	L	L	L	2 Bn
		H	L	H	H	2 Bn
		L	H	H	1 Bn	H
		L	H	L	1 Bn	L
		L	L	X	1 Bn	2 Bn
L	L	X	X	X	active	active
	H	X	X	X	active	Z
H	L	X	X	X	Z	active
	H	X	X	X	Z	Z

[1] $\mathrm{H}=$ HIGH voltage level;
L = LOW voltage level;
X = don't care;
Z = high-impedance OFF-state;
$1 \mathrm{Bn}=$ HIGH or LOW voltage level one setup time prior to the HIGH-to-LOW LEA2B transition; $2 \mathrm{Bn}=$ HIGH or LOW voltage level one setup time prior to the HIGH-to-LOW LEA1B transition; active $=$ HIGH or LOW voltage level.

8. Limiting values

Table 6. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{C C}$	supply voltage		-0.5	+4.6	V
V_{1}	input voltage		[1] -0.5	+7.0	V
V_{0}	output voltage	output in OFF-state or HIGH-state	[1] -0.5	+7.0	V
$I_{\text {IK }}$	input clamping current	$\mathrm{V}_{1}<0 \mathrm{~V}$	-	-50	mA
lok	output clamping current	$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$	-	-50	mA
10	output current	output in LOW-state	-	128	mA
		output in HIGH-state	-	-64	mA
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature		[2] -	150	${ }^{\circ} \mathrm{C}$

[1] The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.
[2] The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

9. Recommended operating conditions

Table 7. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\mathrm{cc}}=2.5 \mathrm{~V}$						
V_{CC}	supply voltage		2.3	-	2.7	V
V_{1}	input voltage		0	-	5.5	V
V_{IH}	HIGH-state input voltage		1.7	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-state input voltage		-	-	0.7	V
l_{OH}	HIGH-state output current		-	-	-8	mA
loL	LOW-state output current	none	-	-	8	mA
		$\begin{aligned} & \text { current duty cycle } \leq 50 \% \text {; } \\ & f \geq 1 \mathrm{kHz} \end{aligned}$	-	-	24	mA
$\Delta t / \Delta \mathrm{V}$	input transition rise and fall rate	outputs enabled	-	-	10	ns/V
$\mathrm{T}_{\text {amb }}$	ambient temperature		-40	-	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {cc }}=3.3 \mathrm{~V}$						
V_{CC}	supply voltage		3.0	-	3.6	V

Table 7. Recommended operating conditions ...continued

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{1}	input voltage		0	-	5.5	V
V_{IH}	HIGH-state input voltage		2.0	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-state input voltage		-	-	0.8	V
IOH	HIGH-state output current		-	-	-32	mA
$\mathrm{l}_{\text {OL }}$	LOW-state output current	none	-	-	32	mA
		$\begin{aligned} & \text { current duty cycle } \leq 50 \% \text {; } \\ & f \geq 1 \mathrm{kHz} \end{aligned}$	-	-	64	mA
$\Delta t / \Delta \mathrm{V}$	input transition rise and fall rate	outputs enabled	-	-	10	ns / V
$\mathrm{T}_{\text {amb }}$	ambient temperature	in free air	-40	-	+85	${ }^{\circ} \mathrm{C}$

10. Static characteristics

Table 8. Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
$T_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} \underline{\text { [1] }}$							
$\mathrm{V}_{\text {IK }}$	input clamping voltage	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{I}_{\mathrm{IK}}=-18 \mathrm{~mA}$		-	-0.85	-1.2	V
V_{OH}	HIGH-state output voltage	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to $3.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$		$\mathrm{V}_{C C}-0.2$	V_{CC}	-	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-8 \mathrm{~mA}$		1.8	2.1	-	V
$\mathrm{V}_{\text {OL }}$	LOW-state output voltage	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$		-	0.07	0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$; $\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$		-	0.3	0.5	V
$\mathrm{V}_{\text {RST }}$	power-up LOW-state output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ & \mathrm{GND} \end{aligned}$	[2]	-	-	0.55	V
l LI	input leakage current						
	control pins	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND		-	0.1	± 1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ or $2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$		-	0.1	10	$\mu \mathrm{A}$
	I/O data pins	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$	[3]	-	0.1	1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$	[3]	-	+0.1	-5	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ or $2.7 \mathrm{~V} ; \mathrm{V}_{1}=5.5 \mathrm{~V}$		-	0.1	20	$\mu \mathrm{A}$
loff	power-off leakage current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$; $\mathrm{V}_{\text {I }}$ or $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to 4.5 V		-	0.1	± 100	$\mu \mathrm{A}$
Ihold	bus hold current data input	$\mathrm{V}_{C C}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0.7 \mathrm{~V}$	[4]	-	90	-	$\mu \mathrm{A}$
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$; $\mathrm{V}_{\mathrm{I}}=1.7 \mathrm{~V}$	[4]	-	-10	-	$\mu \mathrm{A}$
$l_{\text {EX }}$	external current into output	output in HIGH-state when $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$; $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$		-	10	125	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{O}(\mathrm{pu} / \mathrm{pd})}$	power-up/power-down output current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \leq 1.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \mathrm{OEx}=\text { don't care } \end{aligned}$	[5]	-	1	100	$\mu \mathrm{A}$
$I_{\text {cc }}$	quiescent supply current	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A}$					
		outputs HIGH-state		-	0.04	0.1	mA
		outputs LOW-state		-	2.7	4.5	mA
		outputs disabled	[6]		0.04	0.1	mA

Table 8. Static characteristics ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
$T_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions		Min	Typ	Max	Unit
$\Delta \mathrm{l}_{\mathrm{CC}}$	additional quiescent supply current	per input pin; $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V ; one input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$, other inputs at V_{CC} or GND	[7]		0.04	0.4	mA
C_{i}	input capacitance (control pins)	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}		-	4	-	pF
$\mathrm{Cio}_{\text {io }}$	input/output capacitance (I/O pins)	$\mathrm{V}_{\text {I/O }}=0 \mathrm{~V}$ or 5.0 V		-	9	-	pF
$\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \underline{\text { [8] }}$							
$\mathrm{V}_{\text {IK }}$	input clamping voltage	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{IK}}=-18 \mathrm{~mA}$		-	-0.85	-1.2	V
$\mathrm{V}_{\text {OH }}$	HIGH-state output voltage	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$		$\mathrm{V}_{\mathrm{CC}}-0.2$	V_{CC}	-	V
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$; $\mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$		2.0	2.3	-	V
V_{OL}	LOW-state output voltage	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	[3]	-	0.07	0.2	V
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$	[3]	-	0.25	0.4	V
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=32 \mathrm{~mA}$	[3]	-	0.3	0.5	V
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA}$	[3]	-	0.4	0.55	V
$\mathrm{V}_{\text {RST }}$	power-up LOW-state output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ & \mathrm{GND} \end{aligned}$	[2]	-	-	0.55	V
l LI	input leakage current						
	control pins	$\mathrm{V}_{C C}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{C C}$ or GND		-	0.1	± 1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ or $3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$		-	0.1	10	$\mu \mathrm{A}$
	I/O data pins	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$	[3]	-	0.1	1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$	[3]	-	+0.1	-5	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ or $3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$		-	0.1	20	$\mu \mathrm{A}$
loff	power-off leakage current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}$ or $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to 4.5 V		-	0.1	± 100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {HOLD }}$	bus hold current data input	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0.8 \mathrm{~V}$		75	130	-	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=2.0 \mathrm{~V}$		-75	-140	-	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ to 3.6 V		± 500	-	-	$\mu \mathrm{A}$
$l_{\text {EX }}$	external current into output	output in HIGH-state when $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$; $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$		-	10	125	$\mu \mathrm{A}$
$\mathrm{l}_{\mathrm{O}(\mathrm{pu} / \mathrm{pd})}$	power-up/power-down output current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \leq 1.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \overline{\mathrm{OEx}}=\text { don't care } \end{aligned}$	[9]	-	1	± 100	$\mu \mathrm{A}$
I_{CC}	quiescent supply current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}} ; \mathrm{l}_{\mathrm{O}}=0 \mathrm{~A}$					
		outputs HIGH-state		-	0.04	0.1	mA
		outputs LOW-state		-	3.7	6	mA
		outputs disabled	[6]	-	0.06	0.1	mA
$\Delta \mathrm{l}_{\text {CC }}$	additional quiescent supply current	per input pin; $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V ; one input at $\mathrm{V}_{C C}-0.6 \mathrm{~V}$, other inputs at V_{CC} or GND	[7]	-	0.04	0.4	mA
C_{i}	input capacitance (control pins)	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}		-	4	-	pF
$\mathrm{C}_{\text {io }}$	input/output capacitance (I/O pins)	$\mathrm{V}_{\text {I/O }}=0 \mathrm{~V}$ or 5.0 V		-	9	-	pF

[1] Typical values are measured at $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ and $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
[2] For valid test results, data must not be loaded into the flip-flops (or latches) after applying power.
[3] Unused pins at V_{CC} or GND .
[4] This is the bus hold overdrive current required to force the input to the opposite logic state.
[5] This parameter is valid for any V_{CC} between 0 V and 1.2 V with a transition time of up to 10 ms . From $\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ a transition time of $100 \mu \mathrm{~s}$ is permitted. This parameter is valid for $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ only.
[6] I_{CC} is measured with outputs pulled up to V_{CC} or pulled down to ground.
[7] This is the increase in supply current for each input at the specified voltage level other than $V_{C C}$ or GND.
[8] All typical values are measured at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
[9] This parameter is valid for any V_{CC} between 0 V and 1.2 V with a transition time of up to 10 ms . From $\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ a transition time of $100 \mu \mathrm{~s}$ is permitted. This parameter is valid for $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ only.

11. Dynamic characteristics

Table 9. Dynamic characteristics
Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 6;
$T_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$						
$t_{\text {PL }}$	LOW-to-HIGH propagation delay	see Figure 3				
	An to $\mathrm{xBn} ; \mathrm{xBn}$ to An		0.8	2.8	5.2	ns
	LExB to An; LEAxB to $\times B n$		1.1	3.1	5.6	ns
	SEL(1Bn) to An		1.2	2.9	4.8	ns
	SEL(2Bn) to An		1.6	3.1	5.2	ns
$\mathrm{t}_{\text {PHL }}$	HIGH-to-LOW propagation delay	see Figure 3				
	An to $\mathrm{xBn} ; \mathrm{xBn}$ to An		1.1	2.7	4.9	ns
	LExB to An; LEAxB to xBn		0.9	2.8	5.3	ns
	SEL(1Bn) to An		1.1	2.4	4.5	ns
	SEL(2Bn) to An		1.2	2.7	4.6	ns
$t_{\text {Pz }}$	output enable time to HIGH-state	see Figure 4				
	$\overline{\mathrm{OEA}}$ to An ; $\overline{\mathrm{OE} 1 \mathrm{~B}}$ to $1 \mathrm{Bn} ; \overline{\mathrm{OE} 2 \mathrm{~B}}$ to 2 Bn		1.8	3.5	5.5	ns
tpzL	output enable time to LOW-state	see Figure 4				
	$\overline{\mathrm{OEA}}$ to An ; $\overline{\mathrm{OE} 1 \mathrm{~B}}$ to $1 \mathrm{Bn} ; \overline{\mathrm{OE} 2 \mathrm{~B}}$ to 2 Bn		1.3	2.8	4.6	ns
$t_{\text {PHZ }}$	output disable time from HIGH-state	see Figure 4				
	$\overline{\mathrm{OEA}}$ to An ; $\overline{\mathrm{OE} 1 \mathrm{~B}}$ to $1 \mathrm{Bn} ; \overline{\mathrm{OE} 2 \mathrm{~B}}$ to 2 Bn		1.8	2.8	4.6	ns
$t_{\text {PLZ }}$	output disable time from LOW-state	see Figure 4				
	$\overline{\mathrm{OEA}}$ to An ; $\overline{\mathrm{OE} 1 \mathrm{~B}}$ to 1 Bn ; $\overline{\mathrm{OE} 2 \mathrm{~B}}$ to 2 Bn		1.0	2.2	3.4	ns
$\mathrm{t}_{\text {su }}$	setup time	see Figure 5				
	An to LEAxB; x nn to LExB		1.0	-	-	ns
t_{n}	hold time	see Figure 5				
	LEAxB to An; LExB to $\times B n$		1.0	-	-	ns
t_{w}	pulse width	see Figure 5				
	LExB HIGH; LEAxB HIGH		3.3	-		ns

Table 9. Dynamic characteristics ...continued
Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 6;
$T_{a m b}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$						
$t_{\text {PLH }}$	LOW-to-HIGH propagation delay	see Figure 3				
	An to $\mathrm{xBn} ; \mathrm{xBn}$ to An		0.7	2.2	3.6	ns
	LExB to An; LEAxB to $\times B n$		1.0	2.4	4.1	ns
	SEL(1Bn) to An		1.0	2.2	3.4	ns
	SEL(2Bn) to An		0.9	2.3	3.8	ns
$t_{\text {PHL }}$	HIGH-to-LOW propagation delay	see Figure 3				
	An to $\mathrm{xBn} ; \mathrm{xBn}$ to An		0.7	2.0	3.4	ns
	LExB to An; LEAxB to \times Bn		1.1	2.3	3.9	ns
	SEL(1Bn) to An		1.0	2.0	3.3	ns
	SEL(2Bn) to An		1.6	2.1	3.4	ns
$t_{\text {PzH }}$	output enable time to HIGH-state	see Figure 4				
	$\overline{\mathrm{OEA}}$ to An ; $\overline{\mathrm{OE} 1 \mathrm{~B}}$ to $1 \mathrm{Bn} ; \overline{\mathrm{OE} 2 \mathrm{~B}}$ to 2Bn		1.1	2.7	4.1	ns
$t_{\text {PZL }}$	output enable time to LOW-state	see Figure 4				
	$\overline{\mathrm{OEA}}$ to An ; $\overline{\mathrm{OE} 1 \mathrm{~B}}$ to 1Bn; $\overline{\mathrm{OE} 2 \mathrm{~B}}$ to 2Bn		1.1	2.1	3.2	ns
$t_{\text {PHZ }}$	output disable time from HIGH-state	see Figure 4				
	OEA to An; OE1B to 1Bn; OE2B to 2Bn		2.4	3.4	4.8	ns
$t_{\text {PLZ }}$	output disable time from LOW-state	see Figure 4				
	$\overline{\text { OEA }}$ to An ; $\overline{\mathrm{OE} 1 \mathrm{~B}}$ to 1Bn; $\overline{\mathrm{OE} 2 \mathrm{~B}}$ to 2Bn		2.0	3.0	4.0	ns
$\mathrm{t}_{\text {su }}$	setup time	see Figure 5				
	An to LEAxB; x Bn to LExB		1	-	-	ns
t_{n}	hold time	see Figure 5				
	LEAxB to An; LExB to \times Bn		1	-	-	ns
t_{w}	pulse width	see Figure 5				
	LExB HIGH; LEAxB HIGH		3.3	-	-	ns

12. Waveforms

Measurement points are given in Table 10.
V_{OL} and V_{OH} are typical voltage output drop that occur with the output load.
Fig 3. Propagation delay input (An; xBn) to output (xBn; An) or (LExB; LEAxB) to output (An; xBn) or (SELxBn) to output (An)

Measurement points are given in Table 10.
V_{OL} and V_{OH} are typical voltage output drop that occur with the output load.
Fig 4. 3-state output disable and enable time

Table 10. Measurement points

Input	Output		
$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{X}}$	$\mathbf{V}_{\mathbf{Y}}$
1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$

Measurement points are given in Table 10.
Fig 5. Data setup and hold times

Test data is given in Table 11.
Definitions test circuit:
$R_{L}=$ Load resistor.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$R_{T}=$ Termination resistance should be equal to output impedance Z_{o} of the pulse generator.
$\mathrm{V}_{\mathrm{EXT}}=$ Test voltage for switching times.
Fig 6. Load circuitry for switching times

Table 11. Test data

Input	Load					$\mathbf{V}_{\text {EXT }}$	
$\mathbf{V}_{\mathbf{I}}$	$\mathbf{f}_{\mathbf{i}}$	$\mathbf{t}_{\mathbf{r}}, \mathbf{t}_{\mathbf{f}}$	\mathbf{C}_{L}	$\mathbf{R}_{\mathbf{L}}$	$\mathbf{t}_{\text {PLZ }}, \mathbf{t}_{\text {PZL }}$	$\mathbf{t}_{\text {PLH }}, \mathbf{t}_{\text {PHL }}$	$\mathbf{t}_{\text {PHZ }}, \mathbf{t}_{\text {PZH }}$
3.0 V	$\leq 10 \mathrm{MHz}$	$\leq 2.5 \mathrm{~ns}$	50 pF	500Ω	7 V	open	GND

13. Package outline

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} $\mathbf{m a x}$.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(\mathbf{1})}$	$\mathbf{E}^{(\mathbf{1})}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(\mathbf{1})}$	$\boldsymbol{\theta}$
mm	2.8	0.4	2.35	0.25	0.3	0.22	18.55	7.6	0.635	10.4	1.4	1.0	1.2	0.25	0.18	0.1	0.85	8°
	0.2	2.20	0.25	0.2	0.13	18.30	7.4	0.65	10.1		0.6	1.0	0.2		0.40	0°		

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			-
SOT371-1		MO-118			$-99-12-27$	
$03-02-18$						

Fig 7. Package outline SOT371-1 (SSOP56)

DIMENSIONS (mm are the original dimensions).

UNIT	\mathbf{A} $\mathbf{m a x}$.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(2)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\boldsymbol{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	\mathbf{Z}	$\boldsymbol{\theta}$
mm	1.2	0.15	1.05	0.25	0.28	0.2	14.1	6.2	0.5	8.3	1	0.8	0.50	0.25	0.08	0.1	0.5	8^{0}
	0.05	0.85	0.25	0.17	0.1	13.9	6.0		7.9		0.4	0.35	0.2		0.1	0°		

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT364-1		MO-153			-	

Fig 8. Package outline SOT364-1 (TSSOP56)

14. Abbreviations

Table 12. Abbreviations

Acronym	Description
ESD	ElectroStatic Discharge
DUT	Device Under Test

15. Revision history

Table 13. Revision history
$\left.\begin{array}{lllll}\hline \text { Document ID } & \text { Release date } & \text { Data sheet status } & \text { Change notice } & \text { Supersedes } \\ \text { 74ALVT16260_3 } & \text { 20060320 } & \text { Product data sheet } & - & \text { 74ALVT16260_2 } \\ \text { (9397 750 03337) }\end{array}\right]$

16. Legal information

16.1 Data sheet status

Document status ${ }^{[1][2]}$	Product status $[3]$	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term 'short data sheet' is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.semiconductors.philips.com.

16.2 Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Philips Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information

Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Philips Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

16.3 Disclaimers

General - Information in this document is believed to be accurate and reliable. However, Philips Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes - Philips Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.
Suitability for use - Philips Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or
malfunction of a Philips Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Philips Semiconductors accepts no liability for inclusion and/or use of Philips Semiconductors products in such equipment or applications and therefore such inclusion and/or use is for the customer's own risk.
Applications - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.
Terms and conditions of sale - Philips Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.semiconductors.philips.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by Philips Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.
No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

18. Contents
1 General description 1
2 Features 1
3 Quick reference data 2
4 Ordering information 2
5 Functional diagram 3
6 Pinning information 4
6.1 Pinning 4
6.2 Pin description 4
7 Functional description 6
7.1 Function table 6
8 Limiting values 7
9 Recommended operating conditions. 7
10 Static characteristics 8
11 Dynamic characteristics 10
12 Waveforms 12
13 Package outline 14
14 Abbreviations 16
15 Revision history 16
16 Legal information 17
16.1 Data sheet status 17
16.2 Definitions 17
16.3 Disclaimers 17
16.4 Trademarks 17
17 Contact information 17
18 Contents 18

[^0]: 5 V I/O compatible

 - Bus hold inputs eliminate the need for external pull-up resistors
 - Live insertion and extraction permitted
 - Power-up 3-state
 - Power-up reset
 - Output capability: +64 mA and -32 mA

 Distributed V_{CC} and GND pin configuration minimizes high-speed switching noise

 - Latch-up protection:
 - JESD78: exceeds 500 mA
 - ESD protection:
 - MIL STD 883C, method 3015: exceeds 2000 V
 - Machine model: exceeds 200 V

